This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Cohomology, deformations and extensions of Rota-Baxter Leibniz algebras

Bibhash Mondal    Ripan Saha Bibhash Mondal – Department of Mathematics, Behala College, Behala, 700060, Kolkata, India [email protected] Ripan Saha – Department of Mathematics, Raiganj University, Raiganj 733134, West Bengal, India [email protected]
Abstract

A Rota-Baxter Leibniz algebra is a Leibniz algebra (𝔤,[,]𝔤)(\mathfrak{g},[~{},~{}]_{\mathfrak{g}}) equipped with a Rota-Baxter operator T:𝔤𝔤T:\mathfrak{g}\rightarrow\mathfrak{g}. We define representation and dual representation of Rota-Baxter Leibniz algebras. Next, we define a cohomology theory of Rota-Baxter Leibniz algebras. We also study the infinitesimal and formal deformation theory of Rota-Baxter Leibniz algebras and show that our cohomology is deformation cohomology. Moreover, We define an abelian extension of Rota-Baxter Leibniz algebras and show that equivalence classes of such extensions are related to the cohomology groups.

keywords:
Leibniz algebra, cohomology, formal deformation, Rota-Baxter operator, abelian extension.
\msc

17A32, 17A36, 17B56, 16S80. \VOLUME30 \NUMBER2 \YEAR2022 \DOIhttps://doi.org/10.46298/cm.10295 {paper}

1 Introduction

A Rota-Baxter algebra is defined to be an associative algebra AA equipped with a linear map T:AAT:A\to A satisfying Rota-Baxter identity: T(x)T(y)=T(T(x)y+xT(y))T(x)T(y)=T(T(x)y+xT(y)), for all x,yAx,y\in A. This Rota-Baxter identity is also known as Rota-Baxter equation of weight 0, and TT is called the Rota-Baxter operator. Integration by parts is an example of a Rota–Baxter operator of weight 0. Though it has a natural connection with integral analysis, the Rota-Baxter algebra was not originated modeling this fact of integral analysis, but was introduced by Glenn Baxter [baxter] in his probability study of fluctuation theory. In a series of papers, Rota [rota] derived some identities as well as gave some applications of Baxter algebra arising in probability and combinatorial theory. A (left) Leibniz algebra [loday93] is a vector space 𝔤\mathfrak{g} over a field F, equipped with a bilinear map [,]𝔤:𝔤𝔤𝔤[~{},~{}]_{\mathfrak{g}}:\mathfrak{g}\otimes\mathfrak{g}\to\mathfrak{g} satisfying the (left) Leibniz identity:

[x,[y,z]𝔤]𝔤=[[x,y]𝔤,z]𝔤+[y,[x,z]𝔤]𝔤,forx,y,z𝔤.[x,[y,z]_{\mathfrak{g}}]_{\mathfrak{g}}=[[x,y]_{\mathfrak{g}},z]_{\mathfrak{g}}+[y,[x,z]_{\mathfrak{g}}]_{\mathfrak{g}},\quad\textup{for}\quad x,y,z\in\mathfrak{g}.

Leibniz algebras are often considered as non-commutative Lie algebras, since the Leibniz identity is equivalent to the Jacobi identity when the two-sided ideal {x𝔤[x,x]=0}\{x\in\mathfrak{g}~{}\mid~{}[x,x]=0\} coincides with 𝔤\mathfrak{g}. For this reason, a significant amount of research attempts to extend results on Lie algebras to Leibniz algebras. Derivations on algebraic structures were first started by Ritt [ritt] in the 1930s for commutative algebras and fields. The structure is called a differential (commutative) algebra. There is an enormous literature on this subject, including differential Galois theory, see [M94]. In recent times, there is a numerous studies on different type of algebras with derivations, see [das21], [guosaha], [TFS]. Similarly, degenerations of algebras is an interesting subject, which were studied in various papers, for the study of degenerations of Leibniz algebras and related structures, see [KPPV], [IKV19], [KP19]. As Rota-Baxter operator is a kind of generalization of integral operator, therefore, it is natural to consider algebras with Rota-Baxter operator analogous to algebras with differentials. Jiang and Sheng [JS] studied cohomology and abelian extensions of relative Rota-Baxter Lie algebras. In [Guo], the authors studied cohomology theory of Rota-Baxter Pre-Lie algebras of arbitrary weights. Tang, Sheng and Zhou [TSZ] studied deformation theory of relative Rota-Baxter operator on Leibniz algebras. Recently, Das, Hazra, and Mishra [Das] studied Rota-Baxter Lie algebras from cohomological point of view. In this paper, our object of study is Rota-Baxter Leibniz algebra. A Rota-Baxter Leibniz algebra is a Leibniz algebra (𝔤,[,]𝔤)(\mathfrak{g},[~{},~{}]_{\mathfrak{g}}) equipped with a Rota-Baxter operator T:𝔤𝔤T:\mathfrak{g}\rightarrow\mathfrak{g}. We denote a Rota-Baxter Leibniz algebra by the notation (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}). In this paper, we first define a representation of a Rota-Baxter Leibniz algebra. Given a Rota-Baxter Leibniz algebra (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}), one can define a new bracket [,][~{},~{}]_{\ast} such that (𝔤T,[,])(\mathfrak{g}_{T},[~{},~{}]_{\ast}) is also Rota-Baxter Leibniz algebra. Now using this fact, if (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) be a Rota-Baxter Leibniz algebra and (V,lV,rV,TV)(V,l_{V},r_{V},T_{V}) be a representation of it, we get a new Rota-Baxter Leibniz algebra (𝔤T,[,])(\mathfrak{g}_{T},[~{},~{}]_{*}) with representation (V,lV,rV,TV)(V,l^{{}^{\prime}}_{V},r_{V}^{{}^{\prime}},T_{V}) induced by the Rota-Baxter operator. We consider the Loday-Pirashvili cochain complex of this induced Leibniz algebra (𝔤,[,])(\mathfrak{g},[~{},~{}]_{*}) with representation (V,lV,rV)(V,l^{{}^{\prime}}_{V},r_{V}^{{}^{\prime}}) to define the cohomology of Rota-Baxter Leibniz algebras. In the nth cochain group, we have two parts, one for Leibniz algebra and another one for the Rota-Baxter operator. In this paper, we also discuss dual representation a Rota-Baxter Leibniz algebra and nilpotent Rota-Baxter Leibniz algebra and obtain some interesting results. Next, we study one-parameter formal deformation theory of Rota-Baxter Leibniz algebra following Gerstenhaber’s [G63], [G64] classical deformation theory for associative algebras. We study the the problem of extending a given deformation of order nn to a deformation of order (n+1)(n+1) and define the associated obstruction. We also study rigidity conditions for formal deformations. Finally, we define an abelian extension of a Rota-Baxter Leibniz algebra and show that how equivalence classes of such extensions are related to the cohomology groups. This paper is organized as follows: In section 2, we recall Rota-Baxter operator, Leibniz algebra and its representation which we will use throughout the paper. In Section 3, we discuss some structural aspect of Rota-Baxter Leibniz algebras, also we discuss dual representation and nilpotent Rota-Baxter Leibniz algebras. In Section 4, we introduce the cohomology group of Rota-Baxter Leibniz algebra. In Section 5, we define Gerstenhaber’s formal deformation theory of Rota-Baxter Leibniz algebras and showed that the cohomology defined in 4 is a deformation cohomology. In the final Section, we discuss abelian extension and its relation with cohomology of Rota-Baxter Leibniz algebras.

2 Preliminaries

Let us recall the following basic definitions from [Das], [Loday], [Mandal], [Sheng].

Definition 2.1.

A Leibniz algebra is a vector space 𝔤\mathfrak{g} together with a bilinear operation (called the bracket) [,]𝔤:𝔤×𝔤𝔤[~{},~{}]_{\mathfrak{g}}:\mathfrak{g}\times\mathfrak{g}\rightarrow\mathfrak{g} satisfying the following identity

[x,[y,z]𝔤]𝔤=[[x,y]𝔤,z]𝔤+[y,[x,z]𝔤]𝔤,forx,y,z𝔤.[x,[y,z]_{\mathfrak{g}}]_{\mathfrak{g}}=[[x,y]_{\mathfrak{g}},z]_{\mathfrak{g}}+[y,[x,z]_{\mathfrak{g}}]_{\mathfrak{g}},~{}~{}~{}~{}\mbox{for}~{}x,y,z\in\mathfrak{g}.

It is denoted by (𝔤,[,]𝔤).(\mathfrak{g},[~{},~{}]_{\mathfrak{g}}).

The above definition of Leibniz algebra is in fact the definition of left Leibniz algebra. In this paper, we will consider left Leibniz algebra simply as Leibniz algebra. Leibniz algebras are generalization of Lie-algebra. Any Lie algebra is a Leibniz algebra. A Leibniz algebra (𝔤,[,])(\mathfrak{g},[~{},~{}]) which satisfies [a,a]=0[a,a]=0 for all a𝔤a\in\mathfrak{g} is a Lie algebra.

Example 2.2.

Let us consider the vector space 𝐑2\mathbf{R}^{2} with standard basis {e1,e2}\{e_{1},e_{2}\} with bracket defined by [e1,e2]=0=[e1,e1],[e2,e1]=e1=[e2,e2][e_{1},e_{2}]=0=[e_{1},e_{1}],~{}[e_{2},e_{1}]=e_{1}=[e_{2},e_{2}]. Then (𝐑2,[,])(\mathbf{R}^{2},[~{},~{}]) is a Leibniz algebra.

Definition 2.3.

Let 𝔤=(g,[,]𝔤)\mathfrak{g}=(g,[~{},~{}]_{\mathfrak{g}}) be a Leibniz algebra. A Rota-Baxter operator on 𝔤\mathfrak{g} is a linear map T:𝔤𝔤T:\mathfrak{g}\rightarrow\mathfrak{g} satisfying the following condition

[T(x),T(y)]𝔤=T([T(x),y]𝔤+[x,T(y)]𝔤),for allx,y𝔤.[T(x),T(y)]_{\mathfrak{g}}=T([T(x),y]_{\mathfrak{g}}+[x,T(y)]_{\mathfrak{g}}),~{}~{}~{}~{}\mbox{for all}~{}~{}x,y\in\mathfrak{g}.
Definition 2.4.

A Rota-Baxter Leibniz algebra is a Leibniz algebra (𝔤,[,]𝔤)(\mathfrak{g},[~{},~{}]_{\mathfrak{g}}) equipped with a Rota-Baxter operator T:𝔤𝔤T:\mathfrak{g}\rightarrow\mathfrak{g}. We denote a Rota-Baxter Leibniz algebra by the notation (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}).

Example 2.5.

Consider the Leibniz algebra (𝐑2,[,])(\mathbf{R}^{2},[~{},~{}]) defined in example (2.2). Then the linear map T:𝐑2𝐑2,xAxT:\mathbf{R}^{2}\rightarrow\mathbf{R}^{2},~{}x\mapsto Ax where A=(0b00)A=\left(\begin{smallmatrix}0&b\\ 0&0\end{smallmatrix}\right) for any b𝐑b\in\mathbf{R} is a Rota-Baxter operator on (𝐑2,[,])(\mathbf{R}^{2},[~{},~{}]), hence (𝐑T2,[,])(\mathbf{R}^{2}_{T},[~{},~{}]) is a Rota-Baxter Leibniz algebra.

Definition 2.6.

Let (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) and (𝔤T,[,]𝔤)(\mathfrak{g}_{T^{{}^{\prime}}}^{{}^{\prime}},[~{},~{}]_{\mathfrak{g}^{{}^{\prime}}}) be two Rota-Baxter Leibniz algebras. A morphism φ:𝔤T𝔤T\varphi:\mathfrak{g}_{T}\rightarrow\mathfrak{g}_{T^{{}^{\prime}}}^{{}^{\prime}} of Rota-Baxter Leibniz algebras is given by a Leibniz algebra homomorphism φ:𝔤𝔤\varphi:\mathfrak{g}\rightarrow\mathfrak{g}^{{}^{\prime}} satisfying Tφ=φTT^{{}^{\prime}}\circ\varphi=\varphi\circ T. φ\varphi is said to be an isomorphism if φ\varphi is a linear isomorphism.

Let 𝔤T\mathfrak{g}_{T} be a Rota-Baxter Leibniz algebra. Then we denote Aut(𝔤T\mathfrak{g}_{T}) by the set of all isomorphism on 𝔤T\mathfrak{g}_{T} .

Definition 2.7.

Let (𝔤,[,]𝔤)(\mathfrak{g},[~{},~{}]_{\mathfrak{g}}) be a Leibniz algebra. A 𝐫𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭𝐚𝐭𝐢𝐨𝐧\mathbf{representation} of (𝔤,[,]𝔤)(\mathfrak{g},[~{},~{}]_{\mathfrak{g}}) is a triple (V,lV,rV)(V,l_{V},r_{V}) where VV is vector space together with bilinear maps (called the left and right 𝔤\mathfrak{g}-actions respectively ) lV:𝔤VVandrV:V𝔤Vl_{V}:\mathfrak{g}\otimes V\rightarrow V~{}~{}\mbox{and}~{}~{}r_{V}:V\otimes\mathfrak{g}\rightarrow V satisfying the following conditions

lV(x,lV(y,u))=lV([x,y]𝔤,u)+lV(y,lV(x,u))l_{V}(x,l_{V}(y,u))=l_{V}([x,y]_{\mathfrak{g}},u)+l_{V}(y,l_{V}(x,u))
lV(x,rV(u,y))=rV(lV(x,u),y)+rV(u,[x,y]𝔤)l_{V}(x,r_{V}(u,y))=r_{V}(l_{V}(x,u),y)+r_{V}(u,[x,y]_{\mathfrak{g}})
rV(u,[x,y]𝔤)=rV(rV(u,x),y)+lV(x,rV(u,y))r_{V}(u,[x,y]_{\mathfrak{g}})=r_{V}(r_{V}(u,x),y)+l_{V}(x,r_{V}(u,y))

for all x,y𝔤x,y\in\mathfrak{g} and uV.u\in V.

Now if we consider the vector space VV as 𝔤\mathfrak{g} itself with l𝔤:𝔤×𝔤𝔤l_{\mathfrak{g}}:\mathfrak{g}\times\mathfrak{g}\rightarrow\mathfrak{g}, r𝔤:𝔤×𝔤𝔤r_{\mathfrak{g}}:\mathfrak{g}\times\mathfrak{g}\rightarrow\mathfrak{g} by lg(x,y)=[x,y]𝔤l_{g}(x,y)=[x,y]_{\mathfrak{g}} and r𝔤(x,y)=[x,y]𝔤r_{\mathfrak{g}}(x,y)=[x,y]_{\mathfrak{g}} respectively for all x,y𝔤.x,y\in\mathfrak{g}. Then (𝔤,l𝔤,r𝔤)(\mathfrak{g},l_{\mathfrak{g}},r_{\mathfrak{g}}) is a representation of (𝔤,[,]𝔤)(\mathfrak{g},[~{},~{}]_{\mathfrak{g}}) which we call self representation. Note that for self-representation the above three conditions reduce to the identity in the definition of Leibniz algebra.

Definition 2.8.

Let (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) be a Rota-Baxter Leibniz algebra. A representation of (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) is a quadruple (V,lV,rV,TV)(V,l_{V},r_{V},T_{V}), where (V,lV,rV)(V,l_{V},r_{V}) is a representation of the Leibniz algebra (𝔤,[,]𝔤)(\mathfrak{g},[~{},~{}]_{\mathfrak{g}}) and TV:VVT_{V}:V\rightarrow V is a linear map satisfying the following conditions

lV(T(x),TV(u))=TV((lV(T(x),u)+lV(x,TV(u)))l_{V}(T(x),T_{V}(u))=T_{V}((l_{V}(T(x),u)+l_{V}(x,T_{V}(u)))
rV(TV(u),T(x))=TV(rV(TV(u),x)+rV(u,T(x)))r_{V}(T_{V}(u),T(x))=T_{V}(r_{V}(T_{V}(u),x)+r_{V}(u,T(x)))

for all x𝔤x\in\mathfrak{g} and uV.u\in V.

Note that for a Rota-Baxter Leibniz algebra (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}), the self representation of (𝔤,[,]𝔤)(\mathfrak{g},[~{},~{}]_{\mathfrak{g}}) gives a representation (𝔤,l𝔤,r𝔤,T)(\mathfrak{g},l_{\mathfrak{g}},r_{\mathfrak{g}},T) of the Rota-Baxter Leibniz algebra (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}).

3 Some Structural aspects of Rota-Baxter Leibniz algebras

Proposition 3.1.

Let (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) be a Rota-Baxter Leibniz algebra. Define

[x,y]=[x,T(y)]𝔤+[T(x),y]𝔤for allx,y𝔤.[x,y]_{*}=[x,T(y)]_{\mathfrak{g}}+[T(x),y]_{\mathfrak{g}}\quad\textup{for all}\quad x,y\in\mathfrak{g}.

Then,

  1. 1.

    (g,[,])(g,[~{},~{}]_{*}) is a Leibniz algebra.

  2. 2.

    TT is also a Rota-Baxter operator on (𝔤,[,])(\mathfrak{g},[~{},~{}]_{*})

  3. 3.

    The map T:(g,[,]𝔤)(g,[,])T:(g,[~{},~{}]_{\mathfrak{g}})\rightarrow(g,[~{},~{}]_{*}) is a morphism of Rota-Baxter Leibniz algebra.

Proof 3.2.
  1. 1.

    It is easy to show that [,][~{},~{}]_{*} is a bilinear map. Now,

    [x,[y,z]]\displaystyle[x,[y,z]_{*}]_{*} =\displaystyle= [x,T([y,z])]𝔤+[T(x),[y,z]]𝔤\displaystyle[x,T([y,z]_{*})]_{\mathfrak{g}}+[T(x),[y,z]_{*}]_{\mathfrak{g}}
    =\displaystyle= [x,T([y,T(z)]𝔤+[T(y),z])]𝔤+[T(x),[y,T(z)]𝔤+[T(y),z]𝔤]𝔤\displaystyle[x,T([y,T(z)]_{\mathfrak{g}}+[T(y),z])]_{\mathfrak{g}}+[T(x),[y,T(z)]_{\mathfrak{g}}+[T(y),z]_{\mathfrak{g}}]_{\mathfrak{g}}
    =\displaystyle= [x,[T(y),T(z)]𝔤]𝔤+[T(x),[y,T(z)]𝔤]𝔤+[T(x),[T(y),z]𝔤]𝔤.\displaystyle[x,[T(y),T(z)]_{\mathfrak{g}}]_{\mathfrak{g}}+[T(x),[y,T(z)]_{\mathfrak{g}}]_{\mathfrak{g}}+[T(x),[T(y),z]_{\mathfrak{g}}]_{\mathfrak{g}}.

    Similarly, we have

    [[x,y],z]=[[x,T(y)]𝔤,T(z)]𝔤+[[T(x),y]𝔤,T(z)]𝔤+[[T(x),T(y)]𝔤,z]𝔤[[x,y]_{*},z]_{*}=[[x,T(y)]_{\mathfrak{g}},T(z)]_{\mathfrak{g}}+[[T(x),y]_{\mathfrak{g}},T(z)]_{\mathfrak{g}}+[[T(x),T(y)]_{\mathfrak{g}},z]_{\mathfrak{g}}

    and

    [y,[x,z]]=[y,[T(x),T(z)]𝔤]𝔤+[T(y),[x,T(z)]𝔤]𝔤+[T(y),[T(x),z]𝔤]𝔤.[y,[x,z]_{*}]_{*}=[y,[T(x),T(z)]_{\mathfrak{g}}]_{\mathfrak{g}}+[T(y),[x,T(z)]_{\mathfrak{g}}]_{\mathfrak{g}}+[T(y),[T(x),z]_{\mathfrak{g}}]_{\mathfrak{g}}.

    Next, using the identity in the definition of Leibniz algebra (𝔤,[,]𝔤)(\mathfrak{g},[~{},~{}]_{\mathfrak{g}}) we have [x,[y,z]]=[[x,y],z]+[y,[x,z]][x,[y,z]_{*}]_{*}=[[x,y]_{*},z]_{*}+[y,[x,z]_{*}]_{*}, for all x,y,z𝔤.x,y,z\in\mathfrak{g}.

  2. 2.

    Now,

    [T(x)\displaystyle[T(x) ,T(y)]\displaystyle,T(y)]_{*}
    =[T(x),T(T(y))]𝔤+[T(T(x)),T(y)]𝔤\displaystyle=[T(x),T(T(y))]_{\mathfrak{g}}+[T(T(x)),T(y)]_{\mathfrak{g}}
    =T([T(x),T(y)]𝔤+[x,T(T(y))]𝔤)+T([T(T(x)),y]𝔤+[T(x),T(y)]𝔤)\displaystyle=T([T(x),T(y)]_{\mathfrak{g}}+[x,T(T(y))]_{\mathfrak{g}})+T([T(T(x)),y]_{\mathfrak{g}}+[T(x),T(y)]_{\mathfrak{g}})
    =T([T(x),y]+[x,T(y)]).\displaystyle=T([T(x),y]_{*}+[x,T(y)]_{*}).

    Therefore, TT is also a Rota-Baxter operator on the Leibniz algebra (𝔤,[,]).(\mathfrak{g},[~{},~{}]_{*}).

  3. 3.

    It is obvious to observe that the map T:(𝔤T,[,]𝔤)(𝔤T,[,])T:(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}})\rightarrow(\mathfrak{g}_{T},[~{},~{}]_{*}) , gT(g)g\mapsto T(g) is a morphism of Rota Baxter Leibniz algebra.

Proposition 3.3.

Suppose (V,lV,rV,TV)(V,l_{V},r_{V},T_{V}) be a representation of Rota-Baxter Leibniz algebra (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) and we define lV:𝔤VV,rV:V𝔤Vl_{V}^{{}^{\prime}}:\mathfrak{g}\otimes V\rightarrow V~{},~{}r_{V}^{{}^{\prime}}:V\otimes\mathfrak{g}\rightarrow V respectively by

lV(x,u)=lV(T(x),u)TV(lV(x,u))l^{{}^{\prime}}_{V}(x,u)=l_{V}(T(x),u)-T_{V}(l_{V}(x,u))
rV(u,x)=rV(u,T(x))TV(rV(u,x)),r^{{}^{\prime}}_{V}(u,x)=r_{V}(u,T(x))-T_{V}(r_{V}(u,x)),

for all x𝔤,uVx\in{\mathfrak{g}},u\in V. Then (V,lV,rV,TV)(V,l_{V}^{{}^{\prime}},r_{V}^{{}^{\prime}},T_{V}) will be a representation of the Rota-Baxter Leibniz algebra (𝔤T,[,])(\mathfrak{g}_{T},[~{},~{}]_{*}).

Proof 3.4.

First, we will show that (V,lV,rV)\left(V,l_{V}^{\prime},r_{V}^{\prime}\right) is in fact a representation of the Leibniz algebra (𝔤T,[,])\left(\mathfrak{g}_{T},[~{},~{}]_{*}\right). For x,y𝔤,uVx,y\in\mathfrak{g},u\in V we have,

lV(x,\displaystyle l^{\prime}_{V}(x, lV(y,u))lV([x,y],u)lV(y,lV(x,u))\displaystyle l_{V}^{{}^{\prime}}(y,u))-l_{V}^{{}^{\prime}}([x,y]_{*},u)-l_{V}^{{}^{\prime}}(y,l_{V}^{{}^{\prime}}(x,u))
=\displaystyle={} lV(T(x),lV(y,u))(TVlV)(x,lV(y,u))lV(T([x,y]),u)+(TVlV)([x,y],u)\displaystyle{}l_{V}(T(x),l_{V}^{{}^{\prime}}(y,u))-(T_{V}\circ l_{V})(x,l_{V}^{{}^{\prime}}(y,u))-l_{V}(T([x,y]_{*}),u)+(T_{V}\circ l_{V})([x,y]_{*},u)
lV(T(y),lV(x,u))+(TVlV)(y,lV(x,u)\displaystyle-l_{V}(T(y),l_{V}^{{}^{\prime}}(x,u))+(T_{V}\circ l_{V})(y,l_{V}^{{}^{\prime}}(x,u)
=\displaystyle={} lV(T(x),lV(T(y),u))lV(T(x),(TVlV)(y,u))(TVlV)(x,lV(T(y),u))\displaystyle{}l_{V}(T(x),l_{V}(T(y),u))-l_{V}(T(x),(T_{V}\circ l_{V})(y,u))-(T_{V}\circ l_{V})(x,l_{V}(T(y),u))
+(TVlV)(x,(TVlV)(y,u))lV([T(x),T(y)]𝔤,u)\displaystyle+(T_{V}\circ l_{V})(x,(T_{V}\circ l_{V})(y,u))-l_{V}([T(x),T(y)]_{\mathfrak{g}},u)
+(TVlV)([x,Ty]𝔤,u)+(TVlV)([T(x),y]𝔤,u)lV(T(y),lV(T(x),u))\displaystyle+(T_{V}\circ l_{V})([x,Ty]_{\mathfrak{g}},u)+(T_{V}\circ l_{V})([T(x),y]_{\mathfrak{g}},u)-l_{V}(T(y),l_{V}(T(x),u))
+lV(T(y),(TVlV)(x,u))+(TVlV)(y,lV(T(x),u))(TVlV)(y,(TlV)(x,u))\displaystyle+l_{V}(T(y),(T_{V}\circ l_{V})(x,u))+(T_{V}\circ l_{V})(y,l_{V}(T(x),u))-(T_{V}\circ l_{V})(y,(T\circ l_{V})(x,u))
=\displaystyle={} (lV(T(x),lV(T(y),u))lV([T(x),T(y)]𝔤,u)lV(T(y),lV(T(x),u)))\displaystyle{}\bigg{(}l_{V}(T(x),l_{V}(T(y),u))-l_{V}([T(x),T(y)]_{\mathfrak{g}},u)-l_{V}(T(y),l_{V}(T(x),u))\bigg{)}
lV(T(x),(TVlV)(y,u))\displaystyle-l_{V}(T(x),(T_{V}\circ l_{V})(y,u))
(TVlV)(x,lV(T(y),u))+(TVlV)(x,(TVlV)(y,u))+(TVlV)([x,Ty]𝔤,u)\displaystyle-(T_{V}\circ l_{V})(x,l_{V}(T(y),u))+(T_{V}\circ l_{V})(x,(T_{V}\circ l_{V})(y,u))+(T_{V}\circ l_{V})([x,Ty]_{\mathfrak{g}},u)
+(TVlV)([T(x),y]𝔤,u)\displaystyle+(T_{V}\circ l_{V})([T(x),y]_{\mathfrak{g}},u)
+lV(T(y),(TVlV)(x,u))+(TVlV)(y,lV(T(x),u))(TVlV)(y,(TVlV)(x,u))\displaystyle+l_{V}(T(y),(T_{V}\circ l_{V})(x,u))+(T_{V}\circ l_{V})(y,l_{V}(T(x),u))-(T_{V}\circ l_{V})(y,(T_{V}\circ l_{V})(x,u))
=\displaystyle={} TV(lV(T(x),lV(y,u))+lV(x,(TVlV)(y,u)))(TVlV)(x,lV(T(y),u))\displaystyle{}-T_{V}\bigg{(}l_{V}(T(x),l_{V}(y,u))+l_{V}(x,(T_{V}\circ l_{V})(y,u))\bigg{)}-(T_{V}\circ l_{V})(x,l_{V}(T(y),u))
+(TVlV)(x,(TVlV)(y,u))+(TVlV)([x,Ty]𝔤,u)+(TVlV)([T(x),y]𝔤,u)\displaystyle+(T_{V}\circ l_{V})(x,(T_{V}\circ l_{V})(y,u))+(T_{V}\circ l_{V})([x,Ty]_{\mathfrak{g}},u)+(T_{V}\circ l_{V})([T(x),y]_{\mathfrak{g}},u)
+TV(lV(T(y),lV(x,u))+lV(y,(TVlV)(x,u)))+(TVlV)(y,lV(T(x),u))\displaystyle+T_{V}\bigg{(}l_{V}(T(y),l_{V}(x,u))+l_{V}(y,(T_{V}\circ l_{V})(x,u))\bigg{)}+(T_{V}\circ l_{V})(y,l_{V}(T(x),u))
(TVlV)(y,(TVlV)(x,u))\displaystyle-(T_{V}\circ l_{V})(y,(T_{V}\circ l_{V})(x,u))
=\displaystyle={} ((TVlV)(T(x),lV(y,u))+(TVlV)([T(x),y]𝔤,u)+(TVlV)(y,lV(T(x),u)))\displaystyle{}\bigg{(}-(T_{V}\circ l_{V})(T(x),l_{V}(y,u))+(T_{V}\circ l_{V})([T(x),y]_{\mathfrak{g}},u)+(T_{V}\circ l_{V})(y,l_{V}(T(x),u))\bigg{)}
((TVlV)(x,lV(T(y),u))+(TVlV)([x,Ty]𝔤,u)+(TVlV)(T(y),lV(x,u)))\displaystyle\bigg{(}-(T_{V}\circ l_{V})(x,l_{V}(T(y),u))+(T_{V}\circ l_{V})([x,Ty]_{\mathfrak{g}},u)+(T_{V}\circ l_{V})(T(y),l_{V}(x,u))\bigg{)}
+((TVlV)(x,(TVlV)(y,u))+(TVlV)(x,(TVlV)(y,u)))\displaystyle+\bigg{(}-(T_{V}\circ l_{V})(x,(T_{V}\circ l_{V})(y,u))+(T_{V}\circ l_{V})(x,(T_{V}\circ l_{V})(y,u))\bigg{)}
+((TVlV)(y,TVlV(x,u))(TVlV)(y,TVlV(x,u)))\displaystyle+\bigg{(}(T_{V}\circ l_{V})(y,T_{V}\circ l_{V}(x,u))-(T_{V}\circ l_{V})(y,T_{V}\circ l_{V}(x,u))\bigg{)}
=\displaystyle={} 0.\displaystyle{}0.

Therefore,

lV(x,lV(y,u))=lV([x,y],u)+lV(y,lV(x,u))l_{V}^{{}^{\prime}}(x,l_{V}^{{}^{\prime}}(y,u))=l_{V}^{{}^{\prime}}([x,y]_{*},u)+l_{V}^{{}^{\prime}}(y,l_{V}^{{}^{\prime}}(x,u))

holds. Similarly it can be show that the following equations holds

lV(x,rV(u,y))=rV(lV(x,u),y)+rV(u,[x,y])l_{V}^{{}^{\prime}}(x,r_{V}^{{}^{\prime}}(u,y))=r_{V}^{{}^{\prime}}(l_{V}^{{}^{\prime}}(x,u),y)+r_{V}^{{}^{\prime}}(u,[x,y]_{*})
rV(u,[x,y])=rV(rV(u,x),y)+lV(x,rV(u,y))r_{V}^{{}^{\prime}}(u,[x,y]_{*})=r_{V}^{{}^{\prime}}(r_{V}^{{}^{\prime}}(u,x),y)+l_{V}^{{}^{\prime}}(x,r_{V}^{{}^{\prime}}(u,y))

Now,

TV(lV\displaystyle T_{V}(l_{V}^{{}^{\prime}} (T(x),u)+lV(x,TV(u)))\displaystyle(T(x),u)+l_{V}^{{}^{\prime}}(x,T_{V}(u)))
=\displaystyle={} TV(lV(T(T(x)),u))TV(lV(T(x),u))+lV(T(x),TV(u))TV(lV(x,TV(u)))\displaystyle{}T_{V}(l_{V}(T(T(x)),u))-T_{V}(l_{V}(T(x),u))+l_{V}(T(x),T_{V}(u))-T_{V}(l_{V}(x,T_{V}(u)))
=\displaystyle={} TV(lV(T(T(x)),u))TV(lV(T(x),u))+TV(lV(T(x),u))+TV(lV(x,TV(u)))\displaystyle{}T_{V}(l_{V}(T(T(x)),u))-T_{V}(l_{V}(T(x),u))+T_{V}(l_{V}(T(x),u))+T_{V}(l_{V}(x,T_{V}(u)))
TV(lV(x,TV(u)))\displaystyle-T_{V}(l_{V}(x,T_{V}(u)))
=\displaystyle={} TV(lV(T(T(x)),u))\displaystyle{}T_{V}(l_{V}(T(T(x)),u))
=\displaystyle={} TV(lV(T(T(x)),u))+TV(lV(T(x),TV(u)))TV(lV(T(x),TV(u)))\displaystyle{}T_{V}(l_{V}(T(T(x)),u))+T_{V}(l_{V}(T(x),T_{V}(u)))-T_{V}(l_{V}(T(x),T_{V}(u)))
=\displaystyle={} lV(T(T(x)),TV(u))TV(lV(T(x),TV(u)))\displaystyle{}l_{V}(T(T(x)),T_{V}(u))-T_{V}(l_{V}(T(x),T_{V}(u)))
=\displaystyle={} lV(T(x),TV(u)).\displaystyle{}l_{V}^{{}^{\prime}}(T(x),T_{V}(u)).

Therefore,

lV(T(x),TV(u))=TV(lV(T(x),u)+lV(x,TV(u))).l_{V}^{{}^{\prime}}(T(x),T_{V}(u))=T_{V}(l_{V}^{{}^{\prime}}(T(x),u)+l_{V}^{{}^{\prime}}(x,T_{V}(u))).

Similarly, it can be shown that

rV(TV(u),T(x))=TV(rV(TV(u),x)+rV(u,T(x)))r_{V}^{{}^{\prime}}(T_{V}(u),T(x))=T_{V}(r_{V}^{{}^{\prime}}(T_{V}(u),x)+r_{V}^{{}^{\prime}}(u,T(x)))

for all x𝔤x\in\mathfrak{g} and uV.u\in V. Hence, (V,lV,rV,TV)(V,l_{V}^{{}^{\prime}},r_{V}^{{}^{\prime}},T_{V}) is a representation of the Rota-Baxter Leibniz algebra (𝔤T,[,]).(\mathfrak{g}_{T},[~{},~{}]_{*}).

3.1 Dual representation of a Rota-Baxter Leibniz algebras

Let (V,lV,rV)(V,l_{V},r_{V}) be a representation of a Leibniz algebra (𝔤,[,]𝔤)(\mathfrak{g},[~{},~{}]_{\mathfrak{g}}). Then we can get a representation (V,lV,rV)(V^{*},l_{V^{*}},r_{V^{*}}) of (𝔤,[,]𝔤)(\mathfrak{g},[~{},~{}]_{\mathfrak{g}}), where VV^{*} is the dual vector space of VV and lV:𝔤VV,rV:V𝔤Vl_{V^{*}}:\mathfrak{g}\otimes V^{*}\rightarrow V^{*},~{}r_{V^{*}}:V^{*}\otimes\mathfrak{g}\rightarrow V^{*} defined by

lV(x,fV)(u)=fV(lV(x,u))andrV(fV,x)(u)=fV(lV(x,u)+rV(u,x)),l_{V^{*}}(x,f_{V})(u)=-f_{V}(l_{V}(x,u))~{}~{}~{}\mbox{and}~{}~{}~{}r_{V^{*}}(f_{V},x)(u)=f_{V}(l_{V}(x,u)+r_{V}(u,x)),

for all x𝔤,fVV,uV.x\in\mathfrak{g},f_{V}\in V^{*},u\in V. For details see [Sheng]. We can use this notion to get dual representation for Rota-Baxter Leibniz algebra.

Proposition 3.5.

Let (V,lV,rV,TV)(V,l_{V},r_{V},T_{V}) be a representation of a Rota-Baxter Leibniz algebra (𝔤T,[,]𝔤).(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}). Now define

lV(x,fV)(u)=fV(lV(x,u))andrV(fV,x)(u)=fV(lV(x,u)+rV(u,x))l_{V^{*}}(x,f_{V})(u)=-f_{V}(l_{V}(x,u))~{}~{}~{}\mbox{and}~{}~{}~{}r_{V^{*}}(f_{V},x)(u)=f_{V}(l_{V}(x,u)+r_{V}(u,x))

for all x𝔤,fVV,uV.x\in\mathfrak{g},f_{V}\in V^{*},u\in V. Then (V,lV,rV,TV)(V^{*},l_{V^{*}},r_{V^{*}},-T_{V}^{*}) is a representation of the Rota-Baxter Leibniz algebra (𝔤T,[,]𝔤).(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}). We call it the dual representation of Rota-Baxter Leibniz algebra (𝔤T,[,]𝔤).(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}).

Proof 3.6.

Now for all x𝔤,fVV,uV.x\in\mathfrak{g},f_{V}\in V^{*},u\in V.

lV(x,lV(y,fV))(u)lV([x,y]𝔤,fV)(u)lV(y,lV(x,fV))(u)\displaystyle l_{V}{{}^{*}}(x,l_{V}{{}^{*}}(y,f_{V}))(u)-l_{V}{{}^{*}}([x,y]_{\mathfrak{g}},f_{V})(u)-l_{V}{{}^{*}}(y,l_{V}{{}^{*}}(x,f_{V}))(u)
=lV(y,fV)(lV(x,u))+fV(lV([x,y]𝔤,u))+lV(x,fV)(lV(y,u))\displaystyle=-l_{V}{{}^{*}}(y,f_{V})(l_{V}(x,u))+f_{V}(l_{V}([x,y]_{\mathfrak{g}},u))+l_{V}{{}^{*}}(x,f_{V})(l_{V}(y,u))
=fV(lV(y,lV(x,u)))+fV(lV([x,y]𝔤,u))fV(lV(x,lV(y,u)))\displaystyle=f_{V}(l_{V}(y,l_{V}(x,u)))+f_{V}(l_{V}([x,y]_{\mathfrak{g}},u))-f_{V}(l_{V}(x,l_{V}(y,u)))
=fV(lV(x,lV(y,u))lV([x,y]𝔤,u)lV(y,lV(x,u)))\displaystyle=-f_{V}\bigg{(}l_{V}(x,l_{V}(y,u))-l_{V}([x,y]_{\mathfrak{g}},u)-l_{V}(y,l_{V}(x,u))\bigg{)}
=0.\displaystyle=0.

Similarly, it can be shown that

lV(x,rV(u,y))=rV(lV(x,u),y)+rV(u,[x,y]𝔤)l_{V^{*}}(x,r_{V^{*}}(u,y))=r_{V^{*}}(l_{V^{*}}(x,u),y)+r_{V^{*}}(u,[x,y]_{\mathfrak{g}})
rV(u,[x,y]𝔤)=rV(rV(u,x),y)+lV(x,rV(u,y)).r_{V^{*}}(u,[x,y]_{\mathfrak{g}})=r_{V^{*}}(r_{V^{*}}(u,x),y)+l_{V^{*}}(x,r_{V^{*}}(u,y)).

Again,

lV(T(x),TV(fV))(u)+TV(lV(T(x),fV)+lV(x,TV(fV)))(u)\displaystyle l_{V^{*}}(T(x),-T^{*}_{V}(f_{V}))(u)+T_{V}^{*}\bigg{(}l_{V^{*}}(T(x),f_{V})+l_{V^{*}}(x,-T_{V}^{*}(f_{V}))\bigg{)}(u)
=TV(fV)(lV(T(x),u))+lV(T(x),fV)(TV(u))+lV(x,TV(fV))(TV(u))\displaystyle=T_{V}^{*}(f_{V})(l_{V}(T(x),u))+l_{V}^{*}(T(x),f_{V})(T_{V}(u))+l_{V^{*}}(x,-T_{V}^{*}(f_{V}))(T_{V}(u))
=fV(TV(lV(T(x),u)))fV(lV(T(x),TV(u)))+TV(fV)(lV(x,TV(u)))\displaystyle=f_{V}(T_{V}(l_{V}(T(x),u)))-f_{V}(l_{V}(T(x),T_{V}(u)))+T_{V}^{*}(f_{V})(l_{V}(x,T_{V}(u)))
=fV(TV(lV(T(x),u)))fV(lV(T(x),TV(u)))+fV(TV(lV(x,TV(u))))\displaystyle=f_{V}(T_{V}(l_{V}(T(x),u)))-f_{V}(l_{V}(T(x),T_{V}(u)))+f_{V}(T_{V}(l_{V}(x,T_{V}(u))))
=fV(TV(lV(T(x),u)+lV(x,TV(u)))lV(T(x),TV(u)))\displaystyle=f_{V}\bigg{(}T_{V}\bigg{(}l_{V}(T(x),u)+l_{V}(x,T_{V}(u))\bigg{)}-l_{V}(T(x),T_{V}(u))\bigg{)}
=0.\displaystyle=0.

Therefore, we have lV(T(x),TV(fV))=TV(lV(T(x),fV)+lV(x,TV(fV)))l_{V^{*}}(T(x),-T^{*}_{V}(f_{V}))=-T_{V}^{*}\left(l_{V^{*}}(T(x),f_{V})+l_{V^{*}}(x,-T_{V}^{*}(f_{V}))\right), for all x𝔤,fVVx\in\mathfrak{g},f_{V}\in V^{*}. Now,

rV(\displaystyle r_{V^{*}}( TV(fV),T(x))(u)+TV(rV(fV,T(x))+rV(TV(fV),x))(u)\displaystyle-T_{V}^{*}(f_{V}),T(x))(u)+T_{V}^{*}\bigg{(}r_{V^{*}}(f_{V},T(x))+r_{V^{*}}(-T_{V}^{*}(f_{V}),x)\bigg{)}(u)
=\displaystyle={} TV(fV)(lV(T(x),u))+rV(u,T(x)))+rV(fV,T(x))(TV(u))\displaystyle{}-T_{V}^{*}(f_{V})\bigg{(}l_{V}(T(x),u))+r_{V}(u,T(x))\bigg{)}+r_{V^{*}}(f_{V},T(x))(T_{V}(u))
+rV(TV(fV),x)(TV(u))\displaystyle+r_{V^{*}}(-T_{V}^{*}(f_{V}),x)(T_{V}(u))
=\displaystyle={} fV(TV(lV(T(x),u)+rV(u,T(x))))+fV(rV(TV(u),T(x))+lV(T(x),TV(u)))\displaystyle{}-f_{V}\bigg{(}T_{V}\big{(}l_{V}(T(x),u)+r_{V}(u,T(x))\big{)}\bigg{)}+f_{V}\bigg{(}r_{V}(T_{V}(u),T(x))+l_{V}(T(x),T_{V}(u))\bigg{)}
TV(fV)(lV(x,TV(u))+rV(TV(u),x))\displaystyle-T_{V}^{*}(f_{V})\bigg{(}l_{V}(x,T_{V}(u))+r_{V}(T_{V}(u),x)\bigg{)}
=\displaystyle={} fV(TV(lV(T(x),u)+rV(u,T(x))))+fV(rV(TV(u),T(x))+lV(T(x),TV(u)))\displaystyle{}-f_{V}\bigg{(}T_{V}\big{(}l_{V}(T(x),u)+r_{V}(u,T(x))\big{)}\bigg{)}+f_{V}\bigg{(}r_{V}(T_{V}(u),T(x))+l_{V}(T(x),T_{V}(u))\bigg{)}
fV(TV(lV(x,TV(u))+rV(TV(u),x)))\displaystyle-f_{V}\bigg{(}T_{V}\big{(}l_{V}(x,T_{V}(u))+r_{V}(T_{V}(u),x)\big{)}\bigg{)}
=\displaystyle={} fV(rV(TV(u),T(x))TV(rV(TV(u),x))+rV(u,T(x))))\displaystyle{}f_{V}\bigg{(}r_{V}(T_{V}(u),T(x))-T_{V}\bigg{(}r_{V}(T_{V}(u),x))+r_{V}(u,T(x))\bigg{)}\bigg{)}
+fV(lV(T(x),TV(u))TV(lV(T(x),u)+lV(x,TV(u))))\displaystyle+f_{V}\bigg{(}l_{V}(T(x),T_{V}(u))-T_{V}\bigg{(}l_{V}(T(x),u)+l_{V}(x,T_{V}(u))\bigg{)}\bigg{)}
=\displaystyle={} 0.\displaystyle{}0.

Therefore, rV(T(fV),T(x))=TV(rV(fV,T(x))+rV(TV(fV),x))r_{V^{*}}(-T^{*}(f_{V}),T(x))=-T_{V}^{*}\left(r_{V^{*}}(f_{V},T(x))+r_{V^{*}}(-T_{V}^{*}(f_{V}),x)\right) holds.

3.2 Nilpotent operator on Rota-Baxter Leibniz algebra

Definition 3.7.

A Rota-Baxter operator T:𝔤𝔤T:\mathfrak{g}\to\mathfrak{g} is called nilpotent if there exist a positive integer nn such that Tn=0T^{n}=0. The smallest such nn is called the degree of nilpotency.

Example 3.8.

Let us consider the three dimensional vector space 𝐑3\mathbf{R}^{3} with standard basis {e1,e2,e3}\{e_{1},e_{2},e_{3}\} and the bracket defined by [e3,e2]=e2,[e3,e1]=e1+e2[e_{3},e_{2}]=e_{2},[e_{3},e_{1}]=e_{1}+e_{2}. Then (𝐑3,[,])(\mathbf{R}^{3},[~{},~{}]) is a Leibniz algebra. Now define a linear map T:𝐑3𝐑3,xAxT:\mathbf{R}^{3}\rightarrow\mathbf{R}^{3},~{}x\mapsto Ax where A=(00b00c000)A=\left(\begin{smallmatrix}0&0&b\\ 0&0&c\\ 0&0&0\end{smallmatrix}\right) for any b,c𝐑b,c\in\mathbf{R}. Then TT is a nilpotent Rota-Baxter operator on the Rota-Baxter Leibniz algebra (𝐑T3,[,])(\mathbf{R}^{3}_{T},[~{},~{}]).

Definition 3.9.

Let (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) be a Rota-Baxter Leibniz algebra. Define

[x,y]0=[x,y]𝔤,[x,y]1=[x,y]=[x,Ty]0+[Tx,y]0,\displaystyle[x,y]_{0}=[x,y]_{\mathfrak{g}},\qquad[x,y]_{1}=[x,y]_{*}=[x,Ty]_{0}+[Tx,y]_{0},
[x,y]r=[x,Ty]r1+[Tx,y]r1,\displaystyle[x,y]_{r}=[x,Ty]_{r-1}+[Tx,y]_{r-1},

for all rr\in\mathbb{N} and x,y𝔤x,y\in\mathfrak{g}.

Proposition 3.10.

Let (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) be a Rota-Baxter Leibniz algebra. Then

[x,y]n=r=0n(nr)[Tnr(x),Tr(y)]𝔤[x,y]_{n}=\sum_{r=0}^{n}\binom{n}{r}[T^{n-r}(x),T^{r}(y)]_{\mathfrak{g}}

for all nn\in\mathbb{N}, where T0=Id𝔤T^{0}=Id_{\mathfrak{g}}.

Proof 3.11.

We will prove this result by Mathematical Induction on n.n. For n=1n=1 we have, [x,y]1=(10)[Tx,y]𝔤+(11)[x,Ty]𝔤=[Tx,y]𝔤+[x,Ty]𝔤[x,y]_{1}={\binom{1}{0}}[Tx,y]_{\mathfrak{g}}+{\binom{1}{1}}[x,Ty]_{\mathfrak{g}}=[Tx,y]_{\mathfrak{g}}+[x,Ty]_{\mathfrak{g}} which is true by definition. We assume the statement is true for n=mn=m, mm\in\mathbb{N} , therefore,

[x,y\displaystyle[x,y ]m+1\displaystyle]_{m+1}
=\displaystyle={} [Tx,y]m+[x,Ty]m\displaystyle{}[Tx,y]_{m}+[x,Ty]_{m}
=\displaystyle={} r=0m(mr)[Tmr(Tx),Tr(y)]𝔤+r=0m(mr)[Tmr(x),Tr(Ty)]𝔤\displaystyle{}\sum_{r=0}^{m}{\binom{m}{r}}[T^{m-r}(Tx),T^{r}(y)]_{\mathfrak{g}}+\sum_{r=0}^{m}{\binom{m}{r}}[T^{m-r}(x),T^{r}(Ty)]_{\mathfrak{g}}
=\displaystyle={} (m0)[Tm+1(x),y]𝔤+r=1m(mr)[Tmr(Tx),Tr(y)]𝔤+r=0m1(mr)[Tmr(x),Tr(Ty)]𝔤\displaystyle{}{\binom{m}{0}}[T^{m+1}(x),y]_{\mathfrak{g}}+\sum_{r=1}^{m}{\binom{m}{r}}[T^{m-r}(Tx),T^{r}(y)]_{\mathfrak{g}}+\sum_{r=0}^{m-1}{\binom{m}{r}}[T^{m-r}(x),T^{r}(Ty)]_{\mathfrak{g}}
+(mm)[x,Tm+1(y)]𝔤\displaystyle+{\binom{m}{m}}[x,T^{m+1}(y)]_{\mathfrak{g}}
=\displaystyle={} [Tm+1(x),y]𝔤+r=1m(mr)[Tm+1r(x),Tr(y)]𝔤+r=1m(mr)1[Tm+1r(x),Tr(y)]𝔤\displaystyle{}[T^{m+1}(x),y]_{\mathfrak{g}}+\sum_{r=1}^{m}{\binom{m}{r}}[T^{m+1-r}(x),T^{r}(y)]_{\mathfrak{g}}+\sum_{r=1}^{m}{\binom{m}{r}-1}[T^{m+1-r}(x),T^{r}(y)]_{\mathfrak{g}}
+[x,Tm+1(y)]𝔤\displaystyle+[x,T^{m+1}(y)]_{\mathfrak{g}}
=\displaystyle={} [Tm+1(x),y]𝔤+r=1mm+(1r)[Tm+1r(x),Tr(y)]𝔤+[x,Tm+1(y)]𝔤\displaystyle{}[T^{m+1}(x),y]_{\mathfrak{g}}+\sum_{r=1}^{m}{m+\binom{1}{r}}[T^{m+1-r}(x),T^{r}(y)]_{\mathfrak{g}}+[x,T^{m+1}(y)]_{\mathfrak{g}}
=\displaystyle={} r=0m+1m+(1r)[Tm+1r(x),Tr(y)]𝔤.\displaystyle{}\sum_{r=0}^{m+1}{m+\binom{1}{r}}[T^{m+1-r}(x),T^{r}(y)]_{\mathfrak{g}}.
Corollary 3.12.

If TT is idempotent, that is, T2=TT^{2}=T, then

[x,y]𝔫=[x,y]1+(2n2)[Tx,Ty]𝔤for alln.[x,y]_{\mathfrak{n}}=[x,y]_{1}+(2^{n}-2)[Tx,Ty]_{\mathfrak{g}}\quad\textup{for all}\quad n\in\mathbb{N}.
Proof 3.13.

Observe that for all nn\in\mathbb{N}, we have

[x,y]𝔫\displaystyle[x,y]_{\mathfrak{n}} =r=0n(nr)[Tnr(x),Tr(y)]𝔤\displaystyle=\sum_{r=0}^{n}{\binom{n}{r}}[T^{n-r}(x),T^{r}(y)]_{\mathfrak{g}}
=[Tx,y]𝔤+{(n1)+(n2)+(n3)++(nn)1}[Tx,Ty]𝔤+[x,Ty]𝔤\displaystyle=[Tx,y]_{\mathfrak{g}}+\{{\binom{n}{1}}+{\binom{n}{2}}+{\binom{n}{3}}+\dotsb+{\binom{n}{n}-1}\}[Tx,Ty]_{\mathfrak{g}}+[x,Ty]_{\mathfrak{g}}
=[x,y]1+(2n2)[Tx,Ty]𝔤.\displaystyle=[x,y]_{1}+(2^{n}-2)[Tx,Ty]_{\mathfrak{g}}.
Proposition 3.14.

Let (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) be a Rota-Baxter Leibniz algebra and T:𝔤𝔤T:\mathfrak{g}\rightarrow\mathfrak{g} be an injective homomorphism. Then [x,y]n=[x,y]𝔤[x,y]_{n}=[x,y]_{\mathfrak{g}} for all n,x,y𝔤.n\in\mathbb{N},~{}x,y\in\mathfrak{g}.

Proof 3.15.

Now, T([x,y]𝔤)=[T(x),T(y)]𝔤=T([x,Ty]0+[Tx,y]0)=T([x,y]1)T([x,y]_{\mathfrak{g}})=[T(x),T(y)]_{\mathfrak{g}}=T([x,Ty]_{0}+[Tx,y]_{0})=T([x,y]_{1}). Therefore, [x,y]1=[x,y]𝔤.[x,y]_{1}=[x,y]_{\mathfrak{g}}. By induction, we obtain that [x,y]n=[x,y]𝔤[x,y]_{n}=[x,y]_{\mathfrak{g}} for all nn\in\mathbb{N}, x,y𝔤.x,y\in\mathfrak{g}.

Proposition 3.16.

Let (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) be a Rota-Baxter Leibniz algebra and T:𝔤𝔤T:\mathfrak{g}\rightarrow\mathfrak{g} is an nilpotent operator of index nn. Then [x,y]k=0[x,y]_{k}=0 for any k(2n+1),x,y𝔤.k\geq(2n+1),~{}x,y\in\mathfrak{g}.

Proof 3.17.

Now, [x,y]2n+1=r=02n+12n+(1r)[T2n+1r(x),Tr(y)]𝔤[x,y]_{2n+1}=\sum_{r=0}^{2n+1}{2n+\binom{1}{r}}[T^{2n+1-r}(x),T^{r}(y)]_{\mathfrak{g}}, Now since each term of this sum contains some bracket [Tl(x),Tm(y)][T^{l}(x),T^{m}(y)] such that either ll or mm is greater than or equal to nn. Hence [x,y]2n+1=0[x,y]_{2n+1}=0. Similar arguments holds for any k>(2n+1).k>(2n+1).

Proposition 3.18.

Let (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) be a Rota-Baxter Leibniz algebra and T:𝔤𝔤T:\mathfrak{g}\rightarrow\mathfrak{g} be a surjective nilpotent operator. Then [x,y]n=0[x,y]_{n}=0 for all n,x,y𝔤.n\in\mathbb{N},~{}x,y\in\mathfrak{g}.

Proof 3.19.

Since TT is a nilpotent operator, there exists mm\in\mathbb{N} such that Tm(x)=0T^{m}(x)=0 for all x𝔤x\in\mathfrak{g}. Now, for any x,y𝔤,[x,y]1=[Tx,y]𝔤+[x,Ty]𝔤x,y\in\mathfrak{g},~{}[x,y]_{1}=[Tx,y]_{\mathfrak{g}}+[x,Ty]_{\mathfrak{g}}. Since TT is surjective hence there exists x1,y1𝔤x_{1},y_{1}\in\mathfrak{g} such that Tx1=x,Ty1=yTx_{1}=x,Ty_{1}=y. Repeatedly using the surjectivity of TT we get some x,y𝔤x^{{}^{\prime}},y^{{}^{\prime}}\in\mathfrak{g} such that Tm1(x)=x,Tm1(y)=yT^{m-1}(x^{{}^{\prime}})=x,T^{m-1}(y^{{}^{\prime}})=y. Then

[x,y]1=[Tx,y]𝔤+[x,Ty]𝔤=[Tm(x),y]𝔤+[x,Tm(y)]𝔤=0.[x,y]_{1}=[Tx,y]_{\mathfrak{g}}+[x,Ty]_{\mathfrak{g}}=[T^{m}(x),y]_{\mathfrak{g}}+[x,T^{m}(y)]_{\mathfrak{g}}=0.

Using Mathematical Induction we get, [x,y]n=0[x,y]_{n}=0 for all n,x,y𝔤.n\in\mathbb{N},~{}~{}x,y\in\mathfrak{g}.

4 Cohomology of Rota-Baxter Leibniz algebra

Let (𝔤,[,]𝔤)(\mathfrak{g},[~{},~{}]_{\mathfrak{g}}) be a Leibniz algebra and (V,lV,rV)(V,l_{V},r_{V}) be a representation of it. For each n0n\geq 0, define CLAn(𝔤,V)C^{n}_{LA}(\mathfrak{g},V) to be the abelian group Hom(𝔤n,V)\operatorname{Hom}(\mathfrak{g}^{\otimes n},V) and δn\delta^{n} to be the map δn:CLAn(𝔤,V)CLAn+1(𝔤,V)\delta^{n}:C^{n}_{LA}(\mathfrak{g},V)\to C^{n+1}_{LA}(\mathfrak{g},V) given by

(δn(f))\displaystyle(\delta^{n}(f)) (x1,x2,,xn+1)\displaystyle(x_{1},x_{2},\ldots,x_{n+1})
=\displaystyle={} i=1n(1)i+1lV(xi,f(x1,,xi^,,xn+1))+(1)n+1rV(f(x1,,xn),xn+1)\displaystyle{}\sum_{i=1}^{n}(-1)^{i+1}l_{V}(x_{i},f(x_{1},\ldots,\hat{x_{i}},\ldots,x_{n+1}))+(-1)^{n+1}r_{V}(f(x_{1},\ldots,x_{n}),x_{n+1})
+1i<jn+1(1)if(x1,,xi^,,xj1,[xi,xj]𝔤,xj+1,,xn+1),\displaystyle+\sum_{1\leq i<j\leq n+1}(-1)^{i}f(x_{1},\ldots,\hat{x_{i}},\ldots,x_{j-1},[x_{i},x_{j}]_{\mathfrak{g}},x_{j+1},\ldots,x_{n+1}),

where fCLAn(𝔤,V)f\in C^{n}_{LA}(\mathfrak{g},V) and x1,,xn+1𝔤x_{1},\ldots,x_{n+1}\in\mathfrak{g}. Then {CLAn(𝔤,V),δn}\{C_{LA}^{n}(\mathfrak{g},V),\delta^{n}\} is a cochain complex. The corresponding cohomology groups are called the cohomology of 𝔤\mathfrak{g} with coefficients in the representation VV and the nnth cohomology group is denoted by HLAn(𝔤,V).H^{n}_{LA}(\mathfrak{g},V). For details see Loday-Pirashvili cohomology for Leibniz algebra in [Loday]. We will follow the notation lV(x,u)=[x,u]l_{V}(x,u)=[x,u] and rV(u,x)=[u,x]r_{V}(u,x)=[u,x] for all x𝔤,uVx\in\mathfrak{g},~{}u\in V . Then the above coboundary map δn:CLAn(𝔤,V)CLAn+1(𝔤,V)\delta^{n}:C^{n}_{LA}(\mathfrak{g},V)\rightarrow C^{n+1}_{LA}(\mathfrak{g},V) becomes

(δn(f))\displaystyle(\delta^{n}(f)) (x1,x2,,xn+1)\displaystyle(x_{1},x_{2},\ldots,x_{n+1})
=\displaystyle={} i=1n(1)i+1[xi,f(x1,,xi^,,xn+1)]+(1)n+1[f(x1,,xn),xn+1]\displaystyle{}\sum_{i=1}^{n}(-1)^{i+1}[x_{i},f(x_{1},\ldots,\hat{x_{i}},\ldots,x_{n+1})]+(-1)^{n+1}[f(x_{1},\ldots,x_{n}),x_{n+1}]
+1i<jn+1(1)if(x1,,xi^,,xj1,[xi,xj]𝔤,xj+1,,xn+1),\displaystyle+\sum_{1\leq i<j\leq n+1}(-1)^{i}f(x_{1},\ldots,\hat{x_{i}},\ldots,x_{j-1},[x_{i},x_{j}]_{\mathfrak{g}},x_{j+1},\ldots,x_{n+1}),

where fCLAn(𝔤,V)f\in C^{n}_{LA}(\mathfrak{g},V) and x1,,xn+1𝔤x_{1},\ldots,x_{n+1}\in\mathfrak{g}. Let (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) be a Rota-Baxter Leibniz algebra and (V,lV,rV,TV)(V,l_{V},r_{V},T_{V}) be a representation of it. Now using proposition (3.1) and (3.2) we get a new Rota-Baxter Leibniz algebra (𝔤T,[,])(\mathfrak{g}_{T},[~{},~{}]_{*}) with representation (V,lV,rV,TV)(V,l^{{}^{\prime}}_{V},r_{V}^{{}^{\prime}},T_{V}) induced by the Rota-Baxter operator. Now we consider the Loday-Pirashvili cochain complex of this induced Leibniz algebra (𝔤,[,])(\mathfrak{g},[~{},~{}]_{*}) with representation (V,lV,rV)(V,l^{{}^{\prime}}_{V},r_{V}^{{}^{\prime}}) as follows: For each n0n\geq 0, we define cochain groups CRBOn(𝔤,V):=Hom(𝔤n,V)C^{n}_{RBO}(\mathfrak{g},V):=\operatorname{Hom}(\mathfrak{g}^{\otimes n},V) and boundary map n:CRBOn(𝔤,V)CRBOn+1(𝔤,V)\partial^{n}:C^{n}_{RBO}(\mathfrak{g},V)\rightarrow C^{n+1}_{RBO}(\mathfrak{g},V) by

(n\displaystyle(\partial^{n} (f))(x1,x2,,xn+1)\displaystyle(f))(x_{1},x_{2},\ldots,x_{n+1})
=\displaystyle={} i=1n(1)i+1lV(xi,f(x1,,xi^,,xn+1))+(1)n+1rV(f(x1,,xn),xn+1)\displaystyle{}\sum_{i=1}^{n}(-1)^{i+1}l^{{}^{\prime}}_{V}(x_{i},f(x_{1},\ldots,\hat{x_{i}},\ldots,x_{n+1}))+(-1)^{n+1}r^{{}^{\prime}}_{V}(f(x_{1},\ldots,x_{n}),x_{n+1})
+1i<jn+1(1)if(x1,,xi^,,xj1,[xi,xj],xj+1,,xn+1),\displaystyle+\sum_{1\leq i<j\leq n+1}(-1)^{i}f(x_{1},\ldots,\hat{x_{i}},\ldots,x_{j-1},[x_{i},x_{j}]_{*},x_{j+1},\ldots,x_{n+1}),
=\displaystyle={} i=1n(1)i+1[T(xi),f(x1,,xi^,,xn+1)]i=1n(1)i+1TV([xi,f(x1,,xi^,,xn+1)])\displaystyle{}\sum_{i=1}^{n}(-1)^{i+1}[T(x_{i}),f(x_{1},\ldots,\hat{x_{i}},\ldots,x_{n+1})]-\sum_{i=1}^{n}(-1)^{i+1}T_{V}([x_{i},f(x_{1},\ldots,\hat{x_{i}},\ldots,x_{n+1})])
+(1)n+1[f(x1,,xn),T(xn+1)](1)n+1TV([f(x1,,xn),xn+1])\displaystyle+(-1)^{n+1}[f(x_{1},\ldots,x_{n}),T(x_{n+1})]-(-1)^{n+1}T_{V}([f(x_{1},\ldots,x_{n}),x_{n+1}])
+1i<jn+1(1)if(x1,,xi^,,xj1,[T(xi),xj]𝔤+[xi,T(xj)]𝔤,xj+1,,xn+1)\displaystyle+\sum_{1\leq i<j\leq n+1}(-1)^{i}f(x_{1},\ldots,\hat{x_{i}},\ldots,x_{j-1},[T(x_{i}),x_{j}]_{\mathfrak{g}}+[x_{i},T(x_{j})]_{\mathfrak{g}},x_{j+1},\ldots,x_{n+1})

where fCRBOn(𝔤,V)f\in C^{n}_{RBO}(\mathfrak{g},V) and x1,,xn+1𝔤x_{1},\ldots,x_{n+1}\in\mathfrak{g}. Now one can observe that n+1n=0\partial^{n+1}\circ\partial^{n}=0. Hence, {CRBOn(𝔤,V),n}\{C^{n}_{RBO}(\mathfrak{g},V),\partial^{n}\} is a cochain complex. This cochain complex is called the cochain complex of Rota-Baxter operator TT and the corresponding cohomology groups are called the cohomology of Rota-Baxter operator TT with coefficients in the representation VV and is denoted by HRBOn(𝔤,V).H^{n}_{RBO}(\mathfrak{g},V).

Definition 4.1.

Let (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) be a Rota-Baxter Leibniz algebra and (V,lV,rV,TV)(V,l_{V},r_{V},T_{V}) be a representation of it. We define a map ϕn:CLAn(𝔤,V)CRBOn(𝔤,V)\phi^{n}:C^{n}_{LA}(\mathfrak{g},V)\rightarrow C^{n}_{RBO}(\mathfrak{g},V) by

ϕn(f)\displaystyle\phi^{n}(f) (x1,x2,,xn)\displaystyle(x_{1},x_{2},\ldots,x_{n})
=\displaystyle={} f(Tx1,Tx2,,Txn)(Tvf)(x1,Tx2,,Txn)\displaystyle{}f(Tx_{1},Tx_{2},\ldots,Tx_{n})-(T_{v}\circ f)(x_{1},Tx_{2},\ldots,Tx_{n})
(Tvf)(Tx1,x2,Tx3,,Txn)(Tvf)(Tx1,Tx2,,Txn1,xn).\displaystyle-(T_{v}\circ f)(Tx_{1},x_{2},Tx_{3},\ldots,Tx_{n})-\ldots-(T_{v}\circ f)(Tx_{1},Tx_{2},\ldots,Tx_{n-1},x_{n}).
Lemma 4.2.

For every fCLAn(𝔤,V)f\in C^{n}_{LA}(\mathfrak{g},V) and x1,,xn+1𝔤x_{1},\ldots,x_{n+1}\in\mathfrak{g}, we have:

ϕn+1(δn(f))(x1,x2,x3,,xn+1)=n(ϕn(f))(x1,x2,x3,,xn+1).\phi^{n+1}(\delta^{n}(f))(x_{1},x_{2},x_{3},\ldots,x_{n+1})=\partial^{n}(\phi^{n}(f))(x_{1},x_{2},x_{3},\ldots,x_{n+1}).
Proof 4.3.

Now,

ϕn+1(δn(f))(x1,x2,x3,,xn+1)\displaystyle\phi^{n+1}(\delta^{n}(f))(x_{1},x_{2},x_{3},\ldots,x_{n+1})
=δn(f)(Tx1,Tx2,Tx3,Txn+1)(TVδn(f))(x1,Tx2,Tx3,Txn+1)\displaystyle=\delta^{n}(f)(Tx_{1},Tx_{2},Tx_{3}\ldots,Tx_{n+1})-(T_{V}\circ\delta^{n}(f))(x_{1},Tx_{2},Tx_{3}\ldots,Tx_{n+1})
(TVδn(f))(Tx1,x2,Tx3,,Txn+1)(TVδn(f))(Tx1,Tx2,x3,Tx4,,Txn+1)\displaystyle-(T_{V}\circ\delta^{n}(f))(Tx_{1},x_{2},Tx_{3},\ldots,Tx_{n+1})-(T_{V}\circ\delta^{n}(f))(Tx_{1},Tx_{2},x_{3},Tx_{4},\ldots,Tx_{n+1})
(TVδn(f))(Tx1,Tx2,,Txn,xn+1)\displaystyle-\ldots-(T_{V}\circ\delta^{n}(f))(Tx_{1},Tx_{2},\ldots,Tx_{n},x_{n+1})
=i=1n(1)i+1[Txi,f(Tx1,Tx2,,Txi^,,Txn+1)]\displaystyle=\sum_{i=1}^{n}(-1)^{i+1}[Tx_{i},f(Tx_{1},Tx_{2},\ldots,\widehat{Tx_{i}},\ldots,Tx_{n+1})]
+(1)n+1[f(Tx1,Tx2,,Txn),Txn+1]\displaystyle+(-1)^{n+1}[f(Tx_{1},Tx_{2},\ldots,Tx_{n}),Tx_{n+1}]
+1i<jn+1(1)if(Tx1,,Txi^,,Txj1,[Txi,Txj]𝔤,Txj+1,,Txn+1)\displaystyle+\sum_{1\leq i<j\leq n+1}(-1)^{i}f(Tx_{1},\ldots,\widehat{Tx_{i}},\ldots,Tx_{j-1},[Tx_{i},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1})
TV([x1,f(Tx2,Tx3,,Txn+1)][Tx2,f(x1,Tx3,,Txn+1)]\displaystyle-T_{V}\bigg{(}[x_{1},f(Tx_{2},Tx_{3},\ldots,Tx_{n+1})]-[Tx_{2},f(x_{1},Tx_{3},\ldots,Tx_{n+1})]
+[Tx3,f(x1,Tx2,Tx4,,Txn+1)]\displaystyle+[Tx_{3},f(x_{1},Tx_{2},Tx_{4},\ldots,Tx_{n+1})]
+(1)n+1[Txn,f(x1,Tx2,,Txn1,Txn+1)]\displaystyle-\ldots+(-1)^{n+1}[Tx_{n},f(x_{1},Tx_{2},\ldots,Tx_{n-1},Tx_{n+1})]
+(1)n+1[f(x1,Tx2,Tx3,,Txn),Txn+1]\displaystyle+(-1)^{n+1}[f(x_{1},Tx_{2},Tx_{3},\ldots,Tx_{n}),Tx_{n+1}]
j=2n+1f(Tx2,Tx3,,Txj1,[x1,Txj]𝔤,Txj,,Txn+1)\displaystyle-\sum_{j=2}^{n+1}f(Tx_{2},Tx_{3},\ldots,Tx_{j-1},[x_{1},Tx_{j}]_{\mathfrak{g}},Tx_{j},\ldots,Tx_{n+1})
+2i<jn+1(1)if(x1,Tx2,,Txi^,,Txj1,[Txi,Txj]𝔤,Txj+1,,Txn+1))\displaystyle+\sum_{2\leq i<j\leq n+1}(-1)^{i}f(x_{1},Tx_{2},\ldots,\widehat{Tx_{i}},\ldots,Tx_{j-1},[Tx_{i},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1})\bigg{)}
TV([Tx1,f(x2,Tx3,,Txn+1)][x2,f(Tx1,Tx3,,Txn+1)]\displaystyle-T_{V}\bigg{(}[Tx_{1},f(x_{2},Tx_{3},\ldots,Tx_{n+1})]-[x_{2},f(Tx_{1},Tx_{3},\ldots,Tx_{n+1})]
+[Tx3,f(Tx1,x2,Tx4,,Txn+1)]\displaystyle+[Tx_{3},f(Tx_{1},x_{2},Tx_{4},\ldots,Tx_{n+1})]
+(1)n+1[Txn,f(Tx1,x2,Tx3,,Txn1,Txn+1)]\displaystyle-\ldots+(-1)^{n+1}[Tx_{n},f(Tx_{1},x_{2},Tx_{3},\ldots,Tx_{n-1},Tx_{n+1})]
+(1)n+1[f(Tx1,x2,Tx3,,Txn),Txn+1]\displaystyle+(-1)^{n+1}[f(Tx_{1},x_{2},Tx_{3},\ldots,Tx_{n}),Tx_{n+1}]
+j=3n+1f(Tx1,Tx3,,Txj1,[x2,Txj]𝔤,Txj+1,,Txn+1)\displaystyle+\sum_{j=3}^{n+1}f(Tx_{1},Tx_{3},\ldots,Tx_{j-1},[x_{2},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1})
+1i<jn+1i2(1)if(Tx1,x2,Tx3,,Txi^,,Txj1,[Txi,Txj]𝔤,Txj+1,,Txn+1))\displaystyle+\sum_{\begin{subarray}{c}1\leq i<j\leq n+1\\ i\neq 2\end{subarray}}(-1)^{i}f(Tx_{1},x_{2},Tx_{3},\ldots,\widehat{Tx_{i}},\ldots,Tx_{j-1},[Tx_{i},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1})\bigg{)}
TV([Tx1,f(Tx2,x3,Tx4,,Txn+1)][Tx2,f(Tx1,x3,Tx4,,Txn+1)]\displaystyle-T_{V}\bigg{(}[Tx_{1},f(Tx_{2},x_{3},Tx_{4},\ldots,Tx_{n+1})]-[Tx_{2},f(Tx_{1},x_{3},Tx_{4},\ldots,Tx_{n+1})]
+[x3,f(Tx1,Tx2,Tx4,,Txn+1)]\displaystyle+[x_{3},f(Tx_{1},Tx_{2},Tx_{4},\ldots,Tx_{n+1})]
+(1)n+1[Txn,f(Tx1,Tx2,x3,Tx4,,Txn1,Txn+1)]\displaystyle-\ldots+(-1)^{n+1}[Tx_{n},f(Tx_{1},Tx_{2},x_{3},Tx_{4},\ldots,Tx_{n-1},Tx_{n+1})]
+(1)n+1[f(Tx1,Tx2,x3,Tx4,,Txn),Txn+1]\displaystyle+(-1)^{n+1}[f(Tx_{1},Tx_{2},x_{3},Tx_{4},\ldots,Tx_{n}),Tx_{n+1}]
j=4n+1f(Tx1,Tx2,Tx4,,Txj1,[x3,Txj]𝔤,Txj+1,,Txn+1)\displaystyle-\sum_{j=4}^{n+1}f(Tx_{1},Tx_{2},Tx_{4},\ldots,Tx_{j-1},[x_{3},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1})
+1i<jn+1i3(1)if(Tx1,Tx2,x3,Tx4,Txi^,,Txj1,[Txi,Txj]𝔤,Txj+1,,Txn+1))\displaystyle+\sum_{\begin{subarray}{c}1\leq i<j\leq n+1\\ i\neq 3\end{subarray}}(-1)^{i}f(Tx_{1},Tx_{2},x_{3},Tx_{4}\ldots,\widehat{Tx_{i}},\ldots,Tx_{j-1},[Tx_{i},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1})\bigg{)}
\displaystyle-\ldots
TV([Tx1,f(Tx2,Tx3,,Txn,xn+1)][Tx2,f(Tx1,Tx3,,Txn,xn+1)]\displaystyle-T_{V}\bigg{(}[Tx_{1},f(Tx_{2},Tx_{3},\ldots,Tx_{n},x_{n+1})]-[Tx_{2},f(Tx_{1},Tx_{3},\ldots,Tx_{n},x_{n+1})]
+[Tx3,f(Tx1,Tx2,Tx4,,Txn,xn+1)]\displaystyle+[Tx_{3},f(Tx_{1},Tx_{2},Tx_{4},\ldots,Tx_{n},x_{n+1})]-\ldots
+(1)n+1[Txn,f(Tx1,Tx2,,Txn1,xn+1)]\displaystyle+(-1)^{n+1}[Tx_{n},f(Tx_{1},Tx_{2},\ldots,Tx_{n-1},x_{n+1})]
+(1)n+1[f(Tx1,Tx2,Tx3,,Txn),xn+1]\displaystyle+(-1)^{n+1}[f(Tx_{1},Tx_{2},Tx_{3},\ldots,Tx_{n}),x_{n+1}]
+i=1n(1)if(Tx1,Tx2,,Txi^,,Txn,[Txi,xn+1]𝔤)\displaystyle+\sum_{i=1}^{n}(-1)^{i}f(Tx_{1},Tx_{2},\ldots,\widehat{Tx_{i}},\ldots,Tx_{n},[Tx_{i},x_{n+1}]_{\mathfrak{g}})
+1i<jn(1)if(Tx1,Tx2,,Txi^,,Txj1,[Txi,Txj]𝔤,Txj+1,,Txn,xn+1)).\displaystyle+\sum_{\begin{subarray}{c}1\leq i<j\leq n\end{subarray}}(-1)^{i}f(Tx_{1},Tx_{2},\ldots,\widehat{Tx_{i}},\ldots,Tx_{j-1},[Tx_{i},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n},x_{n+1})\bigg{)}.

Again,

n(ϕn(f))(x1,x2,x3,,xn+1)\displaystyle\partial^{n}(\phi^{n}(f))(x_{1},x_{2},x_{3},\ldots,x_{n+1})
=i=1n(1)i+1[T(xi),ϕn(f)(x1,,xi^,,xn+1)]\displaystyle=\sum_{i=1}^{n}(-1)^{i+1}[T(x_{i}),\phi^{n}(f)(x_{1},\ldots,\hat{x_{i}},\ldots,x_{n+1})]
i=1n(1)i+1TV([xi,ϕn(f)(x1,,xi^,,xn+1)])\displaystyle-\sum_{i=1}^{n}(-1)^{i+1}T_{V}([x_{i},\phi^{n}(f)(x_{1},\ldots,\hat{x_{i}},\ldots,x_{n+1})])
+(1)n+1[ϕn(f)(x1,,xn),T(xn+1)](1)n+1TV([ϕn(f)(x1,,xn),xn+1])\displaystyle+(-1)^{n+1}[\phi^{n}(f)(x_{1},\ldots,x_{n}),T(x_{n+1})]-(-1)^{n+1}T_{V}([\phi^{n}(f)(x_{1},\ldots,x_{n}),x_{n+1}])
+1i<jn+1(1)iϕn(f)(x1,,xi^,,xj1,[T(xi),xj]𝔤+[xi,T(xj)]𝔤,xj+1,,xn+1)\displaystyle+\sum_{1\leq i<j\leq n+1}(-1)^{i}\phi^{n}(f)(x_{1},\ldots,\hat{x_{i}},\ldots,x_{j-1},[T(x_{i}),x_{j}]_{\mathfrak{g}}+[x_{i},T(x_{j})]_{\mathfrak{g}},x_{j+1},\ldots,x_{n+1})
=([Tx1,ϕn(f)(x2,x3,,xn+1)][Tx2,ϕn(f)(x1,x3,,xn+1)]\displaystyle=\bigg{(}[Tx_{1},\phi^{n}(f)(x_{2},x_{3},\ldots,x_{n+1})]-[Tx_{2},\phi^{n}(f)(x_{1},x_{3},\ldots,x_{n+1})]
+[Tx3,ϕn(f)(x1,x2,x4,,xn+1)]\displaystyle+[Tx_{3},\phi^{n}(f)(x_{1},x_{2},x_{4},\ldots,x_{n+1})]
+(1)n+1[Txn,ϕn(f)(x1,x2,,xn1,xn+1)])\displaystyle-\ldots+(-1)^{n+1}[Tx_{n},\phi^{n}(f)(x_{1},x_{2},\ldots,x_{n-1},x_{n+1})]\bigg{)}
(TV([x1,ϕn(f)(x2,x3,,xn+1)])TV([x2,ϕn(f)(x1,x3,,xn+1)])\displaystyle-\bigg{(}T_{V}([x_{1},\phi^{n}(f)(x_{2},x_{3},\ldots,x_{n+1})])-T_{V}([x_{2},\phi^{n}(f)(x_{1},x_{3},\ldots,x_{n+1})])
+TV([x3,ϕn(f)(x1,x2,x4,,xn+1)])\displaystyle+T_{V}([x_{3},\phi^{n}(f)(x_{1},x_{2},x_{4},\ldots,x_{n+1})])
+(1)n+1TV([xn,ϕn(f)(x1,x2,,xn1,xn+1)]))\displaystyle-\ldots+(-1)^{n+1}T_{V}([x_{n},\phi^{n}(f)(x_{1},x_{2},\ldots,x_{n-1},x_{n+1})])\bigg{)}
+(1)n+1[ϕn(f)(x1,,xn),T(xn+1)](1)n+1TV([ϕn(f)(x1,,xn),xn+1])\displaystyle+(-1)^{n+1}[\phi^{n}(f)(x_{1},\ldots,x_{n}),T(x_{n+1})]-(-1)^{n+1}T_{V}([\phi^{n}(f)(x_{1},\ldots,x_{n}),x_{n+1}])
j=2n+1ϕn(f)(x2,x3,,xj1,[Tx1,xj]𝔤+[x1,Txj]𝔤,xj+1,,xn+1)\displaystyle-\sum_{j=2}^{n+1}\phi^{n}(f)(x_{2},x_{3},\ldots,x_{j-1},[Tx_{1},x_{j}]_{\mathfrak{g}}+[x_{1},Tx_{j}]_{\mathfrak{g}},x_{j+1},\ldots,x_{n+1})
+j=3n+1ϕn(f)(x1,x3,,xj1,[Tx2,xj]𝔤+[x2,Txj]𝔤,xj+1,,xn+1)\displaystyle+\sum_{j=3}^{n+1}\phi^{n}(f)(x_{1},x_{3},\ldots,x_{j-1},[Tx_{2},x_{j}]_{\mathfrak{g}}+[x_{2},Tx_{j}]_{\mathfrak{g}},x_{j+1},\ldots,x_{n+1})
j=4n+1ϕn(f)(x1,x2,x4,,xj1,[Tx3,xj]𝔤+[x3,Txj]𝔤,xj+1,,xn+1)\displaystyle-\sum_{j=4}^{n+1}\phi^{n}(f)(x_{1},x_{2},x_{4},\ldots,x_{j-1},[Tx_{3},x_{j}]_{\mathfrak{g}}+[x_{3},Tx_{j}]_{\mathfrak{g}},x_{j+1},\ldots,x_{n+1})
+\displaystyle+\ldots
+(1)nj=n+1n+1ϕn(f)(x1,x2,x3,,xj1,[Txn,xj]𝔤+[xn,Txj]𝔤,xj+1,,xn1,xn+1)\displaystyle+(-1)^{n}\sum_{j=n+1}^{n+1}\phi^{n}(f)(x_{1},x_{2},x_{3},\ldots,x_{j-1},[Tx_{n},x_{j}]_{\mathfrak{g}}+[x_{n},Tx_{j}]_{\mathfrak{g}},x_{j+1},\ldots,x_{n-1},x_{n+1})
=([Tx1,f(Tx2,Tx3,,Txn+1)][Tx1,TV(f(x2,Tx3,,Txn+1))]\displaystyle=\bigg{(}[Tx_{1},f(Tx_{2},Tx_{3},\ldots,Tx_{n+1})]-[Tx_{1},T_{V}(f(x_{2},Tx_{3},\ldots,Tx_{n+1}))]
[Tx1,TV(f(Tx2,x3,Tx4,,Txn+1))]\displaystyle-[Tx_{1},T_{V}(f(Tx_{2},x_{3},Tx_{4},\ldots,Tx_{n+1}))]
[Tx1,TV(f(Tx2,Tx3,x4,Tx5,,Txn+1))]\displaystyle-[Tx_{1},T_{V}(f(Tx_{2},Tx_{3},x_{4},Tx_{5},\ldots,Tx_{n+1}))]
[Tx1,TV(f(Tx2,Tx3,,Txn,xn+1))])\displaystyle-\ldots-[Tx_{1},T_{V}(f(Tx_{2},Tx_{3},\ldots,Tx_{n},x_{n+1}))]\bigg{)}
([Tx2,f(Tx1,Tx3,,Txn+1)][Tx2,TV(f(x1,Tx3,,Txn+1))]\displaystyle-\bigg{(}[Tx_{2},f(Tx_{1},Tx_{3},\ldots,Tx_{n+1})]-[Tx_{2},T_{V}(f(x_{1},Tx_{3},\ldots,Tx_{n+1}))]
[Tx2,TV(f(Tx1,x3,Tx4,,Txn+1))]\displaystyle-[Tx_{2},T_{V}(f(Tx_{1},x_{3},Tx_{4},\ldots,Tx_{n+1}))]
[Tx2,TV(f(Tx1,Tx3,x4,Tx5,,Txn+1))]\displaystyle-[Tx_{2},T_{V}(f(Tx_{1},Tx_{3},x_{4},Tx_{5},\ldots,Tx_{n+1}))]
[Tx2,TV(f(Tx1,Tx3,,Txn,xn+1))])\displaystyle-\ldots-[Tx_{2},T_{V}(f(Tx_{1},Tx_{3},\ldots,Tx_{n},x_{n+1}))]\bigg{)}
+([Tx3,f(Tx1,Tx2,Tx4,,Txn+1)][Tx3,TV(f(x1,Tx2,Tx4,,Txn+1))]\displaystyle+\bigg{(}[Tx_{3},f(Tx_{1},Tx_{2},Tx_{4},\ldots,Tx_{n+1})]-[Tx_{3},T_{V}(f(x_{1},Tx_{2},Tx_{4},\ldots,Tx_{n+1}))]
[Tx3,TV(f(Tx1,x2,Tx4,Txn+1))]\displaystyle-[Tx_{3},T_{V}(f(Tx_{1},x_{2},Tx_{4}\ldots,Tx_{n+1}))]
[Tx3,TV(f(Tx1,Tx2,x4,Tx5,,Txn+1))]\displaystyle-[Tx_{3},T_{V}(f(Tx_{1},Tx_{2},x_{4},Tx_{5},\ldots,Tx_{n+1}))]
[Tx3,TV(f(Tx1,Tx2,Tx4,,Txn,xn+1))])\displaystyle-\ldots-[Tx_{3},T_{V}(f(Tx_{1},Tx_{2},Tx_{4},\ldots,Tx_{n},x_{n+1}))]\bigg{)}
+\displaystyle-\ldots+
(1)n+1([Txn,f(Tx1,Tx2,,Txn1,Txn+1)][Txn,TV(f(x1,Tx2,,Txn1,Txn+1))]\displaystyle(-1)^{n+1}\bigg{(}[Tx_{n},f(Tx_{1},Tx_{2},\ldots,Tx_{n-1},Tx_{n+1})]-[Tx_{n},T_{V}(f(x_{1},Tx_{2},\ldots,Tx_{n-1},Tx_{n+1}))]
[Txn,TV(f(Tx1,x2,Tx3,,Txn1,Txn+1))]\displaystyle-[Tx_{n},T_{V}(f(Tx_{1},x_{2},Tx_{3},\ldots,Tx_{n-1},Tx_{n+1}))]
[Txn,TV(f(Tx1,Tx2,x3,Tx4,,Txn1,Txn+1))]\displaystyle-[Tx_{n},T_{V}(f(Tx_{1},Tx_{2},x_{3},Tx_{4},\ldots,Tx_{n-1},Tx_{n+1}))]-\ldots
[Txn,TV(f(Tx1,Tx2,Tx3,,Txn1,xn+1))])\displaystyle-[Tx_{n},T_{V}(f(Tx_{1},Tx_{2},Tx_{3},\ldots,Tx_{n-1},x_{n+1}))]\bigg{)}
TV([x1,f(Tx2,Tx3,,Txn+1)][x1,TV(f(x2,Tx3,,Txn+1))]\displaystyle-T_{V}\bigg{(}[x_{1},f(Tx_{2},Tx_{3},\ldots,Tx_{n+1})]-[x_{1},T_{V}(f(x_{2},Tx_{3},\ldots,Tx_{n+1}))]
[x1,TV(f(Tx2,x3,Tx4,,Txn+1))]\displaystyle-[x_{1},T_{V}(f(Tx_{2},x_{3},Tx_{4},\ldots,Tx_{n+1}))]
[x1,TV(f(Tx2,Tx3,x4,Tx5,,Txn+1))][x1,TV(f(Tx2,Tx3,,Txn,xn+1))])\displaystyle-[x_{1},T_{V}(f(Tx_{2},Tx_{3},x_{4},Tx_{5},\ldots,Tx_{n+1}))]-\ldots-[x_{1},T_{V}(f(Tx_{2},Tx_{3},\ldots,Tx_{n},x_{n+1}))]\bigg{)}
+TV([x2,f(Tx1,Tx3,,Txn+1)][x2,TV(f(x1,Tx3,,Txn+1))]\displaystyle+T_{V}\bigg{(}[x_{2},f(Tx_{1},Tx_{3},\ldots,Tx_{n+1})]-[x_{2},T_{V}(f(x_{1},Tx_{3},\ldots,Tx_{n+1}))]
[x2,TV(f(Tx1,x3,Tx4,,Txn+1))]\displaystyle-[x_{2},T_{V}(f(Tx_{1},x_{3},Tx_{4},\ldots,Tx_{n+1}))]
[x2,TV(f(Tx1,Tx3,x4,Tx5,,Txn+1))][x2,TV(f(Tx1,Tx3,,Txn,xn+1))])\displaystyle-[x_{2},T_{V}(f(Tx_{1},Tx_{3},x_{4},Tx_{5},\ldots,Tx_{n+1}))]-\ldots-[x_{2},T_{V}(f(Tx_{1},Tx_{3},\ldots,Tx_{n},x_{n+1}))]\bigg{)}
TV([x3,f(Tx1,Tx2,Tx4,,Txn+1)][x3,TV(f(x1,Tx2,Tx4,,Txn+1))]\displaystyle-T_{V}\bigg{(}[x_{3},f(Tx_{1},Tx_{2},Tx_{4},\ldots,Tx_{n+1})]-[x_{3},T_{V}(f(x_{1},Tx_{2},Tx_{4},\ldots,Tx_{n+1}))]
[x3,TV(f(Tx1,x2,Tx4,Txn+1))]\displaystyle-[x_{3},T_{V}(f(Tx_{1},x_{2},Tx_{4}\ldots,Tx_{n+1}))]
[x3,TV(f(Tx1,Tx2,x4,Tx5,,Txn+1))]\displaystyle-[x_{3},T_{V}(f(Tx_{1},Tx_{2},x_{4},Tx_{5},\ldots,Tx_{n+1}))]
[x3,TV(f(Tx1,Tx2,Tx4,,Txn,xn+1))])\displaystyle-\ldots-[x_{3},T_{V}(f(Tx_{1},Tx_{2},Tx_{4},\ldots,Tx_{n},x_{n+1}))]\bigg{)}
+\displaystyle+\ldots
(1)n+1TV([xn,f(Tx1,Tx2,,Txn1,Txn+1)]\displaystyle-(-1)^{n+1}T_{V}\bigg{(}[x_{n},f(Tx_{1},Tx_{2},\ldots,Tx_{n-1},Tx_{n+1})]
[xn,TV(f(x1,Tx2,,Txn1,Txn+1))]\displaystyle-[x_{n},T_{V}(f(x_{1},Tx_{2},\ldots,Tx_{n-1},Tx_{n+1}))]
[xn,TV(f(Tx1,x2,Tx3,,Txn1,Txn+1))]\displaystyle-[x_{n},T_{V}(f(Tx_{1},x_{2},Tx_{3},\ldots,Tx_{n-1},Tx_{n+1}))]
[xn,TV(f(Tx1,Tx2,x3,Tx4,,Txn1,Txn+1))]\displaystyle-[x_{n},T_{V}(f(Tx_{1},Tx_{2},x_{3},Tx_{4},\ldots,Tx_{n-1},Tx_{n+1}))]
[xn,TV(f(Tx1,Tx2,Tx3,,Txn1,xn+1))])\displaystyle-\ldots-[x_{n},T_{V}(f(Tx_{1},Tx_{2},Tx_{3},\ldots,Tx_{n-1},x_{n+1}))]\bigg{)}
+(1)n+1([f(Tx1,Tx2,Tx3,,Txn),Txn+1][f(x1,Tx2,Tx3,,Txn),Txn+1]\displaystyle+(-1)^{n+1}\bigg{(}[f(Tx_{1},Tx_{2},Tx_{3},\ldots,Tx_{n}),Tx_{n+1}]-[f(x_{1},Tx_{2},Tx_{3},\ldots,Tx_{n}),Tx_{n+1}]
[f(Tx1,x2,Tx3,,Txn),Txn+1][f(Tx1,Tx2,x3,Tx4,,Txn),Txn+1]\displaystyle-[f(Tx_{1},x_{2},Tx_{3},\ldots,Tx_{n}),Tx_{n+1}]-[f(Tx_{1},Tx_{2},x_{3},Tx_{4},\ldots,Tx_{n}),Tx_{n+1}]
[f(Tx1,Tx2,Tx3,,Txn1,xn),Txn+1])\displaystyle-\ldots-[f(Tx_{1},Tx_{2},Tx_{3},\ldots,Tx_{n-1},x_{n}),Tx_{n+1}]\bigg{)}
(1)n+1TV([f(Tx1,Tx2,Tx3,,Txn),xn+1][f(x1,Tx2,Tx3,,Txn),xn+1]\displaystyle-(-1)^{n+1}T_{V}\bigg{(}[f(Tx_{1},Tx_{2},Tx_{3},\ldots,Tx_{n}),x_{n+1}]-[f(x_{1},Tx_{2},Tx_{3},\ldots,Tx_{n}),x_{n+1}]
[f(Tx1,x2,Tx3,,Txn),Txn+1][f(Tx1,Tx2,x3,Tx4,,Txn),xn+1]\displaystyle-[f(Tx_{1},x_{2},Tx_{3},\ldots,Tx_{n}),Tx_{n+1}]-[f(Tx_{1},Tx_{2},x_{3},Tx_{4},\ldots,Tx_{n}),x_{n+1}]
[f(Tx1,Tx2,Tx3,,Txn1,xn),xn+1])\displaystyle-\ldots-[f(Tx_{1},Tx_{2},Tx_{3},\ldots,Tx_{n-1},x_{n}),x_{n+1}]\bigg{)}
j=2n+1(f(Tx2,Tx3,,Txj1,[Tx1,Txj]𝔤,Txj+1,,Txn+1)\displaystyle-\sum_{j=2}^{n+1}\bigg{(}f(Tx_{2},Tx_{3},\ldots,Tx_{j-1},[Tx_{1},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1})
TV(f(x2,Tx3,,Txj1,[Tx1,Txj]𝔤,Txj+1,,Txn+1))\displaystyle-T_{V}(f(x_{2},Tx_{3},\ldots,Tx_{j-1},[Tx_{1},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1}))
TV(f(Tx2,x3,Tx4,,Txj1,[Tx1,Txj]𝔤,Txj+1,,Txn+1))\displaystyle-T_{V}(f(Tx_{2},x_{3},Tx_{4},\ldots,Tx_{j-1},[Tx_{1},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1}))
TV(f(Tx2,Tx3,,Txj2,xj1,[Tx1,Txj]𝔤,Txj+1,,Txn+1))\displaystyle-\ldots-T_{V}(f(Tx_{2},Tx_{3},\ldots,Tx_{j-2},x_{j-1},[Tx_{1},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1}))
TV(f(Tx2,Tx3,,Txj1,[x1,Txj]𝔤+[Tx1,xj]𝔤,Txj+1,,Txn+1))\displaystyle-T_{V}(f(Tx_{2},Tx_{3},\ldots,Tx_{j-1},[x_{1},Tx_{j}]_{\mathfrak{g}}+[Tx_{1},x_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1}))-\ldots
TV(f(Tx2,Tx3,,Txj1,[Tx1,Txj]𝔤,Txj+1,,Txn,xn+1)))\displaystyle-T_{V}(f(Tx_{2},Tx_{3},\ldots,Tx_{j-1},[Tx_{1},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n},x_{n+1}))\bigg{)}
+j=3n+1(f(Tx1,Tx3,,Txj1,[Tx2,Txj]𝔤,Txj+1,,Txn+1)\displaystyle+\sum_{j=3}^{n+1}\bigg{(}f(Tx_{1},Tx_{3},\ldots,Tx_{j-1},[Tx_{2},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1})
TV(f(x1,Tx3,,Txj1,[Tx2,Txj]𝔤,Txj+1,,Txn+1))\displaystyle-T_{V}(f(x_{1},Tx_{3},\ldots,Tx_{j-1},[Tx_{2},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1}))
TV(f(Tx1,x3,Tx4,Txj1,[Tx2,Txj]𝔤,Txj+1,,Txn+1))\displaystyle-T_{V}(f(Tx_{1},x_{3},Tx_{4}\ldots,Tx_{j-1},[Tx_{2},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1}))
TV(f(Tx1,Tx3,,Txj2,xj1,[Tx2,Txj]𝔤,Txj,,Txn+1))\displaystyle-\ldots-T_{V}(f(Tx_{1},Tx_{3},\ldots,Tx_{j-2},x_{j-1},[Tx_{2},Tx_{j}]_{\mathfrak{g}},Tx_{j},\ldots,Tx_{n+1}))
TV(f(Tx1,Tx3,,Txj1,[x2,Txj]𝔤+[Tx2,xj]𝔤,Txj+1,,Txn+1))\displaystyle-T_{V}(f(Tx_{1},Tx_{3},\ldots,Tx_{j-1},[x_{2},Tx_{j}]_{\mathfrak{g}}+[Tx_{2},x_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1}))
TV(f(Tx1,Tx3,,Txj1,[Tx2,Txj]𝔤,Txj,,Txn,xn+1)))\displaystyle-\ldots-T_{V}(f(Tx_{1},Tx_{3},\ldots,Tx_{j-1},[Tx_{2},Tx_{j}]_{\mathfrak{g}},Tx_{j},\ldots,Tx_{n},x_{n+1}))\bigg{)}
j=4n+1(f(Tx1,Tx2,Tx4,,Txj1,[Tx3,Txj]𝔤,Txj+1,,Txn+1)\displaystyle-\sum_{j=4}^{n+1}\bigg{(}f(Tx_{1},Tx_{2},Tx_{4},\ldots,Tx_{j-1},[Tx_{3},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1})
TV(f(x1,Tx2,Tx4,,Txj1,[Tx3,Txj]𝔤,Txj+1,,Txn+1))\displaystyle-T_{V}(f(x_{1},Tx_{2},Tx_{4},\ldots,Tx_{j-1},[Tx_{3},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1}))
TV(f(Tx1,x2,Tx4,,Txj1,[Tx3,Txj]𝔤,Txj+1,,Txn+1))\displaystyle-T_{V}(f(Tx_{1},x_{2},Tx_{4},\ldots,Tx_{j-1},[Tx_{3},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1}))
TV(f(Tx1,Tx2,x4,Tx5,xj1,[Tx3,Txj]𝔤,Txj+1,,Txn+1))\displaystyle-T_{V}(f(Tx_{1},Tx_{2},x_{4},Tx_{5}\ldots,x_{j-1},[Tx_{3},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1}))
TV(f(Tx1,Tx2,Tx4,,Txj1,[x3,Txj]𝔤+[Tx3,xj]𝔤,Txj+1,,Txn+1))\displaystyle-\ldots-T_{V}(f(Tx_{1},Tx_{2},Tx_{4},\ldots,Tx_{j-1},[x_{3},Tx_{j}]_{\mathfrak{g}}+[Tx_{3},x_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n+1}))-\ldots
TV(f(Tx1,Tx2,Tx4,,Txj1,[Tx3,Txj]𝔤,Txj+1,,Txn,xn+1)))\displaystyle-T_{V}(f(Tx_{1},Tx_{2},Tx_{4},\ldots,Tx_{j-1},[Tx_{3},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n},x_{n+1}))\bigg{)}
+\displaystyle+\ldots
+(1)nj=n+1n+1(f(Tx1,Tx2,,Txj1,[Txn,Txj]𝔤,Txj+1,,Txn1,Txn+1)\displaystyle+(-1)^{n}\sum_{j=n+1}^{n+1}\bigg{(}f(Tx_{1},Tx_{2},\ldots,Tx_{j-1},[Tx_{n},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n-1},Tx_{n+1})
TV(f(x1,Tx2,Tx3,,Txj1,[Txn,Txj]𝔤,Txj+1,,Txn1,Txn+1))\displaystyle-T_{V}(f(x_{1},Tx_{2},Tx_{3},\ldots,Tx_{j-1},[Tx_{n},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n-1},Tx_{n+1}))
TV(f(Tx1,x2,Tx3,,Txj1,[Txn,Txj]𝔤,Txj+1,,Txn1,Txn+1))\displaystyle-T_{V}(f(Tx_{1},x_{2},Tx_{3},\ldots,Tx_{j-1},[Tx_{n},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n-1},Tx_{n+1}))
TV(f(Tx1,Tx2,x3,Tx4,Txj1,[Txn,Txj]𝔤,Txj+1,,Txn1,Txn+1))\displaystyle-\ldots T_{V}(f(Tx_{1},Tx_{2},x_{3},Tx_{4}\ldots,Tx_{j-1},[Tx_{n},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n-1},Tx_{n+1}))
TV(f(Tx1,Tx2,Tx3,,Txj1,[xn,Txj]𝔤+[Txn,xj]𝔤,Txj+1,,Txn1,Txn+1))\displaystyle-\ldots-T_{V}(f(Tx_{1},Tx_{2},Tx_{3},\ldots,Tx_{j-1},[x_{n},Tx_{j}]_{\mathfrak{g}}+[Tx_{n},x_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n-1},Tx_{n+1}))
TV(f(Tx1,Tx2,Tx3,,Txj1,[Txn,Txj]𝔤,Txj+1,,Txn1,xn+1))).\displaystyle-\ldots-T_{V}(f(Tx_{1},Tx_{2},Tx_{3},\ldots,Tx_{j-1},[Tx_{n},Tx_{j}]_{\mathfrak{g}},Tx_{j+1},\ldots,Tx_{n-1},x_{n+1}))\bigg{)}.

Now, using equations

[T(x),TV(u)]=TV(([T(x),u]+[x,TV(u)])[T(x),T_{V}(u)]=T_{V}(([T(x),u]+[x,T_{V}(u)])
[TV(u),T(x)]=TV([TV(u),x]+[u,T(x)])[T_{V}(u),T(x)]=T_{V}([T_{V}(u),x]+[u,T(x)])

for all x𝔤x\in\mathfrak{g} and uVu\in V , we get

ϕn+1(δn(f))(x1,x2,x3,,xn+1)=n(ϕn(f))(x1,x2,x3,,xn+1).\phi^{n+1}(\delta^{n}(f))(x_{1},x_{2},x_{3},\ldots,x_{n+1})=\partial^{n}(\phi^{n}(f))(x_{1},x_{2},x_{3},\ldots,x_{n+1}).

Now by the lemma (4.2), we have the following commutative diagram.

CLA1(𝔤,V){\ignorespaces{C^{1}_{LA}(\mathfrak{g},V)}} CLA2(𝔤,V){\ignorespaces{C^{2}_{LA}(\mathfrak{g},V)}} CLAn(𝔤,V){\ignorespaces{C^{n}_{LA}(\mathfrak{g},V)}} CLAn+1(𝔤,V){\ignorespaces{C^{n+1}_{LA}(\mathfrak{g},V)}}
CRBO1(𝔤,V){\ignorespaces{C^{1}_{RBO}(\mathfrak{g},V)}} CRBO2(𝔤,V){\ignorespaces{C^{2}_{RBO}(\mathfrak{g},V)}} CRBOn(𝔤,V){\ignorespaces{C^{n}_{RBO}(\mathfrak{g},V)}} CRBOn+1(𝔤,V){\ignorespaces{C^{n+1}_{RBO}(\mathfrak{g},V)}} .
δ1\scriptstyle{\ignorespaces\delta^{1}}ϕ1\scriptstyle{\ignorespaces\phi^{1}}ϕ2\scriptstyle{\ignorespaces\phi^{2}}1\scriptstyle{\ignorespaces\partial^{1}}δn\scriptstyle{\ignorespaces\delta^{n}}ϕn\scriptstyle{\ignorespaces\phi^{n}}n\scriptstyle{\ignorespaces\partial^{n}}ϕn+1\scriptstyle{\ignorespaces\phi^{n+1}}

Now, we combine the cochain complex of Leibniz algebra and the cochain complex of Rota-Baxter operator to define the cochain complex of Rota-Baxter Leibniz algebra. Let (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) be a Rota-Baxter Leibniz algebra and (V,lV,rV,TV)(V,l_{V},r_{V},T_{V}) be a representation of it. Now we define the cochain groups by

CRBLA0(𝔤,V)=CLA0(𝔤,V)andCRBLAn(𝔤,V)=CLAn(𝔤,V)CRBOn1(𝔤,V),n1,C^{0}_{RBLA}(\mathfrak{g},V)=C^{0}_{LA}(\mathfrak{g},V)~{}~{}\mbox{and}~{}~{}C^{n}_{RBLA}(\mathfrak{g},V)=C^{n}_{LA}(\mathfrak{g},V)\oplus C_{RBO}^{n-1}(\mathfrak{g},V),\forall n\geq 1,

and the coboundary map dn:CRBLAn(𝔤,V)CRBLAn+1(𝔤,V)d^{n}:C^{n}_{RBLA}(\mathfrak{g},V)\rightarrow C^{n+1}_{RBLA}(\mathfrak{g},V) is defined by

dn(α,β)=(δn(α),n1(β)ϕn(α))d^{n}(\alpha,\beta)=(\delta^{n}(\alpha),-\partial^{n-1}(\beta)-\phi^{n}(\alpha))

for any αCLAn(𝔤,V)\alpha\in C^{n}_{LA}(\mathfrak{g},V) and βCRBOn1(𝔤,V).\beta\in C^{n-1}_{RBO}(\mathfrak{g},V).

Theorem 4.4.

The map dn:CRBLAn(𝔤,V)CRBLAn+1(𝔤,V)d^{n}:C^{n}_{RBLA}(\mathfrak{g},V)\rightarrow C^{n+1}_{RBLA}(\mathfrak{g},V) satisfies dn+1dn=0d^{n+1}\circ d^{n}=0.

Proof 4.5.

Let fCLAn(𝔤,V)f\in C^{n}_{LA}(\mathfrak{g},V) and gCRBOn1(𝔤,V)g\in C^{n-1}_{RBO}(\mathfrak{g},V), then we have

dn+1dn(f,g)\displaystyle d^{n+1}\circ d^{n}(f,g) =dn+1(δn(f),n1(g)ϕn(f))\displaystyle=d^{n+1}(\delta^{n}(f),-\partial^{n-1}(g)-\phi^{n}(f))
=(δn+1(δn(f)),n(n1(g)ϕn(f))ϕn+1(δn(f)))\displaystyle=(\delta^{n+1}(\delta^{n}(f)),-\partial^{n}(-\partial^{n-1}(g)-\phi^{n}(f))-\phi^{n+1}(\delta^{n}(f)))
=(0,n(ϕn(f))ϕn+1(δn(f)))=0.\displaystyle=(0,~{}\partial^{n}(\phi^{n}(f))-\phi^{n+1}(\delta^{n}(f)))=0.

Therefore, it follows from the above theorem that {CRBLAn(𝔤,V),dn}\{C^{n}_{RBLA}(\mathfrak{g},V),d^{n}\} is a cochain complex and the corresponding cohomology groups are called cohomology of Rota-Baxter Leibniz algebra (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) with coefficients in the representation VV and is denoted by 𝐇𝐑𝐁𝐋𝐀𝐧(𝔤,𝐕)\mathbf{H^{n}_{RBLA}(\mathfrak{g},V)}, n0.~{}n\geq 0. Note that in this case there exists a short exact sequence of complexes

0CRBOn(𝔤,V)CRBLAn(𝔤,V)CLAn(𝔤,V)0.0\longrightarrow C^{n}_{RBO}(\mathfrak{g},V)\longrightarrow C^{n}_{RBLA}(\mathfrak{g},V)\longrightarrow C^{n}_{LA}(\mathfrak{g},V)\longrightarrow 0.

5 Deformations of Rota-Baxter Leibniz algebras

In this section, we study a one-parameter formal deformation of Rota-Baxter Leibniz algebra. We denote the bracket [,]𝔤[~{},~{}]_{\mathfrak{g}} by μ.\mu.

Definition 5.1.

A formal one-parameter deformation of a Rota-Baxter Leibniz algebra (𝔤T,μ)(\mathfrak{g}_{T},\mu) is a pair of two power series (μt,Tt)(\mu_{t},T_{t})

μt=i=0μiti,μiCLA2(𝔤,𝔤),Tt=i=0Titi,TiCRBO1(𝔤,𝔤),\mu_{t}=\sum_{i=0}^{\infty}\mu_{i}t^{i},~{}\mu_{i}\in C^{2}_{LA}(\mathfrak{g},\mathfrak{g}),~{}~{}~{}~{}T_{t}=\sum_{i=0}^{\infty}T_{i}t^{i},~{}T_{i}\in C^{1}_{RBO}(\mathfrak{g},\mathfrak{g}),

such that (𝔤[[t]]Tt,μt)(\mathfrak{g}[[t]]_{T_{t}},\mu_{t}) is a Rota-Baxter Leibniz algebra with (μ0,T0)=(μ,T)(\mu_{0},T_{0})=(\mu,T), where 𝔤[[t]]\mathfrak{g}[[t]], the space of formal power series in tt with coefficients from 𝔤\mathfrak{g} is a 𝕂[[t]]\mathbb{K}[[t]] module, 𝕂\mathbb{K} being the ground field of (𝔤T,μ)(\mathfrak{g}_{T},\mu).

The above definition holds if and only if for any x,y,z𝔤x,y,z\in\mathfrak{g} the following conditions are satisfied

μt(x,μt(y,z))=μt(μt(x,y),z)+μt(y,μt(x,z)),\mu_{t}(x,\mu_{t}(y,z))=\mu_{t}(\mu_{t}(x,y),z)+\mu_{t}(y,\mu_{t}(x,z)),

and

μt(Tt(x),Tt(y))=Tt(μt(x,Tt(y))+μt(Tt(x),y)).\mu_{t}(T_{t}(x),T_{t}(y))=T_{t}(\mu_{t}(x,T_{t}(y))+\mu_{t}(T_{t}(x),y)).

Expanding the above equations and equating the coefficients of tnt^{n} from both sides we have

i+j=ni,j0μi(x,μj(y,z))=i+j=ni,j0μi(μj(x,y),z)+i+j=ni,j0μi(y,μj(x,z)),\displaystyle\sum_{\begin{subarray}{c}i+j=n\\ i,j\geq 0\end{subarray}}\mu_{i}(x,\mu_{j}(y,z))=\sum_{\begin{subarray}{c}i+j=n\\ i,j\geq 0\end{subarray}}\mu_{i}(\mu_{j}(x,y),z)+\sum_{\begin{subarray}{c}i+j=n\\ i,j\geq 0\end{subarray}}\mu_{i}(y,\mu_{j}(x,z)), (1)

and

i+j+k=ni,j,k0μi(Tj(u),Tk(v))=i+j+k=ni,j,k0Ti(μj(Tk(u),v))+i+j+k=ni,j,k0Ti(μj(u,Tk(v))).\displaystyle\sum_{\begin{subarray}{c}i+j+k=n\\ i,j,k\geq 0\end{subarray}}\mu_{i}(T_{j}(u),T_{k}(v))=\sum_{\begin{subarray}{c}i+j+k=n\\ i,j,k\geq 0\end{subarray}}T_{i}(\mu_{j}(T_{k}(u),v))+\sum_{\begin{subarray}{c}i+j+k=n\\ i,j,k\geq 0\end{subarray}}T_{i}(\mu_{j}(u,T_{k}(v))). (2)

Observe that for n=0n=0, the above conditions are exactly the conditions in the definitions of Leibniz algebra and the Rota-Baxter operator.

Definition 5.2.

The infinitesimal of the deformation (μt,Tt)(\mu_{t},T_{t}) is the pair (μ1,T1)(\mu_{1},T_{1}). Suppose more generally that (μn,Tn)(\mu_{n},T_{n}) is the first non-zero term of (μt,Tt)(\mu_{t},T_{t}) after (μ0,T0)(\mu_{0},T_{0}), such (μn,Tn)(\mu_{n},T_{n}) is called a nn-infinitesimal of the deformation.

Theorem 5.3.

Let (μt,Tt)(\mu_{t},T_{t}) be a formal one-parameter deformation of Rota-Baxter Leibniz algebra (𝔤T,μ)(\mathfrak{g}_{T},\mu). Then (μ1,T1)(\mu_{1},T_{1}) is a 22-cocycle in the cochain complex {CRBLAn(𝔤,𝔤),dn}.\{C^{n}_{RBLA}(\mathfrak{g},\mathfrak{g}),d^{n}\}.

Proof 5.4.

Putting n=1n=1 in the equation (5.1) we get

μ(x,μ1(y,z))+μ1(x,μ(y,z))=μ(μ1(x,y),z)+μ1(μ(x,y),z)+μ1(y,μ(x,z))+μ(y,μ1(x,z)).\mu(x,\mu_{1}(y,z))+\mu_{1}(x,\mu(y,z))=\mu(\mu_{1}(x,y),z)+\mu_{1}(\mu(x,y),z)\\ +\mu_{1}(y,\mu(x,z))+\mu(y,\mu_{1}(x,z)).

This gives δ2(μ1)(x,y,z)=0CLA2(𝔤,𝔤)\delta^{2}(\mu_{1})(x,y,z)=0\in C^{2}_{LA}(\mathfrak{g},\mathfrak{g}). Again, putting n=1n=1 in (5.2) we get

μ1\displaystyle\mu_{1} (T(x1),T(x2))+μ(T1(x1),T(x2))+μ(T(x1),T1(x2))\displaystyle(T(x_{1}),T(x_{2}))+\mu(T_{1}(x_{1}),T(x_{2}))+\mu(T(x_{1}),T_{1}(x_{2}))
T1(μ(T(x1),x2))T(μ(T1(x1),x2))T(μ1(T(x1),x2))\displaystyle-T_{1}(\mu(T(x_{1}),x_{2}))-T(\mu(T_{1}(x_{1}),x_{2}))-T(\mu_{1}(T(x_{1}),x_{2}))
T1(μ(x1,T(x2)))T(μ1(x1,T(x2)))T(μ(x1,T1(x2)))= 0.\displaystyle-T_{1}(\mu(x_{1},T(x_{2})))-T(\mu_{1}(x_{1},T(x_{2})))-T(\mu(x_{1},T_{1}(x_{2})))\ =\ 0.

This gives

1(T1)(x1,x2)\displaystyle-\partial^{1}(T_{1})(x_{1},x_{2}) =T(μ1(x1,T(x2)))T(μ1(T(x1),x2))+μ1(T(x1),T(x2))\displaystyle=-T(\mu_{1}(x_{1},T(x_{2})))-T(\mu_{1}(T(x_{1}),x_{2}))+\mu_{1}(T(x_{1}),T(x_{2}))
=ϕ2(μ1)(x1,x2).\displaystyle=\phi^{2}(\mu_{1})(x_{1},x_{2}).

Therefore, (T1)ϕ2(μ1)=0-\partial^{(}T_{1})-\phi^{2}(\mu_{1})=0. Hence, d2(μ1,T1)=0d^{2}(\mu_{1},T_{1})=0. Thus, (μ1,T1)(\mu_{1},T_{1}) is a 22-cocycle in the cochain complex {CRBLAn(𝔤,𝔤),dn}.\{C^{n}_{RBLA}(\mathfrak{g},\mathfrak{g}),d^{n}\}.

Theorem 5.5.

Let (μt,Tt)(\mu_{t},T_{t}) be a formal one-parameter deformation of Rota-Baxter Leibniz algebra (𝔤T,μ)(\mathfrak{g}_{T},\mu). Then nn-infinitesimal of the deformation is a 22-cocycle.

Proof 5.6.

The proof is similar to the above theorem.

Definition 5.7.

Let (μt,Tt)(\mu_{t},T_{t}) and (μt,Tt)(\mu_{t}^{{}^{\prime}},T_{t}^{{}^{\prime}}) be two formal one-parameter deformations of a Rota-Baxter Leibniz algebra (𝔤T,μ)(\mathfrak{g}_{T},\mu). A formal isomorphism from (μt,Tt)(\mu_{t},T_{t}) to (μt,Tt)(\mu_{t}^{{}^{\prime}},T_{t}^{{}^{\prime}}) is a power series ψt=i=0ψiti:𝔤[[t]]𝔤[[t]]\psi_{t}=\sum_{i=0}\psi_{i}t^{i}:\mathfrak{g}[[t]]\rightarrow\mathfrak{g}[[t]], where ψi:𝔤𝔤\psi_{i}:\mathfrak{g}\rightarrow\mathfrak{g} are linear maps with ψ0\psi_{0} is the identity map on 𝔤\mathfrak{g} and also the following conditions are satisfied.

ψtμt=μt(ψtψt)\displaystyle\psi_{t}\circ\mu^{{}^{\prime}}_{t}=\mu_{t}\circ(\psi_{t}\otimes\psi_{t}) (3)
ψtTt=Ttψt.\displaystyle\psi_{t}\circ T_{t}^{{}^{\prime}}=T_{t}\circ\psi_{t}. (4)

In this case, we say that (μt,Tt)(\mu_{t},T_{t}) and (μt,Tt)(\mu_{t}^{{}^{\prime}},T_{t}^{{}^{\prime}}) are equivalent. Note that the equation (5.3) and (5.4) can be written as follows respectively:

i+j=ni,j0ψi(μj(x,y))=i+j+k=ni,j,k0μi(ψj(x),ψk(y)),x,y𝔤,\displaystyle\sum_{\begin{subarray}{c}i+j=n\\ i,j\geq 0\end{subarray}}\psi_{i}(\mu_{j}^{{}^{\prime}}(x,y))=\sum_{\begin{subarray}{c}i+j+k=n\\ i,j,k\geq 0\end{subarray}}\mu_{i}(\psi_{j}(x),\psi_{k}(y)),~{}~{}x,y\in\mathfrak{g}, (5)
i+j=ni,j0ψiTj=i+j=ni,j0Tiψj.\displaystyle\sum_{\begin{subarray}{c}i+j=n\\ i,j\geq 0\end{subarray}}\psi_{i}\circ T^{{}^{\prime}}_{j}=\sum_{\begin{subarray}{c}i+j=n\\ i,j\geq 0\end{subarray}}T_{i}\circ\psi_{j}. (6)
Theorem 5.8.

The infinitesimal of two equivalent formal one-parameter deformations of Rota-Baxter Leibniz algebra (𝔤T,μ)(\mathfrak{g}_{T},\mu) is in the same cohomology class.

Proof 5.9.

Let ψt:(μt,Tt)(μt,Tt)\psi_{t}:(\mu_{t},T_{t})\rightarrow(\mu_{t}^{{}^{\prime}},T_{t}^{{}^{\prime}}) be a formal isomorphism. Now putting n=1n=1 in equation (5.5) and (5.6) we get

μ1(x,y)=μ1(x,y)+μ(x,ψ1(y))+μ(ψ1(x),y)ψ1(μ(x,y)),x,y𝔤\displaystyle\mu^{{}^{\prime}}_{1}(x,y)=\mu_{1}(x,y)+\mu(x,\psi_{1}(y))+\mu(\psi_{1}(x),y)-\psi_{1}(\mu(x,y)),~{}~{}x,y\in\mathfrak{g}
T1=T1+Tψ1ψ1T\displaystyle T_{1}^{{}^{\prime}}=T_{1}+T\circ\psi_{1}-\psi_{1}\circ T

Therefore, we have

(μ1,T1)(μ1,T1)=(δ1(ψ1),ϕ1(ψ1))=d1(ψ1,0)CRBLA1(𝔤,𝔤).(\mu_{1}^{{}^{\prime}},T_{1}^{{}^{\prime}})-(\mu_{1},T_{1})=(\delta^{1}(\psi_{1}),-\phi^{1}(\psi_{1}))=d^{1}(\psi_{1},0)\in C^{1}_{RBLA}(\mathfrak{g},\mathfrak{g}).
Definition 5.10.

A Rota-Baxter Leibniz algebra is called rigid if every formal one-parameter deformation is trivial.

Theorem 5.11.

Let (𝔤T,μ)(\mathfrak{g}_{T},\mu) be a Rota-Baxter Leibniz algebra. If HRBLA2(𝔤,𝔤)=0H^{2}_{RBLA}(\mathfrak{g},\mathfrak{g})=0, then (𝔤T,μ)(\mathfrak{g}_{T},\mu) is rigid.

Proof 5.12.

Let (μt,Tt)(\mu_{t},T_{t}) be a formal one-parameter deformation of (𝔤T,μ)(\mathfrak{g}_{T},\mu). Since (μ1,T1)(\mu_{1},T_{1}) is a 22-cocycle and HRBLA2(𝔤,𝔤)=0H^{2}_{RBLA}(\mathfrak{g},\mathfrak{g})=0, thus, there exists a map ψ1\psi_{1}^{{}^{\prime}} and x𝕂x\in\mathbb{K}, where 𝕂\mathbb{K} is the ground field of Rota-Baxter Leibniz algebra (𝔤T,μ)(\mathfrak{g}_{T},\mu), such that

(ψ1,x)CRBLA1(𝔤,𝔤)=CLA1(𝔤,𝔤)Hom(𝕂,𝔤)(\psi_{1}^{{}^{\prime}},x)\in C^{1}_{RBLA}(\mathfrak{g},\mathfrak{g})=C^{1}_{LA}(\mathfrak{g},\mathfrak{g})\oplus\operatorname{Hom}(\mathbb{K},\mathfrak{g})

and (μ1,T1)=d1(ψ1,x)(\mu_{1},T_{1})=d^{1}(\psi_{1}^{{}^{\prime}},x). Hence, μ1=δ1(ψ1)andT1=0(x)ϕ1(ψ1)\mu_{1}=\delta^{1}(\psi_{1}^{{}^{\prime}})~{}\mbox{and}~{}T_{1}=-\partial^{0}(x)-\phi^{1}(\psi_{1}). If ψ1=ψ1+δ0(x)\psi_{1}=\psi_{1}^{{}^{\prime}}+\delta^{0}(x), then μ1=δ1(ψ1),T1=ϕ1(ψ1)\mu_{1}=\delta^{1}(\psi_{1}),~{}T_{1}=-\phi^{1}(\psi_{1}). Now, let ψt=Id𝔤tψt\psi_{t}=Id_{\mathfrak{g}}-t\psi_{t}. Then we have two equivalent deformation (μt,Tt)(\mu_{t},T_{t}) and (μt¯,Tt¯)(\bar{\mu_{t}},\bar{T_{t}}), where

μt¯=ψt1μt(ψt×ψt),Tt¯=ψt1Ttψt.\bar{\mu_{t}}=\psi_{t}^{-1}\circ\mu_{t}\circ(\psi_{t}\times\psi_{t}),~{}~{}\bar{T_{t}}=\psi_{t}^{-1}\circ T_{t}\circ\psi_{t}.

Now by theorem (5.4) we have, μ1¯=0,T1¯=0\bar{\mu_{1}}=0,\bar{T_{1}}=0. Hence,

μt¯=μ+μ2¯t2+,\displaystyle\bar{\mu_{t}}=\mu+\bar{\mu_{2}}t^{2}+\ldots,
Tt¯=T+T2¯t2+\displaystyle\bar{T_{t}}=T+\bar{T_{2}}t^{2}+\ldots

Thus, the linear terms of (μ2¯,T2¯)(\bar{\mu_{2}},\bar{T_{2}}) vanishes, hence, repeatedly applying the same argument we conclude that (μt,Tt)(\mu_{t},T_{t}) is equivalent to the trivial deformation. Hence, (𝔤T,μ)(\mathfrak{g}_{T},\mu) is rigid.

6 Abelian extensions of Rota-Baxter Leibniz algebras

Let (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) be a Rota-Baxter Leibniz algebra and VV be a vector space. Observe that if TVT_{V} is a linear operator on the vector space VV and if we define the bracket by μ(x,y)=0\mu(x,y)=0 for all x,yVx,y\in V. Then (VTV,μ)(V_{T_{V}},\mu) has a structure of Rota-Baxter Leibniz algebra.

Definition 6.1.

An abelian extension of the Rota-Baxter Leibniz algebra (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) is a short exact sequence of morphisms of Rota-Baxter Leibniz algebra

0 (VTV,μ) (𝔤^T^,[,]) (𝔤T,[,]𝔤) 0
ip
,
\leavevmode\hbox to265.33pt{\vbox to17.93pt{\pgfpicture\makeatletter\hbox{\hskip 132.66718pt\lower-9.01288pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\ignorespaces\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\ignorespaces\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}}{{{\ignorespaces}}}{{}{}{{ {}{}}}{ {}{}} {{}{{\ignorespaces}}}{{}{\ignorespaces}}{}{{}{\ignorespaces}} {\ignorespaces }{{{{\ignorespaces}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-132.66718pt}{-8.91304pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 6.80554pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\ignorespaces\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{\ignorespaces}}}{{}{\ignorespaces}}{}{{}{\ignorespaces}} {\ignorespaces }{{{{\ignorespaces}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\ignorespaces 0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{\ignorespaces\ignorespaces}}}&\hskip 6.80554pt\hfil&\hfil\hskip 44.77116pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\ignorespaces\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{\ignorespaces}}}{{}{\ignorespaces}}{}{{}{\ignorespaces}} {\ignorespaces }{{{{\ignorespaces}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-16.46565pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\ignorespaces(V_{T_{V}},\mu)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{\ignorespaces\ignorespaces}}}&\hskip 20.7712pt\hfil&\hfil\hskip 49.61322pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\ignorespaces\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{\ignorespaces}}}{{}{\ignorespaces}}{}{{}{\ignorespaces}} {\ignorespaces }{{{{\ignorespaces}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-21.30771pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\ignorespaces(\hat{\mathfrak{g}}_{\hat{T}},[~{},~{}]_{\wedge})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{\ignorespaces\ignorespaces}}}&\hskip 25.61325pt\hfil&\hfil\hskip 48.67168pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\ignorespaces\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{\ignorespaces}}}{{}{\ignorespaces}}{}{{}{\ignorespaces}} {\ignorespaces }{{{{\ignorespaces}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-20.36617pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\ignorespaces(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{\ignorespaces\ignorespaces}}}&\hskip 24.6717pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\ignorespaces\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{\ignorespaces}}}{{}{\ignorespaces}}{}{{}{\ignorespaces}} {\ignorespaces }{{{{\ignorespaces}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\ignorespaces 0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\ignorespaces\hskip 6.80554pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{\ignorespaces{}}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\ignorespaces{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-118.8561pt}{-6.41304pt}\pgfsys@lineto{-95.65608pt}{-6.41304pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{\ignorespaces}}}}{{}{{}}{}{}{{}}{{{\ignorespaces}}{{{\ignorespaces}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-95.4561pt}{-6.41304pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{\ignorespaces}}}}\ignorespaces \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{\ignorespaces}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\ignorespaces{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-53.31374pt}{-6.41304pt}\pgfsys@lineto{-30.11372pt}{-6.41304pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{\ignorespaces}}}}{{}{{}}{}{}{{}}{{{\ignorespaces}}{{{\ignorespaces}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-29.91374pt}{-6.41304pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{\ignorespaces}}}}\ignorespaces\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{\ignorespaces}}}{{}{\ignorespaces}}{}{{}{\ignorespaces}} {\ignorespaces }{{{{\ignorespaces}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-42.71954pt}{-4.06027pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\ignorespaces i}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{\ignorespaces}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\ignorespaces{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{21.91273pt}{-6.41304pt}\pgfsys@lineto{45.11275pt}{-6.41304pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{\ignorespaces}}}}{{}{{}}{}{}{{}}{{{\ignorespaces}}{{{\ignorespaces}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{45.31273pt}{-6.41304pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{\ignorespaces}}}}\ignorespaces\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{\ignorespaces}}}{{}{\ignorespaces}}{}{{}{\ignorespaces}} {\ignorespaces }{{{{\ignorespaces}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{31.95178pt}{-2.69919pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\ignorespaces p}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }\ignorespaces{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{95.25612pt}{-6.41304pt}\pgfsys@lineto{118.45613pt}{-6.41304pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{\ignorespaces}}}}{{}{{}}{}{}{{}}{{{\ignorespaces}}{{{\ignorespaces}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{118.65611pt}{-6.41304pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{\ignorespaces}}}}\ignorespaces \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}}}{\ignorespaces}{\ignorespaces}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}},

that is, there exists a commutative diagram

0{\ignorespaces 0} V{\ignorespaces V} 𝔤^{\ignorespaces\hat{\mathfrak{g}}} 𝔤{\ignorespaces\mathfrak{g}} 0{\ignorespaces 0}
0{\ignorespaces 0} V{\ignorespaces V} 𝔤^{\ignorespaces\hat{\mathfrak{g}}} 𝔤{\ignorespaces\mathfrak{g}} 0{\ignorespaces 0}
i\scriptstyle{\ignorespaces i}TV\scriptstyle{\ignorespaces T_{V}}T^\scriptstyle{\ignorespaces\hat{T}}p\scriptstyle{\ignorespaces p}T\scriptstyle{\ignorespaces T}i\scriptstyle{\ignorespaces i}p\scriptstyle{\ignorespaces p}

where μ(a,b)=0\mu(a,b)=0 for all a,bV.a,b\in V. In this case we say that (𝔤^T^,[,])(\hat{\mathfrak{g}}_{\hat{T}},[~{},~{}]_{\wedge}) is an abelian extension of the Rota-Baxter Leibniz algebra (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) by (VTV,μ).(V_{T_{V}},\mu).

Definition 6.2.

Let (𝔤^T1^,[,]1)(\hat{\mathfrak{g}}_{\hat{T_{1}}},[~{},~{}]_{\wedge_{1}}) and (𝔤^T2^,[,]2)(\hat{\mathfrak{g}}_{\hat{T_{2}}},[~{},~{}]_{\wedge_{2}}) be two abelian extension of (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) by (VTV,μ)(V_{T_{V}},\mu). Then this two extension are said to be isomorphic if there exists an isomorphism of Rota-Baxter Leibniz algebra ξ:(𝔤^T1^,[,]1)(𝔤^T2^,[,]2)\xi:(\hat{\mathfrak{g}}_{\hat{T_{1}}},[~{},~{}]_{\wedge_{1}})\rightarrow(\hat{\mathfrak{g}}_{\hat{T_{2}}},[~{},~{}]_{\wedge_{2}}) so that the following diagram is commutative :

0{\ignorespaces 0} (VTV,μ){\ignorespaces(V_{T_{V}},\mu)} (𝔤^T1^,[,]1){\ignorespaces(\hat{\mathfrak{g}}_{\hat{T_{1}}},[~{},~{}]_{\wedge_{1}})} (𝔤T,[,]𝔤){\ignorespaces(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}})} 0{\ignorespaces 0}
0{\ignorespaces 0} (VTV,μ){\ignorespaces(V_{T_{V}},\mu)} (𝔤^T2^,[,]2){\ignorespaces(\hat{\mathfrak{g}}_{\hat{T_{2}}},[~{},~{}]_{\wedge_{2}})} (𝔤T,[,]𝔤){\ignorespaces(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}})} 0.{\ignorespaces 0.}
i\scriptstyle{\ignorespaces i}ξ\scriptstyle{\ignorespaces\xi}p\scriptstyle{\ignorespaces p}i\scriptstyle{\ignorespaces i}p\scriptstyle{\ignorespaces p}
Definition 6.3.

A section of an abelian extension (𝔤^T^,[,])(\hat{\mathfrak{g}}_{\hat{T}},[~{},~{}]_{\wedge}) of (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) by (VTV,μ)(V_{T_{V}},\mu) is a linear map s:𝔤𝔤^s:\mathfrak{g}\rightarrow\hat{\mathfrak{g}} such that ps=Id𝔤.p\circ s=Id_{\mathfrak{g}}.

Definition 6.4.

Let (𝔤^T^,[,])(\hat{\mathfrak{g}}_{\hat{T}},[~{},~{}]_{\wedge}) be an abelian extension of (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) by (VTV,μ)(V_{T_{V}},\mu) with a section s:𝔤𝔤^s:\mathfrak{g}\rightarrow\hat{\mathfrak{g}}. Now define l¯V:𝔤VV\bar{l}_{V}:\mathfrak{g}\otimes V\rightarrow V and r¯V:V𝔤V\bar{r}_{V}:V\otimes\mathfrak{g}\rightarrow V by respectively l¯V(x,u)=[s(x),u]\bar{l}_{V}(x,u)=[s(x),u]_{\wedge} and r¯V(u,x)=[u,s(x)]\bar{r}_{V}(u,x)=[u,s(x)]_{\wedge} for all x𝔤,uV.x\in\mathfrak{g},u\in V.

Theorem 6.5.

Let (𝔤^T^,[,])(\hat{\mathfrak{g}}_{\hat{T}},[~{},~{}]_{\wedge}) be an abelian extension of (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) by (VTV,μ)(V_{T_{V}},\mu) with a section s:𝔤𝔤^s:\mathfrak{g}\rightarrow\hat{\mathfrak{g}}. Then, (V,l¯V,r¯V,TV)(V,\bar{l}_{V},\bar{r}_{V},T_{V}) is a representation Rota-Baxter Leibniz algebra (𝔤T,[,]𝔤).(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}).

Proof 6.6.

As s([x,y]𝔤)[s(x),s(y)]Vs([x,y]_{\mathfrak{g}})-[s(x),s(y)]_{\wedge}\in V, hence, [s([x,y]𝔤),u]=[[s(x),s(y)],u][s([x,y]_{\mathfrak{g}}),u]_{\wedge}=[[s(x),s(y)]_{\wedge},u]_{\wedge} for all x,y𝔤,uVx,y\in\mathfrak{g},u\in V. Therefore, we have

l¯V\displaystyle\bar{l}_{V} (x,l¯V(y,u))l¯V([x,y]𝔤,u)l¯V(y,l¯V(x,u))\displaystyle(x,\bar{l}_{V}(y,u))-\bar{l}_{V}([x,y]_{\mathfrak{g}},u)-\bar{l}_{V}(y,\bar{l}_{V}(x,u))
=l¯V(x,[s(y),u])[s([x,y]𝔤),u]l¯V(y,[s(x),u])\displaystyle=\bar{l}_{V}(x,[s(y),u]_{\wedge})-[s([x,y]_{\mathfrak{g}}),u]_{\wedge}-\bar{l}_{V}(y,[s(x),u]_{\wedge})
=[s(x),[s(y),u]][s([x,y]𝔤),u][s(y),[s(x),u]]\displaystyle=[s(x),[s(y),u]_{\wedge}]_{\wedge}-[s([x,y]_{\mathfrak{g}}),u]_{\wedge}-[s(y),[s(x),u]_{\wedge}]_{\wedge}
=[s(x),[s(y),u]][[s(x),s(y)],u][s(y),[s(x),u]]\displaystyle=[s(x),[s(y),u]_{\wedge}]_{\wedge}-[[s(x),s(y)]_{\wedge},u]_{\wedge}-[s(y),[s(x),u]_{\wedge}]_{\wedge}
=0.\displaystyle=0.

Similarly, we can show that

l¯V(x,r¯V(u,y))=r¯V(l¯V(x,u),y)+r¯V(u,[x,y]𝔤)\bar{l}_{V}(x,\bar{r}_{V}(u,y))=\bar{r}_{V}(\bar{l}_{V}(x,u),y)+\bar{r}_{V}(u,[x,y]_{\mathfrak{g}})
r¯V(u,[x,y]𝔤=r¯V(r¯V(u,x),y)+l¯V(x,r¯V(u,y)),\bar{r}_{V}(u,[x,y]_{\mathfrak{g}}=\bar{r}_{V}(\bar{r}_{V}(u,x),y)+\bar{l}_{V}(x,\bar{r}_{V}(u,y)),

for all x,y𝔤x,y\in\mathfrak{g} and uV.u\in V. Hence (V,l¯V,r¯V)(V,\bar{l}_{V},\bar{r}_{V}) is a representation of a Leibniz algebra (𝔤,[,]𝔤).(\mathfrak{g},[~{},~{}]_{\mathfrak{g}}). Now, s(T(x))T^(s(x))Vs(T(x))-\hat{T}(s(x))\in V hence [s(T(x)),u]=[T^(s(x)),u][s(T(x)),u]=[\hat{T}(s(x)),u] for all x𝔤,uVx\in\mathfrak{g},u\in V. Therefore, we have

l¯V\displaystyle\bar{l}_{V} (T(x),TV(u))=[s(T(x)),TV(u)]=[T^(s(x)),T^(u)]\displaystyle(T(x),T_{V}(u))=[s(T(x)),T_{V}(u)]_{\wedge}=[\hat{T}(s(x)),\hat{T}(u)]_{\wedge}
=T^([T^(s(x)),u]+[s(x),T^(u)])\displaystyle=\hat{T}([\hat{T}(s(x)),u]_{\wedge}+[s(x),\hat{T}(u)]_{\wedge})
=TV([s(T(x)),u]+[s(x),TV(u)])\displaystyle=T_{V}([s(T(x)),u]_{\wedge}+[s(x),T_{V}(u)]_{\wedge})
=TV(l¯V(T(x),u)+l¯V(x,TV(u)))\displaystyle=T_{V}(\bar{l}_{V}(T(x),u)+\bar{l}_{V}(x,T_{V}(u)))

Hence, l¯V(T(x),TV(u))=TV(l¯V(T(x),u)+l¯V(x,TV(u)))\bar{l}_{V}(T(x),T_{V}(u))=T_{V}(\bar{l}_{V}(T(x),u)+\bar{l}_{V}(x,T_{V}(u))) for all x,y𝔤x,y\in\mathfrak{g} and uV.u\in V. Similarly, it can be shown that

r¯V(TV(u),T(x))=TV(r¯V(TV(u),x)+r¯V(u,T(x))),\bar{r}_{V}(T_{V}(u),T(x))=T_{V}(\bar{r}_{V}(T_{V}(u),x)+\bar{r}_{V}(u,T(x))),

for all x𝔤x\in\mathfrak{g} and uV.u\in V. Hence (V,l¯V,r¯V,TV)(V,\bar{l}_{V},\bar{r}_{V},T_{V}) is a representation of Rota-Baxter Leibniz algebra (𝔤T,[,]𝔤).(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}).

Proposition 6.7.

Let (𝔤^T^,[,])(\hat{\mathfrak{g}}_{\hat{T}},[~{},~{}]_{\wedge}) be an abelian extension of (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) by (VTV,μ)(V_{T_{V}},\mu). Then any two distinct sections s1,s2:𝔤𝔤^s_{1},s_{2}:\mathfrak{g}\rightarrow\hat{\mathfrak{g}} give the same Rota-Baxter Leibniz algebra representation (V,l¯V,r¯V,TV).(V,\bar{l}_{V},\bar{r}_{V},T_{V}).

Proof 6.8.

Let s1s_{1} and s2s_{2} be two distinct sections. Define γ:𝔤V\gamma:\mathfrak{g}\rightarrow V by

γ(x)=s1(x)s2(x),for all x𝔤.\gamma(x)=s_{1}(x)-s_{2}(x),~{}\mbox{for all }~{}x\in\mathfrak{g}.

Since μ(u,v)=0\mu(u,v)=0 for all u,vV.u,v\in V. Thus,

[s1(x),u]=[γ(x)+s2(x),u]=[γ(x),u]+[s2(x),u]=[s2(x),u]\displaystyle[s_{1}(x),u]_{\wedge}=[\gamma(x)+s_{2}(x),u]_{\wedge}=[\gamma(x),u]_{\wedge}+[s_{2}(x),u]_{\wedge}=[s_{2}(x),u]_{\wedge}

Similarly, [u,s1(x)]=[u,s2(x)][u,s_{1}(x)]_{\wedge}=[u,s_{2}(x)]_{\wedge} for all x,y𝔤,uV.x,y\in\mathfrak{g},u\in V. Thus, two distinct sections give the same representation.

Definition 6.9.

Define two maps ψ:𝔤𝔤V\psi:\mathfrak{g}\otimes\mathfrak{g}\rightarrow V and χ:𝔤V\chi:\mathfrak{g}\rightarrow V by

ψ(xy)=[s(x),s(y)]s([x,y]𝔤)andχ(x)=T^(s(x))s(T(x)).\psi(x\otimes y)=[s(x),s(y)]_{\wedge}-s([x,y]_{\mathfrak{g}})\quad\textup{and}\quad\chi(x)=\hat{T}(s(x))-s(T(x)).
Proposition 6.10.

The cohomological class of (ψ,χ)(\psi,\chi) does not depend on the choice of sections.

Proof 6.11.

Let s1s_{1} and s2s_{2} be two distinct sections. Define γ:𝔤V\gamma:\mathfrak{g}\rightarrow V by

γ(x)=s1(x)s2(x),for all x𝔤\gamma(x)=s_{1}(x)-s_{2}(x),~{}\mbox{for all }~{}x\in\mathfrak{g}

Since μ(u,v)=0\mu(u,v)=0 for all u,vV.u,v\in V. Therefore, for all x,y𝔤,uV,x,y\in\mathfrak{g},u\in V,

ψ1(x,y)\displaystyle\psi_{1}(x,y) =[s1(x),s1(y)]s1([x,y]𝔤)\displaystyle=[s_{1}(x),s_{1}(y)]_{\wedge}-s_{1}([x,y]_{\mathfrak{g}})
=[s2(x)+γ(x),s2(y)+γ(y)](s2([x,y]𝔤)+γ([x,y]𝔤))\displaystyle=[s_{2}(x)+\gamma(x),s_{2}(y)+\gamma(y)]_{\wedge}-(s_{2}([x,y]_{\mathfrak{g}})+\gamma([x,y]_{\mathfrak{g}}))
=[s2(x),s2(y)]s2([x,y]𝔤)+[γ(x),s2(y)]+[s2(x),γ(y)]γ([x,y]𝔤)\displaystyle=[s_{2}(x),s_{2}(y)]_{\wedge}-s_{2}([x,y]_{\mathfrak{g}})+[\gamma(x),s_{2}(y)]_{\wedge}+[s_{2}(x),\gamma(y)]_{\wedge}-\gamma([x,y]_{\mathfrak{g}})
=ψ2(x,y)+δ1(γ)(x,y).\displaystyle=\psi_{2}(x,y)+\delta^{1}(\gamma)(x,y).

Again,

χ1(x)\displaystyle\chi_{1}(x) =T^(s1(x))s1(T(x))\displaystyle=\hat{T}(s_{1}(x))-s_{1}(T(x))
=T^(s2(x)+γ(x))s2(T(x))γ(T(x))\displaystyle=\hat{T}(s_{2}(x)+\gamma(x))-s_{2}(T(x))-\gamma(T(x))
=χ2(x)+TV(γ(x))γ(T(x))\displaystyle=\chi_{2}(x)+T_{V}(\gamma(x))-\gamma(T(x))
=χ2(x)ϕ1(γ)(x).\displaystyle=\chi_{2}(x)-\phi^{1}(\gamma)(x).

Therefore, (ψ1,χ1)(ψ2,χ2)=(δ1(γ),ϕ1(γ))=d1(γ)(\psi_{1},\chi_{1})-(\psi_{2},\chi_{2})=(\delta^{1}(\gamma),~{}-\phi^{1}(\gamma))=d^{1}(\gamma). Hence (ψ1,χ1)(\psi_{1},\chi_{1}) and (ψ2,χ2)(\psi_{2},\chi_{2}) are in the same cohomology class HRBLA2(𝔤,V)H^{2}_{RBLA}(\mathfrak{g},V).

Theorem 6.12.

Let VV be a vector space and TV:VVT_{V}:V\rightarrow V be a linear map. Then (VTV,μ)(V_{T_{V}},\mu) is a Rota-Baxter Leibniz algebra with the bracket μ(u,v)=0\mu(u,v)=0 for all u,vV.u,v\in V. Then two isomorphic abelian extensions of a Rota-Baxter Leibniz algebra (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) by (VTV,μ)(V_{T_{V}},\mu) give rise to the same element in HRBLA2(𝔤,V).H^{2}_{RBLA}(\mathfrak{g},V).

Proof 6.13.

Let (𝔤^T1^,[,]1)(\hat{\mathfrak{g}}_{\hat{T_{1}}},[~{},~{}]_{\wedge_{1}}) and (𝔤^T2^,[,]2)(\hat{\mathfrak{g}}_{\hat{T_{2}}},[~{},~{}]_{\wedge_{2}}) be two isomorphic abelian extension of (𝔤T,[,]𝔤)(\mathfrak{g}_{T},[~{},~{}]_{\mathfrak{g}}) by (VT,μ)(V_{T},\mu). Let s1s_{1} be a section of (𝔤^T1^,[,]1)(\hat{\mathfrak{g}}_{\hat{T_{1}}},[~{},~{}]_{\wedge_{1}}). Thus, we have p2(ξs1)=p1s1=Id𝔤p_{2}\circ(\xi\circ s_{1})=p_{1}\circ s_{1}=Id_{\mathfrak{g}} as p2ξ=p1p_{2}\circ\xi=p_{1}, where ξ\xi is the map between the two abelian extensions. Hence ξs1\xi\circ s_{1} is a section of (𝔤^T2^,[,]2)(\hat{\mathfrak{g}}_{\hat{T_{2}}},[~{},~{}]_{\wedge_{2}}). Now define s2:=ξs1s_{2}:=\xi\circ s_{1}. Since ξ\xi is a homomorphism of Rota-Baxter Leibniz algebras such that ξ|V=IdV,ξ([s1(x),u]1)=[s2(x),u]2\xi|_{V}=Id_{V},~{}\xi([s_{1}(x),u]_{\wedge_{1}})=[s_{2}(x),u]_{\wedge_{2}} . Thus, ξ|V:VV\xi|_{V}:V\rightarrow V is compatible with the induced representations. Now, for all x,y𝔤x,y\in\mathfrak{g}

ψ2(xy)\displaystyle\psi_{2}(x\otimes y) =[s2(x),s2(y)]2s2([x,y]𝔤)\displaystyle=[s_{2}(x),s_{2}(y)]_{\wedge_{2}}-s_{2}([x,y]_{\mathfrak{g}})
=[ξ(s1(x)),ξ(s1(y)])2ξ(s1([x,y]𝔤))\displaystyle=[\xi(s_{1}(x)),\xi(s_{1}(y)])_{\wedge_{2}}-\xi(s_{1}([x,y]_{\mathfrak{g}}))
=ξ([s1(x),s1(y)]1s1([x,y]𝔤))\displaystyle=\xi([s_{1}(x),s_{1}(y)]_{\wedge_{1}}-s_{1}([x,y]_{\mathfrak{g}}))
=ξ(ψ1(xy))=ψ1(xy),\displaystyle=\xi(\psi_{1}(x\otimes y))=\psi_{1}(x\otimes y),

and

χ2(x)\displaystyle\chi_{2}(x) =T2^(s2(x))s2(T(x))\displaystyle=\hat{T_{2}}(s_{2}(x))-s_{2}(T(x))
=T2^(ξ(s1(x)))ξ(s1(T(x)))\displaystyle=\hat{T_{2}}(\xi(s_{1}(x)))-\xi(s_{1}(T(x)))
=ξ(T1^(s1(x))s1(T(x)))\displaystyle=\xi(\hat{T_{1}}(s_{1}(x))-s_{1}(T(x)))
=ξ(χ1(x))=χ1(x).\displaystyle=\xi(\chi_{1}(x))=\chi_{1}(x).

Therefore, two isomorphic abelian extensions give rise to the same element in HRBLA2(𝔤,V).H^{2}_{RBLA}(\mathfrak{g},V).

Acknowledgments

A part of this work has been done when the second author was visiting Centre de Recerca Mathematica (CRM), Barcelona. The second author expresses his gratitude to The Centre International de Mathématiques Pures et Appliquées (CIMPA), France, and CRM, Barcelona for providing their financial support for the visit.

References

  • [1] \referPaperbaxter \RauthorBaxter G. \RtitleAn analytic problem whose solution follows from a simple algebraic identity \RjournalPacific J. Math. \Rvolume10 \Ryear1960 \Rpages731-742
  • [2] \referArxivDas \RauthorDas A., Hazra S. K. and Mishra S. K. \RtitleNon-Abelian extension of Rota-Baxter Lie algebras and inducibility of automorphisms \RarxividArXiv:2204.01060v1
  • [3] \referPaperdas21 \RauthorDas A. \Rtitle Leibniz algebras with derivations \RjournalPacific J. Math. \Rvolume16 \Ryear2021 \Rpages245-274
  • [4] \referPaperG63 \RauthorGerstenhaber M. \RtitleThe cohomology structure of an associative ring \RjournalAnn. Math. \Rvolume63 \Ryear1978 \Rpages267-288
  • [5] \referPaperG64 \RauthorGerstenhaber M. \RtitleOn the deformation of rings and algebras \RjournalAnn. Math. \Rvolume64 \Ryear1979 \Rpages59-103
  • [6] \referArxivGuo \RauthorGuo S., Qin Y., Wang K. and Zhou G. \RtitleCohomology theory of Rota-Baxter Pre-Lie algebras of arbitrary weights \RarxividArXiv:2204.13518v1
  • [7] \referPaperguo saha \RauthorGuo S. and Saha R. \RtitleOn 3-Lie algebras with a derivation \RjournalAfrika Mathematika \Rvolume33 \Ryear2022 \Rnumber2 \Rpages 60
  • [8] \referPaperIKV19 \RauthorIsmailov N., Kaygorodov I. and Volkov Y. \RtitleDegenerations of Leibniz and anticommutative algebras \RjournalCanad. Math. Bull. \Rvolume62 \Ryear2019 \Rnumber3 \Rpages539-549
  • [9] \referPaperJS \RauthorJiang J. and Sheng Y. \RtitleRepresentations and cohomologies of relative Rota-Baxter Lie algebras and applications \RjournalJ. Algebra \Rvolume602 \Ryear2022 \Rpages637-670
  • [10] \referPaperKP19 \RauthorKaygorodov I. and Popov Y. \RtitleSplit regular hom-Leibniz color 3-algebras \RjournalColloq. Math. \Rvolume157 \Ryear2019 \Rnumber2 \Rpages251-277
  • [11] \referPaperKPPV \RauthorKaygorodov I.,Popov Y.,Pozhidaev A. and Volkov Y. \Rtitle Degenerations of Zinbiel and nilpotent Leibniz algebras \RjournalLinear Multilinear Algebra \Rvolume66 \Ryear2018 \Rnumber4 \Rpages704-716
  • [12] \referPaperloday93 \RauthorLoday J.L. \Rtitle Une version non commutative des algèbres de Lie: les algèbres de Leibniz. (French) [A noncommutative version of Lie algebras: the Leibniz algebras] \RjournalEnseign. Math. \Rvolume39 \Ryear1993 \Rnumber2 \Rpages269–293
  • [13] \referPaperLoday \RauthorLoday J.L. and Pirashvili T. \RtitleUniversal enveloping algebras of Leibniz algebras and (co)homology \RjournalMath. Ann. \Rvolume296 \Ryear1993 \Rpages139-158
  • [14] \referBookM94 \RauthorMagid A. \RtitleLectures on differential Galois theory, University Lecture Series \RpublisherAmerican Mathematical Society \Ryear1994
  • [15] \referPaperMandal \RauthorMandal A. \RtitleDeformation of Leibniz algebra morphisms \RjournalHomology, Homotopy and Applications \Rvolume9 \Ryear2007 \Rnumber1 \Rpages439-450
  • [16] \referBookritt \RauthorRitt J. F. \RtitleDifferential Algebra \RpublisherAMS Colloquium Publications \Ryear1950
  • [17] \referProceedingsrota \RauthorRota G. C. \RtitleBaxter algebras and combinatorial identities. I, II \RjournalBull. Amer. Math. Society \Ryear1969 \Rpages325-334
  • [18] \referPaperSheng \RauthorSheng Y. and Tang R. \RtitleLeibniz bialgebras, relative Rota-Baxter operators and the classical Leibniz Yang-Baxter equation \RjournalJ. Noncommutative Geom. \Ryear2022
  • [19] \referPaperTFS \RauthorTang R.,Fregier Y. and Sheng Y. \RtitleCohomologies of a Lie algebra with a derivation and applications \RjournalJ. Algebra \Ryear2019 \Rnumber534 \Rpages65-99
  • [20] \referPaperTSZ \RauthorTang R.,Sheng Y. and Zhou Y. \RtitleDeformations of relative Rota-Baxter operators on Leibniz algebras \RjournalInt. J. Geom. Methods Mod. Phys. \Rvolume17 \Ryear2020 \Rnumber2050174
  • [21]
\EditInfo

November 11, 2022January 19, 2023Ivan Kaygorodov