This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Classes of Baire spaces defined by topological games

Evgenii Reznichenko [email protected] Department of General Topology and Geometry, Mechanics and Mathematics Faculty, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 199991 Russia
Abstract

The article studies topological games that arise in the study of the continuity of operations in groups with topology, such as paratopological and semitopological groups. These games are modifications of the Banach–Mazur game.

Given a two-player game G(X)G(X) of the Banach–Mazur type, we define ΓG\Gamma^{G}-Baire, ΓG\Gamma^{G}-nonmeager and ΓG\Gamma^{G}-spaces. A space XX is a ΓG\Gamma^{G}-Baire if the second player does not have a winning strategy in G(X)G(X). The classes of ΓG\Gamma^{G}-nonmeager spaces and ΓG\Gamma^{G}-spaces are defined similarly, with the help of modifications of the game G(X)G(X).

For the games under consideration, equivalent games are found, which facilitates studying the relationship between the resulting classes of spaces and determining which spaces belong to these classes. For this purpose, we introduce a modification of the Banach–Mazur game with four players.

Results of this paper find application in the study the continuity of operations in groups with topology.

keywords:
Baire space , nonmeager space , topological games , classes of Baire spaces ,
MSC:
[2010] 54B10 , 54C30 , 54C05 , 54C20

1 Introduction

A space XX is called Baire (nonmeager) if for any family (Un)n(U_{n})_{n} of open dense subsets XX the intersection G=nUnG=\bigcap_{n}U_{n} is dense in XX (nonempty).

Baire spaces play an important role in mathematics. Particularly strong results have been obtained in the class of metric spaces. We note the following two results, in which, in addition to being Baire, an important role is played by metrizability.

  1. 1.

    If XX, YY and ZZ are metric spaces, XX is a Baire space and a function f:X×YZf:X\times Y\to Z is separately continuous, then ff has points of continuity [1, 2, 3].

  2. 2.

    If GG is a metric Baire group with separately continuous multiplication, then GG is a topological group [4, 5].

To extend these results from metric spaces to larger classes of spaces, topological games are widely used. An important role in applications of the Baire property is played by topological games that are modifications of the Banach–Mazur game [6, 7], with the help of which a characterization of Baire spaces, the Banach–Oxtoby theorem, was proved (see the Theorem 2): a space XX is Baire if and only if the second player β\beta has no winning strategy in the game BM(X)BM(X).

A standard scheme for extending results of the first and second types from metric Baire spaces to larger classes is as follows.

  1. 1.

    A modification Γ(X)\Gamma(X) of the game BM(X)BM(X) is defined so that, for the class {\mathcal{B}} of spaces on which the player β\beta in the game Γ(X)\Gamma(X) does not have a winning strategy, theorems known for metrizable Baire spaces remain valid.

  2. 2.

    Spaces from the class {\mathcal{B}} are found. As a rule, these are Baire spaces from some ’traditional’ class of spaces 𝒫{\mathcal{P}}. Then, theorems that: if X𝒫X\in{\mathcal{P}} is a Baire space, then XX\in{\mathcal{B}} are proved.

In this paper, the class {\mathcal{B}} is a subclass of the class of Baire spaces obtained by using a modification G(X)G(X) of the Banach–Mazur game BM(X)BM(X). We refer to spaces in this class as ΓB\Gamma^{B}-Baire spaces; see Section 4. A space XX is ΓB\Gamma^{B}-Baire if player β\beta does not have a winning strategy in G(X)G(X). The classes of ΓG\Gamma^{G}-nonmeager spaces and ΓG\Gamma^{G}-spaces are defined similarly, with the help of modifications of the game G(X)G(X).

If XX is a Baire space and XX is a ΓG\Gamma^{G}-space, then XX is a ΓG\Gamma^{G}-Baire space (Proposition 15). Exploring ΓG\Gamma^{G}-spaces is much easier than ΓG\Gamma^{G}-Baire spaces. Some of the ΓG\Gamma^{G}-spaces are described in Theorem 4. Proposition 15 and Theorem 4 allow us to find ΓG\Gamma^{G}-Baire spaces. The author does not know if there is a ΓG\Gamma^{G}-Baire space that is not a ΓG\Gamma^{G}-space; see Problem 1 (1).

For the games under consideration, equivalent games are found, which facilitates studying the relationship between the resulting classes of spaces and determining which spaces belong to these classes. For this purpose, we introduce a modification of the Banach–Mazur game with four players; see Section 6.

The concept of a Baire space is closely related to the concept of a nonmeager space.

Theorem 1.
  • (1)

    Baire spaces are nonmeager.

  • (2)

    An open subset of a Baire space is a Baire space.

  • (3)

    A space XX is Baire if and only if every open subspace of XX is a nonmeager space.

  • (4)

    A space XX is nonmeager if and only if there exists an open nonempty Baire subspace of XX.

  • (5)

    A homogeneous nonmeager space is a Baire space.

In the article, generalizations of Baire and nonmeager spaces are constructed in parallel, and the relationships (1)–(5) between Baire and nonmeager spaces are checked.

In [8, 9] the Δ\Delta-Baire property was found, which implies the continuity of operations in groups. The Δ\Delta-Baire property is defined with the help of semineighborhoods of the diagonal. Paper [10] also contains properties of Baire type, which are defined by using semineighborhoods of the diagonal. It establishes a relationship between the generalizations of the Baire property obtained with the help of topological games in this paper and those obtained with the help of semineighborhoods of the diagonal.

The results of this paper are used in [11] to study the continuity of group operations in right-topological groups.

2 Definitions and notation

The sign \coloneqq will be used for equality by definition.

2.1 Definitions and notation from set theory

The family of all subsets of a set XX is denoted by Exp(X)\operatorname{Exp}(X). The family of all nonempty subsets of a set XX is denoted by Exp(X)\operatorname{{Exp}}_{*}(X): Exp(X)Exp(X){}\operatorname{{Exp}}_{*}(X)\coloneqq\operatorname{Exp}(X)\setminus\{\varnothing\}.

If BB is a subset of a set AA, then we denote by Bc=ABB^{c}=A\setminus B the complement to AA. We use this notation in situations where it is clear from the context which set AA is meant.

An indexed set x=(xα)αAx=(x_{\alpha})_{\alpha\in A} is a function on AA such that x(α)=xαx(\alpha)=x_{\alpha} for αA\alpha\in A. If the elements of an indexed set 𝒳=(Xα)αA{\mathcal{X}}=(X_{\alpha})_{\alpha\in A} are themselves sets, then 𝒳{\mathcal{X}} is also called an indexed family of sets; 𝒳{\mathcal{X}} is a function on AA: 𝒳(α)=Xα{\mathcal{X}}(\alpha)=X_{\alpha} for αP{\alpha\in P}. For a nonempty BAB\subset A, we denote

𝒳[B]αBXα={(xα)αB:xαXα for all αB}{\mathcal{X}}^{[B]}\coloneqq\prod_{\alpha\in B}X_{\alpha}=\{(x_{\alpha})_{\alpha\in B}\,:\,x_{\alpha}\in X_{\alpha}\text{ for all }\alpha\in B\}

The projection from 𝒳[B]{\mathcal{X}}^{[B]} onto XαX_{\alpha} will be denoted by πα\pi_{\alpha}. We assume that 𝒳[B]={}{\mathcal{X}}^{[B]}=\{\varnothing\} if BB is the empty set:

𝒳[]{}.{\mathcal{X}}^{[\varnothing]}\coloneqq\{\varnothing\}.

The Cartesian product 𝒳[B]{\mathcal{X}}^{[B]} is the set of functions ff defined on the set BB such that f(α)𝒳(α)f(\alpha)\in{\mathcal{X}}(\alpha) for all αB\alpha\in B. We denote

𝒳αAXα=𝒳[A].\prod{\mathcal{X}}\coloneqq\prod_{\alpha\in A}X_{\alpha}={\mathcal{X}}^{[A]}.

Let BC=B\cap C=\varnothing. As is customary in set theory, we identify a function with its graph. If x𝒳[B]x\in{\mathcal{X}}^{[B]} and y𝒳[C]y\in{\mathcal{X}}^{[C]}, then z=xyz=x\cup y is the function defined by

z𝒳[BC],x=z|B and y=z|Cz\in{\mathcal{X}}^{[B\cup C]},\ x=\left.z\right|_{B}\text{ and }y=\left.z\right|_{C}

Let us introduce a special notation for xyx\cup y when xx and yy are functions:

xyxy.x{}^{\frown}y\coloneqq x\cup y.

Functions with a finite domain are sets of the form

f={(x1,y1),(x2,y2),,(xn,yn)},f=\{(x_{1},y_{1}),(x_{2},y_{2}),\dots,(x_{n},y_{n})\},

f(xi)=yif(x_{i})=y_{i} for i=1,2,,ni=1,2,\dots,n. We will use the notation

{x1y1,x2y2,,xnyn}{(x1,y1),(x2,y2),,(xn,yn)}.\{x_{1}\to y_{1},x_{2}\to y_{2},\dots,x_{n}\to y_{n}\}\coloneqq\{(x_{1},y_{1}),(x_{2},y_{2}),\dots,(x_{n},y_{n})\}.

In particular,

{αa}\displaystyle\{\alpha\to a\} ={(α,a)},\displaystyle=\{(\alpha,a)\}, {αa,βb}\displaystyle\{\alpha\to a,\beta\to b\} ={(α,a),(β,a))}.\displaystyle=\{(\alpha,a),(\beta,a))\}.

2.2 Definitions and notation from topology

We denote by Aut(X)\operatorname{Aut}(X) the set of all homeomorphisms of the space XX onto itself.

A subset MM of a topological space XX is called locally dense, or nearly open, or preopen if MIntM¯M\subset\operatorname{Int}\overline{M}.

Let MXM\subset X. If MM is the union of a countable number of nowhere dense sets, then MM is called a meager set. Nonmeager sets are called sets of the second Baire category. A subset of MM is said to be residual, or comeager, if XMX\setminus M is a meager set.

A space XX is called a space of the first Baire category, or a meager spaces, if the set XX is of the first Baire category in the space XX. A space XX is called a space of the second Baire category, or nonmeager spaces, if XX is not a meager space. A space in which every residual set is dense is called a Baire space. A space is nonmeager if and only if some open subspace is a Baire space.

A family ν\nu of nonempty subsets of XX is called a π\pi-net if for any open nonempty UXU\subset X there exists an MνM\in\nu such that MUM\subset U.

A π\pi-network consisting of open sets is called a π\pi-base.

A subset UXU\subset X is said to be regular open if U=IntU¯U=\operatorname{Int}{\overline{U}}.

A space XX is called quasi-regular if for every nonempty open UXU\subset X there exists a nonempty open VXV\subset X such that V¯U\overline{V}\subset U.

A space XX is semiregular if XX has a base consisting of regular open sets.

A space XX is called π\pi-semiregular [12] (or nearly regular [13]) if XX has a π\pi-base consisting of regular open sets.

For a cardinal τ\tau, a set GXG\subset X is called a set of type GτG_{\tau} if GG is an intersection of τ\tau open sets. A space XX is called an absolute GτG_{\tau} space if XX is of type GτG_{\tau} in some compact extension.

A space XX is regular at a point xXx\in X if for any neighborhood UU of the point xx there exists a neighborhood VxV\ni x such that V¯U\overline{V}\subset U.

A space XX is semiregular at a point xXx\in X if there is a base at the point xx consisting of regular open sets.

A space XX is feebly compact if any locally finite family of open sets is finite.

For γExp(X)\gamma\subset\operatorname{Exp}(X) and xXx\in X we denote

St(x,γ)\displaystyle\operatorname{St}(x,\gamma) {Uγ:xγ},\displaystyle\coloneqq\{U\in\gamma\,:\,x\in\gamma\}, st(x,γ)\displaystyle\operatorname{st}(x,\gamma) St(x,γ).\displaystyle\coloneqq\bigcup\operatorname{St}(x,\gamma).

A space XX is called developable if there exists a sequence of open covers (γn)nω(\gamma_{n})_{n\in\omega} such that for any xXx\in X the family st(x,γn)\operatorname{st}(x,\gamma_{n}) is a base at the point xx.

A family {\mathcal{B}} of open nonempty sets in XX is called an outer base of MXM\subset X if MUM\subset U for each UU\in{\mathcal{B}} and for each open WMW\supset M there exists a UU\in{\mathcal{B}} such that MUWM\subset U\subset W.

If (Mn)nω(M_{n})_{n\in\omega} is a sequence of subsets of a space XX, then the set

lt¯nωMn={xX:\displaystyle\operatorname{\overline{lt}}_{n\in\omega}M_{n}=\{x\in X:\ |{nω:UMn}|=ω\displaystyle|\{n\in\omega\,:\,U\cap M_{n}\neq\varnothing\}|=\omega
for any neighborhood U of x}\displaystyle\text{ for any neighborhood }U\text{ of }x\}

is called the upper limit of the sequence of sets (Mn)nω(M_{n})_{n\in\omega}.

If (xn)nω(x_{n})_{n\in\omega} is a sequence of points in the space XX, then we denote

lt¯nωxn\displaystyle\operatorname{\overline{lt}}_{n\in\omega}x_{n} lt¯nω{xn}.\displaystyle\coloneqq\operatorname{\overline{lt}}_{n\in\omega}\{x_{n}\}.

We denote by βω\operatorname{\beta}\omega the space of ultrafilters on ω\omega, the Stone-Čech extension of the discrete space ω\omega. We denote by ω=βωω\omega^{*}=\operatorname{\beta}\omega\setminus\omega — the set of nonprincipal ultrafilters.

Let (xn)nω(x_{n})_{n\in\omega} be a sequence of points in a space XX, and let pωp\in\omega^{*} be a nonprincipal ultrafilter. A point xXx\in X is called the pp-limit of a sequence (xn)nω(x_{n})_{n\in\omega} if {nω:xnU}p\{n\in\omega\,:\,x_{n}\in U\}\in p for any neighborhood UU of xx. We will write x=limpxn=limp(xn)nωx={\textstyle\lim_{p}}x_{n}={\textstyle\lim_{p}}(x_{n})_{n\in\omega} for the pp-limit xx.

3 Modifications of the Banach-Mazur game

In this section, we use topological games; the basic concepts and terminology for them can be found in [14, 15, 16, 8, 9]. A precise definition of a game is given in Section 6. In this section, we assume that there are two players, α\alpha and β\beta. Let GG be a game in which a player κ{α,β}\kappa\in\{\alpha,\beta\} has a winning strategy. Let us call this game GG κ\kappa-favorable. If there is no such strategy, then GG is a κ\kappa-unfavorable game.

If the definition of the game GG depends on only one parameter, namely, some space XX, that is, G=Γ(X)G=\Gamma(X), then we say that the space XX is (κ,Γ)(\kappa,\Gamma)-favorable if the game Γ(X)\Gamma(X) is κ\kappa-favorable and the space XX is (κ,Γ)(\kappa,\Gamma)-unfavorable if the game is Γ(X)\Gamma(X) is κ\kappa-unfavorable.

Let G1G_{1} and G2G_{2} be two games with players α\alpha and β\beta. We say that the games G1G_{1} and G2G_{2} are equivalent if the game G1G_{1} is κ\kappa-favorable if and only if the game G2G_{2} is κ\kappa-favorable for all κ{α,β}\kappa\in\{\alpha,\beta\}. We will write G1G2G_{1}\sim G_{2} for equivalent games.

Let (X,𝒯)(X,{\mathcal{T}}) be a space. We set 𝒯=𝒯{}{\mathcal{T}}^{*}={\mathcal{T}}\setminus\{\varnothing\} and denote

𝔙(X)\displaystyle{\mathfrak{V}}(X) {(Vn)nω𝒯ω:Vn+1Vn for nω}.\displaystyle\coloneqq\{(V_{n})_{n\in\omega}\in{{\mathcal{T}}^{*}}^{\omega}\,:\,V_{n+1}\subset V_{n}\text{ for }{n\in\omega}\}.

We put

𝔘(X)\displaystyle\mathfrak{U}(X) {Υ(Exp(𝒯))𝒯:Υ(U) is a π-base in U𝒯}.\displaystyle\coloneqq\{\Upsilon\in(\operatorname{{Exp}}_{*}({\mathcal{T}}^{*}))^{{\mathcal{T}}^{*}}\,:\,\Upsilon(U)\text{ is a $\pi$-base in }U\in{\mathcal{T}}^{*}\}.

Let 𝒫{\mathcal{P}} be some π\pi-base of the space XX. Let us define Υt(X),Υr(X),Υp(X,𝒫)(Exp(𝒯))𝒯\Upsilon_{t}(X),\Upsilon_{r}(X),\Upsilon_{p}(X,{\mathcal{P}})\in(\operatorname{Exp}({\mathcal{T}}^{*}))^{{\mathcal{T}}^{*}} as follows. For U𝒯U\in{\mathcal{T}}^{*} we put

Υt(X)(U)\displaystyle\Upsilon_{t}(X)(U) ={V𝒯:VU},\displaystyle=\{V\in{\mathcal{T}}^{*}\,:\,V\subset U\}, Υp(X,𝒫)(U)\displaystyle\Upsilon_{p}(X,{\mathcal{P}})(U) ={V𝒫:VU},\displaystyle=\{V\in{\mathcal{P}}\,:\,V\subset U\},
Υr(X)(U)\displaystyle\Upsilon_{r}(X)(U) ={V𝒯:V¯U},\displaystyle=\{V\in{\mathcal{T}}^{*}\,:\,\overline{V}\subset U\}, Υpr(X,𝒫)(U)\displaystyle\Upsilon_{pr}(X,{\mathcal{P}})(U) ={V𝒫:V¯U}.\displaystyle=\{V\in{\mathcal{P}}\,:\,\overline{V}\subset U\}.

Obviously, Υt(X),Υp(X,𝒫)𝔘(X)\Upsilon_{t}(X),\Upsilon_{p}(X,{\mathcal{P}})\in\mathfrak{U}(X), and if the space XX is quasiregular, then Υr(X),Υpr(X,𝒫)𝔘(X)\Upsilon_{r}(X),\Upsilon_{pr}(X,{\mathcal{P}})\in\mathfrak{U}(X).

Games BM(X,𝒱;Υ,Ψ)BM(X,{\mathcal{V}};\Upsilon,\Psi) and MB(X,𝒱;Υ,Ψ)MB(X,{\mathcal{V}};\Upsilon,\Psi)

Let 𝒱𝔙(X){\mathcal{V}}\subset{\mathfrak{V}}(X) and Υ,Ψ𝔘(X)\Upsilon,\Psi\in\mathfrak{U}(X). There are two players, α\alpha and β\beta. These games differ in the first move of a player α\alpha. On the first move, player α\alpha chooses U0=XU_{0}=X in the game BM(X,𝒱;Υ,Ψ)BM(X,{\mathcal{V}};\Upsilon,\Psi) and U0Υ(X)U_{0}\in\Upsilon(X) in the game MB(X,𝒱;Υ,Ψ)MB(X,{\mathcal{V}};\Upsilon,\Psi). Player β\beta chooses V0Ψ(U0)V_{0}\in\Psi(U_{0}). On the nnth move, α\alpha chooses UnΥ(Vn1)U_{n}\in\Upsilon(V_{n-1}) and β\beta chooses VnΨ(Un)V_{n}\in\Psi(U_{n}). After a countable number of moves, the winner is determined: player α\alpha wins if (Vn)nω𝒱(V_{n})_{n\in\omega}\in{\mathcal{V}}.

We put

BM(X,𝒱)\displaystyle BM(X,{\mathcal{V}}) BM(X,𝒱;Υt(X),Υt(X)),\displaystyle\coloneqq BM(X,{\mathcal{V}};\Upsilon_{t}(X),\Upsilon_{t}(X)),
MB(X,𝒱)\displaystyle MB(X,{\mathcal{V}}) MB(X,𝒱;Υt(X),Υt(X)).\displaystyle\coloneqq MB(X,{\mathcal{V}};\Upsilon_{t}(X),\Upsilon_{t}(X)).
Definition 1.

Let XX be a space. A family 𝒱𝔙(X){\mathcal{V}}\subset{\mathfrak{V}}(X) is called monolithic if the following condition is satisfied:

  • Let (Un)nω𝔙(X)(U_{n})_{n\in\omega}\in{\mathfrak{V}}(X) and (Vn)nω𝒱(V_{n})_{n\in\omega}\in{\mathcal{V}}. If Un+1VnUnU_{n+1}\subset V_{n}\subset U_{n} for nω{n\in\omega}, then (Un)nω𝒱(U_{n})_{n\in\omega}\in{\mathcal{V}}.

Remark 1.

The paper [16] introduced a similar concept of a stable family, and [15] introduced the concept of a monotone family. A monotone family is stable and monolithic. The reason for introducing a new class of monolithic families is that 𝔙BM(X){\mathfrak{V}}_{BM}(X) (see Section 4) is a monolithic, but not monotone or stable family.

Proposition 1.

Let XX be a space, 𝒱𝔙(X){\mathcal{V}}\subset{\mathfrak{V}}(X), Υ,Ψ𝔘(X)\Upsilon,\Psi\in\mathfrak{U}(X). If 𝒱{\mathcal{V}} is a monolithic family, then

BM(X,𝒱)\displaystyle BM(X,{\mathcal{V}}) BM(X,𝒱;Υ,Ψ),\displaystyle\sim BM(X,{\mathcal{V}};\Upsilon,\Psi), MB(X,𝒱)\displaystyle MB(X,{\mathcal{V}}) MB(X,𝒱;Υ,Ψ).\displaystyle\sim MB(X,{\mathcal{V}};\Upsilon,\Psi).
Remark 2.

Proposition 1 will be proved after Proposition 3. Proposition 1 allows one to pass from the game BM(X,𝒱)BM(X,{\mathcal{V}}) to the game BM(X,𝒱;Υ,Ψ)BM(X,{\mathcal{V}};\Upsilon,\Psi) in which the players choose open sets not arbitrarily, but in some special way, for example, from some convenient π\pi-base.

Let

𝔚(X){(Vn,Mn)nω(𝒯×Exp(X))ω:\displaystyle{\mathfrak{W}}(X)\coloneqq\{(V_{n},M_{n})_{n\in\omega}\in({\mathcal{T}}^{*}\times\operatorname{{Exp}}_{*}(X))^{\omega}: Mn+1Vn and\displaystyle\ M_{n+1}\subset V_{n}\text{ and }
Vn+1Vn for nω}.\displaystyle V_{n+1}\subset V_{n}\text{ for }{n\in\omega}\}.

Games OD(X,𝒩,𝒲;Υ,Ψ)OD(X,{\mathcal{N}},\mathcal{W};\Upsilon,\Psi) and DO(X,𝒩,𝒲;Υ,Ψ)DO(X,{\mathcal{N}},\mathcal{W};\Upsilon,\Psi)

Let 𝒩{\mathcal{N}} be a π\pi-net of XX. Take 𝒲𝔚(X)\mathcal{W}\subset{\mathfrak{W}}(X) and Υ,Ψ𝔘(X)\Upsilon,\Psi\in\mathfrak{U}(X). There are two players, α\alpha and β\beta. These games are distinguished by the first move of player α\alpha. On the first move, α\alpha chooses U0=XU_{0}=X in OD(X,𝒩,𝒲;Υ,Ψ)OD(X,{\mathcal{N}},\mathcal{W};\Upsilon,\Psi) and U0Υ(X)U_{0}\in\Upsilon(X) in DO(X,𝒩,𝒲;Υ,Ψ)DO(X,{\mathcal{N}},\mathcal{W};\Upsilon,\Psi). Player β\beta chooses V0Ψ(U0)V_{0}\in\Psi(U_{0}) and M0𝒩M_{0}\in{\mathcal{N}}, M0U0M_{0}\subset U_{0}. On nnth move α\alpha chooses UnΥ(Vn1)U_{n}\in\Upsilon(V_{n-1}) and β\beta chooses VnΨ(Un)V_{n}\in\Psi(U_{n}) and Mn𝒩M_{n}\in{\mathcal{N}}, MnUnM_{n}\subset U_{n}. After a countable number of moves, the winner is determined: player α\alpha wins if (Vn,Mn)nω𝒲(V_{n},M_{n})_{n\in\omega}\in\mathcal{W}.

We put

OD(X,𝒩,𝒲)\displaystyle OD(X,{\mathcal{N}},\mathcal{W}) OD(X,𝒩,𝒲;Υt(X),Υt(X)),\displaystyle\coloneqq OD(X,{\mathcal{N}},\mathcal{W};\Upsilon_{t}(X),\Upsilon_{t}(X)),
DO(X,𝒩,𝒲)\displaystyle DO(X,{\mathcal{N}},\mathcal{W}) DO(X,𝒩,𝒲;Υt(X),Υt(X)).\displaystyle\coloneqq DO(X,{\mathcal{N}},\mathcal{W};\Upsilon_{t}(X),\Upsilon_{t}(X)).
Definition 2.

Let XX be a space. A family 𝒲𝔚(X)\mathcal{W}\subset{\mathfrak{W}}(X) is called monolithic if the following condition is satisfied:

  • Let (Un)nω𝔙(X)(U_{n})_{n\in\omega}\in{\mathfrak{V}}(X) and (Vn,Mn)nω𝒲(V_{n},M_{n})_{n\in\omega}\in\mathcal{W}. If Un+1VnUnU_{n+1}\subset V_{n}\subset U_{n} for nω{n\in\omega}, then (Un,Mn)nω𝒲(U_{n},M_{n})_{n\in\omega}\in\mathcal{W}.

Proposition 2.

Let XX be a space, 𝒩{\mathcal{N}} be a π\pi-net of XX, 𝒲𝔚(X)\mathcal{W}\subset{\mathfrak{W}}(X), Υ,Ψ𝔘(X)\Upsilon,\Psi\in\mathfrak{U}(X). If 𝒲\mathcal{W} is a monolithic family, then

OD(X,𝒩,𝒲)\displaystyle OD(X,{\mathcal{N}},\mathcal{W}) OD(X,𝒩,𝒲;Υ,Ψ),\displaystyle\sim OD(X,{\mathcal{N}},\mathcal{W};\Upsilon,\Psi),
DO(X,𝒩,𝒲)\displaystyle DO(X,{\mathcal{N}},\mathcal{W}) DO(X,𝒩,𝒲;Υ,Ψ).\displaystyle\sim DO(X,{\mathcal{N}},\mathcal{W};\Upsilon,\Psi).

Proposition 2 will be proved later (see Proposition 25).

Let 𝒱𝔙(X){\mathcal{V}}\subset{\mathfrak{V}}(X). We put

𝔚v(X,𝒱){(Vn,Mn)nω𝔚(X):\displaystyle{\mathfrak{W}}_{v}(X,{\mathcal{V}})\coloneqq\{(V_{n},M_{n})_{n\in\omega}\in{\mathfrak{W}}(X): (Vn)nω𝒱}.\displaystyle\ (V_{n})_{n\in\omega}\in{\mathcal{V}}\}.
Proposition 3.

If XX is a space, 𝒱𝔙(X){\mathcal{V}}\subset{\mathfrak{V}}(X), 𝒩{\mathcal{N}} π\pi-net of XX, 𝒲=𝔚v(X,𝒱)\mathcal{W}={\mathfrak{W}}_{v}(X,{\mathcal{V}}) and Υ,Ψ𝔘(X)\Upsilon,\Psi\in\mathfrak{U}(X), then

BM(X,𝒱;Υ,Ψ)\displaystyle BM(X,{\mathcal{V}};\Upsilon,\Psi) OD(X,𝒩,𝒲;Υ,Ψ),\displaystyle\sim OD(X,{\mathcal{N}},\mathcal{W};\Upsilon,\Psi), MB(X,𝒱;Υ,Ψ)\displaystyle MB(X,{\mathcal{V}};\Upsilon,\Psi) DO(X,𝒩,𝒲;Υ,Ψ).\displaystyle\sim DO(X,{\mathcal{N}},\mathcal{W};\Upsilon,\Psi).
Proof.

For 𝒲=𝔚v(X,𝒱)\mathcal{W}={\mathfrak{W}}_{v}(X,{\mathcal{V}}) the outcome of the games ODOD and DODO does not depend on the choice of MnM_{n}, so the strategies from the games BMBM and MBMB are suitable for the games ODOD and DODO. ∎

Proposition 3 shows that BMBM (MBMB) games are a special case of ODOD (DODO) games.

Proof of Proposition 1.

Let 𝒩{\mathcal{N}} be some π\pi-net in the space XX, and let 𝒲=𝔚v(X,𝒱)\mathcal{W}={\mathfrak{W}}_{v}(X,{\mathcal{V}}). From Proposition 3 it follows that

BM(X,𝒱;)\displaystyle BM(X,{\mathcal{V}};\dots) OD(X,𝒩,𝒲;),\displaystyle\sim OD(X,{\mathcal{N}},\mathcal{W};\dots), MB(X,𝒱;)\displaystyle MB(X,{\mathcal{V}};\dots) DO(X,𝒩,𝒲;).\displaystyle\sim DO(X,{\mathcal{N}},\mathcal{W};\dots).

The family 𝒲\mathcal{W} is monolithic if and only if the family 𝒱{\mathcal{V}} is monolithic. It remains to apply Proposition 2. ∎

Proposition 4.

Let XX be a space. Suppose that 𝒲𝔚(X)\mathcal{W}\subset{\mathfrak{W}}(X), Υ,Ψ𝔘(X)\Upsilon,\Psi\in\mathfrak{U}(X), 𝒩1{\mathcal{N}}_{1} and 𝒩2{\mathcal{N}}_{2} are π\pi-nets of the space XX, and the following conditions are met:

  • (1)

    for M1𝒩1M_{1}\in{\mathcal{N}}_{1} there is an M2𝒩2M_{2}\in{\mathcal{N}}_{2} such that M2M1M_{2}\subset M_{1} and for M2𝒩2M_{2}\in{\mathcal{N}}_{2} there is an M1𝒩1M_{1}\in{\mathcal{N}}_{1} such that M1M2M_{1}\subset M_{2};

  • (2)

    if (Vn,Mn)nω𝒲(V_{n},M_{n})_{n\in\omega}\in\mathcal{W} and MnLnVnM_{n}\subset L_{n}\subset V_{n} for nω{n\in\omega}, then (Vn,Ln)nω𝒲(V_{n},L_{n})_{n\in\omega}\in\mathcal{W}.

Then

OD(X,𝒩1,𝒲;Υ,Ψ)\displaystyle OD(X,{\mathcal{N}}_{1},\mathcal{W};\Upsilon,\Psi) OD(X,𝒩2,𝒲;Υ,Ψ),\displaystyle\sim OD(X,{\mathcal{N}}_{2},\mathcal{W};\Upsilon,\Psi),
DO(X,𝒩1,𝒲;Υ,Ψ)\displaystyle DO(X,{\mathcal{N}}_{1},\mathcal{W};\Upsilon,\Psi) DO(X,𝒩2,𝒲;Υ,Ψ).\displaystyle\sim DO(X,{\mathcal{N}}_{2},\mathcal{W};\Upsilon,\Psi).
Proof.

Fix φ1:𝒩1𝒩2\varphi_{1}:{\mathcal{N}}_{1}\to{\mathcal{N}}_{2} and φ2:𝒩2𝒩1\varphi_{2}:{\mathcal{N}}_{2}\to{\mathcal{N}}_{1} so φ1(M1)M1\varphi_{1}(M_{1})\subset M_{1} for M1𝒩1M_{1}\in{\mathcal{N}}_{1} and φ2(M2)M2\varphi_{2}(M_{2})\subset M_{2} for M2𝒩2M_{2}\in{\mathcal{N}}_{2}.

Suppose that the player α\alpha in the game G1=OD(X,𝒩1,𝒲;Υ,Ψ)G_{1}=OD(X,{\mathcal{N}}_{1},\mathcal{W};\Upsilon,\Psi) has a winning strategy s1s_{1}. Let us describe a winning strategy s2s_{2} for α\alpha in the game G2=OD(X,𝒩2,𝒲;Υ,Ψ)G_{2}=OD(X,{\mathcal{N}}_{2},\mathcal{W};\Upsilon,\Psi). We put

s2(U0,V0,M0,,Vn1,Mn1)=Un=s1(U0,V0,φ2(M0),,Vn1,φ2(Mn1)).s_{2}(U_{0},V_{0},M_{0},\dots,V_{n-1},M_{n-1})=U_{n}=s_{1}(U_{0},V_{0},\varphi_{2}(M_{0}),\dots,V_{n-1},\varphi_{2}(M_{n-1})).

Let player β\beta in the game G1G_{1} have a winning strategy s1s_{1}. Then a winning strategy s2s_{2} for β\beta in the game G2G_{2} is as follows. On the kkth move player β\beta chooses an open VkV_{k} and Lk𝒩1L_{k}\in{\mathcal{N}}_{1}, LkVkL_{k}\subset V_{k}, Mk=φ1(Lk)M_{k}=\varphi_{1}(L_{k}). We put

(Vn,Ln)\displaystyle(V_{n},L_{n}) =s1(U0,V0,L0,,Vn1,Ln1,Un),\displaystyle=s_{1}(U_{0},V_{0},L_{0},\dots,V_{n-1},L_{n-1},U_{n}),
Mn\displaystyle M_{n} =φ1(Ln),\displaystyle=\varphi_{1}(L_{n}),
s2(U0,V0,M0,,Vn1,Mn1,Un)\displaystyle s_{2}(U_{0},V_{0},M_{0},\dots,V_{n-1},M_{n-1},U_{n}) =(Vn,Mn).\displaystyle=(V_{n},M_{n}).

For the game DODO the proof is similar. ∎

Definition 3.

A strategy of player α\alpha in games BM,MB,OD,DOBM,MB,OD,DO will be called regular if Un+1¯Vn\overline{U_{n+1}}\subset V_{n} for nω{n\in\omega}.

Proposition 5.

Let XX be a quasi-regular space, GG be one of the games BM(X,𝒱)BM(X,{\mathcal{V}}), MB(X,𝒱)MB(X,{\mathcal{V}}), OD(X,𝒩,𝒲)OD(X,{\mathcal{N}},\mathcal{W}), DO(X,𝒩,𝒲)DO(X,{\mathcal{N}},\mathcal{W}), where 𝒱𝔙(X){\mathcal{V}}\subset{\mathfrak{V}}(X), 𝒩{\mathcal{N}} be a π\pi-net of XX, 𝒲𝔚(X)\mathcal{W}\subset{\mathfrak{W}}(X), 𝒱{\mathcal{V}} and 𝒲\mathcal{W} be monolithic families.

  • (1)

    If α\alpha has a winning strategy in GG, then there is a winning regular strategy.

  • (2)

    Suppose that player β\beta has chosen a strategy ss in GG and player α\alpha has a strategy that outperforms the strategy ss. Then player α\alpha has a regular strategy that outperforms the strategy ss.

Proof.

If XX is a quasi-regular space, then Υ=Υr(X)𝔘(X)\Upsilon=\Upsilon_{r}(X)\in\mathfrak{U}(X). Let Ψ=Υt(X)𝔘(X)\Psi=\Upsilon_{t}(X)\in\mathfrak{U}(X). Then, by virtue of Propositions 1 and 2,

BM(X,𝒱)\displaystyle BM(X,{\mathcal{V}}) BM(X,𝒱;Υ,Ψ),\displaystyle\sim BM(X,{\mathcal{V}};\Upsilon,\Psi), MB(X,𝒱)\displaystyle MB(X,{\mathcal{V}}) MB(X,𝒱;Υ,Ψ),\displaystyle\sim MB(X,{\mathcal{V}};\Upsilon,\Psi),
OD(X,𝒩,𝒲)\displaystyle OD(X,{\mathcal{N}},\mathcal{W}) OD(X,𝒩,𝒲;Υ,Ψ),\displaystyle\sim OD(X,{\mathcal{N}},\mathcal{W};\Upsilon,\Psi), DO(X,𝒩,𝒲)\displaystyle DO(X,{\mathcal{N}},\mathcal{W}) DO(X,𝒩,𝒲;Υ,Ψ).\displaystyle\sim DO(X,{\mathcal{N}},\mathcal{W};\Upsilon,\Psi).

4 Generalization of Baire and nonmeager spaces through games

Let (X,𝒯)(X,{\mathcal{T}}) be a space, 𝒯=𝒯{}{\mathcal{T}}^{*}={\mathcal{T}}\setminus\{\varnothing\}. We denote

𝔙BM(X)\displaystyle{\mathfrak{V}}_{BM}(X) {(Vn)nω𝔙(X):nωVn},\displaystyle\coloneqq\{(V_{n})_{n\in\omega}\in{\mathfrak{V}}(X)\,:\,\bigcap_{{n\in\omega}}V_{n}\neq\varnothing\},
𝔙BM(X)\displaystyle{\mathfrak{V}}_{BM}^{*}(X) 𝔙(X)𝔙BM(X),\displaystyle\coloneqq{\mathfrak{V}}(X)\setminus{\mathfrak{V}}_{BM}(X),
𝔙R(X)\displaystyle{\mathfrak{V}}_{R}(X) {(Vn)nω𝔙(X):Vn+1¯Vn for nω}.\displaystyle\coloneqq\{(V_{n})_{n\in\omega}\in{\mathfrak{V}}(X)\,:\,\overline{V_{n+1}}\subset V_{n}\text{ for }{n\in\omega}\}.

We put BM(X)=BM(X,𝔙BM(X))BM(X)=BM(X,{\mathfrak{V}}_{BM}(X)). This is the classical Banach–Mazur game. We put MB(X)=MB(X,𝔙BM(X))MB(X)=MB(X,{\mathfrak{V}}_{BM}(X)).

Theorem 2 (Banach–Oxtoby [14]; see also [15, 16]).

Let XX be a space.

  • (1)

    XX is Baire if and only if BM(X)BM(X) is β\beta-unfavorable;

  • (2)

    XX is nonmeager if and only if MB(X)MB(X) is β\beta-unfavorable.

Definition 4.

Let XX be a space, let 𝒱𝔙(X){\mathcal{V}}\subset{\mathfrak{V}}(X) and let 𝒱=𝒱𝔙BM(X){\mathcal{V}}^{*}={\mathcal{V}}\cup{\mathfrak{V}}_{BM}^{*}(X). We say that the space XX is

  • 1.

    ΓBM(𝒱)\Gamma^{\scriptscriptstyle{BM}}({\mathcal{V}})-nonmeager if MB(X,𝒱)MB(X,{\mathcal{V}}) is β\beta-unfavorable;

  • 2.

    ΓBM(𝒱)\Gamma^{\scriptscriptstyle{BM}}({\mathcal{V}})-Baire if BM(X,𝒱)BM(X,{\mathcal{V}}) is β\beta-unfavorable;

  • 3.

    a ΓBM(𝒱)\Gamma^{\scriptscriptstyle{BM}}({\mathcal{V}})-space if BM(X,𝒱)BM(X,{\mathcal{V}}^{*}) is α\alpha-favorable.

Proposition 6.

Let XX be a space and let 𝒱1𝒱2𝔙(X){\mathcal{V}}_{1}\subset{\mathcal{V}}_{2}\subset{\mathfrak{V}}(X).

  • (1)

    If XX is ΓBM(𝒱1)\Gamma^{\scriptscriptstyle{BM}}({\mathcal{V}}_{1})-nonmeager, then XX is ΓBM(𝒱2)\Gamma^{\scriptscriptstyle{BM}}({\mathcal{V}}_{2})-nonmeager.

  • (2)

    If XX is ΓBM(𝒱1)\Gamma^{\scriptscriptstyle{BM}}({\mathcal{V}}_{1})-Baire, then XX is ΓBM(𝒱2)\Gamma^{\scriptscriptstyle{BM}}({\mathcal{V}}_{2})-Baire.

  • (3)

    If XX is a ΓBM(𝒱1)\Gamma^{\scriptscriptstyle{BM}}({\mathcal{V}}_{1})-space, then XX is a ΓBM(𝒱2)\Gamma^{\scriptscriptstyle{BM}}({\mathcal{V}}_{2})-space.

Proof.

In the games MB(X,𝒱2)MB(X,{\mathcal{V}}_{2}) and BM(X,𝒱2)BM(X,{\mathcal{V}}_{2}) player α\alpha i uses the strategy from the games MB(X,𝒱1)MB(X,{\mathcal{V}}_{1}) and BM(X,𝒱1)BM(X,{\mathcal{V}}_{1}), respectively. ∎

Proposition 7.

Let XX be a space, and let 𝒱𝔙(X){\mathcal{V}}\subset{\mathfrak{V}}(X) be a monolithic family.

  • (1)

    If XX is nonmeager and XX is a ΓBM(𝒱)\Gamma^{\scriptscriptstyle{BM}}({\mathcal{V}})-space, then XX is ΓBM(𝒱)\Gamma^{\scriptscriptstyle{BM}}({\mathcal{V}})-nonmeager.

  • (2)

    If XX is a Baire space and XX is a ΓBM(𝒱)\Gamma^{\scriptscriptstyle{BM}}({\mathcal{V}})-space, then XX is a ΓBM(𝒱)\Gamma^{\scriptscriptstyle{BM}}({\mathcal{V}})-Baire space.

Remark 3.

In [16] Theorem 4.3 was proved, which is similar to 7. The paper [16] considered the game G𝒱G_{{\mathcal{V}}}, which differs slightly from BM(X,𝒱)BM(X,{\mathcal{V}}) by the payoff function: in the game BM(X,𝒱)BM(X,{\mathcal{V}}) player α\alpha wins if (Vn)nω𝒱(V_{n})_{n\in\omega}\in{\mathcal{V}}, and in the game G𝒱G_{{\mathcal{V}}}, if (Un)nω𝒱(U_{n})_{n\in\omega}\in{\mathcal{V}}. For 𝒱{\mathcal{V}} used in most of applications, the games G𝒱G_{{\mathcal{V}}} and BM(X,𝒱)BM(X,{\mathcal{V}}) are equivalent. Below, after Proposition 10, we give another proof of Proposition 7.

We put

𝔚e(X){(Vn,Mn)nω𝔚(X):\displaystyle{\mathfrak{W}}_{e}(X)\coloneqq\{(V_{n},M_{n})_{n\in\omega}\in{\mathfrak{W}}(X): nωVn=}.\displaystyle\ \bigcap_{{n\in\omega}}V_{n}=\varnothing\}.
Definition 5.

Let XX be a space, 𝒩{\mathcal{N}} be a π\pi-net XX, 𝒲𝔚(X)\mathcal{W}\subset{\mathfrak{W}}(X) and 𝒲=𝒲𝔚e(X)\mathcal{W}^{*}=\mathcal{W}\cup{\mathfrak{W}}_{e}(X). We say that the space XX

  • 1.

    ΓOD(𝒩,𝒲)\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}},\mathcal{W})-nonmeager if DO(X,𝒩,𝒲)DO(X,{\mathcal{N}},\mathcal{W}) is β\beta-unfavorable;

  • 2.

    ΓOD(𝒩,𝒲)\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}},\mathcal{W})-Baire if OD(X,𝒩,𝒲)OD(X,{\mathcal{N}},\mathcal{W}) is β\beta-unfavorable;

  • 3.

    a ΓOD(𝒩,𝒲)\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}},\mathcal{W})-space if OD(X,𝒩,𝒲)OD(X,{\mathcal{N}},\mathcal{W}^{*}) is α\alpha-favorable.

Proposition 8.

Let XX be a space, 𝒩1,𝒩2{\mathcal{N}}_{1},{\mathcal{N}}_{2} be π\pi-nets XX, 𝒩2𝒩1{\mathcal{N}}_{2}\subset{\mathcal{N}}_{1} and 𝒲1𝒲2𝔚(X)\mathcal{W}_{1}\subset\mathcal{W}_{2}\subset{\mathfrak{W}}(X).

  • (1)

    If XX is ΓOD(𝒩1,𝒲1)\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}}_{1},\mathcal{W}_{1})-nonmeager, then XX is ΓOD(𝒩2,𝒲2)\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}}_{2},\mathcal{W}_{2})-nonmeager.

  • (2)

    If XX is ΓOD(𝒩1,𝒲1)\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}}_{1},\mathcal{W}_{1})-Baire, then XX is ΓOD(𝒩2,𝒲2)\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}}_{2},\mathcal{W}_{2})-Baire.

  • (3)

    If XX is a ΓOD(𝒩1,𝒲1)\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}}_{1},\mathcal{W}_{1})-space, then ΓOD(𝒩2,𝒲2)\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}}_{2},\mathcal{W}_{2})-space.

Proof.

In the games OD(X,𝒩2,𝒲2)OD(X,{\mathcal{N}}_{2},\mathcal{W}_{2}) and DO(X,𝒩2,𝒲2)DO(X,{\mathcal{N}}_{2},\mathcal{W}_{2}) player α\alpha uses the strategy from the games OD(X,𝒩1,𝒲1)OD(X,{\mathcal{N}}_{1},\mathcal{W}_{1}) and DO(X,𝒩1,𝒲1)DO(X,{\mathcal{N}}_{1},\mathcal{W}_{1}), respectively. ∎

For 𝒲𝔚(X)\mathcal{W}\subset{\mathfrak{W}}(X) we set

𝔙w(X,𝒩,𝒲){(Vn)nω\displaystyle{\mathfrak{V}}_{w}(X,{\mathcal{N}},\mathcal{W})\coloneqq\{(V_{n})_{n\in\omega} 𝔙(X): if MnVn and Mn𝒩\displaystyle\in{\mathfrak{V}}(X):\text{ if }M_{n}\subset V_{n}\text{ and }M_{n}\in{\mathcal{N}}
for nω, then (Vn,Mn)nω𝒲}.\displaystyle\text{ for }{n\in\omega}\text{, then }(V_{n},M_{n})_{n\in\omega}\in\mathcal{W}\}.
Proposition 9.

Let XX be a space, 𝒩{\mathcal{N}} π\pi-network XX, 𝒲𝔚(X)\mathcal{W}\subset{\mathfrak{W}}(X), and 𝒱=𝔙w(X,𝒩,𝒲){\mathcal{V}}={\mathfrak{V}}_{w}(X,{\mathcal{N}},\mathcal{W}).

  • (1)

    If XX is ΓBM(𝒱)\Gamma^{\scriptscriptstyle{BM}}({\mathcal{V}})-nonmeager, then XX is ΓOD(𝒩,𝒲)\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}},\mathcal{W})-nonmeager.

  • (2)

    If XX is ΓBM(𝒱)\Gamma^{\scriptscriptstyle{BM}}({\mathcal{V}})-Baire, then XX is ΓOD(𝒩,𝒲)\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}},\mathcal{W})-Baire.

Proof.

Statement (1) is equivalent to saying that if OD(X,𝒩,𝒲)OD(X,{\mathcal{N}},\mathcal{W}) is β\beta-favorable, then BM(X,𝒱)BM(X,{\mathcal{V}}) is β\beta-favorable. The strategy for β\beta in the game BM(X,𝒱)BM(X,{\mathcal{V}}) is that β\beta chooses VnV_{n} according to the winning strategy in the game OD(X,𝒩)OD(X,{\mathcal{N}}) and Mn𝒩M_{n}\in{\mathcal{N}}, MnVnM_{n}\subset V_{n}, arbitrarily. Statement (2) can be proved in the same way as (1). ∎

Proposition 10.

Let XX be a space, 𝒩{\mathcal{N}} be a π\pi-net XX, and 𝒲𝔚(X)\mathcal{W}\subset{\mathfrak{W}}(X) be a monolithic family.

  • (1)

    If XX is nonmeager and XX is a ΓOD(𝒩,𝒲)\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}},\mathcal{W})-space, then XX is ΓOD(𝒩,𝒲))\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}},\mathcal{W}))-nonmeager.

  • (2)

    If XX is a Baire space and XX is a ΓOD(𝒩,𝒲)\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}},\mathcal{W})-space, then XX is a ΓOD(𝒩,𝒲)\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}},\mathcal{W})-Baire space.

Remark 4.

In [8, 9] (Proposition 3) Proposition 10 is proved for a few specific 𝒲\mathcal{W} and 𝒩{\mathcal{N}}, but the idea of the proof is also valid for the general case. Below we give a proof of Proposition 10 (see also Proposition 26).

Proof of Proposition 7.

Let 𝒱=𝒱𝔙BM(X){\mathcal{V}}^{*}={\mathcal{V}}\cup{\mathfrak{V}}_{BM}^{*}(X), 𝒲=𝔚v(X,𝒱)\mathcal{W}={\mathfrak{W}}_{v}(X,{\mathcal{V}}), and 𝒲=𝒲𝔚e(X)\mathcal{W}^{*}=\mathcal{W}\cup{\mathfrak{W}}_{e}(X). Proposition 3 implies that the games BM(X,𝒱)BM(X,{\mathcal{V}}), MB(X,𝒱)MB(X,{\mathcal{V}}) and BM(X,𝒱)BM(X,{\mathcal{V}}^{*}) are equivalent to the games OD(X,𝒩,𝒲)OD(X,{\mathcal{N}},\mathcal{W}), DO(X,𝒩,𝒲)DO(X,{\mathcal{N}},\mathcal{W}) and OD(X,𝒩,𝒲)OD(X,{\mathcal{N}},\mathcal{W}^{*}), respectively. Consequently, the properties of being ΓBM(X,𝒱)\Gamma^{\scriptscriptstyle{BM}}(X,{\mathcal{V}})-nonmeager, ΓBM(X,𝒱)\Gamma^{\scriptscriptstyle{BM}}(X,{\mathcal{V}})-Baire, and ΓBM(X,𝒱)\Gamma^{\scriptscriptstyle{BM}}(X,{\mathcal{V}})-spaces coincide with the properties of being ΓOD(X,𝒩,𝒲)\Gamma^{\scriptscriptstyle{OD}}(X,{\mathcal{N}},\mathcal{W})-nonmeager, ΓOD(X,𝒩,𝒲)\Gamma^{\scriptscriptstyle{OD}}(X,{\mathcal{N}},\mathcal{W})-Baire, and ΓOD(X,𝒩,𝒲)\Gamma^{\scriptscriptstyle{OD}}(X,{\mathcal{N}},\mathcal{W})-spaces, respectively. The fact that 𝒱{\mathcal{V}} is monolithic implies that 𝒲\mathcal{W} is monolithic. Now Proposition 7 follows from Proposition 10. ∎

For q{l,k}q\in\{l,k\} we define the families 𝔚q(X)𝔚(X){\mathfrak{W}}_{q}(X)\subset{\mathfrak{W}}(X). We say that a sequence (Vn,Mn)nω𝔚(X)(V_{n},M_{n})_{n\in\omega}\in{\mathfrak{W}}(X) belongs to 𝔚q(X){\mathfrak{W}}_{q}(X) if condition (𝔚q)({\mathfrak{W}}_{q}) is met:

  • (𝔚l)({\mathfrak{W}}_{l})

    lt¯nωMnnωVn\operatorname{\overline{lt}}_{{n\in\omega}}M_{n}\cap\bigcap_{{n\in\omega}}V_{n}\neq\varnothing;

  • (𝔚k)({\mathfrak{W}}_{k})

    there is a sequence (xn)nω(x_{n})_{n\in\omega} such that

    • (LSQ)(LSQ)

      xnMnx_{n}\in M_{n} for nω{n\in\omega} and for every pωp\in\omega^{*} there is an xnωVnx\in\bigcap_{{n\in\omega}}V_{n} such that x=limpxnx={\textstyle\lim_{p}}x_{n}.

Note that if XX is a regular space, then the condition (LSQ)(LSQ) is equivalent to the condition

    • (LSQ)(LSQ)^{\prime}

      xnMnx_{n}\in M_{n} for nω{n\in\omega}, the subspace {xn:nω}¯\overline{\{x_{n}\,:\,{n\in\omega}\}} is compact and lt¯nωxnnωVn\operatorname{\overline{lt}}_{{n\in\omega}}x_{n}\subset\bigcap_{{n\in\omega}}V_{n}.

We denote

L((Vn,Mn)nω)={(xn)nωXω:\displaystyle{\mathrm{L}}((V_{n},M_{n})_{n\in\omega})=\{(x_{n})_{n\in\omega}\in X^{\omega}:\ (xn)nω satisfies (LSQ)}.\displaystyle(x_{n})_{n\in\omega}\text{ satisfies }(LSQ)\}.

A sequence (Vn,Mn)nω(V_{n},M_{n})_{n\in\omega} is included in 𝔚k(X){\mathfrak{W}}_{k}(X) if and only if L((Vn,Mn)nω){\mathrm{L}}((V_{n},M_{n})_{n\in\omega})\neq\varnothing.

We put

𝒩o(X)\displaystyle{\mathcal{N}}_{o}(X) 𝒯,\displaystyle\coloneqq{\mathcal{T}}^{*}, 𝒩p(X)\displaystyle{\mathcal{N}}_{p}(X) {{x}:xX},\displaystyle\coloneqq\{\{x\}\,:\,x\in X\},
𝔙o(X)\displaystyle{\mathfrak{V}}_{o}(X) 𝔙w(X,𝒩o(X),𝔚l(X)),\displaystyle\coloneqq{\mathfrak{V}}_{w}(X,{\mathcal{N}}_{o}(X),{\mathfrak{W}}_{l}(X)), 𝔙p(X)\displaystyle{\mathfrak{V}}_{p}(X) 𝔙w(X,𝒩p(X),𝔚l(X)),\displaystyle\coloneqq{\mathfrak{V}}_{w}(X,{\mathcal{N}}_{p}(X),{\mathfrak{W}}_{l}(X)),
𝔙f(X){(Un)nω𝔙BM(X):\displaystyle{\mathfrak{V}}_{f}(X)\coloneqq\{(U_{n})_{n\in\omega}\in{\mathfrak{V}}_{BM}(X):\ for some xnωUn\displaystyle\text{for some }x\in\bigcap_{{n\in\omega}}U_{n}
the family (Un)nω forms a base at the point x},\displaystyle\text{the family }(U_{n})_{n\in\omega}\text{ forms a base at the point }x\},
𝔙k(X){(Un)nω𝔙BM(X):\displaystyle{\mathfrak{V}}_{k}(X)\coloneqq\{(U_{n})_{n\in\omega}\in{\mathfrak{V}}_{BM}(X):\ nωUn=M is compact and the family (Un)nω\displaystyle\bigcap_{{n\in\omega}}U_{n}=M\text{ is compact and the family }(U_{n})_{n\in\omega}
is an outer base of the set M}.\displaystyle\text{is an outer base of the set }M\}.

Note that

  • 1.

    (Vn)nω𝔙o(X)(V_{n})_{n\in\omega}\in{\mathfrak{V}}_{o}(X) if and only if (Vn)nω𝔙BN(X)(V_{n})_{n\in\omega}\in{\mathfrak{V}}_{BN}(X) and for any sequence (Mn)nω(M_{n})_{n\in\omega}, MnVnM_{n}\subset V_{n} for nω{n\in\omega} of open nonempty sets we have lt¯nωMnnωVn\operatorname{\overline{lt}}_{{n\in\omega}}M_{n}\subset\bigcap_{n\in\omega}V_{n};

  • 2.

    (Vn)nω𝔙p(X)(V_{n})_{n\in\omega}\in{\mathfrak{V}}_{p}(X) if and only if (Vn)nω𝔙BN(X)(V_{n})_{n\in\omega}\in{\mathfrak{V}}_{BN}(X) and for any sequence of points (xn)nω(x_{n})_{n\in\omega}, xnVnx_{n}\in V_{n} for nω{n\in\omega}, we have lt¯nωxnnωVn\operatorname{\overline{lt}}_{{n\in\omega}}x_{n}\subset\bigcap_{n\in\omega}V_{n}.

The following proposition is easily verified.

Proposition 11.

For any space XX the families 𝔙r(X){\mathfrak{V}}_{r}(X) and 𝔚q(X){\mathfrak{W}}_{q}(X) are monolithic for r{o,p,f,k}r\in\{o,p,f,k\} and q{l,k}q\in\{l,k\}.

For r{o,p,f,k}r\in\{o,p,f,k\} we define the games

BMr(X)\displaystyle BM_{r}(X) BM(X,𝒱),\displaystyle\coloneqq BM(X,{\mathcal{V}}), MBr(X)\displaystyle MB_{r}(X) MB(X,𝒱),\displaystyle\coloneqq MB(X,{\mathcal{V}}),
BMr(X)\displaystyle BM_{r}^{*}(X) BM(X,𝒱),\displaystyle\coloneqq BM(X,{\mathcal{V}}^{*}), MBr(X)\displaystyle MB_{r}^{*}(X) MB(X,𝒱),\displaystyle\coloneqq MB(X,{\mathcal{V}}^{*}),
where
𝒱\displaystyle{\mathcal{V}} =𝔙r(X),\displaystyle={\mathfrak{V}}_{r}(X), 𝒱\displaystyle{\mathcal{V}}^{*} =𝒱𝔙BM(X).\displaystyle={\mathcal{V}}\cup{\mathfrak{V}}_{BM}^{*}(X).

For t{o,p}t\in\{o,p\} and q{l,k}q\in\{l,k\} we define the games

ODt,q(X)\displaystyle OD_{t,q}(X) OD(X,𝒩,𝒲),\displaystyle\coloneqq OD(X,\mathcal{N},\mathcal{W}), DOt,q(X)\displaystyle DO_{t,q}(X) DO(X,𝒩,𝒲),\displaystyle\coloneqq DO(X,\mathcal{N},\mathcal{W}),
ODt,q(X)\displaystyle OD_{t,q}^{*}(X) OD(X,𝒩,𝒲),\displaystyle\coloneqq OD(X,\mathcal{N},\mathcal{W}^{*}), DOt,q(X)\displaystyle DO_{t,q}^{*}(X) DO(X,𝒩,𝒲),\displaystyle\coloneqq DO(X,\mathcal{N},\mathcal{W}^{*}),
where 𝒩\displaystyle\mathcal{N} =𝒩t(X),\displaystyle={\mathcal{N}}_{t}(X),
𝒲\displaystyle\mathcal{W} =𝔚q(X),\displaystyle={\mathfrak{W}}_{q}(X), 𝒲\displaystyle\mathcal{W}^{*} =𝒲𝔚e(X).\displaystyle=\mathcal{W}\cup{\mathfrak{W}}_{e}(X).
Definition 6.

Let XX be a space, r{o,p,f,k}r\in\{o,p,f,k\}. We say that the space XX

  • 1.

    ΓrBM\Gamma^{\scriptscriptstyle{BM}}_{r}-nonmeager if XX is (β,MBr)(\beta,MB_{r})-unfavorable;

  • 2.

    ΓrBM\Gamma^{\scriptscriptstyle{BM}}_{r}-Baire if XX is (β,BMr)(\beta,BM_{r})-unfavorable;

  • 3.

    a ΓrBM\Gamma^{\scriptscriptstyle{BM}}_{r}-space if XX is (α,BMr)(\alpha,BM_{r}^{*})-favorable.

The class of ΓrBM\Gamma^{\scriptscriptstyle{BM}}_{r}-spaces will be denoted as ΓrBM\Gamma^{\scriptscriptstyle{BM}}_{r}.

Let t{o,p}t\in\{o,p\} and q{l,k}q\in\{l,k\}. We say that the space XX

  • 1.

    Γt,qOD\Gamma^{\scriptscriptstyle{OD}}_{t,q}-nonmeager if XX is (β,DOt,q)(\beta,DO_{t,q})-unfavorable;

  • 2.

    Γt,qOD\Gamma^{\scriptscriptstyle{OD}}_{t,q}-Baire if XX is (β,ODt,q)(\beta,OD_{t,q})-unfavorable;

  • 3.

    a Γt,qOD\Gamma^{\scriptscriptstyle{OD}}_{t,q}-space if XX is (α,ODt,q)(\alpha,OD_{t,q}^{*})-favorable.

The class of Γt,qOD\Gamma^{\scriptscriptstyle{OD}}_{t,q}-spaces will be denoted as Γt,qOD\Gamma^{\scriptscriptstyle{OD}}_{t,q}.

Definition 7.

Let XX be a space and let t{o,p,k,f}t\in\{o,p,k,f\}. We say that a point xx is qtq_{t}-point if there exists a (Vn)nω𝔙t(X)(V_{n})_{n\in\omega}\in{\mathfrak{V}}_{t}(X) such that xnωVnx\in\bigcap_{n\in\omega}V_{n}.

Recall that a point xXx\in X is called a qq-point if there exist a (Vn)nω𝔙BM(X)(V_{n})_{n\in\omega}\in{\mathfrak{V}}_{BM}(X) such that xnωVnx\in\bigcap_{n\in\omega}V_{n} and any sequence (xn)nω(x_{n})_{n\in\omega}, xnVnx_{n}\in V_{n} for nω{n\in\omega}, accumulates to some point; see [17]. If XX is a regular space, then xx is a qq-point if and only if xx is a qpq_{p}-point. Spaces of point-countable type are precisely spaces in which each point is a qkq_{k}-point. A point is a qfq_{f}-point if and only if this point has a countable base.

The following proposition is a direct consequence of the definitions.

Proposition 12.

Let XX be a space, and let t{o,p,k,f}t\in\{o,p,k,f\}. If XX is a ΓtBM\Gamma^{\scriptscriptstyle{BM}}_{t}-nonmeager (ΓtBM\Gamma^{\scriptscriptstyle{BM}}_{t}-Baire) space, then there are qtq_{t}-points in XX (the set of qtq_{t}-points is dense in XX).

Definition 8 ([8, 9]).

Let XX be a space, and let YXY\subset X. We call YY CC-dense if Y¯=X\overline{Y}=X and for any countable family γ\gamma of open subsets of XX the family γ\gamma is locally finite if and only if the family {UY:Uγ}\{U\cap Y\,:\,U\in\gamma\} is locally finite in YY.

For a Tychonoff XX, YY is CC-dense in XX if and only if YY is dense in XX and CC-embedded in XX.

Proposition 13 ([8, 9]).

If XX is a quasi-regular space, then YXY¯Y\subset X\subset\overline{Y}. Let Γ{ΓoBM,Γo,lOD}\Gamma\in\{\Gamma^{\scriptscriptstyle{BM}}_{o},\Gamma^{\scriptscriptstyle{OD}}_{o,l}\}.

  • (1)

    If YY is a Γ\Gamma-nonmeager (Γ\Gamma-Baire) space, then XX is a Γ\Gamma-nonmeager (Γ\Gamma-Baire) space.

  • (2)

    Let XX be a quasi-regular space and YY be CC-dense in XX. A space YY is Γ\Gamma-nonmeager (Γ\Gamma-Baire) if and only if YY is Γ\Gamma-nonmeager (Γ\Gamma-Baire).

Proof.

(1) Each strategy of player α\alpha in the game on YY is assigned a strategy on XX. Let U0,V0,U_{0},V_{0},\dots be the open subsets of XX constructed on the nnth move. According to the strategy on YY, the player α\alpha chooses a set UnYU_{n}^{\prime}\subset Y open in YY depending on the sets U0Y,V0Y,U_{0}\cap Y,V_{0}\cap Y,\dots . The open set UnXU_{n}\subset X is chosen in such a way that UnY=UnU_{n}\cap Y=U_{n}^{\prime} and UnVn1U_{n}\subset V_{n-1}. If α\alpha wins the YY game, then it wins the XX game as well.

(2) By virtue of (1), it suffices to show that if YY is CC-dense in XX, then if XX is a Γ\Gamma-nonmeager (Γ\Gamma-Baire) space, then so is YY. By Proposition 5, α\alpha has a regular strategy on XX. The regular strategy of player α\alpha in the game on XX is associated with the strategy on YY. Let open sets U0,V0,U_{0}^{\prime},V_{0}^{\prime},\dots of the space YY be constructed on the nnth move. In accordance with the strategy on XX, player α\alpha chooses a set UnUn¯Vn1U_{n}\subset\overline{U_{n}}\subset V_{n-1} open in XX depending on the sets U0=IntU0¯,V0=IntV0¯,U_{0}=\operatorname{Int}{\overline{U_{0}^{\prime}}},V_{0}=\operatorname{Int}{\overline{V_{0}^{\prime}}},\dots . We set Un=UnYU_{n}^{\prime}=U_{n}\cap Y. If α\alpha wins the XX game, then it wins the YY game as well. ∎

Propositions 6, 8, and 9 and Theorem 2 imply

Proposition 14.

Let XX be a space. In the diagrams below, the arrow

ABA\to B

means that

  • (1)

    if XX is an AA-nonmeager space, then XX is a BB-nonmeager space;

  • (2)

    if XX is an AA-Baire space, then XX is a BB-Baire space;

  • (3)

    if XX is an AA-space, then XX is a BB-space.

The bottom arrow means that AA-nonmeager and AA-Baire imply nonmeager and Baire.

ΓfBM{\Gamma^{\scriptscriptstyle{BM}}_{f}}ΓkBM{\Gamma^{\scriptscriptstyle{BM}}_{k}}ΓoBM{\Gamma^{\scriptscriptstyle{BM}}_{o}}ΓpBM{\Gamma^{\scriptscriptstyle{BM}}_{p}}Γo,kOD{\Gamma^{\scriptscriptstyle{OD}}_{o,k}}Γp,kOD{\Gamma^{\scriptscriptstyle{OD}}_{p,k}}Γo,lOD{\Gamma^{\scriptscriptstyle{OD}}_{o,l}}Γp,lOD{\Gamma^{\scriptscriptstyle{OD}}_{p,l}}ΓBM{\Gamma^{\scriptscriptstyle{BM}}}

5 ΓrBM\Gamma^{\scriptscriptstyle{BM}}_{r} and Γt,qOD\Gamma^{\scriptscriptstyle{OD}}_{t,q} spaces

In this section, we study ΓrBM\Gamma^{\scriptscriptstyle{BM}}_{r} and Γt,qOD\Gamma^{\scriptscriptstyle{OD}}_{t,q} spaces. The relationship between these spaces is shown by the following statement, which follows from Propositions 7 and 10.

Proposition 15.

Let XX be a space, and let Γ{ΓrBM,Γt,qOD}\Gamma\in\{\Gamma^{\scriptscriptstyle{BM}}_{r},\Gamma^{\scriptscriptstyle{OD}}_{t,q}\}, where r{o,p,f,k}r\in\{o,p,f,k\}, t{o,p}t\in\{o,p\} and q{l,k}q\in\{l,k\}.

  • (1)

    If XX is nonmeager and XX is a Γ\Gamma-space, then XX is Γ\Gamma-nonmeager.

  • (2)

    If XX is a Baire space and XX is a Γ\Gamma-space, then XX is a Γ\Gamma-Baire space.

Proposition 16.

If XX is a space, Υ,Ψ𝔘(X)\Upsilon,\Psi\in\mathfrak{U}(X), r{o,p,f,k}r\in\{o,p,f,k\}, t{o,p}t\in\{o,p\} and q{l,k}q\in\{l,k\}, then

BMr(X)\displaystyle BM_{r}^{*}(X) BM(X,𝒱;Υ,Ψ),\displaystyle\sim BM(X,{\mathcal{V}}^{*};\Upsilon,\Psi), ODt,q(X)\displaystyle OD_{t,q}^{*}(X) OD(X,𝒩t(X),𝒲;Υ,Ψ),\displaystyle\sim OD(X,{\mathcal{N}}_{t}(X),\mathcal{W}^{*};\Upsilon,\Psi),

where 𝒱=𝔙r(X)𝔙BM(X){\mathcal{V}}^{*}={\mathfrak{V}}_{r}(X)\cup{\mathfrak{V}}_{BM}^{*}(X) and 𝒲=𝔚q(X)𝔚e(X)\mathcal{W}^{*}={\mathfrak{W}}_{q}(X)\cup{\mathfrak{W}}_{e}(X). If 𝒫{\mathcal{P}} is a π\pi-base in XX, then Υp(X,𝒫)𝔘(X)\Upsilon_{p}(X,{\mathcal{P}})\in\mathfrak{U}(X), and if the space XX is quasi-regular, then Υr(X),Υpr(X,𝒫)𝔘(X)\Upsilon_{r}(X),\Upsilon_{pr}(X,{\mathcal{P}})\in\mathfrak{U}(X). Moreover, the following assertions hold:

  • (1)

    XΓrBMX\in\Gamma^{\scriptscriptstyle{BM}}_{r} if and only if BM(X,𝒱;Υ,Ψ)BM(X,{\mathcal{V}}^{*};\Upsilon,\Psi) is α\alpha-favorable.

  • (2)

    XΓt,qODX\in\Gamma^{\scriptscriptstyle{OD}}_{t,q} if and only if OD(X,𝒩t(X),𝒲;Υ,Ψ)OD(X,{\mathcal{N}}_{t}(X),\mathcal{W}^{*};\Upsilon,\Psi) is α\alpha-favorable.

  • (3)

    XΓo,qODX\in\Gamma^{\scriptscriptstyle{OD}}_{o,q} if and only if OD(X,𝒫,𝒲;Υ,Ψ)OD(X,{\mathcal{P}},\mathcal{W}^{*};\Upsilon,\Psi) is α\alpha-favorable if and only if OD(X,𝒫,𝒲;Υ~,Υ~)OD(X,{\mathcal{P}},\mathcal{W}^{*};\widetilde{\Upsilon},\widetilde{\Upsilon}) is α\alpha-favorable, where Υ~=Υp(X,𝒫)\widetilde{\Upsilon}=\Upsilon_{p}(X,{\mathcal{P}}).

  • (4)

    if XΓrBMX\in\Gamma^{\scriptscriptstyle{BM}}_{r}, then for any nω{n\in\omega} there exists a winning strategy ss for player α\alpha such that the following condition is satisfied: if player β\beta chooses Vk=XV_{k}=X at step k<nk<n, then α\alpha chooses Uk+1=XU_{k+1}=X.

  • (5)

    if XΓt,qODX\in\Gamma^{\scriptscriptstyle{OD}}_{t,q}, then for any nω{n\in\omega} there exists a winning strategy ss for player α\alpha such that the condition is satisfied: if player β\beta chooses Vk=XV_{k}=X at step k<nk<n, then α\alpha chooses Uk+1=XU_{k+1}=X.

  • (6)

    if XΓo,qODX\in\Gamma^{\scriptscriptstyle{OD}}_{o,q}, then there exists a winning strategy ss for player α\alpha such that the following condition is satisfied: if player β\beta chooses Vn=XV_{n}=X at step nn and Mn=XM_{n}=X, then α\alpha chooses Un+1=XU_{n+1}=X.

Proof.

The equivalence of games and assertions (1) and (2) follow from Propositions 1 and 11. Assertion (3) follows from Proposition 4.

Let us prove (4). Let s~{\tilde{s}} be a winning strategy for α\alpha. We define a strategy ss. Suppose that k>0k>0 and on the first kk moves sets U0U_{0}, V0V_{0}, U1U_{1}, …, UkU_{k}, VkV_{k} are chosen. Player α\alpha chooses Uk+1U_{k+1} as prescribed by the strategy ss. If Vk=XV_{k}=X and k<nk<n, then Uk+1=XU_{k+1}=X. Otherwise, Uk+1=s~(Un0,Vn0,Un0+1,,Uk,Vk)U_{k+1}={\tilde{s}}(U_{n_{0}},V_{n_{0}},U_{n_{0}+1},\dots,U_{k},V_{k}) for n0=min{l,n:l<n,VlX}n_{0}=\min\{l,n\,:\,l<n,V_{l}\neq X\}.

Let us prove (5). Let s~{\tilde{s}} be a winning strategy for α\alpha. We define a strategy ss. Suppose that k>0k>0 and on the first kk moves sets U0U_{0}, V0V_{0}, M0M_{0}, U1U_{1}, …, UkU_{k}, VkV_{k}, MkM_{k} are selected. Player α\alpha chooses Uk+1U_{k+1} as prescribed by the strategy ss. If Vk=XV_{k}=X and k<nk<n, then Uk+1=XU_{k+1}=X. Otherwise, Uk+1=s~(Un0,Vn0,Mn0,Un0+1,,Uk,Vk,Mk)U_{k+1}={\tilde{s}}(U_{n_{0}},V_{n_{0}},M_{n_{0}},U_{n_{0}+1},\dots,U_{k},V_{k},M_{k}) for n0=min{l,n:l<n,VlX}n_{0}=\min\{l,n\,:\,l<n,V_{l}\neq X\}.

Let us prove (6). Let s~{\tilde{s}} be a winning strategy for α\alpha. We define a strategy ss. Suppose that k>0k>0 and on the first kk moves sets U0U_{0}, V0V_{0}, M0M_{0}, U1U_{1}, …, UkU_{k}, VkV_{k}, MkM_{k}. Player α\alpha chooses Uk+1U_{k+1} as prescribed by the strategy ss. If Vk=XV_{k}=X and Mk=XM_{k}=X, then Uk+1=XU_{k+1}=X. Otherwise, Uk+1=s~(Un0,Vn0,Mn0,Un0+1,,Uk,Vk,Mk)U_{k+1}={\tilde{s}}(U_{n_{0}},V_{n_{0}},M_{n_{0}},U_{n_{0}+1},\dots,U_{k},V_{k},M_{k}) for n0=min{l<k:VlX or MlX}n_{0}=\min\{l<k\,:\,V_{l}\neq X\text{ or }M_{l}\neq X\}. ∎

Let DD be an index set, (Xδ,𝒯δ)(X_{\delta},{\mathcal{T}}_{\delta}) be a space, and 𝒯δ=𝒯δ{}{\mathcal{T}}^{*}_{\delta}={\mathcal{T}}_{\delta}\setminus\{\varnothing\} for δD\delta\in D; we set X=δDXδX=\prod_{\delta\in D}X_{\delta}. For (Uδ)δDδD𝒯δ(U_{\delta})_{\delta\in D}\in\prod_{\delta\in D}{{\mathcal{T}}^{*}_{\delta}} we denote supp((Uδ)δD)={δD:UδXδ}\operatorname{supp}((U_{\delta})_{\delta\in D})=\{\delta\in D\,:\,U_{\delta}\neq X_{\delta}\}. The family

𝔓[(Xδ)δD]{δDUδ:(Uδ)δDδD𝒯δ and |supp((Uδ)δD)|<ω}{\mathfrak{P}}\left[(X_{\delta})_{\delta\in D}\right]\coloneqq\{\prod_{\delta\in D}U_{\delta}\,:\,(U_{\delta})_{\delta\in D}\in\prod_{\delta\in D}{{\mathcal{T}}^{*}_{\delta}}\text{ and }|\operatorname{supp}((U_{\delta})_{\delta\in D})|<\omega\}

is a base of the space XX.

Proposition 16 implies the following assertion.

Proposition 17.

Let r{o,p,f,k}r\in\{o,p,f,k\}, q{l,k}q\in\{l,k\}, DD be an index set, (Xδ,𝒯δ)(X_{\delta},{\mathcal{T}}_{\delta}) be a space for each δD\delta\in D, and X=δDXδX=\prod_{\delta\in D}X_{\delta}. Let =𝔓[(Xδ)δD]{\mathcal{B}}={\mathfrak{P}}\left[(X_{\delta})_{\delta\in D}\right], 𝒱=𝔙r(X)𝔙BM(X){\mathcal{V}}^{*}={\mathfrak{V}}_{r}(X)\cup{\mathfrak{V}}_{BM}^{*}(X), 𝒲=𝔚q(X)𝔚e(X)\mathcal{W}^{*}={\mathfrak{W}}_{q}(X)\cup{\mathfrak{W}}_{e}(X), and Υ=Υp(X,)\Upsilon=\Upsilon_{p}(X,{\mathcal{B}}). Then

  • (1)

    XΓrBMX\in\Gamma^{\scriptscriptstyle{BM}}_{r} if and only if BM(X,𝒱;Υ,Υ)BM(X,{\mathcal{V}}^{*};\Upsilon,\Upsilon) is α\alpha-favorable;

  • (2)

    XΓp,qODX\in\Gamma^{\scriptscriptstyle{OD}}_{p,q} if and only if OD(X,𝒩p(X),𝒲;Υ,Υ)OD(X,{\mathcal{N}}_{p}(X),\mathcal{W}^{*};\Upsilon,\Upsilon) is α\alpha-favorable;

  • (3)

    XΓo,qODX\in\Gamma^{\scriptscriptstyle{OD}}_{o,q} if and only if OD(X,,𝒲;Υ,Υ)OD(X,{\mathcal{B}},\mathcal{W}^{*};\Upsilon,\Upsilon) is α\alpha-favorable.

Proposition 18.

If r{o,p}r\in\{o,p\}, and XΓrBMX\in\Gamma^{\scriptscriptstyle{BM}}_{r}, YΓkBMY\in\Gamma^{\scriptscriptstyle{BM}}_{k}, then X×YΓrBMX\times Y\in\Gamma^{\scriptscriptstyle{BM}}_{r}.

Proof.

Let sXs_{X} and sYs_{Y} be winning strategies for α\alpha on XX and YY, respectively. Let us describe a winning strategy for α\alpha. It follows from Proposition 17 that it suffices to consider the case when the player β\beta chooses sets of the form Vn=VX,n×VY,nX×YV_{n}=V_{X,n}\times V_{Y,n}\subset X\times Y. At the nnth step, we put UX,n=sX(UX,0,VX,0,,VX,n1)U_{X,n}=s_{X}(U_{X,0},V_{X,0},\dots,V_{X,n-1}), UY,n=sY(UY,0,VY,0,,VY,n1)U_{Y,n}=s_{Y}(U_{Y,0},V_{Y,0},\dots,V_{Y,n-1}), and Un=UX,n×UY,nU_{n}=U_{X,n}\times U_{Y,n}. ∎

Proposition 19.

Let r{k,f}r\in\{k,f\}, and let XnΓrBMX_{n}\in\Gamma^{\scriptscriptstyle{BM}}_{r} for nω{n\in\omega}. Then X=nωXnΓrBMX=\prod_{n\in\omega}X_{n}\in\Gamma^{\scriptscriptstyle{BM}}_{r}.

Proof.

Let us describe a winning strategy for α\alpha. Let sns_{n} be a winning strategy for α\alpha on XnX_{n} that satisfies condition (4) of 16. We set =𝔓[(Xn)nω]{\mathcal{B}}={\mathfrak{P}}\left[(X_{n})_{n\in\omega}\right]. It follows from proposition 17 that it suffices to consider the case when the player β\beta chooses sets of the form Vk=nωVn,kV_{k}=\prod_{n\in\omega}V_{n,k}\in{\mathcal{B}}. At the kkth step, we put Un,k=sn(Un,0,Vn,0,,Vn,k1)U_{n,k}=s_{n}(U_{n,0},V_{n,0},\dots,V_{n,k-1}) for nω{n\in\omega} and Uk=nωUn,kU_{k}=\prod_{n\in\omega}U_{n,k}. ∎

Assertion 1.

Let (X,𝒯)(X,{\mathcal{T}}) be a quasi-regular space, 𝒯=𝒯{}{\mathcal{T}}^{*}={\mathcal{T}}\setminus\{\varnothing\}, γn𝒯\gamma_{n}\subset{\mathcal{T}}^{*}, γn¯=X\overline{\bigcup\gamma_{n}}=X for nω{n\in\omega}, 𝒱𝔙(X){\mathcal{V}}\subset{\mathfrak{V}}(X), and 𝒱=𝒱𝔙BM(X){\mathcal{V}}^{*}={\mathcal{V}}\cup{\mathfrak{V}}_{BM}^{*}(X). Suppose that the following condition is met:

  • 1.

    if (Un)nω𝔙R(X)(U_{n})_{n\in\omega}\in{\mathfrak{V}}_{R}(X), U0=XU_{0}=X and for each n>0n>0 there exists WnγnW_{n}\in\gamma_{n}, such that UnWnU_{n}\subset W_{n}, then either nωUn=\bigcap_{{n\in\omega}}U_{n}=\varnothing or (Un)nω𝒱(U_{n})_{n\in\omega}\in{\mathcal{V}}.

Then BM(X,𝒱)BM(X,{\mathcal{V}}^{*}) is α\alpha-favorable.

Proof.

Let us describe a winning strategy for α\alpha. Let U0=XU_{0}=X. For n>0n>0, at the nnth step the player α\alpha chooses Un𝒯U_{n}\in{\mathcal{T}}^{*} in such a way that the following conditions are satisfied:

  • 1.

    Un¯Vn1\overline{U_{n}}\subset V_{n-1};

  • 2.

    Un¯Wn\overline{U_{n}}\subset W_{n} for some WnγnW_{n}\in\gamma_{n}.

Theorem 3.
  • (1)

    ΓfBMΓkBMΓpBMΓoBM\Gamma^{\scriptscriptstyle{BM}}_{f}\subset\Gamma^{\scriptscriptstyle{BM}}_{k}\subset\Gamma^{\scriptscriptstyle{BM}}_{p}\subset\Gamma^{\scriptscriptstyle{BM}}_{o}.

  • (2)

    Let r{o,p}r\in\{o,p\}, XΓrBMX\in\Gamma^{\scriptscriptstyle{BM}}_{r}, and YΓkBMY\in\Gamma^{\scriptscriptstyle{BM}}_{k}. Then X×YΓrBMX\times Y\in\Gamma^{\scriptscriptstyle{BM}}_{r}.

  • (3)

    Let r{k,f}r\in\{k,f\} and XnΓrBMX_{n}\in\Gamma^{\scriptscriptstyle{BM}}_{r} for nω{n\in\omega}. Then nωXnΓrBM\prod_{n\in\omega}X_{n}\in\Gamma^{\scriptscriptstyle{BM}}_{r}.

  • (4)

    For r{f,k,p,o}r\in\{f,k,p,o\}, if XΓrBMX\in\Gamma^{\scriptscriptstyle{BM}}_{r} and UXU\subset X are open subspaces, then UΓrBMU\in\Gamma^{\scriptscriptstyle{BM}}_{r}.

  • (5)

    For r{f,k,p,o}r\in\{f,k,p,o\}, if the space XX is locally ΓrBM\Gamma^{\scriptscriptstyle{BM}}_{r} (that is, any point has a neighborhood UΓrBMU\in\Gamma^{\scriptscriptstyle{BM}}_{r}), then XΓrBMX\in\Gamma^{\scriptscriptstyle{BM}}_{r}.

  • (6)

    If XX is a quasi-regular space and belongs to one of the classes (ΓtBM)(\Gamma^{\scriptscriptstyle{BM}}_{t}), t{f,k,p,o}t\in\{f,k,p,o\}, listed below, then XX is a ΓtBM\Gamma^{\scriptscriptstyle{BM}}_{t}-space:

    • (ΓfBM)\mathrm{(\Gamma^{\scriptscriptstyle{BM}}_{f})}

      metrizable spaces, Moore spaces, developable space, semiregular σ\sigma-spaces, and semiregular spaces with a countable network;

    • (ΓkBM)\mathrm{(\Gamma^{\scriptscriptstyle{BM}}_{k})}

      compact spaces, pp-spaces, semiregular strongly Σ\Sigma-spaces;

    • (ΓpBM)\mathrm{(\Gamma^{\scriptscriptstyle{BM}}_{p})}

      countably compact spaces, semiregular Σ\Sigma-spaces, wΔw\Delta-spaces;

    • (ΓoBM)\mathrm{(\Gamma^{\scriptscriptstyle{BM}}_{o})}

      feebly compact spaces.

Proof.

Item (1) follows from Proposition 14, item (2) follows from Proposition 18, and item (3) follows from Proposition 19.

Let us prove (4). Player α\alpha has a winning strategy on XX.

Let us prove (5). After the first move, player α\alpha chooses U1V0U_{1}\subset V_{0} such that U1ΓrBMU_{1}\in\Gamma^{\scriptscriptstyle{BM}}_{r} and then follows the winning strategy for U1U_{1}.

Let us prove (6). Let 𝒯{\mathcal{T}} be the topology of XX and 𝒯=𝒯{}{\mathcal{T}}^{*}={\mathcal{T}}\setminus\{\varnothing\}. For Exp(X){\mathcal{F}}\subset\operatorname{{Exp}}_{*}(X) we denote

Ω()={U𝒯: either UM= or U¯M¯ for M}.\Omega({\mathcal{F}})=\{U\in{\mathcal{T}}^{*}\,:\,\text{ either }U\cap M=\varnothing\text{ or }\overline{U}\subset\overline{M}\text{ for }M\in{\mathcal{F}}\}.

If {\mathcal{F}} is locally finite, then Ω()¯=X\overline{\bigcup\Omega({\mathcal{F}})}=X. For t{f,k,p,o}t\in\{f,k,p,o\} and 𝒱=𝔙t(X){\mathcal{V}}={\mathfrak{V}}_{t}(X) we construct (γn)nω(\gamma_{n})_{n\in\omega} as in Assertion 1.

  • (ΓfBM)\mathrm{(\Gamma^{\scriptscriptstyle{BM}}_{f})}

    Let XX be a developable space. Take a development (γn)nω(\gamma_{n})_{n\in\omega} of the space XX.

    Let XX be a semiregular σ\sigma-space. Let (n)nω({\mathcal{F}}_{n})_{n\in\omega} be a sequence of locally finite families such that nωn\bigcup_{{n\in\omega}}{\mathcal{F}}_{n} is a network. We set γn=Ω(n)\gamma_{n}=\Omega({\mathcal{F}}_{n}).

  • (ΓkBM)\mathrm{(\Gamma^{\scriptscriptstyle{BM}}_{k})}

    Let XX be a compact space. We put γn={X}\gamma_{n}=\{X\}.

    Let XX be a pp-space. We set γn\gamma_{n} equal to the family 𝒰n{\mathcal{U}}_{n} from the definition of pp-spaces (Definition 3.15, [18]).

    Let XX be a strongly Σ\Sigma-spaces. We put γn=Ω(n)\gamma_{n}=\Omega({\mathcal{F}}_{n}), where =nn{\mathcal{F}}=\bigcup_{n}{\mathcal{F}}_{n} is a σ\sigma-discrete family in Definition 4.13 of [18].

  • (ΓpBM)\mathrm{(\Gamma^{\scriptscriptstyle{BM}}_{p})}

    Let XX be a countably compact space. We put γn={X}\gamma_{n}=\{X\}.

    Let XX be a Σ\Sigma-space. We put γn=Ω(n)\gamma_{n}=\Omega({\mathcal{F}}_{n}), where =nn{\mathcal{F}}=\bigcup_{n}{\mathcal{F}}_{n} is a σ\sigma-discrete family in Definition 4.13 of [18].

    Let XX be a wΔw\Delta-space. We set γn\gamma_{n} equal to the family 𝒢n\mathcal{G}_{n} in Definition 3.1 of [18]).

  • (ΓoBM)\mathrm{(\Gamma^{\scriptscriptstyle{BM}}_{o})}

    Let XX be a feebly compact space. We put γn={X}\gamma_{n}=\{X\}.

In [16] proved Theorem 3 (ΓkBM)(\Gamma^{\scriptscriptstyle{BM}}_{k}) for pp-spaces.

Proposition 20 ([8, 9]).

If t{o,p}t\in\{o,p\}, XX is a Γt,kOD\Gamma^{\scriptscriptstyle{OD}}_{t,k}-space, and YY is a Γt,lOD\Gamma^{\scriptscriptstyle{OD}}_{t,l}-space, then X×YX\times Y is a Γt,lOD\Gamma^{\scriptscriptstyle{OD}}_{t,l}-space.

Proof.

Open sets of the form V×UV\times U, where VXV\subset X and UYU\subset Y, form a base {\mathcal{B}} of the space X×YX\times Y. Let us define a winning strategy for α\alpha. By Proposition 16, it suffices to consider the case when players α\alpha and β\beta choose open sets of the form V×UV\times U\in{\mathcal{B}} and β\beta chooses sets MnM_{n} of the form Mn=MX,i×MY,iM_{n}=M_{X,i}\times M_{Y,i}, MX,i𝒩t(X)M_{X,i}\in{\mathcal{N}}_{t}(X) and MY,i𝒩t(Y)M_{Y,i}\in{\mathcal{N}}_{t}(Y). On the nnth move, we choose open nonempty UX,nVX,n1U_{X,n}\subset V_{X,n-1} and UY,nVY,n1U_{Y,n}\subset V_{Y,n-1} according to strategies on XX and YY, where Vn1=VX,n1×VY,n1V_{n-1}=V_{X,n-1}\times V_{Y,n-1} and Mn1=MX,n1×MY,n1M_{n-1}=M_{X,n-1}\times M_{Y,n-1} is the choice of β\beta at the (n1)(n-1)th step. Let Un=UX,n×UY,nU_{n}=U_{X,n}\times U_{Y,n}. Let us check that the player α\alpha won.

Let (xn)nωL((VX,n,MX,n)nω)(x_{n})_{n\in\omega}\in{\mathrm{L}}((V_{X,n},M_{X,n})_{n\in\omega}). Let ylt¯nωMY,nnωVY,ny\in\operatorname{\overline{lt}}_{{n\in\omega}}M_{Y,n}\cap\bigcap_{{n\in\omega}}V_{Y,n}. Let N(U)={nω:MY,nU}N(U)=\{n\in\omega\,:\,M_{Y,n}\cap U\neq\varnothing\} for UYU\subset Y and

={N(U):U is a neighborhood of the point x}.{\mathcal{F}}=\{N(U)\,:\,U\text{ is a neighborhood of the point }x\}.

The family {\mathcal{F}} is a filter on ω\omega. Let pωp\in\omega^{*} be some ultrafilter containing {\mathcal{F}}. There is xnωVX,nx\in\bigcap_{n\in\omega}V_{X,n} for which x=limp(xn)nωx={\textstyle\lim_{p}}(x_{n})_{n\in\omega}. Then (x,y)lt¯nωMnnωVn(x,y)\in\operatorname{\overline{lt}}_{{n\in\omega}}M_{n}\cap\bigcap_{{n\in\omega}}V_{n}. ∎

Proposition 21 ([8, 9]).

Let DD be an index set and let XδX_{\delta} be a Γo,kOD\Gamma^{\scriptscriptstyle{OD}}_{o,k}-space for δD\delta\in D. Then X=δDXδX=\prod_{\delta\in D}X_{\delta} is a Γo,kOD\Gamma^{\scriptscriptstyle{OD}}_{o,k}-space.

Proof.

By virtue of proposition 17 (3), it suffices to consider the case when players α\alpha and β\beta choose sets Un,Vn,MnU_{n},V_{n},M_{n} from =𝔓[(Xδ)δD]{\mathcal{B}}={\mathfrak{P}}\left[(X_{\delta})_{\delta\in D}\right].

Let us define a winning strategy for player α\alpha. Let sδs_{\delta} be a winning strategy for α\alpha on XδX_{\delta} satisfying condition (6) in Proposition 16. Suppose that n1n-1 moves are made and sets Uk,Vk,MkU_{k},V_{k},M_{k}\in{\mathcal{B}}, Uk=δDUδ,kU_{k}=\prod_{\delta\in D}U_{\delta,k}, Vk=δDVδ,kV_{k}=\prod_{\delta\in D}V_{\delta,k}, Mk=δDMδ,kM_{k}=\prod_{\delta\in D}M_{\delta,k} for k<nk<n are chosen. We put

Uδ,n=sδ(Uδ,0,Vδ,0,Mδ,0,,Uδ,n1,Vδ,n1,Mδ,n1)U_{\delta,n}=s_{\delta}(U_{\delta,0},V_{\delta,0},M_{\delta,0},\dots,U_{\delta,n-1},V_{\delta,n-1},M_{\delta,n-1})

for δD\delta\in D and Un=δDUδ,nU_{n}=\prod_{\delta\in D}U_{\delta,n}. Since Uδ,k=Vδ,k=Mδ,k=XδU_{\delta,k}=V_{\delta,k}=M_{\delta,k}=X_{\delta} for almost all δ\delta, we have UnU_{n}\in{\mathcal{B}}. ∎

Proposition 22.

Let XnX_{n} be a Γp,kOD\Gamma^{\scriptscriptstyle{OD}}_{p,k}-space for nω{n\in\omega}. Then X=nωXnX=\prod_{{n\in\omega}}X_{n} is a Γp,kOD\Gamma^{\scriptscriptstyle{OD}}_{p,k}-space.

Proof.

Let us describe a winning strategy for α\alpha. Let sns_{n} be a winning strategy for α\alpha on XnX_{n} satisfying condition (5) of 16. We denote =𝔓[(Xn)nω]{\mathcal{B}}={\mathfrak{P}}\left[(X_{n})_{n\in\omega}\right]. It follows from Proposition 17 that it suffices to consider the case when the players α\alpha and β\beta choose the sets Uk,VkU_{k},V_{k}\in{\mathcal{B}}. Suppose that Uj,VjU_{j},V_{j}\in{\mathcal{B}}, xjXx_{j}\in X, Uj=nωUj,nU_{j}=\prod_{n\in\omega}U_{j,n}, Vj=nωVj,nV_{j}=\prod_{n\in\omega}V_{j,n}, and xj=(xj,n)nωx_{j}=(x_{j,n})_{n\in\omega} for j<kj<k. Let Un,k=sn(Un,0,Vn,0,xn,0,,Vn,k1,xn,k1)U_{n,k}=s_{n}(U_{n,0},V_{n,0},x_{n,0},\dots,V_{n,k-1},x_{n,k-1}) for nω{n\in\omega} and Uk=nωUn,kU_{k}=\prod_{n\in\omega}U_{n,k}. ∎

Theorem 4.
  • (1)

    In the diagram below, each arrow ABA\to B means that ABA\subset B.

    ΓoBM{\Gamma^{\scriptscriptstyle{BM}}_{o}}ΓkBM{\Gamma^{\scriptscriptstyle{BM}}_{k}}ΓpBM{\Gamma^{\scriptscriptstyle{BM}}_{p}}Γo,kOD{\Gamma^{\scriptscriptstyle{OD}}_{o,k}}Γp,kOD{\Gamma^{\scriptscriptstyle{OD}}_{p,k}}Γo,lOD{\Gamma^{\scriptscriptstyle{OD}}_{o,l}}Γp,lOD{\Gamma^{\scriptscriptstyle{OD}}_{p,l}}
  • (2)

    Let t{o,p}t\in\{o,p\}, XX be a Γt,kOD\Gamma^{\scriptscriptstyle{OD}}_{t,k}-space and YY be a Γt,lOD\Gamma^{\scriptscriptstyle{OD}}_{t,l}-space. Then X×YX\times Y is a Γt,lOD\Gamma^{\scriptscriptstyle{OD}}_{t,l}-space.

  • (3)

    Let DD be an index set, and XδX_{\delta} be a Γo,kOD\Gamma^{\scriptscriptstyle{OD}}_{o,k}-space for δD\delta\in D. Then δDXδ\prod_{\delta\in D}X_{\delta} is a Γo,kOD\Gamma^{\scriptscriptstyle{OD}}_{o,k}-space.

  • (4)

    Let XnX_{n} be a Γp,kOD\Gamma^{\scriptscriptstyle{OD}}_{p,k}-space for nω{n\in\omega}. Then nωXn\prod_{{n\in\omega}}X_{n} is a Γp,kOD\Gamma^{\scriptscriptstyle{OD}}_{p,k}-space.

  • (5)

    For t{o,p}t\in\{o,p\} and q{l,k}q\in\{l,k\}, if XΓt,qODX\in\Gamma^{\scriptscriptstyle{OD}}_{t,q} and UXU\subset X is an open subspace, then UΓt,qODU\in\Gamma^{\scriptscriptstyle{OD}}_{t,q}.

  • (6)

    For t{o,p}t\in\{o,p\} and q{l,k}q\in\{l,k\}, if XX is locally Γt,qOD\Gamma^{\scriptscriptstyle{OD}}_{t,q} (i.e., any point has a neighborhood UΓt,qODU\in\Gamma^{\scriptscriptstyle{OD}}_{t,q}), then XΓt,qODX\in\Gamma^{\scriptscriptstyle{OD}}_{t,q}.

  • (7)

    If XX is a quasi-regular space and belongs to one of the classes (Γt,qOD)(\Gamma^{\scriptscriptstyle{OD}}_{t,q}) for t{o,p}t\in\{o,p\} and q{l,k}q\in\{l,k\} listed below, then XX is a Γt,qOD\Gamma^{\scriptscriptstyle{OD}}_{t,q}-space:

    • (Γp,kOD)\mathrm{(\Gamma^{\scriptscriptstyle{OD}}_{p,k})}

      metrizable spaces, Moore spaces, developable spaces, semiregular σ\sigma-spaces and semiregular spaces with a countable network, compact spaces, pp-spaces, semiregular strongly Σ\Sigma-spaces;

    • (Γp,lOD)\mathrm{(\Gamma^{\scriptscriptstyle{OD}}_{p,l})}

      countably compact spaces, semiregular Σ\Sigma-spaces, wΔw\Delta-spaces;

    • (Γo,lOD)\mathrm{(\Gamma^{\scriptscriptstyle{OD}}_{o,l})}

      feebly compact spaces.

Proof.

Item (1) follows from Proposition 14, item (2) follows from Proposition 20, item (3) follows from Proposition 21 and item (4) follows from Proposition 22.

Let us prove (5). Player α\alpha follows a winning strategy for XX.

Let us prove (6). After the first move, player α\alpha chooses U1V0U_{1}\subset V_{0} such that U1ΓrBMU_{1}\in\Gamma^{\scriptscriptstyle{BM}}_{r}, then follows the winning strategy for U1U_{1}.

Item (7) follows from Theorem 3. ∎

6 Modifications of the Banach–Mazur game with four players

To formulate and prove the results of this section, it is necessary to define the game and related concepts precisely.

6.1 General definition of a game.

The game 𝔤{\mathfrak{g}} is defined by the following components:

  • (P)

    PP, a set of players;

  • (𝒮{\mathcal{S}})

    𝒮=(Sα)αP{\mathcal{S}}=(S_{\alpha})_{{\alpha\in P}}, an indexed family of strategies of players, in which each player α\alpha has a nonempty set of strategies SαS_{\alpha}. A set

    𝒮[P]=𝒮{\mathcal{S}}^{[P]}=\prod{\mathcal{S}}

    is the strategy space in the game;

  • (R)

    RR, a set of plays, a record of the players’ moves after they implement their strategies;

  • (π\pi)

    π:𝒮[P]R\pi:{\mathcal{S}}^{[P]}\to R, the outcome function, implementation of player strategies during the game, forming a play in the set of plays RR;

  • (𝒪)\mathrm{({\mathcal{O}})}

    𝒪=(Oα)αP{\mathcal{O}}=(O_{\alpha})_{{\alpha\in P}}, the family of outcomes of the game: OαO_{\alpha} determines the payoff for player α\alpha;

  • (ν\nu)

    ν:R𝒪[P]\nu:R\to{\mathcal{O}}^{[P]}, the payoff function, which determines the game outcome: ν=αPνα\nu=\mathop{\bigtriangleup}_{{\alpha\in P}}\nu_{\alpha}, where να=παν\nu_{\alpha}=\pi_{\alpha}\circ\nu.

The game goes as follows:

  • 1.

    each player αP{\alpha\in P} chooses a strategy sαSαs_{\alpha}\in S_{\alpha};

  • 2.

    players play the game according to their chosen strategies and obtain a play r=π(s)Rr=\pi(s)\in R, where s=(sα)αP𝒮[P]s=(s_{\alpha})_{{\alpha\in P}}\in{\mathcal{S}}^{[P]};

  • 3.

    the payoff function ν\nu determines the result of the play rr: (vα)αP=ν(r)𝒪[P](v_{\alpha})_{{\alpha\in P}}=\nu(r)\in{\mathcal{O}}^{[P]}, where vα=να(r)v_{\alpha}=\nu_{\alpha}(r) is the payoff for player α\alpha.

We consider games with 𝒪=(𝔻α)αP{\mathcal{O}}=(\mathbb{D}_{\alpha})_{{\alpha\in P}}, where 𝔻α=𝔻={0,1}\mathbb{D}_{\alpha}=\mathbb{D}=\{0,1\}, i.e., when να\nu_{\alpha} is a Boolean function, 0 is treated as false and 11 as true. The result of a game να(r)\nu_{\alpha}(r) is interpreted as the payoff of player α\alpha: α\alpha wins if να(r)=1\nu_{\alpha}(r)=1 and α\alpha loses if να(r)=0\nu_{\alpha}(r)=0. Such games will be called games with a Boolean payoff function.

A game with a Boolean payoff function is called a zero-sum game if for any play rRr\in R there exists a unique player αP{\alpha\in P} for which να(r)\nu_{\alpha}(r) equals 11. For games with two players, a zero-sum game is a game in which the first player’s gain is the second player’s loss and the first player’s loss is the second player’s gain, i.e., νβ=¬να{\nu_{\beta}}=\lnot\nu_{\alpha} if P={α,β}P=\{\alpha,\beta\}.

The player α\alpha is called nature if να\nu_{\alpha} is identically equal to zero.

A coalition KPK\subset P is any set of players. The set Kc=PKK^{c}=P\setminus K is the opposite coalition. A set

𝒮[K]αKSα{\mathcal{S}}^{[K]}\coloneqq\prod_{\alpha\in K}S_{\alpha}

is called the set of coalition strategies of KK and s=(sα)αK𝒮[K]s=(s_{\alpha})_{\alpha\in K}\in{\mathcal{S}}^{[K]}, a coalition strategy of KK.

If a game has a Boolean payoff function, then we denote

νKαKνα.\nu_{K}\coloneqq\bigvee_{\alpha\in K}\nu_{\alpha}.

For rRr\in R, νK(r)=1\nu_{K}(r)=1 if and only if να(r)=1\nu_{\alpha}(r)=1 for some αK\alpha\in K.

A coalition strategy s𝒮[K]s\in{\mathcal{S}}^{[K]} for a coalition KK is called KK-winning if πK(π(st))=1\pi_{K}(\pi(s{}^{\frown}t))=1 for all t𝒮[Kc]t\in{\mathcal{S}}^{[K^{c}]}. A game is called KK-favorable if the coalition KK has a KK-winning strategy. A game is KK-unfavorable if there is no KK-winning strategy.

The following assertion is checked directly.

Assertion 2.

Let KTPK\subset T\subset P. If the game 𝔤{\mathfrak{g}} is KK-favorable, then 𝔤{\mathfrak{g}} is TT-favorable. If the game 𝔤{\mathfrak{g}} is TT-unfavorable, then 𝔤{\mathfrak{g}} is KK-unfavorable.

For αP{\alpha\in P}, the strategy sαSαs_{\alpha}\in S_{\alpha} is called α\alpha-winning if the strategy {αsα}\{\alpha\to s_{\alpha}\} of the coalition {α}\{\alpha\} is {α}\{\alpha\}-winning. The game is α\alpha-favorable if it is {α}\{\alpha\}-favorable, and the game is α\alpha-unfavorable if it is {α}\{\alpha\}-unfavorable.

Let Q=Kc=PKQ=K^{c}=P\setminus K, let s𝒮[K]s\in{\mathcal{S}}^{[K]} be a strategy of KK, and let αQ\alpha\in Q be a coalition. We define games 𝔤=𝔤[s]{\mathfrak{g}}^{\prime}={\mathfrak{g}}[s] and 𝔤′′=𝔤[s,α]{\mathfrak{g}}^{\prime\prime}={\mathfrak{g}}[s,\alpha]. The components of the games 𝔤{\mathfrak{g}}^{\prime} and 𝔤′′{\mathfrak{g}}^{\prime\prime} are the same, the difference is in the payoff function for the player α\alpha. The game 𝔤{\mathfrak{g}}^{\prime} is defined by the following components:

  • (P)

    QQ, a set of players;

  • (𝒮{\mathcal{S}})

    (Sα)αQ(S_{\alpha})_{\alpha\in Q}, a family of strategies;

  • (R)

    RR, a set of games like in the game 𝔤{\mathfrak{g}};

  • (π\pi)

    π:𝒮[Q]R\pi^{\prime}:{\mathcal{S}}^{[Q]}\to R, π(q)=π(qs)\pi^{\prime}(q)=\pi(q{}^{\frown}s) for q𝒮[Q]q\in{\mathcal{S}}^{[Q]}, the outcome function;

  • (𝒪)\mathrm{({\mathcal{O}})}

    Boolean game;

  • (ν\nu)

    ν′′,ν:R𝒪[Q]\nu^{\prime\prime},\nu^{\prime}:R\to{\mathcal{O}}^{[Q]}, the payoff functions: νδ′′=νδ=νδ\nu^{\prime\prime}_{\delta}=\nu^{\prime}_{\delta}=\nu_{\delta} if δα\delta\neq\alpha, να=να\nu^{\prime}_{\alpha}=\nu_{\alpha} and να′′=νK{α}=νανK\nu^{\prime\prime}_{\alpha}=\nu_{K\cup\{\alpha\}}=\nu_{\alpha}\lor\nu_{K}.

We call a coalition KK nature if each player in the coalition is nature, that is, νK0\nu_{K}\equiv 0. A coalition KK is called dummy if KK is nature and for any coalition LQL\subset Q it is LL-favorable if and only if the game is LKL\cup K-favorable.

The following proposition follows from the definitions.

Proposition 23.

Let 𝔤{\mathfrak{g}} be a game with a Boolean payoff function, PP be the set of players in the game 𝔤{\mathfrak{g}}, KPK\subset P be a coalition, Q=KKQ=K\setminus K be the opposite coalition, and s𝒮[K]s\in{\mathcal{S}}^{[K]}. Then the following assertions hold.

  • (1)

    The game 𝔤[s,α]{\mathfrak{g}}[s,\alpha] is a zero-sum game for all αQ\alpha\in Q.

  • (2)

    The game 𝔤[s]{\mathfrak{g}}[s] is a zero-sum game if and only if the coalition KK is nature. In this case the game 𝔤[s]{\mathfrak{g}}[s] is the same as 𝔤[s,α]{\mathfrak{g}}[s,\alpha] for all αQ\alpha\in Q.

  • (3)

    Let KK be nature. A coalition KK is a dummy coalition if and only if 𝔤[s]𝔤[s]{\mathfrak{g}}[s]\sim{\mathfrak{g}}[s^{\prime}] for any s𝒮[K]s^{\prime}\in{\mathcal{S}}^{[K]}.

6.2 Definition of the game OD~(X,𝒩,𝒲;Ω){\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega)

Let (X,𝒯)(X,{\mathcal{T}}) be a space, and let 𝒯=𝒯{}{\mathcal{T}}^{*}={\mathcal{T}}\setminus\{\varnothing\}. Suppose that 𝒩{\mathcal{N}} is a π\pi-net of XX, 𝒲𝔚(X)\mathcal{W}\subset{\mathfrak{W}}(X) and Ω𝒯\Omega\subset{\mathcal{T}}^{*}.

Game parameters:X,𝒩,𝒲X,{\mathcal{N}},\mathcal{W} and Ω\Omega.

Game set of players:P={α,γ,β,δ}P=\{\alpha,\gamma,\beta,\delta\} (four-players game).

The nnth move:  On the nnth move, players choose sets

Un,Gn,𝒢n,Vn,Mn,Dn,𝒟n;U_{n},G_{n},\mathcal{G}_{n},V_{n},M_{n},D_{n},{\mathcal{D}}_{n};

in details:

player selection
α\alpha UnU_{n} Un𝒯U_{n}\in{\mathcal{T}}^{*}
γ\gamma Gn,𝒢nG_{n},\mathcal{G}_{n} Gn𝒯G_{n}\in{\mathcal{T}}^{*}, 𝒢n𝒯\mathcal{G}_{n}\subset{\mathcal{T}}^{*}
β\beta Vn,MnV_{n},M_{n} Vn𝒯V_{n}\in{\mathcal{T}}^{*}, Mn𝒩M_{n}\in{\mathcal{N}}
δ\delta Dn,𝒟nD_{n},{\mathcal{D}}_{n} Dn𝒯D_{n}\in{\mathcal{T}}^{*}, 𝒟n𝒯{\mathcal{D}}_{n}\subset{\mathcal{T}}^{*}

For U𝒯U\in{\mathcal{T}}^{*} we denote

Π(U)={(V,𝒫)𝒯×Exp(𝒯):𝒫 is a π-base V}.\displaystyle\Pi(U)=\{(V,{\mathcal{P}})\in{\mathcal{T}}^{*}\times\operatorname{{Exp}}_{*}({\mathcal{T}}^{*})\,:\,{\mathcal{P}}\text{ is a $\pi$-base }V\}.

On the first move, for n=0n=0, the choice of players is

player choice choice definition
α\alpha U0U_{0} U0ΩU_{0}\in\Omega
γ\gamma G0,𝒢0G_{0},\mathcal{G}_{0} G0=U0G_{0}=U_{0} and (G0,𝒢0)Π(U0)(G_{0},\mathcal{G}_{0})\in\Pi(U_{0})
β\beta V0,M0V_{0},M_{0} V0𝒢0V_{0}\in\mathcal{G}_{0}, M0𝒩M_{0}\in{\mathcal{N}} and M0U0M_{0}\subset U_{0}
δ\delta D0,𝒟0D_{0},{\mathcal{D}}_{0} (D0,𝒟0)Π(V0)(D_{0},{\mathcal{D}}_{0})\in\Pi(V_{0})

On the nnth move, for n>0n>0, we determine the choice of players is

player choice choice definition
α\alpha UnU_{n} Un𝒟n1U_{n}\in{\mathcal{D}}_{n-1}
γ\gamma Gn,𝒢nG_{n},\mathcal{G}_{n} (Gn,𝒢n)Π(Un)(G_{n},\mathcal{G}_{n})\in\Pi(U_{n})
β\beta Vn,MnV_{n},M_{n} Vn𝒢nV_{n}\in\mathcal{G}_{n}, Mn𝒩M_{n}\in{\mathcal{N}} and MnUnM_{n}\subset U_{n}
δ\delta Dn,𝒟nD_{n},{\mathcal{D}}_{n} (Dn,𝒟n)Π(Vn)(D_{n},{\mathcal{D}}_{n})\in\Pi(V_{n})

Note that for nω{n\in\omega}

U0=G0UnGnVnDnUn+1 and MnUn.U_{0}=G_{0}\supset\dots\supset U_{n}\supset G_{n}\supset V_{n}\supset D_{n}\supset U_{n+1}\supset\dots\ \ \text{ and }\ \ M_{n}\subset U_{n}.

The conditions for players to win:  Player α\alpha wins if (Un,Mn)nω𝒲(U_{n},M_{n})_{n\in\omega}\in\mathcal{W}. Player β\beta wins if (Un,Mn)nω𝒲(U_{n},M_{n})_{n\in\omega}\notin\mathcal{W}. Players γ\gamma and δ\delta are nature, which means that they always lose.

6.3 Definition of the game BM~(X;Ω){\widetilde{BM}}(X;\Omega)

Let (X,𝒯)(X,{\mathcal{T}}) be the space, 𝒯=𝒯{}{\mathcal{T}}^{*}={\mathcal{T}}\setminus\{\varnothing\} and Ω𝒯\Omega\subset{\mathcal{T}}^{*}.

Game parameters:XX and Ω\Omega.

The set of players in the game:P={α,β}P=\{\alpha,\beta\} (two-player game).

The nnth move:  On the nnth move, players choose sets

Un,Vn𝒯.U_{n},V_{n}\in{\mathcal{T}}^{*}.

On the first move, for n=0n=0, player α\alpha chooses U0ΩU_{0}\in\Omega, and player β\beta chooses V0𝒯V_{0}\in{\mathcal{T}}^{*}, V0U0V_{0}\subset U_{0}. On the nnth move, for n>0n>0, player α\alpha chooses Un𝒯U_{n}\in{\mathcal{T}}^{*}, UnVn1U_{n}\subset V_{n-1}, and player β\beta chooses Vn𝒯V_{n}\in{\mathcal{T}}^{*}, VnUnV_{n}\subset U_{n}.

The conditions for players to win:  Player α\alpha wins if nωVn\bigcap_{n\in\omega}V_{n}\neq\varnothing, otherwise β\beta wins.

6.4 Relationship between the MBMB, BMBM and BM~{\widetilde{BM}} games

We denote ΩBM={X}\Omega_{BM}=\{X\}, and ΩMB=𝒯\Omega_{MB}={\mathcal{T}}^{*}. From the construction we see that the following assertion holds.

Assertion 3.
BM~(X;ΩBM)\displaystyle{\widetilde{BM}}(X;\Omega_{BM}) BM(X),\displaystyle\sim BM(X),
BM~(X;ΩMB)\displaystyle{\widetilde{BM}}(X;\Omega_{MB}) MB(X).\displaystyle\sim MB(X).

The Banach–Oxtoby Theorem 2 implies the following proposition.

Proposition 24.

Let XX be a space, and let Ω𝒯\Omega\subset{\mathcal{T}}^{*}. The game BM~(X;Ω){\widetilde{BM}}(X;\Omega) is β\beta-unfavorable if and only if UU is Baire for some UΩU\in\Omega.

6.5 Properties of the game OD~(X,𝒩,𝒲;Ω){\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega)

We fix a mapping Λ:𝒯×Exp(𝒯)𝒯\Lambda:{\mathcal{T}}^{*}\times\operatorname{{Exp}}_{*}({\mathcal{T}}^{*})\to{\mathcal{T}} for which the following condition is satisfied: if (U,𝒫)𝒯×Exp(𝒯)(U,{\mathcal{P}})\in{\mathcal{T}}\times\operatorname{{Exp}}_{*}({\mathcal{T}}^{*}) and V=Λ(U,𝒫)V=\Lambda(U,{\mathcal{P}}), then

  • 1.

    V=UV=U if U𝒫U\in{\mathcal{P}};

  • 2.

    V𝒫={W𝒫:WU}V\in{\mathcal{P}}^{\prime}=\{W\in{\mathcal{P}}\,:\,W\subset U\} if 𝒫{\mathcal{P}}^{\prime}\neq\varnothing;

  • 3.

    V=V=\varnothing otherwise.

Notation of game components of the game OD~(X,𝒩,𝒲;Ω){\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega):  For κP\kappa\in P, we denote by SκS_{\kappa} the strategy of player κ\kappa, and put 𝒮=(Sκ)κP{\mathcal{S}}=(S_{\kappa})_{\kappa\in P}. We denote by π\pi the outcome function, π=𝒮[P]R\pi={\mathcal{S}}^{[P]}\to R, where RR is the set of plays.

Assertion 4.

Let (sα,sγ,sδ)Sα×Sγ×Sδ(s_{\alpha},s_{\gamma},s_{\delta})\in S_{\alpha}\times S_{\gamma}\times S_{\delta}. There is a strategy qαSαq_{\alpha}\in S_{\alpha} such that for any (qγ,qβ,qδ)Sγ×Sβ×Sδ(q_{\gamma},q_{\beta},q_{\delta})\in S_{\gamma}\times S_{\beta}\times S_{\delta} there exists sβSβs_{\beta}\in S_{\beta} so for s=(sκ)κPs=(s_{\kappa})_{\kappa\in P}, q=(qκ)κPq=(q_{\kappa})_{\kappa\in P},

(U~n,G~n,𝒢~n,V~n,M~n,D~n,𝒟~n)nω\displaystyle(\widetilde{U}_{n},\widetilde{G}_{n},\widetilde{\mathcal{G}}_{n},\widetilde{V}_{n},\widetilde{M}_{n},\widetilde{D}_{n},\widetilde{{\mathcal{D}}}_{n})_{n\in\omega} =π(s),\displaystyle=\pi(s),
(Un,Gn,𝒢n,Vn,Mn,Dn,𝒟n)nω\displaystyle(U_{n},G_{n},\mathcal{G}_{n},V_{n},M_{n},D_{n},{\mathcal{D}}_{n})_{n\in\omega} =π(q)\displaystyle=\pi(q)

condition is met:

  • (a)

    for nω{n\in\omega}

    • (1)

      U~nG~nUnGnVnDnV~nD~nU~n+1\widetilde{U}_{n}\supset\widetilde{G}_{n}\supset U_{n}\supset G_{n}\supset V_{n}\supset D_{n}\supset\widetilde{V}_{n}\supset\widetilde{D}_{n}\supset\widetilde{U}_{n+1};

    • (2)

      M~n=MnUnU~n\widetilde{M}_{n}=M_{n}\subset U_{n}\subset\widetilde{U}_{n};

    • (3)

      V~n+1Vn+1V~nVn\widetilde{V}_{n+1}\subset V_{n+1}\subset\widetilde{V}_{n}\subset V_{n}.

  • (b)

    if the family 𝒲\mathcal{W} is monolithic and (V~n,M~n)nω𝒲(\widetilde{V}_{n},\widetilde{M}_{n})_{n\in\omega}\in\mathcal{W}, then (Vn,Mn)nω𝒲(V_{n},M_{n})_{n\in\omega}\in\mathcal{W}.

Proof.

Let qαq_{\alpha} and sβs_{\beta} be strategies for which (a) holds. Item (b) follows from the definition of monolithic and item (a). On the first move, for n=0n=0, the choice of players is:

strategy choice definition of choice
sαs_{\alpha} U~0\widetilde{U}_{0}
sγs_{\gamma} G~0,𝒢~0\widetilde{G}_{0},\widetilde{\mathcal{G}}_{0}
qαq_{\alpha} U0U_{0} U0=U~0U_{0}=\widetilde{U}_{0}
qγq_{\gamma} G0,𝒢0G_{0},\mathcal{G}_{0}
qβq_{\beta} V0,M0V_{0},M_{0}
qδq_{\delta} D0,𝒟0D_{0},{\mathcal{D}}_{0}
sβs_{\beta} V~0,M~0\widetilde{V}_{0},\widetilde{M}_{0} V~0=Λ(D0,𝒢~0)\widetilde{V}_{0}=\Lambda(D_{0},\widetilde{\mathcal{G}}_{0}), M~0=M0\widetilde{M}_{0}=M_{0}
sδs_{\delta} D~0,𝒟~0\widetilde{D}_{0},\widetilde{{\mathcal{D}}}_{0}

On the nnth move, for n>0n>0, the choice of players is:

strategy choice definition of choice
sαs_{\alpha} U~n\widetilde{U}_{n}
sγs_{\gamma} G~n,𝒢~n\widetilde{G}_{n},\widetilde{\mathcal{G}}_{n}
qαq_{\alpha} UnU_{n} Un=Λ(G~n,𝒟n1)U_{n}=\Lambda(\widetilde{G}_{n},{\mathcal{D}}_{n-1})
qγq_{\gamma} Gn,𝒢nG_{n},\mathcal{G}_{n}
qβq_{\beta} Vn,MnV_{n},M_{n}
qδq_{\delta} Dn,𝒟nD_{n},{\mathcal{D}}_{n}
sβs_{\beta} V~n,M~n\widetilde{V}_{n},\widetilde{M}_{n} V~n=Λ(Dn,𝒢~n)\widetilde{V}_{n}=\Lambda(D_{n},\widetilde{\mathcal{G}}_{n}), M~n=Mn\widetilde{M}_{n}=M_{n}
sδs_{\delta} D~n,𝒟~n\widetilde{D}_{n},\widetilde{{\mathcal{D}}}_{n}

Assertion 5.

Let (sγ,sβ,sδ)Sγ×Sβ×Sδ(s_{\gamma},s_{\beta},s_{\delta})\in S_{\gamma}\times S_{\beta}\times S_{\delta}. There is a strategy qβSβq_{\beta}\in S_{\beta} such that for any (qα,qγ,qδ)Sα×Sγ×Sδ(q_{\alpha},q_{\gamma},q_{\delta})\in S_{\alpha}\times S_{\gamma}\times S_{\delta} there exists sαSαs_{\alpha}\in S_{\alpha} so for s=(sκ)κPs=(s_{\kappa})_{\kappa\in P}, q=(qκ)κPq=(q_{\kappa})_{\kappa\in P},

(U~n,G~n,𝒢~n,V~n,M~n,D~n,𝒟~n)nω\displaystyle(\widetilde{U}_{n},\widetilde{G}_{n},\widetilde{\mathcal{G}}_{n},\widetilde{V}_{n},\widetilde{M}_{n},\widetilde{D}_{n},\widetilde{{\mathcal{D}}}_{n})_{n\in\omega} =π(s),\displaystyle=\pi(s),
(Un,Gn,𝒢n,Vn,Mn,Dn,𝒟n)nω\displaystyle(U_{n},G_{n},\mathcal{G}_{n},V_{n},M_{n},D_{n},{\mathcal{D}}_{n})_{n\in\omega} =π(q)\displaystyle=\pi(q)

condition is met:

  • (a)

    for nω{n\in\omega}

    • (1)

      UnGnU~nG~nV~nD~nVnDnUn+1U_{n}\supset G_{n}\supset\widetilde{U}_{n}\supset\widetilde{G}_{n}\supset\widetilde{V}_{n}\supset\widetilde{D}_{n}\supset V_{n}\supset D_{n}\supset U_{n+1};

    • (2)

      M~n=MnU~nUn\widetilde{M}_{n}=M_{n}\subset\widetilde{U}_{n}\subset U_{n};

    • (3)

      Vn+1V~n+1VnV~nV_{n+1}\subset\widetilde{V}_{n+1}\subset V_{n}\subset\widetilde{V}_{n};

  • (b)

    if the family 𝒲\mathcal{W} is monolithic and (Vn,Mn)nω𝒲(V_{n},M_{n})_{n\in\omega}\in\mathcal{W}, then (V~n,M~n)nω𝒲(\widetilde{V}_{n},\widetilde{M}_{n})_{n\in\omega}\in\mathcal{W}.

Proof.

Let sαs_{\alpha} and qβq_{\beta} be strategies for which (a) holds. Item (b) follows from the definition of monolithic and item (a). On the first move, for n=0n=0, the choice of players is:

strategy choice definition of choice
qαq_{\alpha} U0U_{0}
qγq_{\gamma} G0,𝒢0G_{0},\mathcal{G}_{0}
sαs_{\alpha} U~0\widetilde{U}_{0} U~0=G0=U0\widetilde{U}_{0}=G_{0}=U_{0}
sγs_{\gamma} G~0,𝒢~0\widetilde{G}_{0},\widetilde{\mathcal{G}}_{0}
sβs_{\beta} V~0,M~0\widetilde{V}_{0},\widetilde{M}_{0}
sδs_{\delta} D~0,𝒟~0\widetilde{D}_{0},\widetilde{{\mathcal{D}}}_{0}
qβq_{\beta} V0,M0V_{0},M_{0} V0=Λ(D~0,𝒢0),M0=M~0V_{0}=\Lambda(\widetilde{D}_{0},\mathcal{G}_{0}),M_{0}=\widetilde{M}_{0}
qδq_{\delta} D0,𝒟0D_{0},{\mathcal{D}}_{0}

On the nnth move, for n>0n>0, the choice of players is:

strategy choice definition of choice
qαq_{\alpha} UnU_{n}
qγq_{\gamma} Gn,𝒢nG_{n},\mathcal{G}_{n}
sαs_{\alpha} U~n\widetilde{U}_{n} U~n=Λ(Gn,𝒟~n)\widetilde{U}_{n}=\Lambda(G_{n},\widetilde{{\mathcal{D}}}_{n})
sγs_{\gamma} G~n,𝒢~n\widetilde{G}_{n},\widetilde{\mathcal{G}}_{n}
sβs_{\beta} V~n,M~n\widetilde{V}_{n},\widetilde{M}_{n}
sδs_{\delta} D~n,𝒟~n\widetilde{D}_{n},\widetilde{{\mathcal{D}}}_{n}
qβq_{\beta} Vn,MnV_{n},M_{n} Vn=Λ(D~n,𝒢n),Mn=M~nV_{n}=\Lambda(\widetilde{D}_{n},\mathcal{G}_{n}),M_{n}=\widetilde{M}_{n}
qδq_{\delta} Dn,𝒟nD_{n},{\mathcal{D}}_{n}

Theorem 5.

Let (X,𝒯)(X,{\mathcal{T}}) be a space, 𝒯=𝒯{}{\mathcal{T}}^{*}={\mathcal{T}}\setminus\{\varnothing\}, 𝒩{\mathcal{N}} be a π\pi-net of XX, Ω𝒯\Omega\subset{\mathcal{T}}^{*} and a family 𝒲𝔚(X)\mathcal{W}\subset{\mathfrak{W}}(X) be monolithic. Let 𝔤=OD~(X,𝒩,𝒲;Ω){\mathfrak{g}}={\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega).

  • (1)

    The game 𝔤{\mathfrak{g}} is α\alpha-favorable if and only if 𝔤{\mathfrak{g}} is {α,γ,δ}\{\alpha,\gamma,\delta\}-favorable.

  • (2)

    The game 𝔤{\mathfrak{g}} is β\beta-favorable if and only if 𝔤{\mathfrak{g}} is {γ,β,δ}\{\gamma,\beta,\delta\}-favorable.

  • (3)

    The game 𝔤{\mathfrak{g}} is α\alpha-unfavorable if and only if 𝔤{\mathfrak{g}} is {α,γ,δ}\{\alpha,\gamma,\delta\}-unfavorable.

  • (4)

    The game 𝔤{\mathfrak{g}} is β\beta-unfavorable if and only if 𝔤{\mathfrak{g}} is {γ,β,δ}\{\gamma,\beta,\delta\}-unfavorable.

Proof.

Items (3) and (4) follow from (1) and (2).

Let us prove (1). By Assertion 2, it suffices to show that if the game 𝔤{\mathfrak{g}} is {α,γ,δ}\{\alpha,\gamma,\delta\}-favorable, then 𝔤{\mathfrak{g}} is α\alpha-favorable. Let {αsα,γsγ,δsδ}\{\alpha\to s_{\alpha},\gamma\to s_{\gamma},\delta\to s_{\delta}\} be a {α,γ,δ}\{\alpha,\gamma,\delta\}-winning strategy. Let qαSαq_{\alpha}\in S_{\alpha} be the strategy from Assertion 4. Let us show that qαq_{\alpha} is a winning strategy for player α\alpha. Let (qγ,qβ,qδ)Sγ×Sβ×Sδ(q_{\gamma},q_{\beta},q_{\delta})\in S_{\gamma}\times S_{\beta}\times S_{\delta}. Assertion 4 (b) and the fact that 𝒲\mathcal{W} is monolithic imply that there exists sβSβs_{\beta}\in S_{\beta} such that for s=(sκ)κPs=(s_{\kappa})_{\kappa\in P}, q=(qκ)κPq=(q_{\kappa})_{\kappa\in P},

(U~n,G~n,𝒢~n,V~n,M~n,D~n,𝒟~n)nω\displaystyle(\widetilde{U}_{n},\widetilde{G}_{n},\widetilde{\mathcal{G}}_{n},\widetilde{V}_{n},\widetilde{M}_{n},\widetilde{D}_{n},\widetilde{{\mathcal{D}}}_{n})_{n\in\omega} =π(s),\displaystyle=\pi(s),
(Un,Gn,𝒢n,Vn,Mn,Dn,𝒟n)nω\displaystyle(U_{n},G_{n},\mathcal{G}_{n},V_{n},M_{n},D_{n},{\mathcal{D}}_{n})_{n\in\omega} =π(q)\displaystyle=\pi(q)

the following condition is satisfied: if (V~n,M~n)nω𝒲(\widetilde{V}_{n},\widetilde{M}_{n})_{n\in\omega}\in\mathcal{W}, then (Vn,Mn)nω𝒲(V_{n},M_{n})_{n\in\omega}\in\mathcal{W}. Since {αsα,γsγ,δsδ}\{\alpha\to s_{\alpha},\gamma\to s_{\gamma},\delta\to s_{\delta}\} is a {α,γ,δ}\{\alpha,\gamma,\delta\}-winning strategy, we have (V~n,M~n)nω𝒲(\widetilde{V}_{n},\widetilde{M}_{n})_{n\in\omega}\in\mathcal{W}. Hence (Vn,Mn)nω𝒲(V_{n},M_{n})_{n\in\omega}\in\mathcal{W}, and player α\alpha wins with the strategy qαq_{\alpha}.

Let us prove (2). By Assertion 2, it suffices to show that if 𝔤{\mathfrak{g}} is {γ,β,δ}\{\gamma,\beta,\delta\}-favorable, then 𝔤{\mathfrak{g}} is β\beta-favorable. Let {γsγ,βsβ,δsδ}\{\gamma\to s_{\gamma},\beta\to s_{\beta},\delta\to s_{\delta}\} be a {γ,β,δ}\{\gamma,\beta,\delta\}-winning strategy. Let qβSβq_{\beta}\in S_{\beta} be the strategy from Assertion 5. Let us show that qβq_{\beta} is a winning strategy for player β\beta. Let (qα,qγ,qδ)Sα×Sγ×Sδ(q_{\alpha},q_{\gamma},q_{\delta})\in S_{\alpha}\times S_{\gamma}\times S_{\delta}. Assertion 5 (b) and the fact that 𝒲\mathcal{W} is monolithic imply that there exists sαSαs_{\alpha}\in S_{\alpha} such that for s=(sκ)κPs=(s_{\kappa})_{\kappa\in P}, q=(qκ)κPq=(q_{\kappa})_{\kappa\in P},

(U~n,G~n,𝒢~n,V~n,M~n,D~n,𝒟~n)nω\displaystyle(\widetilde{U}_{n},\widetilde{G}_{n},\widetilde{\mathcal{G}}_{n},\widetilde{V}_{n},\widetilde{M}_{n},\widetilde{D}_{n},\widetilde{{\mathcal{D}}}_{n})_{n\in\omega} =π(s),\displaystyle=\pi(s),
(Un,Gn,𝒢n,Vn,Mn,Dn,𝒟n)nω\displaystyle(U_{n},G_{n},\mathcal{G}_{n},V_{n},M_{n},D_{n},{\mathcal{D}}_{n})_{n\in\omega} =π(q)\displaystyle=\pi(q)

the following condition is satisfied: if (Vn,Mn)nω𝒲(V_{n},M_{n})_{n\in\omega}\in\mathcal{W}, then (V~n,M~n)nω𝒲(\widetilde{V}_{n},\widetilde{M}_{n})_{n\in\omega}\in\mathcal{W}. Since {γsγ,βsβ,δsδ}\{\gamma\to s_{\gamma},\beta\to s_{\beta},\delta\to s_{\delta}\} is a {γ,β,δ}\{\gamma,\beta,\delta\}-winning strategy, we have (V~n,M~n)nω𝒲(\widetilde{V}_{n},\widetilde{M}_{n})_{n\in\omega}\notin\mathcal{W}. Hence (Vn,Mn)nω𝒲(V_{n},M_{n})_{n\in\omega}\notin\mathcal{W}, and player β\beta wins with the strategy qβq_{\beta}. ∎

The definition of the game OD~{\widetilde{OD}} and Theorem 5 imply the following result.

Theorem 6.

Let (X,𝒯)(X,{\mathcal{T}}) be a space, 𝒯=𝒯{}{\mathcal{T}}^{*}={\mathcal{T}}\setminus\{\varnothing\}, 𝒩{\mathcal{N}} be a π\pi-net of XX, Ω𝒯\Omega\subset{\mathcal{T}}^{*}, 𝒲𝔚(X)\mathcal{W}\subset{\mathfrak{W}}(X), and K={γ,δ}K=\{\gamma,\delta\}. Let 𝔤=OD~(X,𝒩,𝒲;Ω){\mathfrak{g}}={\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega). Then the following assertions hold.

  • (1)

    The coalition KK is nature in the game 𝔤{\mathfrak{g}}.

  • (2)

    If the family 𝒲\mathcal{W} is monolithic, then KK is a dummy coalition.

Assertion 6.

Let s~={γs~γ,δs~δ}𝒮[{γ,δ}]{\tilde{s}}=\{\gamma\to{\tilde{s}}_{\gamma},\delta\to{\tilde{s}}_{\delta}\}\in{\mathcal{S}}^{[\{\gamma,\delta\}]} be a strategy of the coalition {γ,δ}\{\gamma,\delta\}, and let UΩ𝒯U\in\Omega\subset{\mathcal{T}}^{*}. If the game OD~(X,𝒩,𝒲;ΩBM){\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega_{BM}) is α\alpha-favorable, then there exists a winning strategy sαs_{\alpha} for player α\alpha in the game OD~(X,𝒩,𝒲;Ω){\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega) such that player α\alpha chooses U0=UU_{0}=U on the first move, i.e., U=sα()U=s_{\alpha}(\varnothing).

Assertion 7.

Let UΩ𝒯U\in\Omega\subset{\mathcal{T}}^{*}. If the game OD~(X,𝒩,𝒲;ΩBM){\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega_{BM}) is α\alpha-favorable, then there exists a winning strategy sαs_{\alpha} for player α\alpha in the game OD~(X,𝒩,𝒲;Ω){\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega)such that player α\alpha chooses U0=UU_{0}=U on the first move, i.e. U=sα()U=s_{\alpha}(\varnothing).

Proof.

Let s¯α\bar{s}_{\alpha} be a winning strategy for player α\alpha in the game OD~(X,𝒩,𝒲;ΩBM){\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega_{BM}). Let us define a winning strategy sαs_{\alpha} for player α\alpha in the game OD~(X,𝒩,𝒲;Ω){\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega). On the first move, player α\alpha chooses U0=UU_{0}=U. On the nnth move, player α\alpha chooses

Un=s¯α(X,G0,𝒢0,V0,D0,𝒟0,,Un1,Gn1,𝒢n1,Vn1,Dn1,𝒟n1).U_{n}=\bar{s}_{\alpha}(X,G_{0},\mathcal{G}_{0},V_{0},D_{0},{\mathcal{D}}_{0},\dots,U_{n-1},G_{n-1},\mathcal{G}_{n-1},V_{n-1},D_{n-1},{\mathcal{D}}_{n-1}).

Assertion 8.

Let (sα,sγ,sβ)Sα×Sγ×Sβ(s_{\alpha},s_{\gamma},s_{\beta})\in S_{\alpha}\times S_{\gamma}\times S_{\beta}, U=sα()U=s_{\alpha}(\varnothing), and πBM\pi_{BM} be the outcome function in the game BM(U)BM(U). There is a strategy qβq_{\beta} of player β\beta in the game BM(U)BM(U) such any strategy qαq_{\alpha} of player α\alpha in the game BM(U)BM(U) there exists a strategy sδSδs_{\delta}\in S_{\delta} such that s=(sκ)κPs=(s_{\kappa})_{\kappa\in P}, q=(qκ)κ{α,β}q=(q_{\kappa})_{\kappa\in\{\alpha,\beta\}},

(Un,Gn,𝒢n,Vn,Mn,Dn,𝒟n)nω\displaystyle(U_{n},G_{n},\mathcal{G}_{n},V_{n},M_{n},D_{n},{\mathcal{D}}_{n})_{n\in\omega} =π(s),\displaystyle=\pi(s),
(U~n,V~n)nω\displaystyle(\widetilde{U}_{n},\widetilde{V}_{n})_{n\in\omega} =πBM(q).\displaystyle=\pi_{BM}(q).

satisfy the condition

  • V~n=Vn\widetilde{V}_{n}=V_{n} for nω{n\in\omega} and U~0=U\widetilde{U}_{0}=U, U~n=Dn1\widetilde{U}_{n}=D_{n-1} for n>0n>0.

Proof.

Let us define the desired strategies qαq_{\alpha} and sδs_{\delta}. On the first move, for n=0n=0, we define the choice of players as

move strategy choice choice definition
0 qαq_{\alpha} U~0=U\widetilde{U}_{0}=U
0 sαs_{\alpha} U0=UU_{0}=U
0 sγs_{\gamma} G0,𝒢0G_{0},\mathcal{G}_{0}
0 sβs_{\beta} V0,M0V_{0},M_{0}
0 qβq_{\beta} V~0\widetilde{V}_{0} V~0=V0\widetilde{V}_{0}=V_{0}
1 qαq_{\alpha} U~1\widetilde{U}_{1}
0 sδs_{\delta} D0,𝒟0D_{0},{\mathcal{D}}_{0} D0=U~1D_{0}=\widetilde{U}_{1}, 𝒟0={V𝒯:VD0}{\mathcal{D}}_{0}=\{V\in{\mathcal{T}}^{*}\,:\,V\subset D_{0}\}

On the nnth move, the choice of players is

move strategy choice choice definition
n sαs_{\alpha} UnU_{n}
n sγs_{\gamma} Gn,𝒢nG_{n},\mathcal{G}_{n}
n sβs_{\beta} Vn,MnV_{n},M_{n}
n qβq_{\beta} V~n\widetilde{V}_{n} V~n=Vn\widetilde{V}_{n}=V_{n}
n+1 qαq_{\alpha} U~n+1\widetilde{U}_{n+1}
n sδs_{\delta} Dn,𝒟nD_{n},{\mathcal{D}}_{n} Dn=U~n+1D_{n}=\widetilde{U}_{n+1}, 𝒟n={V𝒯:VDn}{\mathcal{D}}_{n}=\{V\in{\mathcal{T}}^{*}\,:\,V\subset D_{n}\}

Theorem 7.

Let (X,𝒯)(X,{\mathcal{T}}) be a space, 𝒯=𝒯{}{\mathcal{T}}^{*}={\mathcal{T}}\setminus\{\varnothing\}, 𝒩{\mathcal{N}} be a π\pi-net of XX, Ω𝒯\Omega\subset{\mathcal{T}}^{*} and 𝒲𝔚(X)\mathcal{W}\subset{\mathfrak{W}}(X). Let 𝔤=OD~(X,𝒩,𝒲;Ω){\mathfrak{g}}={\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega), 𝒲=𝒲𝔚e(X)\mathcal{W}^{*}=\mathcal{W}\cup{\mathfrak{W}}_{e}(X), 𝔤=OD~(X,𝒩,𝒲;ΩBM){\mathfrak{g}}^{*}={\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W}^{*};\Omega_{BM}), and 𝔤BM=BM~(X;Ω){\mathfrak{g}}_{BM}={\widetilde{BM}}(X;\Omega). If 𝔤{\mathfrak{g}}^{*} is α\alpha-favorable and 𝔤BM{\mathfrak{g}}_{BM} is β\beta-unfavorable, then 𝔤{\mathfrak{g}} is {γ,β}\{\gamma,\beta\}-unfavorable.

Proof.

Let (sγ,sβ)Sγ×Sβ(s_{\gamma},s_{\beta})\in S_{\gamma}\times S_{\beta}. We need to find strategies (sα,sδ)Sα×Sδ(s_{\alpha},s_{\delta})\in S_{\alpha}\times S_{\delta} such that for s=(sκ)κPs=(s_{\kappa})_{\kappa\in P}, and

(Un,Gn,𝒢n,Vn,Mn,Dn,𝒟n)nω\displaystyle(U_{n},G_{n},\mathcal{G}_{n},V_{n},M_{n},D_{n},{\mathcal{D}}_{n})_{n\in\omega} =π(s)\displaystyle=\pi(s)

we have (Vn,Mn)nω𝒲(V_{n},M_{n})_{n\in\omega}\in\mathcal{W}.

Since 𝔤BM{\mathfrak{g}}_{BM} is β\beta-unfavorable, it follows from Proposition 24 that there exists a Baire subspace UΩU\in\Omega. Let s¯α\bar{s}_{\alpha} be a winning strategy for player α\alpha in the game 𝔤{\mathfrak{g}}^{*}. Assertion 7 implies that there exists a winning strategy sαs_{\alpha} for player α\alpha in the game OD~(X,𝒩,𝒲;Ω){\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W}^{*};\Omega) under which player α\alpha chooses U0=UU_{0}=U on the first move. Let qβq_{\beta} be the strategy of player β\beta in the game BM(U)BM(U) from Assertion 8. Since UU is a Baire space, it follows by the Banach–Oxtoby Theorem 2, that the game BM(U)BM(U) is β\beta-unfavorable. Therefore, there is a strategy qαq_{\alpha} of player α\alpha in the game BM(U)BM(U) such that for q=(qκ)κ{α,β}q=(q_{\kappa})_{\kappa\in\{\alpha,\beta\}} and

(U~n,V~n)nω\displaystyle(\widetilde{U}_{n},\widetilde{V}_{n})_{n\in\omega} =πBM(q).\displaystyle=\pi_{BM}(q).

we have

nωU~n=nωV~n.\bigcap_{n\in\omega}\widetilde{U}_{n}=\bigcap_{n\in\omega}\widetilde{V}_{n}\neq\varnothing.

From Assertion 8 it follows that there exists an sδSδs_{\delta}\in S_{\delta} such that s=(sκ)κPs=(s_{\kappa})_{\kappa\in P} and

(Un,Gn,𝒢n,Vn,Mn,Dn,𝒟n)nω\displaystyle(U_{n},G_{n},\mathcal{G}_{n},V_{n},M_{n},D_{n},{\mathcal{D}}_{n})_{n\in\omega} =π(s)\displaystyle=\pi(s)

satisfy the condition

  • V~n=Vn\widetilde{V}_{n}=V_{n} for nω{n\in\omega} and U~0=U\widetilde{U}_{0}=U, U~n=Dn1\widetilde{U}_{n}=D_{n-1} for n>0n>0.

Hence nωVn\bigcap_{n\in\omega}V_{n}\neq\varnothing and (Vn,Mn)nω𝔚e(X)(V_{n},M_{n})_{n\in\omega}\notin{\mathfrak{W}}_{e}(X). Since the strategy sαs_{\alpha} is winning for α\alpha in the game OD~(X,𝒩,𝒲;Ω){\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W}^{*};\Omega), it follows that (Vn,Mn)nω𝒲=𝒲𝔚e(X)(V_{n},M_{n})_{n\in\omega}\in\mathcal{W}^{*}=\mathcal{W}\cup{\mathfrak{W}}_{e}(X). We obtain (Vn,Mn)nω𝒲(V_{n},M_{n})_{n\in\omega}\in\mathcal{W}. ∎

6.6 Relationship between the ODOD, DODO and OD~{\widetilde{OD}} games

Let Υ,Ψ𝔘(X)\Upsilon,\Psi\in\mathfrak{U}(X). We define a strategy s~γ{\tilde{s}}_{\gamma} for player γ\gamma: at the nnth step, player γ\gamma chooses Gn=UnG_{n}=U_{n} and 𝒢n=Υ(Gn)\mathcal{G}_{n}=\Upsilon(G_{n}). Let us define a strategy s~δ{\tilde{s}}_{\delta} for player δ\delta: at the nnth step player δ\delta chooses Dn=VnD_{n}=V_{n} and 𝒟n=Ψ(Dn){\mathcal{D}}_{n}=\Psi(D_{n}). The strategy s~={γs~γ,δs~δ}𝒮[{γ,δ}]{\tilde{s}}=\{\gamma\to{\tilde{s}}_{\gamma},\delta\to{\tilde{s}}_{\delta}\}\in{\mathcal{S}}^{[\{\gamma,\delta\}]} is a strategy of the coalition {γ,δ}\{\gamma,\delta\}. From the construction of games we see that the following assertion holds.

Assertion 9.
OD~(X,𝒩,𝒲;ΩBM)[s~]\displaystyle{\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega_{BM})[{\tilde{s}}] OD(X,𝒩,𝒲;Υ,Ψ),\displaystyle\sim OD(X,{\mathcal{N}},\mathcal{W};\Upsilon,\Psi),
OD~(X,𝒩,𝒲;ΩMB)[s~]\displaystyle{\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega_{MB})[{\tilde{s}}] DO(X,𝒩,𝒲;Υ,Ψ),\displaystyle\sim DO(X,{\mathcal{N}},\mathcal{W};\Upsilon,\Psi),

Let us define a strategy s¯γ\bar{s}_{\gamma} for player γ\gamma: at the nnth step player γ\gamma chooses Gn=UnG_{n}=U_{n} and 𝒢n={U𝒯:UGn}\mathcal{G}_{n}=\{U\in{\mathcal{T}}^{*}\,:\,U\subset G_{n}\}. Let us define a strategy s¯δ\bar{s}_{\delta} for player δ\delta: at the nnth step player δ\delta chooses Dn=VnD_{n}=V_{n} and 𝒟n={U𝒯:UDn}{\mathcal{D}}_{n}=\{U\in{\mathcal{T}}^{*}\,:\,U\subset D_{n}\}. The strategy s¯={γs~γ,δs~δ}𝒮[{γ,δ}]\bar{s}=\{\gamma\to{\tilde{s}}_{\gamma},\delta\to{\tilde{s}}_{\delta}\}\in{\mathcal{S}}^{[\{\gamma,\delta\}]} is a strategy of the coalition {γ,δ}\{\gamma,\delta\}. From the construction of games we see that the following assertion holds.

Assertion 10.
OD~(X,𝒩,𝒲;ΩBM)[s¯]\displaystyle{\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega_{BM})[\bar{s}] OD(X,𝒩,𝒲),\displaystyle\sim OD(X,{\mathcal{N}},\mathcal{W}),
OD~(X,𝒩,𝒲;ΩMB)[s¯]\displaystyle{\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega_{MB})[\bar{s}] DO(X,𝒩,𝒲),\displaystyle\sim DO(X,{\mathcal{N}},\mathcal{W}),

Assertions 9 and 10, Theorem 6 and Proposition 23 imply the following proposition.

Proposition 25 (Proposition 2).

Let XX be a space, 𝒩{\mathcal{N}} be a π\pi-net of XX, 𝒲𝔚(X)\mathcal{W}\subset{\mathfrak{W}}(X), and Υ,Ψ𝔘(X)\Upsilon,\Psi\in\mathfrak{U}(X). If 𝒲\mathcal{W} is a monolithic family, then

OD(X,𝒩,𝒲)\displaystyle OD(X,{\mathcal{N}},\mathcal{W}) OD(X,𝒩,𝒲;Υ,Ψ),\displaystyle\sim OD(X,{\mathcal{N}},\mathcal{W};\Upsilon,\Psi),
DO(X,𝒩,𝒲)\displaystyle DO(X,{\mathcal{N}},\mathcal{W}) DO(X,𝒩,𝒲;Υ,Ψ).\displaystyle\sim DO(X,{\mathcal{N}},\mathcal{W};\Upsilon,\Psi).
Proposition 26 (Proposition 10).

Let XX be a space, 𝒩{\mathcal{N}} be a π\pi-net XX, and 𝒲𝔚(X)\mathcal{W}\subset{\mathfrak{W}}(X) be a monolithic family. Suppose that XX is a ΓOD(𝒩,𝒲)\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}},\mathcal{W})-space. Then the following assertions hold.

  • (1)

    If XX is nonmeager, then XX is ΓOD(𝒩,𝒲))\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}},\mathcal{W}))-nonmeager.

  • (2)

    If XX is Baire, then XX is ΓOD(𝒩,𝒲)\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}},\mathcal{W})-Baire.

Proof.

Let 𝒲=𝒲𝔚e(X)\mathcal{W}^{*}=\mathcal{W}\cup{\mathfrak{W}}_{e}(X). Assertion 10, Theorem 5, and the fact that XX is a ΓOD(𝒩,𝒲)\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}},\mathcal{W})-space imply that the game OD~(X,𝒩,𝒲;ΩBM){\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W}^{*};\Omega_{BM}) is α\alpha-favorable.

Let us prove (1). Assertion 3 and the Banach–Oxtoby Theorem 2 imply that XX is nonmeager if and only if the game BM~(X;ΩMB){\widetilde{BM}}(X;\Omega_{MB}) is β\beta-unfavorable. Theorem 7 implies that the game OD~(X,𝒩,𝒲;ΩMB){\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega_{MB}) is {γ,β}\{\gamma,\beta\}-unfavorable and, moreover, β\beta-unfavorable. Theorem 5 implies that the game OD~(X,𝒩,𝒲;ΩMB){\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega_{MB}) is {γ,β,δ}\{\gamma,\beta,\delta\}-unfavorable. Assertion 10 implies that the game DO(X,𝒩,𝒲)DO(X,{\mathcal{N}},\mathcal{W}) is β\beta-unfavorable, i.e., XX is a ΓOD(𝒩,𝒲))\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}},\mathcal{W}))-nonmeager space.

Let us prove (2). It follows from Assertion 3 and the Banach-Oxtoby Theorem 2 that XX is Baire if and only if the game BM~(X;ΩBM){\widetilde{BM}}(X;\Omega_{BM}) is β\beta-unfavorable. Theorem 7 implies that the game OD~(X,𝒩,𝒲;ΩBM){\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega_{BM}) is {γ,β}\{\gamma,\beta\}-unfavorable and, moreover, β\beta-unfavorable. Theorem 5 implies that the game OD~(X,𝒩,𝒲;ΩBM){\widetilde{OD}}(X,{\mathcal{N}},\mathcal{W};\Omega_{BM}) is {γ,β,δ}\{\gamma,\beta,\delta\}-unfavorable. Assertion 10 implies that the game OD(X,𝒩,𝒲)OD(X,{\mathcal{N}},\mathcal{W}) is β\beta-unfavorable, i.e. XX is a ΓOD(𝒩,𝒲))\Gamma^{\scriptscriptstyle{OD}}({\mathcal{N}},\mathcal{W}))-nonmeager space. ∎

7 Examples and questions

In this section, we study how different the introduced classes of spaces are.

The following diagram shows the relationship of the most interesting classes of spaces.

Any arrow A{A}B{B} means that any AA-Baire space is a BB-Baire space and the converse is not true.

The diagram follows from Proposition 14. Counterexamples will be constructed below.

ΓoBM{\Gamma^{\scriptscriptstyle{BM}}_{o}}ΓpBM{\Gamma^{\scriptscriptstyle{BM}}_{p}}ΓkBM{\Gamma^{\scriptscriptstyle{BM}}_{k}}Γo,kOD{\Gamma^{\scriptscriptstyle{OD}}_{o,k}}Γp,kOD{\Gamma^{\scriptscriptstyle{OD}}_{p,k}}Γo,lOD{\Gamma^{\scriptscriptstyle{OD}}_{o,l}}Γp,lOD{\Gamma^{\scriptscriptstyle{OD}}_{p,l}}ΓfBM{\Gamma^{\scriptscriptstyle{BM}}_{f}}

We denote by 𝔻\mathbb{D} the discrete two-point space {0,1}\{0,1\}. The base of the topology in 𝔻C\mathbb{D}^{C} is formed by sets of the form

W(A,B,C){(xα)αC𝔻C:xα=0 for αA and xβ=1 for βB}W(A,B,C)\coloneqq\{(x_{\alpha})_{\alpha\in C}\in\mathbb{D}^{C}\,:\,x_{\alpha}=0\text{ for }\alpha\in A\text{ and }x_{\beta}=1\text{ for }\beta\in B\}

for finite disjoint A,BCA,B\subset C.

Propositions 15, 12 and Theorems 3, 4 imply the following assertion.

Assertion 11.

Let XX be a regular space without isolated points.

  • (1)

    If XX is compact, then XX is ΓkBM\Gamma^{\scriptscriptstyle{BM}}_{k}-Baire.

  • (2)

    If XX is Γo,kOD\Gamma^{\scriptscriptstyle{OD}}_{o,k}-nonmeager, then XX contains an infinite compact set.

  • (3)

    If XX is countably compact, then XX is ΓpBM\Gamma^{\scriptscriptstyle{BM}}_{p}-Baire.

  • (4)

    If XX is Γp,lOD\Gamma^{\scriptscriptstyle{OD}}_{p,l}-nonmeager, then XX contains a non-discrete countable space.

  • (5)

    If XX is pseudocompact, then XX is ΓoBM\Gamma^{\scriptscriptstyle{BM}}_{o}-Baire.

  • (6)

    If XX is ΓfBM\Gamma^{\scriptscriptstyle{BM}}_{f}-nonmeager, then XX contains points with a countable base of neighborhoods.

  • (7)

    If XX is ΓoBM\Gamma^{\scriptscriptstyle{BM}}_{o}-nonmeager, then XX contains qoq_{o}-points.

  • (8)

    If XX is a product of locally compact spaces (for example, X=τX=\mathbb{R}^{\tau}), then XX is Γp,kOD\Gamma^{\scriptscriptstyle{OD}}_{p,k}-Baire.

Let us give examples that distinguish the classes of spaces under consideration. In the examples below, ABA\nrightarrow BXX means that XX is an AA-Baire space that is not BB-nonmeager.

Example 1.

ΓoBMΓp,lOD\Gamma^{\scriptscriptstyle{BM}}_{o}\nrightarrow\Gamma^{\scriptscriptstyle{OD}}_{p,l}XpX_{p}. Indeed, if XpX_{p} is an infinite pseudocompact space without isolated points, in which all countable subsets are discrete and closed [19, 20], then the claim follows from Assertion 11 (5) and (4).

Example 2.

ΓpBMΓo,kOD\Gamma^{\scriptscriptstyle{BM}}_{p}\nrightarrow\Gamma^{\scriptscriptstyle{OD}}_{o,k}XcX_{c}. If XcX_{c} is an infinite countably compact space without isolated points that does not contain infinite compact spaces, for example, Xc=XωX_{c}=X\setminus\omega, where XX is a countably compact dense subspace of βω\beta\omega of cardinality 2ω2^{\omega} (see [21, Proposition 16]), then the claim follows from Assertion 11 (3) and (2).

Example 3.

ΓkBMΓfBM\Gamma^{\scriptscriptstyle{BM}}_{k}\nrightarrow\Gamma^{\scriptscriptstyle{BM}}_{f}𝔻ω1\mathbb{D}^{\omega_{1}}. The space 𝔻ω1\mathbb{D}^{\omega_{1}} is a compact space without points of countable character (see Assertion 11 (1) and (6)).

Example 4.

Γo,kODΓp,kOD\Gamma^{\scriptscriptstyle{OD}}_{o,k}\nrightarrow\Gamma^{\scriptscriptstyle{OD}}_{p,k}YY. Consider

Y0\displaystyle Y_{0} ={(xα)α<ω1𝔻ω1:|{α<ω1:xα=0}|ω},\displaystyle=\{(x_{\alpha})_{\alpha<\omega_{1}}\in\mathbb{D}^{\omega_{1}}\,:\,|\{\alpha<\omega_{1}\,:\,x_{\alpha}=0\}|\leq\omega\},
Y1\displaystyle Y_{1} ={(xα)α<ω1𝔻ω1:|{α<ω1:xα=1}|<ω},\displaystyle=\{(x_{\alpha})_{\alpha<\omega_{1}}\in\mathbb{D}^{\omega_{1}}\,:\,|\{\alpha<\omega_{1}\,:\,x_{\alpha}=1\}|<\omega\},
Y\displaystyle Y =Y0Y1.\displaystyle=Y_{0}\cup Y_{1}.

Let us show that ODo,k(Y)OD_{o,k}(Y) is α\alpha-favorable. A winning strategy for α\alpha is as follows. We choose UnU_{n} such that Un¯Vn1\overline{U_{n}}\subset V_{n-1}. Let xnMnY0x_{n}\in M_{n}\cap Y_{0}. Then K={xn:n<ω}¯K=\overline{\{x_{n}\,:\,n<\omega\}} is compact.

Let us show that DOp,k(Y)DO_{p,k}(Y) is β\beta-favorable. A winning strategy for β\beta is as follows. Choose Vn=W(An,Bn,ω1)V_{n}=W(A_{n},B_{n},\omega_{1}) such that AnAn1A_{n}\subset A_{n-1}, BnBn1B_{n}\subset B_{n-1} and |An|n|A_{n}|\geq n, xnVnY1x_{n}\in V_{n}\cap Y_{1}, Mn={xn}M_{n}=\{x_{n}\}. Then (xn)nω(x_{n})_{n\in\omega} is a discrete and closed sequence in YY.

Problem 1.

Let Γ{ΓrBM:r{f,k,p,o}}{Γt,qOD:t{o,p} and q{l,k}}\Gamma\in\{\Gamma^{\scriptscriptstyle{BM}}_{r}\,:\,r\in\{f,k,p,o\}\}\cup\{\Gamma^{\scriptscriptstyle{OD}}_{t,q}\,:\,t\in\{o,p\}\text{ and }q\in\{l,k\}\}.

  • (1)

    Does there exist a Γ\Gamma-Baire space that is not a Γ\Gamma-space?

  • (2)

    Is the class of Γ\Gamma-spaces multiplicative? That is it true that if X,YΓX,Y\in\Gamma, then X×YΓX\times Y\in\Gamma?

  • (3)

    Let XX and YY be Γ\Gamma-Baire spaces, and let X×YX\times Y be a Baire space. Is it true that X×YX\times Y is a Γ\Gamma-Baire space?

The smallest class of spaces among those listed above is the class of ΓfBM\Gamma^{\scriptscriptstyle{BM}}_{f}-spaces, and the largest one is the class of Γo,lOD\Gamma^{\scriptscriptstyle{OD}}_{o,l}-spaces.

Problem 2.

Let XX be a regular ΓfBM\Gamma^{\scriptscriptstyle{BM}}_{f}-Baire space.

  • (1)

    Is it true that XX is a ΓfBM\Gamma^{\scriptscriptstyle{BM}}_{f}-space and contains a dense metrizable Baire subspace?

  • (2)

    Is it true that XX is a Γo,lOD\Gamma^{\scriptscriptstyle{OD}}_{o,l}-space?

A space XX is called weakly pseudocompact if there exists a compact Hausdorff extension bXbX of the space XX in which the space XX is GδG_{\delta}-dense, i.e., XX intersects any nonempty GδG_{\delta} subset of bXbX [4]. It is clear that the product of weakly pseudocompact spaces is weakly pseudocompact; in particular, the product of pseudocompact spaces is weakly pseudocompact.

The next question is a version of Problem 1 (2) and (3).

Problem 3.

Let XX be a weakly pseudocompact space (a product of pseudocompact spaces). Which of the following classes does XX belong to:

  • ΓoBM\Gamma^{\scriptscriptstyle{BM}}_{o}-spaces, ΓoBM\Gamma^{\scriptscriptstyle{BM}}_{o}-Baire spaces, Γo,lOD\Gamma^{\scriptscriptstyle{OD}}_{o,l}-spaces, Γo,lOD\Gamma^{\scriptscriptstyle{OD}}_{o,l}-Baire spaces?

Problem 4.

Let XX and YY be (completely) regular countably compact spaces. Which of the following classes does the product X×YX\times Y belong to:

  • ΓpBM\Gamma^{\scriptscriptstyle{BM}}_{p}-spaces, ΓpBM\Gamma^{\scriptscriptstyle{BM}}_{p}-Baire spaces, Γp,lOD\Gamma^{\scriptscriptstyle{OD}}_{p,l}-spaces, Γp,lOD\Gamma^{\scriptscriptstyle{OD}}_{p,l}-Baire spaces, ΓoBM\Gamma^{\scriptscriptstyle{BM}}_{o}-spaces, ΓoBM\Gamma^{\scriptscriptstyle{BM}}_{o}-Baire spaces, Γo,lOD\Gamma^{\scriptscriptstyle{OD}}_{o,l}-spaces, Γo,lOD\Gamma^{\scriptscriptstyle{OD}}_{o,l}-Baire spaces?

Recall that a group with a topology in which multiplication is continuous is called a paratopological group. A group with a topology in which multiplication is separately continuous is called a semitopological group. In [22, Theorem 2.6] it is proved that a pseudocompact paratopological group is a topological group. Every weakly pseudocompact semitopological group G of countable π\pi-character is a topological group metrizable by a complete metric (see [4, Corollary 2.28]).

Problem 5.

Let GG be a weakly pseudocompact (a product of pseudocompact spaces, a product of two countably compact spaces) paratopological group. Is it true that GG is a topological group?

Note that [11, Theorem 14] implies that a paratopological Γo,lOD\Gamma^{\scriptscriptstyle{OD}}_{o,l}-Baire group is a topological group.

References