This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Classification of solutions for some mixed order elliptic system

Genggeng Huang***[email protected] and Yating Niu[email protected]
Abstract

In this paper, we classify the solution of the following mixed-order conformally invariant system with coupled nonlinearity in 4\mathbb{R}^{4}:

{Δu(x)=up1(x)eq1v(x),x4,(Δ)2v(x)=up2(x)eq2v(x),x4,\left\{\begin{aligned} &-\Delta u(x)=u^{p_{1}}(x)e^{q_{1}v(x)},\quad x\in\mathbb{R}^{4},\\ &(-\Delta)^{2}v(x)=u^{p_{2}}(x)e^{q_{2}v(x)},\quad x\in\mathbb{R}^{4},\end{aligned}\right. (0.1)

where 0p1<10\leq p_{1}<1, p2>0p_{2}>0, q1>0q_{1}>0, q20q_{2}\geq 0, u>0u>0 and satisfies

4up1(x)eq1v(x)𝑑x<,4up2(x)eq2v(x)𝑑x<.\int_{\mathbb{R}^{4}}u^{p_{1}}(x)e^{q_{1}v(x)}dx<\infty,\quad\int_{\mathbb{R}^{4}}u^{p_{2}}(x)e^{q_{2}v(x)}dx<\infty.

Under additional assumptions (H1) or (H2), we study the asymptotic behavior of the solutions to system (0.1) and we establish the equivalent integral formula for (0.1). By using the method of moving spheres, we obtain the classification results of the solutions in (0.1).

School of Mathematical Sciences, Fudan University, Shanghai, China

1 Introduction

In this paper, we study the classification results of the following elliptic system

{Δu(x)=up1(x)eq1v(x),x4,(Δ)2v(x)=up2(x)eq2v(x),x4,\left\{\begin{aligned} &-\Delta u(x)=u^{p_{1}}(x)e^{q_{1}v(x)},\quad x\in\mathbb{R}^{4},\\ &(-\Delta)^{2}v(x)=u^{p_{2}}(x)e^{q_{2}v(x)},\quad x\in\mathbb{R}^{4},\end{aligned}\right. (1.1)

where 0p1<10\leq p_{1}<1, p2>0p_{2}>0, q1>0q_{1}>0, q20q_{2}\geq 0, u>0u>0 and (u,v)(u,v) satisfies

4up1(x)eq1v(x)𝑑x<,4up2(x)eq2v(x)𝑑x<andv(x)=o(|x|2).\ \int_{\mathbb{R}^{4}}u^{p_{1}}(x)e^{q_{1}v(x)}dx<\infty,\quad\int_{\mathbb{R}^{4}}u^{p_{2}}(x)e^{q_{2}v(x)}dx<\infty\quad\text{and}\quad v(x)=o(|x|^{2}). (G)

System (1.1) is conformal invariant for (p1,q1),(p2,q2)(p_{1},q_{1}),(p_{2},q_{2}) satisfying (1.7).

For a single equation, there are two simple conformal invariant cases.

Δu=un+2n2,inn,n3.-\Delta u=u^{\frac{n+2}{n-2}},\quad\text{in}\quad\mathbb{R}^{n},\quad n\geq 3. (1.2)

Or

Δu=eu,in2.-\Delta u=e^{u},\quad\text{in}\quad\mathbb{R}^{2}. (1.3)

In [12], Gidas, Ni and Nirenberg studied the symmetry of the solutions of (1.2). They proved that all positive solutions satisfying u=O(|x|2n)u=O(|x|^{2-n}) at \infty are radially symmetric about some point. Next, Caffarelli, Gidas and Spruck [1] removed the growth assumption and proved the similar result. Chen and Li [5] also established the classification results for (1.3) and the following equation under the assumption 2eu(x)𝑑x<\int_{\mathbb{R}^{2}}e^{u(x)}dx<\infty.

The natural generalizations of (1.2) and (1.3) are the following higher order equations

{(Δ)n2u=(n1)!enuinn,nenu(x)𝑑x<andu=o(|x|2)at,\left\{\begin{aligned} &(-\Delta)^{\frac{n}{2}}u=(n-1)!e^{nu}\quad\text{in}\quad\mathbb{R}^{n},\\ &\int_{\mathbb{R}^{n}}e^{nu(x)}dx<\infty\quad\text{and}\quad u=o(|x|^{2})\ \text{at}\ \infty,\end{aligned}\right. (1.4)

and

{(Δ)ku=un+2kn2kinn,n>2k,u>0,inn.\left\{\begin{aligned} &(-\Delta)^{k}u=u^{\frac{n+2k}{n-2k}}\quad\text{in}\quad\mathbb{R}^{n},n>2k,\\ &u>0,\quad\text{in}\quad\mathbb{R}^{n}.\end{aligned}\right. (1.5)

Zhu [26] obtained the classification results to (1.4) with n=3n=3. For n=4n=4, Lin [18] classified the fourth order equation of (1.4). Independently, Xu [22] proved the same result with u=o(|x|2)u=o(|x|^{2}) replaced by

lim|x|Δu=0.\lim\limits_{|x|\rightarrow\infty}\Delta u=0.

Lin [18] also considered the classification results of (1.5) with k=2k=2. In the case that nn is an even integer, Wei and Xu [20] classified the smooth solutions of (1.4) and the smooth positive solutions of (1.5). The classification of solutions for higher order elliptic equations is much more difficult than second order elliptic equations. For more literatures on higher order equations, please refer to [2, 4, 16, 21].

However, the non-linear terms in generalizations (1.4) and (1.5) are either purely exponential or purely polynomial. Recently, Yu [25] made an attempt to investigate the generalization of (1.2), (1.3) to systems with mixed non-linear terms. In particular, Yu [25] consider the following elliptic system

{Δu(x)=e3v(x),x4,(Δ)2v(x)=u4(x),x4,\left\{\begin{aligned} &-\Delta u(x)=e^{3v(x)},\quad x\in\mathbb{R}^{4},\\ &(-\Delta)^{2}v(x)=u^{4}(x),\quad x\in\mathbb{R}^{4},\end{aligned}\right. (1.6)

for u>0u>0 which corresponds to the case p1=q2=0p_{1}=q_{2}=0, q1=3q_{1}=3, p2=4p_{2}=4 of the system (1.1). In [25], Yu classified the solution of the above system (1.6) under the assumptions

4e3v(x)𝑑x<,4u4(x)𝑑x<,andv(x)=o(|x|2).\int_{\mathbb{R}^{4}}e^{3v(x)}dx<\infty,\quad\int_{\mathbb{R}^{4}}u^{4}(x)dx<\infty,\quad\text{and}\quad v(x)=o(|x|^{2}). (H1)

Dai et al. [11] obtained the classification results of the following conformally invariant system with mixed order and exponentially increasing nonlinearity in 2\mathbb{R}^{2}

{(Δ)12u(x)=epv(x),x2,Δv(x)=u4(x),x2,\left\{\begin{aligned} &(-\Delta)^{\frac{1}{2}}u(x)=e^{pv(x)},\quad x\in\mathbb{R}^{2},\\ &-\Delta v(x)=u^{4}(x),\quad x\in\mathbb{R}^{2},\end{aligned}\right.

where p(0,+)p\in(0,+\infty), u0u\geq 0 and 2u4(x)𝑑x<\int_{\mathbb{R}^{2}}u^{4}(x)dx<\infty. Later, Guo and Peng [14] considered

{(Δ)12u(x)=up1(x)eq1v(x),x2,Δv(x)=up2(x)eq2v(x),x2,\left\{\begin{aligned} &(-\Delta)^{\frac{1}{2}}u(x)=u^{p_{1}}(x)e^{q_{1}v(x)},\quad x\in\mathbb{R}^{2},\\ &-\Delta v(x)=u^{p_{2}}(x)e^{q_{2}v(x)},\quad x\in\mathbb{R}^{2},\end{aligned}\right.

where u>0u>0, 0p1<11+K0\leq p_{1}<\frac{1}{1+K}, p2>0p_{2}>0, q1>0q_{1}>0, q20q_{2}\geq 0 and 2up2(x)eq2v(x)𝑑x<\int_{\mathbb{R}^{2}}u^{p_{2}}(x)e^{q_{2}v(x)}dx<\infty. Under the assumptions, u(x)=O(|x|K)u(x)=O(|x|^{K}) at \infty for some K1K\geq 1 arbitrarily large and v+(x)=O(ln|x|)v^{+}(x)=O(\ln|x|) if q2>0q_{2}>0 at \infty. It should be pointed out that the coupling of polynomial non-linearity and exponential non-linearity in (1) makes the problem more complicated. Other classification results for system can be found in [6, 7, 9, 11, 13, 14, 23] and the references therein.

In this paper, we study the Liouville theorem and classification results for elliptic system (1.1). Our result is the following

Theorem 1.1.

Suppose that 0p1<10\leq p_{1}<1, p2>0p_{2}>0, q1>0q_{1}>0 and q20q_{2}\geq 0 such that the following conditions hold:

{3p1q1=4p2q2,ifq2>0;p2=4,ifq2=0.\left\{\begin{aligned} &\frac{3-p_{1}}{q_{1}}=\frac{4-p_{2}}{q_{2}},\quad\text{if}\ q_{2}>0;\\ &p_{2}=4,\quad\text{if}\ q_{2}=0.\end{aligned}\right. (1.7)

Every C4C^{4} solution of (1.1) satisfies (H1) and (G) has the following form

u(x)=C1(ε)|xx0|2+ε2,v(x)=3p1q1ln(C2(ε)|xx0|2+ε2),u(x)=\frac{C_{1}(\varepsilon)}{|x-x_{0}|^{2}+\varepsilon^{2}},\quad v(x)=\frac{3-p_{1}}{q_{1}}\ln\left(\frac{C_{2}(\varepsilon)}{|x-x_{0}|^{2}+\varepsilon^{2}}\right), (1.8)

where C1C_{1}, C2C_{2} are two positive constants depending only on ε\varepsilon and x0x_{0} is a fixed point in 4\mathbb{R}^{4}. Assumption (H1) can be replaced by

4uτ(x)𝑑x<,τ>p2,andv(x)=O(ln|x|)as|x|,\int_{\mathbb{R}^{4}}u^{\tau}(x)dx<\infty,\quad\tau>p_{2},\quad\text{and}\quad v(x)=O(\ln|x|)\quad\text{as}\quad|x|\rightarrow\infty, (H2)

where 0p1<min{τ3,1}0\leq p_{1}<\min\{\frac{\tau}{3},1\}.

Theorem 1.1 is proved by the moving spheres method, which is a variant of the moving planes method. In recent years, there has been great interest in using the method of moving spheres and moving planes to classify the solutions of equation. It is a very powerful tool to study the symmetry of solutions. For more results, we refer to [5, 7, 9, 10, 15, 17, 19, 24]. Interested readers may see the book of Chen and Li [8].

Theorem 1.1 generalizes the result in [25] and [14]. Our conditions (H1) and (G) in the case of p1=q2=0p_{1}=q_{2}=0, q1=3q_{1}=3, p2=4p_{2}=4 are the same as the assumptions in [25]. In [14], Guo and Peng assumed that v+(x)=O(ln|x|)v^{+}(x)=O(\ln|x|). Inspired by this, we give an alternative assumption (H2). We prove that the classification result whether uu satisfies (G)(H1) or (G)(H2).

This paper is organized as follows. In Section 2, we give the integral representation formula for (u,v)(u,v). At the same time, we give the asymptotic behavior of vv at \infty under two assumptions. In Section 3, we use the moving spheres method to prove that the slow decay of vv can’t occur. That is, α<μ\alpha<\mu can’t occur. In Section 4, we prove that the fast decay can’t occur. In Section 5, we obtain the precise decay of vv and we give the proof of Theorem 1.1.

2 Preliminaries

In this section, we establish some estimations on the decay of the solution. We denote

α=14ω34up2(x)eq2v(x)𝑑x,\alpha=\frac{1}{4\omega_{3}}\int_{\mathbb{R}^{4}}u^{p_{2}}(x)e^{q_{2}v(x)}dx, (2.1)

where ω3\omega_{3} is the volume of the unit sphere in 4\mathbb{R}^{4}. We also define

k(x)=14ω34[ln|xy|ln(|y|+1)]up2(y)eq2v(y)𝑑y,k(x)=\frac{1}{4\omega_{3}}\int_{\mathbb{R}^{4}}[\ln|x-y|-\ln(|y|+1)]u^{p_{2}}(y)e^{q_{2}v(y)}dy, (2.2)

then it is easy to see that k(x)k(x) is well-defined since 4up2(x)eq2v(x)𝑑x<\int_{\mathbb{R}^{4}}u^{p_{2}}(x)e^{q_{2}v(x)}dx<\infty and uC4(4)u\in C^{4}(\mathbb{R}^{4}). Moreover, it can be verified that k(x)k(x) satisfies

Δk(x)=12ω34up2(y)eq2v(y)|xy|2𝑑y\Delta k(x)=\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{|x-y|^{2}}dy (2.3)

and

Δ2k(x)=up2(x)eq2v(x).\Delta^{2}k(x)=-u^{p_{2}}(x)e^{q_{2}v(x)}. (2.4)

Now, we derive some estimations on the decay of k(x)k(x) at infinity.

Lemma 2.1.

Let k(x)k(x) be defined as equation (2.2). Suppose that (u,v)(u,v) satisfies (G). Then, we have

k(x)αln|x|k(x)\leq\alpha\ln|x| (2.5)

for |x||x| large enough, where α\alpha is defined by equation (2.1).

Proof. Set

A1={y4||yx||x|2}andA2={y4||yx|>|x|2}.A_{1}=\left\{y\in\mathbb{R}^{4}||y-x|\leq\frac{|x|}{2}\right\}\ \text{and}\ \ A_{2}=\left\{y\in\mathbb{R}^{4}||y-x|>\frac{|x|}{2}\right\}.

For yA1y\in A_{1}, we have |xy||x|2|y|<|y|+1|x-y|\leq\frac{|x|}{2}\leq|y|<|y|+1, hence

ln|xy||y|+10,\ln\frac{|x-y|}{|y|+1}\leq 0,

which further implies

k(x)14ω3A2ln|xy||y|+1up2(y)eq2v(y)𝑑y.k(x)\leq\frac{1}{4\omega_{3}}\int_{A_{2}}\ln\frac{|x-y|}{|y|+1}u^{p_{2}}(y)e^{q_{2}v(y)}dy.

For |x|2|x|\geq 2, we find |xy||x|+|y||x|(1+|y|)|x-y|\leq|x|+|y|\leq|x|(1+|y|) and

ln|xy||y|+1ln|x|.\ln\frac{|x-y|}{|y|+1}\leq\ln|x|.

For |x|2|x|\geq 2, we conclude that

k(x)\displaystyle k(x) 14ω3ln|x|A2up2(y)eq2v(y)𝑑y\displaystyle\leq\frac{1}{4\omega_{3}}\ln|x|\int_{A_{2}}u^{p_{2}}(y)e^{q_{2}v(y)}dy
αln|x|.\displaystyle\leq\alpha\ln|x|.

\Box

Lemma 2.2.

If (u,v)(u,v) is a solution of problem (1.1) and it satisfies (H1) or (H2), then

u(x)=12ω34up1(y)eq1v(y)|xy|2𝑑y.u(x)=\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{u^{p_{1}}(y)e^{q_{1}v(y)}}{|x-y|^{2}}dy. (2.6)

Proof. By (1.1), we get

Δu(x)=up1(x)eq1v(x).-\Delta u(x)=u^{p_{1}}(x)e^{q_{1}v(x)}.

By multiplying the equation by 1|x|21R2\frac{1}{|x|^{2}}-\frac{1}{R^{2}} and integrating over BRB_{R}, we obtain

BR(1|x|21R2)Δu(x)𝑑x=BR(1|x|21R2)up1(x)eq1v(x)𝑑x.\int_{B_{R}}\left(\frac{1}{|x|^{2}}-\frac{1}{R^{2}}\right)\Delta u(x)dx=-\int_{B_{R}}\left(\frac{1}{|x|^{2}}-\frac{1}{R^{2}}\right)u^{p_{1}}(x)e^{q_{1}v(x)}dx.

By a simple calculation, one gets

BRBε(1|x|21R2)Δu(x)𝑑x\displaystyle\int_{B_{R}\setminus B_{\varepsilon}}\left(\frac{1}{|x|^{2}}-\frac{1}{R^{2}}\right)\Delta u(x)dx =(BRBε)(1|x|21R2)uνdSBRBεu(1|x|2)dx\displaystyle=\int_{\partial(B_{R}\setminus B_{\varepsilon})}\left(\frac{1}{|x|^{2}}-\frac{1}{R^{2}}\right)\nabla u\cdot\nu dS-\int_{B_{R}\setminus B_{\varepsilon}}\nabla u\cdot\nabla\left({\frac{1}{|x|^{2}}}\right)dx
=Bε(1|x|21R2)uνdS(BRBε)u(1|x|2)ν𝑑S\displaystyle=-\int_{\partial B_{\varepsilon}}\left(\frac{1}{|x|^{2}}-\frac{1}{R^{2}}\right)\nabla u\cdot\nu dS-\int_{\partial(B_{R}\setminus B_{\varepsilon})}u\frac{\partial\left(\frac{1}{|x|^{2}}\right)}{\partial\nu}dS
=O(ε)+2R3BRu𝑑S2ε3Bεu𝑑S,\displaystyle=O(\varepsilon)+\frac{2}{R^{3}}\int_{\partial B_{R}}udS-\frac{2}{\varepsilon^{3}}\int_{\partial B_{\varepsilon}}udS,

where ν\nu is the outward pointing unit normal vector. Letting ε0\varepsilon\rightarrow 0, we find

u(0)=1ω3R3BRu𝑑S+12ω3BR(1|x|21R2)up1(x)eq1v(x)𝑑x.u(0)=\frac{1}{\omega_{3}R^{3}}\int_{\partial B_{R}}udS+\frac{1}{2\omega_{3}}\int_{B_{R}}\left(\frac{1}{|x|^{2}}-\frac{1}{R^{2}}\right)u^{p_{1}}(x)e^{q_{1}v(x)}dx.

That is

u(x)=1ω3R3BR(x)u(y)𝑑S+12ω3BR(x)(1|yx|21R2)up1(y)eq1v(y)𝑑y.u(x)=\frac{1}{\omega_{3}R^{3}}\int_{\partial B_{R}(x)}u(y)dS+\frac{1}{2\omega_{3}}\int_{B_{R}(x)}\left(\frac{1}{|y-x|^{2}}-\frac{1}{R^{2}}\right)u^{p_{1}}(y)e^{q_{1}v(y)}dy.

Since u(x)>0u(x)>0, we have

u(x)12ω3BR(x)(1|yx|21R2)up1(y)eq1v(y)𝑑y.u(x)\geq\frac{1}{2\omega_{3}}\int_{B_{R}(x)}\left(\frac{1}{|y-x|^{2}}-\frac{1}{R^{2}}\right)u^{p_{1}}(y)e^{q_{1}v(y)}dy.

Letting RR\rightarrow\infty, we conclude that

u(x)12ω34up1(y)eq1v(y)|xy|2𝑑y.u(x)\geq\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{u^{p_{1}}(y)e^{q_{1}v(y)}}{|x-y|^{2}}dy.

Since u~(x)=u(x)12ω34up1(y)eq1v(y)|xy|2𝑑y\tilde{u}(x)=u(x)-\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{u^{p_{1}}(y)e^{q_{1}v(y)}}{|x-y|^{2}}dy is harmonic, by Liouville theorem for non-negative harmonic functions, u~C00\tilde{u}\equiv C_{0}\geq 0.

By our assumption (H1) or (H2), we obtain C0=0C_{0}=0. \Box

Lemma 2.3.

Suppose that (u,v)(u,v) is a solution of problem (1.1) with (G) (H1) or (G) (H2). Then we have

Δv(x)=12ω34up2(y)eq2v(y)|xy|2𝑑yC~\Delta v(x)=-\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{|x-y|^{2}}dy-\tilde{C} (2.7)

for some C~0\tilde{C}\geq 0.

Proof. Let k(x)k(x) be as (2.2) and h(x)=k(x)+v(x)h(x)=k(x)+v(x). Then Δ2h=0\Delta^{2}h=0, i.e., Δh\Delta h is harmonic in 4\mathbb{R}^{4}. For any x04x_{0}\in\mathbb{R}^{4}, we infer from the mean value theorem of harmonic function that

Δh(x0)\displaystyle\Delta h(x_{0}) =4ω3s4Bs(x0)Δh(x)𝑑x\displaystyle=\frac{4}{\omega_{3}s^{4}}\int_{B_{s}(x_{0})}\Delta h(x)dx
=4ω3s4Bs(x0)hν𝑑S.\displaystyle=\frac{4}{\omega_{3}s^{4}}\int_{\partial B_{s}(x_{0})}\frac{\partial h}{\partial\nu}dS.

Integrating from 0 to rr, we get

r28Δh(x0)=1ω3r3Br(x0)h(y)𝑑Sh(x0),\frac{r^{2}}{8}\Delta h(x_{0})=\frac{1}{\omega_{3}r^{3}}\int_{\partial B_{r}(x_{0})}h(y)dS-h(x_{0}),

which further implies

eq1r28Δh(x0)\displaystyle e^{\frac{q_{1}r^{2}}{8}\Delta h(x_{0})} =eq1h(x0)eq1Br(x0)h(y)𝑑S\displaystyle=e^{-q_{1}h(x_{0})}e^{q_{1}-\int_{\partial B_{r}(x_{0})}h(y)dS}
eq1h(x0)Br(x0)eq1h(y)𝑑S\displaystyle\leq e^{-q_{1}h(x_{0})}-\int_{\partial B_{r}(x_{0})}e^{q_{1}h(y)}dS
=eq1h(x0)1ω3r3Br(x0)eq1h(y)𝑑S.\displaystyle=e^{-q_{1}h(x_{0})}\frac{1}{\omega_{3}r^{3}}\int_{\partial B_{r}(x_{0})}e^{q_{1}h(y)}dS.

From the integral representation formula (2.6) for uu, one gets

u(x)\displaystyle u(x) 12ω3|y|<|x|2up1(y)eq1v(y)|xy|2𝑑y\displaystyle\geq\frac{1}{2\omega_{3}}\int_{|y|<\frac{|x|}{2}}\frac{u^{p_{1}}(y)e^{q_{1}v(y)}}{|x-y|^{2}}dy (2.8)
29ω3|x|2|y|<1up1(y)eq1v(y)dy=:C|x|2,\displaystyle\geq\frac{2}{9\omega_{3}|x|^{2}}\int_{|y|<1}u^{p_{1}}(y)e^{q_{1}v(y)}dy=:\frac{C}{|x|^{2}},

for any |x|2|x|\geq 2. Since k(x)αln|x|k(x)\leq\alpha\ln|x|, then

eq1h(x)eq1v(x)eq1αln|x|=|x|αq1eq1v(x).e^{q_{1}h(x)}\leq e^{q_{1}v(x)}e^{q_{1}\alpha\ln|x|}=|x|^{\alpha q_{1}}e^{q_{1}v(x)}.

By the assumption 4up1(x)eq1v(x)𝑑x<\int_{\mathbb{R}^{4}}u^{p_{1}}(x)e^{q_{1}v(x)}dx<\infty, we have |x|αq1eq1h(x)up1(x)|x|^{-\alpha q_{1}}e^{q_{1}h(x)}u^{p_{1}}(x) is integrable in 4B2(0)\mathbb{R}^{4}\setminus B_{2}(0). Since (2.8), we get r(αq1+2p1)Br(x0)eq1h(x)𝑑Sr^{-(\alpha q_{1}+2p_{1})}\int_{\partial B_{r}(x_{0})}e^{q_{1}h(x)}dS is integrable in [R,+)[R,+\infty), where R>|x0|+2R>|x_{0}|+2. Therefore,

eq1r28Δh(x0)r3(αq1+2p1)Cr(αq1+2p1)Br(x0)eq1h(y)𝑑Se^{\frac{q_{1}r^{2}}{8}\Delta h(x_{0})}r^{3-(\alpha q_{1}+2p_{1})}\leq Cr^{-(\alpha q_{1}+2p_{1})}\int_{\partial B_{r}(x_{0})}e^{q_{1}h(y)}dS

is integrable in [R,+)[R,+\infty). In particular, we obtain Δh(x0)0\Delta h(x_{0})\leq 0, x04\forall x_{0}\in\mathbb{R}^{4}. Hence, we infer from the Liouville theorem for harmonic function that Δh(x)=C~\Delta h(x)=-\tilde{C} for some C~0\tilde{C}\geq 0. We conclude that

Δv(x)=12ω34up2(y)eq2v(y)|xy|2𝑑yC~,\Delta v(x)=-\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{|x-y|^{2}}dy-\tilde{C},

for some C~0\tilde{C}\geq 0. \Box

By (H1) or (H2), we find v(x)=o(|x|2)v(x)=o(|x|^{2}) at \infty. Then, we obtain the following lemma.

Lemma 2.4.

Suppose that v(x)=o(|x|2)v(x)=o(|x|^{2}) as |x||x|\rightarrow\infty, then we have

Δv(x)=12ω34up2(y)eq2v(y)|xy|2𝑑y.\Delta v(x)=-\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{|x-y|^{2}}dy. (2.9)

Proof. By Lemma 2.3, we know that ΔvC~\Delta v\leq-\tilde{C}. If C~>0\tilde{C}>0, let w=vC~8|x|2w=-v-\frac{\tilde{C}}{8}|x|^{2}. Then Δw0\Delta w\geq 0 and hence w(0)supBrww(0)\leq\sup_{\partial B_{r}}w, i.e.,

infBrvv(0)C~8r2.\inf_{\partial B_{r}}v\leq v(0)-\frac{\tilde{C}}{8}r^{2}.

This contradicts the assumption v(x)=o(|x|2)v(x)=o(|x|^{2}). This completes the proof of this lemma. \Box

Lemma 2.5.

There exists a constant C>0C>0, such that

u(x)C,v(x)Cand|Δv(x)|Cin4,u(x)\leq C,\quad v(x)\leq C\quad\text{and}\quad|\Delta v(x)|\leq C\quad\text{in}\quad\mathbb{R}^{4},

under the assumptions (G) and (H1).

Before we prove the above Lemma 2.5, we need to recall a Brezis-Merle type result, for its proof, see [18].

Lemma 2.6.

Suppose that h(x)h(x) satisfies

{Δ2h(x)=g(x)inBR4,h(x)=Δh(x)=0onBR,\left\{\begin{aligned} &\Delta^{2}h(x)=g(x)\quad\text{in}\ B_{R}\subset\mathbb{R}^{4},\\ &h(x)=\Delta h(x)=0\ \text{on}\ \partial B_{R},\end{aligned}\right.

with gL1(BR)g\in L^{1}(B_{R}), then for any δ(0,32π2)\delta\in(0,32\pi^{2}), there exists a Cδ>0C_{\delta}>0, such that

BReδ|h|gL1CδR4.\int_{B_{R}}e^{\frac{\delta|h|}{\|g\|_{L^{1}}}}\leq C_{\delta}R^{4}.

Proof of Lemma 2.5. Let h(y)h(y) be defined as

{Δ2h(y)=up2(y)eq2v(y)inB4(x),h(y)=Δh(y)=0onB4(x).\left\{\begin{aligned} &\Delta^{2}h(y)=u^{p_{2}}(y)e^{q_{2}v(y)}\quad\text{in}\ B_{4}(x),\\ &h(y)=\Delta h(y)=0\ \text{on}\ \partial B_{4}(x).\end{aligned}\right.

Since 4up2(y)eq2v(y)𝑑y<\int_{\mathbb{R}^{4}}u^{p_{2}}(y)e^{q_{2}v(y)}dy<\infty, then it follows from Lemma 2.6 that there exists an L>0L>0 such that B4(x)eθ|h|𝑑yC\int_{B_{4}(x)}e^{\theta|h|}dy\leq C, xBLc\forall x\in B^{c}_{L}, where θ=max{12q1,3q2}\theta=\max\{12q_{1},3q_{2}\} and CC is a constant independent of xx.

Set q(y)=v(y)h(y)q(y)=v(y)-h(y) in B4(x)B_{4}(x), then q(y)q(y) satisfies

{Δ2q(y)=0inB4(x),q(y)=v(y),Δq(y)=Δv(y)onB4(x).\left\{\begin{aligned} &\Delta^{2}q(y)=0\quad\text{in}\ B_{4}(x),\\ &q(y)=v(y),\ \Delta q(y)=\Delta v(y)\ \text{on}\ \partial B_{4}(x).\end{aligned}\right.

Next, let q~(y)=Δq(y)\tilde{q}(y)=-\Delta q(y), then q~(y)\tilde{q}(y) is harmonic and non-negative in B4(x)B_{4}(x). Therefore, we infer from Harnack inequality and mean value theorem that

q~(y)C2q~(x)=C2B4(x)q~(z)𝑑S=C2B4(x)Δv(z)dS,yB2(x),\tilde{q}(y)\leq C_{2}\tilde{q}(x)=C_{2}-\int_{\partial B_{4}(x)}\tilde{q}(z)dS=C_{2}-\int_{\partial B_{4}(x)}-\Delta v(z)dS,\qquad\forall y\in B_{2}(x),

where the constant C2C_{2} is independent of xx and yy. On the other hand, we note that v(x)v(x) satisfies

(Δ)2v(x)=up2(x)eq2v(x)in4.(-\Delta)^{2}v(x)=u^{p_{2}}(x)e^{q_{2}v(x)}\quad\text{in}\ \mathbb{R}^{4}.

Similarly to the calculation of Lemma 2.2, one gets

Br(x)Δv(y)dS\displaystyle--\int_{\partial B_{r}(x)}\Delta v(y)dS =Δv(x)12ω3Br(x)(1|xy|21r2)up2(y)eq2v(y)𝑑y\displaystyle=-\Delta v(x)-\frac{1}{2\omega_{3}}\int_{B_{r}(x)}\left(\frac{1}{|x-y|^{2}}-\frac{1}{r^{2}}\right)u^{p_{2}}(y)e^{q_{2}v(y)}dy
=12ω34Br(x)up2(y)eq2v(y)|xy|2𝑑y+12ω3r2Br(x)up2(y)eq2v(y)𝑑y.\displaystyle=\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}\setminus B_{r}(x)}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{|x-y|^{2}}dy+\frac{1}{2\omega_{3}r^{2}}\int_{B_{r}(x)}u^{p_{2}}(y)e^{q_{2}v(y)}dy.

Taking r=4r=4, we get

B4(x)Δv(y)dS<C.--\int_{\partial B_{4}(x)}\Delta v(y)dS<C.

In particular, we have q~(y)C\tilde{q}(y)\leq C for yB2(x)y\in B_{2}(x).

On the other hand, since q(y)q(y) satisfies

{Δq(y)=q~(y)inB4(x),q(y)=v(y)onB4(x),\left\{\begin{aligned} &\Delta q(y)=-\tilde{q}(y)\quad\text{in}\ B_{4}(x),\\ &q(y)=v(y)\quad\text{on}\ \partial B_{4}(x),\end{aligned}\right.

then

supB1(x)qC{q+L2(B2(x))+q~L(B2(x))}.\sup_{B_{1}(x)}q\leq C\{\|q^{+}\|_{L^{2}(B_{2}(x))}+\|\tilde{q}\|_{L^{\infty}(B_{2}(x))}\}. (2.10)

Since q=vhq=v-h, then

q+v++|h|,q^{+}\leq v^{+}+|h|,

which further implies

B2(x)(q+)2𝑑y2B2(x)e2v++|h|2dyCB2(x)(1+e3v)𝑑y+CB2(x)e3|h|𝑑yC.\int_{B_{2}(x)}(q^{+})^{2}dy\leq 2\int_{B_{2}(x)}e^{2v^{+}}+|h|^{2}dy\leq C\int_{B_{2}(x)}(1+e^{3v})dy+C\int_{B_{2}(x)}e^{3|h|}dy\leq C. (2.11)

Substituting (2.11) into (2.10), we deduce that supB1(x)q\sup\limits_{B_{1}(x)}q is bounded. Therefore, we find v(y)C+|h(y)|v(y)\leq C+|h(y)| for yB1(x)y\in B_{1}(x), which further implies

B1(x)eθv(y)𝑑yCB1(x)eθ|h(y)|𝑑yC.\int_{B_{1}(x)}e^{\theta v(y)}dy\leq C\int_{B_{1}(x)}e^{\theta|h(y)|}dy\leq C.

By Lemma 2.2, one gets

u(x)\displaystyle u(x) =12ω34up1(y)eq1v(y)|xy|2𝑑y\displaystyle=\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{u^{p_{1}}(y)e^{q_{1}v(y)}}{|x-y|^{2}}dy
=12ω3B1c(x)up1(y)eq1v(y)|xy|2𝑑y+12ω3B1(x)up1(y)eq1v(y)|xy|2𝑑y\displaystyle=\frac{1}{2\omega_{3}}\int_{B_{1}^{c}(x)}\frac{u^{p_{1}}(y)e^{q_{1}v(y)}}{|x-y|^{2}}dy+\frac{1}{2\omega_{3}}\int_{B_{1}(x)}\frac{u^{p_{1}}(y)e^{q_{1}v(y)}}{|x-y|^{2}}dy
C+C(B1(x)1|xy|3𝑑y)23(B1(x)u4(y)𝑑y)p14(B1(x)esq1v(y)𝑑y)1s\displaystyle\leq C+C\left(\int_{B_{1}(x)}\frac{1}{|x-y|^{3}}dy\right)^{\frac{2}{3}}\left(\int_{B_{1}(x)}u^{4}(y)dy\right)^{\frac{p_{1}}{4}}\left(\int_{B_{1}(x)}e^{sq_{1}v(y)}dy\right)^{\frac{1}{s}}
C,\displaystyle\leq C,

where 23+p14+1s=1\frac{2}{3}+\frac{p_{1}}{4}+\frac{1}{s}=1, 0p1<10\leq p_{1}<1, 3s<123\leq s<12. Hence, we obtain

Δv(x)\displaystyle-\Delta v(x) =12ω34up2(y)eq2v(y)|xy|2𝑑y\displaystyle=\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{|x-y|^{2}}dy
=12ω3B1c(x)up2(y)eq2v(y)|xy|2𝑑y+12ω3B1(x)up2(y)eq2v(y)|xy|2𝑑y\displaystyle=\frac{1}{2\omega_{3}}\int_{B_{1}^{c}(x)}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{|x-y|^{2}}dy+\frac{1}{2\omega_{3}}\int_{B_{1}(x)}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{|x-y|^{2}}dy
C+C(B1(x)1|xy|3𝑑y)23(B1(x)e3q2v(y)𝑑y)13\displaystyle\leq C+C\left(\int_{B_{1}(x)}\frac{1}{|x-y|^{3}}dy\right)^{\frac{2}{3}}\left(\int_{B_{1}(x)}e^{3q_{2}v(y)}dy\right)^{\frac{1}{3}}
C.\displaystyle\leq C.

Since Δv>0-\Delta v>0, we get |Δv|C|\Delta v|\leq C, where C>0C>0 is a constant. Let f=Δvf=-\Delta v. Recalling that ΔvC2\Delta v\in C^{2}, we take v1v_{1} to be a solution of

{Δv1=finB1(x)v1=0onB1(x).\left\{\begin{aligned} -\Delta v_{1}=f\quad\text{in}\ B_{1}(x)\\ v_{1}=0\quad\text{on}\ \partial B_{1}(x).\end{aligned}\right.

From elliptic theory we know that |v1|C1|v_{1}|\leq C_{1}, for some constant C1C_{1} depending on CC but not depending on xx. Let v2=vv1v_{2}=v-v_{1}. Then Δv2=0\Delta v_{2}=0 in B1(x)B_{1}(x). By the mean value theorem of harmonic functions, we observe that

v2+(x)\displaystyle v_{2}^{+}(x) C2B1(x)v2+𝑑x\displaystyle\leq C_{2}\int_{B_{1}(x)}v_{2}^{+}dx
C2(B1(x)(1+e3v)𝑑x+B1(x)|v1|𝑑x)C2.\displaystyle\leq C_{2}\left(\int_{B_{1}(x)}(1+e^{3v})dx+\int_{B_{1}(x)}|v_{1}|dx\right)\leq C_{2}.

Therefore, we conclude that vCv\leq C. \Box

Lemma 2.7.

Suppose that (u,v)(u,v) satisfies (G) and (H1). Then ε>0\forall\varepsilon>0, there exists an Rε>0R_{\varepsilon}>0 such that

k(x)(αε)ln|x|,|x|Rε.k(x)\geq(\alpha-\varepsilon)\ln|x|,\quad\forall|x|\geq R_{\varepsilon}.

Proof. Let A1={y4||y|R0}A_{1}=\{y\in\mathbb{R}^{4}||y|\leq R_{0}\}. Then we can choose R0R_{0} large enough, such that

14ω3A1[ln|xy|ln(|y|+1)]up2(y)eq2v(y)𝑑y(αε2)ln|x|.\frac{1}{4\omega_{3}}\int_{A_{1}}[\ln|x-y|-\ln(|y|+1)]u^{p_{2}}(y)e^{q_{2}v(y)}dy\geq\left(\alpha-\frac{\varepsilon}{2}\right)\ln|x|. (2.12)

Let A2={y4||yx||x|2,|y|R0}A_{2}=\left\{y\in\mathbb{R}^{4}||y-x|\leq\frac{|x|}{2},|y|\geq R_{0}\right\} and A3={y4||yx|>|x|2,|y|R0}A_{3}=\left\{y\in\mathbb{R}^{4}||y-x|>\frac{|x|}{2},|y|\geq R_{0}\right\}, then

A2[ln|xy|ln(|y|+1)]up2(y)eq2v(y)𝑑y\displaystyle\int_{A_{2}}[\ln|x-y|-\ln(|y|+1)]u^{p_{2}}(y)e^{q_{2}v(y)}dy (2.13)
B1(x)ln|xy|up2(y)eq2v(y)𝑑yA2ln(|y|+1)up2(y)eq2v(y)𝑑y\displaystyle\geq\int_{B_{1}(x)}\ln|x-y|u^{p_{2}}(y)e^{q_{2}v(y)}dy-\int_{A_{2}}\ln(|y|+1)u^{p_{2}}(y)e^{q_{2}v(y)}dy
Cln(2|x|)A2up2(y)eq2v(y)𝑑y\displaystyle\geq-C-\ln(2|x|)\int_{A_{2}}u^{p_{2}}(y)e^{q_{2}v(y)}dy
Cε4ln|x|.\displaystyle\geq-C-\frac{\varepsilon}{4}\ln|x|.

Finally, we estimate

A3[ln|xy|ln(|y|+1)]up2(y)eq2v(y)𝑑y.\int_{A_{3}}[\ln|x-y|-\ln(|y|+1)]u^{p_{2}}(y)e^{q_{2}v(y)}dy.

If yA3y\in A_{3} and |y|2|x||y|\leq 2|x|, then we have |xy|>|x|2|y|4|x-y|>\frac{|x|}{2}\geq\frac{|y|}{4}. If yA3y\in A_{3} and |y|>2|x||y|>2|x|, then we find |xy||y||x||y||y|2=|y|2|x-y|\geq|y|-|x|\geq|y|-\frac{|y|}{2}=\frac{|y|}{2}. That is, in both cases, we observe that

|xy||y|14\frac{|x-y|}{|y|}\geq\frac{1}{4}

or

|xy||y|+118.\frac{|x-y|}{|y|+1}\geq\frac{1}{8}.

Hence, it is clear that

A3[ln|xy|ln(|y|+1)]up2(y)eq2v(y)𝑑yln18A3up2(y)eq2v(y)𝑑yε4ln|x|\int_{A_{3}}[\ln|x-y|-\ln(|y|+1)]u^{p_{2}}(y)e^{q_{2}v(y)}dy\geq\ln\frac{1}{8}\int_{A_{3}}u^{p_{2}}(y)e^{q_{2}v(y)}dy\geq-\frac{\varepsilon}{4}\ln|x| (2.14)

for |x||x| enough large. Finally, we infer from (2.12)-(2.14) that

k(x)(αε)ln|x|.k(x)\geq(\alpha-\varepsilon)\ln|x|.

\Box

Lemma 2.8.

If (u,v)(u,v) is a solution of problem (1.1), then we have

lim|x|k(x)ln|x|=α\lim\limits_{|x|\rightarrow\infty}\frac{k(x)}{\ln|x|}=\alpha (2.15)

under the assumptions (G) and (H2).

Proof. We need to show that

lim|x|4ln|xy|ln(|y|+1)ln|x|ln|x|up2(y)eq2v(y)𝑑y=0.\lim_{|x|\rightarrow\infty}\int_{\mathbb{R}^{4}}\frac{\ln|x-y|-\ln(|y|+1)-\ln|x|}{\ln|x|}u^{p_{2}}(y)e^{q_{2}v(y)}dy=0.

Consider |x||x| large enough, and set

A1={y4||yx|1},A2={y4||yx|>1,|y|ln|x|}A_{1}=\{y\in\mathbb{R}^{4}||y-x|\leq 1\},\ A_{2}=\{y\in\mathbb{R}^{4}||y-x|>1,|y|\geq\ln|x|\}

and

A3={y4||yx|>1,|y|<ln|x|}.A_{3}=\{y\in\mathbb{R}^{4}||y-x|>1,|y|<\ln|x|\}.

For yA1y\in A_{1}, one gets

|B1(x)ln|xy|ln(|y|+1)ln|x|ln|x|up2(y)eq2v(y)𝑑y|\displaystyle\left|\int_{B_{1}(x)}\frac{\ln|x-y|-\ln(|y|+1)-\ln|x|}{\ln|x|}u^{p_{2}}(y)e^{q_{2}v(y)}dy\right|
B1(x)ln(1|xy|)+ln(|x|+2)+ln|x|ln|x|up2(y)eq2v(y)𝑑y\displaystyle\leq\int_{B_{1}(x)}\frac{\ln(\frac{1}{|x-y|})+\ln(|x|+2)+\ln|x|}{\ln|x|}u^{p_{2}}(y)e^{q_{2}v(y)}dy
3B1(x)up2(y)eq2v(y)𝑑y+J1ln|x|.\displaystyle\leq 3\int_{B_{1}(x)}u^{p_{2}}(y)e^{q_{2}v(y)}dy+\frac{J_{1}}{\ln|x|}.

Let

A1={y||yx||x|σ},A1′′={yA1||yx|>|x|σ}.A_{1}^{{}^{\prime}}=\{y||y-x|\leq|x|^{-\sigma}\},\quad A_{1}^{{}^{\prime\prime}}=\{y\in A_{1}||y-x|>|x|^{-\sigma}\}.

Next, we give the upper bound of J1J_{1}

J1\displaystyle J_{1} =B1(x)ln(1|xy|)up2(y)eq2v(y)𝑑y\displaystyle=\int_{B_{1}(x)}\ln\left(\frac{1}{|x-y|}\right)u^{p_{2}}(y)e^{q_{2}v(y)}dy
=A1ln(1|xy|)up2(y)eq2v(y)𝑑y+A1′′ln(1|xy|)up2(y)eq2v(y)𝑑y\displaystyle=\int_{A_{1}^{{}^{\prime}}}\ln\left(\frac{1}{|x-y|}\right)u^{p_{2}}(y)e^{q_{2}v(y)}dy+\int_{A_{1}^{{}^{\prime\prime}}}\ln\left(\frac{1}{|x-y|}\right)u^{p_{2}}(y)e^{q_{2}v(y)}dy
maxB|x|σ(x)(eq2v(y))(A1(ln(1|xy|))s𝑑y)1s(A1utp2𝑑y)1t+σln|x|A1′′up2(y)eq2v(y)𝑑y\displaystyle\leq\max_{B_{|x|^{-\sigma}}(x)}(e^{q_{2}v(y)})\left(\int_{A_{1}^{{}^{\prime}}}\left(\ln\left(\frac{1}{|x-y|}\right)\right)^{s}dy\right)^{\frac{1}{s}}\left(\int_{A_{1}^{{}^{\prime}}}u^{tp_{2}}dy\right)^{\frac{1}{t}}+\sigma\ln|x|\int_{A_{1}^{{}^{\prime\prime}}}u^{p_{2}}(y)e^{q_{2}v(y)}dy
C|x|Cq2|x|3σs+σln|x|B1(x)up2(y)eq2v(y)𝑑y,\displaystyle\leq C\frac{|x|^{Cq_{2}}}{|x|^{\frac{3\sigma}{s}}}+\sigma\ln|x|\int_{B_{1}(x)}u^{p_{2}}(y)e^{q_{2}v(y)}dy,

where 1s+1t=1\frac{1}{s}+\frac{1}{t}=1 and t=τp2t=\frac{\tau}{p_{2}}. In getting last inequality of above, we use (H2) and assume v(x)Cln|x|v(x)\leq C\ln|x|, for |x||x| large. Fix a large σ\sigma such that 3σsCq2\frac{3\sigma}{s}\geq Cq_{2}. Then, one has

|B1(x)ln|xy|ln(|y|+1)ln|x|ln|x|up2(y)eq2v(y)𝑑y|\displaystyle\left|\int_{B_{1}(x)}\frac{\ln|x-y|-\ln(|y|+1)-\ln|x|}{\ln|x|}u^{p_{2}}(y)e^{q_{2}v(y)}dy\right|
CB1(x)up2(y)eq2v(y)𝑑y+Cln|x|\displaystyle\leq C\int_{B_{1}(x)}u^{p_{2}}(y)e^{q_{2}v(y)}dy+\frac{C}{\ln|x|}
=o|x|(1).\displaystyle=o_{|x|}(1).

For yA2y\in A_{2}, we find

14|x|2|xy||x|(|y|+1)1|x|+1|y|+1<1\frac{1}{4|x|^{2}}\leq\frac{|x-y|}{|x|(|y|+1)}\leq\frac{1}{|x|}+\frac{1}{|y|+1}<1

for |x||x| large enough. Then

|A2ln|xy|ln(|y|+1)ln|x|ln|x|up2(y)eq2v(y)𝑑y|\displaystyle\left|\int_{A_{2}}\frac{\ln|x-y|-\ln(|y|+1)-\ln|x|}{\ln|x|}u^{p_{2}}(y)e^{q_{2}v(y)}dy\right|
supyA2|ln|xy|ln(|y|+1)ln|x||ln|x||y|ln|x|up2(y)eq2v(y)𝑑y\displaystyle\leq\sup_{y\in A_{2}}\frac{|\ln|x-y|-\ln(|y|+1)-\ln|x||}{\ln|x|}\int_{|y|\geq\ln|x|}u^{p_{2}}(y)e^{q_{2}v(y)}dy
2ln2+2ln|x|ln|x||y|ln|x|up2(y)eq2v(y)𝑑y\displaystyle\leq\frac{2\ln 2+2\ln|x|}{\ln|x|}\int_{|y|\geq\ln|x|}u^{p_{2}}(y)e^{q_{2}v(y)}dy
=o|x|(1).\displaystyle=o_{|x|}(1).

For yA3y\in A_{3}, one gets

|A3ln|xy|ln(|y|+1)ln|x|ln|x|up2(y)eq2v(y)𝑑y|\displaystyle\left|\int_{A_{3}}\frac{\ln|x-y|-\ln(|y|+1)-\ln|x|}{\ln|x|}u^{p_{2}}(y)e^{q_{2}v(y)}dy\right|
maxyA3|ln(|xy||x|)|ln|x|A3up2(y)eq2v(y)𝑑y+1ln|x|A3ln(|y|+1)up2(y)eq2v(y)𝑑y\displaystyle\leq\frac{\max\limits_{y\in A_{3}}\left|\ln(\frac{|x-y|}{|x|})\right|}{\ln|x|}\int_{A_{3}}u^{p_{2}}(y)e^{q_{2}v(y)}dy+\frac{1}{\ln|x|}\int_{A_{3}}\ln(|y|+1)u^{p_{2}}(y)e^{q_{2}v(y)}dy
Cln2ln|x|+Cln(ln|x|+1)ln|x|\displaystyle\leq\frac{C\ln 2}{\ln|x|}+\frac{C\ln(\ln|x|+1)}{\ln|x|}
=o|x|(1),\displaystyle=o_{|x|}(1),

where we have used

121ln|x||x||xy||x|1+ln|x||x|32,yA3.\frac{1}{2}\leq 1-\frac{\ln|x|}{|x|}\leq\frac{|x-y|}{|x|}\leq 1+\frac{\ln|x|}{|x|}\leq\frac{3}{2},\quad\forall y\in A_{3}.

This completes the proof of this lemma. \Box

Lemma 2.9.

Let (u,v)(u,v) be a solution of problem (1.1) with v(x)=o(|x|2)v(x)=o(|x|^{2}) as |x||x|\rightarrow\infty. Then

v(x)=14ω34[ln|xy|ln(|y|+1)]up2(y)eq2v(y)𝑑y+c0,v(x)=-\frac{1}{4\omega_{3}}\int_{\mathbb{R}^{4}}[\ln|x-y|-\ln(|y|+1)]u^{p_{2}}(y)e^{q_{2}v(y)}dy+c_{0}, (2.16)
v(x)=14ω34xy|xy|2up2(y)eq2v(y)𝑑y\nabla v(x)=-\frac{1}{4\omega_{3}}\int_{\mathbb{R}^{4}}\frac{x-y}{|x-y|^{2}}u^{p_{2}}(y)e^{q_{2}v(y)}dy (2.17)

for some constant c0c_{0}\in\mathbb{R}.

Proof. Since

Δ(k(x)+v(x))=0\Delta(k(x)+v(x))=0

and

k(x)+v(x)=o(|x|2),k(x)+v(x)=o(|x|^{2}),

then it follows from Liouville theorem that

k(x)+v(x)=i=14cixi+c0.k(x)+v(x)=\sum^{4}_{i=1}c_{i}x_{i}+c_{0}.

Hence we observe that

up1(x)eq1v(x)=up1(x)eq1k(x)eq1c0eq1i=14cixiCeq1c0|x|(2p1+αq1)eq1i=14cixi,u^{p_{1}}(x)e^{q_{1}v(x)}=u^{p_{1}}(x)e^{-q_{1}k(x)}e^{q_{1}c_{0}}e^{q_{1}\sum^{4}_{i=1}c_{i}x_{i}}\geq Ce^{q_{1}c_{0}}|x|^{-(2p_{1}+\alpha q_{1})}e^{q_{1}\sum^{4}_{i=1}c_{i}x_{i}},

for |x||x| enough large. We infer from 4up1(x)eq1v(x)𝑑x<\int_{\mathbb{R}^{4}}u^{p_{1}}(x)e^{q_{1}v(x)}dx<\infty that c1=c2=c3=c4=0c_{1}=c_{2}=c_{3}=c_{4}=0, which further implies

v(x)=k(x)+c0.v(x)=-k(x)+c_{0}.

This proves equation (2.16). Equation (2.17) follows from equation (2.16). \Box

By Lemma 2.1, Lemma 2.7 and Lemma 2.8, we obtain k(x)αln|x|k(x)\sim\alpha\ln|x| at \infty whether uu satisfies (G)(H1) or (G)(H2). By Lemma 2.9, we know that v(x)αln|x|v(x)\sim-\alpha\ln|x| at \infty, that is,

lim|x|v(x)ln|x|=α.\lim_{|x|\rightarrow\infty}\frac{v(x)}{\ln|x|}=-\alpha. (2.18)
Lemma 2.10.

Suppose that (u,v)(u,v) satisfies (G) and (H2). Then

u(x)Candv(x)Cin4.u(x)\leq C\quad\text{and}\quad v(x)\leq C\quad\text{in}\ \mathbb{R}^{4}.

Proof. By Lemma 2.8 and equation (2.16), we get

lim|x|v(x)=\lim_{|x|\rightarrow\infty}v(x)=-\infty

and v(x)Cv(x)\leq C. Then

u(x)\displaystyle u(x) =12ω34up1(y)eq1v(y)|xy|2𝑑y\displaystyle=\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{u^{p_{1}}(y)e^{q_{1}v(y)}}{|x-y|^{2}}dy
=12ω3B1c(x)up1(y)eq1v(y)|xy|2𝑑y+12ω3B1(x)up1(y)eq1v(y)|xy|2𝑑y\displaystyle=\frac{1}{2\omega_{3}}\int_{B_{1}^{c}(x)}\frac{u^{p_{1}}(y)e^{q_{1}v(y)}}{|x-y|^{2}}dy+\frac{1}{2\omega_{3}}\int_{B_{1}(x)}\frac{u^{p_{1}}(y)e^{q_{1}v(y)}}{|x-y|^{2}}dy
C+C(B1(x)1|xy|3𝑑y)23(B1(x)u3p1𝑑y)13\displaystyle\leq C+C\left(\int_{B_{1}(x)}\frac{1}{|x-y|^{3}}dy\right)^{\frac{2}{3}}\left(\int_{B_{1}(x)}u^{3p_{1}}dy\right)^{\frac{1}{3}}
C.\displaystyle\leq C.

\Box

By Lemma 2.5 and Lemma 2.10, we get u(x)Cu(x)\leq C and v(x)Cv(x)\leq C whenever (u,v)(u,v) satisfies (G)(H1) or (G)(H2).

3 Slow decay is impossible

Let

μ=62p1q1and2p2+μq2=8.\mu=\frac{6-2p_{1}}{q_{1}}\quad\text{and}\quad 2p_{2}+\mu q_{2}=8.

Let α\alpha be defined as (2.1), and we prove that α=μ\alpha=\mu. Then, we obtain the precise decay of v(x)v(x). In this section, we show that α<μ\alpha<\mu can’t occur. We use the moving spheres method to prove our results.

Let

{w(x)=1|x|2u(x|x|2),z(x)=v(x|x|2)μln|x|.\left\{\begin{aligned} &w(x)=\frac{1}{|x|^{2}}u\left(\frac{x}{|x|^{2}}\right),\\ &z(x)=v\left(\frac{x}{|x|^{2}}\right)-\mu\ln|x|.\end{aligned}\right. (3.1)

be the Kelvin transformation of (u,v)(u,v). Then a direct calculation shows that they satisfy the following equation

{Δw(x)=wp1(x)eq1z(x),(Δ)2z(x)=wp2(x)eq2z(x),in4\{0}.\left\{\begin{aligned} &-\Delta w(x)=w^{p_{1}}(x)e^{q_{1}z(x)},\\ &(-\Delta)^{2}z(x)=w^{p_{2}}(x)e^{q_{2}z(x)},\end{aligned}\quad\text{in}\quad\mathbb{R}^{4}\backslash\{0\}.\right.

Moreover, one has

Δz(x)=4x|x|4v(x|x|2)1|x|4Δv(x|x|2)+2μ|x|2,x4\{0}.-\Delta z(x)=4\frac{x}{|x|^{4}}\nabla v\left(\frac{x}{|x|^{2}}\right)-\frac{1}{|x|^{4}}\Delta v\left(\frac{x}{|x|^{2}}\right)+\frac{2\mu}{|x|^{2}},\qquad x\in\mathbb{R}^{4}\backslash\{0\}. (3.2)
Lemma 3.1.

We have

Δz(x)=12ω34wp2(y)eq2z(y)|xy|2𝑑y+2(μα)|x|2-\Delta z(x)=\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{w^{p_{2}}(y)e^{q_{2}z(y)}}{|x-y|^{2}}dy+\frac{2(\mu-\alpha)}{|x|^{2}}

for x4{0}x\in\mathbb{R}^{4}\setminus\{0\}.

Proof. By (2.9) and (2.17), we know that

vxi=14ω34xiyi|xy|2up2(y)eq2v(y)𝑑y\frac{\partial v}{\partial x_{i}}=-\frac{1}{4\omega_{3}}\int_{\mathbb{R}^{4}}\frac{x_{i}-y_{i}}{|x-y|^{2}}u^{p_{2}}(y)e^{q_{2}v(y)}dy (3.3)

and

Δv(x)=12ω34up2(y)eq2v(y)|xy|2𝑑y.\Delta v(x)=-\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{|x-y|^{2}}dy. (3.4)

Substituting (3.3) and (3.4) into (3.2), then

Δz(x)\displaystyle-\Delta z(x) =1ω34i=14(xi2|x|4xiyi|x|2|y|2)|xy|2|y|6up2(y|y|2)eq2v(y|y|2)𝑑y\displaystyle=-\frac{1}{\omega_{3}}\int_{\mathbb{R}^{4}}\frac{\sum^{4}_{i=1}\left(\frac{x_{i}^{2}}{|x|^{4}}-\frac{x_{i}y_{i}}{|x|^{2}|y|^{2}}\right)}{|x-y|^{2}|y|^{6}}u^{p_{2}}\left(\frac{y}{|y|^{2}}\right)e^{q_{2}v\left(\frac{y}{|y|^{2}}\right)}dy
+12ω3|x|44up2(y|y|2)eq2v(y|y|2)|x|x|2y|y|2|2|y|8𝑑y+2μ|x|2\displaystyle+\frac{1}{2\omega_{3}|x|^{4}}\int_{\mathbb{R}^{4}}\frac{u^{p_{2}}\left(\frac{y}{|y|^{2}}\right)e^{q_{2}v\left(\frac{y}{|y|^{2}}\right)}}{\left|\frac{x}{|x|^{2}}-\frac{y}{|y|^{2}}\right|^{2}|y|^{8}}dy+\frac{2\mu}{|x|^{2}}
=1ω34|y|2x,y|xy|2|x|2wp2(y)eq2z(y)𝑑y+12ω34|y|2|xy|2|x|2wp2(y)eq2z(y)𝑑y+2μ|x|2\displaystyle=-\frac{1}{\omega_{3}}\int_{\mathbb{R}^{4}}\frac{|y|^{2}-\langle x,y\rangle}{|x-y|^{2}|x|^{2}}w^{p_{2}}(y)e^{q_{2}z(y)}dy+\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{|y|^{2}}{|x-y|^{2}|x|^{2}}w^{p_{2}}(y)e^{q_{2}z(y)}dy+\frac{2\mu}{|x|^{2}}
=12ω34|y|22x,y|xy|2|x|2wp2(y)eq2z(y)𝑑y+2μ|x|2\displaystyle=-\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{|y|^{2}-2\langle x,y\rangle}{|x-y|^{2}|x|^{2}}w^{p_{2}}(y)e^{q_{2}z(y)}dy+\frac{2\mu}{|x|^{2}}
=12ω34|xy|2|x|2|xy|2|x|2wp2(y)eq2z(y)𝑑y+2μ|x|2\displaystyle=-\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{|x-y|^{2}-|x|^{2}}{|x-y|^{2}|x|^{2}}w^{p_{2}}(y)e^{q_{2}z(y)}dy+\frac{2\mu}{|x|^{2}}
=12ω34wp2(y)eq2z(y)|x|2𝑑y+12ω34wp2(y)eq2z(y)|xy|2𝑑y+2μ|x|2\displaystyle=-\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{w^{p_{2}}(y)e^{q_{2}z(y)}}{|x|^{2}}dy+\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{w^{p_{2}}(y)e^{q_{2}z(y)}}{|x-y|^{2}}dy+\frac{2\mu}{|x|^{2}}
=12ω34wp2(y)eq2z(y)|xy|2𝑑y+2(μα)|x|2\displaystyle=\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{w^{p_{2}}(y)e^{q_{2}z(y)}}{|x-y|^{2}}dy+\frac{2(\mu-\alpha)}{|x|^{2}}

for x4{0}x\in\mathbb{R}^{4}\setminus\{0\}. \Box

Lemma 3.2.

We have

±4xv(x)|x|2Δv(x)2α.\pm 4x\cdot\nabla v(x)\geq|x|^{2}\Delta v(x)-2\alpha.

Proof. By (2.9) and (2.17), we find

4|xv(x)|\displaystyle 4|x\cdot\nabla v(x)| |x|ω34up2(y)eq2v(y)|xy|𝑑y\displaystyle\leq\frac{|x|}{\omega_{3}}\int_{\mathbb{R}^{4}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{|x-y|}dy
|x|ω3(4up2(y)eq2v(y)|xy|2𝑑y)12(4up2(y)eq2v(y)𝑑y)12\displaystyle\leq\frac{|x|}{\omega_{3}}\left(\int_{\mathbb{R}^{4}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{|x-y|^{2}}dy\right)^{\frac{1}{2}}\left(\int_{\mathbb{R}^{4}}u^{p_{2}}(y)e^{q_{2}v(y)}dy\right)^{\frac{1}{2}}
|x|2(Δv(x))+2α.\displaystyle\leq|x|^{2}(-\Delta v(x))+2\alpha.

\Box

Let w(x)w(x) and z(x)z(x) be defined as (3.1), we define

wλ(x)=λ2|x|2w(λ2x|x|2)=1λ2u(xλ2)w_{\lambda}(x)=\frac{\lambda^{2}}{|x|^{2}}w\left(\frac{\lambda^{2}x}{|x|^{2}}\right)=\frac{1}{\lambda^{2}}u\left(\frac{x}{\lambda^{2}}\right)

and

zλ(x)=z(λ2x|x|2)μln|x|λ=v(xλ2)μlnλ.z_{\lambda}(x)=z\left(\frac{\lambda^{2}x}{|x|^{2}}\right)-\mu\ln\frac{|x|}{\lambda}=v\left(\frac{x}{\lambda^{2}}\right)-\mu\ln\lambda.

Then a direct calculation shows that they satisfy the following equation

Δwλ(x)=wλp1(x)eq1zλ(x),-\Delta w_{\lambda}(x)=w^{p_{1}}_{\lambda}(x)e^{q_{1}z_{\lambda}(x)},
Δzλ(x)=12ω34wλp2(y)eq2zλ(y)|xy|2𝑑y-\Delta z_{\lambda}(x)=\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{w^{p_{2}}_{\lambda}(y)e^{q_{2}z_{\lambda}(y)}}{|x-y|^{2}}dy

and

Δ2zλ(x)=wλp2(x)eq2zλ(x)\Delta^{2}z_{\lambda}(x)=w^{p_{2}}_{\lambda}(x)e^{q_{2}z_{\lambda}(x)}

for any x4x\in\mathbb{R}^{4}. Set

Sλw(x)=w(x)wλ(x)S_{\lambda}^{w}(x)=w(x)-w_{\lambda}(x)

and

Sλz(x)=z(x)zλ(x).S_{\lambda}^{z}(x)=z(x)-z_{\lambda}(x).

Then Sλw(x)S_{\lambda}^{w}(x) satisfies

ΔSλw(x)=wp1(x)eq1z(x)wλp1(x)eq1zλ(x),in4\{0}.-\Delta S_{\lambda}^{w}(x)=w^{p_{1}}(x)e^{q_{1}z(x)}-w^{p_{1}}_{\lambda}(x)e^{q_{1}z_{\lambda}(x)},\quad\text{in}\quad\mathbb{R}^{4}\backslash\{0\}.

Also in 4\{0}\mathbb{R}^{4}\backslash\{0\}, Sλz(x)S_{\lambda}^{z}(x) satisfies

ΔSλz(x)\displaystyle-\Delta S_{\lambda}^{z}(x) =12ω34wp2(y)eq2z(y)|xy|2𝑑y12ω34wλp2(y)eq2zλ(y)|xy|2𝑑y+2(μα)|x|2\displaystyle=\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{w^{p_{2}}(y)e^{q_{2}z(y)}}{|x-y|^{2}}dy-\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{w^{p_{2}}_{\lambda}(y)e^{q_{2}z_{\lambda}(y)}}{|x-y|^{2}}dy+\frac{2(\mu-\alpha)}{|x|^{2}} (3.5)
=12ω3Bλwp2(y)eq2z(y)|xy|2𝑑y+12ω3Bλcwp2(y)eq2z(y)|xy|2𝑑y\displaystyle=\frac{1}{2\omega_{3}}\int_{B_{\lambda}}\frac{w^{p_{2}}(y)e^{q_{2}z(y)}}{|x-y|^{2}}dy+\frac{1}{2\omega_{3}}\int_{B_{\lambda}^{c}}\frac{w^{p_{2}}(y)e^{q_{2}z(y)}}{|x-y|^{2}}dy
12ω3Bλwλp2(y)eq2zλ(y)|xy|2𝑑y12ω3Bλcwλp2(y)eq2zλ(y)|xy|2𝑑y+2(μα)|x|2\displaystyle-\frac{1}{2\omega_{3}}\int_{B_{\lambda}}\frac{w^{p_{2}}_{\lambda}(y)e^{q_{2}z_{\lambda}(y)}}{|x-y|^{2}}dy-\frac{1}{2\omega_{3}}\int_{B_{\lambda}^{c}}\frac{w^{p_{2}}_{\lambda}(y)e^{q_{2}z_{\lambda}(y)}}{|x-y|^{2}}dy+\frac{2(\mu-\alpha)}{|x|^{2}}
=12ω3Bλ[1|xy|21|xλ2y|y|2|2][wp2(y)eq2z(y)wλp2(y)eq2zλ(y)]𝑑y+2(μα)|x|2\displaystyle=\frac{1}{2\omega_{3}}\int_{B_{\lambda}}\left[\frac{1}{|x-y|^{2}}-\frac{1}{\left|x-\frac{\lambda^{2}y}{|y|^{2}}\right|^{2}}\right][w^{p_{2}}(y)e^{q_{2}z(y)}-w^{p_{2}}_{\lambda}(y)e^{q_{2}z_{\lambda}(y)}]dy+\frac{2(\mu-\alpha)}{|x|^{2}}

and

Δ2Sλz(x)=wp2(x)eq2z(x)wλp2(x)eq2zλ(x).\Delta^{2}S_{\lambda}^{z}(x)=w^{p_{2}}(x)e^{q_{2}z(x)}-w^{p_{2}}_{\lambda}(x)e^{q_{2}z_{\lambda}(x)}.
Proposition 3.1.

Assume that α<μ\alpha<\mu. Then for λ>0\lambda>0 large enough, we have

Sλw(x)0,Sλz(x)0andΔSλz(x)0inBλ(0){0}.S_{\lambda}^{w}(x)\geq 0,\ S_{\lambda}^{z}(x)\geq 0\ \text{and}\ -\Delta S_{\lambda}^{z}(x)\geq 0\ \text{in}\ B_{\lambda}(0)\setminus\{0\}.

Proof.

Recall the following lemma from [3, 25](see Lemma 2.1 of [3] and Lemma 3.3 of [25]).

Lemma 3.3.

Suppose that w(x)w(x) satisfies

{Δw(x)0,in4{0}w(x)>0,in4{0}.\left\{\begin{aligned} &-\Delta w(x)\geq 0,\quad\text{in}\ \mathbb{R}^{4}\setminus\{0\}\\ &w(x)>0,\quad\text{in}\ \mathbb{R}^{4}\setminus\{0\}.\end{aligned}\right.

If we denote ε=minBRw(x)\varepsilon=\min\limits_{\partial B_{R}}w(x), then w(x)εw(x)\geq\varepsilon for xBR{0}x\in B_{R}\setminus\{0\}.

Step 1: There exists a R0>0R_{0}>0, such that Sλw(x)0S_{\lambda}^{w}(x)\geq 0, Sλz(x)0S_{\lambda}^{z}(x)\geq 0 and ΔSλz(x)0-\Delta S_{\lambda}^{z}(x)\geq 0 for R0|x|λ2R_{0}\leq|x|\leq\frac{\lambda}{2} and λ\lambda large enough.

In fact,

Sλw(x)\displaystyle S_{\lambda}^{w}(x) =1|x|2u(x|x|2)1λ2u(xλ2)\displaystyle=\frac{1}{|x|^{2}}u\left(\frac{x}{|x|^{2}}\right)-\frac{1}{\lambda^{2}}u\left(\frac{x}{\lambda^{2}}\right)
=(1|x|21λ2)u(x|x|2)+1λ2[u(x|x|2)u(xλ2)]\displaystyle=\left(\frac{1}{|x|^{2}}-\frac{1}{\lambda^{2}}\right)u\left(\frac{x}{|x|^{2}}\right)+\frac{1}{\lambda^{2}}\left[u\left(\frac{x}{|x|^{2}}\right)-u\left(\frac{x}{\lambda^{2}}\right)\right]
3λ2[u(0)+o(1)]Cλ2(1R0R0λ2)\displaystyle\geq\frac{3}{\lambda^{2}}[u(0)+o(1)]-\frac{C}{\lambda^{2}}\left(\frac{1}{R_{0}}-\frac{R_{0}}{\lambda^{2}}\right)
3λ2[u(0)+o(1)]Cλ2R0>0\displaystyle\geq\frac{3}{\lambda^{2}}[u(0)+o(1)]-\frac{C}{\lambda^{2}R_{0}}>0

for λ\lambda and R0R_{0} large enough, where C=maxB1|u|C=\max_{B_{1}}|\nabla u|. Similarly, we find

Sλz(x)\displaystyle S_{\lambda}^{z}(x) =v(x|x|2)μln|x|v(xλ2)+μlnλ\displaystyle=v\left(\frac{x}{|x|^{2}}\right)-\mu\ln|x|-v\left(\frac{x}{\lambda^{2}}\right)+\mu\ln\lambda
=v(x|x|2)v(xλ2)+μln(λ|x|)\displaystyle=v\left(\frac{x}{|x|^{2}}\right)-v\left(\frac{x}{\lambda^{2}}\right)+\mu\ln\left(\frac{\lambda}{|x|}\right)
μln2CR0\displaystyle\geq\mu\ln 2-\frac{C}{R_{0}}
>0.\displaystyle>0.

Finally, one gets

ΔSλz(x)\displaystyle-\Delta S_{\lambda}^{z}(x) =Δz(x)+Δzλ(x)\displaystyle=-\Delta z(x)+\Delta z_{\lambda}(x)
=4x|x|4v(x|x|2)1|x|4Δv(x|x|2)+2μ|x|2+1λ4Δv(xλ2)\displaystyle=\frac{4x}{|x|^{4}}\nabla v\left(\frac{x}{|x|^{2}}\right)-\frac{1}{|x|^{4}}\Delta v\left(\frac{x}{|x|^{2}}\right)+\frac{2\mu}{|x|^{2}}+\frac{1}{\lambda^{4}}\Delta v\left(\frac{x}{\lambda^{2}}\right)
2μ|x|24C|x|3C|x|4Cλ4\displaystyle\geq\frac{2\mu}{|x|^{2}}-\frac{4C}{|x|^{3}}-\frac{C}{|x|^{4}}-\frac{C}{\lambda^{4}}
>0\displaystyle>0

for λ\lambda and R0R_{0} large enough, where C=maxB1{|v|,|Δv|}C=\max_{B_{1}}\{|\nabla v|,|\Delta v|\}. This completes the proof of Step 1.

Step 2: Sλw(x)0S_{\lambda}^{w}(x)\geq 0, Sλz(x)0S_{\lambda}^{z}(x)\geq 0 and ΔSλz(x)0-\Delta S_{\lambda}^{z}(x)\geq 0 for λ2|x|λ\frac{\lambda}{2}\leq|x|\leq\lambda.

In fact, we can get ΔSλz(x)0-\Delta S_{\lambda}^{z}(x)\geq 0 in the same way as Step 1. Since SλzS_{\lambda}^{z} satisfies

{ΔSλz0inBλBλ2Sλz=0onBλ,Sλz0onBλ2,\left\{\begin{aligned} &-\Delta S_{\lambda}^{z}\geq 0\quad\text{in}\ B_{\lambda}\setminus B_{\frac{\lambda}{2}}\\ &S_{\lambda}^{z}=0\qquad\text{on}\ \partial B_{\lambda},\\ &S_{\lambda}^{z}\geq 0\qquad\text{on}\partial B_{\frac{\lambda}{2}},\end{aligned}\right.

then we infer from the maximum principle that Sλz0S_{\lambda}^{z}\geq 0 for λ2|x|λ\frac{\lambda}{2}\leq|x|\leq\lambda.

Finally, since Sλw(x)S_{\lambda}^{w}(x) satisfies

ΔSλw(x)\displaystyle-\Delta S_{\lambda}^{w}(x) =wp1eq1zwλp1eq1zλ\displaystyle=w^{p_{1}}e^{q_{1}z}-w_{\lambda}^{p_{1}}e^{q_{1}z_{\lambda}}
=wp1(eq1zeq1zλ)+(wp1wλp1)eq1zλ\displaystyle=w^{p_{1}}(e^{q_{1}z}-e^{q_{1}z_{\lambda}})+(w^{p_{1}}-w_{\lambda}^{p_{1}})e^{q_{1}z_{\lambda}}
=q1wp1eq1ξz(zzλ)+p1ξwp11(wwλ)eq1zλ,\displaystyle=q_{1}w^{p_{1}}e^{q_{1}\xi_{z}}(z-z_{\lambda})+p_{1}\xi_{w}^{p_{1}-1}(w-w_{\lambda})e^{q_{1}z_{\lambda}},

where ξz\xi_{z} is between z(x)z(x) and zλ(x)z_{\lambda}(x) and ξw\xi_{w} is between w(x)w(x) and wλ(x)w_{\lambda}(x). We see that q1wp1eq1ξz(zzλ)0q_{1}w^{p_{1}}e^{q_{1}\xi_{z}}(z-z_{\lambda})\geq 0 and p1ξwp11eq1zλ0p_{1}\xi_{w}^{p_{1}-1}e^{q_{1}z_{\lambda}}\geq 0 in BλBλ2B_{\lambda}\setminus B_{\frac{\lambda}{2}}. We obatin

{ΔSλw(x)c(x)Sλw(x)0inBλBλ2Sλw(x)=0onBλSλw0onBλ2,\left\{\begin{aligned} &-\Delta S_{\lambda}^{w}(x)-c(x)S_{\lambda}^{w}(x)\geq 0\quad\text{in}\ B_{\lambda}\setminus B_{\frac{\lambda}{2}}\\ &S_{\lambda}^{w}(x)=0\qquad\text{on}\ \partial B_{\lambda}\\ &S_{\lambda}^{w}\geq 0\qquad\text{on}\ \partial B_{\frac{\lambda}{2}},\end{aligned}\right.

where c(x)=p1ξwp11eq1zλ0c(x)=p_{1}\xi_{w}^{p_{1}-1}e^{q_{1}z_{\lambda}}\geq 0 is bounded. By a simple calculation, we observe that c(x)=O(1λ4)c(x)=O(\frac{1}{\lambda^{4}}), xBλBλ2x\in B_{\lambda}\setminus B_{\frac{\lambda}{2}}.

Let Ω=B54B14\Omega=B_{\frac{5}{4}}\setminus B_{\frac{1}{4}}. Let λ1\lambda_{1} be the first Dirichlet eigenvalue of Δ-\Delta in Ω\Omega and φ(x)\varphi(x) be an eigenfunction corresponding to λ1\lambda_{1}. We also assume φ>0\varphi>0 in Ω\Omega and φL(Ω)=1\|\varphi\|_{L^{\infty}(\Omega)}=1. Let ψ(x)=φ(xλ)\psi(x)=\varphi(\frac{x}{\lambda}) and Ωλ=B54λB14λ\Omega_{\lambda}=B_{\frac{5}{4}\lambda}\setminus B_{\frac{1}{4}\lambda}. Then, ψ(x)\psi(x) satisfies

{Δψ(x)=λ1λ2ψ(x),inΩλψ(x)=0,onΩλ.\left\{\begin{aligned} &-\Delta\psi(x)=\frac{\lambda_{1}}{\lambda^{2}}\psi(x),\quad\text{in}\ \Omega_{\lambda}\\ &\psi(x)=0,\qquad\text{on}\ \partial\Omega_{\lambda}.\end{aligned}\right.

Let S(x)=Sλw(x)ψ(x)S(x)=\frac{S_{\lambda}^{w}(x)}{\psi(x)}. Then S(x)S(x) solves

{ΔS2Slnψ+(λ1λ2c(x))S0,inBλ\Bλ2,S0,onBλ2,S=0,onBλ.\begin{cases}&-\Delta S-2\nabla S\cdot\nabla\ln\psi+\left(\frac{\lambda_{1}}{\lambda^{2}}-c(x)\right)S\geq 0,\quad\text{in}\quad B_{\lambda}\backslash B_{\frac{\lambda}{2}},\\ &S\geq 0,\quad\text{on}\quad\partial B_{\frac{\lambda}{2}},\\ &S=0,\quad\text{on}\quad\partial B_{\lambda}.\end{cases}

Notice that λ1λ2c(x)0\frac{\lambda_{1}}{\lambda^{2}}-c(x)\geq 0 for λ\lambda large enough. By standard maximum principle, one gets S(x)0S(x)\geq 0, i.e. Sλw(x)0S_{\lambda}^{w}(x)\geq 0 in Bλ\Bλ2B_{\lambda}\backslash B_{\frac{\lambda}{2}}.

Step 3: Sλw(x)0S_{\lambda}^{w}(x)\geq 0, Sλz(x)0S_{\lambda}^{z}(x)\geq 0 and ΔSλz(x)0-\Delta S_{\lambda}^{z}(x)\geq 0 in BR0{0}B_{R_{0}}\setminus\{0\}.

Claim: there exists a R2R_{2} small enough, such that Sλz(x)0S_{\lambda}^{z}(x)\geq 0 for 0<|x|R20<|x|\leq R_{2}.
Since

v(x|x|2)=[α+o(1)]ln|x|,0<|x|R2,v\left(\frac{x}{|x|^{2}}\right)=[\alpha+o(1)]\ln|x|,\quad 0<|x|\leq R_{2},

then

Sλz(x)=v(x|x|2)v(xλ2)μln|x|+μlnλ=[αμ+o(1)]ln|x|v(xλ2)+μlnλ>0\begin{split}S_{\lambda}^{z}(x)=&v\left(\frac{x}{|x|^{2}}\right)-v\left(\frac{x}{\lambda^{2}}\right)-\mu\ln|x|+\mu\ln\lambda\\ =&[\alpha-\mu+o(1)]\ln|x|-v\left(\frac{x}{\lambda^{2}}\right)+\mu\ln\lambda>0\end{split}

for 0<|x|R20<|x|\leq R_{2} small enough. This proves the claim.

Fixing R2>0R_{2}>0 as above and choosing λ>0\lambda>0 large enough, one gets from the definition of SλzS_{\lambda}^{z} such that Sλz(x)0S_{\lambda}^{z}(x)\geq 0, R2|x|R0\forall R_{2}\leq|x|\leq R_{0}.

Since

Δ(1|x|2u(x|x|2))=1|x|6Δu(x|x|2)=up1(x|x|2)eq1v(x|x|2)|x|6>0-\Delta\left(\frac{1}{|x|^{2}}u\left(\frac{x}{|x|^{2}}\right)\right)=-\frac{1}{|x|^{6}}\Delta u\left(\frac{x}{|x|^{2}}\right)=\frac{u^{p_{1}}\left(\frac{x}{|x|^{2}}\right)e^{q_{1}v\left(\frac{x}{|x|^{2}}\right)}}{|x|^{6}}>0

for x0x\neq 0, it follows from Lemma 3.3 that

1|x|2u(x|x|2)ε>0inBR0{0},\frac{1}{|x|^{2}}u\left(\frac{x}{|x|^{2}}\right)\geq\varepsilon>0\quad\text{in}\ B_{R_{0}}\setminus\{0\},

where ε=minBR01|x|2u(x|x|2)>0\varepsilon=\min\limits_{\partial B_{R_{0}}}\frac{1}{|x|^{2}}u\left(\frac{x}{|x|^{2}}\right)>0. So we conclude that

Sλw(x)=1|x|2u(x|x|2)1λ2u(xλ2)ε1λ2u(xλ2)>0S_{\lambda}^{w}(x)=\frac{1}{|x|^{2}}u\left(\frac{x}{|x|^{2}}\right)-\frac{1}{\lambda^{2}}u\left(\frac{x}{\lambda^{2}}\right)\geq\varepsilon-\frac{1}{\lambda^{2}}u\left(\frac{x}{\lambda^{2}}\right)>0

in BR0{0}B_{R_{0}}\setminus\{0\} for λ\lambda large enough.

Similarly, since

|x|2(ΔSλz(x))=|x|2[4x|x|4v(x|x|2)1|x|4Δv(x|x|2)+2μ|x|2+1λ4Δv(xλ2)],|x|^{2}(-\Delta S_{\lambda}^{z}(x))=|x|^{2}\left[\frac{4x}{|x|^{4}}\nabla v\left(\frac{x}{|x|^{2}}\right)-\frac{1}{|x|^{4}}\Delta v\left(\frac{x}{|x|^{2}}\right)+\frac{2\mu}{|x|^{2}}+\frac{1}{\lambda^{4}}\Delta v\left(\frac{x}{\lambda^{2}}\right)\right],

then we infer from Lemma 3.2 that

|x|2(ΔSλz(x))2(μα)+|x|2λ4Δv(xλ2)>0|x|^{2}(-\Delta S_{\lambda}^{z}(x))\geq 2(\mu-\alpha)+\frac{|x|^{2}}{\lambda^{4}}\Delta v\left(\frac{x}{\lambda^{2}}\right)>0

for λ\lambda large enough. Hence we deduce that

ΔSλz(x)0inBR0{0}.-\Delta S_{\lambda}^{z}(x)\geq 0\quad\text{in}\quad B_{R_{0}}\setminus\{0\}.

Proposition 3.1 follows from Step 1 to Step 3. \Box

Next, we give a technical lemma.

Lemma 3.4.

(see Lemma 11.2 of [17]) (1)Suppose uC1(4)u\in C^{1}(\mathbb{R}^{4}), if for all b4b\in\mathbb{R}^{4} and λ>0\lambda>0, the following inequality holds

1|x|2ub(x|x|2)1λ2ub(xλ2)0,xBλ{0},\frac{1}{|x|^{2}}u_{b}\left(\frac{x}{|x|^{2}}\right)-\frac{1}{\lambda^{2}}u_{b}\left(\frac{x}{\lambda^{2}}\right)\geq 0,\ \forall x\in B_{\lambda}\setminus\{0\},

then we have u(x)Cu(x)\equiv C, where ub(x)=u(x+b)u_{b}(x)=u(x+b).

(2) Suppose vC1(4)v\in C^{1}(\mathbb{R}^{4}), if for all b4b\in\mathbb{R}^{4} and λ>0\lambda>0, the following inequality holds

vb(x|x|2)μln|x|vb(xλ2)+μlnλ0,xBλ{0}v_{b}\left(\frac{x}{|x|^{2}}\right)-\mu\ln|x|-v_{b}\left(\frac{x}{\lambda^{2}}\right)+\mu\ln\lambda\geq 0,\quad x\in B_{\lambda}\setminus\{0\}

then we have v(x)Cv(x)\equiv C, where vb(x)=v(x+b)v_{b}(x)=v(x+b).

Now we define

ub(x)=u(x+b),vb(x)=v(x+b)wb(x)=1|x|2ub(x|x|2),zb(x)=vb(x|x|2)μln|x|,wλ,b(x)=λ2|x|2wb(λ2x|x|2)=1λ2ub(xλ2),zλ,b(x)=zb(λ2x|x|2)μln|x|λ=vb(xλ2)μlnλ,Sλ,bw(x)=wb(x)wλ,b(x),Sλ,bz(x)=zb(x)zλ,b(x).\begin{split}&u_{b}(x)=u(x+b),\quad v_{b}(x)=v(x+b)\\ &w_{b}(x)=\frac{1}{|x|^{2}}u_{b}\left(\frac{x}{|x|^{2}}\right),\quad z_{b}(x)=v_{b}\left(\frac{x}{|x|^{2}}\right)-\mu\ln|x|,\\ &w_{\lambda,b}(x)=\frac{\lambda^{2}}{|x|^{2}}w_{b}\left(\frac{\lambda^{2}x}{|x|^{2}}\right)=\frac{1}{\lambda^{2}}u_{b}\left(\frac{x}{\lambda^{2}}\right),\\ &z_{\lambda,b}(x)=z_{b}\left(\frac{\lambda^{2}x}{|x|^{2}}\right)-\mu\ln\frac{|x|}{\lambda}=v_{b}\left(\frac{x}{\lambda^{2}}\right)-\mu\ln\lambda,\\ &S_{\lambda,b}^{w}(x)=w_{b}(x)-w_{\lambda,b}(x),\quad S_{\lambda,b}^{z}(x)=z_{b}(x)-z_{\lambda,b}(x).\end{split}

For fixed b4b\in\mathbb{R}^{4}, we define

λb=inf{λ>0|Sμ,bw(x)0,Sμ,bz(x)0,ΔSμ,bz(x)0,inBμ{0},λμ<}.\lambda_{b}=\inf\{\lambda>0\ |\ S_{\mu,b}^{w}(x)\geq 0,S_{\mu,b}^{z}(x)\geq 0,-\Delta S_{\mu,b}^{z}(x)\geq 0,\ \text{in}\ B_{\mu}\setminus\{0\},\lambda\leq\mu<\infty\}.
Proposition 3.2.

There exists a vector b4b\in\mathbb{R}^{4}, such that λb>0\lambda_{b}>0.

Proof. We prove it by contradiction. Suppose on the contrary, then for any b4b\in\mathbb{R}^{4}, we have λb=0\lambda_{b}=0. By the definition of λb\lambda_{b}, we get

Sλ,bw(x)0andSλ,bz(x)0S_{\lambda,b}^{w}(x)\geq 0\ \text{and}\ S_{\lambda,b}^{z}(x)\geq 0

for any λ>0\lambda>0 and xBλ{0}x\in B_{\lambda}\setminus\{0\}. Then we infer from Lemma 3.4 that u(x)C1u(x)\equiv C_{1} and v(x)C2v(x)\equiv C_{2}. This contradicts 4up2(x)eq2v(x)𝑑x<\int_{\mathbb{R}^{4}}u^{p_{2}}(x)e^{q_{2}v(x)}dx<\infty unless C1=0C_{1}=0. \Box

Proposition 3.3.

If (u,v)(u,v) is a nontrivial solution of problem (1.1), then α<μ\alpha<\mu can’t occur.

Proof. Suppose on the contrary that α<μ\alpha<\mu, then it follows from Proposition 3.2 that there exists a vector b4b\in\mathbb{R}^{4}, such that λb>0\lambda_{b}>0. Without loss of generality, we assume b=0b=0. Then

Sλ0w(x)0,Sλ0z(x)0andΔSλ0z(x)0S_{\lambda_{0}}^{w}(x)\geq 0,\ \ S_{\lambda_{0}}^{z}(x)\geq 0\ \text{and}\ -\Delta S_{\lambda_{0}}^{z}(x)\geq 0 (3.6)

in Bλ0{0}B_{\lambda_{0}}\setminus\{0\}. Moreover, we deduce from equation (3.5) and (3.6) that

ΔSλ0z(x)>0inBλ0{0}.-\Delta S_{\lambda_{0}}^{z}(x)>0\quad\text{in}\quad B_{\lambda_{0}}\setminus\{0\}.

Then the maximum principles implies

Sλ0z(x)>0,inBλ0{0}.S_{\lambda_{0}}^{z}(x)>0,\quad\text{in}\quad B_{\lambda_{0}}\setminus\{0\}.

By (3.6), we conclude that

ΔSλ0w(x)0,inBλ0{0}.-\Delta S_{\lambda_{0}}^{w}(x)\geq 0,\quad\text{in}\quad B_{\lambda_{0}}\setminus\{0\}.

This implies

Sλ0w(x)>0orSλ0w(x)0inBλ0{0}.S_{\lambda_{0}}^{w}(x)>0\quad\text{or}\quad S_{\lambda_{0}}^{w}(x)\equiv 0\quad\text{in}\quad B_{\lambda_{0}}\setminus\{0\}.

If Sλ0w(x)0S_{\lambda_{0}}^{w}(x)\equiv 0, it is clear that

ΔSλ0w(x)=wp1(x)(eq1z(x)eq1zλ0(x))>0,inBλ0{0}.-\Delta S_{\lambda_{0}}^{w}(x)=w^{p_{1}}(x)(e^{q_{1}z(x)}-e^{q_{1}z_{\lambda_{0}}(x)})>0,\quad\text{in}\quad B_{\lambda_{0}}\setminus\{0\}.

This leads to a contradiction. Therefore, we obtain Sλ0w(x)>0S_{\lambda_{0}}^{w}(x)>0 in Bλ0{0}B_{\lambda_{0}}\setminus\{0\}. By the definition of λ0\lambda_{0}, one of the following three cases may occur.

(i) λk<λ0\exists\lambda_{k}<\lambda_{0}, λkλ0\lambda_{k}\rightarrow\lambda_{0} with infBλk{0}Sλkw(x)<0\inf\limits_{B_{\lambda_{k}}\setminus\{0\}}S_{\lambda_{k}}^{w}(x)<0.

(ii) λk<λ0\exists\lambda_{k}<\lambda_{0}, λkλ0\lambda_{k}\rightarrow\lambda_{0} with infBλk{0}Sλkz(x)<0\inf\limits_{B_{\lambda_{k}}\setminus\{0\}}S_{\lambda_{k}}^{z}(x)<0.

(iii) λk<λ0\exists\lambda_{k}<\lambda_{0}, λkλ0\lambda_{k}\rightarrow\lambda_{0}, such that Sλkw(x)0S_{\lambda_{k}}^{w}(x)\geq 0, Sλkz(x)0S_{\lambda_{k}}^{z}(x)\geq 0 for xBλk{0}x\in B_{\lambda_{k}}\setminus\{0\}, but infBλk{0}ΔSλkz(x)<0\inf\limits_{B_{\lambda_{k}}\setminus\{0\}}-\Delta S_{\lambda_{k}}^{z}(x)<0.
Now we show that each case will lead to a contradiction.

If case (i) occur, then we deduce from Sλ0w(x)>0S_{\lambda_{0}}^{w}(x)>0 in Bλ0{0}B_{\lambda_{0}}\setminus\{0\} and the Hopf Lemma that

Sλ0wν(x)<0\frac{\partial S_{\lambda_{0}}^{w}}{\partial\nu}(x)<0 (3.7)

on Bλ0\partial B_{\lambda_{0}}, where ν\nu is the unit outer normal direction.

Claim: there exists a γ=γ(λ02)>0\gamma=\gamma(\frac{\lambda_{0}}{2})>0, such that Sλkw(x)γ2S_{\lambda_{k}}^{w}(x)\geq\frac{\gamma}{2}, xBλ02{0}\forall x\in B_{\frac{\lambda_{0}}{2}}\setminus\{0\}.
Let

γ=minBλ02Sλ0w(x)>0.\gamma=\min_{\partial B_{\frac{\lambda_{0}}{2}}}S_{\lambda_{0}}^{w}(x)>0.

We define

h(x)=γr2|x|2γinBλ02Brh(x)=\gamma-\frac{r^{2}}{|x|^{2}}\gamma\quad\text{in}\quad B_{\frac{\lambda_{0}}{2}}\setminus B_{r}

with rr small. Then, k(x)=Sλ0w(x)h(x)k(x)=S_{\lambda_{0}}^{w}(x)-h(x) satisfies

{Δk(x)=ΔSλ0w(x)0inBλ02Br,k(x)=Sλ0w(x)>0onBrk(x)>0onBλ02.\left\{\begin{aligned} &-\Delta k(x)=-\Delta S_{\lambda_{0}}^{w}(x)\geq 0\quad\text{in}\quad B_{\frac{\lambda_{0}}{2}}\setminus B_{r},\\ &k(x)=S_{\lambda_{0}}^{w}(x)>0\qquad\text{on}\quad\partial B_{r}\\ &k(x)>0\qquad\qquad\text{on}\quad\partial B_{\frac{\lambda_{0}}{2}}.\end{aligned}\right.

Hence, by the maximum principle and letting r0r\rightarrow 0, one gets Sλ0w(x)γS_{\lambda_{0}}^{w}(x)\geq\gamma, in Bλ02\{0}B_{\frac{\lambda_{0}}{2}}\backslash\{0\}. Then

Sλkw(x)=w(x)wλk(x)=Sλ0w(x)+wλ0(x)wλk(x)γ2\begin{split}S_{\lambda_{k}}^{w}(x)=&w(x)-w_{\lambda_{k}}(x)\\ =&S^{w}_{\lambda_{0}}(x)+w_{\lambda_{0}}(x)-w_{\lambda_{k}}(x)\\ \geq&\frac{\gamma}{2}\end{split}

provided λk\lambda_{k} is close enough to λ0\lambda_{0}. This proves the claim.

On the other hand, since infBλk{0}Sλkw(x)<0\inf\limits_{B_{\lambda_{k}}\setminus\{0\}}S_{\lambda_{k}}^{w}(x)<0, then we infer from the claim that there exists an xkBλkBλ02x_{k}\in B_{\lambda_{k}}\setminus B_{\frac{\lambda_{0}}{2}} such that

Sλkw(xk)=infBλk{0}Sλkw(x)<0.S_{\lambda_{k}}^{w}(x_{k})=\inf_{B_{\lambda_{k}}\setminus\{0\}}S_{\lambda_{k}}^{w}(x)<0.

In particular, we have Sλkw(xk)=0\nabla S_{\lambda_{k}}^{w}(x_{k})=0. We assume that, up to a subsequence, xkx¯x_{k}\rightarrow\bar{x}, then we obtain Sλ0w(x¯)=0\nabla S_{\lambda_{0}}^{w}(\bar{x})=0 and Sλ0w(x¯)=0S_{\lambda_{0}}^{w}(\bar{x})=0. Hence x¯Bλ0\bar{x}\in\partial B_{\lambda_{0}}. However, this contradicts equation (3.7). Hence, case (i) can’t occur.

Next, we show that case (ii) can not occur. We first claim that there exists a r0>0r_{0}>0 such that

Sλ0z(x)>1inBr0{0}.S_{\lambda_{0}}^{z}(x)>1\quad\text{in}\quad B_{r_{0}}\setminus\{0\}.

Since

lim|x|0v(x|x|2)ln|x|=α,\lim_{|x|\rightarrow 0}\frac{v\left(\frac{x}{|x|^{2}}\right)}{\ln|x|}=\alpha,

then for small r0>0r_{0}>0, we get

v(x|x|2)μln|x|\displaystyle v\left(\frac{x}{|x|^{2}}\right)-\mu\ln|x| =(α+o(1)μ)ln|x|\displaystyle=(\alpha+o(1)-\mu)\ln|x|
(μα+o(1))(lnr0)\displaystyle\geq(\mu-\alpha+o(1))(-\ln r_{0})
αμ2lnr0\displaystyle\geq\frac{\alpha-\mu}{2}\ln r_{0}

for 0<|x|<r00<|x|<r_{0}. Set C=supB1λ0vC=\sup\limits_{B_{\frac{1}{\lambda_{0}}}}v. Then we can further choose r0r_{0} small enough, such that

Sλ0z(x)\displaystyle S_{\lambda_{0}}^{z}(x) =v(x|x|2)μln|x|v(xλ02)+μlnλ0\displaystyle=v\left(\frac{x}{|x|^{2}}\right)-\mu\ln|x|-v\left(\frac{x}{\lambda_{0}^{2}}\right)+\mu\ln\lambda_{0} (3.8)
αμ2lnr0C+μlnλ0\displaystyle\geq\frac{\alpha-\mu}{2}\ln r_{0}-C+\mu\ln\lambda_{0}
>1\displaystyle>1

for 0<|x|<r00<|x|<r_{0}. This proves the claim.

If case (ii) occur, then there exist some λk<λ0\lambda_{k}<\lambda_{0}, λkλ0\lambda_{k}\rightarrow\lambda_{0} such that

infBλk{0}Sλkz(x)<0.\inf\limits_{B_{\lambda_{k}}\setminus\{0\}}S_{\lambda_{k}}^{z}(x)<0.

By (3.8) and similar argument as case (i), we have Sλkz(x)12S_{\lambda_{k}}^{z}(x)\geq\frac{1}{2} for 0<|x|r00<|x|\leq r_{0} and kk large enough. Hence infBλk{0}Sλkz(x)\inf\limits_{B_{\lambda_{k}}\setminus\{0\}}S_{\lambda_{k}}^{z}(x) is attained at some xkBλkBr0x_{k}\in B_{\lambda_{k}}\setminus B_{r_{0}}. Therefore,

Sλkz(xk)=0.\nabla S_{\lambda_{k}}^{z}(x_{k})=0.

We assume that, up to a subsequence, xkx¯x_{k}\rightarrow\bar{x} as kk\rightarrow\infty, then

Sλ0z(x¯)=0andSλ0z(x¯)=0,\nabla S_{\lambda_{0}}^{z}(\bar{x})=0\quad\text{and}\quad S_{\lambda_{0}}^{z}(\bar{x})=0,

which implies that x¯Bλ0\bar{x}\in\partial B_{\lambda_{0}}. But this contradicts the Hopf Lemma.

Finally, we show that case (iii) can’t occur. For 0<|x|<λk0<|x|<\lambda_{k}, it is clear that

ΔSλkz\displaystyle-\Delta S_{\lambda_{k}}^{z} =12ω3Bλk[1|xy|21|xλk2y|y|2|2][wp2(y)eq2z(y)wλkp2(y)eq2zλk(y)]𝑑y+2(μα)|x|2\displaystyle=\frac{1}{2\omega_{3}}\int_{B_{\lambda_{k}}}\left[\frac{1}{|x-y|^{2}}-\frac{1}{\left|x-\frac{\lambda_{k}^{2}y}{|y|^{2}}\right|^{2}}\right][w^{p_{2}}(y)e^{q_{2}z(y)}-w^{p_{2}}_{\lambda_{k}}(y)e^{q_{2}z_{\lambda_{k}}(y)}]dy+\frac{2(\mu-\alpha)}{|x|^{2}}
>0,\displaystyle>0,

which contradicts

infBλk{0}ΔSλkz(x)<0.\inf\limits_{B_{\lambda_{k}}\setminus\{0\}}-\Delta S_{\lambda_{k}}^{z}(x)<0.

\Box

4 Fast decay is impossible

This section is devoted to exclude the case α>μ\alpha>\mu. We prove the conclusion by contradiction. Therefore, we assume that α>μ\alpha>\mu in this section.

Lemma 4.1.

Let

β=12ω34up1(x)eq1v(x)𝑑x.\beta=\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}u^{p_{1}}(x)e^{q_{1}v(x)}dx.

Assume that α>μ\alpha>\mu, then we have

lim|x|(|x|2u(x)β)=0.\lim\limits_{|x|\rightarrow\infty}(|x|^{2}u(x)-\beta)=0.

Proof. By Lemma 2.2, we can write

|x|2u(x)β=12ω34|x|2|xy|2|xy|2up1(y)eq1v(y)𝑑y.|x|^{2}u(x)-\beta=\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{|x|^{2}-|x-y|^{2}}{|x-y|^{2}}u^{p_{1}}(y)e^{q_{1}v(y)}dy.

Consider MM large enough, and set

D1={y4||xy||x|2},D2={y4||xy|>|x|2,|y|M}D_{1}=\left\{y\in\mathbb{R}^{4}||x-y|\leq\frac{|x|}{2}\right\},\quad D_{2}=\left\{y\in\mathbb{R}^{4}||x-y|>\frac{|x|}{2},|y|\leq M\right\}

and

D3={y4||xy|>|x|2,|y|>M}.D_{3}=\left\{y\in\mathbb{R}^{4}||x-y|>\frac{|x|}{2},|y|>M\right\}.

For yD1y\in D_{1}, we have |x|2|y|32|x|\frac{|x|}{2}\leq|y|\leq\frac{3}{2}|x|. We can choose ε\varepsilon small enough such that αε>μ\alpha-\varepsilon>\mu. By Lemma 2.5 and Lemma 2.10, we find

D1|x|2|xy|2|xy|2up1(y)eq1v(y)𝑑y\displaystyle\int_{D_{1}}\frac{|x|^{2}-|x-y|^{2}}{|x-y|^{2}}u^{p_{1}}(y)e^{q_{1}v(y)}dy
D1up1(y)eq1v(y)𝑑y+|x|2D1up1(y)eq1v(y)|xy|2𝑑y\displaystyle\leq\int_{D_{1}}u^{p_{1}}(y)e^{q_{1}v(y)}dy+|x|^{2}\int_{D_{1}}\frac{u^{p_{1}}(y)e^{q_{1}v(y)}}{|x-y|^{2}}dy
o(1)+C|x|2μq1D11|xy|2𝑑y\displaystyle\leq o(1)+C|x|^{2-\mu q_{1}}\int_{D_{1}}\frac{1}{|x-y|^{2}}dy
o(1)+C|x|4μq10\displaystyle\leq o(1)+C|x|^{4-\mu q_{1}}\rightarrow 0

as |x||x|\rightarrow\infty. In getting the above inequality, we also used μ=62p1q1\mu=\frac{6-2p_{1}}{q_{1}}, p1<1p_{1}<1 and v(x)αln|x|v(x)\sim-\alpha\ln|x| at \infty.

For yD2y\in D_{2}, one has

|x|2|xy|2|xy|20\frac{|x|^{2}-|x-y|^{2}}{|x-y|^{2}}\rightarrow 0

and

D2|x|2|xy|2|xy|2up1(y)eq1v(y)𝑑y0\int_{D_{2}}\frac{|x|^{2}-|x-y|^{2}}{|x-y|^{2}}u^{p_{1}}(y)e^{q_{1}v(y)}dy\rightarrow 0

as |x||x|\rightarrow\infty.

For yD3y\in D_{3}, we have |x||xy|<2\frac{|x|}{|x-y|}<2, which further implies

||x|2|xy|2|xy|2|<3.\left|\frac{|x|^{2}-|x-y|^{2}}{|x-y|^{2}}\right|<3.

Hence, we choose MM large enough and we deduce that

D3|x|2|xy|2|xy|2up1(y)eq1v(y)𝑑y=o(1).\int_{D_{3}}\frac{|x|^{2}-|x-y|^{2}}{|x-y|^{2}}u^{p_{1}}(y)e^{q_{1}v(y)}dy=o(1).

This completes the proof of this lemma. \Box

Lemma 4.2.

(i) xv(x)+α0x\cdot\nabla v(x)+\alpha\rightarrow 0 as |x||x|\rightarrow\infty.
(ii) |x|2Δv(x)+2α0|x|^{2}\Delta v(x)+2\alpha\rightarrow 0 as |x||x|\rightarrow\infty.

Proof. By (2.17), we can write

xv(x)+α=14ω34|xy|2|x|2+xy|xy|2up2(y)eq2v(y)𝑑y.x\cdot\nabla v(x)+\alpha=\frac{1}{4\omega_{3}}\int_{\mathbb{R}^{4}}\frac{|x-y|^{2}-|x|^{2}+x\cdot y}{|x-y|^{2}}u^{p_{2}}(y)e^{q_{2}v(y)}dy.

We divide the integral domain 4\mathbb{R}^{4} into D1D2D3D_{1}\cup D_{2}\cup D_{3} as Lemma 4.1.

For yD1y\in D_{1}, we obtain

D1|xy|2x,xy|xy|2up2(y)eq2v(y)𝑑y\displaystyle\int_{D_{1}}\frac{|x-y|^{2}-\langle x,x-y\rangle}{|x-y|^{2}}u^{p_{2}}(y)e^{q_{2}v(y)}dy
D1up2(y)eq2v(y)𝑑y+|x|D1up2(y)eq2v(y)|xy|𝑑y\displaystyle\leq\int_{D_{1}}u^{p_{2}}(y)e^{q_{2}v(y)}dy+|x|\int_{D_{1}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{|x-y|}dy
o(1)+C|x|7D11|xy|𝑑y\displaystyle\leq o(1)+C|x|^{-7}\int_{D_{1}}\frac{1}{|x-y|}dy
o(1)+C|x|40,\displaystyle\leq o(1)+C|x|^{-4}\rightarrow 0,

as |x||x|\rightarrow\infty. In order to get the above inequality, we also used u(x)β|x|2u(x)\sim\frac{\beta}{|x|^{2}} at \infty. For yD2D3y\in D_{2}\cup D_{3}, the proof is similar to Lemma 4.1.

By (2.9), it is clear that

|x|2Δv(x)+2α=12ω34|xy|2|x|2|xy|2up2(y)eq2v(y)𝑑y.|x|^{2}\Delta v(x)+2\alpha=\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{|x-y|^{2}-|x|^{2}}{|x-y|^{2}}u^{p_{2}}(y)e^{q_{2}v(y)}dy.

In a similar way, we can prove

Di|xy|2|x|2|xy|2up2(y)eq2v(y)𝑑y0,i=1,2,3\int_{D_{i}}\frac{|x-y|^{2}-|x|^{2}}{|x-y|^{2}}u^{p_{2}}(y)e^{q_{2}v(y)}dy\rightarrow 0,\quad i=1,2,3

as |x||x|\rightarrow\infty. \Box

Define

S~λu:=u(x)uλ(x)=u(x)λ2|x|2u(λ2x|x|2)\widetilde{S}^{u}_{\lambda}:=u(x)-u_{\lambda}(x)=u(x)-\frac{\lambda^{2}}{|x|^{2}}u\left(\frac{\lambda^{2}x}{|x|^{2}}\right)
S~λv:=v(x)vλ(x)=v(x)v(λ2x|x|2)+μln|x|μlnλ,\widetilde{S}^{v}_{\lambda}:=v(x)-v_{\lambda}(x)=v(x)-v\left(\frac{\lambda^{2}x}{|x|^{2}}\right)+\mu\ln|x|-\mu\ln\lambda,

then we have the following result.

Lemma 4.3.

We have
(i) Δ(v(λ2x|x|2))=2α|x|212ω34up2(y)eq2v(y)|xλ2y|y|2|2𝑑y\Delta\left(v\left(\frac{\lambda^{2}x}{|x|^{2}}\right)\right)=\frac{2\alpha}{|x|^{2}}-\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{\left|x-\frac{\lambda^{2}y}{|y|^{2}}\right|^{2}}dy
(ii) ΔS~λv=12ω3Bλ[1|xy|21|xλ2y|y|2|2][up2(y)eq2v(y)uλp2eq2vλ]𝑑y+2(αμ)|x|2-\Delta\widetilde{S}^{v}_{\lambda}=\frac{1}{2\omega_{3}}\int_{B_{\lambda}}\left[\frac{1}{|x-y|^{2}}-\frac{1}{\left|x-\frac{\lambda^{2}y}{|y|^{2}}\right|^{2}}\right][u^{p_{2}}(y)e^{q_{2}v(y)}-u_{\lambda}^{p_{2}}e^{q_{2}v_{\lambda}}]dy+\frac{2(\alpha-\mu)}{|x|^{2}}
for x4{0}x\in\mathbb{R}^{4}\setminus\{0\}.

Proof. A direct calculation shows that

Δ(v(λ2x|x|2))\displaystyle\Delta\left(v\left(\frac{\lambda^{2}x}{|x|^{2}}\right)\right) =λ4|x|4Δv(λ2x|x|2)4λ2xv(λ2x|x|2)|x|4\displaystyle=\frac{\lambda^{4}}{|x|^{4}}\Delta v\left(\frac{\lambda^{2}x}{|x|^{2}}\right)-4\lambda^{2}\frac{x\cdot\nabla v\left(\frac{\lambda^{2}x}{|x|^{2}}\right)}{|x|^{4}}
=λ42ω3|x|44up2(y)eq2v(y)|λ2x|x|2y|2𝑑y+i=14λ2xiω3|x|44λ2xi|x|2yi|λ2x|x|2y|2up2(y)eq2v(y)𝑑y\displaystyle=-\frac{\lambda^{4}}{2\omega_{3}|x|^{4}}\int_{\mathbb{R}^{4}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{\left|\frac{\lambda^{2}x}{|x|^{2}}-y\right|^{2}}dy+\sum^{4}_{i=1}\frac{\lambda^{2}x_{i}}{\omega_{3}|x|^{4}}\int_{\mathbb{R}^{4}}\frac{\frac{\lambda^{2}x_{i}}{|x|^{2}}-y_{i}}{\left|\frac{\lambda^{2}x}{|x|^{2}}-y\right|^{2}}u^{p_{2}}(y)e^{q_{2}v(y)}dy
=λ42ω3|x|44up2(y)eq2v(y)|λ2x|x|2y|2𝑑yλ2ω3|x|44xy|λ2x|x|2y|2up2(y)eq2v(y)𝑑y\displaystyle=\frac{\lambda^{4}}{2\omega_{3}|x|^{4}}\int_{\mathbb{R}^{4}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{\left|\frac{\lambda^{2}x}{|x|^{2}}-y\right|^{2}}dy-\frac{\lambda^{2}}{\omega_{3}|x|^{4}}\int_{\mathbb{R}^{4}}\frac{x\cdot y}{\left|\frac{\lambda^{2}x}{|x|^{2}}-y\right|^{2}}u^{p_{2}}(y)e^{q_{2}v(y)}dy
=12ω34up2(y)eq2v(y)|x|x|2λ2y|2𝑑y1ω341λ2xy|x|x|2λ2y|2up2(y)eq2v(y)𝑑y\displaystyle=\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{\left|x-\frac{|x|^{2}}{\lambda^{2}}y\right|^{2}}dy-\frac{1}{\omega_{3}}\int_{\mathbb{R}^{4}}\frac{\frac{1}{\lambda^{2}}x\cdot y}{\left|x-\frac{|x|^{2}}{\lambda^{2}}y\right|^{2}}u^{p_{2}}(y)e^{q_{2}v(y)}dy
=12ω3412xyλ2|x|x|2λ2y|2up2(y)eq2v(y)𝑑y\displaystyle=\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{1-\frac{2x\cdot y}{\lambda^{2}}}{\left|x-\frac{|x|^{2}}{\lambda^{2}}y\right|^{2}}u^{p_{2}}(y)e^{q_{2}v(y)}dy
=12ω341λ4[|x|2|λ2x|x|2y|2|x|2|y|2]|x|x|2λ2y|2up2(y)eq2v(y)𝑑y\displaystyle=\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{\frac{1}{\lambda^{4}}\left[|x|^{2}\left|\frac{\lambda^{2}x}{|x|^{2}}-y\right|^{2}-|x|^{2}|y|^{2}\right]}{\left|x-\frac{|x|^{2}}{\lambda^{2}}y\right|^{2}}u^{p_{2}}(y)e^{q_{2}v(y)}dy
=12ω34[1|x|2|x|2|y|2λ4|x|x|2λ2y|2]up2(y)eq2v(y)𝑑y\displaystyle=\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\left[\frac{1}{|x|^{2}}-\frac{|x|^{2}|y|^{2}}{\lambda^{4}\left|x-\frac{|x|^{2}}{\lambda^{2}}y\right|^{2}}\right]u^{p_{2}}(y)e^{q_{2}v(y)}dy
=2α|x|212ω34up2(y)eq2v(y)|xλ2y|y|2|2𝑑y\displaystyle=\frac{2\alpha}{|x|^{2}}-\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{\left|x-\frac{\lambda^{2}y}{|y|^{2}}\right|^{2}}dy

and

ΔS~λv\displaystyle-\Delta\widetilde{S}^{v}_{\lambda} =Δv(x)+Δ(v(λ2x|x|2))2μ|x|2\displaystyle=-\Delta v(x)+\Delta\left(v\left(\frac{\lambda^{2}x}{|x|^{2}}\right)\right)-\frac{2\mu}{|x|^{2}}
=12ω34up2(y)eq2v(y)|xy|2𝑑y12ω34up2(y)eq2v(y)|xλ2y|y|2|2𝑑y+2(αμ)|x|2\displaystyle=\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{|x-y|^{2}}dy-\frac{1}{2\omega_{3}}\int_{\mathbb{R}^{4}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{\left|x-\frac{\lambda^{2}y}{|y|^{2}}\right|^{2}}dy+\frac{2(\alpha-\mu)}{|x|^{2}}
=12ω3Bλup2(y)eq2v(y)|xy|2𝑑y+12ω3Bλcup2(y)eq2v(y)|xy|2𝑑y\displaystyle=\frac{1}{2\omega_{3}}\int_{B_{\lambda}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{|x-y|^{2}}dy+\frac{1}{2\omega_{3}}\int_{B_{\lambda}^{c}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{|x-y|^{2}}dy
12ω3Bλup2(y)eq2v(y)|xλ2y|y|2|2𝑑y12ω3Bλcup2(y)eq2v(y)|xλ2y|y|2|2𝑑y+2(αμ)|x|2\displaystyle-\frac{1}{2\omega_{3}}\int_{B_{\lambda}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{\left|x-\frac{\lambda^{2}y}{|y|^{2}}\right|^{2}}dy-\frac{1}{2\omega_{3}}\int_{B^{c}_{\lambda}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{\left|x-\frac{\lambda^{2}y}{|y|^{2}}\right|^{2}}dy+\frac{2(\alpha-\mu)}{|x|^{2}}
=12ω3Bλup2(y)eq2v(y)|xy|2𝑑y+12ω3Bλup2(λ2z|z|2)eq2v(λ2z|z|2)|xλ2z|z|2|2λ8|z|8𝑑z\displaystyle=\frac{1}{2\omega_{3}}\int_{B_{\lambda}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{|x-y|^{2}}dy+\frac{1}{2\omega_{3}}\int_{B_{\lambda}}\frac{u^{p_{2}}\left(\frac{\lambda^{2}z}{|z|^{2}}\right)e^{q_{2}v\left(\frac{\lambda^{2}z}{|z|^{2}}\right)}}{\left|x-\frac{\lambda^{2}z}{|z|^{2}}\right|^{2}}\frac{\lambda^{8}}{|z|^{8}}dz
12ω3Bλup2(y)eq2v(y)|xλ2y|y|2|2𝑑y12ω3Bλup2(λ2z|z|2)eq2v(λ2z|z|2)|xz|2λ8|z|8𝑑z+2(αμ)|x|2\displaystyle-\frac{1}{2\omega_{3}}\int_{B_{\lambda}}\frac{u^{p_{2}}(y)e^{q_{2}v(y)}}{\left|x-\frac{\lambda^{2}y}{|y|^{2}}\right|^{2}}dy-\frac{1}{2\omega_{3}}\int_{B_{\lambda}}\frac{u^{p_{2}}\left(\frac{\lambda^{2}z}{|z|^{2}}\right)e^{q_{2}v\left(\frac{\lambda^{2}z}{|z|^{2}}\right)}}{|x-z|^{2}}\frac{\lambda^{8}}{|z|^{8}}dz+\frac{2(\alpha-\mu)}{|x|^{2}}
=12ω3Bλ[1|xy|21|xλ2y|y|2|2][up2(y)eq2v(y)uλp2eq2vλ]𝑑y+2(αμ)|x|2.\displaystyle=\frac{1}{2\omega_{3}}\int_{B_{\lambda}}\left[\frac{1}{|x-y|^{2}}-\frac{1}{\left|x-\frac{\lambda^{2}y}{|y|^{2}}\right|^{2}}\right][u^{p_{2}}(y)e^{q_{2}v(y)}-u_{\lambda}^{p_{2}}e^{q_{2}v_{\lambda}}]dy+\frac{2(\alpha-\mu)}{|x|^{2}}.

\Box

Now we show that the moving spheres method can be started at some λ\lambda.

Proposition 4.1.

Assume that α>μ\alpha>\mu. Then for λ\lambda large enough, we have

S~λu(x)0,S~λv(x)0\widetilde{S}^{u}_{\lambda}(x)\geq 0,\quad\widetilde{S}^{v}_{\lambda}(x)\geq 0

and

ΔS~λv(x)0-\Delta\widetilde{S}^{v}_{\lambda}(x)\geq 0

for xBλ(0){0}x\in B_{\lambda}(0)\setminus\{0\}.

Proof. Step 1: There exists an R0>0R_{0}>0, such that

S~λu(x)0,S~λv(x)0andΔS~λv(x)0\widetilde{S}^{u}_{\lambda}(x)\geq 0,\quad\widetilde{S}^{v}_{\lambda}(x)\geq 0\quad\text{and}\quad-\Delta\widetilde{S}^{v}_{\lambda}(x)\geq 0

for R0|x|λ2R_{0}\leq|x|\leq\frac{\lambda}{2} and λ\lambda large enough.

By Lemma 4.1, we find

S~λu(x)\displaystyle\widetilde{S}^{u}_{\lambda}(x) =u(x)λ2|x|2u(λ2x|x|2)\displaystyle=u(x)-\frac{\lambda^{2}}{|x|^{2}}u\left(\frac{\lambda^{2}x}{|x|^{2}}\right)
=β+o(1)|x|2(β+o(1))λ2|x|2(λ2|x|)2\displaystyle=\frac{\beta+o(1)}{|x|^{2}}-(\beta+o(1))\frac{\lambda^{2}}{|x|^{2}}\cdot\left(\frac{\lambda^{2}}{|x|}\right)^{-2}
=(β+o(1))(|x|2λ2)\displaystyle=(\beta+o(1))(|x|^{-2}-\lambda^{-2})
(β+o(1))3λ2\displaystyle\geq(\beta+o(1))\frac{3}{\lambda^{2}}
>0.\displaystyle>0.

By the asymptotic behaviour of v(x)v(x), we get

S~λv\displaystyle\widetilde{S}^{v}_{\lambda} =v(x)v(λ2x|x|2)+μln|x|μlnλ\displaystyle=v(x)-v\left(\frac{\lambda^{2}x}{|x|^{2}}\right)+\mu\ln|x|-\mu\ln\lambda
=(α+o(1))ln|x|+(α+o(1))(2lnλln|x|)+μln|x|μlnλ\displaystyle=(-\alpha+o(1))\ln|x|+(\alpha+o(1))(2\ln\lambda-\ln|x|)+\mu\ln|x|-\mu\ln\lambda
=(2α+o(1)μ)(lnλln|x|)\displaystyle=(2\alpha+o(1)-\mu)(\ln\lambda-\ln|x|)
>0\displaystyle>0

for λ\lambda and R0R_{0} large enough.

Finally, by Lemma 4.2, we obtain

ΔS~λv\displaystyle-\Delta\widetilde{S}^{v}_{\lambda} =Δv(x)+λ4|x|4Δv(λ2x|x|2)4λ2xv(λ2x|x|2)|x|42μ|x|2\displaystyle=-\Delta v(x)+\frac{\lambda^{4}}{|x|^{4}}\Delta v\left(\frac{\lambda^{2}x}{|x|^{2}}\right)-4\lambda^{2}\frac{x\cdot\nabla v\left(\frac{\lambda^{2}x}{|x|^{2}}\right)}{|x|^{4}}-\frac{2\mu}{|x|^{2}}
=1|x|2[Δv(x)|x|2+λ4|x|2Δv(λ2x|x|2)4λ2x|x|2v(λ2x|x|2)2μ]\displaystyle=\frac{1}{|x|^{2}}\left[-\Delta v(x)|x|^{2}+\frac{\lambda^{4}}{|x|^{2}}\Delta v\left(\frac{\lambda^{2}x}{|x|^{2}}\right)-4\lambda^{2}\frac{x}{|x|^{2}}\cdot\nabla v\left(\frac{\lambda^{2}x}{|x|^{2}}\right)-2\mu\right]
=1|x|2[4α2μ+o(1)]\displaystyle=\frac{1}{|x|^{2}}[4\alpha-2\mu+o(1)]
>0\displaystyle>0

for λ\lambda and R0R_{0} large enough.

Step 2: S~λu(x)0\widetilde{S}_{\lambda}^{u}(x)\geq 0, S~λv(x)0\widetilde{S}_{\lambda}^{v}(x)\geq 0 and ΔS~λv(x)0-\Delta\widetilde{S}_{\lambda}^{v}(x)\geq 0 for λ2|x|λ\frac{\lambda}{2}\leq|x|\leq\lambda.

We can get ΔS~λv(x)0-\Delta\widetilde{S}_{\lambda}^{v}(x)\geq 0 in the same way as Step 1. Since S~λv\widetilde{S}_{\lambda}^{v} satisfies

{ΔS~λv0inBλBλ2S~λv=0onBλS~λv0onBλ2,\left\{\begin{aligned} &-\Delta\widetilde{S}_{\lambda}^{v}\geq 0\quad\text{in}\ B_{\lambda}\setminus B_{\frac{\lambda}{2}}\\ &\widetilde{S}_{\lambda}^{v}=0\qquad\text{on}\ \partial B_{\lambda}\\ &\widetilde{S}_{\lambda}^{v}\geq 0\qquad\text{on}\ \partial B_{\frac{\lambda}{2}},\end{aligned}\right.

then we infer from the maximum principle that S~λv0\widetilde{S}_{\lambda}^{v}\geq 0 for λ2|x|λ\frac{\lambda}{2}\leq|x|\leq\lambda.

By a direct calculation, we observe that

ΔS~λu(x)\displaystyle-\Delta\widetilde{S}_{\lambda}^{u}(x) =up1eq1vuλp1eq1vλ\displaystyle=u^{p_{1}}e^{q_{1}v}-u_{\lambda}^{p_{1}}e^{q_{1}v_{\lambda}}
=up1(eq1veq1vλ)+(up1uλp1)eq1vλ\displaystyle=u^{p_{1}}(e^{q_{1}v}-e^{q_{1}v_{\lambda}})+(u^{p_{1}}-u_{\lambda}^{p_{1}})e^{q_{1}v_{\lambda}}
=q1up1eq1ξv(vvλ)+p1ξup11(uuλ)eq1vλ\displaystyle=q_{1}u^{p_{1}}e^{q_{1}\xi_{v}}(v-v_{\lambda})+p_{1}\xi_{u}^{p_{1}-1}(u-u_{\lambda})e^{q_{1}v_{\lambda}}

for x4{0}x\in\mathbb{R}^{4}\setminus\{0\}, where ξv\xi_{v} is between v(x)v(x) and vλ(x)v_{\lambda}(x) and ξu\xi_{u} is between u(x)u(x) and uλ(x)u_{\lambda}(x). We see that q1up1eq1ξv(vvλ)0q_{1}u^{p_{1}}e^{q_{1}\xi_{v}}(v-v_{\lambda})\geq 0 and p1ξup11eq1vλ0p_{1}\xi_{u}^{p_{1}-1}e^{q_{1}v_{\lambda}}\geq 0 in BλBλ2B_{\lambda}\setminus B_{\frac{\lambda}{2}}. Then

{ΔS~λu(x)c(x)S~λu(x)0inBλBλ2S~λu(x)=0onBλS~λu(x)0onBλ2,\left\{\begin{aligned} &-\Delta\widetilde{S}_{\lambda}^{u}(x)-c(x)\widetilde{S}_{\lambda}^{u}(x)\geq 0\quad\text{in}\ B_{\lambda}\setminus B_{\frac{\lambda}{2}}\\ &\widetilde{S}_{\lambda}^{u}(x)=0\qquad\text{on}\ \partial B_{\lambda}\\ &\widetilde{S}_{\lambda}^{u}(x)\geq 0\qquad\text{on}\ \partial B_{\frac{\lambda}{2}},\end{aligned}\right.

where c(x)=p1ξup11eq1vλ>0c(x)=p_{1}\xi_{u}^{p_{1}-1}e^{q_{1}v_{\lambda}}>0 is bounded. By Lemma 4.1 and v(x)αln|x|v(x)\sim-\alpha\ln|x| at \infty, we find c(x)C|x|4c(x)\leq\frac{C}{|x|^{4}}, xBλBλ2x\in B_{\lambda}\setminus B_{\frac{\lambda}{2}}. Similar argument as in Step 2 of Proposition 3.1, one obtains S~λu(x)0\widetilde{S}_{\lambda}^{u}(x)\geq 0 for λ2|x|λ\frac{\lambda}{2}\leq|x|\leq\lambda.

Step 3: S~λu(x)0\widetilde{S}_{\lambda}^{u}(x)\geq 0, S~λv(x)0\widetilde{S}_{\lambda}^{v}(x)\geq 0 and ΔS~λv(x)0-\Delta\widetilde{S}_{\lambda}^{v}(x)\geq 0 in BR0{0}B_{R_{0}}\setminus\{0\}.

Since

v(λ2x|x|2)=[2α+o(1)]lnλ+[α+o(1)]ln|x|v\left(\frac{\lambda^{2}x}{|x|^{2}}\right)=[-2\alpha+o(1)]\ln\lambda+[\alpha+o(1)]\ln|x|

for λ\lambda large enough, then

S~λv(x)=v(x)+[2αμ+o(1)]lnλ+[μα+o(1)]ln|x|.\widetilde{S}_{\lambda}^{v}(x)=v(x)+[2\alpha-\mu+o(1)]\ln\lambda+[\mu-\alpha+o(1)]\ln|x|.

Hence, we choose λ\lambda large enough, such that S~λv(x)0\widetilde{S}_{\lambda}^{v}(x)\geq 0 for 0<|x|<R00<|x|<R_{0}.

Similarly, it follows from Lemma 4.1 that

S~λu(x)=u(x)λ2|x|2u(λ2x|x|2)=u(x)β+o(1)λ2>0\widetilde{S}_{\lambda}^{u}(x)=u(x)-\frac{\lambda^{2}}{|x|^{2}}u\left(\frac{\lambda^{2}x}{|x|^{2}}\right)=u(x)-\frac{\beta+o(1)}{\lambda^{2}}>0

in BR0{0}B_{R_{0}}\setminus\{0\} for λ\lambda large enough.

By Lemma 4.3 (ii), we have ΔS~λv(x)0-\Delta\widetilde{S}_{\lambda}^{v}(x)\geq 0 in BR0{0}B_{R_{0}}\setminus\{0\}. \Box

Now we define

S~λ,bu(x)=ub(x)λ2|x|2ub(λ2x|x|2)andS~λ,bv(x)=vb(x)vb(λ2x|x|2)+μln|x|μlnλ.\widetilde{S}^{u}_{\lambda,b}(x)=u_{b}(x)-\frac{\lambda^{2}}{|x|^{2}}u_{b}\left(\frac{\lambda^{2}x}{|x|^{2}}\right)\quad\text{and}\quad\widetilde{S}^{v}_{\lambda,b}(x)=v_{b}(x)-v_{b}\left(\frac{\lambda^{2}x}{|x|^{2}}\right)+\mu\ln|x|-\mu\ln\lambda.

For fixed b4b\in\mathbb{R}^{4}, we define

λb=inf{λ>0|S~μ,bu(x)0,S~μ,bv(x)0,ΔS~μ,bv(x)0inBμ{0},λμ<}.\lambda_{b}=\inf\{\lambda>0\ |\ \widetilde{S}^{u}_{\mu,b}(x)\geq 0,\widetilde{S}^{v}_{\mu,b}(x)\geq 0,-\Delta\widetilde{S}^{v}_{\mu,b}(x)\geq 0\ \text{in}\ B_{\mu}\setminus\{0\},\forall\lambda\leq\mu<\infty\}.
Proposition 4.2.

There exists a vector b4b\in\mathbb{R}^{4}, such that λb>0\lambda_{b}>0.

Proof. The proof of Proposition 4.2 is the same as the proof of Proposition 3.2. We omit the details. \Box

Proposition 4.3.

If (u,v)(u,v) is a nontrivial solution of problem (1.1), then α>μ\alpha>\mu can’t occur.

Proof. Suppose on the contrary that α>μ\alpha>\mu, then it follows from Proposition 4.2 that there exists a vector b4b\in\mathbb{R}^{4}, such that λb>0\lambda_{b}>0. Without loss of generality, one may assume b=0b=0. Then it from the definition of λ0\lambda_{0} that

S~λ0u(x)0andS~λ0v(x)0inBλ0{0}.\widetilde{S}_{\lambda_{0}}^{u}(x)\geq 0\quad\text{and}\quad\widetilde{S}_{\lambda_{0}}^{v}(x)\geq 0\quad\text{in}\quad B_{\lambda_{0}}\setminus\{0\}. (4.1)

Moreover, we deduce from Lemma 4.3 (ii) that

ΔS~λ0v(x)>0inBλ0{0}.-\Delta\widetilde{S}_{\lambda_{0}}^{v}(x)>0\quad\text{in}\quad B_{\lambda_{0}}\setminus\{0\}.

Then the maximum principles implies

S~λ0v(x)>0inBλ0{0}.\widetilde{S}_{\lambda_{0}}^{v}(x)>0\quad\text{in}\quad B_{\lambda_{0}}\setminus\{0\}.

By (4.1), we know that

ΔS~λ0u(x)=up1(x)eq1v(x)uλ0p1(x)eq1vλ0(x)0inBλ0{0}-\Delta\widetilde{S}_{\lambda_{0}}^{u}(x)=u^{p_{1}}(x)e^{q_{1}v(x)}-u_{\lambda_{0}}^{p_{1}}(x)e^{q_{1}v_{\lambda_{0}}(x)}\geq 0\quad\text{in}\quad B_{\lambda_{0}}\setminus\{0\}

and

S~λ0u(x)>0inBλ0{0}.\widetilde{S}_{\lambda_{0}}^{u}(x)>0\quad\text{in}\quad B_{\lambda_{0}}\setminus\{0\}.

By the definition of λ0\lambda_{0}, one of the following three cases may occur.

(i) λk<λ0\exists\lambda_{k}<\lambda_{0}, λkλ0\lambda_{k}\rightarrow\lambda_{0} with infBλk{0}S~λku(x)<0\inf\limits_{B_{\lambda_{k}}\setminus\{0\}}\widetilde{S}_{\lambda_{k}}^{u}(x)<0.

(ii) λk<λ0\exists\lambda_{k}<\lambda_{0}, λkλ0\lambda_{k}\rightarrow\lambda_{0} with infBλk{0}S~λkv(x)<0\inf\limits_{B_{\lambda_{k}}\setminus\{0\}}\widetilde{S}_{\lambda_{k}}^{v}(x)<0.

(iii) λk<λ0\exists\lambda_{k}<\lambda_{0}, λkλ0\lambda_{k}\rightarrow\lambda_{0}, such that S~λku(x)0\widetilde{S}_{\lambda_{k}}^{u}(x)\geq 0, S~λkv(x)0\widetilde{S}_{\lambda_{k}}^{v}(x)\geq 0 for xBλk{0}x\in B_{\lambda_{k}}\setminus\{0\}, but infBλk{0}ΔS~λkv(x)<0\inf\limits_{B_{\lambda_{k}}\setminus\{0\}}-\Delta\widetilde{S}_{\lambda_{k}}^{v}(x)<0.
We will show that each case will lead to a contradiction.

If case (i) occur, then we deduce from S~λ0u(x)>0\widetilde{S}_{\lambda_{0}}^{u}(x)>0 in Bλ0{0}B_{\lambda_{0}}\setminus\{0\} and the Hopf Lemma that

S~λ0u(x)ν<0onBλ0,\frac{\partial\widetilde{S}_{\lambda_{0}}^{u}(x)}{\partial\nu}<0\quad\text{on}\quad\partial B_{\lambda_{0}}, (4.2)

where ν\nu is the unit outer normal direction. We define

γ=minBλ02S~λ0u(x)>0\gamma=\min_{\partial B_{\frac{\lambda_{0}}{2}}}\widetilde{S}_{\lambda_{0}}^{u}(x)>0

and

h(x)=γr2|x|2γinBλ02Brh(x)=\gamma-\frac{r^{2}}{|x|^{2}}\gamma\quad\text{in}\quad B_{\frac{\lambda_{0}}{2}}\setminus B_{r}

with rr small. Then k(x):=S~λ0u(x)h(x)k(x):=\widetilde{S}_{\lambda_{0}}^{u}(x)-h(x) satisfies

{Δk(x)=ΔS~λ0u(x)0inBλ02Brk(x)=S~λ0u(x)>0onBrk(x)>0onBλ02.\left\{\begin{aligned} &-\Delta k(x)=-\Delta\widetilde{S}_{\lambda_{0}}^{u}(x)\geq 0\quad\text{in}\quad B_{\frac{\lambda_{0}}{2}}\setminus B_{r}\\ &k(x)=\widetilde{S}_{\lambda_{0}}^{u}(x)>0\qquad\text{on}\quad\partial B_{r}\\ &k(x)>0\qquad\qquad\text{on}\quad\partial B_{\frac{\lambda_{0}}{2}}.\end{aligned}\right.

Hence, we get from the maximum principle that S~λ0u(x)γr2|x|2γ\widetilde{S}_{\lambda_{0}}^{u}(x)\geq\gamma-\frac{r^{2}}{|x|^{2}}\gamma in Bλ02BrB_{\frac{\lambda_{0}}{2}}\setminus B_{r}. Letting r0r\rightarrow 0, we get S~λ0u(x)γ\widetilde{S}_{\lambda_{0}}^{u}(x)\geq\gamma in Bλ02{0}B_{\frac{\lambda_{0}}{2}}\setminus\{0\}. Hence, infBλk{0}S~λku(x)<0\inf\limits_{B_{\lambda_{k}}\setminus\{0\}}\widetilde{S}_{\lambda_{k}}^{u}(x)<0 is attained at some xkBλkBλ02x_{k}\in B_{\lambda_{k}}\setminus B_{\frac{\lambda_{0}}{2}} for kk large enough. Moreover, one has

S~λku(xk)=0.\nabla\widetilde{S}_{\lambda_{k}}^{u}(x_{k})=0.

We can assume that, up to a subsequence, xkx0x_{k}\rightarrow x_{0}, then S~λ0u(x0)=0\nabla\widetilde{S}_{\lambda_{0}}^{u}(x_{0})=0 and S~λ0u(x0)=0\widetilde{S}_{\lambda_{0}}^{u}(x_{0})=0. Hence x0Bλ0x_{0}\in\partial B_{\lambda_{0}}. However, this contradicts equation (4.2). Hence, case (i) can’t occur.

Next, we show that case (ii) can not occur. Similarly, we define γ^=minBλ02S~λ0v(x)>0\hat{\gamma}=\min\limits_{\partial B_{\frac{\lambda_{0}}{2}}}\widetilde{S}_{\lambda_{0}}^{v}(x)>0 and

h^(x)=γ^r2|x|2γ^inBλ02Br\hat{h}(x)=\hat{\gamma}-\frac{r^{2}}{|x|^{2}}\hat{\gamma}\quad\text{in}\quad B_{\frac{\lambda_{0}}{2}}\setminus B_{r}

with rr small. Then k^(x):=S~λ0v(x)h^(x)\hat{k}(x):=\widetilde{S}_{\lambda_{0}}^{v}(x)-\hat{h}(x) satisfies the condition of the maximum principle, we conclude that

S~λ0v(x)>γ^>0inBλ02{0}.\widetilde{S}_{\lambda_{0}}^{v}(x)>\hat{\gamma}>0\quad\text{in}\quad B_{\frac{\lambda_{0}}{2}}\setminus\{0\}.

If case (ii) occur, then infBλk{0}S~λkv(x)<0\inf\limits_{B_{\lambda_{k}}\setminus\{0\}}\widetilde{S}^{v}_{\lambda_{k}}(x)<0 is attained at some xkBλkBλ02x_{k}\in B_{\lambda_{k}}\setminus B_{\frac{\lambda_{0}}{2}}. Therefore,

S~λkv(xk)=0.\nabla\widetilde{S}^{v}_{\lambda_{k}}(x_{k})=0.

We can assume that, up to a subsequence, xkx0x_{k}\rightarrow x_{0} as kk\rightarrow\infty, then

S~λ0v(x0)=0andS~λ0v(x0)=0,\nabla\widetilde{S}^{v}_{\lambda_{0}}(x_{0})=0\quad\text{and}\quad\widetilde{S}_{\lambda_{0}}^{v}(x_{0})=0,

which implies that x0Bλ0x_{0}\in\partial B_{\lambda_{0}}. But this contradicts the Hopf Lemma.

Finally, we show that case (iii) can’t occur. We deduce from Lemma 4.3 (ii) and S~λku(x)0\widetilde{S}_{\lambda_{k}}^{u}(x)\geq 0, S~λkv(x)0\widetilde{S}_{\lambda_{k}}^{v}(x)\geq 0 that

ΔS~λkv>0inBλk{0},-\Delta\widetilde{S}_{\lambda_{k}}^{v}>0\quad\text{in}\quad B_{\lambda_{k}}\setminus\{0\},

which contradicts

infBλk{0}ΔS~λkv(x)<0.\inf\limits_{B_{\lambda_{k}}\setminus\{0\}}-\Delta\widetilde{S}_{\lambda_{k}}^{v}(x)<0.

\Box

5 Proof of Theorem 1.1

By Proposition 3.3 and Proposition 4.3, we have the following result.

Proposition 5.1.

Let (u,v)(u,v) be a nontrivial solution for system (1.1) and α\alpha be defined as in (2.1). Then we have

α=μ.\alpha=\mu.

From Proposition 5.1, we are now in the position to prove Theorem 1.1. Most of the proof is similar as the proof in Section 4. Hence we will sketch most of the proof in the following.

Proposition 5.2.

Let S~λu(x)\widetilde{S}^{u}_{\lambda}(x) and S~λv(x)\widetilde{S}^{v}_{\lambda}(x) be defined as in Section 4. Then there exists a λ>0\lambda>0 large enough, such that

S~λu(x)0,S~λv(x)0andΔS~λv(x)0inBλ(0){0}.\widetilde{S}^{u}_{\lambda}(x)\geq 0,\quad\widetilde{S}^{v}_{\lambda}(x)\geq 0\quad\text{and}\quad-\Delta\widetilde{S}^{v}_{\lambda}(x)\geq 0\quad\text{in}\quad B_{\lambda}(0)\setminus\{0\}.

Proof. The proof of Proposition 5.2 is similar to the proof of Proposition 4.1. \Box

The definition of λb\lambda_{b} is the same as Section 4.

Proposition 5.3.

Let S~λu(x)\widetilde{S}^{u}_{\lambda}(x) and S~λv(x)\widetilde{S}^{v}_{\lambda}(x) be defined as in Section 4. Then there exists a vector b¯4\bar{b}\in\mathbb{R}^{4}, such that λb¯>0\lambda_{\bar{b}}>0.

Proof. The proof of Proposition 5.3 is same as the proof of Proposition 4.2. \Box

Proposition 5.4.

Suppose that λb>0\lambda_{b}>0 for some b4b\in\mathbb{R}^{4}, then we have S~λb,bu(x)0\widetilde{S}_{\lambda_{b},b}^{u}(x)\equiv 0 and S~λb,bv(x)0\widetilde{S}_{\lambda_{b},b}^{v}(x)\equiv 0 in Bλb{0}B_{\lambda_{b}}\setminus\{0\}.

Proof. Without loss of generality, one may assume b=0b=0. Then it from the definition of λ0\lambda_{0} that

S~λ0u(x)0andS~λ0v(x)0inBλ0{0}.\widetilde{S}_{\lambda_{0}}^{u}(x)\geq 0\quad\text{and}\quad\widetilde{S}_{\lambda_{0}}^{v}(x)\geq 0\quad\text{in}\quad B_{\lambda_{0}}\setminus\{0\}. (5.1)

Suppose on the contrary that S~λ0u(x)0\widetilde{S}_{\lambda_{0}}^{u}(x)\not\equiv 0 or S~λ0v(x)0\widetilde{S}_{\lambda_{0}}^{v}(x)\not\equiv 0, then we deduce from Lemma 4.3 (ii) that

ΔS~λ0v(x)>0inBλ0{0}.-\Delta\widetilde{S}_{\lambda_{0}}^{v}(x)>0\quad\text{in}\quad B_{\lambda_{0}}\setminus\{0\}.

The rest part of the proof is similar to that of Proposition 4.3. \Box

Proposition 5.5.

For all b4b\in\mathbb{R}^{4}, we have λb>0\lambda_{b}>0.

Proof. By Proposition 5.4, there exists a vector b¯4\bar{b}\in\mathbb{R}^{4} such that λb¯>0\lambda_{\bar{b}}>0 and

vb¯(x)vb¯(λb¯2x|x|2)+μln|x|μlnλb¯0inBλb¯{0}.v_{\bar{b}}(x)-v_{\bar{b}}\left(\frac{\lambda_{\bar{b}}^{2}x}{|x|^{2}}\right)+\mu\ln|x|-\mu\ln\lambda_{\bar{b}}\equiv 0\quad\text{in}\quad B_{\lambda_{\bar{b}}}\setminus\{0\}. (5.2)

Letting |x||x|\rightarrow\infty in (5.2), then

lim|x|(vb¯(x)+μln|x|)=vb¯(0)+μlnλb¯.\lim\limits_{|x|\rightarrow\infty}(v_{\bar{b}}(x)+\mu\ln|x|)=v_{\bar{b}}(0)+\mu\ln\lambda_{\bar{b}}. (5.3)

Suppose on the contrary that there exists a vector b4b\in\mathbb{R}^{4} such that λb=0\lambda_{b}=0, then we obtain

vb(x)vb(λ2x|x|2)+μln|x|μlnλ0v_{b}(x)-v_{b}\left(\frac{\lambda^{2}x}{|x|^{2}}\right)+\mu\ln|x|-\mu\ln\lambda\geq 0 (5.4)

for all λ>0\lambda>0 and xBλ{0}x\in B_{\lambda}\setminus\{0\}. Fix λ\lambda and let |x|0|x|\rightarrow 0 in (5.4), then

lim|x|0(vb(λ2x|x|2)μln|x|)vb(0)μlnλ\lim_{|x|\rightarrow 0}\left(v_{b}\left(\frac{\lambda^{2}x}{|x|^{2}}\right)-\mu\ln|x|\right)\leq v_{b}(0)-\mu\ln\lambda

or

lim|x|(vb(x)+μln|x|)vb(0)+μlnλ.\lim_{|x|\rightarrow\infty}(v_{b}(x)+\mu\ln|x|)\leq v_{b}(0)+\mu\ln\lambda. (5.5)

We infer from (5.3) and (5.5) that

vb¯(0)+μlnλb¯vb(0)+μlnλ,v_{\bar{b}}(0)+\mu\ln\lambda_{\bar{b}}\leq v_{b}(0)+\mu\ln\lambda,

which is impossible as λ0\lambda\rightarrow 0. \Box

Proposition 5.6.

For all b4b\in\mathbb{R}^{4}, we have λb>0\lambda_{b}>0 and S~λb,bu0\widetilde{S}^{u}_{\lambda_{b},b}\equiv 0, S~λb,bv0\widetilde{S}^{v}_{\lambda_{b},b}\equiv 0 in Bλb{0}B_{\lambda_{b}}\setminus\{0\}.

Proof. This is a direct consequence of Proposition 5.4 and Proposition 5.5. \Box

Proof of Theorem 1.1. Define f(x)=ev(x)f(x)=e^{v(x)}, then it follows from Proposition 5.6 that

f(x)=λbμ|xb|μf(λb2(xb)|xb|2+b)f(x)=\frac{\lambda_{b}^{\mu}}{|x-b|^{\mu}}f\left(\frac{\lambda_{b}^{2}(x-b)}{|x-b|^{2}}+b\right)

and

u(x)=λb2|xb|2u(λb2(xb)|xb|2+b).u(x)=\frac{\lambda_{b}^{2}}{|x-b|^{2}}u\left(\frac{\lambda_{b}^{2}(x-b)}{|x-b|^{2}}+b\right).

Let

A=lim|x||x|μf(x)=λbμf(b)A=\lim_{|x|\rightarrow\infty}|x|^{\mu}f(x)=\lambda_{b}^{\mu}f(b)

and

B=lim|x||x|2u(x)=λb2u(b),B=\lim_{|x|\rightarrow\infty}|x|^{2}u(x)=\lambda_{b}^{2}u(b),

where AA, B>0B>0. We first assume that A=B=1A=B=1. Since

u(x)=λ02|x|2u(λ02x|x|2)=λb2|xb|2u(λb2(xb)|xb|2+b),u(x)=\frac{\lambda_{0}^{2}}{|x|^{2}}u\left(\frac{\lambda_{0}^{2}x}{|x|^{2}}\right)=\frac{\lambda_{b}^{2}}{|x-b|^{2}}u\left(\frac{\lambda_{b}^{2}(x-b)}{|x-b|^{2}}+b\right),

then one has

u(x)=λ02|x|2[u(0)+u(0)λ02x|x|2+o(1|x|)]u(x)=\frac{\lambda_{0}^{2}}{|x|^{2}}\left[u(0)+\nabla u(0)\frac{\lambda_{0}^{2}x}{|x|^{2}}+o\left(\frac{1}{|x|}\right)\right] (5.6)

and

u(x)=λb2|xb|2[u(b)+u(b)λb2(xb)|xb|2+o(1|xb|)]u(x)=\frac{\lambda_{b}^{2}}{|x-b|^{2}}\left[u(b)+\nabla u(b)\frac{\lambda_{b}^{2}(x-b)}{|x-b|^{2}}+o\left(\frac{1}{|x-b|}\right)\right] (5.7)

as |x||x|\rightarrow\infty. It follows from equation (5.6) and (5.7) that

u(b)xiu(b)2=u(0)xiu(0)22bi\frac{\partial u(b)}{\partial x_{i}}u(b)^{-2}=\frac{\partial u(0)}{\partial x_{i}}u(0)^{-2}-2b_{i}

and

(u1)i(b)=2bi+(u1)i(0)=bi(|b|2+u1(0)b).(u^{-1})_{i}(b)=2b_{i}+(u^{-1})_{i}(0)=\frac{\partial}{\partial b_{i}}(|b|^{2}+\nabla u^{-1}(0)\cdot b).

Therefore,

u(b)=1|bd0|2+d.u(b)=\frac{1}{|b-d_{0}|^{2}+d}.

Similarly, we conclude that

f(b)=(1|bd0|2+d)μ2f(b)=\left(\frac{1}{|b-d_{0}|^{2}+d}\right)^{\frac{\mu}{2}}

and

v(b)=μ2ln(1|bd0|2+d).v(b)=\frac{\mu}{2}\ln\left(\frac{1}{|b-d_{0}|^{2}+d}\right).

Finally, if we don’t assume A=B=1A=B=1, then

u(x)=C1(ε)|xx0|2+ε2u(x)=\frac{C_{1}(\varepsilon)}{|x-x_{0}|^{2}+\varepsilon^{2}}

and

v(x)=3p1q1ln(C2(ε)|xx0|2+ε2).v(x)=\frac{3-p_{1}}{q_{1}}\ln\left(\frac{C_{2}(\varepsilon)}{|x-x_{0}|^{2}+\varepsilon^{2}}\right).

Then, by Proposition 5.1 and direct calculations, one obtains

{C1p1C23p1=8C1ε2C1p2C24p2=48με4.\left\{\begin{aligned} &C_{1}^{p_{1}}C_{2}^{3-p_{1}}=8C_{1}\varepsilon^{2}\\ &C_{1}^{p_{2}}C_{2}^{4-p_{2}}=48\mu\varepsilon^{4}.\end{aligned}\right.

This completes the proof of Theorem 1.1. \Box

6 Acknowledgments.

This work is partially supported by by National Natural Science Foundation of China 11871160 and 12141105.

References

  • [1] Luis A. Caffarelli, Basilis Gidas, and Joel Spruck. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math., 42(3):271–297, 1989.
  • [2] Sun-Yung A. Chang and Paul C. Yang. On uniqueness of solutions of nnth order differential equations in conformal geometry. Math. Res. Lett., 4(1):91–102, 1997.
  • [3] Chiun Chuan Chen and Changshou Lin. Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent. Duke Math. J., 78(2):315–334, 1995.
  • [4] Wenxiong Chen, Yanqin Fang, and Congming Li. Super poly-harmonic property of solutions for Navier boundary problems on a half space. J. Funct. Anal., 265(8):1522–1555, 2013.
  • [5] Wenxiong Chen and Congming Li. Classification of solutions of some nonlinear elliptic equations. Duke Math. J., 63(3):615–622, 1991.
  • [6] Wenxiong Chen and Congming Li. Regularity of solutions for a system of integral equations. Commun. Pure Appl. Anal., 4(1):1–8, 2005.
  • [7] Wenxiong Chen and Congming Li. An integral system and the Lane-Emden conjecture. Discrete Contin. Dyn. Syst., 24(4):1167–1184, 2009.
  • [8] Wenxiong Chen and Congming Li. Methods on nonlinear elliptic equations, volume 4 of AIMS Series on Differential Equations Dynamical Systems. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2010.
  • [9] Wenxiong Chen, Congming Li, and Biao Ou. Classification of solutions for a system of integral equations. Comm. Partial Differential Equations, 30(1-3):59–65, 2005.
  • [10] Wenxiong Chen, Congming Li, and Biao Ou. Classification of solutions for an integral equation. Comm. Pure Appl. Math., 59(3):330–343, 2006.
  • [11] Wei Dai and Guolin Qin. Classification of solutions to conformally invariant systems with mixed order and exponentially increasing or nonlocal nonlinearity. arXiv preprint, 2021.
  • [12] B. Gidas, Wei Ming Ni, and L. Nirenberg. Symmetry and related properties via the maximum principle. Comm. Math. Phys., 68(3):209–243, 1979.
  • [13] Yuxia Guo and Jiaquan Liu. Liouville type theorems for positive solutions of elliptic system in N\mathbb{R}^{N}. Comm. Partial Differential Equations, 33(1-3):263–284, 2008.
  • [14] Yuxia Guo and Shaolong Peng. Classification of solutions to mixed order conformally invariant systems in 2\mathbb{R}^{2}. J. Geom. Anal., 32(6):Paper No. 178, 41, 2022.
  • [15] Genggeng Huang. A Liouville theorem of degenerate elliptic equation and its application. Discrete Contin. Dyn. Syst., 33(10):4549–4566, 2013.
  • [16] Genggeng Huang and Congming Li. A Liouville theorem for high order degenerate elliptic equations. J. Differential Equations, 258(4):1229–1251, 2015.
  • [17] Yanyan Li and Lei Zhang. Liouville type theorems and Harnack type inequalities for semilinear elliptic equations. J. Anal. Math., 90:27–87, 2003.
  • [18] Changshou Lin. A classification of solutions of a conformally invariant fourth order equation in 𝐑n{\bf R}^{n}. Comment. Math. Helv., 73(2):206–231, 1998.
  • [19] Yating Niu. Liouville type theorem of integral equation with anisotropic structure. J. Differential Equations, 334:1–24, 2022.
  • [20] Juncheng Wei and Xingwang Xu. Classification of solutions of higher order conformally invariant equations. Math. Ann., 313(2):207–228, 1999.
  • [21] Xingwang Xu. Uniqueness and non-existence theorems for conformally invariant equations. J. Funct. Anal., 222(1):1–28, 2005.
  • [22] Xingwang Xu. Classification of solutions of certain fourth-order nonlinear elliptic equations in 4\mathbb{R}^{4}. Pacific J. Math., 225(2):361–378, 2006.
  • [23] Jianfu Yang and Xiaohui Yu. Classification of solutions for critical choquard equation in dimension two.
  • [24] Xiaohui Yu. Liouville type theorems for integral equations and integral systems. Calc. Var. Partial Differential Equations, 46(1-2):75–95, 2013.
  • [25] Xiaohui Yu. Classification of solutions for some elliptic system. Calc. Var. Partial Differential Equations, 61(4):Paper No. 151, 37, 2022.
  • [26] Ning Zhu. Classification of solutions of a conformally invariant third order equation in 3\mathbb{R}^{3}. Comm. Partial Differential Equations, 29(11-12):1755–1782, 2004.