This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Coherent Quantum LQG Controllers with Luenberger Dynamics

Igor G. Vladimirov     Ian R. Petersen School of Engineering, Australian National University, ACT 2601, Canberra, Australia (e-mail: [email protected], [email protected]).
Abstract

This paper is concerned with the coherent quantum linear-quadratic-Gaussian control problem of minimising an infinite-horizon mean square cost for a measurement-free field-mediated interconnection of a quantum plant with a stabilising quantum controller. The plant and the controller are multimode open quantum harmonic oscillators, governed by linear quantum stochastic differential equations and coupled to each other and the external multichannel bosonic fields in the vacuum state. We discuss an interplay between the quantum physical realizability conditions and the Luenberger structure associated with the classical separation principle. This leads to a quadratic constraint on the controller gain matrices, which is formulated in the framework of a swapping transformation for the conjugate positions and momenta in the canonical representation of the controller variables. For the class of coherent quantum controllers with the Luenberger dynamics, we obtain first-order necessary conditions of optimality in the form of algebraic equations, involving a matrix-valued Lagrange multiplier.

keywords:
Coherent quantum LQG control, physical realizability, separation principle, Luenberger controller, optimality conditions.
thanks: This work is supported by the Australian Research Council grants DP210101938, DP200102945.

1 Introduction

Open quantum harmonic oscillators (OQHOs), described by Hudson-Parthasarathy linear quantum stochastic differential equations (QSDEs) (Hudson & Parthasarathy (1984); Parthasarathy (1992)), are the closest quantum mechanical counterparts of classical linear stochastic systems. However, unlike classical random processes, the dynamic variables of an OQHO are noncommuting self-adjoint operators on an infinite-dimensional Hilbert space, organised similarly to the pairs of conjugate position and momentum operators (Sakurai (1994)). The QSDE, which governs the OQHO, is driven by a quantum Wiener process with noncommuting components on a symmetric Fock space, thus modelling the interaction of the system with an external bosonic quantum field. The energy exchange in this interaction and the self-energy of the OQHO (pertaining to its internal dynamics) are described in terms of the system-field coupling operators and the Hamiltonian, parameterised by coupling and energy matrices. Together with the canonical commutation relations (CCRs) for the system variables, this parameterisation leads to a specific structure of the state-space matrices of the linear QSDE, so that they must satisfy physical realisability (PR) conditions (James, Nurdin & Petersen (2008)) in order to correspond to a quantum oscillator with CCR preservation.

The PR constraints are a significant obstacle to solving coherent quantum feedback control problems, where a given quantum plant is in a measurement-free field-mediated or direct (Zhang & James (2011)) interconnection with a quantum controller, which has to stabilise the closed-loop system and meet optimality or robust performance criteria. One of such settings is the coherent quantum LQG (CQLQG) control problem (Nurdin, James & Petersen (2009)) of minimising an infinite-horizon mean square cost (for the plant variables and the controller output) over stabilising coherent quantum controllers, where both the plant and the controller are OQHOs (for example, with the same number of dynamic variables). Its classical counterpart (Kwakernaak & Sivan (1972)) admits a separation principle, which decomposes the optimal LQG controller into a Kalman filter for updating the conditional expectations of the plant variables, conditioned on the observations, and an actuator using the current plant state estimate, along with a pair of independent algebraic Riccati equations.

However, the CQLQG control problem does not lend itself to this particular combination of classical stochastic filtering and dynamic programming approaches because of the PR constraints mentioned above and the nature of quantum probability (Holevo (2001)). The latter describes the statistical properties of quantum processes in terms of density operators (or quantum states) on the underlying Hilbert space, which are more complicated than the scalar-valued classical probability measures and lead to the absence of classical joint distributions and conditional expectations for noncommutative quantum variables. Also, unlike classical observations, the noncommutative output fields of the quantum plant, which drive the coherent quantum controller, are not accessible to simultaneous measurement. On the other hand, the absence of measurements (which are accompanied by back-action effects and decoherence as the loss of quantum information) is an advantage of coherent quantum control by interconnection compared to the classical observation-actuation paradigm using digital signal processing.

The motivation behind the CQLQG control problem and the issue of obtaining an efficient solution for it explain the recurrent research interest to this problem (and its feedback-free versions on coherent quantum filtering (Miao & James (2012); Vladimirov & Petersen (2013b))) since its formulation in 2009. One of existing approaches to this problem is based on representing it as a constrained covariance control problem and applying variational methods of nonlinear functional analysis (in the form of Frechet differentiation of the mean square cost over the matrix-valued parameters (Vladimirov & Petersen (2013a))) in combination with symplectic geometric and homotopy techniques to the development of optimality conditions and numerical algorithms (Sichani, Vladimirov & Petersen (2017); Vladimirov & Petersen (2021)). Although the CQLQG control problem does not lend itself to a solution obeying the filtering-control separation principle with a Luenberger structure (Luenberger (1966)) (as a predictor-corrector scheme with a gain matrix with respect to an innovation process), the latter was discussed as an additional constraint, combined with the PR conditions, for coherent quantum observers in (Miao & James (2012)).

The present paper extends these ideas to a class of coherent quantum controllers with Luenberger dynamics. To this end, we use the freedom of assigning an arbitrary nonsingular CCR matrix to the controller variables (without affecting the LQG cost for the closed-loop system), including the negative of the CCR matrix of the plant variables. The latter is achieved by swapping the conjugate positions and momenta in the canonical representation of the quantum variables (or by applying the mirror reflections of (Simon (2000))). With the swapping transformation of the controller, the difference of the plant and controller variables (which corresponds to the plant state estimation error in the case of classical optimal LQG controllers) forms a quantum process with zero one-point CCR matrix. Similarly to the classical case, this difference process conveniently replaces the plant variables in the closed-loop system for coherent quantum controllers of Luenberger type. The latter imposes an additional constraint on the controller matrices in such a way that, together with the PR conditions, the gain matrices of the controller become dependent (through a quadratic constraint) and parameterise the dynamics and output matrices of the controller. This allows a matrix-valued Lagrange multiplier to be used in order to obtain first-order necessary conditions of optimality for this narrower class of coherent quantum controllers in the CQLQG control problem. The resulting optimality conditions involve a pair of coupled algebraic Lyapunov equations (ALEs) with block lower triangular matrices, which can simplify the analysis of their solution.

The paper is organised as follows. Sec. 2 specifies the class of quantum plants with field-mediated coherent quantum feedback. Sec. 3 reviews the PR conditions and parameterization of the closed-loop system in terms of the energy and coupling matrices. Sec. 4 describes the CQLQG control problem. Sec. 5 specifies the swapping transformation for the controller variables. Sec. 6 discusses the class of coherent quantum controllers of Luenberger type. Sec. 7 establishes first-order conditions of optimality for such controllers in the CQLQG control problem using the Lagrange multipliers. Sec. 8 makes concluding remarks.

2 Coherent Quantum Feedback

The CQLQG control setting (Nurdin, James & Petersen (2009)) involves a quantum plant and a coherent quantum controller in the form of multimode OQHOs. They are coupled to each other (see Fig. 1)

quantumplantquantumcontrollerwwη\etaω\omegayy
Figure 1: A field-mediated interconnection of the quantum plant and coherent quantum controller, interacting with each other (through their outputs yy, η\eta) and with the quantum Wiener processes ww, ω\omega which drive the QSDEs (10), (11), (16), (17).

through a measurement-free feedback mediated by multichannel bosonic fields organised into column-vectors

y:=(yk)1kp1,η:=(ηk)1kp2y:=(y_{k})_{1\leqslant k\leqslant p_{1}},\qquad\eta:=(\eta_{k})_{1\leqslant k\leqslant p_{2}} (1)

(the dependence on time tt is omitted for brevity) and specified below. In this field-mediated interconnection, the plant and controller are also coupled to external bosonic fields modelled by self-adjoint quantum Wiener processes w1,,wm1w_{1},\ldots,w_{m_{1}} and ω1,,ωm2\omega_{1},\ldots,\omega_{m_{2}} (with even m1m_{1}, m2m_{2}) on symmetric Fock spaces (Hudson & Parthasarathy (1984)) 𝔉1\mathfrak{F}_{1}, 𝔉2\mathfrak{F}_{2}, respectively. These quantum noises are assembled into vectors

w:=(wk)1km1,ω:=(ωk)1km2,𝒲:=[wω],w:=(w_{k})_{1\leqslant k\leqslant m_{1}},\quad\omega:=(\omega_{k})_{1\leqslant k\leqslant m_{2}},\quad\mathcal{W}:={\begin{bmatrix}w\\ \omega\end{bmatrix}}, (2)

where the augmented quantum Wiener process 𝒲\mathcal{W} acts on the composite Fock space 𝔉:=𝔉1𝔉2\mathfrak{F}:=\mathfrak{F}_{1}\otimes\mathfrak{F}_{2} (with \otimes the tensor product of spaces or operators, including the Kronecker product of matrices), and their future-pointing increments have the Ito tables

dwdwT=Ω1dt,dωdωT=Ω2dt,d𝒲d𝒲T=Ωdt,{\rm d}w{\rm d}w^{{\rm T}}=\Omega_{1}{\rm d}t,\ {\rm d}\omega{\rm d}\omega^{{\rm T}}=\Omega_{2}{\rm d}t,\ {\rm d}\mathcal{W}{\rm d}\mathcal{W}^{{\rm T}}=\Omega{\rm d}t, (3)

where the transpose ()T(\cdot)^{\rm T} applies to vectors or matrices of operators as if the latter were scalars. Here, Ω1\Omega_{1}, Ω2\Omega_{2}, Ω\Omega are quantum Ito matrices given by

Ωk\displaystyle\Omega_{k} :=Imk+iJk,Jk:=Imk/2𝐉,𝐉:=[0110],\displaystyle:=I_{m_{k}}+iJ_{k},\quad J_{k}:=I_{m_{k}/2}\otimes\mathbf{J},\quad\mathbf{J}:={\begin{bmatrix}0&1\\ -1&0\end{bmatrix}}, (4)
Ω\displaystyle\Omega :=[Ω100Ω2]=Im+iJ,J:=[J100J2],\displaystyle:={\begin{bmatrix}\Omega_{1}&0\\ 0&\Omega_{2}\end{bmatrix}}=I_{m}+iJ,\quad J:={\begin{bmatrix}J_{1}&0\\ 0&J_{2}\end{bmatrix}}, (5)

with m:=m1+m2m:=m_{1}+m_{2}, where i:=1i:=\sqrt{-1} is the imaginary unit, and IrI_{r} is the identity matrix of order rr. The matrices J1𝔸m1J_{1}\in{\mathbb{A}}_{m_{1}}, J2𝔸m2J_{2}\in{\mathbb{A}}_{m_{2}}, J𝔸mJ\in{\mathbb{A}}_{m} in (4), (5) (with 𝔸r{\mathbb{A}}_{r} the subspace of real antisymmetric matrices of order rr) specify the CCRs

[dw,dwT]=2iJ1dt,[dω,dωT]=2iJ2dt,[d𝒲,d𝒲T]=2iJdt,[{\rm d}w,{\rm d}w^{\rm T}]\!\!=\!2iJ_{1}{\rm d}t,\,[{\rm d}\omega,{\rm d}\omega^{\rm T}]\!\!=\!2iJ_{2}{\rm d}t,\,[{\rm d}\mathcal{W},{\rm d}\mathcal{W}^{\rm T}]\!\!=\!2iJ{\rm d}t,\! (6)

where [α,βT]:=([αj,βk])1ja,1kb[\alpha,\beta^{\rm T}]:=([\alpha_{j},\beta_{k}])_{1\leqslant j\leqslant a,1\leqslant k\leqslant b} is the matrix of commutators [αj,βk]=αjβkβkαj[\alpha_{j},\beta_{k}]=\alpha_{j}\beta_{k}-\beta_{k}\alpha_{j} between linear operators αj\alpha_{j}, βk\beta_{k} which form vectors α:=(αj)1ja\alpha:=(\alpha_{j})_{1\leqslant j\leqslant a}, β:=(βk)1kb\beta:=(\beta_{k})_{1\leqslant k\leqslant b}. The block diagonal structure of J=ImΩJ=\mathrm{Im}\Omega in (5) comes from commutativity between the entries of ww, ω\omega acting on different Fock spaces.

The plant and the controller are endowed with initial Hilbert spaces 1\mathfrak{H}_{1}, 2\mathfrak{H}_{2} and an even number nn of dynamic variables x1,,xnx_{1},\ldots,x_{n} and ξ1,,ξn\xi_{1},\ldots,\xi_{n}, respectively, which are time-varying self-adjoint operators on the space

:=0𝔉,\mathfrak{H}:=\mathfrak{H}_{0}\otimes\mathfrak{F}, (7)

where 0:=12\mathfrak{H}_{0}:=\mathfrak{H}_{1}\otimes\mathfrak{H}_{2} is the initial plant-controller space. With the same number nn of dynamic variables assumed for the plant and the controller (this plays an important role in what follows), n2\frac{n}{2} counts their degrees of freedom. The plant and controller variables are assembled into vectors

x:=(xk)1kn,ξ:=(ξk)1kn,𝒳:=[xξ]x:=(x_{k})_{1\leqslant k\leqslant n},\qquad\xi:=(\xi_{k})_{1\leqslant k\leqslant n},\qquad\mathcal{X}:={\begin{bmatrix}x\\ \xi\end{bmatrix}} (8)

and satisfy the following CCRs with nonsingular matrices Θ1,Θ2𝔸n\Theta_{1},\Theta_{2}\in{\mathbb{A}}_{n} and Θ𝔸2n\Theta\in{\mathbb{A}}_{2n}:

[𝒳,𝒳T]=[[x,xT][x,ξT][ξ,xT][ξ,ξT]]=2iΘ,Θ:=[Θ100Θ2].[\mathcal{X},\mathcal{X}^{{\rm T}}]={\begin{bmatrix}[x,x^{{\rm T}}]&[x,\xi^{{\rm T}}]\\ [\xi,x^{{\rm T}}]&[\xi,\xi^{{\rm T}}]\end{bmatrix}}=2i\Theta,\quad\Theta:={\begin{bmatrix}\Theta_{1}&0\\ 0&\Theta_{2}\end{bmatrix}}. (9)

In line with the block diagonal structure of Θ\Theta, the plant variables commute with the controller variables (considered at the same moment of time): [x,ξT]=0[x,\xi^{{\rm T}}]=0, since these operators act initially (at time t=0t=0) on different spaces 1\mathfrak{H}_{1}, 2\mathfrak{H}_{2}, and the system-field evolution preserves the one-point CCRs. Accordingly, the output fields y1,,yp1y_{1},\ldots,y_{p_{1}} and η1,,ηp2\eta_{1},\ldots,\eta_{p_{2}} of the plant and the controller in (1) are time-varying self-adjoint operators on the system-field space \mathfrak{H} in (7). The Heisenberg dynamics of the internal and output variables of the plant are described by linear QSDEs

dx\displaystyle{\rm d}x =Axdt+Bdw+Edη,\displaystyle=Ax{\rm d}t+B{\rm d}w+E{\rm d}\eta, (10)
dy\displaystyle{\rm d}y =Cxdt+Ddw,\displaystyle=Cx{\rm d}t+D{\rm d}w, (11)

with given matrices An×nA\in{\mathbb{R}}^{n\times n}, Bn×m1B\in{\mathbb{R}}^{n\times m_{1}}, Cp1×nC\in{\mathbb{R}}^{p_{1}\times n}, Dp1×m1D\in{\mathbb{R}}^{p_{1}\times m_{1}}, En×p2E\in{\mathbb{R}}^{n\times p_{2}}. The structure of AA, BB, CC, EE will be specified in Sec. 3. The feedthrough matrix DD in (11) is formed from conjugate pairs of rows of a permutation matrix of order m1m_{1}, so that p1p_{1} is even and p1m1p_{1}\leqslant m_{1}, with

DDT=Ip1.DD^{{\rm T}}=I_{p_{1}}. (12)

The quantum Ito matrix Ω~1\widetilde{\Omega}_{1} of the plant output in (11), defined by dydyT=Ω~1dt{\rm d}y{\rm d}y^{{\rm T}}=\widetilde{\Omega}_{1}{\rm d}t (similarly to (3)), is computed in terms of (4) as Ω~1:=DΩ1DT=Ip1+iJ~1\widetilde{\Omega}_{1}:=D\Omega_{1}D^{{\rm T}}=I_{p_{1}}+i\widetilde{J}_{1}, and its imaginary part

J~1:=DJ1DT=Ip1/2𝐉\widetilde{J}_{1}:=DJ_{1}D^{{\rm T}}=I_{p_{1}/2}\otimes\mathbf{J} (13)

specifies the CCRs for the plant output yy:

[dy,dyT]=2iJ~1dt.[{\rm d}y,{\rm d}y^{\rm T}]=2i\widetilde{J}_{1}{\rm d}t. (14)

The QSDE (10) is driven by the external input field ww (as a quantum plant noise) and the controller output η\eta, similar to the actuator signal in classical linear control (Kwakernaak & Sivan (1972)). The QSDE (11) for the plant output yy resembles the equations for noise-corrupted observations with a “signal” part

z:=Cx.z:=Cx. (15)

However, the quantum process yy differs qualitatively from the classical observations since the output fields y1,,yp1y_{1},\ldots,y_{p_{1}} are not accessible to simultaneous measurement as noncommuting quantum variables (Holevo (2001)) in view of the relation [y(s),y(t)T]=2imin(s,t)J~1[y(s),y(t)^{{\rm T}}]=2i\min(s,t)\widetilde{J}_{1} for all s,t0s,t\geqslant 0, whose right-hand side vanishes only at s=0s=0 or t=0t=0.

The internal and output variables of the coherent quantum controller satisfy the linear QSDEs

dξ\displaystyle{\rm d}\xi =aξdt+bdω+edy,\displaystyle=a\xi{\rm d}t+b{\rm d}\omega+e{\rm d}y, (16)
dη\displaystyle{\rm d}\eta =cξdt+ddω\displaystyle=c\xi{\rm d}t+d{\rm d}\omega (17)

(similar to the plant dynamics (10), (11)), with matrices an×na\in{\mathbb{R}}^{n\times n}, bn×m2b\in{\mathbb{R}}^{n\times m_{2}}, cp2×nc\in{\mathbb{R}}^{p_{2}\times n}, dp2×m2d\in{\mathbb{R}}^{p_{2}\times m_{2}}, en×p1e\in{\mathbb{R}}^{n\times p_{1}}, where bb, ee in (16) are the gain matrices of the controller with respect to the controller noise ω\omega and the plant output yy in (11). Similarly to DD in (12), the controller feedthrough matrix dd in (17) is also of full row rank and consists of conjugate pairs of rows of a permutation matrix of order m2m_{2}, so that p2p_{2} is even and satisfies p2m2p_{2}\leqslant m_{2}, along with

ddT=Ip2.dd^{{\rm T}}=I_{p_{2}}. (18)

Accordingly, the quantum Ito matrix Ω~2\widetilde{\Omega}_{2} of the controller output fields in (17), defined by dηdηT=Ω~2dt{\rm d}\eta{\rm d}\eta^{{\rm T}}=\widetilde{\Omega}_{2}{\rm d}t and computed as Ω~2:=dΩ2dT=Ip2+iJ~2\widetilde{\Omega}_{2}:=d\Omega_{2}d^{{\rm T}}=I_{p_{2}}+i\widetilde{J}_{2} in terms of (4), has the imaginary part

J~2:=dJ2dT=Ip2/2𝐉,\widetilde{J}_{2}:=dJ_{2}d^{{\rm T}}=I_{p_{2}/2}\otimes\mathbf{J}, (19)

which, similarly to (14), describes the CCRs for the controller output η\eta:

[dη,dηT]=2iJ~2dt.[{\rm d}\eta,{\rm d}\eta^{\rm T}]=2i\widetilde{J}_{2}{\rm d}t. (20)

In what follows, the matrix dd (specifying the “amount” of noise ω\omega in the controller output η\eta) is fixed, while the matrices aa, bb, cc, ee in (16), (17) can be varied subject to PR constraints of Sec. 3. Similarly to (15), the drift vector

ζ:=cξ\zeta:=c\xi (21)

in (17) plays the role of a “signal” part of the controller output η\eta as a quantum noise-corrupted actuator process.

The QSDEs (10), (11), (16), (17) govern the fully quantum closed-loop system in Fig. 1. By analogy with classical LQG control, the performance of the coherent quantum controller (with the process ζ\zeta in (21) corresponding to the actuator signal) is described in Sec. 4 in terms of a mean square cost functional for an auxiliary quantum process

𝒵:=(𝒵k)1kr:=Fx+Gζ,\mathcal{Z}:=(\mathcal{Z}_{k})_{1\leqslant k\leqslant r}:=Fx+G\zeta, (22)

where Fr×nF\in{\mathbb{R}}^{r\times n}, Gr×p2G\in{\mathbb{R}}^{r\times p_{2}} are given matrices. The entries of 𝒵\mathcal{Z} are time-varying self-adjoint operators which are linear combinations of the plant variables and the controller output variables from (8), (21) whose relative importance is specified by the weighting matrices FF, GG. Similarly to the classical LQG control settings (Kwakernaak & Sivan (1972)), the matrix GG is of full column rank:

rrankG=p2,r\geqslant\mathrm{rank}G=p_{2}, (23)

so that all the entries of ζ\zeta are penalized through GζG\zeta in (22) for large mean square values. The matrices FF, GG are otherwise free from physical constraints, and their choice is part of the control design specifications. The process 𝒵\mathcal{Z} in (22) is expressed in terms of the combined vector 𝒳\mathcal{X} of the plant and controller variables in (8) and governed by

d𝒳=𝒜𝒳dt+d𝒲,𝒵=𝒞𝒳,{\rm d}\mathcal{X}=\mathcal{A}\mathcal{X}{\rm d}t+\mathcal{B}{\rm d}\mathcal{W},\qquad\mathcal{Z}=\mathcal{C}\mathcal{X}, (24)

where the QSDE is driven by the quantum Wiener process 𝒲\mathcal{W} in (2) on the Fock space 𝔉\mathfrak{F}. The matrices 𝒜2n×2n\mathcal{A}\in{\mathbb{R}}^{2n\times 2n}, 2n×m\mathcal{B}\in{\mathbb{R}}^{2n\times m}, 𝒞r×2n\mathcal{C}\in{\mathbb{R}}^{r\times 2n} of the closed-loop system (24) are obtained by combining the QSDEs (10), (11), (16), (17) with (21), (22) as

𝒜:=[AEceCa],:=[BEdeDb],𝒞:=[FGc],\mathcal{A}:={\begin{bmatrix}A&Ec\\ eC&a\end{bmatrix}},\quad\mathcal{B}:={\begin{bmatrix}B&Ed\\ eD&b\end{bmatrix}},\quad\mathcal{C}:={\begin{bmatrix}F&Gc\end{bmatrix}}, (25)

similarly to the classical case. While the matrices FF, GG in (22) can be arbitrary (subject to (23)), the matrices 𝒜\mathcal{A}, \mathcal{B} of the QSDE in (24) are of specific structure which the fully quantum closed-loop system inherits from the plant and controller (James, Nurdin & Petersen (2008)), as reviewed in the next section.

3 Physical Realizability Constraints

The dynamics of the field-mediated coherent feedback interconnection are specified by the individual Hamiltonians 12xTR1x\frac{1}{2}x^{\rm T}R_{1}x, 12ξTR2ξ\frac{1}{2}\xi^{\rm T}R_{2}\xi and the vectors [M1L1]x{\scriptsize\begin{bmatrix}M_{1}\\ L_{1}\end{bmatrix}}x, [M2L2]ξ{\scriptsize\begin{bmatrix}M_{2}\\ L_{2}\end{bmatrix}}\xi of operators of coupling of the plant and controller to the external fields and between each other. Here, R1𝕊nR_{1}\in{\mathbb{S}}_{n} is the energy matrix of the plant (with 𝕊n{\mathbb{S}}_{n} the subspace of real symmetric matrices of order nn), and M1m1×nM_{1}\in{\mathbb{R}}^{m_{1}\times n}, L1p2×nL_{1}\in{\mathbb{R}}^{p_{2}\times n} are the matrices of coupling of the plant with the external input field ww and the controller output η\eta, respectively. Similarly, R2𝕊nR_{2}\in{\mathbb{S}}_{n} is the energy matrix of the controller, and M2m2×nM_{2}\in{\mathbb{R}}^{m_{2}\times n}, L2p1×nL_{2}\in{\mathbb{R}}^{p_{1}\times n} are the matrices of coupling of the controller with the external input field ω\omega and the plant output yy; see Fig. 1. These energy and coupling matrices parameterise the plant matrices AA, BB, CC, EE in (10), (11) and the controller matrices aa, bb, cc, ee in (16), (17) as

A=\displaystyle A= 2Θ1(R1+M1TJ1M1+L1TJ~2L1),B=2Θ1M1T,\displaystyle 2\Theta_{1}(R_{1}+M_{1}^{{\rm T}}J_{1}M_{1}+L_{1}^{{\rm T}}\widetilde{J}_{2}L_{1}),\ \ B=2\Theta_{1}M_{1}^{{\rm T}},\! (26)
C=\displaystyle C= 2DJ1M1,E=2Θ1L1T,\displaystyle 2DJ_{1}M_{1},\quad E=2\Theta_{1}L_{1}^{{\rm T}}, (27)
a=\displaystyle a= 2Θ2(R2+M2TJ2M2+L2TJ~1L2),b=2Θ2M2T,\displaystyle 2\Theta_{2}(R_{2}+M_{2}^{{\rm T}}J_{2}M_{2}+L_{2}^{{\rm T}}\widetilde{J}_{1}L_{2}),\ \ b=2\Theta_{2}M_{2}^{{\rm T}}, (28)
c=\displaystyle c= 2dJ2M2,e=2Θ2L2T,\displaystyle 2dJ_{2}M_{2},\quad\ \,e=2\Theta_{2}L_{2}^{{\rm T}}, (29)

with the matrices J~1\widetilde{J}_{1}, J~2\widetilde{J}_{2} given by (13), (19). The special structure of the plant matrices in (26), (27) and the controller matrices in (28), (29) leads to the PR conditions for the plant:

AΘ1+Θ1AT+BJ1BT+EJ~2ET\displaystyle A\Theta_{1}+\Theta_{1}A^{{\rm T}}+BJ_{1}B^{{\rm T}}+E\widetilde{J}_{2}E^{{\rm T}} =0,\displaystyle=0, (30)
CΘ1+DJ1BT\displaystyle C\Theta_{1}+DJ_{1}B^{{\rm T}} =0,\displaystyle=0, (31)

and similar conditions for the controller (James, Nurdin & Petersen (2008)):

aΘ2+Θ2aT+bJ2bT+eJ~1eT\displaystyle a\Theta_{2}+\Theta_{2}a^{{\rm T}}+bJ_{2}b^{{\rm T}}+e\widetilde{J}_{1}e^{{\rm T}} =0,\displaystyle=0, (32)
cΘ2+dJ2bT\displaystyle c\Theta_{2}+dJ_{2}b^{{\rm T}} =0,\displaystyle=0, (33)

with the PR constraints (32), (33) on the controller matrices aa, bb, cc, ee (the matrix dd is fixed as mentioned before) being the distinctive feature of coherent quantum control formulations.

The matrices 𝒜\mathcal{A}, \mathcal{B} of the closed-loop system (24), expressed through the energy and coupling parameters by substituting (26)–(29) into (25), also satisfy PR conditions:

𝒜Θ+Θ𝒜T+JT=0,\mathcal{A}\Theta+\Theta\mathcal{A}^{{\rm T}}+\mathcal{B}J\mathcal{B}^{{\rm T}}=0, (34)

which are similar to (30), (32) and secure the preservation of the CCRs (9). Here, JJ from (5) is the CCR matrix for the combined quantum Wiener process 𝒲\mathcal{W} in (2). While the gain matrices bb, ee of an arbitrary coherent quantum controller in (28), (29) (related by linear bijections to the coupling matrices M2M_{2}, L2L_{2} since detΘ20\det\Theta_{2}\neq 0) are independent, the matrices aa, cc of such a controller are parameterized by the triple (R2,b,e)𝕊n×n×m2×n×p1(R_{2},b,e)\in{\mathbb{S}}_{n}\times{\mathbb{R}}^{n\times m_{2}}\times{\mathbb{R}}^{n\times p_{1}} as

a\displaystyle a =2Θ2R212(bJ2bT+eJ~1eT)Θ21,\displaystyle=2\Theta_{2}R_{2}-\frac{1}{2}(bJ_{2}b^{{\rm T}}+e\widetilde{J}_{1}e^{{\rm T}})\Theta_{2}^{-1}, (35)
c\displaystyle c =dJ2bTΘ21\displaystyle=-dJ_{2}b^{{\rm T}}\Theta_{2}^{-1} (36)

(see Vladimirov & Petersen (2013a)). The relations (35), (36) couple the matrices aa, cc to bb, ee, thus making the stabilization of the closed-loop system and the optimization of the coherent quantum controller (16), (17) qualitatively different from the classical control problems (irrespective of performance criteria). In particular, (36) shows that an “inflow” of the external quantum noise ω\omega (through a nonzero gain matrix bb) is essential in order for such a controller to produce a useful output η\eta with a nonzero drift vector ζ\zeta in (21). At the same time, due to (18) and the structure of J2𝔸m2J_{2}\in{\mathbb{A}}_{m_{2}}, Θ2𝔸n\Theta_{2}\in{\mathbb{A}}_{n} (satisfying J22=Im2J_{2}^{2}=-I_{m_{2}} and detΘ20\det\Theta_{2}\neq 0) the linear map n×m2bcp2×n{\mathbb{R}}^{n\times m_{2}}\ni b\mapsto c\in{\mathbb{R}}^{p_{2}\times n} in (36) is surjective, so that any value of cc can be achieved by an appropriate choice of bb (for example, as b=Θ2cTdJ2b=\Theta_{2}c^{\rm T}dJ_{2}).

The PR conditions (32), (33) impose constraints on the controller matrices aa, bb, cc, ee even if the CCR matrix Θ2𝔸n\Theta_{2}\in{\mathbb{A}}_{n} is not specified. More precisely, if aa has no centrally symmetric eigenvalues about the origin, and hence, the Kronecker sum aa:=Ina+aIna\oplus a:=I_{n}\otimes a+a\otimes I_{n} is nonsingular, then Θ2\Theta_{2} is recovered from (32) in terms of the vectorization vec(Θ2)=(aa)1vec(bJ2bT+eJ~1eT)\mathrm{vec}(\Theta_{2})=-(a\oplus a)^{-1}\mathrm{vec}(bJ_{2}b^{{\rm T}}+e\widetilde{J}_{1}e^{{\rm T}}), and its substitution into (36) (assuming that detΘ20\det\Theta_{2}\neq 0) makes the controller output matrix cc a function of aa, bb, ee.

4 CQLQG control problem

Similarly to classical LQG control, the performance of the closed-loop quantum system (24) is described by the infinite-horizon mean square cost

V:=12limT+(1T0T𝐄(𝒵(t)T𝒵(t))dt)=12𝒞T𝒞,𝒫V\!:=\!\frac{1}{2}\lim_{T\to+\infty}\Big{(}\frac{1}{T}\int_{0}^{T}\mathbf{E}(\mathcal{Z}(t)^{{\rm T}}\mathcal{Z}(t)){\rm d}t\Big{)}\!=\frac{1}{2}\langle\mathcal{C}^{{\rm T}}\mathcal{C},\mathcal{P}\rangle\!\!\! (37)

(Nurdin, James & Petersen (2009)), where ,\langle\cdot,\cdot\rangle is the Frobenius inner product of matrices (Horn & Johnson (2007)), and

𝒫:=limT+(1T0TRe𝐄(𝒳(t)𝒳(t)T)dt).\mathcal{P}:=\lim_{T\to+\infty}\Big{(}\frac{1}{T}\int_{0}^{T}\mathrm{Re}\mathbf{E}(\mathcal{X}(t)\mathcal{X}(t)^{\rm T}){\rm d}t\Big{)}. (38)

The quantum expectation 𝐄φ:=Tr(ρφ)\mathbf{E}\varphi:=\mathrm{Tr}(\rho\varphi) is over the density operator ρ:=ρ0υ\rho:=\rho_{0}\otimes\upsilon on the system-field space \mathfrak{H} in (7), where ρ0\rho_{0} is the initial plant-controller quantum state on 0\mathfrak{H}_{0}, and υ\upsilon is the vacuum field state on the Fock space 𝔉\mathfrak{F}. The limits in (37), (38) exist whenever the initial plant and controller variables have finite second moments, 𝐄(𝒳(0)T𝒳(0))<+\mathbf{E}(\mathcal{X}(0)^{\rm T}\mathcal{X}(0))<+\infty, and the closed-loop system is internally stable (the matrix 𝒜\mathcal{A} in (25) is Hurwitz). In this case, 𝒫\mathcal{P} is the controllability Gramian of the pair (𝒜,)(\mathcal{A},\mathcal{B}): 𝒫=0+et𝒜Tet𝒜Tdt\mathcal{P}=\int_{0}^{+\infty}{\rm e}^{t\mathcal{A}}\mathcal{B}\mathcal{B}^{{\rm T}}{\rm e}^{t\mathcal{A}^{{\rm T}}}{\rm d}t, found uniquely from the ALE

𝒜𝒫+𝒫𝒜T+T=0.\mathcal{A}\mathcal{P}+\mathcal{P}\mathcal{A}^{\rm T}+\mathcal{B}\mathcal{B}^{\rm T}=0. (39)

Up to the factor of 12\frac{1}{2}, the cost VV in (37) is the squared 2\mathcal{H}_{2}-norm of a strictly proper transfer function with the state-space realization triple (𝒜,,𝒞)(\mathcal{A},\mathcal{B},\mathcal{C}). The CCR matrix Im𝐄(𝒳𝒳T)=Θ\mathrm{Im}\mathbf{E}(\mathcal{X}\mathcal{X}^{\rm T})=\Theta from (9) does not contribute to (37) since the subspaces 𝕊n{\mathbb{S}}_{n}, 𝔸n{\mathbb{A}}_{n} in n×n{\mathbb{R}}^{n\times n} are orthogonal in the sense of ,\langle\cdot,\cdot\rangle. The unique solution 𝒮:=𝒫+iΘ=0+et𝒜ΩTet𝒜Tdt0{\mathcal{S}}:=\mathcal{P}+i\Theta=\int_{0}^{+\infty}{\rm e}^{t\mathcal{A}}\mathcal{B}\Omega\mathcal{B}^{{\rm T}}{\rm e}^{t\mathcal{A}^{{\rm T}}}{\rm d}t\succcurlyeq 0 of the ALE 𝒜𝒮+𝒮𝒜T+ΩT=0\mathcal{A}{\mathcal{S}}+{\mathcal{S}}\mathcal{A}^{\rm T}+\mathcal{B}\Omega\mathcal{B}^{\rm T}=0 (which combines (34), (39)), is the quantum covariance matrix of the invariant zero-mean Gaussian state (Parthasarathy (2010)) for the closed-loop system variables.

The CQLQG control problem (Nurdin, James & Petersen (2009)) is formulated as the minimization

VinfV\to\inf (40)

of the cost (37) over the controller matrices aa, bb, cc, ee subject to the PR constraints (32), (33) and the internal stability condition that 𝒜\mathcal{A} in (25) is Hurwitz. Although the CCR matrix Θ2\Theta_{2} of the controller variables in this problem is usually fixed, there is a certain freedom in its choice, which is exploited in what follows.

5 Swapping in Controller Variables

For any nonsingular matrix σn×n\sigma\in{\mathbb{R}}^{n\times n}, the transformation

ξσξ,Θ2σΘ2σT\xi\mapsto\sigma\xi,\qquad\Theta_{2}\mapsto\sigma\Theta_{2}\sigma^{\rm T} (41)

of the controller variables and their CCR matrix in (9), with the energy and coupling matrices of the controller in (28), (29) being transformed as R2σTR2σ1R_{2}\mapsto\sigma^{-{\rm T}}R_{2}\sigma^{-1}, M2M2σ1M_{2}\mapsto M_{2}\sigma^{-1}, L2L2σ1L_{2}\mapsto L_{2}\sigma^{-1} (where ()T:=(()1)T(\cdot)^{-{\rm T}}:=((\cdot)^{-1})^{\rm T}), does not affect the transfer function of the controller, and hence, the cost VV in (37) remains unchanged. Indeed, the matrices 𝒞\mathcal{C}, 𝒫\mathcal{P} in (25), (38) are transformed by (41) as 𝒞𝒞[In00σ1]\mathcal{C}\mapsto\mathcal{C}{\scriptsize\begin{bmatrix}I_{n}&0\\ 0&\sigma^{-1}\end{bmatrix}} and 𝒫[In00σ]𝒫[In00σT]\mathcal{P}\mapsto{\scriptsize\begin{bmatrix}I_{n}&0\\ 0&\sigma\end{bmatrix}}\mathcal{P}{\scriptsize\begin{bmatrix}I_{n}&0\\ 0&\sigma^{\rm T}\end{bmatrix}}, whereby 𝒞𝒫𝒞T\mathcal{C}\mathcal{P}\mathcal{C}^{\rm T} remains the same and so also does 𝒞T𝒞,𝒫=Tr(𝒞𝒫𝒞T)\langle\mathcal{C}^{\rm T}\mathcal{C},\mathcal{P}\rangle=\mathrm{Tr}(\mathcal{C}\mathcal{P}\mathcal{C}^{\rm T}) in (37), thus implying the invariance of VV. However, (41) can be used in order to assign a given CCR matrix to the controller variables (which is invariant only under the Lie group of symplectic similarity transformations identified with the set Sp(Θ2)\mathrm{Sp}(\Theta_{2}) of matrices σ\sigma satisfying σΘ2σT=Θ2\sigma\Theta_{2}\sigma^{\rm T}=\Theta_{2}). Since the same also applies to the plant variables, there exist nonsingular matrices σ1,σ2n×n\sigma_{1},\sigma_{2}\in{\mathbb{R}}^{n\times n} which convert the nonsingular CCR matrices Θ1\Theta_{1}, Θ2\Theta_{2} to a canonical form:

σ1Θ1σ1T=σ2Θ2σ2T=12In/2𝐉=:Υ,\sigma_{1}\Theta_{1}\sigma_{1}^{\rm T}=\sigma_{2}\Theta_{2}\sigma_{2}^{\rm T}=\frac{1}{2}I_{n/2}\otimes\mathbf{J}=:\Upsilon, (42)

with 𝐉\mathbf{J} from (4). The matrix Υ\Upsilon is the CCR matrix for n2\frac{n}{2} conjugate position-momentum pairs (𝔮k,𝔭k)(\mathfrak{q}_{k},\mathfrak{p}_{k}) (with commutativity between them) assembled into a vector 𝔯\mathfrak{r} as

𝔯:=[𝔯1𝔯n/2],𝔯k:=[𝔮k𝔭k],\mathfrak{r}:={\begin{bmatrix}\mathfrak{r}_{1}\\ \vdots\\ \mathfrak{r}_{n/2}\end{bmatrix}},\quad\mathfrak{r}_{k}:={\begin{bmatrix}\mathfrak{q}_{k}\\ \mathfrak{p}_{k}\end{bmatrix}}, (43)

so that [𝔯,𝔯T]=2iΥ[\mathfrak{r},\mathfrak{r}^{\rm T}]=2i\Upsilon, or equivalently, [𝔯j,𝔯kT]=iδjk𝐉[\mathfrak{r}_{j},\mathfrak{r}_{k}^{\rm T}]=i\delta_{jk}\mathbf{J} for all j,k=1,,n2j,k=1,\ldots,\frac{n}{2}, where δjk\delta_{jk} is the Kronecker delta. By swapping the positions 𝔮k\mathfrak{q}_{k} and momenta 𝔭k\mathfrak{p}_{k} in (43), the vector 𝔯\mathfrak{r} is transformed as 𝔯σ3𝔯\mathfrak{r}\mapsto\sigma_{3}\mathfrak{r}, with σ3:=In/2[0110],\sigma_{3}:=I_{n/2}\otimes{\scriptsize\begin{bmatrix}0&1\\ 1&0\end{bmatrix}}, and acquires the CCR matrix σ3Υσ3T=Υ\sigma_{3}\Upsilon\sigma_{3}^{\rm T}=-\Upsilon in view of (42). Therefore, the transformation matrix σ:=σ11σ3σ2\sigma:=\sigma_{1}^{-1}\sigma_{3}\sigma_{2} leads to σΘ2σT=σ11σ3σ2Θ2σ2Tσ3Tσ1T=σ11Υσ1T=Θ1\sigma\Theta_{2}\sigma^{\rm T}=\sigma_{1}^{-1}\sigma_{3}\sigma_{2}\Theta_{2}\sigma_{2}^{\rm T}\sigma_{3}^{\rm T}\sigma_{1}^{-{\rm T}}=-\sigma_{1}^{-1}\Upsilon\sigma_{1}^{-{\rm T}}=-\Theta_{1}. This transformation allows the controller variables ξ1,,ξn\xi_{1},\ldots,\xi_{n} to be assumed for what follows (without loss of generality, except for the condition detΘ20\det\Theta_{2}\neq 0) to have the CCR matrix

Θ2=Θ1.\Theta_{2}=-\Theta_{1}. (44)

The same effect can be achieved by the mirror reflections (𝔮k,𝔭k)(𝔮k,𝔭k)(\mathfrak{q}_{k},\mathfrak{p}_{k})\mapsto(\mathfrak{q}_{k},-\mathfrak{p}_{k}) as in (Simon (2000)). The relation (44) leads to commutativity between the entries (taken at the same moment of time) of an auxiliary quantum process

ϵ:=xξ,\epsilon:=x-\xi, (45)

which corresponds to the plant state estimation error in the case of classical optimal LQG controllers satisfying the separation principle (Kwakernaak & Sivan (1972)). More precisely, in view of (9), under the condition (44), the one-point CCR matrix of the difference process ϵ\epsilon is zero:

[ϵ,ϵT]\displaystyle[\epsilon,\epsilon^{\rm T}] =[x,xT][x,ξT][ξ,xT]+[ξ,ξT]\displaystyle=[x,x^{\rm T}]-[x,\xi^{\rm T}]-[\xi,x^{\rm T}]+[\xi,\xi^{\rm T}]
=2i(Θ1+Θ2)=0.\displaystyle=2i(\Theta_{1}+\Theta_{2})=0. (46)

Nevertheless, ϵ\epsilon is a substantially quantum process since [x,ϵT]=[x,xT][x,ξT]=2iΘ10[x,\epsilon^{\rm T}]=[x,x^{\rm T}]-[x,\xi^{\rm T}]=2i\Theta_{1}\neq 0 and also because (46) describes only the one-point CCRs for ϵ\epsilon, which does not prevent the two-point commutator matrix [ϵ(s),ϵ(t)T][\epsilon(s),\epsilon(t)^{\rm T}] from being nonzero at different moments of time sts\neq t. The one-point CCRs for the processes ϵ\epsilon, ξ\xi take the form

[𝖷,𝖷T]=2iΞ,Ξ:=SΘST=[0Θ1Θ1Θ1],[\mathsf{X},\mathsf{X}^{\rm T}]=2i\Xi,\qquad\Xi:=S\Theta S^{\rm T}={\begin{bmatrix}0&\Theta_{1}\\ \Theta_{1}&-\Theta_{1}\end{bmatrix}}, (47)

where

𝖷:=[ϵξ]=S𝒳,S:=[InIn0In]\mathsf{X}:={\begin{bmatrix}\epsilon\\ \xi\end{bmatrix}}=S\mathcal{X},\qquad S:={\begin{bmatrix}I_{n}&-I_{n}\\ 0&I_{n}\end{bmatrix}} (48)

use the augmented vector 𝒳\mathcal{X} of system variables from (8).

6 Luenberger Type Controller Dynamics

Consider a class of coherent quantum controllers of Luenberger type (Luenberger (1966)), whose internal dynamics (16) is represented as

dξ=Aξdt+bdω+e(dyCξdt)+Ecξdt,{\rm d}\xi=A\xi{\rm d}t+b{\rm d}\omega+e({\rm d}y-C\xi{\rm d}t)+Ec\xi{\rm d}t, (49)

in accordance with the plant dynamics (10), (11) and the structure of the controller output (17). The Luenberger structure (49) imposes an additional constraint on the controller matrix aa:

a=AeC+Ec.a=A-eC+Ec. (50)

In this case, it is convenient to describe the closed-loop system dynamics in terms of the quantum processes ϵ\epsilon from (45) and ξ\xi. Since they are related to the vector 𝒳\mathcal{X} in (8) by (48), the matrix 𝒜\mathcal{A} in (25) is transformed to a block lower triangular form

𝖠:=\displaystyle\mathsf{A}:= S𝒜S1=[InIn0In][AEceCa][InIn0In]\displaystyle S\mathcal{A}S^{-1}={\begin{bmatrix}I_{n}&-I_{n}\\ 0&I_{n}\end{bmatrix}}{\begin{bmatrix}A&Ec\\ eC&a\end{bmatrix}}{\begin{bmatrix}I_{n}&I_{n}\\ 0&I_{n}\end{bmatrix}}
=\displaystyle= [AeCAeC+EcaeCeC+a]=[AeC0eCA+Ec],\displaystyle{\begin{bmatrix}A-eC&A-eC+Ec-a\\ eC&eC+a\end{bmatrix}}={\begin{bmatrix}A-eC&0\\ eC&A+Ec\end{bmatrix}}, (51)

where the last equality uses the Luenberger structure (50) of the matrix aa. The matrices \mathcal{B}, 𝒞\mathcal{C} in (25) are transformed to

𝖡\displaystyle\mathsf{B} :=S=[InIn0In][BEdeDb]=[BeDEdbeDb],\displaystyle:=S\mathcal{B}={\begin{bmatrix}I_{n}&-I_{n}\\ 0&I_{n}\end{bmatrix}}{\begin{bmatrix}B&Ed\\ eD&b\end{bmatrix}}={\begin{bmatrix}B-eD&Ed-b\\ eD&b\end{bmatrix}},\!\!\! (52)
𝖢\displaystyle\mathsf{C} :=𝒞S1=[FGc][InIn0In]=[FF+Gc].\displaystyle:=\mathcal{C}S^{-1}={\begin{bmatrix}F&Gc\end{bmatrix}}{\begin{bmatrix}I_{n}&I_{n}\\ 0&I_{n}\end{bmatrix}}={\begin{bmatrix}F&F+Gc\end{bmatrix}}. (53)

The blocks of the matrices 𝖠\mathsf{A}, 𝖡\mathsf{B}, 𝖢\mathsf{C} in (51)–(53) describe the coefficients of the QSDEs for the processes ϵ\epsilon in (45), ξ\xi in (49) and 𝒵\mathcal{Z} in (24):

dϵ\displaystyle{\rm d}\epsilon =(AeC)ϵdt+(BeD)dw+(Edb)dω,\displaystyle=(A-eC)\epsilon{\rm d}t+(B-eD){\rm d}w+(Ed-b){\rm d}\omega, (54)
dξ\displaystyle{\rm d}\xi =(eCϵ+(A+Ec)ξ)dt+eDdw+bdω,\displaystyle=(eC\epsilon+(A+Ec)\xi){\rm d}t+eD{\rm d}w+b{\rm d}\omega, (55)
𝒵\displaystyle\mathcal{Z} =Fϵ+(F+Gc)ξ.\displaystyle=F\epsilon+(F+Gc)\xi. (56)

The QSDE (54) for the process ϵ\epsilon is autonomous (does not involve ξ\xi) since the matrix 𝖠\mathsf{A} in (51) is block lower triangular. The latter makes the internal stability of the closed-loop system equivalent to the Hurwitz property of the matrices AeCA-eC and A+EcA+Ec, as in the classical case. In order for these two conditions to be satisfied, it is necessary that the pair (A,C)(A,C) is detectable and (A,E)(A,E) is stabilizable. However, in the quantum case being considered,

A+Ec=A+EdJ2bTΘ11A+Ec=A+EdJ_{2}b^{\rm T}\Theta_{1}^{-1} (57)

is a function of bb, obtained by substituting (44) into (36), with

c=dJ2bTΘ11.c=dJ_{2}b^{\rm T}\Theta_{1}^{-1}. (58)

As a result, the fulfillment of the classical detectability and stabilizability conditions does not guarantee the existence of controller gain matrices bb, ee which make AeCA-eC and A+EcA+Ec in (57) Hurwitz, since the Luenberger structure (50), combined with the PR conditions, leads to the following constraint on bb, ee.

Theorem 1

For the coherent quantum controller (16), (17) with the Luenberger structure (49), (50) and the CCR matrix Θ2\Theta_{2} in (44), the controller gain matrices bb, ee are constrained by

(BeD)J1(BeD)T+(Edb)J2(Edb)T=0.(B-eD)J_{1}(B-eD)^{\rm T}+(Ed-b)J_{2}(Ed-b)^{\rm T}=0. (59)
{pf}

From (44), (50) and the second PR conditions (31), (33) for the plant and the controller, it follows that

aΘ2\displaystyle a\Theta_{2} =(AeC+Ec)Θ2=AΘ1+eCΘ1+EcΘ2\displaystyle=(A-eC+Ec)\Theta_{2}=-A\Theta_{1}+eC\Theta_{1}+Ec\Theta_{2}
=AΘ1eDJ1BTEdJ2bT.\displaystyle=-A\Theta_{1}-eDJ_{1}B^{\rm T}-EdJ_{2}b^{\rm T}. (60)

By using (60) and the antisymmetry of the matrices Θ1\Theta_{1}, J1J_{1}, J2J_{2} along with the first PR condition (30) for the plant, the first PR condition (32) for the controller takes the form

0=\displaystyle 0= aΘ2+Θ2aT+bJ2bT+eJ~1eT\displaystyle a\Theta_{2}+\Theta_{2}a^{\rm T}+bJ_{2}b^{\rm T}+e\widetilde{J}_{1}e^{\rm T}
=\displaystyle= AΘ1eDJ1BTEdJ2bT\displaystyle-A\Theta_{1}-eDJ_{1}B^{\rm T}-EdJ_{2}b^{\rm T}
Θ1ATBJ1DTeTbJ2dTET+bJ2bT+eJ~1eT\displaystyle-\Theta_{1}A^{\rm T}-BJ_{1}D^{\rm T}e^{\rm T}-bJ_{2}d^{\rm T}E^{\rm T}+bJ_{2}b^{\rm T}+e\widetilde{J}_{1}e^{\rm T}
=\displaystyle= BJ1BT+EJ~2ETeDJ1BTEdJ2bT\displaystyle BJ_{1}B^{\rm T}+E\widetilde{J}_{2}E^{\rm T}-eDJ_{1}B^{\rm T}-EdJ_{2}b^{\rm T}
BJ1DTeTbJ2dTET+bJ2bT+eJ~1eT\displaystyle-BJ_{1}D^{\rm T}e^{\rm T}-bJ_{2}d^{\rm T}E^{\rm T}+bJ_{2}b^{\rm T}+e\widetilde{J}_{1}e^{\rm T}
=\displaystyle= (BeD)J1(BeD)T+(Edb)J2(Edb)T\displaystyle(B-eD)J_{1}(B-eD)^{\rm T}+(Ed-b)J_{2}(Ed-b)^{\rm T}

(with J~1\widetilde{J}_{1}, J~2\widetilde{J}_{2} from (13), (19)), thus establishing (59). \blacksquare

The relation (59) is equivalent to the preservation of the CCRs (46) for the process ϵ\epsilon by the QSDE (54), which can also be seen from the first diagonal (n×n)(n\times n)-block of the relation 𝖠Ξ+Ξ𝖠T+𝖡J𝖡T=0\mathsf{A}\Xi+\Xi\mathsf{A}^{{\rm T}}+\mathsf{B}J\mathsf{B}^{{\rm T}}=0 obtained by representing (34) in terms of the matrices Ξ\Xi, 𝖠\mathsf{A}, 𝖡\mathsf{B} from (47), (51), (52).

Now, by assembling the controller gain matrices bb, ee into

γ:=[be]n×(m2+p1)\gamma:=\begin{bmatrix}b&e\end{bmatrix}\in{\mathbb{R}}^{n\times(m_{2}+p_{1})} (61)

and using JJ from (5), the condition (59) is represented as

f(γ):=(ΓγΔ)J(ΓγΔ)T=0,f(\gamma):=(\Gamma-\gamma\Delta)J(\Gamma-\gamma\Delta)^{\rm T}=0, (62)

where the matrices

Γ:=[BEd],Δ:=[0Im2D0]\Gamma:=\begin{bmatrix}B&&Ed\end{bmatrix},\qquad\Delta:={\begin{bmatrix}0&I_{m_{2}}\\ D&0\end{bmatrix}} (63)

are associated with the plant gain and feedthrough matrices BB, EE, DD and the controller feedthrough matrix dd (which are fixed). Completion of the square in (62) yields

f(γ)\displaystyle f(\gamma) =ΓJΓTγΔJΓTΓJΔTγT+γKγT\displaystyle=\Gamma J\Gamma^{\rm T}-\gamma\Delta J\Gamma^{\rm T}-\Gamma J\Delta^{\rm T}\gamma^{\rm T}+\gamma K\gamma^{\rm T}
=(γγ0)K(γγ0)T+\displaystyle=(\gamma-\gamma_{0})K(\gamma-\gamma_{0})^{\rm T}+\mho
=(bb0)J2(bb0)T+(ee0)J~1(ee0)T+,\displaystyle=(b-b_{0})J_{2}(b-b_{0})^{\rm T}+(e-e_{0})\widetilde{J}_{1}(e-e_{0})^{\rm T}+\mho, (64)

where

γ0\displaystyle\gamma_{0} :=ΓJΔTK=[b0e0],b0:=Ed,e0:=BJ1DTJ~1,\displaystyle:=-\Gamma J\Delta^{\rm T}K=\begin{bmatrix}b_{0}&e_{0}\end{bmatrix},\ b_{0}:=Ed,\ e_{0}:=-BJ_{1}D^{\rm T}\widetilde{J}_{1},\!\! (65)
\displaystyle\mho :=Γ(J+JΔTKΔJ)ΓT,\displaystyle:=\Gamma(J+J\Delta^{\rm T}K\Delta J)\Gamma^{\rm T}, (66)

and use is made of an orthogonal real antisymmetric matrix

K:=ΔJΔT=[J200J~1]=I(m2+p1)/2𝐉K:=\Delta J\Delta^{\rm T}={\begin{bmatrix}J_{2}&0\\ 0&\widetilde{J}_{1}\end{bmatrix}}=I_{(m_{2}+p_{1})/2}\otimes\mathbf{J} (67)

(so that K2=Im2+p1K^{2}=-I_{m_{2}+p_{1}}), computed with the aid of (4), (5), (13), (63). Similarly to (6), (14), (20), the matrix KK specifies the joint CCRs for the controller noise ω\omega and the plant output yy as [[dωdy],[dωdy]T]=2iKdt\Big{[}{\scriptsize\begin{bmatrix}{\rm d}\omega\\ {\rm d}y\end{bmatrix}},{\scriptsize\begin{bmatrix}{\rm d}\omega\\ {\rm d}y\end{bmatrix}}^{\rm T}\Big{]}=2iK{\rm d}t. In view of (62), (64), all the pairs (b,e)(b,e) satisfying (59) and organised as in (61) are described by the inclusion

γ(K,)+γ0,\gamma\in\mathfrak{Z}(K,\mho)+\gamma_{0}, (68)

where, for any given matrix α𝔸n\alpha\in{\mathbb{A}}_{n}, the set

(K,α):={βn×(m2+p1):βKβT+α=0}\mathfrak{Z}(K,\alpha):=\{\beta\in{\mathbb{R}}^{n\times(m_{2}+p_{1})}:\ \beta K\beta^{{\rm T}}+\alpha=0\} (69)

is invariant under the right multiplication of its elements by symplectic matrices σSp(K)\sigma\in\mathrm{Sp}(K) (whereby any β(K,α)\beta\in\mathfrak{Z}(K,\alpha) is converted to βσ(K,α)\beta\sigma\in\mathfrak{Z}(K,\alpha) since βσK(βσ)T=βKβT=α\beta\sigma K(\beta\sigma)^{\rm T}=\beta K\beta^{{\rm T}}=-\alpha).

Theorem 2

In addition to the assumptions of Theorem 1, suppose the dimensions m2m_{2}, p1p_{1} of the controller noise and the plant output are large enough in the sense that

m2+p1n.m_{2}+p_{1}\geqslant n. (70)

Then the controller gain matrices bb, ee satisfying (59) exist and are described by (68) in terms of (61), (63), (65)–(67).

{pf}

By Lemma 4 of Appendix A applied to solvability of the equation βKβT=\beta K\beta^{\rm T}=-\mho with 𝔸n\mho\in{\mathbb{A}}_{n} from (66) and the nonsingular matrix K𝔸m2+p1K\in{\mathbb{A}}_{m_{2}+p_{1}} in (67), the condition (70) implies that the set (K,)\mathfrak{Z}(K,\mho) in (68) is nonempty. \blacksquare

Since the set (K,)+γ0\mathfrak{Z}(K,\mho)+\gamma_{0} (whose nonemptiness is guaranteed by (70)) is not an affine subspace, the existence of pairs (b,e)(b,e), which satisfy (68) and make the matrices AeCA-eC and A+EcA+Ec in (57) Hurwitz, is a nontrivial open problem. In this regard, the following decompositions of the set (69) can appear to be useful:

(K,α)\displaystyle\mathfrak{Z}(K,\alpha) =bn×m2{[be]:e(J~1,bJ2bT+α)}\displaystyle=\bigcup_{b\in{\mathbb{R}}^{n\times m_{2}}}\{\begin{bmatrix}b&e\end{bmatrix}:e\in\mathfrak{Z}(\widetilde{J}_{1},bJ_{2}b^{\rm T}+\alpha)\}
=en×p1{[be]:b(J2,eJ~1eT+α)},\displaystyle=\bigcup_{e\in{\mathbb{R}}^{n\times p_{1}}}\{\begin{bmatrix}b&e\end{bmatrix}:b\in\mathfrak{Z}(J_{2},e\widetilde{J}_{1}e^{\rm T}+\alpha)\}, (71)

which are obtained from (64), provided at least one of the conditions m2nm_{2}\geqslant n or p1np_{1}\geqslant n holds (each of them is stronger than (70)). For example, if p1np_{1}\geqslant n, application of Lemma 4 shows that the set (J~1,βJ2βT+α)\mathfrak{Z}(\widetilde{J}_{1},\beta J_{2}\beta^{\rm T}+\alpha) on the right-hand side of the first equality in (71) is nonempty for any βn×m2\beta\in{\mathbb{R}}^{n\times m_{2}}. In this case, the stabilization part of the CQLQG control problem in the class of coherent quantum controllers with Luenberger dynamics is equivalent to finding a matrix bn×m2b\in{\mathbb{R}}^{n\times m_{2}} such that the matrix A+EcA+Ec in (57) is Hurwitz (provided (A,E)(A,E) is stabilizable) and the nonempty set (J~1,(bb0)J2(bb0)T+)+e0\mathfrak{Z}(\widetilde{J}_{1},(b-b_{0})J_{2}(b-b_{0})^{\rm T}+\mho)+e_{0} contains a matrix en×p1e\in{\mathbb{R}}^{n\times p_{1}} which makes AeCA-eC Hurwitz, provided (A,C)(A,C) is detectable.

7 Necessary Conditions of Optimality

For the class of coherent quantum controllers with Luenberger dynamics (49), (50), the CQLQG control problem (40) reduces to minimising the mean square cost VV in (37) over the controller gain matrices bn×m2b\in{\mathbb{R}}^{n\times m_{2}}, en×p1e\in{\mathbb{R}}^{n\times p_{1}} subject to the constraint (59) along with the internal stability condition that AeCA-eC and A+EcA+Ec in (57) are Hurwitz. The first-order necessary conditions of optimality for such controllers are those of stationarity for the Lagrange function n×(m2+p1)×𝔸n(γ,λ){\mathbb{R}}^{n\times(m_{2}+p_{1})}\times{\mathbb{A}}_{n}\ni(\gamma,\lambda)\mapsto\mathcal{L}\in{\mathbb{R}} given by

:=V+12λ,f(γ),\mathcal{L}:=V+\frac{1}{2}\langle\lambda,f(\gamma)\rangle, (72)

where the matrix γ\gamma is defined by (61), and λ\lambda is a Lagrange multiplier pertaining to the representation (62) of the constraint (59) whose left-hand side is 𝔸n{\mathbb{A}}_{n}-valued. The LQG cost VV in (37), which is invariant under the transformation 𝒳𝖷\mathcal{X}\mapsto\mathsf{X} of the system variables in (48), can be computed for any stabilizing Luenberger controller as

V=12𝖢T𝖢,𝖯=12𝖡𝖡T,𝖰=𝖠,𝖧.V=\frac{1}{2}\langle\mathsf{C}^{{\rm T}}\mathsf{C},\mathsf{P}\rangle=\frac{1}{2}\langle\mathsf{B}\mathsf{B}^{{\rm T}},\mathsf{Q}\rangle=-\langle\mathsf{A},\mathsf{H}\rangle. (73)

Here, 𝖯\mathsf{P}, 𝖰\mathsf{Q} are the controllability and observability Gramians for the matrix triple (𝖠,𝖡,𝖢)(\mathsf{A},\mathsf{B},\mathsf{C}) in (51)–(53), satisfying the ALEs

𝖠𝖯+𝖯𝖠T+𝖡𝖡T=0,𝖠T𝖰+𝖰𝖠+𝖢T𝖢=0\mathsf{A}\mathsf{P}+\mathsf{P}\mathsf{A}^{{\rm T}}+\mathsf{B}\mathsf{B}^{{\rm T}}=0,\qquad\mathsf{A}^{{\rm T}}\mathsf{Q}+\mathsf{Q}\mathsf{A}+\mathsf{C}^{{\rm T}}\mathsf{C}=0 (74)

and giving rise to the Hankelian

𝖧:=𝖰𝖯,\mathsf{H}:=\mathsf{Q}\mathsf{P}, (75)

which is a diagonalizable matrix whose eigenvalues are the squared Hankel singular values (Kwakernaak & Sivan (1972)). The matrices 𝖯\mathsf{P}, 𝖰\mathsf{Q}, 𝖧\mathsf{H} (and related matrices) are split into blocks ()jk(\cdot)_{jk}, block rows ()j(\cdot)_{j\bullet} and block columns ()k(\cdot)_{\bullet k}, with j,k=1,2j,k=1,2, in accordance with the partitioning of the matrices 𝖠\mathsf{A}, 𝖡\mathsf{B}, 𝖢\mathsf{C} into blocks 𝖠jk\mathsf{A}_{jk}, 𝖡jk\mathsf{B}_{jk}, 𝖢k\mathsf{C}_{k} (for example, 𝖠11=AeC\mathsf{A}_{11}=A-eC, 𝖡21=eD\mathsf{B}_{21}=eD and 𝖢2=F+Gc\mathsf{C}_{2}=F+Gc). The block lower triangular structure of the matrix 𝖠\mathsf{A} in (51) (with 𝖠12=0\mathsf{A}_{12}=0) allows the ALEs (74) to be represented as

𝖠11𝖯11+𝖯11𝖠11T+𝖡1𝖡1T=0,\displaystyle\mathsf{A}_{11}\mathsf{P}_{11}+\mathsf{P}_{11}\mathsf{A}_{11}^{\rm T}+\mathsf{B}_{1\bullet}\mathsf{B}_{1\bullet}^{\rm T}=0, (76)
𝖠11𝖯12+𝖯11𝖠21T+𝖯12𝖠22T+𝖡1𝖡2T=0,\displaystyle\mathsf{A}_{11}\mathsf{P}_{12}+\mathsf{P}_{11}\mathsf{A}_{21}^{\rm T}+\mathsf{P}_{12}\mathsf{A}_{22}^{\rm T}+\mathsf{B}_{1\bullet}\mathsf{B}_{2\bullet}^{\rm T}=0, (77)
𝖠21𝖯12+𝖠22𝖯22+𝖯21𝖠21T+𝖯22𝖠22T+𝖡2𝖡2T=0,\displaystyle\mathsf{A}_{21}\mathsf{P}_{12}+\mathsf{A}_{22}\mathsf{P}_{22}+\mathsf{P}_{21}\mathsf{A}_{21}^{\rm T}+\mathsf{P}_{22}\mathsf{A}_{22}^{\rm T}+\mathsf{B}_{2\bullet}\mathsf{B}_{2\bullet}^{\rm T}=0, (78)
𝖠11T𝖰11+𝖠21T𝖰21+𝖰11𝖠11+𝖰12𝖠21+𝖢1T𝖢1=0,\displaystyle\mathsf{A}_{11}^{\rm T}\mathsf{Q}_{11}+\mathsf{A}_{21}^{\rm T}\mathsf{Q}_{21}+\mathsf{Q}_{11}\mathsf{A}_{11}+\mathsf{Q}_{12}\mathsf{A}_{21}+\mathsf{C}_{1}^{\rm T}\mathsf{C}_{1}=0, (79)
𝖠22T𝖰21+𝖰21𝖠11+𝖰22𝖠21+𝖢2T𝖢1=0,\displaystyle\mathsf{A}_{22}^{\rm T}\mathsf{Q}_{21}+\mathsf{Q}_{21}\mathsf{A}_{11}+\mathsf{Q}_{22}\mathsf{A}_{21}+\mathsf{C}_{2}^{\rm T}\mathsf{C}_{1}=0, (80)
𝖠22T𝖰22+𝖰22𝖠22+𝖢2T𝖢2=0.\displaystyle\mathsf{A}_{22}^{\rm T}\mathsf{Q}_{22}+\mathsf{Q}_{22}\mathsf{A}_{22}+\mathsf{C}_{2}^{\rm T}\mathsf{C}_{2}=0. (81)

For any stabilising Luenberger controller, the blocks 𝖯11,𝖯12=𝖯21T,𝖯22n×n\mathsf{P}_{11},\mathsf{P}_{12}=\mathsf{P}_{21}^{\rm T},\mathsf{P}_{22}\in{\mathbb{R}}^{n\times n} of 𝖯\mathsf{P} are computed by successively solving the ALE (76), the algebraic Sylvester equation (ASE) (77) and the ALE (78). In a similar fashion, the blocks 𝖰22,𝖰21=𝖰12T,𝖰11n×n\mathsf{Q}_{22},\mathsf{Q}_{21}=\mathsf{Q}_{12}^{\rm T},\mathsf{Q}_{11}\in{\mathbb{R}}^{n\times n} of 𝖰\mathsf{Q} are obtained by solving the ALE (81), the ASE (80) and the ALE (79) and give rise to an auxiliary matrix

q:=𝖰11+𝖰22𝖰12𝖰21=[InIn]𝖰[InIn]=qT0.q:=\mathsf{Q}_{11}+\mathsf{Q}_{22}-\mathsf{Q}_{12}-\mathsf{Q}_{21}=\begin{bmatrix}I_{n}&-I_{n}\end{bmatrix}\mathsf{Q}\begin{bmatrix}I_{n}\\ -I_{n}\end{bmatrix}=q^{\rm T}\succcurlyeq 0. (82)

Associated with these matrices and the Lagrange multiplier λ𝔸n\lambda\in{\mathbb{A}}_{n} from (72) are self-adjoint operators

𝔅\displaystyle\mathfrak{B} :=[[[q,Im2Θ11𝖯22Θ11,J2dTGTGdJ2λ,J2]]],\displaystyle:=[\![\![q,I_{m_{2}}\mid\Theta_{1}^{-1}\mathsf{P}_{22}\Theta_{1}^{-1},J_{2}d^{\rm T}G^{\rm T}GdJ_{2}\mid-\lambda,J_{2}]\!]\!], (83)
𝔈\displaystyle\mathfrak{E} :=[[[q,Ip1λ,J~1]]]\displaystyle:=[\![\![q,I_{p_{1}}\mid-\lambda,\widetilde{J}_{1}]\!]\!] (84)

on the Hilbert spaces n×m2{\mathbb{R}}^{n\times m_{2}}, n×p1{\mathbb{R}}^{n\times p_{1}} (with the Frobenius inner product), respectively. Here, [[[φ1,ψ1φs,ψs]]]:=k=1s[[[φk,ψk]]][\![\![\varphi_{1},\psi_{1}\mid\ldots\mid\varphi_{s},\psi_{s}]\!]\!]:=\sum_{k=1}^{s}[\![\![\varphi_{k},\psi_{k}]\!]\!] is the sum of “sandwich” operators of the form [[[φ,ψ]]][\![\![\varphi,\psi]\!]\!] specified by real matrices φ\varphi, ψ\psi and mapping an appropriately dimensioned real matrix ϑ\vartheta to [[[φ,ψ]]](ϑ):=φϑψ[\![\![\varphi,\psi]\!]\!](\vartheta):=\varphi\vartheta\psi (so that [[[φ,ψ]]]=[[[φ,ψ]]][\![\![-\varphi,-\psi]\!]\!]=[\![\![\varphi,\psi]\!]\!]). The adjoint of such an operator is [[[φ,ψ]]]=[[[φT,ψT]]][\![\![\varphi,\psi]\!]\!]^{\dagger}=[\![\![\varphi^{\rm T},\psi^{\rm T}]\!]\!], and hence, [[[φ,ψ]]][\![\![\varphi,\psi]\!]\!] is self-adjoint whenever the matrices φ\varphi, ψ\psi are both symmetric or both antisymmetric (see Section 7 and Appendix A of (Vladimirov & Petersen (2013a))).

Theorem 3

Under the conditions of Theorem 1, a stabilising coherent quantum controller with Luenberger dynamics (49), (50) is a stationary point of the Lagrange function (72) for the CQLQG control problem (40) if and only if it satisfies

(𝖰21\displaystyle(\mathsf{Q}_{21} 𝖰11)Ed+λEdJ2\displaystyle-\mathsf{Q}_{11})Ed+\lambda EdJ_{2}
+Θ11(𝖧22TE+(𝖯21+𝖯22)FTG)dJ2+𝔅(b)=0,\displaystyle+\Theta_{1}^{-1}(\mathsf{H}_{22}^{\rm T}E+(\mathsf{P}_{21}+\mathsf{P}_{22})F^{\rm T}G)dJ_{2}+\mathfrak{B}(b)=0, (85)
(𝖰21\displaystyle(\mathsf{Q}_{21} 𝖰11)BDT+λBJ1DT\displaystyle-\mathsf{Q}_{11})BD^{\rm T}+\lambda BJ_{1}D^{\rm T}
+(𝖧21𝖧11)CT+𝔈(e)=0,\displaystyle+(\mathsf{H}_{21}-\mathsf{H}_{11})C^{\rm T}+\mathfrak{E}(e)=0,\!\!\!\!\! (86)

where the linear operators 𝔅\mathfrak{B}, 𝔈\mathfrak{E} are associated by (83), (84) with the Lagrange multiplier λ𝔸n\lambda\in{\mathbb{A}}_{n} and the blocks of the Gramians 𝖯\mathsf{P}, 𝖰\mathsf{Q} and the Hankelian 𝖧\mathsf{H} in (74)–(82) for the closed-loop system (54)–(56).

{pf}

The partial Frechet derivatives of (73) over 𝖠\mathsf{A}, 𝖡\mathsf{B}, 𝖢\mathsf{C} as independent variables are

𝖠V=𝖧,𝖡V=𝖰𝖡,𝖢V=𝖢𝖯\partial_{\mathsf{A}}V=\mathsf{H},\qquad\partial_{\mathsf{B}}V=\mathsf{Q}\mathsf{B},\qquad\partial_{\mathsf{C}}V=\mathsf{C}\mathsf{P} (87)

(see (Skelton, Iwasaki & Grigoriadis (1998))). Similarly to (Vladimirov & Petersen (2013a)), the chain rule differentiation of the cost (73) as a composite function b(b,c)(𝖠,𝖡,𝖢)Vb\mapsto(b,c)\mapsto(\mathsf{A},\mathsf{B},\mathsf{C})\mapsto V and e(𝖠,𝖡)Ve\mapsto(\mathsf{A},\mathsf{B})\mapsto V of the independent variables bb, ee using (51)–(53), (58), (87) leads to

bV=\displaystyle\partial_{b}V= (b𝖡)(𝖡V)+(bc)((c𝖠)(𝖠V)+(c𝖢)(𝖢V))\displaystyle(\partial_{b}\mathsf{B})^{\dagger}(\partial_{\mathsf{B}}V)+(\partial_{b}c)^{\dagger}((\partial_{c}\mathsf{A})^{\dagger}(\partial_{\mathsf{A}}V)+(\partial_{c}\mathsf{C})^{\dagger}(\partial_{\mathsf{C}}V))
=\displaystyle= (𝖰𝖡)22(𝖰𝖡)12+Θ11(ET𝖧22+GT𝖢𝖯2)TdJ2\displaystyle(\mathsf{Q}\mathsf{B})_{22}-(\mathsf{Q}\mathsf{B})_{12}+\Theta_{1}^{-1}(E^{\rm T}\mathsf{H}_{22}+G^{\rm T}\mathsf{C}\mathsf{P}_{\bullet 2})^{\rm T}dJ_{2}
=\displaystyle= (𝖰2𝖰1)𝖡2+Θ11(𝖧22TE+𝖯2𝖢TG)dJ2,\displaystyle(\mathsf{Q}_{2\bullet}-\mathsf{Q}_{1\bullet})\mathsf{B}_{\bullet 2}+\Theta_{1}^{-1}(\mathsf{H}_{22}^{\rm T}E+\mathsf{P}_{2\bullet}\mathsf{C}^{\rm T}G)dJ_{2}, (88)
eV=\displaystyle\partial_{e}V= (e𝖠)(𝖠V)+(e𝖡)(𝖡V)\displaystyle(\partial_{e}\mathsf{A})^{\dagger}(\partial_{\mathsf{A}}V)+(\partial_{e}\mathsf{B})^{\dagger}(\partial_{\mathsf{B}}V)
=\displaystyle= (𝖧21𝖧11)CT+((𝖰𝖡)21(𝖰𝖡)11)DT\displaystyle(\mathsf{H}_{21}-\mathsf{H}_{11})C^{\rm T}+((\mathsf{Q}\mathsf{B})_{21}-(\mathsf{Q}\mathsf{B})_{11})D^{\rm T}
=\displaystyle= (𝖧21𝖧11)CT+(𝖰2𝖰1)𝖡1DT.\displaystyle(\mathsf{H}_{21}-\mathsf{H}_{11})C^{\rm T}+(\mathsf{Q}_{2\bullet}-\mathsf{Q}_{1\bullet})\mathsf{B}_{\bullet 1}D^{\rm T}. (89)

Here, use is made of the identities 𝖧jk=𝖰j𝖯k\mathsf{H}_{jk}=\mathsf{Q}_{j\bullet}\mathsf{P}_{\bullet k} and (𝖰𝖡)jk=𝖰j𝖡k(\mathsf{Q}\mathsf{B})_{jk}=\mathsf{Q}_{j\bullet}\mathsf{B}_{\bullet k}, along with the relation (58) represented in a sandwich operator form as c=([[[dJ2,Θ11]]]𝐓)(b)c=([\![\![dJ_{2},\Theta_{1}^{-1}]\!]\!]\circ\mathbf{T})(b), where 𝐓():=()T\mathbf{T}(\cdot):=(\cdot)^{\rm T} is the matrix transpose operator, so that (bc)=𝐓[[[J2dT,Θ11]]]=[[[Θ11,dJ2]]]𝐓(\partial_{b}c)^{\dagger}=\mathbf{T}\circ[\![\![J_{2}d^{\rm T},\Theta_{1}^{-1}]\!]\!]=[\![\![\Theta_{1}^{-1},dJ_{2}]\!]\!]\circ\mathbf{T} in view of the antisymmetry of the matrices Θ1\Theta_{1}, J2J_{2} and self-adjointness of 𝐓\mathbf{T}. By substituting (52), (53) into (88), (89), it follows that

bV=\displaystyle\partial_{b}V= (𝖰21𝖰11)Ed+Θ11(𝖧22TE+(𝖯21+𝖯22)FTG)dJ2\displaystyle(\mathsf{Q}_{21}-\mathsf{Q}_{11})Ed+\Theta_{1}^{-1}(\mathsf{H}_{22}^{\rm T}E\!+\!(\mathsf{P}_{21}+\mathsf{P}_{22})F^{\rm T}G)dJ_{2}
+qb+Θ11𝖯22Θ11bJ2dTGTGdJ2,\displaystyle+qb+\Theta_{1}^{-1}\mathsf{P}_{22}\Theta_{1}^{-1}bJ_{2}d^{\rm T}G^{\rm T}GdJ_{2}, (90)
eV=\displaystyle\partial_{e}V= (𝖧21𝖧11)CT+(𝖰21𝖰11)BDT+qe.\displaystyle(\mathsf{H}_{21}-\mathsf{H}_{11})C^{\rm T}+(\mathsf{Q}_{21}-\mathsf{Q}_{11})BD^{\rm T}+qe. (91)

where use is also made of the identities (𝖰2𝖰1)𝖡2=[𝖰21𝖰11𝖰22𝖰12][Edbb]=(𝖰21𝖰11)Ed+qb(\mathsf{Q}_{2\bullet}-\mathsf{Q}_{1\bullet})\mathsf{B}_{\bullet 2}={\small\begin{bmatrix}\mathsf{Q}_{21}-\mathsf{Q}_{11}&\mathsf{Q}_{22}-\mathsf{Q}_{12}\end{bmatrix}}{\scriptsize\begin{bmatrix}Ed-b\\ b\end{bmatrix}}=(\mathsf{Q}_{21}-\mathsf{Q}_{11})Ed+qb and (𝖰2𝖰1)𝖡1DT=(𝖰2𝖰1)[BDTee]=(𝖰21𝖰11)BDT+qe(\mathsf{Q}_{2\bullet}-\mathsf{Q}_{1\bullet})\mathsf{B}_{\bullet 1}D^{\rm T}=(\mathsf{Q}_{2\bullet}-\mathsf{Q}_{1\bullet}){\scriptsize\begin{bmatrix}BD^{\rm T}-e\\ e\end{bmatrix}}=(\mathsf{Q}_{21}-\mathsf{Q}_{11})BD^{\rm T}+qe in view of (12), (52), (82). The Frechet differentiation of the constraint-related term of the Lagrange function \mathcal{L} in (72) with respect to γ\gamma in (61) yields

12γλ,f(γ)\displaystyle\frac{1}{2}\partial_{\gamma}\langle\lambda,f(\gamma)\rangle =λ(γ0γ)K\displaystyle=\lambda(\gamma_{0}-\gamma)K
=λ[(Edb)J2BJ1DTeJ~1],\displaystyle=\lambda\begin{bmatrix}(Ed-b)J_{2}&&BJ_{1}D^{\rm T}-e\widetilde{J}_{1}\end{bmatrix}, (92)

where (63)–(67) are used. The corresponding partial Frechet derivatives in bb, ee are recovered as the blocks of (92):

12bλ,f(γ)\displaystyle\frac{1}{2}\partial_{b}\langle\lambda,f(\gamma)\rangle =λEdJ2λbJ2,\displaystyle=\lambda EdJ_{2}-\lambda bJ_{2}, (93)
12eλ,f(γ)\displaystyle\frac{1}{2}\partial_{e}\langle\lambda,f(\gamma)\rangle =λBJ1DTλeJ~1.\displaystyle=\lambda BJ_{1}D^{\rm T}-\lambda e\widetilde{J}_{1}. (94)

A combination of (90), (91) with (93), (94) and (83), (84) leads to

b=\displaystyle\partial_{b}\mathcal{L}= (𝖰21𝖰11)Ed+λEdJ2\displaystyle(\mathsf{Q}_{21}-\mathsf{Q}_{11})Ed+\lambda EdJ_{2}
+Θ11(𝖧22TE+(𝖯21+𝖯22)FTG)dJ2+𝔅(b),\displaystyle+\Theta_{1}^{-1}(\mathsf{H}_{22}^{\rm T}E+(\mathsf{P}_{21}+\mathsf{P}_{22})F^{\rm T}G)dJ_{2}+\mathfrak{B}(b),\! (95)
e=\displaystyle\partial_{e}\mathcal{L}= (𝖰21𝖰11)BDT+λBJ1DT\displaystyle(\mathsf{Q}_{21}-\mathsf{Q}_{11})BD^{\rm T}+\lambda BJ_{1}D^{\rm T}
+(𝖧21𝖧11)CT+𝔈(e).\displaystyle+(\mathsf{H}_{21}-\mathsf{H}_{11})C^{\rm T}+\mathfrak{E}(e). (96)

The conditions of stationarity (85), (86) are now obtained by equating the Frechet derivatives of the Lagrange function in (95), (96) to zero. \blacksquare

The first-order necessary conditions of optimality for the CQLQG control problem in the class of Luenberger controllers, provided by Theorem 3, form a set of nonlinear algebraic equations for the controller gain matrices bb, ee and the Lagrange multiplier λ\lambda. They include (59) and the ALEs (74) which are coupled through (85), (86). These equations for a locally optimal coherent quantum controller can be solved numerically (for example, by using Newton or gradient descent iterative algorithms). Their theoretical analysis (as well as computational aspects) can benefit from the block triangular structure of the ALEs for the Gramians in (76)–(81) (which is a consequence of the Luenberger architecture) and will be discussed elsewhere.

8 Conclusion

In the context of the CQLQG control problem, we have considered a swapping transformation for the controller variables, leading to a difference process with zero one-point CCR matrix. We have discussed the interplay between the quantum PR conditions and the classical Luenberger structure, resulting in an additional quadratic constraint on the controller gain matrices. For the class of coherent quantum controllers with Luenberger dynamics, we have obtained the first-order necessary conditions of optimality, which involve coupled ALEs along with a matrix-valued Lagrange multiplier and “multisandwich” operators on appropriate matrix spaces.

References

  • Holevo (2001) A.S.Holevo, Statistical Structure of Quantum Theory, Springer, Berlin, 2001.
  • Horn & Johnson (2007) R.A.Horn, and C.R.Johnson, Matrix Analysis, Cambridge University Press, New York, 2007.
  • Hudson & Parthasarathy (1984) R.L.Hudson, and K.R.Parthasarathy, Quantum Ito’s formula and stochastic evolutions, Commun. Math. Phys., vol. 93, 1984, pp. 301–323.
  • James, Nurdin & Petersen (2008) M.R.James, H.I.Nurdin, and I.R.Petersen, HH^{\infty} control of linear quantum stochastic systems, IEEE Trans. Automat. Contr., vol. 53, no. 8, 2008, pp. 1787–1803.
  • Kwakernaak & Sivan (1972) H.Kwakernaak, and R.Sivan, Linear Optimal Control Systems, Wiley, New York, 1972.
  • Luenberger (1966) D.Luenberger, Observers for multivariable systems, IEEE Trans. Automat. Contr., vol. 11, no. 2, 1966, pp. 190–197.
  • Miao & James (2012) Z.Miao, and M.R.James, Quantum observer for linear quantum stochastic systems, 51st IEEE Conf. Decision Control, Maui, Hawaii, USA, December 10-13, 2012, pp. 1680–1684.
  • Nurdin, James & Petersen (2009) H.I.Nurdin, M.R.James, and I.R.Petersen, Coherent quantum LQG control, Automatica, vol. 45, 2009, pp. 1837–1846.
  • Parthasarathy (1992) K.R.Parthasarathy, An Introduction to Quantum Stochastic Calculus, Birkhäuser, Basel, 1992.
  • Parthasarathy (2010) K.R.Parthasarathy, What is a Gaussian state?, Commun. Stoch. Anal., vol. 4, no. 2, 2010, pp. 143–160.
  • Sakurai (1994) J.J.Sakurai, Modern Quantum Mechanics, Addison-Wesley, Reading, Mass., 1994.
  • Sichani, Vladimirov & Petersen (2017) A.Kh.Sichani, I.G.Vladimirov, and I.R.Petersen, A numerical approach to optimal coherent quantum LQG controller design using gradient descent, Automatica, vol. 85, 2017, pp. 314–326.
  • Simon (2000) R.Simon, Peres-Horodecki separability criterion for continuous variable systems, Phys. Rev. Lett., vol. 84, no. 12, 2000, pp. 2726–2729.
  • Skelton, Iwasaki & Grigoriadis (1998) R.E.Skelton, T.Iwasaki, and K.M.Grigoriadis, A Unified Algebraic Approach to Linear Control Design, Taylor & Francis, London, 1998.
  • Vladimirov & Petersen (2013a) I.G.Vladimirov, and I.R.Petersen, A quasi-separation principle and Newton-like scheme for coherent quantum LQG control, Syst. Contr. Lett., vol. 62, no. 7, 2013, pp. 550–559.
  • Vladimirov & Petersen (2013b) I.G.Vladimirov, and I.R.Petersen, Coherent quantum filtering for physically realizable linear quantum plants, European Control Conference, IEEE, Zurich, Switzerland, 17-19 July 2013, pp. 2717–2723.
  • Vladimirov & Petersen (2021) I.G.Vladimirov, and I.R.Petersen, A homotopy approach to coherent quantum LQG control synthesis using discounted performance criteria, IFAC PapersOnLine, vol. 54, no. 9, 2021, pp. 166–171.
  • Zhang & James (2011) G.Zhang, and M.R.James, Direct and indirect couplings in coherent feedback control of linear quantum systems, IEEE Trans. Automat. Contr., vol. 56, no. 7, 2011, 1535–1550.

Appendix A Special Quadratic Equations

The following lemma is used in the proof of Theorem 2 in Sec. 6.

Lemma 4

For any nonsingular matrix K𝔸μK\in{\mathbb{A}}_{\mu} and any matrix α𝔸ν\alpha\in{\mathbb{A}}_{\nu} of even order νμ\nu\leqslant\mu, there exists a matrix βν×μ\beta\in{\mathbb{R}}^{\nu\times\mu} satisfying

βKβT=α.\beta K\beta^{{\rm T}}=\alpha. (97)
{pf}

Since KK is a nonsingular real antisymmetric matrix (and hence, its order μ\mu is even), it is representable as

K=ψ(Iμ/2𝐉)ψTK=\psi(I_{\mu/2}\otimes\mathbf{J})\psi^{{\rm T}} (98)

in terms of a nonsingular matrix ψμ×μ\psi\in{\mathbb{R}}^{\mu\times\mu}, with 𝐉\mathbf{J} from (4). In a similar fashion, since pp is even and α𝔸p\alpha\in{\mathbb{A}}_{p}, there exists a matrix φν×ν\varphi\in{\mathbb{R}}^{\nu\times\nu} (singular if so is α\alpha) such that

α=φ(Iν/2𝐉)φT=[φ0](Iμ/2𝐉)[φT0].\alpha=\varphi(I_{\nu/2}\otimes\mathbf{J})\varphi^{{\rm T}}\\ =\begin{bmatrix}\varphi&0\end{bmatrix}(I_{\mu/2}\otimes\mathbf{J}){\begin{bmatrix}\varphi^{{\rm T}}\\ 0\end{bmatrix}}. (99)

Due to the assumption νμ\nu\leqslant\mu, the last equality in (99) is obtained by padding φ\varphi with zeros to a (ν×μ)(\nu\times\mu)-matrix and using the partitioning Iμ/2𝐉=[Iν/2𝐉00I(μν)/2𝐉]I_{\mu/2}\otimes\mathbf{J}={\scriptsize\begin{bmatrix}I_{\nu/2}\otimes\mathbf{J}&0\\ 0&I_{(\mu-\nu)/2}\otimes\mathbf{J}\end{bmatrix}}. Since detψ0\det\psi\neq 0, it follows from (98), (99) that (97) is satisfied, for example, with β:=[φ0]ψ1\beta:=\begin{bmatrix}\varphi&0\end{bmatrix}\psi^{-1}. \blacksquare

A slight modification of the proof extends Lemma 4 to the case when the order ν\nu of the matrix α\alpha is odd.