This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Chudnovsky’s Conjecture and the stable Harbourne-Huneke containment for general points

Sankhaneel Bisui University of Manitoba
Department of Mathematics
Machray Hall 420, 186 Dysart Rd.
Winnipeg, MB R3T 2M8, CA
[email protected]
 and  Thái Thành Nguyê~\tilde{\text{\^{e}}}n Tulane University, Department of Mathematics, 6823 St. Charles Ave., New Orleans, LA 70118, USA
and University of Education, Hue University, 34 Le Loi St., Hue, Viet Nam
[email protected]
Abstract.

In our previous work with Grifo and Hà, we showed the stable Harbourne-Huneke containment and Chudnovsky’s conjecture for the defining ideal of sufficiently many general points in N{\mathbb{P}}^{N}. In this paper, we establish the conjectures for all remaining cases, and hence, give the affirmative answer to Harbourne-Huneke containment and Chudnovsky’s conjecture for any number of general points in N{\mathbb{P}}^{N} for all NN. Our new technique is to develop the Cremona reduction process that provides effective lower bounds for the Waldschmidt constant of the defining ideals of generic points in projective spaces.

Key words and phrases:
Chudnovsky’s conjecture, Cremona Transformation, Waldschmidt Constant, Ideals of Points, Symbolic Powers, Containment Problem, Stable Harbourne-Huneke Conjecture
2010 Mathematics Subject Classification:
14N20, 13F20, 14C20

1. introduction

In the work for providing counterexamples to Hilbert’s 14th14^{th}-problem Nagata asked the following question: Take a set of reduced points 𝕏={P1,,Ps}2.{\mathbb{X}}=\{P_{1},\dots,P_{s}\}\subset\mathbb{P}^{2}_{\mathbb{C}}. What is the minimal degree αm(𝕏)\alpha_{m}({\mathbb{X}}) of a hypersurface that passes through the given points with multiplicity at least mm? Nagata conjectured that for at least 1010 general points, αm(𝕏)ms, for each m1\alpha_{m}({\mathbb{X}})\geqslant m\sqrt{s},\text{ for each }m\geqslant 1, and proved it for k2k^{2} many general points (the open condition depends on mm). The conjecture is still wide open and a vast number of papers in the last few decades are related to this conjecture. Later on, Iarrobino [Iar97] conjectured that αm(𝕏)msN,\alpha_{m}({\mathbb{X}})\geqslant m\sqrt[N]{s}, for sufficiently large number of general points in N{\mathbb{P}}^{N}. The only known evidence for this conjecture due to Evain [Eva05], for s=kNs=k^{N} many general points, when N3,k3N\geqslant 3,k\geqslant 3. These conjectures are equivalent to saying that all the inequalities (for all mm) hold for (sufficiently many) very general points.

On the other hand, interests for the study of αm(𝕏)\alpha_{m}({\mathbb{X}}) came from other various contexts. We refer interested readers to [CHHVT20] for more information. A more classical motivation of this study is in the context of complex analysis, see [Chu81], [Mor80]. In particular, there have been various studies to get effective lower bounds for αm(𝕏)\alpha_{m}({\mathbb{X}}). Waldschmidt [Wal77] and Skoda [Sko77] proved the inequality αm(𝕏)mα(𝕏)N\dfrac{\alpha_{m}({\mathbb{X}})}{m}\geqslant\dfrac{\alpha({\mathbb{X}})}{N} for points in N{\mathbb{P}}^{N}_{\mathbb{C}} using complex analytic techniques where α(𝕏)\alpha({\mathbb{X}}) denotes the least degree of a hypersurface that passes through the points at least one time. Chudnovsky[Chu81] improved the bound for points 2{\mathbb{P}}^{2}_{{\mathbb{C}}}, by proving that αm(𝕏)mα(𝕏)+12.\dfrac{\alpha_{m}({\mathbb{X}})}{m}\geqslant\dfrac{\alpha({\mathbb{X}})+1}{2}. In the same paper, he conjectured the following inequality for a general set of points in N{\mathbb{P}}^{N}_{\mathbb{C}},

Conjecture 1.1.

[Chu81] If 𝕏={P1,,Ps}N{\mathbb{X}}=\{P_{1},\dots,P_{s}\}\subset\mathbb{P}^{N}_{\mathbb{C}}, then

αm(𝕏)mα(𝕏)+N1N, for all m1.\dfrac{\alpha_{m}({\mathbb{X}})}{m}\geqslant\dfrac{\alpha({\mathbb{X}})+N-1}{N},\text{ for all }m\geqslant 1.

All these geometric problems can be re-stated in an algebraic way using the well-celebrated Zariski-Nagata Theorem ([Zariski, Nagata, EisenbudHochster]). More precisely, finding lower bounds for αm(𝕏)\alpha_{m}({\mathbb{X}}) is equivalent to searching for lower bounds for α(I(m))\alpha\big{(}I^{(m)}\big{)}, where II is the defining ideal of 𝕏{\mathbb{X}}, I(m)I^{(m)} denotes the mm-th symbolic power of II, and α(J)\alpha(J) denotes the initial degree of a homogeneous ideal JJ. Thus, Chudnovsky’s conjecture takes the following equivalent format:

Conjecture 1.2 (Chudnovsky’s Conjecture).

Let 𝕏={P1,,Ps}N{\mathbb{X}}=\{P_{1},\dots,P_{s}\}\subset\mathbb{P}^{N}_{\mathbb{C}} and II be the defining ideal of 𝕏{\mathbb{X}}. Then

α(I(m))mα(I)+N1N, for all m1.\dfrac{\alpha\big{(}I^{(m)}\big{)}}{m}\geqslant\dfrac{\alpha(I)+N-1}{N},\text{ for all }m\geqslant 1.

The containment problem of symbolic and ordinary powers of ideals is very well-studied (see e.g., [HH13, Sec15, GH17, Gri20, DS21, BGHN22b, BGHN22a, Ngu21, Ngu22b, BFG+21].) One of the important applications to study these containment is the fact that the containment would provide lower bounds on the initial degree of the symbolic powers. Consider the following celebrated Theorem by Ein-Lazarsfled-Smith and Hoschter-Huneke:

Theorem 1.3.

[ELS01, HH02] For a radical ideal II of big height hh in a regular ring SS, one has I(hm)ImI^{(hm)}\subseteq I^{m} for all mm\in{\mathbb{N}}.

If II is a defining ideal of points in N{\mathbb{P}}^{N}_{\mathbb{C}}, then Theorem 1.3 implies α(I(m))mα(I)N, for all m1,\frac{\alpha\left(I^{(m)}\right)}{m}\geqslant\frac{\alpha(I)}{N},\text{ for all }m\geqslant 1, which is the bound proved by Waldschmidt and Skoda. To strengthen the containment, Harbourne-Huneke conjectured that for a homogeneous radical ideal I𝕜[𝕜N]I\subset{\mathbbm{k}}[{\mathbb{P}}^{N}_{\mathbbm{k}}] of big height NN, one would expect that I(mN)𝔪m(N1)ImI^{(mN)}\subseteq{\mathfrak{m}}^{m(N-1)}I^{m} for all m1m\geqslant 1, where 𝔪=x0,x1,,xN{\mathfrak{m}}=\langle x_{0},x_{1},\dots,x_{N}\rangle. Chudnovsky’s conjecture follows from stable version of the containment, which has been studied in [BGHN22b].

Conjecture 1.4 (Stable Harbourne-Huneke containment).

Let I𝕜[𝕜N]I\subseteq{\mathbbm{k}}[{\mathbb{P}}^{N}_{\mathbbm{k}}] be a homogeneous radical ideal of big height hh. Then there exists a constant r(I)1r(I)\geqslant 1, depending on II, such that for all rr(I)r\geqslant r(I), we have

(1)I(hr)𝔪r(h1)Ir and (2)I(hrh+1)𝔪(r1)(h1)Ir.(1)\quad I^{(hr)}\subseteq{\mathfrak{m}}^{r(h-1)}I^{r}\qquad\textrm{ and }\qquad(2)\quad I^{(hr-h+1)}\subseteq{\mathfrak{m}}^{(r-1)(h-1)}I^{r}.

Previously, the stable Harbourne-Huneke containment I(hr)𝔪r(h1)IrI^{(hr)}\subseteq{\mathfrak{m}}^{r(h-1)}I^{r}, and hence, Chudnovsky’s conjecture had been shown in the following cases: any set of points in 𝕜2{\mathbb{P}}^{2}_{\mathbbm{k}} [HH13], a general set of points in 𝕜3{\mathbb{P}}^{3}_{\mathbbm{k}} [Dum12, Dum15], a set of at most N+1N+1 points in generic position in 𝕜N{\mathbb{P}}^{N}_{\mathbbm{k}} [Dum15], a set of points forming a star configuration [BH10, GHM13]. In addition, Chudnovsky’s conjecture is known for a set of points in 𝕜N{\mathbb{P}}^{N}_{\mathbbm{k}} lying on a quadric [FMX18], and a very general set of points in 𝕜N{\mathbb{P}}^{N}_{\mathbbm{k}} [DTG17, FMX18]. By saying that a property 𝒫\mathcal{P} holds for a very general set of points in 𝕜N{\mathbb{P}}^{N}_{\mathbbm{k}}, we mean that there exist infinitely many open dense subsets UmU_{m}, mm\in{\mathbb{N}}, of the Hilbert scheme of ss points in 𝕜N{\mathbb{P}}^{N}_{\mathbbm{k}} such that the property 𝒫\mathcal{P} holds for all 𝕏m=1Um{\mathbb{X}}\in\bigcap_{m=1}^{\infty}U_{m}. If we remove this infinite intersection of open dense subsets and show that there exists one open dense subset UU of the Hilbert scheme of ss points in 𝕜N{\mathbb{P}}^{N}_{\mathbbm{k}} such that the property 𝒫\mathcal{P} holds for all 𝕏U{\mathbb{X}}\in U, then the property 𝒫\mathcal{P} holds for a general sets of points. Informally, while very general properties correspond to (intersection of) countable open conditions, general properties correspond to one open condition.

The stable Harbourne-Huneke containment and Chudnovsky’s conjecture was shown to hold for at least 3N3^{N} many general points when N4N\geqslant 4, and the number of points in the results can be reduced to at least 2N,when N92^{N},\text{when }N\geqslant 9 in [BGHN22b]. The key idea in the proof is that a stronger containment, namely, I(hrh)𝔪r(h1)Ir,r0I^{(hr-h)}\subseteq{\mathfrak{m}}^{r(h-1)}I^{r},r\gg 0, would imply Harbourne-Huneke stable containment. In [BGHN22b], this stronger containment has been proved for a sufficiently large number of generic points, utilizing the important inequality α^(I)>reg(I)+N1N\widehat{\alpha}(I)>\frac{\operatorname{reg}(I)+N-1}{N}, where α^(I)\widehat{\alpha}(I) is the Waldschmidt constant, defined by α^(I):=limmα(I(m))m.\widehat{\alpha}(I):=\lim_{m\rightarrow\infty}\frac{\alpha(I^{(m)})}{m}. This required an appropriate lower bound for α^(I)\widehat{\alpha}(I), but unfortunately, the method in [BGHN22b] could only provide such bounds for sufficiently large (exponential) numbers of generic points, but not for smaller numbers of points.

In this manuscript, we use Cremoma transformation to provide a reduction process to get desired lower bounds for α^(I)\widehat{\alpha}(I) of the defining ideals of generic points. Our strategy, inspired from the works [Dum09, Dum12, Dum15], is to reduce the study of lower bounds for Waldschmidt constants of defining ideals of generic points to that of a fewer number of generic points. More precisely, we use Cremona transformation as our primary tool to show the following.

Theorem (Theorem 3.2 and Proposition 3.6).

If α^(s)=α^(I(1×s))\widehat{\alpha}(s)=\widehat{\alpha}(I(1^{\times s})), and I(1×b2N,m¯)I\big{(}1^{\times{b\cdot 2^{N}}},\overline{m}\big{)} denotes the defining ideal of b2N+sb\cdot 2^{N}+s generic points, where b2Nb\cdot 2^{N} have multiplicity 1 and the remaining ss points have multiplicities m1,,msm_{1},\dots,m_{s} respectively, then

(1)α^(b(2N)k)2kα^(b) and (2)α^(I(1×b2N,m¯))α^(I(2×b,m¯)).(1)\quad\widehat{\alpha}\big{(}b\cdot(2^{N})^{k}\big{)}\geqslant 2^{k}\widehat{\alpha}(b)\qquad\textrm{ and }\qquad(2)\qquad\widehat{\alpha}\big{(}I\big{(}1^{\times b\cdot 2^{N}},\overline{m}\big{)}\big{)}\geqslant\widehat{\alpha}\big{(}I\big{(}2^{\times b},\overline{m}\big{)}\big{)}.

As a result of this reduction process combined with a similar approach using specialization as in [BGHN22b], see also [BGHN22a], yields the results on the stable Harbourne-Huneke containment and Chudnovsky’s conjecture for a small number of general points. Combining this and previous results on sufficiently many general points, we are able to complete the picture for all numbers of general points. One key point of the proof is the appropriate lower bound on Waldschmidt constant of generic points.

Theorem (Theorem 4.10).

Let II be the defining ideal of any number of ss generic points in N{\mathbb{P}}^{N} where sN+4s\geqslant N+4. Then

α^(I)>reg(I)+N1N.\widehat{\alpha}(I)>\frac{\operatorname{reg}(I)+N-1}{N}.

Note that the Waldschmidt constant for defining ideals of up to N+3N+3 generic points are computed in [DHSTG14] and Harbourne-Huneke Containment as well as Chudnovsky’s Conjecture would follow easily, see also [NT19]. Hence, we are interested in ideals defining at least N+4N+4 generic points when N4N\geqslant 4. The main result of this paper is the affirmed answer to the stable Harbourne-Huneke Containment and Chudnovsky’s Conjecture for any number of general points in any dimensional projective spaces.

Theorem (Theorem 5.2 and Theorem 5.4).

Then ideal defining a set of any number of ss general points in N{\mathbb{P}}^{N} satisfies the stable Harbourne-Huneke Containment, and hence, satisfies Chudnovsky’s Conjecture. Furthermore, there is a constant r(s,N)r(s,N) depends only on ss and NN such that the containment I(Nr)𝔪(N1)rIrI^{(Nr)}\subseteq{\mathfrak{m}}^{(N-1)r}I^{r} hold when II is the defining ideal of ss general points and rr(s,N)r\geqslant r(s,N).

The paper is outlined as follows. Section 2 introduces necessary terminology and notations and recalls some valuable results. In Section 3, we establish Theorems regarding Cremona transformation and obtain lower bounds on the Waldschmidt constant of ideals defining small numbers of generic fat points. In Section 4, we establish the important lower bound for the Waldschmidt constant of generic points. In Section 5, we prove the stable Harbourne-Huneke containment and Chudnovsky’s conjecture for any numbers of general points.

Acknowledgements.

The first author is thankful to Adam Van Tuyl for asking him questions regarding Chudnovsky’s Conjecture when N=4N=4 during his talk at the Canadian Mathematical Society Winter Meeting on December ’21, which led to this manuscript. Both authors are thankful to Marcin Dumnicki, Huy Tài Hà, Paolo Mantero, and Alexandra Seceleanu for valuable suggestions. The first author was partially funded by the Faculty of Science and Department of Mathematics at the University of Manitoba.

2. Preliminaries

We introduce basic notations and known results that we will be using throughout the paper. We will work with the assumption that N4N\geqslant 4 as both the stable Harbourne-Huneke containment, and Chudnovsky’s conjecture for any sets of general points are known for N=2N=2 (see [HH13]) and N=3N=3 (see [Dum12, Dum15]). We also use the umbrella assumption that 𝕜{\mathbbm{k}} is any algebraically closed field. S=𝕜[𝕜N]S={\mathbbm{k}}[{\mathbb{P}}^{N}_{{\mathbbm{k}}}] represents the homogeneous coordinate ring of the projective space 𝕜N{\mathbb{P}}^{N}_{\mathbbm{k}}. Our work focus on symbolic powers, the Waldschmidt constant, and Cremona transformations, so we define them individually.

Definition 2.1.

Let RR be a commutative ring and let IRI\subseteq R be an ideal. For mm\in{\mathbb{N}}, the mm-th symbolic power of II is defined to be

I(m)=𝔭Ass(I)(ImR𝔭R).I^{(m)}=\bigcap_{{\mathfrak{p}}\in\operatorname{Ass}(I)}\left(I^{m}R_{\mathfrak{p}}\cap R\right).

We remark here that there is also a notion of symbolic powers in which the set Min(I)\operatorname{Min}(I) of minimal primes is used in place of the set Ass(I)\operatorname{Ass}(I) of associated primes in the definition. In the context of this paper, for defining ideals of points, or, more generally, ideals with no embedded primes, these two notions of symbolic powers agree. It is well-known that if 𝕏{\mathbb{X}} is the set {P1,,Ps}𝕜N\{P_{1},\dots,P_{s}\}\subseteq{\mathbb{P}}^{N}_{\mathbbm{k}} of ss many distinct points and let 𝐩i𝕜[𝕜N]{\bf p}_{i}\subseteq{\mathbbm{k}}[{\mathbb{P}}^{N}_{\mathbbm{k}}] be the defining ideal of PiP_{i} and I=𝐩1𝐩sI={\bf p}_{1}\cap\dots\cap{\bf p}_{s} is the ideal defining 𝕏{\mathbb{X}}. Then the mm-th symbolic power is given by,

I(m)=𝐩1m𝐩sm.I^{(m)}={\bf p}_{1}^{m}\cap\dots\cap{\bf p}_{s}^{m}.
Definition 2.2.

If I𝕜[𝕜N]I\subseteq{\mathbbm{k}}[{\mathbb{P}}^{N}_{\mathbbm{k}}] is homogeneous ideal and α(I)\alpha(I) denotes its least generating degree, then the Waldschmidt constant of II is defined as

α^(I):=limmα(I(m))m=infmα(I(m))m.\widehat{\alpha}(I):=\lim_{m\rightarrow\infty}\dfrac{\alpha(I^{(m)})}{m}=\inf_{m\in{\mathbb{N}}}\dfrac{\alpha(I^{(m)})}{m}.

See, for example, [BH10, Lemma 2.3.1].

Using the Waldschmidt constant of defining ideal of set of points in 𝕜N{\mathbb{P}}^{N}_{\mathbbm{k}}, Chudnovsky’s conjecture takes the following format.

Conjecture 2.3 (Chudnovsky).

Let I𝕜[𝕜N]I\subseteq{\mathbbm{k}}[{\mathbb{P}}^{N}_{\mathbbm{k}}] be the defining ideal of a set of (reduced) points in 𝕜N{\mathbb{P}}^{N}_{\mathbbm{k}}. Then,

α^(I)α(I)+N1N.\widehat{\alpha}(I)\geqslant\dfrac{\alpha(I)+N-1}{N}.
Definition 2.4.

Let 𝐩i{\bf p}_{i} denotes the ideal defining a point Pi𝕏={P1,Ps}𝕜NP_{i}\in{\mathbb{X}}=\{P_{1},\dots P_{s}\}\subset{\mathbb{P}}^{N}_{\mathbbm{k}} and m¯=(m1,ms)\overline{m}=(m_{1},\dots m_{s}) is a sequence of positive integers. Then the fat point scheme denoted by m1P1+m2P2++msPsm_{1}P_{1}+m_{2}P_{2}+\dots+m_{s}P_{s} is the scheme defined by the ideal

I(m¯)=I(m1,ms)=𝐩1m1𝐩2m2𝐩sms.I(\overline{m})=I(m_{1},\dots m_{s})={\bf p}_{1}^{m_{1}}\cap{\bf p}_{2}^{m_{2}}\cap\dots\cap{\bf p}_{s}^{m_{s}}.

If mj0m_{j}\leqslant 0, then we take 𝐩jmj=𝕜[𝕜N]{\bf p}_{j}^{m_{j}}={\mathbbm{k}}[{\mathbb{P}}^{N}_{\mathbbm{k}}]. We will also use the following notation:

m×s=(m,m,,m)s times .m^{\times s}=\underbrace{(m,m,\dots,m)}_{s\text{ times }}.

Let 𝕏={P1,,Ps}𝕜N{\mathbb{X}}=\{P_{1},\dots,P_{s}\}\subset{\mathbb{P}}^{N}_{\mathbbm{k}} be a set of points. Then N(d;m1,,ms){\mathcal{L}}_{N}(d;m_{1},\dots,m_{s}) denotes the linear system of hypersurfaces of degree dd passing though the ss points P1,,PsP_{1},\dots,P_{s} with multiplicity m1,m2,msm_{1},m_{2},\dots m_{s}, respectively. In our context, N(d;m1,,ms)=[I(m1,ms)]d{\mathcal{L}}_{N}(d;m_{1},\dots,m_{s})=[I(m_{1},\dots m_{s})]_{d}, the degree dd-component of the defining ideal.

Definition 2.5.

The standard birational transformation

Φ:𝕜N𝕜N, defined by Φ(x0::xN)(x01::xN1),\Phi:{\mathbb{P}}^{N}_{\mathbbm{k}}\to{\mathbb{P}}^{N}_{\mathbbm{k}},\text{ defined by }\Phi(x_{0}:\dots:x_{N})\mapsto(x_{0}^{-1}:\dots:x_{N}^{-1}),

is known as Cremona transformation.

The following Lemma is due to [Dum09, Theorem 3], see also, [DHSTG14, Lemma B.1.2], which infers how Cremona operations do not alter the linear system up to a certain degree of adjustment. The Lemmas were originally shown for points in general position, but the proof applies for generic points or general points as well. We restate the theorems in our context of defining ideals.

Lemma 2.6.

For N2N\geqslant 2, the Cremona transformation (x0:xN)(1x0::1xN)(x_{0}:\dots x_{N})\mapsto(\dfrac{1}{x_{0}}:\dots:\dfrac{1}{x_{N}}) of N{\mathbb{P}}^{N} induces a linear isomorphism

[I(m1,ms)]d[I(m1+k,,mN+1+k,mN+2,,ms)]d+k[I(m_{1},\dots m_{s})]_{d}\longrightarrow[I(m_{1}+k,\dots,m_{N+1}+k,m_{N+2},\dots,m_{s})]_{d+k}

provided that mi+k0m_{i}+k\geqslant 0, for i=1,,N+1i=1,\ldots,N+1, where k=(N1)dj=1N+1mjk=(N-1)d-\sum_{j=1}^{N+1}m_{j}.

The following Lemmas, due to [Dum09, Theorem 4] and [Dum15, Proposition 10], are very helpful in our reduction process. Our assumption for the set of points is still generic or general.

Lemma 2.7.

[Dum09, Theorem 4] Let N2N\geqslant 2, let d,m1,m2,,mrd,m_{1},m_{2},\dots,m_{r}\in{\mathbb{N}}. If (N1)dj=1Nmj<0,mj>0(N-1)d-\sum_{j=1}^{N}m_{j}<0,m_{j}>0 for j=1,,Nj=1,\dots,N then

dim[I(m1,ms)]d=dim[I(m11,,mN1,mN+1,mr)]d1.\dim[I(m_{1},\dots m_{s})]_{d}=\dim[I(m_{1}-1,\dots,m_{N}-1,m_{N+1},\dots m_{r})]_{d-1}.
Lemma 2.8.

[Dum15, Proposition 10] Let m1,,mr,m1,,ms,t,km_{1},\dots,m_{r},m_{1}^{\prime},\dots,m^{\prime}_{s},t,k be integers. If I(m1,mr)k=0I(m_{1},\dots m_{r})_{k}=0 and I(m1,,ms,k+1)t=0,I(m_{1}^{\prime},\dots,m^{\prime}_{s},k+1)_{t}=0, then I(m1,,mr,m1,,ms)t=0.I(m_{1},\dots,m_{r},m_{1}^{\prime},\dots,m^{\prime}_{s})_{t}=0.

We also recall some well known results about Waldschmidt constants of defining ideals of small number of points, see also [NT19].

Lemma 2.9.

If α^(s)=α^(I(1×s))\widehat{\alpha}(s)=\widehat{\alpha}(I(1^{\times s})) is the Waldschmidt constant the defining ideal of ss generic points in N{\mathbb{P}}^{N}, then the followings are true

  1. (1)

    α^(s)α^(k)\widehat{\alpha}(s)\geqslant\widehat{\alpha}(k) whenever sks\geqslant k;

  2. (2)

    α(I(m×s))mα^(s)\alpha(I(m^{\times s}))\geqslant m\widehat{\alpha}(s);

  3. (3)

    α^(I(1×kN))=k\widehat{\alpha}\big{(}I\big{(}1^{\times{k^{N}}}\big{)}\big{)}=k, More precisely, I(m×kN)km1=0I(m^{\times{k^{N}}})_{km-1}=0, when k2k\geqslant 2 [Eva05, DTG17].

Proposition 2.10.

[DHSTG14, Proposition B.1.1] If I(1×s)I(1^{\times s}) denotes the ideal defining ss many generic points in N{\mathbb{P}}^{N}, then

  1. (1)

    α^(I(1×(N+1)))N+1N\widehat{\alpha}\big{(}I\big{(}1^{\times(N+1)}\big{)}\big{)}\geqslant\dfrac{N+1}{N};

  2. (2)

    α^(I(1×(N+2)))N+2N\widehat{\alpha}\big{(}I\big{(}1^{\times(N+2)}\big{)}\big{)}\geqslant\dfrac{N+2}{N};

  3. (3)

    α^(I(1×(N+3)))N+2N\widehat{\alpha}\big{(}I\big{(}1^{\times(N+3)}\big{)}\big{)}\geqslant\dfrac{N+2}{N} if NN is even;

  4. (4)

    α^(I(1×(N+3)))1+2N+2N3+2N2N\widehat{\alpha}\big{(}I\big{(}1^{\times(N+3)}\big{)}\big{)}\geqslant 1+\dfrac{2}{N}+\dfrac{2}{N^{3}+2N^{2}-N} if NN is odd.

We have mentioned generic and general points many times before. Now we recall some facts about specialization, generic and general points in 𝕜N(𝐳){\mathbb{P}}^{N}_{\mathbbm{k}}({\bf z}). The set of all collections of ss not necessarily distinct points in 𝕜N{\mathbb{P}}^{N}_{\mathbbm{k}} is parameterized by the Chow variety G(1,s,N+1)G(1,s,N+1) of 0-cycles of degree ss in 𝕜N{\mathbb{P}}^{N}_{\mathbbm{k}} (cf. [GKZ94]). Thus, a property 𝒫\mathcal{P} is said to hold for a general set of ss points in 𝕜N{\mathbb{P}}^{N}_{\mathbbm{k}} if there exists an open dense subset UG(1,s,N+1)U\subseteq G(1,s,N+1) such that 𝒫\mathcal{P} holds for any 𝕏U{\mathbb{X}}\in U.

Let (zij)1is,0jN(z_{ij})_{1\leqslant i\leqslant s,0\leqslant j\leqslant N} be s(N+1)s(N+1) new indeterminates. We shall use 𝐳{\bf z} and 𝐚{\bf a} to denote the collections (zij)1is,0jN(z_{ij})_{1\leqslant i\leqslant s,0\leqslant j\leqslant N} and (aij)1is,0jN(a_{ij})_{1\leqslant i\leqslant s,0\leqslant j\leqslant N}, respectively. Let

Pi(𝐳)=[zi0::ziN]𝕜(𝐳)N and 𝕏(𝐳)={P1(𝐳),,Ps(𝐳)}.P_{i}({\bf z})=[z_{i0}:\dots:z_{iN}]\in{\mathbb{P}}^{N}_{{\mathbbm{k}}({\bf z})}\quad\text{ and }\quad{\mathbb{X}}({\bf z})=\{P_{1}({\bf z}),\dots,P_{s}({\bf z})\}.

The set 𝕏(𝐳){\mathbb{X}}({\bf z}) is often referred to as the set of ss generic points in 𝕜(𝐳)N{\mathbb{P}}^{N}_{{\mathbbm{k}}({\bf z})}. For any 𝐚𝔸𝕜s(N+1){\bf a}\in{\mathbb{A}}^{s(N+1)}_{\mathbbm{k}}, let Pi(𝐚)P_{i}({\bf a}) and 𝕏(𝐚){\mathbb{X}}({\bf a}) be obtained from Pi(𝐳)P_{i}({\bf z}) and 𝕏(𝐳){\mathbb{X}}({\bf z}), respectively, by setting zij=aijz_{ij}=a_{ij} for all i,ji,j. There exists an open dense subset W0𝔸𝕜s(N+1)W_{0}\subseteq{\mathbb{A}}^{s(N+1)}_{\mathbbm{k}} such that 𝕏(𝐚){\mathbb{X}}({\bf a}) is a set of distinct points in 𝕜N{\mathbb{P}}^{N}_{\mathbbm{k}} for all 𝐚W0{\bf a}\in W_{0} (and all subsets of ss points in 𝕜N{\mathbb{P}}^{N}_{\mathbbm{k}} arise in this way). The following result allows us to focus on open dense subsets of 𝔸𝕜s(N+1){\mathbb{A}}^{s(N+1)}_{\mathbbm{k}} when discussing general sets of points in 𝕜N{\mathbb{P}}^{N}_{\mathbbm{k}}.

Lemma 2.11 ([FMX18, Lemma 2.3]).

Let W𝔸𝕜s(N+1)W\subseteq{\mathbb{A}}^{s(N+1)}_{\mathbbm{k}} be an open dense subset such that a property 𝒫\mathcal{P} holds for 𝕏(𝐚){\mathbb{X}}({\bf a}) whenever 𝐚W{\bf a}\in W. Then, the property 𝒫\mathcal{P} holds for a general set of ss points in 𝕜N{\mathbb{P}}^{N}_{\mathbbm{k}}.

Definition 2.12 (Krull).

[BGHN22b, Definition 2.8] Let 𝐱{\bf x} represent the coordinates x0,,xNx_{0},\dots,x_{N} of 𝕜N{\mathbb{P}}^{N}_{\mathbbm{k}}. Let 𝐚𝔸s(N+1){\bf a}\in{\mathbb{A}}^{s(N+1)}. The specialization at 𝐚{\bf a} is a map π𝐚\pi_{\bf a} from the set of ideals in 𝕜(𝐳)[𝐱]{\mathbbm{k}}({\bf z})[{\bf x}] to the set of ideals in 𝕜[𝐱]{\mathbbm{k}}[{\bf x}], defined by

π𝐚(I):={f(𝐚,𝐱)|f(𝐳,𝐱)I𝕜[𝐳,𝐱]}.\pi_{\bf a}(I):=\{f({\bf a},{\bf x})~{}\big{|}~{}f({\bf z},{\bf x})\in I\cap{\mathbbm{k}}[{\bf z},{\bf x}]\}.
Remark 2.13.

[BGHN22b, Remark 2.9] Let 𝔭i(𝐳){\mathfrak{p}}_{i}({\bf z}) and 𝔭i(𝐚){\mathfrak{p}}_{i}({\bf a}) be the defining ideals of Pi(𝐳)𝕜(𝐳)NP_{i}({\bf z})\in{\mathbb{P}}^{N}_{{\mathbbm{k}}({\bf z})} and Pi(𝐚)𝕜NP_{i}({\bf a})\in{\mathbb{P}}^{N}_{\mathbbm{k}}, respectively. It follows from [Kru48, Satz 1] that there exists an open dense subset WW0𝔸s(N+1)W\subseteq W_{0}\subseteq{\mathbb{A}}^{s(N+1)} such that, for all 𝐚W{\bf a}\in W and any 1is1\leqslant i\leqslant s, we have

π𝐚(𝔭i(𝐳))=𝔭i(𝐚).\pi_{\bf a}({\mathfrak{p}}_{i}({\bf z}))={\mathfrak{p}}_{i}({\bf a}).

We shall always assume that 𝐚W{\bf a}\in W whenever we discuss specialization in this paper.

Remark 2.14.

[BGHN22b, Remark 2.10] Observe that, by the definition and by [Kru48, Satz 2 and 3] (see also [NT99, Propositions 3.2 and 3.6]), for fixed m,r,tm,r,t\in{\mathbb{N}}, there exists an open dense subset Um,r,tWU_{m,r,t}\subseteq W such that for all 𝐚Um,r,t{\bf a}\in U_{m,r,t}, we have

π𝐚(I(𝐳)(m))=I(𝐚)(m) and π𝐚(𝔪𝐳tI(𝐳)r)=𝔪tI(𝐚)r.\pi_{\bf a}\left(I({\bf z})^{(m)}\right)=I({\bf a})^{(m)}\text{ and }\pi_{\bf a}\left({{\mathfrak{m}}}_{{\bf z}}^{t}I({\bf z})^{r}\right)={\mathfrak{m}}^{t}I({\bf a})^{r}.

Here, we use 𝔪{\mathfrak{m}} and 𝔪𝐳{\mathfrak{m}}_{\bf z} to denote the maximal homogeneous ideals of 𝕜[𝐱]{\mathbbm{k}}[{\bf x}] and 𝕜(𝐳)[𝐱]{\mathbbm{k}}({\bf z})[{\bf x}], respectively. Note that 𝔪𝐳{\mathfrak{m}}_{\bf z} is the extension of 𝔪{\mathfrak{m}} in 𝕜(𝐳)[𝐱]{\mathbbm{k}}({\bf z})[{\bf x}]. We shall make use of this fact often.

3. Reduction Process and Lower Bound on Waldschmidt Constant for Small Numbers of Points

We start this section by a consequence of Lemma 2.6 and Lemma 2.7. The following result will be our essential tool to get appropriate lower bounds on the Waldschmidt constant.

Lemma 3.1.

Let I(m1,,ms)I(m_{1},\dots,m_{s}) denote the ideal of ss generic points or general points with multiplicities m1,,msm_{1},\dots,m_{s} respectively. If

I(m1,,ms)d0, then I(m1+k,,mN+1+k,mN+2,,ms)d+k0,I(m_{1},\dots,m_{s})_{d}\neq 0,\text{ then }I(m_{1}+k,\dots,m_{N+1}+k,m_{N+2},\dots,m_{s})_{d+k}\neq 0,

where k=(N1)dj=1N+1mjk=(N-1)d-\sum_{j=1}^{N+1}m_{j}.

The spirit of the proof is the same as [Dum12, Proposition 8].

Proof.

We prove the Theorem case by case. Without any loss of generality we can assume that m1m2m3mN+1m_{1}\geqslant m_{2}\geqslant m_{3}\geqslant\dots\geqslant m_{N+1}.

  • If mN+1+k0m_{N+1}+k\geqslant 0, then the conclusion follows from Lemma 2.6.

  • Suppose l=mN+1+k<0l=m_{N+1}+k<0 and mN+k0m_{N}+k\geqslant 0. Now (N1)di=1Nmi=mN+1+k=l(N-1)d-\sum_{i=1}^{N}m_{i}=m_{N+1}+k=l. Then by using the hypothesis and repeated application of Lemma 2.7, we will get

    I(m1+l,,mN+l,mN+1,m¯)d+l0,I\big{(}m_{1}+l,\dots,m_{N}+l,m_{N+1},\overline{m}\big{)}_{d+l}\neq 0,

    where m¯=(mN+2,,ms)\overline{m}=(m_{N+2},\ldots,m_{s}). Note that mN+l0m_{N}+l\geqslant 0, hence mi+l0m_{i}+l\geqslant 0 for i=1,,Ni=1,\ldots,N. In fact, suppose that mN+l<0m_{N}+l<0, then, mN+l=mN+mN+1+k=(N1)di=1N1mi<0m_{N}+l=m_{N}+m_{N+1}+k=(N-1)d-\sum_{i=1}^{N-1}m_{i}<0, which is a contradiction because the last inequality would imply m1>dm_{1}>d. Now d+l<mN+1d+l<m_{N+1} will lead to a contradiction so d+lmN+1d+l\geqslant m_{N+1}. Again we compute, k=(N1)(d+l)j=1N(mj+l)mN+1=klk^{\prime}=(N-1)(d+l)-\sum_{j=1}^{N}(m_{j}+l)-m_{N+1}=k-l. Thus mj+l+k=mj+k0m_{j}+l+k^{\prime}=m_{j}+k\geqslant 0 for j=1,Nj=1,\dots N. Also mN+1+k=0m_{N+1}+k^{\prime}=0. Thus by Lemma 2.6 we get I(m1+k,,mN+k,0,m¯)d+k0,I\big{(}m_{1}+k,\dots,m_{N}+k,0,\overline{m}\big{)}_{d+k}\neq 0, and since mN+1+k<0m_{N+1}+k<0, we can write

    I(m1+k,,mN+k,mN+1+k,m¯)d+k0.I\big{(}m_{1}+k,\dots,m_{N}+k,m_{N+1}+k,\overline{m}\big{)}_{d+k}\neq 0.
  • Suppose l=mN+1+k<0l=m_{N+1}+k<0, l=mN+k<0l^{\prime}=m_{N}+k<0, and k+mj0k+m_{j}\geqslant 0, for j=1,N1j=1,\dots N-1. Note that lll^{\prime}\geqslant l, hence, as in the previous case, by Lemma 2.7, we will get,

    I(m1+l,,mN+l,mN+1,m¯)d+l0.I\big{(}m_{1}+l,\dots,m_{N}+l,m_{N+1},\overline{m}\big{)}_{d+l}\neq 0.

    Note that mi+l0m_{i}+l\geqslant 0 for i=1,,Ni=1,\ldots,N by the same argument as above case. We also have that d+lmN+1d+l\geqslant m_{N+1}. Now, (N1)(d+l)j=1N1(mj+l)mN+1=mN+k=l.(N-1)(d+l)-\sum_{j=1}^{N-1}(m_{j}+l)-m_{N+1}=m_{N}+k=l^{\prime}. Thus, again by Lemma 2.7, we get that

    I(m1+l+l,,mN1+l+l,mN+l,mN+1+l,m¯)d+l+l0I\big{(}m_{1}+l+l^{\prime},\dots,m_{N-1}+l+l^{\prime},m_{N}+l,m_{N+1}+l^{\prime},\overline{m}\big{)}_{d+l+l^{\prime}}\neq 0

    Indeed, it is enough to check that mN+1+l0m_{N+1}+l^{\prime}\geqslant 0 and mi+l+l0m_{i}+l+l^{\prime}\geqslant 0 for i=1,,N1i=1,\ldots,N-1. Firstly, mN+1+l=mN+l0m_{N+1}+l^{\prime}=m_{N}+l\geqslant 0. Secondly, we see that

    mN1+l+lmN1+mN+1d+l=(N2)dj=1N2mj0m_{N-1}+l+l^{\prime}\geqslant m_{N-1}+m_{N+1}-d+l^{\prime}=(N-2)d-\sum_{j=1}^{N-2}m_{j}\geqslant 0

    since otherwise, m1<dm_{1}<d, which is a contradiction.
    Now, again, k=(N1)(d+l+l)j=1N1(mj+l+l)(mN+l)(mN+1+l)=kllk^{\prime}=(N-1)(d+l+l^{\prime})-\sum_{j=1}^{N-1}(m_{j}+l+l^{\prime})-(m_{N}+l)-(m_{N+1}+l^{\prime})=k-l-l^{\prime}. Now, mj+l+l+k=mj+k0m_{j}+l+l^{\prime}+k^{\prime}=m_{j}+k\geqslant 0, for j=1,,N1j=1,\dots,N-1. Also, mN+l+k=0m_{N}+l+k^{\prime}=0, and mN+1+k=0m_{N+1}+k^{\prime}=0. Thus by Lemma 2.6, (m1+k,,mN1+k,0,0,m¯)d+k0,\big{(}m_{1}+k,\dots,m_{N-1}+k,0,0,\overline{m}\big{)}_{d+k}\neq 0, and since, mN+k<0m_{N}+k<0, and mN+1+k<0m_{N+1}+k<0, we can write,

    I(m1+k,,mN+k,mN+1+k,m¯)d+k0.I\big{(}m_{1}+k,\dots,m_{N}+k,m_{N+1}+k,\overline{m}\big{)}_{d+k}\neq 0.
  • Suppose li=mi+k<0l_{i}=m_{i}+k<0, for i=j,N+1i=j,\dots N+1 and mi+k0m_{i}+k\geqslant 0 for i=1,,j1.i=1,\dots,j-1. Note that l1l2lN+1l_{1}\geqslant l_{2}\geqslant\ldots\geqslant l_{N+1} and mi+lj=mj+lim_{i}+l_{j}=m_{j}+l_{i} for all i,ji,j. Proceed as above cases, we will get

    I(m1+lN+1,,mN+lN+1,mN+1,m¯)d+lN+10.I\big{(}m_{1}+l_{N+1},\dots,m_{N}+l_{N+1},m_{N+1},\overline{m}\big{)}_{d+l_{N+1}}\neq 0.

    as long as mN+lN+10m_{N}+l_{N+1}\geqslant 0. This is true by exactly the same argument as in first case, that is, mN+lN+1=(N1)di=1N1mi0m_{N}+l_{N+1}=(N-1)d-\sum_{i=1}^{N-1}m_{i}\geqslant 0. Now, as before, note that lN+1mN+1dl_{N+1}\geqslant m_{N+1}-d, and (N1)(d+lN+1)j=1N1(mj+lN+1)mN+1=mN+k=lN<0,(N-1)(d+l_{N+1})-\sum_{j=1}^{N-1}(m_{j}+l_{N+1})-m_{N+1}=m_{N}+k=l_{N}<0, apply Lemma 2.7 we will get

    I(m1+lN+1+lN,,mN1+lN+1+lN,mN+lN+1,mN+1+lN,m¯)d+l+l0I\big{(}m_{1}+l_{N+1}+l_{N},\dots,m_{N-1}+l_{N+1}+l_{N},m_{N}+l_{N+1},m_{N+1}+l_{N},\overline{m}\big{)}_{d+l+l^{\prime}}\neq 0

    as long as all the multiplicities appeared above are nonnegative. This is true exactly by the argument as in case 2, that is, mN+1+lN=mN+1+lN0m_{N+1}+l_{N}=m_{N+1}+l_{N}\geqslant 0, and that

    mN1+lN+1+lNmN1+mN+1d+lN=(N2)dj=1N2mj0.m_{N-1}+l_{N+1}+l_{N}\geqslant m_{N-1}+m_{N+1}-d+l_{N}=(N-2)d-\sum_{j=1}^{N-2}m_{j}\geqslant 0.

    Now by repeated application of Lemma 2.7 (N+2jN+2-j times) we will get,

    I(m1+i=jN+1li,mj1+i=jN+1li,mj+ijli,,mN+1+iN+1li,m¯)d+i=jN+1li0.I\big{(}m_{1}+\sum_{i=j}^{N+1}l_{i},\dots m_{j-1}+\sum_{i=j}^{N+1}l_{i},m_{j}+\sum_{i\neq j}l_{i},\dots,m_{N+1}+\sum_{i\neq N+1}l_{i},\overline{m}\big{)}_{d+\sum_{i=j}^{N+1}l_{i}}\neq 0.

    Now, k=(N1)(d+i=jN+1li)i=1j1(mi+i=jN+1li)i=jN+1(mi+iili)=ki=jN+1li.k^{\prime}=(N-1)(d+\sum_{i=j}^{N+1}l_{i})-\sum_{i^{\prime}=1}^{j-1}\big{(}m_{i^{\prime}}+\sum_{i=j}^{N+1}l_{i}\big{)}-\sum_{i^{\prime}=j}^{N+1}\big{(}m_{i^{\prime}}+\sum_{i\neq i^{\prime}}l_{i}\big{)}=k-\sum_{i=j}^{N+1}l_{i}. At the t+1t+1 step of the process, the multiplicity

    mNt+j=N+t1N+1lj(Nt1)dj=1Nt1mj0m_{N-t}+\sum_{j=N+t-1}^{N+1}l_{j}\geqslant(N-t-1)d-\sum_{j=1}^{N-t-1}m_{j}\geqslant 0

    and other multiplicities are nonnegative from the tt-step. Now, note that, mi+i=jN+1li+k=mi+km_{i^{\prime}}+\sum_{i=j}^{N+1}l_{i}+k^{\prime}=m_{i^{\prime}}+k, for i=1j1i^{\prime}=1\dots j-1. Also, note that mi+iili+k=0m_{i^{\prime}}+\sum_{i\neq i^{\prime}}l_{i}+k^{\prime}=0, for i=j,,N+1i^{\prime}=j,\dots,N+1. Thus by applying Cremona transformation e.g., Lemma 2.6 we get,

    I(m1+k,,mj1+k,0,,0N+2j many,m¯)d+l0.I\big{(}m_{1}+k,\dots,m_{j-1}+k,\underbrace{0,\dots,0}_{N+2-j\text{ many}},\overline{m}\big{)}_{d+l}\neq 0.

    Since mi+k<0m_{i}+k<0, for i=j,N+1i=j,\dots N+1, then we can write

    I(m1+k,,mj1+k,mj+k,,mN+1+k,m¯)d+l0.I\big{(}m_{1}+k,\dots,m_{j-1}+k,m_{j}+k,\dots,m_{N+1}+k,\overline{m}\big{)}_{d+l}\neq 0.

The following Theorem, inspired by [Dum12, Proposition 10] and [Dum15, Proposition 12], along with the Proposition 3.6 shown below are the main tools in our reduction process.

Theorem 3.2.

If α^(s)=α^(I(1×s))\widehat{\alpha}(s)=\widehat{\alpha}(I(1^{\times s})) is the Waldschmidt constant the defining ideal of ss generic points in N{\mathbb{P}}^{N}, then

α^(b(2N)k)2kα^(b), where b and k are positive integers.\widehat{\alpha}\big{(}b\cdot(2^{N})^{k}\big{)}\geqslant 2^{k}\widehat{\alpha}(b),\text{ where }b\text{ and }k\text{ are positive integers}.
Proof.

To prove the inequality, first we prove that α^(2Nb)2α^(b)\widehat{\alpha}(2^{N}b)\geqslant 2\widehat{\alpha}(b) in Claim 3.3, then we use induction in Claim 3.4 to get the result.

Claim 3.3.

If α^\widehat{\alpha} is described as in the statement, then α^(2Nb)2α^(b)\widehat{\alpha}(2^{N}b)\geqslant 2\widehat{\alpha}(b).

Proof.

From Lemma 2.9, we have α^(2N)=2\widehat{\alpha}(2^{N})=2, hence, I(m×2N)2m1=0I(m^{\times 2^{N}})_{2m-1}=0. If I((2m)×b)t=0I((2m)^{\times b})_{t}=0, then applying Lemma 2.8 one time we get that I(m×2N,(2m)×(b1))t=0.I(m^{\times 2^{N}},(2m)^{\times(b-1)})_{t}=0. If we keep applying Lemma 2.8 one more times we get, I(m×2N,m×2N,(2m)×(b2))t=0I(m^{\times 2^{N}},m^{\times 2^{N}},(2m)^{\times(b-2)})_{t}=0 Thus, by applying Lemma 2.8 total bb times we get I(m×b2N)t=0.I(m^{\times b\cdot 2^{N}})_{t}=0. Therefore

α(I(m×b2N))α(I((2m)×b))2mα^(b).\alpha\big{(}I(m^{\times b\cdot 2^{N}})\big{)}\geqslant\alpha\big{(}I((2m)^{\times b})\big{)}\geqslant 2m\widehat{\alpha}(b).

Now by dividing each sides by mm, and taking limit as nn\to\infty, we get α^(2Nb)2α^(b).\widehat{\alpha}(2^{N}b)\geqslant 2\widehat{\alpha}(b).

Claim 3.4.

If α^(2Nb)2α^(b)\widehat{\alpha}(2^{N}b)\geqslant 2\widehat{\alpha}(b), then α^(b(2N)k)2kα^(b)\widehat{\alpha}\big{(}b\cdot(2^{N})^{k}\big{)}\geqslant 2^{k}\widehat{\alpha}(b).

Proof.

We prove this by using induction algorithm. The statement is true for k=1k=1. Assume that it is true for kk. Then α^(b(2N)k+1)=α^(2N(b(2N)k))2α^(b(2N)k)=22kα^(b)=2k+1α^(b),\widehat{\alpha}\big{(}b\cdot(2^{N})^{k+1}\big{)}=\widehat{\alpha}\big{(}2^{N}(b\cdot(2^{N})^{k})\big{)}\geqslant 2\widehat{\alpha}\big{(}b\cdot(2^{N})^{k}\big{)}=2\cdot 2^{k}\widehat{\alpha}\big{(}b\big{)}=2^{k+1}\widehat{\alpha}(b), hence the claim. ∎

This ends the proof of the Theorem. ∎

Corollary 3.5.

If α^(s)=α^(I(1×s))\widehat{\alpha}(s)=\widehat{\alpha}(I(1^{\times s})), denotes the Waldschmidt constant of the defining ideal of ss generic points in N{\mathbb{P}}^{N}, and sb(2N)ks\geqslant b\cdot(2^{N})^{k}, then

α^(s)2kα^(b).\widehat{\alpha}(s)\geqslant 2^{k}\widehat{\alpha}(b).
Proof.

This is straightforward from Theorem 3.2, and Lemma 2.9. ∎

Proposition 3.6.

If m¯=(m1,,ms)\overline{m}=(m_{1},\dots,m_{s}) is a sequence of multiplicities, then

α^(I(1×2N,m¯))α^(I(2,m¯)),\widehat{\alpha}\big{(}I\big{(}1^{\times 2^{N}},\overline{m}\big{)}\big{)}\geqslant\widehat{\alpha}\big{(}I\big{(}2,\overline{m}\big{)}\big{)},

where I(1×2N,m¯)I\big{(}1^{\times 2^{N}},\overline{m}\big{)} denotes the defining ideal of 2N+s2^{N}+s generic points, where 2N2^{N} have multiplicity 1 and the remaining ss points have multiplicities m1,,msm_{1},\dots,m_{s}, respectively. As a consequence,

α^(I(1×b2N,m¯))α^(I(2×b,m¯)).\widehat{\alpha}\big{(}I\big{(}1^{\times b\cdot 2^{N}},\overline{m}\big{)}\big{)}\geqslant\widehat{\alpha}\big{(}I\big{(}2^{\times b},\overline{m}\big{)}\big{)}.
Proof.

The proof follows by the same argument as [Dum12, Theorem 9]. By Lemma 2.9 we know that I(m×2N)2m1=0I\big{(}m^{\times 2^{N}}\big{)}_{2m-1}=0. Let J=I(2,m¯)J=I\big{(}2,\overline{m}\big{)} and I=I(1×2N,m¯)I=I\big{(}1^{\times 2^{N}},\overline{m}\big{)}. Suppose, Jt(m)=0J^{(m)}_{t}=0. Then by Lemma 2.8, we get It(m)=0.I^{(m)}_{t}=0. Thus α(I(m))α(J(m))\alpha(I^{(m)})\geqslant\alpha(J^{(m)}), which implies that

α^(I(1×2N,m¯))α^(I(2,m¯)).\widehat{\alpha}\big{(}I\big{(}1^{\times 2^{N}},\overline{m}\big{)}\big{)}\geqslant\widehat{\alpha}\big{(}I\big{(}2,\overline{m}\big{)}\big{)}.

The latter inequality follows directly by successively applying the above inequality bb times

α^(I(1×b2N,m¯))=α^(I(1×2N,1×(b1)2N,m¯))α^(I(2,1×(b1)2N,m¯))α^(I(2×b,m¯)).\widehat{\alpha}\big{(}I\big{(}1^{\times b\cdot 2^{N}},\overline{m}\big{)}\big{)}=\widehat{\alpha}\big{(}I\big{(}1^{\times 2^{N}},1^{\times(b-1)\cdot 2^{N}},\overline{m}\big{)}\big{)}\geqslant\widehat{\alpha}\big{(}I\big{(}2,1^{\times(b-1)\cdot 2^{N}},\overline{m}\big{)}\big{)}\geqslant\cdots\geqslant\widehat{\alpha}\big{(}I\big{(}2^{\times b},\overline{m}\big{)}\big{)}.

Remark 3.7.

Theorem 3.2 and Proposition 3.6 suggest that to find lower bounds of α^(s)\widehat{\alpha}(s), one can hope to reduce the number of points and work on getting lower bounds for a fewer number of points. Sometimes, this reduction gives very useful bounds, as in the following example.

Example 3.8.

Consider 128 generic points in 4{\mathbb{P}}^{4}. Then by Proposition 3.6

α^(128)α^(816)2α^(8)165.\widehat{\alpha}(128)\geqslant\widehat{\alpha}(8\cdot 16)\geqslant 2\widehat{\alpha}(8)\geqslant\dfrac{16}{5}.

The last inequality follows from Lemma 3.9, part (1)(1). We can see that bounds on the Waldschmidt constant of the defining ideal of 8 generic points can be useful to get bounds on 128 generic points. Also note that the new bound in fact is better than bound α^(128)3\widehat{\alpha}(128)\geqslant 3, which is obtained from the inequality 8112825681\leqslant 128\leqslant 256 and Lemma 2.9.

After reducing the number of points, we need to obtain appropriate lower bounds on the Waldschmidt constant of some small number of points as well. The following results provide us with what we need to proceed in the next section.

Lemma 3.9.

Let I(m1,,ms)I(m_{1},\dots,m_{s}) be the defining ideal of ss generic points with multiplicities, m1,,msm_{1},\dots,m_{s} in 4{\mathbb{P}}^{4}. The following inequalities hold

  1. (1)

    α^((I(1×8)))85\widehat{\alpha}(\big{(}I(1^{\times 8})\big{)})\geqslant\dfrac{8}{5};

  2. (2)

    α^(I(2×4,1×7))2310\widehat{\alpha}\big{(}I\big{(}2^{\times 4},1^{\times 7}\big{)}\big{)}\geqslant\dfrac{23}{10};

  3. (3)

    α^(I(1×36))5125\widehat{\alpha}\big{(}I\big{(}1^{\times 36}\big{)}\big{)}\geqslant\dfrac{51}{25}.

Proof.

We use Lemma 3.1 to prove the bounds. The idea is inspired from [Dum12, Proposition 11] and [Dum15, Proposition 11].

  1. (1)

    Suppose that I((5m)8m1×8)0I\big{(}(5m)^{\times 8}_{8m-1}\big{)}\neq 0. We show reduction by repeated application of Lemma 3.1 in the following table which leads to a contradiction.

    d m1m_{1} m2m_{2} m3m_{3} m4m_{4} m5m_{5} m6m_{6} m7m_{7} m8m_{8} k
    8m18m-1 5m¯\underline{5m} 5m¯\underline{5m} 5m¯\underline{5m} 5m¯\underline{5m} 5m¯\underline{5m} 5m5m 5m5m 5m5m m3-m-3
    7m47m-4 4m3¯\underline{4m-3} 4m3¯\underline{4m-3} 4m34m-3 4m34m-3 4m34m-3 5m¯\underline{5m} 5m¯\underline{5m} 5m¯\underline{5m} 2m6-2m-6
    5m105m-10 2m92m-9 2m92m-9 4m3¯\underline{4m-3} 4m3¯\underline{4m-3} 4m3¯\underline{4m-3} 3m6¯\underline{3m-6} 3m6¯\underline{3m-6} 3m63m-6 3m9-3m-9
    2m192m-19 2m92m-9 2m92m-9 m12m-12 m12m-12 m12m-12 3m63m-6

    From the last row, I((2m9)×1)2m190I\big{(}(2m-9)^{\times 1}\big{)}_{2m-19}\neq 0, a contradiction. Hence, α^((I(1×8)))85.\widehat{\alpha}(\big{(}I(1^{\times 8})\big{)})\geqslant\dfrac{8}{5}.

  2. (2)

    Suppose that I((20m)×4,(10m)×7)23m10I\big{(}(20m)^{\times 4},(10m)^{\times 7}\big{)}_{23m-1}\neq 0 and set k=3(23m1)(420m+10m)=21m3k=3(23m-1)-(4\cdot 20m+10m)=-21m-3. Hence by Lemma 3.1, I(0×5,(10m)6)2m40I\big{(}0^{\times 5},(10m)^{6}\big{)}_{2m-4}\neq 0. which is a contradiction. Hence, α^(I(2×4,1×7))2310.\widehat{\alpha}\big{(}I\big{(}2^{\times 4},1^{\times 7}\big{)}\big{)}\geqslant\dfrac{23}{10}.

  3. (3)

    We show that I((25m)×36))51m1=0I\big{(}(25m)^{\times 36})\big{)}_{51m-1}=0 for all mm. If I((25m)×4,50m,(40m)×2)51m10I\big{(}(25m)^{\times 4},50m,(40m)^{\times 2}\big{)}_{51m-1}\not=0, then by Lemma 3.1 with k=27m3k=-27m-3, we have I((25m)×2,23m3,(13m3m)×2)24m40I\big{(}(25m)^{\times 2},23m-3,(13m-3m)^{\times 2}\big{)}_{24m-4}\not=0, which is a contradiction. Hence, I((25m)×4,50m,(40m)×2)51m1=0I\big{(}(25m)^{\times 4},50m,(40m)^{\times 2}\big{)}_{51m-1}=0. Combine this with the fact that I((25m)×8))40m1=0I\big{(}(25m)^{\times 8})\big{)}_{40m-1}=0 for all mm (since α^((I(1×8)))85\widehat{\alpha}(\big{(}I(1^{\times 8})\big{)})\geqslant\dfrac{8}{5} by Lemma 3.9), we get I((25m)×12,50m,(40m))51m1=0I\big{(}(25m)^{\times 12},50m,(40m)\big{)}_{51m-1}=0 by Lemma 2.8. Apply Lemma 2.8 again, we have I((25m)×20,50m)51m1=0I\big{(}(25m)^{\times 20},50m\big{)}_{51m-1}=0. Lastly, combine this with I((25m)×16)50m1=0I\big{(}(25m)^{\times 16}\big{)}_{50m-1}=0 and apply Lemma 2.8 yet again, we get I((25m)×36))51m1=0I\big{(}(25m)^{\times 36})\big{)}_{51m-1}=0 for all mm.

Lemma 3.10.

Let I(m1,,ms)I(m_{1},\dots,m_{s}) be the defining ideal of ss generic points with multiplicities, m1,,msm_{1},\dots,m_{s} in 5{\mathbb{P}}^{5}. The following inequalities hold

α^(I(2×3,1×31))2110.\widehat{\alpha}\big{(}I\big{(}2^{\times 3},1^{\times 31}\big{)}\big{)}\geqslant\dfrac{21}{10}.
Proof.

We will again use Lemma 3.1 to get desired lower bounds. Suppose that
I((20m)×3,(10m)31)21m10I\big{(}(20m)^{\times 3},(10m)^{31}\big{)}_{21m-1}\neq 0 and set k=4(21m1)(320m+310m)=6m4k=4(21m-1)-(3\cdot 20m+3\cdot 10m)=-6m-4. By Lemma 3.1, I((14m4)×3,(4m4)×3,(10m)28)15m50.I\big{(}(14m-4)^{\times 3},(4m-4)^{\times 3},(10m)^{28}\big{)}_{15m-5}\neq 0. Now set k=4(15m5)(3(14m4)+310m)=12m8k=4(15m-5)-(3\cdot(14m-4)+3\cdot 10m)=-12m-8, then again by Lemma 3.1, we get I((2m12)×3,(4m4)×3,(10m)×25)3m130,I\big{(}(2m-12)^{\times 3},(4m-4)^{\times 3},(10m)^{\times 25}\big{)}_{3m-13}\neq 0, which is a contradiction. Hence, α^(I(2×3,1×31))2110.\widehat{\alpha}\big{(}I\big{(}2^{\times 3},1^{\times 31}\big{)}\big{)}\geqslant\dfrac{21}{10}.

Lemma 3.11.

Let II denotes the ideal of N+4N+4 generic points in N{\mathbb{P}}^{N}, where NN is an even number and N6.N\geqslant 6. Then

α^(I)(N+2)(2N1)+2N(2N1).\widehat{\alpha}\big{(}I\big{)}\geqslant\dfrac{(N+2)(2N-1)+2}{N(2N-1)}.
Proof.

Let q1=mN(2N1)2q_{1}=\dfrac{mN(2N-1)}{2}, and p1=m(N+2)(2N1)2+m1p_{1}=\dfrac{m(N+2)(2N-1)}{2}+m-1. Suppose that

I(q1×(N+4))p10.I\big{(}q_{1}^{\times(N+4)}\big{)}_{p_{1}}\neq 0.

Set k1=(N1)p1(N+1)q1=mN(N1)k_{1}=(N-1)p_{1}-(N+1)q_{1}=-mN-(N-1). By Lemma 3.1, I((q2×(N+1),q1×3)p20,I\big{(}(q_{2}^{\times(N+1)},q_{1}^{\times 3}\big{)}_{p_{2}}\neq 0, where,

q2=q1mN(N1)=N(2N3)m2(N1), and p2=p1mN(N1)=N(2N+1)m2N.q_{2}=q_{1}-mN-(N-1)=\dfrac{N(2N-3)m}{2}-(N-1),\text{ and }p_{2}=p_{1}-mN-(N-1)=\dfrac{N(2N+1)m}{2}-N.

Now, k2=(N1)p2((N1)q2+2q1)=mN(N1).k_{2}=(N-1)p_{2}-\big{(}(N-1)q_{2}+2q_{1}\big{)}=-mN-(N-1). Applying Lemma 3.1,

I(q3×(N1),q2×2,q4×2,q1)p30I\big{(}q_{3}^{\times(N-1)},q_{2}^{\times 2},q_{4}^{\times 2},q_{1}\big{)}_{p_{3}}\neq 0

where, q3=q2mN(N1),q4=q1mN(N1)q_{3}=q_{2}-mN-(N-1),q_{4}=q_{1}-mN-(N-1), and p3=p2mN(N1)=mN(2N1)2(2N1)p_{3}=p_{2}-mN-(N-1)=\dfrac{mN(2N-1)}{2}-(2N-1), which is a contradiction as q1>p3q_{1}>p_{3}. Thus we get,

α^(I)(N+2)(2N1)+2N(2N1).\widehat{\alpha}\big{(}I\big{)}\geqslant\dfrac{(N+2)(2N-1)+2}{N(2N-1)}.

4. Lower Bound for Waldschmidt Constant

In this section, we show the key inequality α^(I)>reg(I)+N1N\widehat{\alpha}(I)>\frac{\operatorname{reg}(I)+N-1}{N} where II is a defining ideal of any number of generic points in N{\mathbb{P}}^{N}, which is the crucial point in the proof of Stable Harbourne-Huneke Containment. We will combine the results in [BGHN22b] for sufficiently many points, the reduction process in section 3, and the bounds on Waldschmidt constant of defining ideals of a small number of points given in Lemma 3.9, Lemma 3.10, and Lemma 3.11 to obtain the needed bound on the Waldschmidt constant.

First, notice that if the number of generic points ss satisfies (N+1N)<s(N+N){N+\ell-1\choose N}<s\leqslant{N+\ell\choose N}, then it is well-known that by [MN01, Lemma 5.8] and [GM84, Corollary 1.6], we have reg(I)=+1\operatorname{reg}(I)=\ell+1. Therefore, the inequality is equivalent to α^(I)>d+1N,\widehat{\alpha}(I)>\frac{d+1}{N}, where (dN)<s(d+1N){d\choose N}<s\leqslant{d+1\choose N} for all dN1d\geqslant N-1. Note also that since we are interested in the case when sN+4s\geqslant N+4, we can assume that dNd\geqslant N. Finally, the inequality was proved for sufficiently many generic points in N{\mathbb{P}}^{N} in [BGHN22b], in particular, for at least 3N3^{N} general points when N4N\geqslant 4, and for at least 2N2^{N} general points when N9N\geqslant 9. The following lemma shows the inequality for all unknown cases in 4{\mathbb{P}}^{4}.

Lemma 4.1.

Let II be the defining ideal of ss generic points in 4{\mathbb{P}}^{4}, and 8s818\leqslant s\leqslant 81. Then α^(I(1×s))>d+14\widehat{\alpha}\big{(}I(1^{\times s})\big{)}>\dfrac{d+1}{4}, whenever (d4)<s(d+14){d\choose 4}<s\leqslant{d+1\choose 4}.

Proof.

We divide into different cases. Since s81s\leqslant 81 we start with s(94)s\leqslant{9\choose 4} and proceed.

  1. (1)

    When d=8d=8, then by using Lemma 2.9, Proposition 3.6, and Lemma 3.9, we get

    α^(I(1×s))α^(I(1×71))α^(I(1×(164+7)))α^(I(2×4,1×7))23/10>9/4.\widehat{\alpha}\big{(}I(1^{\times s})\big{)}\geqslant\widehat{\alpha}\big{(}I(1^{\times 71})\big{)}\geqslant\widehat{\alpha}\big{(}I(1^{\times(16\cdot 4+7)})\big{)}\geqslant\widehat{\alpha}\big{(}I(2^{\times 4},1^{\times 7})\big{)}\geqslant 23/10>9/4.
  2. (2)

    When d=7d=7, then by Lemma 2.9, and Lemma 3.9, α^(I(1×s))α^(I(1×36))51/25>8/4.\widehat{\alpha}\big{(}I(1^{\times s})\big{)}\geqslant\widehat{\alpha}\big{(}I(1^{\times 36})\big{)}\geqslant 51/25>8/4.

  3. (3)

    When d=6d=6, then by using Lemma 2.9 we get α^(I(1×s))α^(I(1×16))2>7/4.\widehat{\alpha}\big{(}I(1^{\times s})\big{)}\geqslant\widehat{\alpha}\big{(}I(1^{\times 16})\big{)}\geqslant 2>7/4.

  4. (4)

    When 8s(64)8\leqslant s\leqslant{6\choose 4}, then Lemma 2.9 and 3.9 we get α^(I(1×s))α^(I(1×8))8/5>6/4.\widehat{\alpha}\big{(}I(1^{\times s})\big{)}\geqslant\widehat{\alpha}\big{(}I(1^{\times 8})\big{)}\geqslant 8/5>6/4.

From now on, we only work with N5N\geqslant 5. The next lemma reduces the number of points to at least 2N2^{N} for all N5N\geqslant 5.

Lemma 4.2.

Let II be the defining ideal of ss generic points in N{\mathbb{P}}^{N}, where 2Ns3N2^{N}\leqslant s\leqslant 3^{N}, and N=5,6,7N=5,6,7, and 88. Then α^(I(1×s))>d+1N\widehat{\alpha}\big{(}I(1^{\times s})\big{)}>\dfrac{d+1}{N} whenever (dN)<s(d+1N){d\choose N}<s\leqslant{d+1\choose N}.

Proof.

We prove individually for N=5,6,7N=5,6,7, and 88 by dividing into sub-cases and proving them.

  1. (1)

    Consider N=5N=5 and 25s352^{5}\leqslant s\leqslant 3^{5}. Since s35s\leqslant 3^{5}, then s(105)s\leqslant{10\choose 5}. Now we study case by case:

    1. (a)

      If (95)<s(105){9\choose 5}<s\leqslant{10\choose 5}, then by Lemma 2.9, Proposition 3.6, and Lemma 3.10

      α^(I(1×s))α^(I(1×126))=α^(I(1×(3×32+31)))α^(I(2×3,1×31))2110>105.\widehat{\alpha}(I(1^{\times s}))\geqslant\widehat{\alpha}\big{(}I(1^{\times 126})\big{)}=\widehat{\alpha}\big{(}I\big{(}1^{\times(3\times 32+31)})\big{)}\geqslant\widehat{\alpha}\big{(}I(2^{\times 3},1^{\times 31}\big{)}\big{)}\geqslant\dfrac{21}{10}>\dfrac{10}{5}.
    2. (b)

      If d=7 or 8d=7\text{ or }8 with s32s\geqslant 32, by Lemma 2.9, α^(I(1×s))α^(I(1×32))=2>d+15.\widehat{\alpha}(I(1^{\times s}))\geqslant\widehat{\alpha}\big{(}I\big{(}1^{\times 32})\big{)}=2>\dfrac{d+1}{5}.

  2. (2)

    Consider N=6N=6 and 26s362^{6}\leqslant s\leqslant 3^{6}. Since s36s\leqslant 3^{6}, then s(126)s\leqslant{12\choose 6}.

    1. (a)

      If (116)<s(126){11\choose 6}<s\leqslant{12\choose 6}, then using Lemma 2.9, Theorem 3.2 and Proposition 2.10 we get:

      α^(I(1×s))α^(I(1×462))α^(I(1×(764))2α^(I(1×7))276>126.\widehat{\alpha}(I(1^{\times s}))\geqslant\widehat{\alpha}\big{(}I(1^{\times 462})\big{)}\geqslant\widehat{\alpha}\big{(}I\big{(}1^{\times(7\cdot 64)}\big{)}\geqslant 2\widehat{\alpha}\big{(}I(1^{\times 7})\big{)}\geqslant 2\cdot\dfrac{7}{6}>\dfrac{12}{6}.
    2. (b)

      If d=8,9,10d=8,9,10, with s64s\geqslant 64, by Lemma 2.9, α^(I(1×s))α^(I(1×64))=2>d+16.\widehat{\alpha}(I(1^{\times s}))\geqslant\widehat{\alpha}\big{(}I\big{(}1^{\times 64})\big{)}=2>\dfrac{d+1}{6}.

  3. (3)

    Consider N=7N=7 and 27s372^{7}\leqslant s\leqslant 3^{7}. Since s37s\leqslant 3^{7}, then s(147)s\leqslant{14\choose 7}.

    1. (a)

      If (137)<s(147){13\choose 7}<s\leqslant{14\choose 7}, then by Lemma 2.9, Theorem 3.2, and Proposition 2.10

      α^(I(1×s))α^(I(1×1716))α^(I(1×(8128)))2α^(I(1×8))287>147.\widehat{\alpha}(I(1^{\times s}))\geqslant\widehat{\alpha}\big{(}I(1^{\times 1716})\big{)}\geqslant\widehat{\alpha}\big{(}I\big{(}1^{\times(8\cdot 128)}\big{)}\big{)}\geqslant 2\widehat{\alpha}\big{(}I(1^{\times 8})\big{)}\geqslant 2\cdot\dfrac{8}{7}>\dfrac{14}{7}.
    2. (b)

      If d=10,11,12d=10,11,12 with s128s\geqslant 128, by 2.9, α^(I(1×s))α^(I(1×128))=2>d+17.\widehat{\alpha}(I(1^{\times s}))\geqslant\widehat{\alpha}\big{(}I\big{(}1^{\times 128})\big{)}=2>\dfrac{d+1}{7}.

  4. (4)

    Consider N=8N=8 and 28s382^{8}\leqslant s\leqslant 3^{8}. Since s38s\leqslant 3^{8}, then s(168)s\leqslant{16\choose 8}.

    1. (a)

      If d=15 or 16d=15\text{ or }16, then by Lemma 2.9 and Theorem 3.2

      α^(I(1×s))α^(I(1×6435))α^(I(1×(9256))2α^(I(1×9))298>d+18.\widehat{\alpha}(I(1^{\times s}))\geqslant\widehat{\alpha}\big{(}I(1^{\times 6435})\big{)}\geqslant\widehat{\alpha}\big{(}I\big{(}1^{\times(9\cdot 256)}\big{)}\geqslant 2\widehat{\alpha}\big{(}I(1^{\times 9})\big{)}\geqslant 2\cdot\dfrac{9}{8}>\dfrac{d+1}{8}.
    2. (b)

      If d=11,12,13,14d=11,12,13,14, with s256s\geqslant 256, by 2.9, α^(I(1×s))α^(I(1×256))=2>d+18.\widehat{\alpha}(I(1^{\times s}))\geqslant\widehat{\alpha}\big{(}I(1^{\times 256})\big{)}=2>\dfrac{d+1}{8}.

Since we work with the number of points bounded between binomial numbers, (dN)<s(d+1N){d\choose N}<s\leqslant{d+1\choose N}, the following numerical lemma allows us to make the assumption that d2N2d\leqslant 2N-2.

Lemma 4.3.

Let N3N\geqslant 3, then (2N1N)2N\displaystyle{2N-1\choose N}\geqslant 2^{N}.

Proof.

The proof is straightforward by induction. ∎

In the next two lemmas, we show the inequality α^(I)>reg(I)+N1N\widehat{\alpha}(I)>\frac{\operatorname{reg}(I)+N-1}{N} for ss generic points where (dN)<s(d+1N){d\choose N}<s\leqslant{d+1\choose N} in the cases when d=N+1d=N+1, and d=N+2d=N+2.

Lemma 4.4.

Let II be the defining ideal of ss generic points in N{\mathbb{P}}^{N}, where N+4s(N+2N)N+4\leqslant s\leqslant{N+2\choose N}, and N5N\geqslant 5. Then α^(I(1×s))>N+2N\widehat{\alpha}\big{(}I(1^{\times s})\big{)}>\dfrac{N+2}{N}.

Proof.

Let N+4s(N+2N)N+4\leqslant s\leqslant{N+2\choose N}, if NN is even then by Lemma 2.9 and Lemma 3.11

α^(I(1×s))α^(I(1×(N+4)))(N+2)(2N1)+2N(2N1)>N+2N.\widehat{\alpha}\big{(}I\big{(}1^{\times s}\big{)}\big{)}\geqslant\widehat{\alpha}\big{(}I\big{(}1^{\times(N+4)}\big{)}\big{)}\geqslant\dfrac{(N+2)(2N-1)+2}{N(2N-1)}>\dfrac{N+2}{N}.

Otherwise, if NN is odd, then by Lemma 2.9 and Proposition 2.10 we have

α^(I(1×s))α^(I(1×(N+3))>N+2N.\widehat{\alpha}\big{(}I\big{(}1^{\times s}\big{)}\big{)}\geqslant\widehat{\alpha}\big{(}I\big{(}1^{\times(N+3)}\big{)}>\dfrac{N+2}{N}.

This finishes the proof. ∎

Lemma 4.5.

Let II be the defining ideal of ss generic points in N{\mathbb{P}}^{N}, where (N+2N)s(N+3N){N+2\choose N}\leqslant s\leqslant{N+3\choose N}, and N5N\geqslant 5. Then α^(I(1×s))>N+3N\widehat{\alpha}\big{(}I(1^{\times s})\big{)}>\dfrac{N+3}{N}.

Proof.

It is enough to show the inequality for s=(N+2N)+1s={N+2\choose N}+1 points. We make use of the fact that α^(1×N+2)N+2N\widehat{\alpha}({1^{\times N+2}})\geqslant\frac{N+2}{N}, hence,

I((Nam)×N+2)(N+2)am1=0, for all a,m,\displaystyle I((Nam)^{\times N+2})_{(N+2)am-1}=0,\text{ for all }a,m,

to show that there exist x,yx,y, and aa (for each NN) such that x+(N+2)y=(N+2N)+1x+(N+2)y={N+2\choose N}+1, and

I((Nam)×x,((N+2)am)×y)[(N+3)a+1]m1=0,m.\displaystyle I\left((Nam)^{\times x},((N+2)am)^{\times y}\right)_{[(N+3)a+1]m-1}=0,\forall m.

In fact, once we prove the above claim, by applying the Lemma 2.8 yy times, we get

I((Nam)×s)[(N+3)a+1]m1=0,m,\displaystyle I((Nam)^{\times s})_{[(N+3)a+1]m-1}=0,\forall m,

and therefore, α^(1×s)(N+3)a+1Na>N+3N\widehat{\alpha}({1^{\times s}})\geqslant\dfrac{(N+3)a+1}{Na}>\dfrac{N+3}{N}. We prove the claim in two cases as follows.

Case 1: When NN is odd

Claim 4.6.

Take x=N+3x=N+3, y=N12y=\dfrac{N-1}{2}, and any aN212(N2)a\geqslant\dfrac{N^{2}-1}{2(N-2)}.

Proof.

We need to show that

I((Nam)×N+3,((N+2)am)×N12)[(N+3)a+1]m1=0,m.\displaystyle I\left((Nam)^{\times N+3},((N+2)am)^{\times\frac{N-1}{2}}\right)_{[(N+3)a+1]m-1}=0,\forall m.

Applying Lemma 3.1 with

k\displaystyle k =(N1)[(N+3)a+1]m(N1)(N12(N+2)am+N+32Nam)\displaystyle=(N-1)[(N+3)a+1]m-(N-1)-\left(\dfrac{N-1}{2}(N+2)am+\dfrac{N+3}{2}Nam\right)
=((N1)2a)m(N1),\displaystyle=\left((N-1)-2a\right)m-(N-1),

(From here, we need aN+12a\geqslant\frac{N+1}{2}.)

for all mm, we reduce to

I(A1×N+32,B1×N+32,C1×N12)D1,I\left(A_{1}^{\times\frac{N+3}{2}},B_{1}^{\times\frac{N+3}{2}},C_{1}^{\times\frac{N-1}{2}}\right)_{D_{1}},

where A1=Nam,B1=[(N2)a+N1]m(N1)A_{1}=Nam,B_{1}=[(N-2)a+N-1]m-(N-1), C1=(Na+N1)m(N1)C_{1}=(Na+N-1)m-(N-1), and D1=[(N+1)a+N]mND_{1}=[(N+1)a+N]m-N.

Applying Lemma 3.1 again with

k\displaystyle k =(N1)D1N12C1N+32A1\displaystyle=(N-1)D_{1}-\dfrac{N-1}{2}C_{1}-\dfrac{N+3}{2}A_{1}
=(N212(N+1)a)mN212,\displaystyle=\left(\dfrac{N^{2}-1}{2}-(N+1)a\right)m-\dfrac{N^{2}-1}{2},

for all mm, we reduce to

I(A2×N+32,B2×N+32,C2×N12)D2,I\left(A_{2}^{\times\frac{N+3}{2}},B_{2}^{\times\frac{N+3}{2}},C_{2}^{\times\frac{N-1}{2}}\right)_{D_{2}},

where A2=(N212a)mN212,A_{2}=(\dfrac{N^{2}-1}{2}-a)m-\dfrac{N^{2}-1}{2}, B2=[(N2)a+N1]m(N1)B_{2}=[(N-2)a+N-1]m-(N-1),
C2=(N212+N1a)mN212(N1)C_{2}=(\dfrac{N^{2}-1}{2}+N-1-a)m-\dfrac{N^{2}-1}{2}-(N-1), and D2=(N212+N)mN212ND_{2}=(\dfrac{N^{2}-1}{2}+N)m-\dfrac{N^{2}-1}{2}-N.

Therefore, if we choose any aN212(N2)a\geqslant\dfrac{N^{2}-1}{2(N-2)}, we have

(N2)a+(N1)N212+N, hence, B2>D2,(N-2)a+(N-1)\geqslant\dfrac{N^{2}-1}{2}+N,\text{ hence, }B_{2}>D_{2},

thus, I(A2×N+32,B2×N+32,C2×N12)D2=0I\left(A_{2}^{\times\frac{N+3}{2}},B_{2}^{\times\frac{N+3}{2}},C_{2}^{\times\frac{N-1}{2}}\right)_{D_{2}}=0 for all mm.

Case 2: When NN is even

Claim 4.7.

Take x=3N2+4x=\dfrac{3N}{2}+4, y=N22y=\dfrac{N-2}{2}, and any aN+(N1)(N2+1)N21a\geqslant\dfrac{N+(N-1)(\frac{N}{2}+1)}{\frac{N}{2}-1}.

Proof.

We need to show that

I((Nam)×3N2+4,((N+2)am)×N22)[(N+3)a+1]m1=0,m.\displaystyle I\left((Nam)^{\times\frac{3N}{2}+4},((N+2)am)^{\times\frac{N-2}{2}}\right)_{[(N+3)a+1]m-1}=0,\forall m.

Applying Lemma 3.1 with

k\displaystyle k =(N1)[(N+3)a+1]m(N1)(N22(N+2)am+N+42Nam)\displaystyle=(N-1)[(N+3)a+1]m-(N-1)-\left(\dfrac{N-2}{2}(N+2)am+\dfrac{N+4}{2}Nam\right)
=((N1)a)m(N1),\displaystyle=\left((N-1)-a\right)m-(N-1),

(From here, we need aNa\geqslant N.)

for all mm, we reduce to

I(A1×N+2,B1×N2+2,C1×N22)D1,I\left(A_{1}^{\times N+2},B_{1}^{\times\frac{N}{2}+2},C_{1}^{\times\frac{N-2}{2}}\right)_{D_{1}},

where A1=Nam,B1=[(N1)a+N1]m(N1)A_{1}=Nam,B_{1}=[(N-1)a+N-1]m-(N-1), C1=[(N+1)a+(N1)]m(N1)C_{1}=[(N+1)a+(N-1)]m-(N-1), and D1=[(N+2)a+N]mND_{1}=[(N+2)a+N]m-N.

Applying Lemma 3.1 again with

k\displaystyle k =(N1)D1N22C1N+42A1\displaystyle=(N-1)D_{1}-\dfrac{N-2}{2}C_{1}-\dfrac{N+4}{2}A_{1}
=((N1)(N2+1)(N2+1)a)m(N1)(N2+1),\displaystyle=\left((N-1)(\dfrac{N}{2}+1)-(\dfrac{N}{2}+1)a\right)m-(N-1)(\dfrac{N}{2}+1),

for all mm, we reduce to

I(A2×N2,B2×N2+2,C2×N22,E2×N+42)D2,I\left(A_{2}^{\times\frac{N}{2}},B_{2}^{\times\frac{N}{2}+2},C_{2}^{\times\frac{N-2}{2}},E_{2}^{\times\frac{N+4}{2}}\right)_{D_{2}},

where A2=NamA_{2}=Nam and D2=((N2+1)a+N+(N1)(N2+1))mN(N1)(N2+1)D_{2}=\left((\dfrac{N}{2}+1)a+N+(N-1)(\dfrac{N}{2}+1)\right)m-N-(N-1)(\dfrac{N}{2}+1).

Therefore, if we choose aN+(N1)(N2+1)N21a\geqslant\dfrac{N+(N-1)(\frac{N}{2}+1)}{\frac{N}{2}-1}, we have

Na(N2+1)a+N+(N1)(N2+1), hence, A2>D2,Na\geqslant(\dfrac{N}{2}+1)a+N+(N-1)(\dfrac{N}{2}+1),\text{ hence, }A_{2}>D_{2},

thus, I(A2×N2,B2×N2+2,C2×N22,E2×N+42)D2=0I\left(A_{2}^{\times\frac{N}{2}},B_{2}^{\times\frac{N}{2}+2},C_{2}^{\times\frac{N-2}{2}},E_{2}^{\times\frac{N+4}{2}}\right)_{D_{2}}=0 for all mm. ∎

This finishes the proof for the lemma. ∎

Before proving the main result of this section, that is, the inequality α^(I)>reg(I)+N1N\widehat{\alpha}(I)>\frac{\operatorname{reg}(I)+N-1}{N} for generic points, we prove Lemma 4.9, which is important in the inductive proof of the main Theorem 4.10. This lemma is a direct application of the results in [DSS18], where the authors studied Waldschmidt decomposition to investigate questions related to local effectivity, Waldschmidt constant, and Demailly’s conjecture. We state their result here for our purpose.

Lemma 4.8 (Theorem 4.1 [DSS18]).

Denote α^(N,r)\widehat{\alpha}({\mathbb{P}}^{N},r) the Waldschmidt constant of the ideal of rr very general points in N{\mathbb{P}}^{N}. Let N2N\geqslant 2 and k1k\geqslant 1. Assume that for some integers r1,,rk+1r_{1},\ldots,r_{k+1} and rational numbers a1,,ak+1a_{1},\ldots,a_{k+1} we have

α^(N1,rj)aj, for all j=1,,k+1,\widehat{\alpha}({\mathbb{P}}^{N-1},r_{j})\geqslant a_{j},\text{ for all }j=1,\ldots,k+1,
kajk+1, for j=1,,k,a1>k,ak+1k+1.k\leqslant a_{j}\leqslant k+1,\text{ for }j=1,\ldots,k,\ \ a_{1}>k,\ \ a_{k+1}\leqslant k+1.

Then,

α^(N,r1++rk+1)(1j=1k1aj)ak+1+k.\widehat{\alpha}({\mathbb{P}}^{N},r_{1}+\ldots+r_{k+1})\geqslant\left(1-\sum_{j=1}^{k}\dfrac{1}{a_{j}}\right)a_{k+1}+k.
Lemma 4.9.

Assume that N4N\geqslant 4. Suppose that for each 2N12\leqslant\ell\leqslant N-1, the following is true:

 if (N+N)<s(N++1N),then for s-many very general sets of points α^(N,s)N++1N.\text{ if }{N+\ell\choose N}<s\leqslant{N+\ell+1\choose N},\text{then for }s\text{-many very general sets of points }\widehat{\alpha}({\mathbb{P}}^{N},s)\geqslant\dfrac{N+\ell+1}{N}.

If for each of those \ell, we set s=(N+1+N+1)+1s_{\ell}={N+1+\ell\choose N+1}+1, then for ss_{\ell} many generic points we have:

α^(1×s)>N+1++1N+1.\widehat{\alpha}(1^{\times s_{\ell}})>\dfrac{N+1+\ell+1}{N+1}.
Proof.

Let us write

s=(N+1+N+1)+1\displaystyle s_{\ell}={N+1+\ell\choose N+1}+1 =(N+N)+1+(N+N+1)\displaystyle={N+\ell\choose N}+1+{N+\ell\choose N+1}
=(N+N)+1+N+N+1(N+1N)\displaystyle={N+\ell\choose N}+1+\dfrac{N+\ell}{N+1}{N+\ell-1\choose N}
=r1+r2\displaystyle=r_{1}+r_{2}

where r1=(N+N)+1r_{1}={N+\ell\choose N}+1 and r2=N+N+1(N+1N)r_{2}=\frac{N+\ell}{N+1}{N+\ell-1\choose N}. For very general sets of points and 2\ell\geqslant 2,

α^(N,r1)a1=N++1N=1++1N\widehat{\alpha}({\mathbb{P}}^{N},r_{1})\geqslant a_{1}=\dfrac{N+\ell+1}{N}=1+\dfrac{\ell+1}{N},

α^(N,r2)α^(N,(N+1N)+1)a2=N+1+1N=1+N\widehat{\alpha}({\mathbb{P}}^{N},r_{2})\geqslant\widehat{\alpha}({\mathbb{P}}^{N},{N+\ell-1\choose N}+1)\geqslant a_{2}=\dfrac{N+\ell-1+1}{N}=1+\dfrac{\ell}{N}.

Since, N1\ell\leqslant N-1, then 1<a121<a_{1}\leqslant 2 and a22a_{2}\leqslant 2. This satisfies the hypothesis of Lemma 4.8 with k=1k=1. Thus for sls_{l} many very general points in N+1{\mathbb{P}}^{N+1}, we have

α^(N,r1+r2)(11a1)a2+1=(+1)(N+)(N++1)N+1>1++1N+1,\widehat{\alpha}({\mathbb{P}}^{N},r_{1}+r_{2})\geqslant(1-\frac{1}{a_{1}})a_{2}+1=\frac{(\ell+1)(N+\ell)}{(N+\ell+1)N}+1>1+\frac{\ell+1}{N+1},

which gives that for very general points

α^(N+1,s)>1++1N+1.\widehat{\alpha}({\mathbb{P}}^{N+1},s_{\ell})>1+\frac{\ell+1}{N+1}.

Now we know that the Waldschmidt constant of the ideal generic points is greater than that of very general points. Thus for ss_{\ell} many generic points in N+1{\mathbb{P}}^{N+1}, we have

α^(1×s)>1++1N+1=N+1++1N+1.\widehat{\alpha}(1^{\times s_{\ell}})>1+\frac{\ell+1}{N+1}=\frac{N+1+\ell+1}{N+1}.

We are now ready to prove the main result of this section.

Theorem 4.10.

Let II be the defining ideal of any number of ss generic points in N{\mathbb{P}}^{N} where sN+4s\geqslant N+4. Then

α^(I)>reg(I)+N1N.\widehat{\alpha}(I)>\frac{\operatorname{reg}(I)+N-1}{N}.
Proof.

We use induction on NN. The base case N=4N=4 follows from results in [BGHN22b] and Lemma 4.1 as mentioned above. Suppose that the inequality holds for N4N\geqslant 4, we want to show the inequality hold for N+1N+1. First, note that by combining the results in [BGHN22b], Lemmas 4.2, 4.3, 4.4, and 4.5 applying to N+1{\mathbb{P}}^{N+1}, it suffices to prove the inequality

α^(I)>reg(I)+NN+1,\widehat{\alpha}(I)>\frac{\operatorname{reg}(I)+N}{N+1},

for ss many generic points in N+1{\mathbb{P}}^{N+1} where (N+1+3N+1)+1s(N+1+N+11N+1){N+1+3\choose N+1}+1\leqslant s\leqslant{N+1+N+1-1\choose N+1} and N+15N+1\geqslant 5. Moreover, it is enough to show that

α^(1×s)>N+1++1N+1,\widehat{\alpha}(1^{\times s_{\ell}})>\dfrac{N+1+\ell+1}{N+1},

for s=(N+1+N+1)+1s_{\ell}={N+1+\ell\choose N+1}+1 generic points in N+1{\mathbb{P}}^{N+1} where 3N3\leqslant\ell\leqslant N. By the inductive hypothesis that the inequality α^(I)>reg(I)+N1N\widehat{\alpha}(I)>\frac{\operatorname{reg}(I)+N-1}{N} is true for any ss generic points in N{\mathbb{P}}^{N}, specializing the points, we have the inequality α^(N,s)N++1N\widehat{\alpha}({\mathbb{P}}^{N},s)\geqslant\dfrac{N+\ell+1}{N} for any ss very general sets of points in N{\mathbb{P}}^{N} where (N+N)<s(N++1N){N+\ell\choose N}<s\leqslant{N+\ell+1\choose N} and 2N12\leqslant\ell\leqslant N-1. By Lemma 4.9, we finish the induction step. ∎

Remark 4.11.

As mentioned before, we only work with N4N\geqslant 4 and sN+4s\geqslant N+4 many points. The above inequality is stronger than Chudnovsky’s inequality, hence, by specializing the points, we yield Chudnovsky’s conjecture for sN+4s\geqslant N+4 very general points when N4N\geqslant 4, thus recover the main result in [FMX18] in this case.

5. Stable containment and Chudnovsky’s Conjecture for general points

In this section, we extend our results in [BGHN22b] on stable Harbourne-Huneke Containment and Chudnovsky’s conjecture for any numbers of general points in N{\mathbb{P}}^{N}.

Lemma 5.1.

Let I=I(𝐳)I=I({\bf z}) be the defining ideal of a generic sets of any number of points in 𝕜(𝐳)N{\mathbb{P}}^{N}_{{\mathbbm{k}}({\bf z})}. Then II satisfies the following containment

I(NrN)𝔪𝐳NrIr, for r0.I^{(Nr-N)}\subset{\mathfrak{m}}_{\bf z}^{Nr}I^{r},\text{ for }r\gg 0.
Proof.

The proof follows the same pattern as [BGHN22b, Lemma 4.7], we present it in details for readers’ convenience. By Theorem 4.10 we have, α^(I)>reg(I)+N1N\widehat{\alpha}(I)>\dfrac{\operatorname{reg}(I)+N-1}{N}, hence, Nα^(I)rr1(reg(I)+N1)N\widehat{\alpha}(I)\geqslant\dfrac{r}{r-1}(\operatorname{reg}(I)+N-1), for r0r\gg 0, therefore,

α(INrN)(NrN)α^(I)r(reg(I)+N1).\alpha(I^{Nr-N})\geqslant(Nr-N)\widehat{\alpha}(I)\geqslant r(\operatorname{reg}(I)+N-1).

Hence by [BH10, Lemma 2.3.4], we get, I(NrN)𝔪𝐳NrIr, for r0I^{(Nr-N)}\subset{\mathfrak{m}}_{\bf z}^{Nr}I^{r},\text{ for }r\gg 0. ∎

The following is the main Theorem of this section.

Theorem 5.2.

Let II be the defining ideal of a general set of any ss number of points in N{\mathbb{P}}^{N}. Then, there is a constant r(s,N)r(s,N), depending only on ss and NN, such that the stable containment I(Nr)𝔪(N1)rIrI^{(Nr)}\subseteq{\mathfrak{m}}^{(N-1)r}I^{r} holds when rr(s,N)r\geqslant r(s,N).

The proof follows the same pattern as [BGHN22b, Theorem 4.8].

Proof.

Let I(𝐳)I({\bf z}) be the defining ideal of the set of ss generic points in 𝕜(𝐳)N{\mathbb{P}}^{N}_{{\mathbbm{k}}({\bf z})}. By Lemma 5.1, there exists a constant cc\in{\mathbb{N}} such that

I(𝐳)(NcN)𝔪𝐳c(N1)I(𝐳)c.I({\bf z})^{(Nc-N)}\subseteq{\mathfrak{m}}_{\bf z}^{c(N-1)}I({\bf z})^{c}.

By [Kru48, Satz 2 and 3], there exists an open dense subset U𝔸s(N+1)U\subseteq{\mathbb{A}}^{s(N+1)} such that 𝐚U\forall{\bf a}\in U,

π𝐚(I(𝐳))(NcN)=I(𝐚)(NcN),π𝐚(I(𝐳)c)=I(𝐚)c and π𝐚(𝔪𝐳c(N1))=𝔪c(N1).\pi_{\bf a}(I({\bf z}))^{(Nc-N)}=I({\bf a})^{(Nc-N)},\quad\pi_{\bf a}(I({\bf z})^{c})=I({\bf a})^{c}\quad\text{ and }\quad\pi_{\bf a}({\mathfrak{m}}_{\bf z}^{c(N-1)})={\mathfrak{m}}^{c(N-1)}.

Thus, for all 𝐚U{\bf a}\in U, we have

(5.1) I(𝐚)(NcN)𝔪c(N1)I(𝐚)c.\displaystyle I({\bf a})^{(Nc-N)}\subseteq{\mathfrak{m}}^{c(N-1)}I({\bf a})^{c}.

Note that we can pick UU such that for all 𝐚U{\bf a}\in U, we also have α(I(𝐚))=α(I(𝐳))\alpha(I({\bf a}))=\alpha(I({\bf z})).

Applying [BGHN22b, Corollary 3.2, and Remark 3.3], we get that, for 𝐚U{\bf a}\in U and r0r\gg 0 (independent of I(𝐚)I({\bf a})),

I(𝐚)(NrN)𝔪r(N1)I(𝐚)r.I({\bf a})^{(Nr-N)}\subseteq{\mathfrak{m}}^{r(N-1)}I({\bf a})^{r}.

Remark 5.3.

If II is an ideal defining a set of general points, then they do satisfy the following containment

I(NrN+1)𝔪(r1)(N1)Ir,r0.I^{(Nr-N+1)}\subseteq{\mathfrak{m}}^{(r-1)(N-1)}I^{r},r\gg 0.

By combining with the results for sufficiently large numbers of points in [BGHN22b], we have completed the proof showing the stable Harbourne-Huneke containment I(Nr)𝔪(N1)rIrI^{(Nr)}\subseteq{\mathfrak{m}}^{(N-1)r}I^{r}, the above stronger containment, or in particular, the stable Harbourne containment I(NrN+1)Ir,r0I^{(Nr-N+1)}\subseteq I^{r},r\gg 0 for any set of general points in N{\mathbb{P}}^{N}.

Theorem 5.4.

If II is the defining ideal of a general set of points in 𝕜N{\mathbb{P}}^{N}_{\mathbbm{k}}, then II satisfies Chudnovsky’s conjecture, i.e.,

α^(I)α(I)+N1N.\widehat{\alpha}(I)\geqslant\dfrac{\alpha(I)+N-1}{N}.
Proof.

By Theorem 5.2 we get

I(Nr)𝔪NrIr, for r0.I^{(Nr)}\subseteq{\mathfrak{m}}^{Nr}I^{r},\text{ for }r\gg 0.

By taking the initial degree in each side,

α(I(Nr))r(N1)+rα(I).\alpha\big{(}I^{(Nr)}\big{)}\geqslant r(N-1)+r\alpha(I).

After dividing by NrNr, and taking limit as rr\to\infty, we get α^(I)α(I)+N1N.\widehat{\alpha}\big{(}I\big{)}\geqslant\dfrac{\alpha(I)+N-1}{N}.

Remark 5.5.

Incorporating with the results in [BGHN22b], we are able to show the stable Harbourne-Huneke containment and Chudnovsky’s conjecture for any number of general points in N{\mathbb{P}}^{N} for all N4N\geqslant 4. Combining with the results in [HH13] for N=2N=2 and and in [Dum12, Dum15] for N=3N=3, the stable Harbourne-Huneke containment and Chudnovsky’s conjecture for any number of general points in N{\mathbb{P}}^{N} for all NN. It is still wide open whether each of the conjectures holds for any set of points. There are only a few affirmed answers, one is that Chudnovsky’s conjecture holds for s(N+2N)1s\leqslant{N+2\choose N}-1 number of points (see [FMX18]), and one is for all number of points in 2{\mathbb{P}}^{2} [HH13]. Abu Thomas informed us that he also used Cremona transformation technique to prove Chudnovsky’s conjecture for 1515 linearly general points in 4{\mathbb{P}}^{4} see [Tho21, Theorem 5.1.5]. The preliminaries work using the method in this paper, which proved the conjectures for any number of general points N9N\leqslant 9, can be found in the second author’s thesis [Ngu22a].

References

  • [BFG+21] Edoardo Ballico, Giuseppe Favacchio, Elena Guardo, Lorenzo Milazzo, and Abu Chackalamannil Thomas. Steiner configurations ideals: Containment and colouring. Mathematics, 9(3), 2021.
  • [BGHN22a] Sankhaneel Bisui, Eloísa Grifo, Huy Tài Hà, and Thái Thành Nguyê~\tilde{\text{\^{e}}}n. Demailly’s conjecture and the containment problem. Journal of Pure and Applied Algebra, 226(4):106863, 2022.
  • [BGHN22b] Sankhaneel Bisui, Eloísa Grifo, Huy Tài Hà, and Thái Thành Nguyê~\tilde{\text{\^{e}}}n. Chudnovsky’s conjecture and the stable harbourne-huneke containment. Trans. Amer. Math. Soc. Ser. B, 9(12):371–394, 2022.
  • [BH10] Cristiano Bocci and Brian Harbourne. Comparing powers and symbolic powers of ideals. J. Algebraic Geom., 19(3):399–417, 2010.
  • [CHHVT20] Enrico Carlini, Huy Tài Hà, Brian Harbourne, and Adam Van Tuyl. Ideals of powers and powers of ideals: Intersecting Algebra, Geometry and Combinatorics, volume 27 of Lecture Notes of the Unione Matematica Italiana. Springer International Publishing, 2020.
  • [Chu81] Gregory V. Chudnovsky. Singular points on complex hypersurfaces and multidimensional schwarz lemma. In Séminaire de Théorie des Nombres, Paris 1979-80, Séminaire Delange-Pisot-Poitou, volume 12 of Progress in Math., pages 29–69. Birkhäuser, Boston, Sasel, Stutgart, 1981.
  • [DDSG+18] Hailong Dao, Alessandro De Stefani, Eloísa Grifo, Craig Huneke, and Luis Núñez Betancourt. Symbolic powers of ideals. In Singularities and foliations. geometry, topology and applications, volume 222 of Springer Proc. Math. Stat., pages 387–432. Springer, Cham, 2018.
  • [DHSTG14] Marcin Dumnicki, Brian Harbourne, Tomasz Szemberg, and Halszka Tutaj-Gasińska. Linear subspaces, symbolic powers and nagata type conjectures. Advances in Mathematics, 252:471–491, 2014.
  • [DS21] Ben Drabkin and Alexandra Seceleanu. Singular loci of reflection arrangements and the containment problem. Math. Z., 299(1-2):867–895, 2021.
  • [DSS18] Marcin Dumnicki, Tomasz Szemberg, and Justyna Szpond. Local effectivity in projective spaces. arXiv preprint arXiv:1802.08699, 2018.
  • [DTG17] Marcin Dumnicki and Halszka Tutaj-Gasińska. A containment result in PnP^{n} and the Chudnovsky conjecture. Proc. Amer. Math. Soc., 145(9):3689–3694, 2017.
  • [Dum09] Marcin Dumnicki. An algorithm to bound the regularity and nonemptiness of linear systems in pn. Journal of Symbolic Computation, 44(10):1448–1462, 2009.
  • [Dum12] Marcin Dumnicki. Symbolic powers of ideals of generic points in p3. Journal of Pure and Applied Algebra, 216(6):1410–1417, 2012.
  • [Dum15] Marcin Dumnicki. Containments of symbolic powers of ideals of generic points in 3\mathbb{P}^{3}. Proc. Amer. Math. Soc., 143(2):513–530, 2015.
  • [ELS01] Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith. Uniform bounds and symbolic powers on smooth varieties. Invent. Math., 144 (2):241–25, 2001.
  • [Eva05] Laurent Evain. On the postulation of sd fat points in pd. Journal of Algebra, 285(2):516–530, 2005.
  • [FMX18] Louiza Fouli, Paolo Mantero, and Yu Xie. Chudnovsky’s conjecture for very general points in kN\mathbb{P}^{N}_{k}. J. Algebra, 498:211–227, 2018.
  • [GH17] Eloísa Grifo and Craig Huneke. Symbolic powers of ideals defining F-pure and strongly F-regular rings. International Mathematics Research Notices, (rnx213), 2017.
  • [GHM13] Anthony V. Geramita, Brian Harbourne, and Juan Migliore. Star configurations in n\mathbb{P}^{n}. J. Algebra, 376:279–299, 2013.
  • [GKZ94] Izrail’ M. Gel’fand, Mikhail M. Kapranov, and Andrey V. Zelevinsky. Discriminants, resultants, and multidimensional determinants. Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 1994.
  • [GM84] Anthony V. Geramita and Paolo Maroscia. The ideal of forms vanishing at a finite set of points in 𝐏n{\bf P}^{n}. J. Algebra, 90(2):528–555, 1984.
  • [Gri20] Eloísa Grifo. A stable version of Harbourne’s Conjecture and the containment problem for space monomial curves. J. Pure Appl. Algebra, 224(12):106435, 2020.
  • [HH02] Melvin Hochster and Craig Huneke. Comparison of symbolic and ordinary powers of ideals. Invent. Math. 147 (2002), no. 2, 349–369, November 2002.
  • [HH13] Brian Harbourne and Craig Huneke. Are symbolic powers highly evolved? J. Ramanujan Math. Soc., 28A:247–266, 2013.
  • [Iar97] A. Iarrobino. Inverse system of a symbolic power iii: thin algebras and fat points. Compositio Mathematica, 108(3):319–356, 1997.
  • [Kru48] Wolfgang Krull. Parameterspezialisierung in Polynomringen. Arch. Math., 1:56–64, 1948.
  • [MN01] J. C. Migliore and U. Nagel. Liaison and related topics: notes from the Torino workshop-school. volume 59, pages 59–126 (2003). 2001. Liaison and related topics (Turin, 2001).
  • [Mor80] J.-C. Moreau. Lemmes de schwarz en plusieurs variables et applications arithmétiques. In Séminaire Pierre Lelong-Henri Skoda (Analyse). Années 1978/79 (French), volume 822 of Lecture Notes in Math., pages 174–190. Springer, Berlin–New York, 1980.
  • [Ngu21] Thái Thành Nguyê~\tilde{\text{\^{e}}}n. The initial degree of symbolic powers of ideals of fermat configuration of points. arXiv preprint arXiv:2101.12308, 2021.
  • [Ngu22a] T. T. Nguyen. Symbolic powers of monomial ideals and ideals of points. ProQuest Dissertations and Theses, page 164, 2022.
  • [Ngu22b] Thái Thành Nguyê~\tilde{\text{\^{e}}}n. The initial degree of symbolic powers of fermat-like ideals of planes and lines arrangements. To appear, Comm. Algebra, 2022.
  • [NT99] Dam Van Nhi and Ngô Viêt Trung. Specialization of modules. Comm. Algebra, 27(6):2959–2978, 1999.
  • [NT19] Uwe Nagel and Bill Trok. Interpolation and the weak lefschetz property. Trans. Amer. Math. Soc., 372(12):8849–8870, 2019.
  • [Sec15] Alexandra Seceleanu. A homological criterion for the containment between symbolic and ordinary powers of some ideals of points in 2\mathbb{P}^{2}. Journal of Pure and Applied Algebra, 219(11):4857 – 4871, 2015.
  • [Sko77] H. Skoda. Estimations L2L^{2} pour l’opérateur ¯\overline{\partial} et applications arithmétiques. In Journées sur les Fonctions Analytiques (Toulouse, 1976), pages 314–323. Lecture Notes in Math., Vol. 578. 1977.
  • [Tho21] Abu C. Thomas. Regularity and resurgence number of homogeneous ideals. ProQuest Dissertations and Theses, page 96, 2021.
  • [Wal77] Michel Waldschmidt. Propriétés arithmétiques de fonctions de plusieurs variables. II. In Séminaire Pierre Lelong (Analyse) année 1975/76, pages 108–135. Lecture Notes in Math., Vol. 578. 1977.