This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Coherent states for trapped ions. Applications in
quantum optics and precision measurements.

B. Mihalcea 1Natl. Inst. for Laser, Plasma and Radiation Phys., Low Temp. Plasma Dept.
077125 Măgurele, Ilfov County, Romania
Abstract

The evolution of squeezed coherent states (CSs) of motion for trapped ions is investigated by applying the time dependent variational principle (TDVP) for the Schrödinger equation. The method is applied in case of Paul and combined traps, for which the classical Hamiltonian and equations of motion are derived. Hence, CS provide a natural framework to: (a) engineer quantum correlated states for trapped ions intended for ultraprecise measurements, (b) explore the mechanisms responsible for decoherence, and (c) investigate the quantum-classical transition.

\bodymatter

1 Introduction

The concept of dynamical symmetry was the outcome of the blending between group theory and quantum mechanics (QM), occurring in the years 1950. Quantum integrability involves rigorous investigation of dynamical symmetry. Investigations of nonclassical states of spin systems coupled to a harmonic oscillator (HO) enables one to explore the mechanisms responsible for decoherence and the quantum-classical transition.

2 Time dependent variational principle. Equations of motion

The Time-Dependent Hartree-Fock (TDHF) phase space is the classical correspondent of the quantum space of states (i.e., a coherent states representation of the boson-mapped fermion space of states), so classical information gained from TDHF trajectories provides relevant info on the evolution in the quantum space of states [1]. We consider the action integral [2]

S=1ψ|ψ[ψ|H|ψmψt|ψ],S=\int\frac{1}{\left\langle\psi|\psi\right\rangle}{\left[\left\langle\psi|H|\psi\right\rangle-\Im{m}\left\langle\frac{\partial\psi}{\partial t}\Bigg{|}\psi\right\rangle\right]}\ , (1)

where H\hbar H is the quantum Hamiltonian and ψ\psi is a vector in the Hilbert space {\mathcal{H}}, which belongs to the domain of the self-adjoint quasienergy operator K(t)=Hi/tK(t)=H-i\partial/\partial t [3]. By minimizing the action (δS=0)\left(\delta S=0\right) it results that the Schrödinger equation is rigorously obtained from the TDVP [2].

We apply the TDVP to a manifold ^{\widehat{\mathcal{M}}} of test vectors, parameterized by the points of a finite 2n2n dimensional phase space {\mathcal{M}}. In case of elementary quantum systems with dynamical symmetry groups that admit CSs, the complex structure is global and ^\widehat{\mathcal{M}} represents a Kähler manifold. We consider z=(z1,z2,,zn)𝒪z=\left(z_{1},z_{2},\ldots,z_{n}\right)\in{\mathcal{O}} as a system of complex canonical local coordinates in {\mathcal{M}}, where 𝒪{\mathcal{O}} is an open set from n{\mathbb{C}}^{n}, of dimension 2n2n. We choose a family of vectors ψ(z)^\psi\left(z\right)\in{\widehat{\mathcal{M}}} with z𝒪z\in{\mathcal{O}}, holomorphic in zz, such as ψ(z)/zi=0,i=1,,n{\partial\psi\left(z\right)}/{\partial z^{*}_{i}}=0\,,\ i=1,\ldots,n\ . We introduce the matrix of the symplectic structure on ^\widehat{\mathcal{M}} as [2, 4]

Ω=(2zjzklnψ(z)|ψ(z))1j,kn,\Omega=\left(\frac{\partial^{2}}{\partial z_{j}\partial z_{k}^{*}}\ln\left\langle\psi\left(z^{\ast}\right)|\psi\left(z\right)\right\rangle\;\right)_{1\,\leq\,j,\,k\,\leq\,n}\ \ , (2)

together with the matrix Λ=i(Ω)1\Lambda=-\mathrm{i}\left(\Omega^{\ast}\right)^{-1}. Furthermore, we also introduce the Poisson bracket for the ff and gg functions, smooth on {\mathcal{M}}

{f,g}=ij,k=1n(Λj,kfzjgzkΛk,jgzjfzk).\left\{f,g\right\}=i\sum_{j,k=1}^{n}\left(\Lambda_{j,k}\frac{\partial f}{\partial z_{j}}\frac{\partial g}{\partial z_{k}^{\ast}}-\Lambda_{k,j}^{\ast}\frac{\partial g}{\partial z_{j}}\frac{\partial f}{\partial z_{k}^{\ast}}\right). (3)

We consider the following action integral

S=t1t2[m(i=1ndzjdtzj)lnψ(z)|ψ(z)Hcl(z,z)]𝑑t,S=\int\limits_{t_{1}}^{t_{2}}\left[\Im m\left(\sum\limits_{i=1}^{n}\frac{dz_{j}^{\ast}}{dt}\frac{\partial}{\partial z_{j}}^{\ast}\right)\ln\left\langle\psi\left(z^{\ast}\right)|\psi\left(z\right)\right\rangle-H_{cl}\left(z,z^{\ast}\right)\right]dt, (4)

where

Hcl(z,z)=ψ(z)|H|ψ(z)ψ(z)|ψ(z).H_{cl}\left(z,z^{\ast}\right)=\frac{\left\langle\psi\left(z^{\ast}\right)\left|H\right|\psi\left(z\right)\right\rangle}{\left\langle\psi\left(z^{\ast}\right)|\psi\left(z\right)\right\rangle}. (5)

By applying the TDVP for the action integral SS on the manifold ^\widehat{{\mathcal{M}}}, we derive the classical Liouville equations of motion

dzjdt={z,Hcl},dzjdt={z,Hcl},\frac{dz_{j}}{dt}=\left\{z,H_{cl}\right\}\,\ ,\,\,\frac{dz^{*}_{j}}{dt}=\left\{z^{*},H_{cl}\right\}\,\ , (6)

where ^\widehat{{\mathcal{M}}} is considered as a CS orbit, while Hcl(z,z)H_{cl}\left(z,z^{*}\right) stands for the expectation value of the quantum Hamiltonian in the state represented by ψ(z)^\psi(z)\in{\widehat{\mathcal{M}}}. Hence, HclH_{cl} is considered the classical Hamiltonian associated to the quantum Hamiltonian HH, an operation called dequantization [5, 4].

3 Semiclassical dynamics for a trapped ion. Coherent states

We consider the quantum Hamiltonian for a particle of mass mm and electric charge qq, confined in a combined 3D quadrupole ion trap (QIT) that exhibits axial symmetry [3, 4]

H2=12m(iq2𝐁×𝐫)2+qA(t)(x2+y22z2),H_{2}=\frac{1}{2m}\left(-i\hbar{\mathbf{\nabla}}-\frac{q}{2}{\mathbf{B}}\times{\mathbf{r}}\right)^{2}+qA(t)\left(x^{2}+y^{2}-2z^{2}\right)\ , (7)

where 𝐫=(x,y,z)\mathbf{r}=\left(x,y,z\right) is the position operator, and 𝐁=(0,0,B0)\mathbf{B}=\left(0,0,B_{0}\right) denotes the constant axial magnetic field. For a Penning trap AA is a constant, while for dynamical (Paul) traps (B0=0B_{0}=0) it is a time periodic function

A(t)=(r02+2z02)1(U0+V0cosΩt)A(t)=\left(r_{0}^{2}+2z_{0}^{2}\right)^{-1}\left(U_{0}+V_{0}\cos\Omega t\right)

where r0r_{0} and z0z_{0} denote the trap semiaxes, Ω\Omega is the RF voltage frequency, while U0U_{0} and V0V_{0} stand for the d.c. and RF trapping voltages, respectively. Because the Hamiltonian H2H_{2} commutes with the axial angular momentum operator LzL_{z}, we restrict the analysis to a subspace of the eigenvectors asso-
ciated to this operator, with fixed eigenvalue l\hbar l, where ll is the orbital quantum number. The Hamiltonian reduced to this subspace is [3, 4]

H2l=H(a)+H(r)ωc2l,H_{2l}=H^{(\mathrm{a})}+H^{(\mathrm{r})}-\frac{\hbar\omega_{c}}{2}l\ , (8)

where the axial H(a)H^{(\mathrm{a})} and radial HrH^{\mathrm{r}} are

H(a)=22m2ρ2+m2λaz2,H^{(\mathrm{a})}=-\frac{\hbar^{2}}{2m}\frac{\partial^{2}}{\partial\rho^{2}}+\frac{m}{2}\lambda_{\mathrm{a}}z^{2}\ , (9)
Hr=22m(2ρ2+1ρρl2ρ2)+m2λrρ2,ρ=x2+y2H^{r}=-\frac{\hbar^{2}}{2m}\left(\frac{\partial^{2}}{\partial\rho^{2}}+\frac{1}{\rho}\frac{\partial}{\partial\rho}-\frac{l^{2}}{\rho^{2}}\right)+\frac{m}{2}\lambda_{r}\rho^{2},\ \rho=\sqrt{x^{2}+y^{2}} (10)

and

λa=4qmA,λr=14(ωc22λa),ωc=qmB0.\lambda_{\mathrm{a}}=-\frac{4q}{m}A\ ,\quad\lambda_{\mathrm{r}}=\frac{1}{4}(\omega_{c}^{2}-2\lambda_{\mathrm{a}})\ ,\quad\omega_{c}=\frac{q}{m}B_{0}\ . (11)

The generators of the Lie algebra are [3]

K0,1(a)=14(2z2+z2),K0,1(r)=14[2ρ2+ρ2±(l214)1ρ2].K_{0,1}^{(a)}=\frac{1}{4}\left(\mp\frac{\partial^{2}}{\partial z^{2}}+z^{2}\right),\ K_{0,1}^{(r)}=\frac{1}{4}\left[\mp\frac{\partial^{2}}{\partial\rho^{2}}+\rho^{2}\pm\left(l^{2}-\frac{1}{4}\right)\frac{1}{\rho^{2}}\right]. (12)

The operators K0(c)K_{0}^{(c)}, K1(c)K_{1}^{(c)} and K2(c)=i[K1(c),K0(c)]K_{2}^{(c)}=i[K_{1}^{(c)},K_{0}^{(c)}] satisfy the commutation relationships as shown in [3, 4]. These operators generate the Lie algebra associated to the Lie group 𝒢c\mathcal{G}_{c}, obtained by means of an unitary irreducible representation (UIR) of the symplectic group Sp(2,)Sp(2,\mathbb{R}) of Bargmann indices ka=14,34k_{a}=\frac{1}{4},\frac{3}{4}, and kr=l+12k_{r}=\frac{l+1}{2}\ [3]. The axial H(a)H^{(a)} and radial H(r)H^{(r)} Hamiltonians are linear combinations of the generators:

H(c)=αcK0c+βcK1c,c=a,rH^{(\mathrm{c})}=\alpha_{c}K_{0}^{c}+\beta_{c}K_{1}^{c},\ c=a,r (13)

with

αc=mλc+2m,βc=mλc2m.\alpha_{c}=m\lambda_{c}+\frac{\hbar^{2}}{m}\ ,\quad\beta_{c}=m\lambda_{c}-\frac{\hbar^{2}}{m}\ . (14)

The solutions of the Schrödinger equation for H2lH_{2l} (eq. 8) are

Ψkamakrmrl=1ρexp[il(θ+ωc2t)iφ]ψkama(za)ψkrmr(zr),\Psi_{k_{a}m_{a}k_{r}m_{r}l}=\frac{1}{\sqrt{\rho}}\exp\left[\mathrm{i}l\left(\theta+\frac{\omega_{c}}{2}t\right)-i\varphi\right]\psi_{k_{a}m_{a}}(z_{a})\psi_{k_{r}m_{r}}(z_{r})\ , (15)

with ma,mrm_{a},m_{r}\in\mathbb{N}, while za,zrz_{a},z_{r}\in\mathbb{C} (|za,r|<1\left|z_{a,r}\right|<1), and φ=(ka+ma)φa+(kr+mr)φr,φ\varphi=(k_{a}+m_{a})\varphi_{a}+(k_{r}+m_{r})\varphi_{r},\varphi\in\mathbb{R} is the phase. ψkama(za)\psi_{k_{a}m_{a}}(z_{a}) and ψkrmr(zr)\psi_{k_{r}m_{r}}(z_{r}) stand for coherent symplectic vectors for the axial 𝒢a\mathcal{G}_{a} and radial 𝒢r\mathcal{G}_{r} dynamical groups.

The quantum Hamiltonian for a trapped ion confined in a combined nonideal 3D QIT with axial symmetry can be expressed as [4]

Hl=H2l+qA(t)P(ρ2,z2),H_{l}=H_{2l}+qA\left(t\right)P\left(\rho^{2},z^{2}\right), (16)

where the anharmonic part is defined as a polynomial

P(ρ2,z2)=k2ckH2k(ρ,z),H2k(ρ,z)=j=0k(2k)!ρ2jz2k2j4j(2k2j)!(j!)2P\left(\rho^{2},z^{2}\right)=\sum\limits_{k\geq 2}c_{k}H_{2k}\left(\rho,z\right)\ ,\ H_{2k}\left(\rho,z\right)=\sum\limits_{j=0}^{k}\frac{(2k)!\rho^{2j}z^{2k-2j}}{4^{j}(2k-2j)!\left(j!\right)^{2}} (17)

We show the energy function associated to the quantum Hamiltonian HlH_{l} is a classical one H~l\tilde{H}_{l}, whose values are exactly the expectation values of the HlH_{l} on the symplectic coherent states ψka0(za)\psi_{k_{a}0}(z_{a}) and ψkr0(zr)\psi_{k_{r}0}(z_{r}). By applying the TDVP we derive the following equations of motion within the unit disk |zc|<1\left|z_{c}\right|<1:

dzcdt={zc,H~l}c,\frac{dz_{c}}{dt}=\left\{z_{c},\tilde{H}_{l}\right\}_{c}\;, (18)

where {zc,H~l}c\left\{z_{c},\tilde{H}_{l}\right\}_{c} denotes the Poisson bracket, defined as

{f,g}c=(1zczc)22ikc(fzcgzcfzcgzc).\left\{f,g\right\}_{c}=\frac{\left(1-z_{c}z_{c}^{\ast}\right)^{2}}{2\mathrm{i}k_{c}}\left(\frac{\partial f}{\partial z_{c}^{\ast}}\frac{\partial g}{\partial z_{c}^{\ast}}-\frac{\partial f}{\partial z_{c}}\frac{\partial g}{\partial z_{c}}\right)\;. (19)

We introduce the complex variables ξc,ηc,c=a,r\xi_{c},\eta_{c},\ c=a,r

ξc=(1+zc)(1+zc)1zczc,ηc=(1zc)(1zc)1zczc.\xi_{c}=\frac{\left(1+z_{c}\right)\left(1+z_{c}^{\ast}\right)}{1-z_{c}z_{c}^{\ast}},\;\;\eta_{c}=\frac{\left(1-z_{c}\right)\left(1-z_{c}^{\ast}\right)}{1-z_{c}z_{c}^{\ast}}\ . (20)

Then, we write the classical Hamiltonian (Husimi function) as

H~l=Arηr+Aaηa+Brξr+Baξa+(C20ξr2+C11ξrξa+C02ξa2)+\displaystyle\tilde{H}_{l}=A_{r}\eta_{r}+A_{a}\eta_{a}+B_{r}\xi_{r}+B_{a}\xi_{a}+\left(C_{20}\xi_{r}^{2}+C_{11}\xi_{r}\xi_{a}+C_{02}\xi_{a}^{2}\right)+
(D30ξr3+D21ξr2ξa+D12ξrξa2+D03ξa3)ωc2l.\displaystyle\left(D_{30}\xi_{r}^{3}+D_{21}\xi_{r}^{2}\xi_{a}+D_{12}\xi_{r}\xi_{a}^{2}+D_{03}\xi_{a}^{3}\right)\ -\frac{\omega_{c}}{2}\hbar l. (21)

4 Conclusions

Quasiclassical dynamics of trapped ions is described by applying the TDVP for the Schrödinger equation on coherent state (CS) orbits, introduced as sub-manifolds of the space of quantum states. The method enables one to derive the Hamilton equations of motion on symplectic manifolds. The results are also valid for the CM motion in case of a system of identical ions. The classical Hamiltonian associated to the system is obtained as the expectation value of the quantum Hamiltonian on CS. Such formalism can be applied to 3D nonlinear quadrupole ion traps (QIT), for which the quantum Hamiltonians are derived.

References

  • [1] D.J. Rowe, Time-dependent Hartree–Fock (TDHF) theory in Nuclear Collective Motion, pp. 283-292, World Scientific (2010);
  • [2] P. Kramer, and M. Saraceno (Eds.), Geometry of the Time-Dependent Variational Principle in Quantum Mechanics, Springer (1981)
  • [3] V.N. Gheorghe, and F. Vedel, Phys. Rev. A 45, 4828 (1992); V.N. Gheorghe, and G. Werth, Eur. Phys. J. D 10, 197 (2000); F.G. Major, V.N. Gheorghe, and G. Werth, Charged Particle Traps I, Springer (2005)
  • [4] B. Mihalcea, Rom. J. Phys. 62, 113 (2017); B. Mihalcea, Ann. Phys. 388, 100 (2018); B. Mihalcea, Ann. Phys. 442, 169826 (2022)
  • [5] A.A. Abrikosov Jr, E. Gozzi, and D. Mauro, Ann. Phys. 317, 24 (2005)