This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Cohomological jump loci and
duality in local algebra

Benjamin Briggs Department of Mathematics, University of Utah, Salt Lake City, UT 84112, U.S.A. [email protected] Daniel McCormick Department of Mathematics, University of Utah, Salt Lake City, UT 84112, U.S.A. [email protected]  and  Josh Pollitz Department of Mathematics, University of Utah, Salt Lake City, UT 84112, U.S.A. [email protected]
(Date: April 8, 2023)
Abstract.

In this article a higher order support theory, called the cohomological jump loci, is introduced and studied for dg modules over a Koszul extension of a local dg algebra. The generality of this setting applies to dg modules over local complete intersection rings, exterior algebras and certain group algebras in prime characteristic. This family of varieties generalizes the well-studied support varieties in each of these contexts. We show that cohomological jump loci satisfy several interesting properties, including being closed under (Grothendieck) duality. The main application of this support theory is that over a local ring the homological invariants of Betti degree and complexity are preserved under duality for finitely generated modules having finite complete intersection dimension.

Key words and phrases:
Betti degree, complete intersection dimension, cohomology operators, complete intersection, duality, Koszul complex, jump loci, support
2020 Mathematics Subject Classification:
13D02, 13D07
For part of this work the first author was hosted by the Mathematical Sciences Research Institute in Berkeley, California, supported by the National Science Foundation under Grant No. 1928930. The second and third author worked on this project while supported by the RTG grant from the National Science Foundation No. 1840190, as well as being partly supported by the National Science Foundation under Grants No. 2001368 and 2002173, respectively.
This work has benefited significantly from numerous comments of Srikanth Iyengar, for which we are grateful. We also thank a referee for helpful comments on the manuscript.

Introduction

Over a local complete intersection ring the minimal free resolution of a finitely generated module has polynomial growth. More precisely the Betti numbers are eventually modeled by a quasi-polynomial of period two. A striking result of Avramov and Buchweitz in [4], implicitly contained in [1], is that the degrees of the quasi-polynomials corresponding to the Betti numbers of a finitely generated module and its (derived) dual coincide; see also [31, 38]. In this article we strengthen this result by showing their leading terms also agree.

Throughout we fix a surjective map φ:AB\varphi\colon A\to B of local rings with common residue field kk. We assume φ\varphi is complete intersection of codimension cc in the sense that its kernel is generated by an AA-regular sequence of length cc. Let MM be a finitely generated BB-module that has finite projective dimension over AA.

Classical results of Eisenbud [22] and Gulliksen [26] associate to φ\varphi a ring of cohomology operators 𝒮=k[χ1,,χc]\mathcal{S}=k[\chi_{1},\ldots,\chi_{c}], with each χi\chi_{i} residing in cohomological degree 22, in a way that the graded kk-space 𝖤𝗑𝗍B(M,k)\operatorname{\mathsf{Ext}}_{B}(M,k) is naturally a finitely generated graded 𝒮\mathcal{S}-module. The Hilbert–Serre theorem implies that the Krull dimension of 𝖤𝗑𝗍B(M,k)\operatorname{\mathsf{Ext}}_{B}(M,k) over 𝒮\mathcal{S} is the degree of the quasi-polynomial eventually governing the sequence of Betti numbers βiB(M)\beta_{i}^{B}(M) for MM. This value is called the complexity of MM over BB, denoted cxBM;\operatorname{cx}^{B}M; see Definition 3.1 for a precise definition.

This article concerns the behaviour of this quasi-polynomial with respect to the derived duality M=𝖱𝖧𝗈𝗆B(M,B)M^{*}=\operatorname{\mathsf{RHom}}_{B}(M,B). When MM is maximal Cohen-Macaulay, this coincides with the ordinary BB-dual module.

In this notation, it was shown in [4] that the supports of 𝖤𝗑𝗍B(M,k)\operatorname{\mathsf{Ext}}_{B}(M,k) and 𝖤𝗑𝗍B(M,k)\operatorname{\mathsf{Ext}}_{B}(M^{*},k) over 𝒮\mathcal{S} are the same and hence cxBM=cxBM\operatorname{cx}^{B}M=\operatorname{cx}^{B}M^{*}; see also [31, 38] for different proofs. However the methods in loc. cit. are not fine enough to show that the leading coefficients of the quasi-polynomials corresponding to the Betti numbers of two BB-modules agree.

Theorem A.

Let φ:AB\varphi\colon A\to B be a surjective complete intersection map with common residue field kk. For a finitely generated BB-module MM whose projective dimension over AA is finite, the multiplicities of 𝖤𝗑𝗍B(M,k)\operatorname{\mathsf{Ext}}_{B}(M,k) and 𝖤𝗑𝗍B(M,k)\operatorname{\mathsf{Ext}}_{B}(M^{*},k) over 𝒮\mathcal{S} coincide. In particular, the leading terms of the quasi-polynomials eventually modeling βiB(M)\beta_{i}^{B}(M) and βiB(M)\beta_{i}^{B}(M^{*}) agree.

The theorem above is contained in Theorem 3.6 where it is stated in terms of Betti degrees; see Definition 3.1. These values, studied in [1, 2, 3, 27], are normalized leading coefficients for the quasi-polynomials eventually corresponding to sequences of Betti numbers. Theorem A can also be proven using work of Eisenbud, Peeva and Schreyer [23]; see Remark 3.7 for a discussion of this connection. From A we deduce that the Betti degree of a module of finite complete intersection dimension and its dual coincide; see Corollary 3.10. Another consequence is the following.

Corollary B.

If AA is Gorenstein, the leading terms of quasi-polynomials eventually modeling the Betti numbers and the Bass numbers of MM are the same.

The proof of A is geometric in nature, and does not rely on special properties of resolutions with respect to the duality functor. We show that the Betti degree is encoded in a sequence of varieties, refining the support theory of Avramov and Buchweitz, studied and extended by many others in local algebra [1, 4, 11, 19, 28, 35]. Cohomological supports have yielded applications in revealing asymptotic properties for local complete intersection maps in loc. cit., and more recently, their utility has been detecting the complete intersection property among surjective maps and maps of essentially finite type [15, 16, 34]. Below we discuss properties of the support theory presented in this article, and direct the curious reader to their construction in Definition 1.6.

We associate to MM a nested sequence of Zariski closed subsets of kc1\mathbb{P}_{k}^{c-1}, called the cohomological jump loci of MM,

kc1=Vφ0(M)Vφ1(M)Vφ2(M).\mathbb{P}_{k}^{c-1}=\operatorname{V}_{\varphi}^{0}(M)\supseteq\operatorname{V}_{\varphi}^{1}(M)\supseteq\operatorname{V}_{\varphi}^{2}(M)\supseteq\ldots\,.

The first jump locus Vφ1(M)V_{\varphi}^{1}(M) is the support of 𝖤𝗑𝗍B(M,k)\operatorname{\mathsf{Ext}}_{B}(M,k) over 𝒮\mathcal{S}, and hence it coincides with the cohomological support of MM studied by Avramov et. al. From a geometric perspective, the sequence of cohomological jump loci can be arbitrarily complicated: any nested sequence of closed subsets of kc1\mathbb{P}_{k}^{c-1} can be realized as the sequence jump loci of some BB-module, up to re-indexing; see Theorem 1.14.

This theory is analogous to the jump loci in [18] for differential graded Lie algebras which have found numerous applications in geometry and topology. The cohomological jump loci in the present article have several interesting properties. For example, they respect the triangulated structure of derived categories in an “additive" sense; see Proposition 2.10 for a precise formulation. We highlight two properties here. First, upon a reduction to the case of maximal complexity, the sequence of cohomological jump loci for MM encodes its Betti degree; this is the content of Lemma 3.5. The second property, found in Theorem 2.8, is the following.

Theorem C.

Let φ:AB\varphi\colon A\to B be a surjective complete intersection map. If MM is a finitely generated BB-module whose projective dimension over AA is finite, then there are the equalities Vφi(M)=Vφi(M)\operatorname{V}_{\varphi}^{i}(M)=\operatorname{V}_{\varphi}^{i}(M^{*}) for all i0i\geqslant 0.

Outline

In Section 1 we introduce the theory of cohomological jump loci. This is done in greater generality than discussed above. Namely we let AA be a local differential graded (=dg) algebra and consider a Koszul complex BB on a finite list of elements in A0A_{0}; in this context MM is a dg BB-module that is perfect over AA. A number of examples are provided and we conclude the section with our realizability result, discussed above, in Theorem 1.14.

In Section 2 we establish basic and important properties of cohomological jump loci. The main result of the section is that the cohomogical jump loci of MM and MM^{*} are the same; this is the subject of Theorem 2.8. Finally, Section 3 specializes to the context of the introduction, and to modules of finite complete intersection dimension. This contains applications to local algebra like A and B, discussed above.

1. Definitions and examples

Throughout this article (A,𝔪,k)(A,\mathfrak{m},k) is a fixed commutative noetherian local dg algebra. That is, A={Ai}i0A=\{A_{i}\}_{i\geqslant 0} is a nonnegatively graded, strictly graded-commutative dg algebra with (A0,𝔪0,k)(A_{0},\mathfrak{m}_{0},k) a commutative noetherian local ring, and the homology modules 𝖧i(A)\operatorname{\mathsf{H}}_{i}(A) are finitely generated over 𝖧0(A)\operatorname{\mathsf{H}}_{0}(A).

We fix a list of elements 𝒇=f1,,fc\bm{f}=f_{1},\dots,f_{c} in 𝔪0\mathfrak{m}_{0} and set

BAe1,,ec|ei=fiB\coloneqq A\langle e_{1},\dots,e_{c}\leavevmode\nobreak\ |\leavevmode\nobreak\ \partial e_{i}=f_{i}\rangle

to be the Koszul complex on 𝒇\bm{f} over AA—that is, BB is the exterior algebra over AA on exterior variables e1,,ene_{1},\ldots,e_{n} of degree 11 with differential uniquely determined, via the Leibniz rule, by ei=fi\partial e_{i}=f_{i}. This will be regarded as a dg AA-algebra in the standard fashion, and we let φ:AB\varphi\colon A\to B be the structure map.

We will also denote throughout

𝒮k[χ1,,χc],\mathcal{S}\coloneqq k[\chi_{1},\dots,\chi_{c}],

the graded polynomial algebra over kk generated by polynomial variables χi\chi_{i} of cohomological degree 22. We refer to 𝒮\mathcal{S} as the ring of cohomology operators (over kk) corresponding to φ\varphi; this name is justified in 1.4.

Remark 1.1.

If AA is a local ring (that is, concentrated in degree 0), as in the introduction, then BB is quasi-isomorphic to A/(𝒇)A/(\bm{f}) under the additional assumption that 𝒇\bm{f} is an AA-regular sequence. In this case, everything that follows directly translates to the setting where we instead define B=A/(𝒇)B=A/(\bm{f}) from the beginning, cf. [24, Theorem 6.10].

We let 𝖣(B)\mathsf{D}(B) denote the derived category of dg BB-modules. This is a triangulated category in the usual way; see [5, Section 3]. Restricting along the structure map ABA\to B defines a functor 𝖣(B)𝖣(A)\mathsf{D}(B)\to\mathsf{D}(A). Through this map objects of 𝖣(B)\mathsf{D}(B) are regarded as objects of 𝖣(A).\mathsf{D}(A). It will be convenient for us to work in the following subcategory of 𝖣(B)\mathsf{D}(B).

Definition 1.2.

Let 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}) denote the full subcategory of 𝖣(B)\mathsf{D}(B) consisting of dg BB-modules which are perfect when restricted to 𝖣(A)\mathsf{D}(A). That is, MM belongs to 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}) provided that, while viewed as an object of 𝖣(A)\mathsf{D}(A), it belongs to the smallest thick subcategory containing A.A. This category is denoted 𝖣φ–b(B)\mathsf{D}^{\varphi\text{--b}}(B) in [25].

Remark 1.3.

When AA is a regular local ring, 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}) is simply the bounded derived category of dg BB-modules; namely, 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}) is exactly the full subcategory of 𝖣(B)\mathsf{D}(B) consisting of dg BB-modules with finitely generated homology over the ring AA, which is often denoted 𝖣b(B).\mathsf{D}^{\rm{b}}(B).

The utility of this category is due to a theorem of Gulliksen [26, Theorem 3.1] which is recast in the following construction.

1.4.

If MM is an object of 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}) then 𝖱𝖧𝗈𝗆B(M,k)\operatorname{\mathsf{RHom}}_{B}(M,k) can naturally be given the structure of a perfect dg 𝒮\mathcal{S}-module.

Indeed, 𝖱𝖧𝗈𝗆B(M,k)\operatorname{\mathsf{RHom}}_{B}(M,k) is quasi-isomorphic to 𝖧𝗈𝗆A(F,k)k𝒮,\operatorname{\mathsf{Hom}}_{A}(F,k)\otimes_{k}\mathcal{S}, with the twisted differential

𝖧𝗈𝗆(F,k)1+i=1n𝖧𝗈𝗆(ei,k)χi\partial^{\operatorname{\mathsf{Hom}}(F,k)}\otimes 1+\sum_{i=1}^{n}\operatorname{\mathsf{Hom}}(e_{i}-,k)\otimes\chi_{i}

where FMF\xrightarrow{\simeq}M is a semifree resolution of MM over BB. This defines a dg 𝒮\mathcal{S}-module structure that is independent of choice of FF up to quasi-isomorphism; cf. [3, Section 2]. When we need to refer to this dg 𝒮\mathcal{S}-module explicitly, it will be denoted 𝖱𝖧𝗈𝗆A(M,k)kτ𝒮\operatorname{\mathsf{RHom}}_{A}(M,k)\otimes_{k}^{\tau}\mathcal{S}; this notation is used, for example, in Theorem 2.8.

We point out that FMF\xrightarrow{\simeq}M can be taken to be any dg BB-module map where the underlying graded AA-module of FF is a finite coproduct of shifts of AA, provided such an FF exists. When AA is a ring, the existence of such a resolution is contained in [3, 2.1]. If such a resolution exists, then one can show that 𝖧𝗈𝗆A(F,k)kτ𝒮\operatorname{\mathsf{Hom}}_{A}(F,k)\otimes_{k}^{\tau}\mathcal{S} is a perfect dg 𝒮\mathcal{S}-module arguing as in [7, 9, 35]. However, at this level of generality, the existence of such resolutions has not been established, and so we argue in a different fashion.

Under the identification of 𝖱𝖧𝗈𝗆B(M,k)\operatorname{\mathsf{RHom}}_{B}(M,k) with 𝖱𝖧𝗈𝗆A(M,k)kτ𝒮\operatorname{\mathsf{RHom}}_{A}(M,k)\otimes_{k}^{\tau}\mathcal{S} we have the following quasi-isomorphism

𝖱𝖧𝗈𝗆B(M,k)(𝝌)𝖱𝖧𝗈𝗆B(M,k)𝖱𝖧𝗈𝗆A(M,k)\dfrac{\operatorname{\mathsf{RHom}}_{B}(M,k)}{(\bm{\chi})\operatorname{\mathsf{RHom}}_{B}(M,k)}\simeq\operatorname{\mathsf{RHom}}_{A}(M,k)

and because MM is perfect over AA, the homology module 𝖧(𝖱𝖧𝗈𝗆A(M,k))\operatorname{\mathsf{H}}(\operatorname{\mathsf{RHom}}_{A}(M,k)) is a finite kk-space. It follows by a homological version of Nakayama’s lemma, see for example [35, Theorem 3.2.4], that 𝖤𝗑𝗍B(M,k)=𝖧(𝖱𝖧𝗈𝗆B(M,k))\operatorname{\mathsf{Ext}}_{B}(M,k)=\operatorname{\mathsf{H}}(\operatorname{\mathsf{RHom}}_{B}(M,k)) is finitely generated over 𝒮\mathcal{S}. Finally, since 𝒮\mathcal{S} has finite global dimension, we conclude that 𝖱𝖧𝗈𝗆B(M,k)\operatorname{\mathsf{RHom}}_{B}(M,k) is perfect when regarded as a dg 𝒮\mathcal{S}-module as claimed.

When AA is an (orindary) ring and 𝒇\bm{f} is an AA-regular sequence, 𝒮2\mathcal{S}^{2} is the usual kk-space of operators associated to 𝒇\bm{f} in the works of Avramov [1], Eisenbud [22], Gulliksen [26], Mehta [33], and others; this is clarified in [12].

Remark 1.5.

While our focus is on the 𝒮\mathcal{S}-action on 𝖤𝗑𝗍B(M,k)\operatorname{\mathsf{Ext}}_{B}(M,k), the cohomology operators 𝝌\bm{\chi} do lift to elements of 𝖤𝗑𝗍B(M,M)\operatorname{\mathsf{Ext}}_{B}(M,M), and we will use this in 1.15 below.

Indeed, mimicking the proof of [3, Proposition 2.6], it follows that the operators 𝝌\bm{\chi} defining 𝒮\mathcal{S} can be realized as elements in the Hochschild cohomology of BB over AA. More precisely, with BAeB_{A}^{e} denoting the enveloping dg algebra of BB over AA, there is an isomorphism of dg algebras

𝖱𝖧𝗈𝗆BAe(B,B)B[χ1,,χc]\operatorname{\mathsf{RHom}}_{B_{A}^{e}}(B,B)\simeq B[\chi_{1},\ldots,\chi_{c}]

where each χi\chi_{i} is in cohomological degree 22. This quasi-isomorphism yields a homomorphism B[χ1,,χc]𝖱𝖧𝗈𝗆B(M,M)B[\chi_{1},\ldots,\chi_{c}]\to\operatorname{\mathsf{RHom}}_{B}(M,M), through which 𝖤𝗑𝗍B(M,M)\operatorname{\mathsf{Ext}}_{B}(M,M) obtains an action of the cohomology operators. Furthermore, the natural projection π:B[χ1,,χc]𝒮\pi\colon B[\chi_{1},\ldots,\chi_{c}]\to\mathcal{S} determines the same 𝒮\mathcal{S}-action as the one discussed in 1.4 on 𝖱𝖧𝗈𝗆B(M,k)\operatorname{\mathsf{RHom}}_{B}(M,k) for any dg BB-module MM.

Let Spec𝒮\operatorname{Spec}\mathcal{S} denote the set of homogeneous prime ideals of 𝒮\mathcal{S} with the Zariski topology, having closed sets of the form

𝒱(η1,,ηt)={𝔭Spec𝒮:ηi𝔭 for all i}\mathcal{V}(\eta_{1},\ldots,\eta_{t})=\{\mathfrak{p}\in\operatorname{Spec}\mathcal{S}:\eta_{i}\in\mathfrak{p}\text{ for all }i\}

for some list of homogeneous elements η1,,ηt\eta_{1},\ldots,\eta_{t} in 𝒮.\mathcal{S}. For a graded 𝒮\mathcal{S}-module XX and 𝔭Spec𝒮\mathfrak{p}\in\operatorname{Spec}\mathcal{S} we write X𝔭X_{\mathfrak{p}} for the (homogeneous) localization of XX at 𝔭\mathfrak{p}. Furthermore, κ(𝔭)\kappa(\mathfrak{p}) will be the graded field κ(𝔭)𝒮𝔭/𝔭𝒮𝔭.\kappa(\mathfrak{p})\coloneqq\mathcal{S}_{\mathfrak{p}}/\mathfrak{p}\mathcal{S}_{\mathfrak{p}}.

Given a graded field κ\kappa, any finitely generated κ\kappa-module XX has the form κr\kappa^{r} for some rr, and below we use the notation rankκX=r\operatorname{rank}_{\kappa}X=r.

Definition 1.6.

Let 𝔭\mathfrak{p} be in Spec𝒮\operatorname{Spec}\mathcal{S} and MM be in 𝖣(B)\mathsf{D}(B). Define the cohomological rank of MM at 𝔭\mathfrak{p} to be

crk𝔭(M)rankκ(𝔭)𝖧(𝖱𝖧𝗈𝗆B(M,k)𝒮𝖫κ(𝔭)).\operatorname{crk}_{\mathfrak{p}}(M)\coloneqq\operatorname{rank}_{\kappa(\mathfrak{p})}\operatorname{\mathsf{H}}(\operatorname{\mathsf{RHom}}_{B}(M,k)\otimes^{\mathsf{L}}_{\mathcal{S}}\kappa(\mathfrak{p})).

The ithi^{\text{th}} cohomological jump locus of MM is defined to be

Vφi(M){𝔭Spec𝒮:crk𝔭(M)i}.\operatorname{V}^{i}_{\varphi}(M)\coloneqq\{\mathfrak{p}\in\operatorname{Spec}\mathcal{S}:\operatorname{crk}_{\mathfrak{p}}(M)\geqslant i\}.
Remark 1.7.

For a dg BB-module MM, trivially Vφ0(M)=Spec𝒮\operatorname{V}_{\varphi}^{0}(M)=\operatorname{Spec}\mathcal{S} and there is a descending chain of subsets of Spec𝒮\operatorname{Spec}\mathcal{S}:

(1.7.1) Vφ0(M)Vφ1(M)Vφ2(M).\operatorname{V}_{\varphi}^{0}(M)\supseteq\operatorname{V}_{\varphi}^{1}(M)\supseteq\operatorname{V}_{\varphi}^{2}(M)\supseteq\ldots.

Hence when MM is in 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}), this chain must stabilize at \varnothing since 𝖱𝖧𝗈𝗆B(M,k)\operatorname{\mathsf{RHom}}_{B}(M,k) is perfect over 𝒮\mathcal{S} by 1.4.

If MM is in 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}) we have that Vφ1(M)\operatorname{V}_{\varphi}^{1}(M) is simply the support of 𝖤𝗑𝗍B(M,k)\operatorname{\mathsf{Ext}}_{B}(M,k) regarded as a graded 𝒮\mathcal{S}-module; this is contained in [20, Theorem 2.4]. That is,

Vφ1(M)\displaystyle\operatorname{V}_{\varphi}^{1}(M) ={𝔭Spec𝒮:𝖤𝗑𝗍B(M,k)𝔭0}\displaystyle=\{\mathfrak{p}\in\operatorname{Spec}\mathcal{S}:\operatorname{\mathsf{Ext}}_{B}(M,k)_{\mathfrak{p}}\neq 0\}
=𝒱(η1,,ηt)\displaystyle=\mathcal{V}(\eta_{1},\ldots,\eta_{t})

where η1,,ηt\eta_{1},\ldots,\eta_{t} generate ann𝒮𝖤𝗑𝗍B(M,k).\textrm{ann}_{\mathcal{S}}\operatorname{\mathsf{Ext}}_{B}(M,k). In particular, Vφ1(M)\operatorname{V}_{\varphi}^{1}(M) is a closed subset of Spec𝒮\operatorname{Spec}\mathcal{S}, provided MM is in 𝖣b(B/A).\mathsf{D}^{\mathrm{b}}({B}/{A}). Looking ahead, in Proposition 2.1, we show that Vφi(M)\operatorname{V}_{\varphi}^{i}(M) is closed for all ii, whenever MM is in 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}).

Remark 1.8.

When AA is a ring, Vφ1(M)\operatorname{V}_{\varphi}^{1}(M) is the cohomological support of MM over BB as defined in [34, 35]; these are derived versions of the support varieties in local algebra studied in [1, 4, 11, 28].

1.9.

Let XX be a dg 𝒮\mathcal{S}-module with finitely generated homology. The total Betti number of XX is

βtotal𝒮(X)=irankk𝖳𝗈𝗋i𝒮(X,k);\beta^{\mathcal{S}}_{\textrm{total}}(X)=\sum_{i\in\mathbb{Z}}\operatorname{rank}_{k}\operatorname{\mathsf{Tor}}^{\mathcal{S}}_{i}(X,k);

the sum is only over finitely many integers as 𝒮\mathcal{S} has finite global dimension.

Example 1.10.

Assume MM is a perfect dg BB-module and r=βtotal𝒮(𝖱𝖧𝗈𝗆B(M,k))r=\beta^{\mathcal{S}}_{\textrm{total}}(\operatorname{\mathsf{RHom}}_{B}(M,k)). It follows directly that

Vφi(M)={Spec𝒮i=0{(𝝌)}1iri>r.\operatorname{V}_{\varphi}^{i}\left(M\right)=\begin{cases}\operatorname{Spec}\mathcal{S}&i=0\\ \{(\bm{\chi})\}&1\leqslant i\leqslant r\\ \varnothing&i>r.\end{cases}
Example 1.11.

Let ν\nu denote the embedding dimension of A0A_{0} and let KAK^{A} denote the Koszul complex on a minimal generating set for the maximal ideal of A0A_{0} over AA. As 𝒇\bm{f} is contained in 𝔪0\mathfrak{m}_{0}, there is a dg BB-module structure on KAK^{A} which is explained below: Fixing a minimal generating set 𝒙=x1,,xν\bm{x}=x_{1},\ldots,x_{\nu} for 𝔪0\mathfrak{m}_{0} with ei=xi\partial e_{i}^{\prime}=x_{i} in KAK^{A} and writing each

fi=j=1νaijxj,f_{i}=\sum_{j=1}^{\nu}a_{ij}x_{j},

determines a BB-action on KAK^{A} by

eiω=(j=1νaijej)ω.e_{i}\cdot\omega=\left(\sum_{j=1}^{\nu}a_{ij}e_{j}^{\prime}\right)\omega.

In particular, if 𝒇𝔪02\bm{f}\subseteq\mathfrak{m}_{0}^{2} it follows from 1.4 that there is the following isomorphism of graded 𝒮\mathcal{S}-modules

𝖱𝖧𝗈𝗆B(KA,k)𝖧𝗈𝗆A(KA,k)k𝒮(Σ1kν)k𝒮\operatorname{\mathsf{RHom}}_{B}(K^{A},k)\cong\operatorname{\mathsf{Hom}}_{A}(K^{A},k)\otimes_{k}\mathcal{S}\cong\bigwedge\left(\operatorname{\mathsf{\Sigma}}^{-1}k^{\nu}\right)\otimes_{k}\mathcal{S}

and hence, crk𝔭(KA)=2ν\operatorname{crk}_{\mathfrak{p}}(K^{A})=2^{\nu}. Therefore, there are the following equalities

Vφi(KA)={Spec𝒮i2νi>2ν.\operatorname{V}^{i}_{\varphi}\left(K^{A}\right)=\begin{cases}\operatorname{Spec}\mathcal{S}&i\leq 2^{\nu}\\ \varnothing&i>2^{\nu}.\end{cases}

When AA is a regular local ring, we have calculated the sequence of jump loci Vφi(k)\operatorname{V}_{\varphi}^{i}(k) since KAkK^{A}\xrightarrow{\simeq}k as dg BB-modules.

Example 1.12.

Assume AA is a regular local ring (or more generally, a UFD) and consider RA/(𝒇)R\coloneqq A/(\bm{f}) where 𝒇=f1,f2\bm{f}=f_{1},f_{2}. When 𝒇\bm{f} is a regular sequence, BRB\xrightarrow{\simeq}R and so from Example 1.10 we have the equalities

Vφi(R)={Spec𝒮i=0{(𝝌)}i=1i>1.\operatorname{V}^{i}_{\varphi}\left(R\right)=\begin{cases}\operatorname{Spec}\mathcal{S}&i=0\\ \{(\bm{\chi})\}&i=1\\ \varnothing&i>1.\end{cases}

Now assume 𝒇\bm{f} does not form an AA-regular sequence; in this case there exists an AA-regular sequence f1,f2f_{1}^{\prime},f_{2}^{\prime} with fi=figf_{i}=f_{i}^{\prime}g for some g𝔪0g\in\mathfrak{m}_{0}. It follows that

0A(f2f1)A2(f1f2)A00\to A\xrightarrow{\begin{pmatrix}-f_{2}^{\prime}\\ f_{1}^{\prime}\end{pmatrix}}A^{2}\xrightarrow{\begin{pmatrix}f_{1}&f_{2}\end{pmatrix}}A\to 0

is an AA-free resolution of RR, and this has a dg BB-module structure with the e1e_{1} and e2e_{2} action indicated by

e1:0{e_{1}:\quad 0}A{A}A2{A^{2}}A{A}0{0}e2:0{e_{2}:\quad 0}A{A}A2{A^{2}}A{A}0.{0.}(0g){\displaystyle\begin{pmatrix}0&g\end{pmatrix}}(10){\displaystyle\begin{pmatrix}1\\ 0\end{pmatrix}}(g0){\displaystyle\begin{pmatrix}-g&0\end{pmatrix}}(01){\displaystyle\begin{pmatrix}0\\ 1\end{pmatrix}}

It follows easily, using 1.4, that 𝖱𝖧𝗈𝗆B(R,k)\operatorname{\mathsf{RHom}}_{B}(R,k) is isomorphic to the complex of free 𝒮\mathcal{S}-modules:

0Σ4𝒮0Σ2𝒮2(χ1χ2)𝒮0.0\to\operatorname{\mathsf{\Sigma}}^{-4}\mathcal{S}\xrightarrow{0}\operatorname{\mathsf{\Sigma}}^{-2}\mathcal{S}^{\oplus 2}\xrightarrow{\begin{pmatrix}\chi_{1}&\chi_{2}\end{pmatrix}}\mathcal{S}\to 0.

Therefore, assuming kk is algebraically closed,

Vφi(R)={Spec𝒮i2{(χ1,χ2)}i=3,4i>4.\operatorname{V}_{\varphi}^{i}(R)=\begin{cases}\operatorname{Spec}\mathcal{S}&i\leqslant 2\\ \{(\chi_{1},\chi_{2})\}&i=3,4\\ \varnothing&i>4.\end{cases}
Example 1.13.

Let A=kx,y,zA=k\llbracket x,y,z\rrbracket and set 𝒇=x3,y3,z3.\bm{f}=x^{3},y^{3},z^{3}. For the A/(𝒇)A/(\bm{f})-module M=A/(𝒇,xz,yz2)M=A/(\bm{f},xz,yz^{2}). Using similar calculations as the ones in Example 1.12 it follows that

Vφi(M)={Spec𝒮i8𝒱(χ1)9i12𝒱(χ1,χ2)13i14{(𝝌)}15i16i>16.\operatorname{V}_{\varphi}^{i}(M)=\begin{cases}\operatorname{Spec}\mathcal{S}&i\leqslant 8\\ \mathcal{V}(\chi_{1})&9\leqslant i\leqslant 12\\ \mathcal{V}(\chi_{1},\chi_{2})&13\leqslant i\leqslant 14\\ \{(\bm{\chi})\}&15\leqslant i\leqslant 16\\ \varnothing&i>16.\end{cases}

In particular, this example produces a complete flag in 𝔸3\mathbb{A}^{3} from an indecomposable A/(𝒇)A/(\bm{f})-module.

We end this section with the following realizability theorem that, roughly speaking, says there is essentially no restriction on the sequence of closed subsets that appear as the sequence of jump loci for a fixed dg BB-module. This is a higher order version of the realizability results for supports corresponding to a deformation (or Koszul complex); see [8, 19, 35].

Theorem 1.14.

If 𝐟𝔪02\bm{f}\subseteq\mathfrak{m}_{0}^{2}, then for every descending chain of closed subsets

Spec𝒮=W0W1W2Wt=\operatorname{Spec}\mathcal{S}=W_{0}\supsetneq W_{1}\supsetneq W_{2}\supsetneq\ldots\supsetneq W_{t}=\varnothing

there exists MM in 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}) and an increasing sequence of integers 0=j0<j1<<jt0=j_{0}<j_{1}<\ldots<j_{t} such that

Vφj(M)=Wi\operatorname{V}_{\varphi}^{j}(M)=W_{i}

for jij<ji+1j_{i}\leq j<j_{i+1}.

For a fixed dg BB-module MM, we call the numbers j0,,jtj_{0},\ldots,j_{t} in Theorem 1.14, at which the jump loci change, the jump numbers of MM. It follows from Lemma 3.5 below that the first jump number is always even. The last jump number jtj_{t} is always βtotal𝒮(𝖱𝖧𝗈𝗆B(M,k))\beta^{\mathcal{S}}_{\textrm{total}}(\operatorname{\mathsf{RHom}}_{B}(M,k)); see 1.9.

An essential ingredient in the proof of Theorem 1.14 is the theory of Koszul objects introduced by Avramov and Iyengar in [8].

1.15.

Fix a dg BB-module MM and η\eta as in 𝒮\mathcal{S}. Lifting η\eta to B[χ1,,χc]B[\chi_{1},...,\chi_{c}] along π\pi in Remark 1.5 determines a morphism η~\tilde{\eta} in 𝖣(B)\mathsf{D}(B)

Mη~Σ|η|M.M\xrightarrow{\tilde{\eta}}\operatorname{\mathsf{\Sigma}}^{|\eta|}M.

A Koszul object on MM with respect to η\eta is the mapping cone of η~\tilde{\eta}, denoted M//η{M}/\!\!/{\eta}; we point out that M//η{M}/\!\!/{\eta} is not unique, even up to isomorphism, in 𝖣(B).\mathsf{D}(B). Given a sequence 𝜼=η1,,ηn\bm{\eta}=\eta_{1},\ldots,\eta_{n} in 𝒮\mathcal{S} we define M//𝜼{M}/\!\!/{\bm{\eta}} inductively as MnM_{n} where

Mi+1Mi//ηi+1withM0=M.M_{i+1}\coloneqq{M_{i}}/\!\!/{\eta_{i+1}}\quad\text{with}\quad M_{0}=M.

It is a direct calculation that 𝖱𝖧𝗈𝗆B(M//𝜼,k)\operatorname{\mathsf{RHom}}_{B}({M}/\!\!/{\bm{\eta}},k) is isomorphic to

𝖪𝗈𝗌𝒮(𝜼)𝒮𝖱𝖧𝗈𝗆B(M,k)\operatorname{\mathsf{Kos}}^{\mathcal{S}}(\bm{\eta})\otimes_{\mathcal{S}}\operatorname{\mathsf{RHom}}_{B}(M,k)

as dg 𝒮\mathcal{S}-modules, up to a shift; in particular, 𝖱𝖧𝗈𝗆B(M//𝜼,k)\operatorname{\mathsf{RHom}}_{B}({M}/\!\!/{\bm{\eta}},k) is independent of the chosen lifts η~i\tilde{\eta}_{i} of each ηi\eta_{i} along π.\pi.

Proof of Theorem 1.14.

Write each WiW_{i} as 𝒱(𝜼i)\mathcal{V}(\bm{\eta}^{i}) for some list of elements 𝜼i\bm{\eta}^{i} from 𝒮\mathcal{S} of length ni.n_{i}. Define MiM^{i} to be KA//𝜼i{K^{A}}/\!\!/{\bm{\eta}^{i}}; see 1.15. It follows from Example 1.11 that 𝖱𝖧𝗈𝗆B(Mi,k)\operatorname{\mathsf{RHom}}_{B}(M^{i},k) is isomorphic to

𝖪𝗈𝗌𝒮(𝜼i)kΣ1kν\operatorname{\mathsf{Kos}}^{\mathcal{S}}(\bm{\eta}^{i})\otimes_{k}\bigwedge\operatorname{\mathsf{\Sigma}}^{-1}k^{\nu}

as dg 𝒮\mathcal{S}-modules, up to shift, where ν\nu denotes the minimal number of generators for 𝔪0.\mathfrak{m}_{0}. From here it is clear that

Vφj(Mi)=𝒱(𝜼i)\operatorname{V}_{\varphi}^{j}(M^{i})=\mathcal{V}(\bm{\eta}^{i})

for all j=1,,nij=1,\ldots,n_{i} and Vφ(Mi)=\operatorname{V}_{\varphi}(M^{i})=\varnothing for all j>ni.j>n_{i}. The dg BB-module

MM1Mt1M\coloneqq M^{1}\oplus\ldots\oplus M^{t-1}

has the desired properties. ∎

2. Basic properties

We adopt the notation set in Section 1. In this section we show the support theory introduced in the previous section satisfies several important properties.

Proposition 2.1.

Let MM be in 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}). For each i0i\geqslant 0, the jump locus Vφi(M)\operatorname{V}^{i}_{\varphi}(M) is a Zariski closed subset of Spec𝒮\operatorname{Spec}\mathcal{S}.

This follows from the following standard lemmas.

Lemma 2.2.

Fix a graded field κ\kappa, and let XX be a finitely generated dg κ\kappa-module. Then

rankκ𝖧(X)=2rankκ(cokerX)rankκX.\operatorname{rank}_{\kappa}\operatorname{\mathsf{H}}(X)=2\operatorname{rank}_{\kappa}\left(\operatorname{coker}\partial^{X}\right)-\operatorname{rank}_{\kappa}X.
Proof.

Let BB and ZZ denote the boundaries and cycles of XX. Since rank is additive on exact sequences, the desired statements follow immediately from the following diagram with exact rows and columns.

 0000BZ𝖧(X)00BXcokerX000ΣBΣB0 000\leavevmode\hbox to205.64pt{\vbox to147.18pt{\pgfpicture\makeatletter\hbox{\hskip 102.82231pt\lower-73.58862pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-102.82231pt}{-73.58862pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 6.80554pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\leavevmode\nobreak\ }$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 6.80554pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 6.80554pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil&\hfil\hskip 32.3489pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.0434pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${B}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.34894pt\hfil&\hfil\hskip 32.07634pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.77083pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${Z}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.07637pt\hfil&\hfil\hskip 40.47913pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.17361pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{\mathsf{H}}(X)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 16.47916pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 6.80554pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil&\hfil\hskip 32.3489pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.0434pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${B}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.34894pt\hfil&\hfil\hskip 32.84023pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-4.53471pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${X}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.84026pt\hfil&\hfil\hskip 44.90227pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-16.59676pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{coker}\partial^{X}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 20.9023pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 6.80554pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil&\hfil\hskip 35.96002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.65451pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{\mathsf{\Sigma}}B}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 11.96005pt\hfil&\hfil\hskip 35.96002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.65451pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\operatorname{\mathsf{\Sigma}}B}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 11.96005pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 6.80554pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\leavevmode\nobreak\ }$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil&\hfil\hskip 30.80551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${0}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 6.80554pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} { {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-56.86232pt}{55.96506pt}\pgfsys@lineto{-56.86232pt}{38.09828pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-56.86232pt}{37.8983pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-12.55336pt}{55.96506pt}\pgfsys@lineto{-12.55336pt}{38.09828pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-12.55336pt}{37.8983pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{44.30896pt}{55.96506pt}\pgfsys@lineto{44.30896pt}{38.76497pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{44.30896pt}{38.56499pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-89.01123pt}{29.5053pt}\pgfsys@lineto{-65.81122pt}{29.5053pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-65.61124pt}{29.5053pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-48.31339pt}{29.5053pt}\pgfsys@lineto{-21.22969pt}{29.5053pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-21.02971pt}{29.5053pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-56.86232pt}{23.14558pt}\pgfsys@lineto{-56.86232pt}{1.42105pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-56.86232pt}{1.22107pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-4.277pt}{29.5053pt}\pgfsys@lineto{27.22984pt}{29.5053pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{27.42982pt}{29.5053pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-12.55336pt}{23.14558pt}\pgfsys@lineto{-12.55336pt}{1.42105pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-12.55336pt}{1.22107pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{60.98811pt}{29.5053pt}\pgfsys@lineto{88.61127pt}{29.5053pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{88.81125pt}{29.5053pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{44.30896pt}{20.64558pt}\pgfsys@lineto{44.30896pt}{3.4455pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{44.30896pt}{3.24551pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-89.01123pt}{-7.17194pt}\pgfsys@lineto{-65.81122pt}{-7.17194pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-65.61124pt}{-7.17194pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-48.31339pt}{-7.17194pt}\pgfsys@lineto{-21.99358pt}{-7.17194pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-21.7936pt}{-7.17194pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-56.86232pt}{-13.53165pt}\pgfsys@lineto{-56.86232pt}{-31.12062pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-56.86232pt}{-31.3206pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-3.5131pt}{-7.17194pt}\pgfsys@lineto{22.8067pt}{-7.17194pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{23.00668pt}{-7.17194pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-12.55336pt}{-13.53165pt}\pgfsys@lineto{-12.55336pt}{-30.73174pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-12.55336pt}{-30.93172pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{65.41125pt}{-7.17194pt}\pgfsys@lineto{88.61127pt}{-7.17194pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{88.81125pt}{-7.17194pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{44.30896pt}{-13.53165pt}\pgfsys@lineto{44.30896pt}{-30.73174pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{44.30896pt}{-30.93172pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-89.01123pt}{-39.32472pt}\pgfsys@lineto{-64.26782pt}{-39.32472pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-64.06784pt}{-39.32472pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-49.85678pt}{-39.32472pt}\pgfsys@lineto{-25.11337pt}{-39.32472pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-24.91339pt}{-39.32472pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-56.86232pt}{-45.68443pt}\pgfsys@lineto{-56.86232pt}{-62.88452pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-56.86232pt}{-63.0845pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-0.39331pt}{-39.32472pt}\pgfsys@lineto{31.74895pt}{-39.32472pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{31.94893pt}{-39.32472pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-12.55336pt}{-45.68443pt}\pgfsys@lineto{-12.55336pt}{-62.88452pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-12.55336pt}{-63.0845pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{56.46901pt}{-39.32472pt}\pgfsys@lineto{88.61127pt}{-39.32472pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{88.81125pt}{-39.32472pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{44.30896pt}{-45.68443pt}\pgfsys@lineto{44.30896pt}{-62.88452pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{44.30896pt}{-63.0845pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\qed
Lemma 2.3.

Let XX be a dg 𝒮\mathcal{S}-module which, upon forgetting its differential, is free of rank of rr over 𝒮\mathcal{S}, and set C=cokerXC=\operatorname{coker}\partial^{X}. For each i0i\geqslant 0, there is an equality

Supp𝒮(r+i(CC))={𝔭Spec𝒮:rankκ(𝔭)𝖧(X𝒮κ(𝔭))i},\operatorname{Supp}_{\mathcal{S}}\left(\bigwedge^{r+i}(C\oplus C)\right)=\{\mathfrak{p}\in\operatorname{Spec}\mathcal{S}:\operatorname{rank}_{\kappa(\mathfrak{p})}\operatorname{\mathsf{H}}(X\otimes_{\mathcal{S}}\kappa(\mathfrak{p}))\geqslant i\},

and so, in particular, the right-hand set above is a Zariski closed subset of Spec𝒮.\operatorname{Spec}\mathcal{S}.

Proof.

Fix 𝔭Spec𝒮\mathfrak{p}\in\operatorname{Spec}\mathcal{S}. Applying Lemma 2.2 to X𝒮κ(𝔭)X\otimes_{\mathcal{S}}\kappa(\mathfrak{p}) gives

rankκ(𝔭)𝖧(X𝒮κ(𝔭))=2rankκ(𝔭)(C𝒮κ(𝔭))r,\operatorname{rank}_{\kappa(\mathfrak{p})}\operatorname{\mathsf{H}}(X\otimes_{\mathcal{S}}\kappa(\mathfrak{p}))=2\operatorname{rank}_{\kappa(\mathfrak{p})}\left(C\otimes_{\mathcal{S}}\kappa(\mathfrak{p})\right)-r,

from which we obtain the equivalence

rankκ(𝔭)𝖧(X𝒮κ(𝔭))irankκ(𝔭)((CC)𝒮κ(𝔭))r+i.\operatorname{rank}_{\kappa(\mathfrak{p})}\operatorname{\mathsf{H}}(X\otimes_{\mathcal{S}}\kappa(\mathfrak{p}))\geqslant i\iff\operatorname{rank}_{\kappa(\mathfrak{p})}\left((C\oplus C)\otimes_{\mathcal{S}}\kappa(\mathfrak{p})\right)\geqslant r+i.

We are done once noting the latter statement is true precisely when

(r+i(CC))𝒮κ(𝔭)=r+i((CC)𝒮κ(𝔭)))0.\left(\bigwedge^{r+i}(C\oplus C)\right)\otimes_{\mathcal{S}}\kappa(\mathfrak{p})=\bigwedge^{r+i}\left((C\oplus C)\otimes_{\mathcal{S}}\kappa(\mathfrak{p}))\right)\neq 0.\qed
Proof of Proposition 2.1.

First, since MM is perfect as a dg AA-module, 𝖱𝖧𝗈𝗆B(M,k)\operatorname{\mathsf{RHom}}_{B}(M,k) is perfect as dg 𝒮\mathcal{S}-module by 1.4. This means there is a quasi-isomorphism of dg 𝒮\mathcal{S}-modules 𝖱𝖧𝗈𝗆B(M,k)X\operatorname{\mathsf{RHom}}_{B}(M,k)\simeq X, where XX is a dg 𝒮\mathcal{S}-module with underlying 𝒮\mathcal{S}-module being free of finite rank; see [5, Theorem 4.8]. Hence we may apply Lemma 2.3 to XX to obtain

Vφi(M)=Supp𝒮r+i(CC)\operatorname{V}^{i}_{\varphi}(M)=\operatorname{Supp}_{\mathcal{S}}\bigwedge^{r+i}(C\oplus C)

where C=cokerXC=\operatorname{coker}\partial^{X} and rr is the rank of XX regarded as a free 𝒮\mathcal{S}-module. ∎

2.4.

Let ψ:A0A0\psi\colon A_{0}\to A_{0}^{\prime} be a flat local extension, and write kk^{\prime} for the residue field of A0A_{0}^{\prime}. Denote the corresponding dg algebras by A=AA0A0A^{\prime}=A\otimes_{A_{0}}A_{0}^{\prime} and B=BA0A0B^{\prime}=B\otimes_{A_{0}}A_{0}^{\prime}, the induced homomorphism by φ:AB\varphi^{\prime}\colon A^{\prime}\to B^{\prime}, and the corresponding ring of cohomology operators by 𝒮=𝒮kk\mathcal{S}^{\prime}=\mathcal{S}\otimes_{k}k^{\prime}. Then there is an induced map on spectra

ψ:Spec𝒮Spec𝒮.\psi^{*}\colon\operatorname{Spec}\mathcal{S}^{\prime}\to\operatorname{Spec}\mathcal{S}.

The next result explains how the cohomological jump loci behave with respect to these maps.

Lemma 2.5.

With notation as in 2.4 above, if MM is an object of 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}) then M=MAAM^{\prime}=M\otimes_{A}A^{\prime} is an object of 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B^{\prime}}/{A^{\prime}}) and for all ii

Vφi(M)=ψ(Vφi(M)).\operatorname{V}_{\varphi}^{i}(M)=\psi^{*}\big{(}\operatorname{V}_{\varphi^{\prime}}^{i}(M^{\prime})\big{)}.
Proof.

Let 𝔭\mathfrak{p}^{\prime} be a prime of Spec𝒮\operatorname{Spec}\mathcal{S}^{\prime} and set 𝔭=ψ𝔭\mathfrak{p}=\psi^{*}\mathfrak{p}^{\prime}. There are isomorphisms

𝖱𝖧𝗈𝗆B(M,k)𝒮𝖫κ(𝔭)\displaystyle\operatorname{\mathsf{RHom}}_{B^{\prime}}(M^{\prime},k^{\prime})\otimes^{\mathsf{L}}_{\mathcal{S}^{\prime}}\kappa(\mathfrak{p}^{\prime}) 𝖱𝖧𝗈𝗆B(M,k)𝒮𝖫𝒮𝒮𝖫κ(𝔭)\displaystyle\cong\operatorname{\mathsf{RHom}}_{B}(M,k)\otimes^{\mathsf{L}}_{\mathcal{S}}\mathcal{S}^{\prime}\otimes^{\mathsf{L}}_{\mathcal{S}^{\prime}}\kappa(\mathfrak{p}^{\prime})
𝖱𝖧𝗈𝗆B(M,k)𝒮𝖫κ(𝔭)κ(𝔭)κ(𝔭).\displaystyle\cong\operatorname{\mathsf{RHom}}_{B}(M,k)\otimes^{\mathsf{L}}_{\mathcal{S}}\kappa(\mathfrak{p})\otimes_{\kappa(\mathfrak{p})}\kappa(\mathfrak{p}^{\prime}).

Knowing this, the lemma follows directly from the definition of cohomological jump loci; see Definition 1.6. ∎

Lemma 2.6.

Let M,NM,N be in 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}). Suppose

q:𝖱𝖧𝗈𝗆A(M,k)k𝒮𝖱𝖧𝗈𝗆A(N,k)k𝒮q\colon\operatorname{\mathsf{RHom}}_{A}(M,k)\otimes_{k}\mathcal{S}\to\operatorname{\mathsf{RHom}}_{A}(N,k)\otimes_{k}\mathcal{S}

is a dg 𝒮\mathcal{S}-module map such that the underlying map of 𝒮\mathcal{S}-modules remains a chain map between the twisted complexes

qτ:𝖱𝖧𝗈𝗆A(M,k)kτ𝒮𝖱𝖧𝗈𝗆A(N,k)kτ𝒮.q^{\tau}\colon\operatorname{\mathsf{RHom}}_{A}(M,k)\otimes_{k}^{\tau}\mathcal{S}\to\operatorname{\mathsf{RHom}}_{A}(N,k)\otimes_{k}^{\tau}\mathcal{S}.

Then qq is a quasi-isomorphism if and only if qτq^{\tau} is a quasi-isomorphism.

Proof.

This follows directly from the Eilenberg–Moore comparison theorem [39, Theorem 5.5.11] following the observation that the ordinary and twisted complexes coincide upon passing to their associated graded complexes with respect to the (𝝌)(\bm{\chi})-adic filtration. ∎

Lemma 2.7.

Consider, for some 1cc1\leq c^{\prime}\leq c, the factorization ABBA\to B^{\prime}\to B where B=Ae1,,ecei=fiB^{\prime}=A\langle e_{1},\dots,e_{c^{\prime}}\mid\partial e_{i}=f_{i}\rangle. Then for any MM in 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}) we have

𝖱𝖧𝗈𝗆B(M,k)𝖱𝖧𝗈𝗆B(M,k)𝒮𝖫𝒮/𝔭\operatorname{\mathsf{RHom}}_{B^{\prime}}(M,k)\simeq\operatorname{\mathsf{RHom}}_{B}(M,k)\otimes^{\mathsf{L}}_{\mathcal{S}}\mathcal{S}/\mathfrak{p}

as dg 𝒮\mathcal{S}-modules where 𝔭=(χc+1,,χc)𝒮\mathfrak{p}=(\chi_{c^{\prime}+1},\ldots,\chi_{c})\subseteq\mathcal{S}.

Proof.

Let 𝒮=k[χ1,,χc]\mathcal{S}^{\prime}=k[\chi_{1},\ldots,\chi_{c^{\prime}}] denote the ring of cohomology operators corresponding to ABA\to B^{\prime}. By direct inspection of the construction in 1.4, we see

𝖱𝖧𝗈𝗆B(M,k)\displaystyle\operatorname{\mathsf{RHom}}_{B^{\prime}}(M,k) =𝖱𝖧𝗈𝗆A(M,k)kτ𝒮\displaystyle=\operatorname{\mathsf{RHom}}_{A}(M,k)\otimes_{k}^{\tau}\mathcal{S}^{\prime}
𝖱𝖧𝗈𝗆A(M,k)kτ𝒮/𝔭\displaystyle\simeq\operatorname{\mathsf{RHom}}_{A}(M,k)\otimes_{k}^{\tau}\mathcal{S}/\mathfrak{p}
(𝖱𝖧𝗈𝗆A(M,k)kτ𝒮)𝒮𝖫𝒮/𝔭\displaystyle\simeq\left(\operatorname{\mathsf{RHom}}_{A}(M,k)\otimes_{k}^{\tau}\mathcal{S}\right)\otimes^{\mathsf{L}}_{\mathcal{S}}\mathcal{S}/\mathfrak{p}
𝖱𝖧𝗈𝗆B(M,k)𝒮𝖫𝒮/𝔭.\displaystyle\simeq\operatorname{\mathsf{RHom}}_{B}(M,k)\otimes^{\mathsf{L}}_{\mathcal{S}}\mathcal{S}/\mathfrak{p}.\qed

The next result is the main one from this section. For what follows, we reserve the notation

()𝖱𝖧𝗈𝗆B(,B)(-)^{*}\coloneqq\operatorname{\mathsf{RHom}}_{B}(-,B)

for the duality functor on 𝖣(B)\mathsf{D}(B). However, as ABA\to B is a Koszul extension, BB-duality coincides with Σc𝖱𝖧𝗈𝗆A(,A)\operatorname{\mathsf{\Sigma}}^{c}\operatorname{\mathsf{RHom}}_{A}(-,A). Thus ()(-)^{*} restricts to an endofunctor on 𝖣b(B/A).\mathsf{D}^{\mathrm{b}}({B}/{A}).

Theorem 2.8.

For any MM in 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}), there are equalities Vφi(M)=Vφi(M)\operatorname{V}^{i}_{\varphi}(M)=\operatorname{V}^{i}_{\varphi}(M^{*}) for each positive integer ii. Hence crk𝔭M=crk𝔭M\operatorname{crk}_{\mathfrak{p}}M=\operatorname{crk}_{\mathfrak{p}}M^{*} for all primes 𝔭\mathfrak{p} of 𝒮\mathcal{S}.

Proof.

First, we may assume that the residue field kk is algebraically closed by Lemma 2.5 and by [14, Appendice, §2] (see also [30, Theorem 10.14]). Since the jump loci are closed, conical subsets of Spec𝒮\operatorname{Spec}\mathcal{S} by Proposition 2.1, it follows that Vφi(M)\operatorname{V}^{i}_{\varphi}(M) is either empty, {(𝝌)}\{(\bm{\chi})\}, or the closure of the coheight one primes it contains. Therefore it suffices to show that crk𝔭M=crk𝔭M\operatorname{crk}_{\mathfrak{p}}M=\operatorname{crk}_{\mathfrak{p}}M^{*} for all coheight one primes 𝔭\mathfrak{p} of Spec𝒮\operatorname{Spec}\mathcal{S} and for 𝔭=(𝝌)\mathfrak{p}=(\bm{\chi}). The proof of the latter is essentially contained in the former, so we will proceed assuming 𝔭\mathfrak{p} is coheight one. Using the Nullstellensatz and a linear change of variables, we may further assume 𝔭=(χ2,,χc)\mathfrak{p}=(\chi_{2},\ldots,\chi_{c}).

Next, let BB^{\prime} denote the dg subalgebra Ae1BA\langle e_{1}\rangle\subseteq B and 𝒮=k[χ1]\mathcal{S}^{\prime}=k[\chi_{1}] denote the corresponding ring of cohomology operators for ABA\to B^{\prime}. Since 𝒮=𝒮/𝔭\mathcal{S}^{\prime}=\mathcal{S}/\mathfrak{p}, if we let κ\kappa^{\prime} denote the residue field of 𝒮\mathcal{S}^{\prime} at (0)(0), then κ=κ(𝔭)\kappa^{\prime}=\kappa(\mathfrak{p}) and hence by Lemma 2.7,

𝖱𝖧𝗈𝗆B(M,k)𝒮𝖫κ(𝔭)\displaystyle\operatorname{\mathsf{RHom}}_{B}(M,k)\otimes^{\mathsf{L}}_{\mathcal{S}}\kappa(\mathfrak{p}) 𝖱𝖧𝗈𝗆B(M,k)𝒮𝖫𝒮𝒮𝖫κ\displaystyle\simeq\operatorname{\mathsf{RHom}}_{B}(M,k)\otimes^{\mathsf{L}}_{\mathcal{S}}\mathcal{S}^{\prime}\otimes^{\mathsf{L}}_{\mathcal{S}^{\prime}}\kappa^{\prime}
𝖱𝖧𝗈𝗆B(M,k)𝒮𝖫κ.\displaystyle\simeq\operatorname{\mathsf{RHom}}_{B^{\prime}}(M,k)\otimes^{\mathsf{L}}_{\mathcal{S}^{\prime}}\kappa^{\prime}.

Once we recall the fact that for a perfect dg 𝒮\mathcal{S}^{\prime}-module NN one has the equality

rankκ𝖧(N𝒮𝖫κ)=rankκ𝖧(𝖱𝖧𝗈𝗆𝒮(N,𝒮)𝒮𝖫κ),\operatorname{rank}_{\kappa^{\prime}}\operatorname{\mathsf{H}}\left(N\otimes^{\mathsf{L}}_{\mathcal{S}^{\prime}}\kappa^{\prime}\right)=\operatorname{rank}_{\kappa^{\prime}}\operatorname{\mathsf{H}}\left(\operatorname{\mathsf{RHom}}_{\mathcal{S}^{\prime}}(N,\mathcal{S}^{\prime})\otimes^{\mathsf{L}}_{\mathcal{S}^{\prime}}\kappa^{\prime}\right),

we see that it is sufficient to show

𝖱𝖧𝗈𝗆B(M,k)𝖱𝖧𝗈𝗆𝒮(𝖱𝖧𝗈𝗆B(M,k),𝒮).\operatorname{\mathsf{RHom}}_{B^{\prime}}(M^{*},k)\simeq\operatorname{\mathsf{RHom}}_{\mathcal{S}^{\prime}}(\operatorname{\mathsf{RHom}}_{B^{\prime}}(M,k),\mathcal{S}^{\prime}).

To this end, observe that we have the following isomorphisms of dg 𝒮\mathcal{S}^{\prime}-modules:

𝖱𝖧𝗈𝗆B(M,k)\displaystyle\operatorname{\mathsf{RHom}}_{B^{\prime}}(M^{*},k) 𝖱𝖧𝗈𝗆A(M,k)kτ𝒮\displaystyle\simeq\operatorname{\mathsf{RHom}}_{A}(M^{*},k)\otimes_{k}^{\tau}\mathcal{S}^{\prime}
𝖧𝗈𝗆k(kA𝖫M,k)kτ𝒮\displaystyle\simeq\operatorname{\mathsf{Hom}}_{k}(k\otimes^{\mathsf{L}}_{A}M^{*},k)\otimes_{k}^{\tau}\mathcal{S}^{\prime}
𝖧𝗈𝗆k(𝖱𝖧𝗈𝗆A(M,k),k)kτ𝒮;\displaystyle\simeq\operatorname{\mathsf{Hom}}_{k}(\operatorname{\mathsf{RHom}}_{A}(M,k),k)\otimes_{k}^{\tau}\mathcal{S}^{\prime};

the second one being nothing more than adjunction, while the third uses the dg BB-module isomorphism 𝖱𝖧𝗈𝗆A(M,k)kA𝖫M\operatorname{\mathsf{RHom}}_{A}(M,k)\simeq k\otimes^{\mathsf{L}}_{A}M^{*} which is one place the assumption that MM is perfect over AA is being invoked. Furthermore, the natural maps

𝖧𝗈𝗆k(𝖱𝖧𝗈𝗆A(M,k),k)k𝒮{\operatorname{\mathsf{Hom}}_{k}(\operatorname{\mathsf{RHom}}_{A}(M,k),k)\otimes_{k}\mathcal{S}^{\prime}}𝖧𝗈𝗆k(𝖱𝖧𝗈𝗆A(M,k),𝒮){\operatorname{\mathsf{Hom}}_{k}(\operatorname{\mathsf{RHom}}_{A}(M,k),\mathcal{S}^{\prime})}𝖱𝖧𝗈𝗆𝒮(𝖱𝖧𝗈𝗆A(M,k)k𝒮,𝒮){\operatorname{\mathsf{RHom}}_{\mathcal{S}^{\prime}}(\operatorname{\mathsf{RHom}}_{A}(M,k)\otimes_{k}\mathcal{S}^{\prime},\mathcal{S}^{\prime})}\scriptstyle{\simeq}\scriptstyle{\simeq}

are each quasi-isomorphisms of dg 𝒮\mathcal{S}^{\prime}-modules. A direct computation shows that the composite map is compatible with the twisted differential, inducing a map

𝖧𝗈𝗆k(𝖱𝖧𝗈𝗆A(M,k),k)kτ𝒮𝖱𝖧𝗈𝗆𝒮(𝖱𝖧𝗈𝗆A(M,k)kτ𝒮,𝒮),\operatorname{\mathsf{Hom}}_{k}(\operatorname{\mathsf{RHom}}_{A}(M,k),k)\otimes_{k}^{\tau}\mathcal{S}^{\prime}\to\operatorname{\mathsf{RHom}}_{\mathcal{S}^{\prime}}(\operatorname{\mathsf{RHom}}_{A}(M,k)\otimes_{k}^{\tau}\mathcal{S}^{\prime},\mathcal{S}^{\prime}),

which, by Lemma 2.6, is also a quasi-isomorphism. Combining this quasi-isomorphism with the already established ones above, we obtain the desired result. ∎

Remark 2.9.

In the case that AA is a local ring and B=A/(𝒇)B=A/(\bm{f}) is the quotient by a regular sequence 𝒇=f1,,fc\bm{f}=f_{1},\dots,f_{c}, we indicate here how to interpret the above theory more classically in terms of matrix factorizations.

Fix a nonzero point (a1,,ac)(a_{1},\ldots,a_{c}) in kck^{c} and choose lifts a~i\tilde{a}_{i} of each aia_{i} to AA. Any complex MM in 𝖣(B)\mathsf{D}(B) be regarded as a A/(a~ifi)A/(\sum\tilde{a}_{i}f_{i})-module through the factorization

AA/(a~ifi)B.A\to A/{\textstyle\left(\sum\tilde{a}_{i}f_{i}\right)}\to B.

For ease of notation, let Aa~A_{\tilde{a}} denote A/(a~ifi)A/(\sum\tilde{a}_{i}f_{i}). By [11, Theorem 2.1], for lifts a~\tilde{a} and a~\tilde{a}^{\prime} of a point aa in kck^{c} there is an equality of Betti numbers βiAa~(M)=βiAa~(M)\beta^{A_{\tilde{a}}}_{i}(M)=\beta^{A_{\tilde{a}^{\prime}}}_{i}(M) for each integer ii. Hence we simply write βia(M)\beta^{a}_{i}(M) for βiAa~(M)\beta^{A_{\tilde{a}}}_{i}(M). Furthermore, when MM is in 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}) the sequence of values βia(M)\beta^{a}_{i}(M) eventually stabilizes; this stable value is denoted β¯a(M)\underline{\beta}^{a}(M), called the stable Betti number of MM at aa. Moreover β¯a(M)\underline{\beta}^{a}(M) is exactly the rank of the free modules appearing in a matrix factorization describing the tail of a free Aa~A_{\tilde{a}}-module resolution of MM; cf. [22, 37]. When AA is Gorenstein, this is also the kk-rank of each stable (or Tate) cohomology module 𝖤𝗑𝗍¯Bi(M,k).\underline{\operatorname{\mathsf{Ext}}}_{B}^{i}(M,k).

When kk is algebraically closed, by invoking the Nullstellensatz, the (inhomogeneous) maximal ideals of Spec𝒮\operatorname{Spec}\mathcal{S} correspond to kck^{c}, affine cc-space over kk. In light of the discussion above, for each nonnegative integer ii, it is sensible to consider the following subset of kck^{c}:

(2.9.1) {akc:2β¯a(M)i}{0}.\{a\in k^{c}:2\underline{\beta}^{a}(M)\geqslant i\}\cup\{0\}.

The proof of Theorem 2.8 shows that the closed points of the cone over Vφi(M)\operatorname{V}_{\varphi}^{i}(M) correspond exactly with the subset in Eq. 2.9.1. When i=1i=1, the subset Eq. 2.9.1 is the classical support variety from [1, 3.11].

We end this section with an accoutrement demonstrating an a priori surprising property of the cohomological jump loci when taken in total. There are general axioms for a support theory on a triangulated category; see, for example, the conditions specified in [13, Theorem 1]. Two such axioms are: first, that the support takes direct sums to unions, and second, the so-called two-out-of-three property on the supports of objects in an exact triangle. The following proposition says that the jump loci all together satisfy a higher-order generalization of these usual containment properties.

Proposition 2.10.

Given an exact triangle LMNL\to M\to N\to in 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}) there is the following containment of jump loci

Vφl(M)i+j=lVφi(L)Vφj(N);\operatorname{V}^{l}_{\varphi}(M)\subseteq\bigcup_{i+j=l}\operatorname{V}^{i}_{\varphi}(L)\cap\operatorname{V}^{j}_{\varphi}(N);

equality holds when MNM\to N admits a section.

Proof.

This follows directly from the exact triangle obtained by applying 𝒮𝖫κ(𝔭)-\otimes^{\mathsf{L}}_{\mathcal{S}}\kappa(\mathfrak{p}) to the exact triangle LMNL\to M\to N\to, and noting that when MNM\to N admits a section, so does the corresponding induced map. ∎

Remark 2.11.

In light of Proposition 2.10, the higher jump loci Vφi\operatorname{V}_{\varphi}^{i} for i>1i>1 do not respect containment among thick subcategories of 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}). This should be contrasted with usual support varieties Vφ1\operatorname{V}_{\varphi}^{1} which can even be used to classify the thick subcategories of 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}) when AA is a regular ring and 𝒇\bm{f} is an AA-regular sequence; see [31, 38].

3. Applications to Betti degree

In this section (A,𝔪,k)(A,\mathfrak{m},k) is a local ring, 𝒇=f1,,fc\bm{f}=f_{1},\dots,f_{c} is an AA-regular sequence. Set B=A/(𝒇)B=A/(\bm{f}), and let φ:AB\varphi:A\to B be the canonical projection. As noted in Remark 1.1, we can freely apply the results from the preceding sections while studying Ext-modules over BB in the present section.

Definition 3.1 ([1, (3.1),(4.1)]).

Let MM be an object of 𝖣(B)\mathsf{D}(B). The complexity of MM, denoted cxB(M)\operatorname{cx}^{B}(M), is the smallest natural number bb such that the sequence {βiB(M)}n=0\{\beta_{i}^{B}(M)\}_{n=0}^{\infty} of Betti numbers over BB, given by βiB(M)=rankk𝖤𝗑𝗍Bi(M,k)\beta_{i}^{B}(M)=\operatorname{rank}_{k}\operatorname{\mathsf{Ext}}_{B}^{i}(M,k), is eventually bounded by a polynomial of degree b1b-1. If no such integer exists one sets cxB(M)\operatorname{cx}^{B}(M) to be infinity.

If MM has finite complexity cxB(M)=n+1\operatorname{cx}^{B}(M)=n+1, the Betti degree of MM (over BB) is defined to be

(3.1.1) βdegB(M)=2nn!lim supiβiB(M)in.\beta\mathrm{deg}^{B}(M)=2^{n}n!\limsup_{i\to\infty}\frac{\beta_{i}^{B}(M)}{i^{n}}.
3.2.

According to 1.4, if MM is in 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}) then 𝖤𝗑𝗍B(M,k)\operatorname{\mathsf{Ext}}_{B}(M,k) is a finitely generated graded 𝒮\mathcal{S}-module. In particular, by the Hilbert-Serre Theorem, cxB(M)\operatorname{cx}^{B}(M) is exactly the Krull dimension of 𝖤𝗑𝗍B(M,k)\operatorname{\mathsf{Ext}}_{B}(M,k) over 𝒮\mathcal{S}. Hence, cxB(M)c\operatorname{cx}^{B}(M)\leq c, and by the Nullsetellsatz, cxB(M)\operatorname{cx}^{B}(M) is the dimension of the Zariski closed subset Vφ1(M)\operatorname{V}_{\varphi}^{1}(M); cf. [1, 4]. It is worth remarking that the above assertions hold at the level of generality in Section 1; however, the next discussion is one place we are forced to specialize to the setting of the present section.

3.3.

Let MM be in 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}) with cxB(M)=n+1\operatorname{cx}^{B}(M)=n+1. Then there exist polynomials qevq_{\mathrm{ev}} and qoddq_{\mathrm{odd}} of degree nn whose leading coefficients agree such that for all i0i\gg 0

βiB(M)={qev(i)iis evenqodd(i)iis odd;\beta_{i}^{B}(M)=\begin{cases}q_{\mathrm{ev}}(i)&i\ \text{is even}\\ q_{\mathrm{odd}}(i)&i\ \text{is odd;}\end{cases}

see [1, Remark 4.2]. In particular, the sequence defining βdegB(M)\beta\mathrm{deg}^{B}(M) in Definition 3.1 converges and the leading coefficient of both qevq_{\mathrm{ev}} and qoddq_{\mathrm{odd}} is βdegB(M)/2nn!{\beta\mathrm{deg}^{B}(M)}/{2^{n}n!}.

Finally up to further scaling βdegB(M)\beta\mathrm{deg}^{B}(M) can also be realized as the multiplicity of 𝖤𝗑𝗍B(M,k)\operatorname{\mathsf{Ext}}_{B}(M,k) over 𝒮\mathcal{S}.

3.4.

Fix MM in 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}) with complexity cxB(M)=n+1\operatorname{cx}^{B}(M)=n+1. Let SS be the polynomial ring 𝒮\mathcal{S} regraded so that the variables χi\chi_{i} are in cohomological degree 1. We may define EE to be the graded SS-module consisting of the even degrees of 𝖤𝗑𝗍B(M,k)\operatorname{\mathsf{Ext}}_{B}(M,k), i.e.

Ei=𝖤𝗑𝗍B2i(M,k).E^{i}=\operatorname{\mathsf{Ext}}_{B}^{2i}(M,k).

When endowed with the degree filtration, En=inEiE^{\geq n}=\bigoplus_{i\geq n}E^{i}, the associated Hilbert polynomial is qev(2t)q_{\mathrm{ev}}(2t) as defined in 3.3. In particular, the leading term is given by

βdegB(M)/2nn!(2t)n=βdegB(M)n!tn.\frac{\beta\mathrm{deg}^{B}(M)/2^{n}}{n!}(2t)^{n}=\frac{\beta\mathrm{deg}^{B}(M)}{n!}t^{n}.

When endowed with the (𝝌)(\bm{\chi})-adic filtration, the leading term of the associated Hilbert polynomial is of the form

e(E)n!tn\frac{e(E)}{n!}t^{n}

where e(E)e(E) is the multiplicity of EE as an SS-module. Since EE is finitely generated over SS, for all nn sufficiently large, En+1=(𝝌)EnE_{n+1}=(\bm{\chi})E_{n}, and hence the leading terms of the two Hilbert polynomials agree, so

e(E)=βdegB(M).e(E)=\beta\mathrm{deg}^{B}(M).

This is the reason for the normalization factor of 2nn!2^{n}n! in the definition Eq. 3.1.1; in particular the number βdegB(M)\beta\mathrm{deg}^{B}(M) is always a positive integer.

Finally, since SS is a regular integral domain, we obtain the equality [32, Theorem 14.8]

e(E)=e(S)rankS(0)E(0)=rankS(0)E(0).e(E)=e(S)\cdot\operatorname{rank}_{S_{(0)}}E_{(0)}=\operatorname{rank}_{S_{(0)}}E_{(0)}.

Repeating this process for the module consisting of the odd degrees of 𝖤𝗑𝗍B(M,k)\operatorname{\mathsf{Ext}}_{B}(M,k) yields

rank𝒮(0)𝖤𝗑𝗍B(M,k)(0)=2βdegB(M).\operatorname{rank}_{\mathcal{S}_{(0)}}\operatorname{\mathsf{Ext}}_{B}(M,k)_{(0)}=2\beta\mathrm{deg}^{B}(M).
Lemma 3.5.

An object MM of 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}) has maximal complexity cc if and only if Vφ1(M)=Spec𝒮\operatorname{V}_{\varphi}^{1}(M)=\operatorname{Spec}\mathcal{S}, and in this case

2βdegB(M)=max{i:Vφi(M)=Spec𝒮}.2\beta\mathrm{deg}^{B}(M)=\max\left\{i:\operatorname{V}^{i}_{\varphi}(M)=\operatorname{Spec}\mathcal{S}\right\}.
Proof.

Recall from 3.2, that cxB(M)=dimVφ1(M)\operatorname{cx}^{B}(M)=\dim V_{\varphi}^{1}(M). From this, we see that maximal complexity of MM is equivalent to Vφ1(M)=Spec𝒮\operatorname{V}_{\varphi}^{1}(M)=\operatorname{Spec}\mathcal{S}.

Since the jump loci are closed, Vφi(M)=Spec𝒮\operatorname{V}_{\varphi}^{i}(M)=\operatorname{Spec}\mathcal{S} if and only if (0)Vφi(M)(0)\in\operatorname{V}_{\varphi}^{i}(M). However,

rankκ(0)𝖧(𝖱𝖧𝗈𝗆B(M,k)𝒮𝖫κ(0))=rank𝒮(0)𝖤𝗑𝗍B(M,k)(0)\operatorname{rank}_{\kappa(0)}\operatorname{\mathsf{H}}(\operatorname{\mathsf{RHom}}_{B}(M,k)\otimes^{\mathsf{L}}_{\mathcal{S}}\kappa(0))=\operatorname{rank}_{\mathcal{S}_{(0)}}\operatorname{\mathsf{Ext}}_{B}(M,k)_{(0)}

hence

max{i:Vφi(M)=Spec𝒮}=rank𝒮(0)𝖤𝗑𝗍B(M,k)(0).\max\left\{i:\operatorname{V}^{i}_{\varphi}(M)=\operatorname{Spec}\mathcal{S}\right\}=\operatorname{rank}_{\mathcal{S}_{(0)}}\operatorname{\mathsf{Ext}}_{B}(M,k)_{(0)}.

The lemma now follows from 3.4. ∎

We remind the reader that we use the notation ()=𝖱𝖧𝗈𝗆B(,B)(-)^{*}=\operatorname{\mathsf{RHom}}_{B}(-,B) for BB-duality throughout, and that up to a shift, this coincides with the AA-duality 𝖱𝖧𝗈𝗆A(,A)\operatorname{\mathsf{RHom}}_{A}(-,A).

Theorem 3.6.

Let ABA\to B be a surjective map of local rings whose kernel is generated by an AA-regular sequence. If MM is in 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}) then βdegB(M)=βdegB(M)\beta\mathrm{deg}^{B}(M)=\beta\mathrm{deg}^{B}(M^{*}).

Proof.

We first reduce to the case of full complexity. Since Betti numbers, and hence the Betti degree, are unchanged by flat base change, we may assume that the residue field kk is infinite. Recall from 3.2 that the Krull dimension of 𝖤𝗑𝗍B(M,k)\operatorname{\mathsf{Ext}}_{B}(M,k) over 𝒮\mathcal{S} is equal to cx(M)=c\operatorname{cx}(M)=c^{\prime}. By Noether normalisation we can make a linear change of coordinates and assume that 𝖤𝗑𝗍B(M,k)\operatorname{\mathsf{Ext}}_{B}(M,k) is finite over k[χ1,,χc]k[\chi_{1},\ldots,\chi_{c^{\prime}}]. Writing B=A/(fc+1,,fc)B^{\prime}=A/(f_{c^{\prime}+1},\dots,f_{c}) and 𝔭=(χ1,,χc)𝒮\mathfrak{p}=(\chi_{1},\ldots,\chi_{c^{\prime}})\subseteq\mathcal{S} it follows from Lemma 2.7 that

𝖱𝖧𝗈𝗆B(M,k)𝖱𝖧𝗈𝗆B(M,k)𝒮𝖫𝒮/𝔭.\operatorname{\mathsf{RHom}}_{B^{\prime}}(M,k)\simeq\operatorname{\mathsf{RHom}}_{B}(M,k)\otimes^{\mathsf{L}}_{\mathcal{S}}\mathcal{S}/\mathfrak{p}.

The right-hand-side has cohomology which is finite over k[χ1,,χc]k[\chi_{1},\ldots,\chi_{c^{\prime}}] (since it is built by 𝖱𝖧𝗈𝗆B(M,k)\operatorname{\mathsf{RHom}}_{B}(M,k)), and simultaneously annihilated by 𝔭\mathfrak{p}; therefore it must be finite dimensional. This means that 𝖤𝗑𝗍B(M,k)\operatorname{\mathsf{Ext}}_{B^{\prime}}(M,k) is bounded, and we conclude that MM is in 𝖣b(B/B)\mathsf{D}^{\mathrm{b}}({B}/{B^{\prime}}), and it has the maximal complexity cc^{\prime} among objects of this category.

We may now assume that MM has maximal complexity within 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}), so we can use Lemma 3.5 and Theorem 2.8 to deduce

2βdegB(M)\displaystyle 2\beta\mathrm{deg}^{B}(M) =max{i:Vφi(M)=Spec𝒮}\displaystyle=\max\left\{i:\operatorname{V}^{i}_{\varphi}(M)=\operatorname{Spec}\mathcal{S}\right\}
=max{i:Vφi(M)=Spec𝒮}=2βdegB(M).\displaystyle=\max\left\{i:\operatorname{V}^{i}_{\varphi}(M^{*})=\operatorname{Spec}\mathcal{S}\right\}=2\beta\mathrm{deg}^{B}(M^{*}).

From this we obtain the desired equality βdegB(M)=βdegB(M)\beta\mathrm{deg}^{B}(M)=\beta\mathrm{deg}^{B}(M^{*}). ∎

Remark 3.7.

Let MM be a module over a deformation ABA\to B, as in the setup of Theorem 3.6. Eisenbud, Peeva and Schreyer prove in [23] that the Betti degree of MM is equal to the rank of a minimal matrix factorization for MM, of a generically chosen relation in an intermediate deformation AA^{\prime} (chosen as in the proof of Theorem 3.6); see [23, Theorem 4.3] for a precise statement. Our Theorem 3.6 can also be deduced from this result. Conversely, [23, Theorem 4.3] can alternatively be proven using the cohomological jump loci along the lines of Theorem 3.6.

Eisenbud, Peeva and Schreyer make essential use of the theory of higher matrix factorizations in their work. This raises the question of the connection between the data visible in a higher matrix factorization of a module MM and its cohomological jump loci.

The conclusion in Theorem 3.6 for the quasi-polynomials governing the Betti numbers of MM and MM^{*} cannot be improved. That is to say, the lower order terms of the respective quasi-polynomials need not agree.

Example 3.8.

Consider A=kx,yA=k\llbracket x,y\rrbracket and B=A/(x3,y3)B=A/(x^{3},y^{3}). For M=B/(x2,xy,y2)M=B/(x^{2},xy,y^{2}) and i0i\geqslant 0 there are equalities

βiB(M)={32i+1i even32i+32i oddandβiB(M)={32i+2i even32i+32i odd.\beta_{i}^{B}(M)=\begin{cases}\frac{3}{2}i+1&i\text{ even}\\ \frac{3}{2}i+\frac{3}{2}&i\text{ odd}\end{cases}\quad\text{and}\quad\beta_{i}^{B}(M^{*})=\begin{cases}\frac{3}{2}i+2&i\text{ even}\\ \frac{3}{2}i+\frac{3}{2}&i\text{ odd}.\end{cases}
3.9.

We now fix a local ring BB (and we forget AA for a brief moment). Following the work of Avramov, Gasharov and Peeva [6] and Sather-Wagstaff [36], a complex MM of BB-modules is said to have finite ci-dimension if there exists a diagram of local rings

ABBA\longrightarrow B^{\prime}\longleftarrow B

in which BBB\to B^{\prime} is flat and ABA\to B^{\prime} is a surjective deformation, and such that MBBM\otimes_{B}B^{\prime} is isomorphic in 𝖣(A)\mathsf{D}(A) to a bounded complex of projective modules.

Corollary 3.10.

If BB is a local ring and MM is a complex of BB-modules with finitely generated homology and finite ci-dimension, then βdegB(M)=βdegB(M)\beta\mathrm{deg}^{B}(M)=\beta\mathrm{deg}^{B}(M^{*}).

Proof.

Both the duality and the Betti degree are preserved by flat base change, so we may assume that BB admits a deformation φ:AB\varphi\colon A\to B such that MM is in 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A}), and the statement follows from Theorem 3.6. ∎

Remark 3.11.

Let MM be a maximal Cohen-Macaulay module over BB which has finite ci-dimension. It is well known that MM admits a complete resolution over BB, in the sense of [17] that MM is the cokernel of a differential in a acyclic complex of projective BB-modules. The two ends of this complete resolution (the projective resolution and coresolution of MM) grow quasi-polynomially with the same degree; see, for example, [4, 9, 31]. Corollary 3.10 asserts that moreover the leading terms of these two quasi-polynomials are the same. This is in stark contrast with the results of [29], where modules are exhibited with complete resolutions that have wildly asymmetric growth. All such modules must have infinite ci-dimension.

We now move on to our final result. If we specialize to the case where AA is a Gorenstein ring, then Gorenstein duality allows us to form a connection between the Betti numbers of a module and its Bass numbers as a direct corollary to Theorem 3.6.

Definition 3.12 ([1, (5.1)]).

Let MM be an object of 𝖣(B)\mathsf{D}(B). Recall that the ii-th Bass number of MM is defined to be

μBi(M)rankk𝖤𝗑𝗍Bi(k,M).\mu_{B}^{i}(M)\coloneqq\operatorname{rank}_{k}\operatorname{\mathsf{Ext}}_{B}^{i}(k,M).

The cocomplexity (or plexity as used in [4, 10]) of MM, denoted pxB(M)\operatorname{px}_{B}(M), is defined to be the smallest nonnegative integer bb such that the sequence {rankk𝖤𝗑𝗍Bn(k,M)}n=0\{\operatorname{rank}_{k}\operatorname{\mathsf{Ext}}_{B}^{n}(k,M)\}_{n=0}^{\infty} is eventually bounded by a polynomial of degree b1b-1.

Suppose pxB(M)=n+1\operatorname{px}_{B}(M)=n+1. Define the Bass degree of MM over BB to be

μdegB2nn!lim supiμBi(M)in.\mu\mathrm{deg}_{B}\coloneqq 2^{n}n!\limsup_{i\to\infty}\frac{\mu_{B}^{i}(M)}{i^{n}}.
Corollary 3.13.

If AA is Gorenstein then for any MM in 𝖣b(B/A)\mathsf{D}^{\mathrm{b}}({B}/{A})

μdegB(M)=βdegB(M).\mu\mathrm{deg}_{B}(M)=\beta\mathrm{deg}^{B}(M).
Proof.

This is an easy consequence of Gorenstein-duality and Theorem 3.6. Namely, AA being Gorenstien forces BB to be Gorenstein and so there is an isomorphism of graded kk-spaces

𝖤𝗑𝗍B(M,k)Σs𝖤𝗑𝗍B(k,M)\operatorname{\mathsf{Ext}}_{B}(M^{*},k)\cong\operatorname{\mathsf{\Sigma}}^{s}\operatorname{\mathsf{Ext}}_{B}(k,M)

for some integer ss. Hence μdegB(M)=βdegB(M)\mu\mathrm{deg}_{B}(M)=\beta\mathrm{deg}^{B}(M^{*}) and so now applying Theorem 3.6, we obtain the desired equality. ∎

Question 3.14.

Let MM and NN be two dg BB-modules, each perfect over AA, and assume that 𝖤𝗑𝗍B(M,N)\operatorname{\mathsf{Ext}}_{B}(M,N) is degree-wise of finite length (in large degrees). In this context the numbers lengthB𝖤𝗑𝗍Bi(M,N){\rm length}_{B}\operatorname{\mathsf{Ext}}^{i}_{B}(M,N) are also eventually modelled by quasi-polynomial q(M,N)q(M,N) of period two; cf. [17, 10.3] and [21]. In the case that AA is regular, Avramov and Buchweitz prove, using the theory of support varieties for pairs of modules, that q(M,N)q(M,N) and q(N,M)q(N,M) have equal degrees [4]. Corollary 3.13 suggests the following question: Assuming AA is Gorenstein, what is the relationship between the leading terms of q(M,N)q(M,N) and q(N,M)q(N,M)?

References

  • [1] Luchezar L. Avramov, Modules of finite virtual projective dimension, Invent. Math. 96 (1989), no. 1, 71–101. MR 981738
  • [2] by same author, Local rings over which all modules have rational Poincaré series, J. Pure Appl. Algebra 91 (1994), no. 1-3, 29–48. MR 1255922
  • [3] Luchezar L. Avramov and Ragnar-Olaf Buchweitz, Homological algebra modulo a regular sequence with special attention to codimension two, J. Algebra 230 (2000), no. 1, 24–67. MR 1774757
  • [4] by same author, Support varieties and cohomology over complete intersections, Invent. Math. 142 (2000), no. 2, 285–318. MR 1794064
  • [5] Luchezar L. Avramov, Ragnar-Olaf Buchweitz, Srikanth B. Iyengar, and Claudia Miller, Homology of perfect complexes, Adv. Math. 223 (2010), no. 5, 1731–1781. MR 2592508
  • [6] Luchezar L. Avramov, Vesselin N. Gasharov, and Irena V. Peeva, Complete intersection dimension, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 67–114 (1998). MR 1608565
  • [7] Luchezar L. Avramov and Daniel R. Grayson, Resolutions and cohomology over complete intersections, Computations in algebraic geometry with Macaulay 2, Algorithms Comput. Math., vol. 8, Springer, Berlin, 2002, pp. 131–178. MR 1949551
  • [8] Luchezar L. Avramov and Srikanth B. Iyengar, Constructing modules with prescribed cohomological support, Illinois J. Math. 51 (2007), no. 1, 1–20. MR 2346182
  • [9] by same author, Cohomology over complete intersections via exterior algebras, Triangulated categories, London Math. Soc. Lecture Note Ser., vol. 375, Cambridge Univ. Press, Cambridge, 2010, pp. 52–75. MR 2681707
  • [10] by same author, Bass numbers over local rings via stable cohomology, J. Commut. Algebra 5 (2013), no. 1, 5–15. MR 3084119
  • [11] by same author, Restricting homology to hypersurfaces, Geometric and topological aspects of the representation theory of finite groups, Springer Proc. Math. Stat., vol. 242, Springer, Cham, 2018, pp. 1–23. MR 3901154
  • [12] Luchezar L. Avramov and Li-Chuan Sun, Cohomology operators defined by a deformation, J. Algebra 204 (1998), no. 2, 684–710. MR 1624432
  • [13] Dave Benson, Srikanth B. Iyengar, and Henning Krause, Local cohomology and support for triangulated categories, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 4, 573–619. MR 2489634
  • [14] N. Bourbaki, Éléments de mathématique. Algèbre commutative. Chapitres 8 et 9, Springer, Berlin, 2006, Reprint of the 1983 original. MR 2284892
  • [15] Benjamin Briggs, Eloísa Grifo, and Josh Pollitz, Constructing nonproxy small test modules for the complete intersection property, Nagoya Mathematical Journal (2021), 1–18.
  • [16] Benjamin Briggs, Srikanth B. Iyengar, Janina C. Letz, and Josh Pollitz, Locally complete intersection maps and the proxy small property, Int. Math. Res. Not. IMRN (2021), 1–28.
  • [17] Ragnar-Olaf Buchweitz, Maximal Cohen-Macaulay modules and Tate-cohomology, Mathematical Surveys and Monographs, vol. 262, Amer. Math. Soc., 2021. Published version of https://tspace.library.utoronto.ca/handle/1807/16682.
  • [18] Nero Budur and Botong Wang, Recent results on cohomology jump loci, Hodge theory and L2L^{2}-analysis, Adv. Lect. Math. (ALM), vol. 39, Int. Press, Somerville, MA, 2017, pp. 207–243. MR 3751292
  • [19] Jesse Burke and Mark E. Walker, Matrix factorizations in higher codimension, Trans. Amer. Math. Soc. 367 (2015), no. 5, 3323–3370. MR 3314810
  • [20] Jon F. Carlson and Srikanth B. Iyengar, Thick subcategories of the bounded derived category of a finite group, Trans. Amer. Math. Soc. 367 (2015), no. 4, 2703–2717. MR 3301878
  • [21] Hailong Dao, Asymptotic behavior of tor over complete intersections and applications, arXiv preprint arXiv:0710.5818 (2007), https://arxiv.org/abs/0710.5818.
  • [22] David Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64. MR 570778
  • [23] David Eisenbud, Irena Peeva, and Frank-Olaf Schreyer, Quadratic complete intersections, J. Algebra 571 (2021), 15–31. MR 4200706
  • [24] Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847
  • [25] J. P. C. Greenlees and Greg Stevenson, Morita theory and singularity categories, Adv. Math. 365 (2020), 107055, 51. MR 4065715
  • [26] Tor H. Gulliksen, A change of ring theorem with applications to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167–183. MR 364232
  • [27] Srikanth B. Iyengar and Mark E. Walker, Examples of finite free complexes of small rank and small homology, Acta Math. 221 (2018), no. 1, 143–158. MR 3877020
  • [28] David A. Jorgensen, Support sets of pairs of modules, Pacific J. Math. 207 (2002), no. 2, 393–409. MR 1972252
  • [29] David A. Jorgensen and Liana M. Şega, Asymmetric complete resolutions and vanishing of Ext over Gorenstein rings, Int. Math. Res. Not. (2005), no. 56, 3459–3477. MR 2200585
  • [30] Graham J. Leuschke and Roger Wiegand, Cohen-Macaulay representations, Mathematical Surveys and Monographs, vol. 181, American Mathematical Society, Providence, RI, 2012. MR 2919145
  • [31] Jian Liu and Josh Pollitz, Duality and symmetry of complexity over complete intersections via exterior homology, Proc. Amer. Math. Soc. 149 (2021), no. 2, 619–631. MR 4198070
  • [32] Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986, Translated from the Japanese by M. Reid. MR 879273
  • [33] Vikram Bhagvandas Mehta, Endomorphisms of complexes and modules over golod rings, ProQuest LLC, Ann Arbor, MI, 1976, Thesis (Ph.D.)–University of California, Berkeley. MR 2626509
  • [34] Josh Pollitz, The derived category of a locally complete intersection ring, Adv. Math. 354 (2019), 106752, 18. MR 3988642
  • [35] by same author, Cohomological supports over derived complete intersections and local rings, Math. Z. (to appear) (2021), 1–39.
  • [36] Sean Sather-Wagstaff, Complete intersection dimensions for complexes, J. Pure Appl. Algebra 190 (2004), no. 1-3, 267–290. MR 2043332
  • [37] Jack Shamash, The Poincaré series of a local ring, J. Algebra 12 (1969), 453–470. MR 241411
  • [38] Greg Stevenson, Duality for bounded derived categories of complete intersections, Bull. Lond. Math. Soc. 46 (2014), no. 2, 245–257. MR 3194744
  • [39] Charles A Weibel, An introduction to homological algebra, no. 38, Cambridge university press, 1995.