This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Classification of real algebraic curves under blow-spherical homeomorphisms at infinity

José Edson Sampaio  and  Euripedes Carvalho da Silva José Edson Sampaio: Departamento de Matemática, Universidade Federal do Ceará, Rua Campus do Pici, s/n, Bloco 914, Pici, 60440-900, Fortaleza-CE, Brazil.
E-mail: [email protected]
Euripedes Carvalho da Silva: Departamento de Matemática, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Av. Parque Central, 1315, Distrito Industrial I, 61939-140, Maracanaú-CE, Brazil.
E-mail: [email protected]
Abstract.

In this article, we present a complete classification, with normal forms, of the real algebraic curves under blow-spherical homeomorphisms at infinity.

Key words and phrases:
Blow-spherical equivalence; Algebraic curves; Classification of algebraic curves.
2010 Mathematics Subject Classification:
14B05; 32S50
The first named author was partially supported by CNPq-Brazil grant 310438/2021-7. This work was supported by the Serrapilheira Institute (grant number Serra – R-2110-39576).

1. Introduction

In this article, we study real algebraic curves under blow-spherical homeomorphisms from the global point of view. Roughly speaking, two subsets of Euclidean spaces are blow-spherical homeomorphic, if their spherical modifications (see Definition 2.1) are homeomorphic and, in particular, this homeomorphism induces a homeomorphism between their tangent links (see Definition 2.2). This gives an equivalence which lives between topological equivalence and semialgebraic bi-Lipschitz equivalence.

The study of analytic sets under blow-spherical homeomorphisms from the local point of view has been studied in some works, e.g., [1, 2, 6, 7, 8]. In [7], the first author, among other things, presented a complete classification of the germs of complex analytic curves under blow-spherical homeomorphisms. In [8], the first author presented several results of related to blow-spherical homeomorphism between germs of real analytic sets and, in particular, he presented a classification of germs of real analytic curves under blow-spherical homeomorphisms.

Recently, the authors of this article in [9] presented a complete classification of complex algebraic curves under (global) blow-spherical homeomorphisms (see Theorem 4.6 in [9]). They also presented a complete classification of complex algebraic curves under blow-spherical homeomorphisms at infinity with normal forms (see Theorems 4.2 and 4.3 in [9]).

So, it becomes natural to try classifying real algebraic curves under blow-spherical homeomorphisms.

The main aim of this article is to present a complete classification of real algebraic curves under blow-spherical homeomorphisms at infinity (see Proposition 3.1). Moreover, we also present normal forms for this classification (see Proposition 3.2). We also present a result of realization of our (complete) invariant (see Proposition 3.7).

In order to be a bit more precise, for a real algebraic curve XX, we define our invariant k(X,)k(X,\infty) (see Definition 2.12), which is a point of (>0)n(\mathbb{Z}_{>0})^{n} and nn is the cardinality of the link (at 0) of the tangent cone of XX at infinity (see Subsection 2.2), and in Proposition 3.1, we prove that two real algebraic curve XX and X~\widetilde{X} are blow-spherical homeomorphic at infinity if and only if k(X,)=k(X~,)k(X,\infty)=k(\widetilde{X},\infty).

In Subsection 3.1, we present a collection of real algebraic curves and we prove in Proposition 3.2 that a real algebraic curve is blow-spherical homeomorphic at infinity to exactly one curve of that collection.

In Subsection 3.2, we observe that k(X,)𝒩k(X,\infty)\in\mathcal{N}, where 𝒩=n=1𝒩n\mathcal{N}=\bigcup\limits_{n=1}^{\infty}\mathcal{N}_{n} and 𝒩n\mathcal{N}_{n} is the set of all (η1,η2,,ηn)(>0)n(\eta_{1},\eta_{2},\cdots,\eta_{n})\in(\mathbb{Z}_{>0})^{n} such that η1η2ηn\eta_{1}\leq\eta_{2}\leq\cdots\leq\eta_{n}. Moreover, given η=(η1,,ηk)𝒩\eta=(\eta_{1},...,\eta_{k})\in\mathcal{N}, we prove in Proposition 3.7 that there is a real algebraic curve XX such that k(X,)=ηk(X,\infty)=\eta if and only if η1++ηk\eta_{1}+...+\eta_{k} is an even number.


2. Preliminaries

Here, all the real algebraic sets are supposed to be pure dimensional.

2.1. Definition of the blow-spherical equivalence

Let us consider the spherical blowing-up at infinity (resp. pp) of n+1\mathbb{R}^{n+1}, ρ:𝕊n×(0,+)n+1\rho_{\infty}\colon\mathbb{S}^{n}\times(0,+\infty)\to\mathbb{R}^{n+1} (resp. ρp:𝕊n×[0,+)n+1\rho_{p}\colon\mathbb{S}^{n}\times[0,+\infty)\to\mathbb{R}^{n+1}), given by ρ(x,r)=1rx\rho_{\infty}(x,r)=\frac{1}{r}x (resp. ρp(x,r)=rx+p\rho_{p}(x,r)=rx+p).

Note that ρ:𝕊n×(0,+)n+1{0}\rho_{\infty}\colon\mathbb{S}^{n}\times(0,+\infty)\to\mathbb{R}^{n+1}\setminus\{0\} (resp. ρp:𝕊n×(0,+)n+1{0}\rho_{p}\colon\mathbb{S}^{n}\times(0,+\infty)\to\mathbb{R}^{n+1}\setminus\{0\}) is a homeomorphism with inverse mapping ρ1:n+1{0}𝕊n×(0,+)\rho_{\infty}^{-1}\colon\mathbb{R}^{n+1}\setminus\{0\}\to\mathbb{S}^{n}\times(0,+\infty) (resp. ρp:𝕊n×(0,+)n+1{0}\rho_{p}\colon\mathbb{S}^{n}\times(0,+\infty)\to\mathbb{R}^{n+1}\setminus\{0\}) given by ρ1(x)=(xx,1x)\rho_{\infty}^{-1}(x)=(\frac{x}{\|x\|},\frac{1}{\|x\|}) (resp. ρp1(x)=(xpxp,xp)\rho_{p}^{-1}(x)=(\frac{x-p}{\|x-p\|},\|x-p\|)).

Definition 2.1.

The strict transform of the subset XX under the spherical blowing-up ρ\rho_{\infty} is X:=ρ1(X{0})¯X^{\prime}_{\infty}:=\overline{\rho_{\infty}^{-1}(X\setminus\{0\})} (resp. Xp:=ρp1(X{0})¯X^{\prime}_{p}:=\overline{\rho_{p}^{-1}(X\setminus\{0\})}). The subset X(𝕊n×{0})X_{\infty}^{\prime}\cap(\mathbb{S}^{n}\times\{0\}) (resp. Xp(𝕊n×{0})X_{p}^{\prime}\cap(\mathbb{S}^{n}\times\{0\})) is called the boundary of XX^{\prime}_{\infty} (resp. XpX^{\prime}_{p}) and it is denoted by X\partial X^{\prime}_{\infty} (resp. Xp\partial X^{\prime}_{p}).

Definition 2.2.

Let XX and YY be subsets in n\mathbb{R}^{n} and m\mathbb{R}^{m}, respectively. Let pn{}p\in\mathbb{R}^{n}\cup\{\infty\}, qm{}q\in\mathbb{R}^{m}\cup\{\infty\}. A homeomorphism φ:XY\varphi:X\rightarrow Y such that q=limxpφ(x)q=\lim\limits_{x\rightarrow p}{\varphi(x)} is said a blow-spherical homeomorphism at pp, if the homeomorphism

ρq1φρp:XpXpYqYq\rho^{-1}_{q}\circ\varphi\circ\rho_{p}\colon X^{\prime}_{p}\setminus\partial X^{\prime}_{p}\rightarrow Y^{\prime}_{q}\setminus\partial Y^{\prime}_{q}

extends to a homeomorphism φ:XpYq\varphi^{\prime}\colon X^{\prime}_{p}\rightarrow Y^{\prime}_{q}. A homeomorphism φ:XY\varphi\colon X\rightarrow Y is said a blow-spherical homeomorphism if it is a blow-spherical homeomorphism for all pX¯{}p\in\overline{X}\cup\{\infty\}. In this case, we say that the sets XX and YY are blow-spherical homeomorphic or blow-isomorphic (at (p,q)(p,q)).

Definition 2.3.

Let XX and YY be subsets in n\mathbb{R}^{n} and m\mathbb{R}^{m}, respectively. We say that a blow-spherical homeomorphism h:XYh\colon X\rightarrow Y is a strong blow-spherical homeomorphism if h(Sing1(X))=Sing1(Y)h({\rm Sing}_{1}(X))={\rm Sing}_{1}(Y) and h|XSing1(X):XSing1(X)YSing1(Y)h|_{X\setminus{\rm Sing}_{1}(X)}\colon X\setminus{\rm Sing}_{1}(X)\rightarrow Y\setminus{\rm Sing}_{1}(Y) is a C1C^{1} diffeomorphism, where, for ApA\subset\mathbb{R}^{p}, Singk(A){\rm Sing}_{k}(A) denotes the points xAx\in A such that, for any open neighbourhood UU of xx, AUA\cap U is not a CkC^{k} submanifold of p\mathbb{R}^{p}. A blow-spherical homeomorphism at \infty, φ:XY\varphi\colon X\rightarrow Y, is said a strong blow-spherical homeomorphism at \infty if there are compact sets KnK\subset\mathbb{R}^{n} and K~m\tilde{K}\subset\mathbb{R}^{m} such that φ(XK)=YK~\varphi(X\setminus K)=Y\setminus\tilde{K} and the restriction φ|XK:XKYK~\varphi|_{X\setminus K}\colon X\setminus K\to Y\setminus\tilde{K} is a strong blow-spherical homeomorphism.

Remark 2.4.

We have some examples:

  1. (1)

    Id:XX\mbox{Id}:X\rightarrow X is a blow-spherical homeomorphism for any XnX\subset\mathbb{R}^{n};

  2. (2)

    Let XnX\subset\mathbb{R}^{n}, YmY\subset\mathbb{R}^{m} and ZkZ\subset\mathbb{R}^{k} be subsets. If f:XYf\colon X\rightarrow Y and g:YZg\colon Y\rightarrow Z are blow-spherical homeomorphisms, then gf:XZg\circ f\colon X\rightarrow Z is a blow-spherical homeomorphism.

Thus we have a category called blow-spherical category, which is denoted by BS, where its objects are all the subsets of Euclidean spaces and its morphisms are all blow-spherical homeomorphisms.

By definition, if XX and YY are strongly blow-spherical homeomorphic then they are blow-spherical homeomorphic, but the converse does not hold in general, as we can see in the next example.

Example 2.5.

Let V={(x,y)2;y=|x|}V=\{(x,y)\in\mathbb{R}^{2};y=|x|\}. The mapping φ:V\varphi\colon\mathbb{R}\to V given by φ(x)=(x,|x|)\varphi(x)=(x,|x|) is a blow-spherical homeomorphism. However, since Sing1()={\rm Sing}_{1}(\mathbb{R})=\emptyset and Sing1(V)={(0,0)}{\rm Sing}_{1}(V)=\{(0,0)\}, there is no strong blow-spherical homeomorphism h:Vh\colon\mathbb{R}\to V and, in particular, \mathbb{R} and VV are not strongly blow-spherical homeomorphic.

Proposition 2.6 (Proposition 3.12 in [9]).

Let XnX\subset\mathbb{R}^{n} and YmY\subset\mathbb{R}^{m} be semialgebraic sets. If h:XYh\colon X\rightarrow Y is a semialgebraic outer lipeomorphism then hh is a blow-spherical homeomorphism.

Example 2.7.

V={(x,y)2;y2=x3}V=\{(x,y)\in\mathbb{R}^{2};y^{2}=x^{3}\} and W={(x,y)2;y2=x5}W=\{(x,y)\in\mathbb{R}^{2};y^{2}=x^{5}\} are blow-spherical homeomorphic, but are not outer bi-Lipschitz homeomorphic.

2.2. Tangent Cones

Let Xn+1X\subset\mathbb{R}^{n+1} be an unbounded semialgebraic set (resp. subanalytic set with pX¯p\in\overline{X}). We say that vn+1v\in\mathbb{R}^{n+1} is a tangent vector of XX at infinity (resp. pp) if there are a sequence of points {xi}X\{x_{i}\}\subset X tending to infinity (resp. pp) and a sequence of positive real numbers {ti}\{t_{i}\} such that

limi1tixi=v(resp. limi1ti(xip)=v).\lim\limits_{i\to\infty}\frac{1}{t_{i}}x_{i}=v\quad(\mbox{resp. }\lim\limits_{i\to\infty}\frac{1}{t_{i}}(x_{i}-p)=v).

Let C(X,)C(X,\infty) (resp. C(X,p)C(X,p)) denote the set of all tangent vectors of XX at infinity (resp. pp). We call C(X,)C(X,\infty) the tangent cone of XX at infinity (resp. pp).

We have the following characterization.

Corollary 2.8 (Corollary 2.16 [3]).

Let XnX\subset\mathbb{R}^{n} be an unbounded semialgebraic set. Then C(X,)={vn;γ:(ε,+)ZC(X,\infty)=\{v\in\mathbb{R}^{n};\,\exists\gamma:(\varepsilon,+\infty)\to Z C0C^{0} semialgebraic such that limt+|γ(t)|=+\lim\limits_{t\to+\infty}|\gamma(t)|=+\infty and γ(t)=tv+o(t)}\gamma(t)=tv+o_{\infty}(t)\}, where g(t)=o(t)g(t)=o_{\infty}(t) means limt+g(t)t=0\lim\limits_{t\to+\infty}\frac{g(t)}{t}=0.

Thus, we have the following

Corollary 2.9 (Corollary 2.18 [3]).

Let ZnZ\subset\mathbb{R}^{n} be an unbounded semialgebraic set. Let ϕ:n{0}n{0}\phi:\mathbb{R}^{n}\setminus\{0\}\to\mathbb{R}^{n}\setminus\{0\} be the semialgebraic mapping given by ϕ(x)=xx2\phi(x)=\frac{x}{\|x\|^{2}} and denote X=ϕ(Z{0})X=\phi(Z\setminus\{0\}). Then C(Z,)C(Z,\infty) is a semialgebraic set satisfying C(Z,)=C(X,0)C(Z,\infty)=C(X,0) and dimC(Z,)dimZ\dim_{\mathbb{R}}C(Z,\infty)\leq\dim_{\mathbb{R}}Z.

Remark 2.10.

Another way to present the tangent cone at infinity (resp. pp) of a subset Xn+1X\subset\mathbb{R}^{n+1} is via the spherical blow-up at infinity (resp. pp) of n+1\mathbb{R}^{n+1}. In fact, if Xn+1X\subset\mathbb{R}^{n+1} is a semialgebraic set, then X=(C(X,)𝕊n)×{0}\partial X^{\prime}_{\infty}=(C(X,\infty)\cap\mathbb{S}^{n})\times\{0\} (resp. Xp=(C(X,p)𝕊n)×{0}\partial X^{\prime}_{p}=(C(X,p)\cap\mathbb{S}^{n})\times\{0\}).

2.3. Relative multiplicities

Let Xm+1X\subset\mathbb{R}^{m+1} be a dd-dimensional subanalytic subset and pm+1{}p\in\mathbb{R}^{m+1}\cup\{\infty\}. We say xXpx\in\partial X^{\prime}_{p} is a simple point of Xp\partial X^{\prime}_{p}, if there is an open subset Um+2U\subset\mathbb{R}^{m+2} with xUx\in U such that:

  • a)

    the connected components X1,,XrX_{1},\cdots,X_{r} of (XpU)Xp(X^{\prime}_{p}\cap U)\setminus\partial X^{\prime}_{p} are topological submanifolds of m+2\mathbb{R}^{m+2} with dimXi=dimX\dim X_{i}=\dim X, for all i=1,,ri=1,\cdots,r;

  • b)

    (XiXp)U(X_{i}\cup\partial X^{\prime}_{p})\cap U is a topological manifold with boundary, for all i=1,,ri=1,\cdots,r.

Let Smp(Xp){\rm Smp}(\partial X^{\prime}_{p}) be the set of simple points of Xp\partial X^{\prime}_{p} and we define CSmp(X,p)={tx;t>0 and xSmp(Xp)}C_{\rm Smp}(X,p)=\{t\cdot x;\,t>0\mbox{ and }x\in{\rm Smp}(\partial X^{\prime}_{p})\}. Let kX,p:Smp(Xp)k_{X,p}\colon{\rm Smp}(\partial X^{\prime}_{p})\to\mathbb{N} be the function such that kX,p(x)k_{X,p}(x) is the number of connected components of the germ (ρp1(X{p}),x)(\rho_{p}^{-1}(X\setminus\{p\}),x).

Remark 2.11.

It is known that Smp(Xp){\rm Smp}(\partial X^{\prime}_{p}) is an open dense subset of the (d1)(d-1)-dimensional part of Xp\partial X^{\prime}_{p} whenever Xp\partial X^{\prime}_{p} is a (d1)(d-1)-dimensional subset. where d=dimXd=\dim X (see [5]).

Definition 2.12.

It is clear the function kX,pk_{X,p} is locally constant. In fact, kX,pk_{X,p} is constant on each connected component XjX_{j} of Smp(Xp){\rm Smp}(\partial X^{\prime}_{p}). Then, we define the relative multiplicity of XX at pp (along of XjX_{j}) to be kX,p(Xj):=kX,p(x)k_{X,p}(X_{j}):=k_{X,p}(x) with xXjx\in X_{j}. Let X1,,XrX_{1},...,X_{r} be the connected components of Smp(Xp){\rm Smp}(\partial X^{\prime}_{p}). By reordering the indices, if necessary, we assume that kX,p(X1)kX,p(Xr)k_{X,p}(X_{1})\leq\cdots\leq k_{X,p}(X_{r}). Then we define k(X,p)=(kX,p(X1),,kX,p(Xr))k(X,p)=(k_{X,p}(X_{1}),...,k_{X,p}(X_{r})).

Remark 2.13.

Let XnX\subset\mathbb{R}^{n} be an unbounded real algebraic curve such that C(X,)𝕊n1={a1,,ar}C(X,\infty)\cap\mathbb{S}^{n-1}=\{a_{1},...,a_{r}\}. By the Conical Structure Theorem at infinity for semialgebraic sets that there exists a constant R01R_{0}\gg 1 such that for all RR0R\geq R_{0}, we have

XBR(0)=j=1rl=1kjΓj,lX\setminus B_{R}(0)=\bigcup_{j=1}^{r}\bigcup_{l=1}^{k_{j}}{\Gamma_{j,l}}

and there is a semialgebraic diffeomorphism h:XBR(0)Cone(X𝕊Rn1(0))h\colon X\setminus B_{R}(0)\rightarrow{\rm Cone}_{\infty}(X\cap\mathbb{S}^{n-1}_{R}(0)) such that h(x)=x\|h(x)\|=\|x\| and h|X𝕊Rn1(0)=Idh|_{X\cap\mathbb{S}^{n-1}_{R}(0)}=Id and, moreover, for each j{1,,r}j\in\{1,...,r\}, C(Γj,l,)𝕊n1={aj}C(\Gamma_{j,l},\infty)\cap\mathbb{S}^{n-1}=\{a_{j}\} for all l=1,,kjl=1,...,k_{j}. These Γj,l\Gamma_{j,l}’s are called the branches of XX at infinity. In particular, kj=kX,(aj,0)k_{j}=k_{X,\infty}(a_{j},0), i.e., kX,(ai,0)k_{X,\infty}(a_{i},0) is the number of branches of XX at infinity that are tangent to aia_{i} at infinity.

Proposition 2.14 (Proposition 3.5 in [9]).

Let XX and YY be semialgebraic sets in n\mathbb{R}^{n} and m\mathbb{R}^{m} respectively. Let φ:XY\varphi\colon X\rightarrow Y be a blow-spherical homeomorphism at pn{}p\in\mathbb{R}^{n}\cup\{\infty\}. Then

kX,p(x)=kY,q(φ(x)),k_{X,p}(x)=k_{Y,q}(\varphi^{\prime}(x)),

for all xSmp(Xp)Xpx\in Smp(\partial X^{\prime}_{p})\subset\partial X^{\prime}_{p}, where q=limxpφ(x)q=\lim\limits_{x\to p}\varphi(x). In particular, k(X,p)=k(Y,q)k(X,p)=k(Y,q).

Proposition 2.15 (Proposition 3.6 in [9]).

If h:XYh\colon X\rightarrow Y is a blow-spherical homeomorphism at pX{}p\in X\cup\{\infty\}, then C(X,p)C(X,p) and C(Y,h(p))C(Y,h(p)) are blow-spherical homeomorphic at 0.

3. On the classification of real algebraic curves

In this section, we present some examples and results about the classification of real algebraic curves under blow-spherical homeomorphisms.

Proposition 3.1.

Let X,X~nX,\widetilde{X}\subset\mathbb{R}^{n} be two real semialgebraic curves. Then the following statements are equivalent:

  1. (1)

    XX and X~\widetilde{X} are blow-spherical homeomorphic at infinity;

  2. (2)

    k(X,)=k(X~,)k(X,\infty)=k(\widetilde{X},\infty);

  3. (3)

    XX and X~\widetilde{X} are strongly blow-spherical homeomorphic at infinity;

Proof.

Assume that C(X,)𝕊n1={a1,,ar}C(X,\infty)\cap\mathbb{S}^{n-1}=\{a_{1},...,a_{r}\} and C(X~,)𝕊n1={a~1,,a~s}C(\widetilde{X},\infty)\cap\mathbb{S}^{n-1}=\{\widetilde{a}_{1},...,\widetilde{a}_{s}\}. By Remark 2.11, Smp(X){\rm Smp}(\partial X^{\prime}_{\infty}) is an open dense subset of the 0-dimensional part of X\partial X^{\prime}_{\infty}, hence Smp(X)=X{\rm Smp}(\partial X^{\prime}_{\infty})=\partial X^{\prime}_{\infty}.

Clearly, (3) \Rightarrow (1).

(1) \Rightarrow (2). Assume that XX and X~\widetilde{X} are blow-spherical homeomorphic at infinity. By Proposition 2.14, k(X,)=k(X~,)k(X,\infty)=k(\widetilde{X},\infty).

(2) \Rightarrow (3). Assume that k(X,)=k(X~,)k(X,\infty)=k(\widetilde{X},\infty). Thus, r=sr=s and by reordering the indices, if necessary, we may assume that ki=kX,(ai,0)=kX~,(ai~,0)k_{i}=k_{X,\infty}(a_{i},0)=k_{\widetilde{X},\infty}(\widetilde{a_{i}},0) for all i=1,,ri=1,...,r and k1k2.krk_{1}\leq k_{2}\leq....\leq k_{r}. Thus, it follows from Remark 2.13 and the Conical Structure Theorem at infinity for semialgebraic sets that there exists a constant R01R_{0}\gg 1 such that for all RR0R\geq R_{0}, we have

XBR(0)=j=1rl=1kjΓj,lX\setminus B_{R}(0)=\bigcup_{j=1}^{r}\bigcup_{l=1}^{k_{j}}{\Gamma_{j,l}}

and there is a semialgebraic diffeomorphism h:XBR(0)Cone(X𝕊Rn1(0))h\colon X\setminus B_{R}(0)\rightarrow{\rm Cone}_{\infty}(X\cap\mathbb{S}^{n-1}_{R}(0)) such that h(x)=x\|h(x)\|=\|x\| and h|X𝕊Rn1(0)=Idh|_{X\cap\mathbb{S}^{n-1}_{R}(0)}=Id and, moreover, for each j{1,,r}j\in\{1,...,r\}, C(Γj,l,)𝕊n1={aj}C(\Gamma_{j,l},\infty)\cap\mathbb{S}^{n-1}=\{a_{j}\} for all l=1,,kjl=1,...,k_{j}. In particular, we consider h|Γj,l:Γj,lCone(Γj,l𝕊Rn1(0))h|_{\Gamma_{j,l}}\colon\Gamma_{j,l}\rightarrow{\rm Cone}_{\infty}(\Gamma_{j,l}\cap\mathbb{S}^{n-1}_{R}(0)).

Now define the curve αj,l:[R,+)Cone(Γj,l𝕊Rn1(0))\alpha_{j,l}\colon[R,+\infty)\rightarrow{\rm Cone}_{\infty}(\Gamma_{j,l}\cap\mathbb{S}^{n-1}_{R}(0)) given by αj,l(t)=taj,l|aj,l|\alpha_{j,l}(t)=t\frac{a_{j,l}}{|a_{j,l}|}, where {aj,l}=Γj,l𝕊Rn1(0)\{a_{j,l}\}=\Gamma_{j,l}\cap\mathbb{S}^{n-1}_{R}(0). Thus, we define the curve βj,l:[R,+)Γj,l\beta_{j,l}\colon[R,+\infty)\rightarrow\Gamma_{j,l} by βj,l(t):=(h1αj,l)(t)\beta_{j,l}(t):=(h^{-1}\circ\alpha_{j,l})(t).

Analogously, we also have

X~BR(0)=j=1rl=1kjΓ~j,l,\widetilde{X}\setminus B_{R}(0)=\bigcup_{j=1}^{r}\bigcup_{l=1}^{k_{j}}{\widetilde{\Gamma}_{j,l}},

and there are semialgebraic diffeomorphisms h~:X~BR(0)Cone(X~𝕊Rn1(0))\widetilde{h}\colon\widetilde{X}\setminus B_{R}(0)\rightarrow{\rm Cone}_{\infty}(\widetilde{X}\cap\mathbb{S}^{n-1}_{R}(0)), α~j,l:[R,+)Cone(Γ~j,l𝕊Rn1(0))\widetilde{\alpha}_{j,l}\colon[R,+\infty)\rightarrow{\rm Cone}_{\infty}(\widetilde{\Gamma}_{j,l}\cap\mathbb{S}^{n-1}_{R}(0)) and β~j,l:[R,+)Γ~j,l\widetilde{\beta}_{j,l}\colon[R,+\infty)\rightarrow\widetilde{\Gamma}_{j,l} and, moreover, for each jj, C(Γ~j,l,)𝕊n1={a~j}C(\widetilde{\Gamma}_{j,l},\infty)\cap\mathbb{S}^{n-1}=\{\widetilde{a}_{j}\} for all l=1,,kjl=1,...,k_{j}.

Let A=XBR(0)A=X\setminus B_{R}(0) and A~=X~BR(0)\widetilde{A}=\widetilde{X}\setminus B_{R}(0) and define φ:AA~\varphi\colon A\rightarrow\widetilde{A} by φ(z)=β~j,lβj,l1(z)\varphi(z)=\widetilde{\beta}_{j,l}\circ\beta^{-1}_{j,l}(z) if zΓj,lz\in\Gamma_{j,l}. We have that φ\varphi is a strong blow-spherical homeomorphism at infinity and φ:XX~\varphi^{\prime}\colon X^{\prime}_{\infty}\rightarrow\widetilde{X}^{\prime}_{\infty} is given by

φ(x,s)={(φ(xs)φ(xs),1φ(xs)), if s0;(a~j,0), if (x,s)=(aj,0).\varphi^{\prime}(x,s)=\left\{\begin{array}[]{ll}\left(\frac{\varphi(\frac{x}{s})}{\|\varphi(\frac{x}{s})\|},\frac{1}{\|\varphi(\frac{x}{s})\|}\right),&\mbox{ if }s\not=0;\\ (\widetilde{a}_{j},0),&\mbox{ if }(x,s)=(a_{j},0).\end{array}\right.

In order to see that, it is enough to prove that φ\varphi is a blow-spherical homeomorphism at infinity. Let us prove that φ\varphi^{\prime} is continuous at each (aj,0)A(a_{j},0)\in\partial A^{\prime}_{\infty}. Thus take (aj,0)A(a_{j},0)\in\partial A^{\prime}_{\infty} and consider a sequence (xk,sk)kAA(x_{k},s_{k})_{k\in\mathbb{N}}\subset A^{\prime}_{\infty}\setminus\partial A^{\prime}_{\infty} such that (xk,sk)(aj,0)(x_{k},s_{k})\rightarrow(a_{j},0). Thus, for any subsequence {(xki,ski)}i\{(x_{k_{i}},s_{k_{i}})\}_{i\in\mathbb{N}}, there is some l{1,,kj}l\in\{1,...,k_{j}\} and a subsequence {(zk,tk)}k{(xki,ski)}i\{(z_{k},t_{k})\}_{k\in\mathbb{N}}\subset\{(x_{k_{i}},s_{k_{i}})\}_{i\in\mathbb{N}} such that zktkΓj,l\frac{z_{k}}{t_{k}}\in\Gamma_{j,l} for all kk. Since

βj,l(t)\displaystyle\|\beta_{j,l}(t)\| =\displaystyle= h1αj,l(t)\displaystyle\|h^{-1}\circ\alpha_{j,l}(t)\|
=\displaystyle= h1(taj,laj,l)\displaystyle\left\|h^{-1}\left(t\frac{a_{j,l}}{\|a_{j,l}\|}\right)\right\|
=\displaystyle= t,\displaystyle t,

we have

zktk=βj,l(1tk).\frac{z_{k}}{t_{k}}=\beta_{j,l}\left(\frac{1}{t_{k}}\right).

Therefore,

φ(zk,tk)\displaystyle\varphi^{\prime}(z_{k},t_{k}) =\displaystyle= (β~j,l(1tk)β~j,l(1tk),1β~j,l(1tk)).\displaystyle\left(\frac{\widetilde{\beta}_{j,l}(\frac{1}{t_{k}})}{\|\widetilde{\beta}_{j,l}(\frac{1}{t_{k}})\|},\frac{1}{\|\widetilde{\beta}_{j,l}(\frac{1}{t_{k}})\|}\right).

Since limt0+β~j,l(1t)β~j,l(1t)=a~j\lim\limits_{t\to 0^{+}}\frac{\widetilde{\beta}_{j,l}(\frac{1}{t})}{\|\widetilde{\beta}_{j,l}(\frac{1}{t})\|}=\widetilde{a}_{j}, we have limk+φ(zk,tk)=(a~j,0).\lim\limits_{k\rightarrow+\infty}{\varphi^{\prime}(z_{k},t_{k})}=(\widetilde{a}_{j},0). This shows that limk+φ(xk,sk)=(a~j,0).\lim\limits_{k\rightarrow+\infty}{\varphi^{\prime}(x_{k},s_{k})}=(\widetilde{a}_{j},0).

Thus, φ\varphi^{\prime} is continuous at each (aj,0)(a_{j},0). Analogously, (φ1)(\varphi^{-1})^{\prime} is continuous at each (a~j,0)A~(\widetilde{a}_{j},0)\in\partial\widetilde{A}^{\prime}_{\infty}. Therefore, φ\varphi is a strong blow-spherical homeomorphism at infinity. ∎

3.1. Normal forms for the classification at infinity

Let ({0,1};0)\mathcal{F}(\{0,1\};\mathbb{Z}_{\geq 0}) be the set of all non-null functions from {0,1}\{0,1\} to 0\mathbb{Z}_{\geq 0}. For each positive integer number NN, let 𝒜N\mathcal{A}_{N} be the subset of (({0,1};0))N(\mathcal{F}(\{0,1\};\mathbb{Z}_{\geq 0}))^{N} formed by all (r1,,rN)(r_{1},...,r_{N}) satisfying the following:

  1. (1)

    rl(0)rl+1(0)r_{l}(0)\leq r_{l+1}(0) for all l{1,,N1}l\in\{1,\cdots,N-1\};

  2. (2)

    If rl(0)=rl+1(0)r_{l}(0)=r_{l+1}(0) then rl(1)rl+1(1)r_{l}(1)\leq r_{l+1}(1).

Let 𝒜=N=1𝒜N\mathcal{A}=\bigcup\limits_{N=1}^{\infty}\mathcal{A}_{N}. Let A=(r1,,rN)𝒜A=(r_{1},...,r_{N})\in\mathcal{A}. For j{0,1}j\in\{0,1\} and rl(j)>0r_{l}(j)>0, we define the following curves:

XA,1={(x,y)2;l=1Nr=1rl(1)((ylx)2r(y+lx))=0},X_{A,1}=\left\{(x,y)\in\mathbb{R}^{2};\prod_{l=1}^{N}\prod_{r=1}^{r_{l}(1)}{((y-lx)^{2}-r(y+lx))}=0\right\},

and

XA,0={(x,y)2;l=1Nr=1rl(0)((ylx)r)=0}.X_{A,0}=\left\{(x,y)\in\mathbb{R}^{2};\prod_{l=1}^{N}\prod_{r=1}^{r_{l}(0)}{((y-lx)-r)}=0\right\}.

Moreover, if rl(j)=0r_{l}(j)=0 we define XA,j={0}X_{A,j}=\{0\}. Finally, we define the realization of A=(r1,,rN)A=(r_{1},...,r_{N}) to be the curve XA:=XA,0XA,1X_{A}:=X_{A,0}\cup X_{A,1}.

Thus, it follows from Proposition 3.1 and the definition of AA, the following classification result:

Proposition 3.2.

For each real algebraic curve XnX\subset\mathbb{R}^{n}, there exists a unique A𝒜A\in\mathcal{A} such that XAX_{A} and XX are blow-spherical homeomorphic at infinity.

Proof.

We consider X¯\overline{X} the projective closure of XX and {c1,,cN}=X¯L\{c_{1},\cdots,c_{N}\}=\overline{X}\cap L_{\infty}, where LL_{\infty} is the hyperplane at infinity.

By taking local charts, it follows from Lemma 3.3.5 in [4] that there exist an open neighborhood VlnV_{l}\subset\mathbb{RP}^{n} of clc_{l} and Υl,1,,Υl,rl\Upsilon_{l,1},\cdots,\Upsilon_{l,r_{l}} such that Υl,iΥl,i={cl}\Upsilon_{l,i}\cap\Upsilon_{l,i^{\prime}}=\{c_{l}\} whenever iii\neq i^{\prime} and

YVl=i=1rlΥl,iY\cap V_{l}=\bigcup_{i=1}^{r_{l}}{\Upsilon_{l,i}}

and, moreover, for each i{1,,rl}i\in\{1,\cdots,r_{l}\}, there exists an analytic homeomorphism υl,i:(ϵ,ϵ)Υl,i\upsilon_{l,i}\colon(-\epsilon,\epsilon)\rightarrow\Upsilon_{l,i} with υi(0)=cl\upsilon_{i}(0)=c_{l}. By shrinking VlV_{l}, if necessary, we may assume that for each i{1,,sl}i\in\{1,\cdots,s_{l}\}, Υl,iL\Upsilon_{l,i}\subset L_{\infty} or Υl,iL={cl}\Upsilon_{l,i}\cap L_{\infty}=\{c_{l}\}. By reordering the indices, if necessary, there is rl>0r_{l}>0 such that Υl,iL={cl}\Upsilon_{l,i}\cap L_{\infty}=\{c_{l}\} for all i{1,,rl}i\in\{1,\cdots,r_{l}\} and Υl,iL\Upsilon_{l,i}\subset L_{\infty} for all i{rl+1,,sl}i\in\{r_{l}+1,\cdots,s_{l}\}. By reordering the indices again, if necessary, we may assume that rlrl+1r_{l}\leq r_{l+1}, for all j{1,,N}j\in\{1,...,N\}.

We denote the half-branch by Υl,i+=υl,i(0,ϵ)\Upsilon_{l,i}^{+}=\upsilon_{l,i}(0,\epsilon) and Υl,i=υl,i(ϵ,0)\Upsilon_{l,i}^{-}=\upsilon_{l,i}(-\epsilon,0). So, denoting Γl,i+=Υl,i+n\Gamma_{l,i}^{+}=\Upsilon_{l,i}^{+}\cap\mathbb{R}^{n} and Γl,i=Υl,in\Gamma_{l,i}^{-}=\Upsilon_{l,i}^{-}\cap\mathbb{R}^{n}, we obtain that

{Γl,1+,Γl,1,,Γl,rl+,Γl,rl}l=1N\{\Gamma_{l,1}^{+},\Gamma_{l,1}^{-},\cdots,\Gamma_{l,r_{l}}^{+},\Gamma_{l,r_{l}}^{-}\}_{l=1}^{N}

are all the branches of XX at infinity. For each l{1,..,N}l\in\{1,..,N\}, there is al𝕊n1a_{l}\in\mathbb{S}^{n-1} such that π1(cl)𝕊n1={al,al}\pi^{-1}(c_{l})\cap\mathbb{S}^{n-1}=\{-a_{l},a_{l}\}, where π:n{0}n1L\pi\colon\mathbb{R}^{n}\setminus\{0\}\to\mathbb{RP}^{n-1}\cong L_{\infty} is the canonical projection. Thus, for each l{1,..,N}l\in\{1,..,N\}, C(Γl,i,)𝕊n1{al,al}C(\Gamma_{l,i},\infty)\cap\mathbb{S}^{n-1}\subset\{-a_{l},a_{l}\}.

For each l{1,..,N}l\in\{1,..,N\}, by reordering the indices, if necessary, there are non-negative integer numbers nl,pln_{l},p_{l} and zlz_{l} such that:

  • C(Γl,i+,)=C(Γl,i,)C(\Gamma_{l,i}^{+},\infty)=-C(\Gamma_{l,i}^{-},\infty) for all i{1,,zl}i\in\{1,...,z_{l}\};

  • C(Γl,i+,)𝕊n1=C(Γl,i,)𝕊n1={al}C(\Gamma_{l,i}^{+},\infty)\cap\mathbb{S}^{n-1}=C(\Gamma_{l,i}^{-},\infty)\cap\mathbb{S}^{n-1}=\{-a_{l}\}, for all i{zl+1,,zl+nl}i\in\{z_{l}+1,...,z_{l}+n_{l}\};

  • C(Γl,i+,)𝕊n1=C(Γl,i,)𝕊n1={al}C(\Gamma_{l,i}^{+},\infty)\cap\mathbb{S}^{n-1}=C(\Gamma_{l,i}^{-},\infty)\cap\mathbb{S}^{n-1}=\{a_{l}\}, for all i{zl+nl+1,,rl=zl+nl+pl}i\in\{z_{l}+n_{l}+1,...,r_{l}=z_{l}+n_{l}+p_{l}\}.

By changing ala_{l} by al-a_{l}, if necessary, we may assume that nlpln_{l}\leq p_{l}. Thus, we define Γ~l,i+=Γl,i+\tilde{\Gamma}_{l,i}^{+}=\Gamma_{l,i}^{+} for all i{1,,rl}i\in\{1,...,r_{l}\} and

Γ~l,i={Γl,i, if i{1,,zl}{zl+nl+1,,rl}Γl,i+nl, if i{zl+1,,zl+nl}.\tilde{\Gamma}_{l,i}^{-}=\left\{\begin{array}[]{ll}\Gamma_{l,i}^{-},\mbox{ if }i\in\{1,...,z_{l}\}\cup\{z_{l}+n_{l}+1,...,r_{l}\}\\ \Gamma_{l,i+n_{l}}^{-},\mbox{ if }i\in\{z_{l}+1,...,z_{l}+n_{l}\}.\end{array}\right.

Thus, we have the following:

  • C(Γ~l,i+,)=C(Γ~l,i,)C(\tilde{\Gamma}_{l,i}^{+},\infty)=-C(\tilde{\Gamma}_{l,i}^{-},\infty) for all i{1,,zl+nl}i\in\{1,...,z_{l}+n_{l}\};

  • C(Γ~l,i+,)=C(Γ~l,i,)}C(\tilde{\Gamma}_{l,i}^{+},\infty)=C(\tilde{\Gamma}_{l,i}^{-},\infty)\}, for all i{zl+nl+1,,rl}i\in\{z_{l}+n_{l}+1,...,r_{l}\}.

For each l{1,..,N}l\in\{1,..,N\}, we define rl:{0,1}r_{l}\colon\{0,1\}\to\mathbb{N} by rl(0)=zl+nlr_{l}(0)=z_{l}+n_{l} and rl(1)=plr_{l}(1)=p_{l}.

By reordering the indices, if necessary, we may assume that

  1. (1)

    rl(0)rl+1(0)r_{l}(0)\leq r_{l+1}(0) for all l{1,,N1}l\in\{1,\cdots,N-1\};

  2. (2)

    If rl(0)=rl+1(0)r_{l}(0)=r_{l+1}(0) then rl(1)rl+1(1)r_{l}(1)\leq r_{l+1}(1).

Therefore, A=(r1,,rN)𝒜A={(r_{1},...,r_{N})}\in\mathcal{A} and by Proposition 3.1, we have that XAX_{A} is blow-spherical homeomorphic at infinity to XX. The uniqueness of AA follows from the definition of 𝒜\mathcal{A} and Proposition 3.1. ∎

Remark 3.3.

Proposition 3.2 says in particular that any spacial real algebraic curve is blow-spherical homeomorphic at infinity to a plane real algebraic curve.

Note that Remark 3.3 is not true in the global case, as it is shown in the next example.

Example 3.4.

Let YY and ZZ be the algebraic curves in 3\mathbb{R}^{3} given by

Y={(x,y,z)3;(y1)(yx22)(yx2)(y2x2)=0 and z=0}Y=\textstyle{\left\{(x,y,z)\in\mathbb{R}^{3};(y-1)(y-\frac{x^{2}}{2})(y-x^{2})(y-2x^{2})=0\mbox{ and }z=0\right\}}

and

Z={(x,y,z)3;((x12)2+(y12)2+z212)=0 and x=y}.Z=\textstyle{\left\{(x,y,z)\in\mathbb{R}^{3};\left((x-\frac{1}{2})^{2}+(y-\frac{1}{2})^{2}+z^{2}-\frac{1}{2}\right)=0\mbox{ and }x=y\right\}}.

Thus the spatial algebraic curve X=YZX=Y\cup Z is not blow-spherical equivalent to a plane curve (see figure 1).

Refer to caption
Figure 1. The spatial algebraic curve XX

3.2. Realization of the invariant k(,)k(\cdot,\infty)

Definition 3.5.

For each positive integer nn, let 𝒩n\mathcal{N}_{n} be the set of all (η1,η2,,ηn)(>0)n(\eta_{1},\eta_{2},\cdots,\eta_{n})\in(\mathbb{Z}_{>0})^{n} such that η1η2ηn\eta_{1}\leq\eta_{2}\leq\cdots\leq\eta_{n}. Let 𝒩=n=1𝒩n\mathcal{N}=\bigcup\limits_{n=1}^{\infty}\mathcal{N}_{n}.

By definition, we have that if XnX\subset\mathbb{R}^{n} is a semialgebraic curve then k(X,)𝒩k(X,\infty)\in\mathcal{N}. Reciprocally, for η=(η1,η2,,ηN)𝒩\eta=(\eta_{1},\eta_{2},\cdots,\eta_{N})\in\mathcal{N}, it is easy to find a semialgebraic curve XnX\subset\mathbb{R}^{n} such that k(X,)=ηk(X,\infty)=\eta. For example,

X=l=1Nr=1ηl{(x,y)2;ylxr=0 and y+lx0}.X=\bigcup_{l=1}^{N}\bigcup_{r=1}^{\eta_{l}}\left\{(x,y)\in\mathbb{R}^{2};y-lx-r=0\mbox{ and }y+lx\geq 0\right\}.
Definition 3.6.

We say that η=(η1,η2,,ηr)𝒩\eta=(\eta_{1},\eta_{2},\cdots,\eta_{r})\in\mathcal{N} is algebraically realizable, if there exists a real algebraic curve XnX\subset\mathbb{R}^{n} such that k(X,)=ηk(X,\infty)=\eta.

The next result gives a necessary and sufficient condition for a η=(η1,η2,,ηn)𝒩\eta=(\eta_{1},\eta_{2},\cdots,\eta_{n})\in\mathcal{N} to be algebraically realizable. Let v=(v1,,vn)nv=(v_{1},\cdots,v_{n})\in\mathbb{R}^{n} a vector, we denote by 1\|\cdot\|_{1} the norm given by v1=|v1|++|vn|\|v\|_{1}=|v_{1}|+\cdots+|v_{n}|.

Proposition 3.7.

η=(η1,,ηk)𝒩\eta=(\eta_{1},\cdots,\eta_{k})\in\mathcal{N} is algebraically realizable if and only if η10(mod2)\|\eta\|_{1}\equiv 0\pmod{2}.

Proof.

Assume that η=(η1,,ηk)𝒩\eta=(\eta_{1},\cdots,\eta_{k})\in\mathcal{N} is algebraically realizable, that is, there exists an unbounded real algebraic curve XnX\subset\mathbb{R}^{n} such that η=k(X,)\eta=k(X,\infty). We consider X¯\overline{X} the projective closure of XX and {c1,,cN}=X¯L\{c_{1},\cdots,c_{N}\}=\overline{X}\cap L_{\infty}, where LL_{\infty} is the hyperplane at infinity.

By the proof of Proposition 3.2, we obtain that there exist an open neighbourhood VlnV_{l}\subset\mathbb{RP}^{n} of clc_{l} and Υl,1,,Υl,rl\Upsilon_{l,1},\cdots,\Upsilon_{l,r_{l}} such that Υl,iΥl,i={cl}\Upsilon_{l,i}\cap\Upsilon_{l,i^{\prime}}=\{c_{l}\} whenever iii\neq i^{\prime},

YVl=i=1rlΥl,iY\cap V_{l}=\bigcup_{i=1}^{r_{l}}{\Upsilon_{l,i}}

and, moreover, for each i{1,,rl}i\in\{1,\cdots,r_{l}\}, there exists an analytic homeomorphism υl,i:(ϵ,ϵ)Υl,i\upsilon_{l,i}\colon(-\epsilon,\epsilon)\rightarrow\Upsilon_{l,i} with υi(0)=cl\upsilon_{i}(0)=c_{l}. Additionally, there is rl>0r_{l}>0 such that Υl,iL={cl}\Upsilon_{l,i}\cap L_{\infty}=\{c_{l}\} for all i{1,,rl}i\in\{1,\cdots,r_{l}\} and Υl,iL\Upsilon_{l,i}\subset L_{\infty} for all i{rl+1,,sl}i\in\{r_{l}+1,\cdots,s_{l}\}. By reordering the indices again, if necessary, we may assume that rlrl+1r_{l}\leq r_{l+1}, for all j{1,,N}j\in\{1,...,N\}.

We denote the half-branch by Υl,i+=υl,i(0,ϵ)\Upsilon_{l,i}^{+}=\upsilon_{l,i}(0,\epsilon) and Υl,i=υl,i(ϵ,0)\Upsilon_{l,i}^{-}=\upsilon_{l,i}(-\epsilon,0). So, denoting Γl,i+=Υl,i+n\Gamma_{l,i}^{+}=\Upsilon_{l,i}^{+}\cap\mathbb{R}^{n} and Γl,i=Υl,in\Gamma_{l,i}^{-}=\Upsilon_{l,i}^{-}\cap\mathbb{R}^{n}, we obtain that

{Γl,1+,Γl,1,,Γl,rl+,Γl,rl}l=1N\{\Gamma_{l,1}^{+},\Gamma_{l,1}^{-},\cdots,\Gamma_{l,r_{l}}^{+},\Gamma_{l,r_{l}}^{-}\}_{l=1}^{N}

are all the branches of XX at infinity. For each l{1,..,k}l\in\{1,..,k\}, there is bl𝕊n1b_{l}\in\mathbb{S}^{n-1} such that π1(cl)𝕊n1={bl,bl}\pi^{-1}(c_{l})\cap\mathbb{S}^{n-1}=\{-b_{l},b_{l}\}, where π:n{0}n1L\pi\colon\mathbb{R}^{n}\setminus\{0\}\to\mathbb{RP}^{n-1}\cong L_{\infty} is the canonical projection. Thus, for each l{1,..,k}l\in\{1,..,k\}, C(Γl,i,)𝕊n1{bl,bl}C(\Gamma_{l,i},\infty)\cap\mathbb{S}^{n-1}\subset\{-b_{l},b_{l}\}. By Remark 2.13,

kX,(bl,0)+kX,(bl,0)=2rl0(mod2),k_{X,\infty}(b_{l},0)+k_{X,\infty}(-b_{l},0)=2r_{l}\equiv 0\pmod{2},

where kX,(v)k_{X,\infty}(v) is defined to be zero if vSmp(X)v\not\in Smp(\partial X^{\prime}).

Assume that C(X,)𝕊n1={a1,,ak}C(X,\infty)\cap\mathbb{S}^{n-1}=\{a_{1},...,a_{k}\} and ηl=kX,(al,0)\eta_{l}=k_{X,\infty}(a_{l},0) for all l{1,,k}l\in\{1,...,k\}.

We consider the following decomposition of {1,,k}\{1,...,k\}:

{l1,,l2s}={l{1,,k};al,alC(X,)}\{l_{1},...,l_{2s}\}=\{l\in\{1,...,k\};-a_{l},a_{l}\in C(X,\infty)\}

and

{l2s+1,,lk}={1,,k}{l1,,l2s}\{l_{2s+1},...,l_{k}\}=\{1,...,k\}\setminus\{l_{1},...,l_{2s}\}

and such that ali=ali+sa_{l_{i}}=-a_{l_{i+s}} for all i{1,,s}i\in\{1,...,s\}. Therefore, by writing kX,(a)k_{X,\infty}(a) instead of kX,(a,0)k_{X,\infty}(a,0), we have

η1\displaystyle\|\eta\|_{1} =\displaystyle= kX,(a11)+kX,(al1+s)++kX,(a1s)+kX,(al2s)\displaystyle k_{X,\infty}(a_{1_{1}})+k_{X,\infty}(a_{l_{1+s}})+\cdots+k_{X,\infty}(a_{1_{s}})+k_{X,\infty}(a_{l_{2s}})
+kX,(a12s+1)+kX,(a12s+1)++kX,(a1k))+kX,(alk)\displaystyle+k_{X,\infty}(a_{1_{2s+1}})+k_{X,\infty}(-a_{1_{2s+1}})+\cdots+k_{X,\infty}(a_{1_{k}}))+k_{X,\infty}(-a_{l_{k}})
=\displaystyle= 2rl1++2rls+2rl2s+1++2rlk\displaystyle 2r_{l_{1}}+\cdots+2r_{l_{s}}+2r_{l_{2s+1}}+\cdots+2r_{l_{k}}
\displaystyle\equiv 0(mod2).\displaystyle 0\pmod{2}.

For the converse, assume that η=(η1,,ηk)𝒩\eta=(\eta_{1},\cdots,\eta_{k})\in\mathcal{N} satisfies η10(mod2)\|\eta\|_{1}\equiv 0\pmod{2}. Thus, #{j;ηj1(mod2)}0(mod2)\#\{j;\eta_{j}\equiv 1\pmod{2}\}\equiv 0\pmod{2}. Let J={j1j2m}I:={1,,k}J=\{j_{1}\leq...\leq j_{2m}\}\subset I:=\{1,...,k\} be the indices such that ηj1(mod2)\eta_{j}\equiv 1\pmod{2} if and only if jJj\in J. For each jiJj_{i}\in J, let nin_{i} be the non-negative integer number such that ηji=2ni+1\eta_{j_{i}}=2n_{i}+1. Let IJ={q1,,qN}I\setminus J=\{q_{1},...,q_{N}\}. We consider the following three algebraic curves

X+={(x,y)2;l=1m(ylx)r=1nl((ylx)2r(y+lx))=0},X^{+}=\left\{(x,y)\in\mathbb{R}^{2};\prod_{l=1}^{m}(y-lx)\prod_{r=1}^{n_{l}}{((y-lx)^{2}-r(y+lx))}=0\right\},
X={(x,y)2;l=1mr=1nm+l((ylx)2+r(y+lx))=0}X^{-}=\left\{(x,y)\in\mathbb{R}^{2};\prod_{l=1}^{m}\prod_{r=1}^{n_{m+l}}{((y-lx)^{2}+r(y+lx))}=0\right\}

and

X0={(x,y)2;l=1Nr=1ηql((y(m+l)x)2r(y+(m+l)x))=0}X^{0}=\left\{(x,y)\in\mathbb{R}^{2};\prod_{l=1}^{N}\prod_{r=1}^{\eta_{q_{l}}}{((y-(m+l)x)^{2}-r(y+(m+l)x))}=0\right\}

Then, for X=X0X+XX=X_{0}\cup X^{+}\cup X^{-}, we have that k(X,)=ηk(X,\infty)=\eta.

3.3. Some considerations on the global case

In the global case, the problem of classification is harder. For instance, two homeomorphic algebraic curves having the same relative multiplicities may not be blow-spherical homeomorphic, as we can see in the next example.

Example 3.8.

Let

X={(x,y)2;p(x,y)(x2y2y3)((x+7128)2+(y3)27664)=0}\textstyle{X=\left\{(x,y)\in\mathbb{R}^{2};p(x,y)\left(x^{2}-y^{2}-y^{3}\right)\left((x+\frac{7\sqrt{12}}{8})^{2}+(y-3)^{2}-\frac{76}{64}\right)=0\right\}}

and

X~={(x,y)2;q(x,y)(x2y2y3)((x+7128)2+(y3)27664)=0},\textstyle{\widetilde{X}=\left\{(x,y)\in\mathbb{R}^{2};q(x,y)\left(x^{2}-y^{2}-y^{3}\right)\left((x+\frac{7\sqrt{12}}{8})^{2}+(y-3)^{2}-\frac{76}{64}\right)=0\right\}},

where pp and qq are the polynomials given by p(x,y)=((x7128)2+(y3)27664)p(x,y)=((x-\frac{7\sqrt{12}}{8})^{2}+(y-3)^{2}-\frac{76}{64}) and q(x,y)=((x+278028)2+(y5)2864784)q(x,y)=((x+\frac{27\sqrt{80}}{28})^{2}+(y-5)^{2}-\frac{864}{784}). Then XX and X~\widetilde{X} are homeomorphic algebraic curves and there is a bijection σ:Sing(X){}Sing(X~){}\sigma\colon{\rm Sing}(X)\cup\{\infty\}\to{\rm Sing}(\widetilde{X})\cup\{\infty\} such that σ()=\sigma(\infty)=\infty and k(X,p)=k(X~,σ(p))k(X,p)=k(\widetilde{X},\sigma(p)) for all pSing(X){}p\in{\rm Sing}(X)\cup\{\infty\}. However, XX and X~\widetilde{X} are not blow-spherical homeomorphic (see Figures 3 and 3).

[Uncaptioned image]
Figure 2. Curve XX
[Uncaptioned image]
Figure 3. Curve X~\widetilde{X}

Thus, we need of the following notion:

Definition 3.9.

We say that a homeomorphism ϕ:XX~\phi\colon X\to\widetilde{X} between two analytic curves is a tangency-preserving homeomorphism if, for each pX{}p\in X\cup\{\infty\}, two half-branches Γ1\Gamma_{1} and Γ2\Gamma_{2} of (X,p)(X,p) are tangent at pp if and only if ϕ(Γ1)\phi(\Gamma_{1}) and ϕ(Γ2)\phi(\Gamma_{2}) are tangent at ϕ(p)\phi(p).

Proposition 3.10.

Let X,X~nX,\widetilde{X}\subset\mathbb{R}^{n} be two connected real algebraic curves. Then the following statements are equivalent:

  1. (1)

    XX and X~\widetilde{X} are blow-spherical homeomorphic;

  2. (2)

    There is a tangency-preserving homeomorphism ϕ:XX~\phi\colon X\to\widetilde{X};

  3. (3)

    XX and X~\widetilde{X} are strongly blow-spherical homeomorphic.

Proof.

It follows from Propositions 2.14 and 2.15 that (1)(2)(1)\Rightarrow(2).

Since (3)(1)(3)\Rightarrow(1), we only have to prove (2)(3)(2)\Rightarrow(3). Assume that there is a tangency-preserving homeomorphism ϕ:XX~\phi\colon X\to\widetilde{X}.

Let Sing1(X)={p1,,pr}{\rm Sing}_{1}(X)=\{p_{1},...,p_{r}\} and Sing1(X~)={p~1,,p~s}{\rm Sing}_{1}(\widetilde{X})=\{\widetilde{p}_{1},...,\widetilde{p}_{s}\}. Since ϕ\phi is a tangency-preserving homeomorphism, it follows from [8, Proposition 6.9] that ϕ(Sing1(X))=Sing1(X~)\phi({\rm Sing}_{1}(X))={\rm Sing}_{1}(\widetilde{X}) and, in particular, r=sr=s. Thus, we assume that ϕ(pi)=p~i\phi(p_{i})=\widetilde{p}_{i} for all i{1,,r}i\in\{1,...,r\}.

By following the proof of Theorem 6.19 in [8], we can find ϵ>0\epsilon>0 and a strong blow-spherical homeomorphism φ:i=1r(XBϵ(pi))i=1r(X~Bϵ(p~i))\varphi\colon\bigcup\limits_{i=1}^{r}(X\cap B_{\epsilon}(p_{i}))\to\bigcup\limits_{i=1}^{r}(\widetilde{X}\cap B_{\epsilon}(\widetilde{p}_{i})) such that for each i{1,,r}i\in\{1,...,r\}, φ(x)p~i=xpi\|\varphi(x)-\widetilde{p}_{i}\|=\|x-p_{i}\| for all xXBϵ(pi)x\in X\cap B_{\epsilon}(p_{i}).

It follows from Proposition 3.1 that there exists a strong blow-spherical homeomorphism h:XBR(0)X~BR(0)h\colon X\setminus B_{R}(0)\rightarrow\widetilde{X}\setminus B_{R}(0) such that h(x)=x\|h(x)\|=\|x\| for all xXBR(0)x\in X\setminus B_{R}(0).

Now, we define the following set

Xϵ,R=(XB2R(0)){Bϵ/2(p1)Bϵ/2(ps)},X_{\epsilon,R}=\left(X\cap B_{2R}(0)\right)\setminus\left\{B_{\epsilon/2}(p_{1})\cup\cdots\cup B_{\epsilon/2}(p_{s})\right\},

and

X~ϵ,R=(X~B2R(0)){Bϵ/2(p1)Bϵ/2(ps)}.\widetilde{X}_{\epsilon,R}=\left(\widetilde{X}\cap B_{2R}(0)\right)\setminus\left\{B_{\epsilon/2}(p_{1})\cup\cdots\cup B_{\epsilon/2}(p_{s})\right\}.

Note that Xϵ,RX_{\epsilon,R} (resp. X~ϵ,R\widetilde{X}_{\epsilon,R}) is a finite union of compact one-dimensional with boundary, i.e, Xϵ,R=i=1l0Xϵ,RiX_{\epsilon,R}=\bigcup_{i=1}^{l_{0}}{X_{\epsilon,R}^{i}} (resp. X~ϵ,R=i=1l0X~ϵ,Ri\widetilde{X}_{\epsilon,R}=\bigcup_{i=1}^{l_{0}}{\widetilde{X}_{\epsilon,R}^{i}}), where each Xϵ,RiX_{\epsilon,R}^{i} (resp. X~ϵ,Ri\widetilde{X}_{\epsilon,R}^{i}) is diffeomorphic to the compact interval [0,1][0,1]. Thus there is a diffeomorphism Φ:Xϵ,RX~ϵ,R\Phi\colon X_{\epsilon,R}\rightarrow\widetilde{X}_{\epsilon,R} such that each Φ(Xϵ,Ri)\Phi(X_{\epsilon,R}^{i}) is contained in the connected component of X~Sing1(X~)\widetilde{X}\setminus{\rm Sing}_{1}(\widetilde{X}) which contains ϕ(Xϵ,Ri)\phi(X_{\epsilon,R}^{i}). By using standard arguments of bump functions, we may define a strong blow-spherical homeomorphism F:XX~F\colon X\rightarrow\widetilde{X} such that

F(x)={φ(x),ifxX;xpjϵ/2h(x),ifxEi;x2RΦ(x),ifxX2ϵ,R/2,F(x)=\begin{cases}\varphi(x),&\quad\text{if}\ x\in X;\|x-p_{j}\|\leq\epsilon/2\\ h(x),&\quad\text{if}\ x\in E_{i};\|x\|\geq 2R\\ \Phi(x),&\quad\text{if}\ x\in X_{2\epsilon,R/2},\end{cases}

which finishes the proof. ∎

References

  • [1] Birbrair, L.; Fernandes, A. and Grandjean, V. Collapsing topology of isolated singularities. arXiv:1208.4328 [Math,MG] (2012).
  • [2] Birbrair, L.; Fernandes, A. and Grandjean, V. Thin-thick decomposition for real definable isolated singularities. Indiana University Math. J., vol. 66 (2017), 547–557.
  • [3] Fernandes, A. and Sampaio, J. E. On Lipschitz rigidity of complex analytic sets. The Journal of Geometric Analysis, vol. 30 (2020), 706–718.
  • [4] Milnor, J. Singular points of complex hypersurfaces. Princeton: Princeton University Press, 1968.
  • [5] Pawłucki, W. Quasi-regular boundary and Stokes’ formula for a sub-analytic leaf. In: Ławrynowicz J. (eds) Seminar on Deformations. Lecture Notes in Math., vol 1165. Berlin, Heidelberg: Springer. 1985.
  • [6] Sampaio, J.E. Regularidade lipschitz, invariância da multiplicidade e a geometria dos cones tangentes de conjuntos analíticos. Ph.D. thesis, Universidade Federal Do Ceará (2015).
  • [7] Sampaio, J. E. Multiplicity, regularity and blow-spherical equivalence of complex analytic set. The Asian Journal of Mathematics, vol. 24 (2020), no. 5, 803-820.
  • [8] Sampaio, J. E. Multiplicity, regularity and blow-spherical equivalence of real analytic sets. Math. Z., vol. 301, 385–410 (2022).
  • [9] Sampaio, J. E. and da Silva, E. C. Classification of complex algebraic curves under blow-spherical equivalence. Preprint (2023), arXiv:2302.02026 [math.AG].