This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Chromatic Afterglow of GRB 200829A

N. S. Pankov,1,2 A. S. Pozanenko,2 P. Yu. Minaev,2,3 S. O. Belkin,1,2 A. A. Volnova,2 I. V. Reva,4 A. V. Serebryanskiy,4 M. A. Krugov,4 S. A. Naroenkov,5 A. O. Novichonok,6 A. A. Zhornichenko,6 V. V. Rumyantsev,7 K. A. Antonyuk,7 Sh. A. Egamberdiev,8 O. A. Burkhonov,8 E. V. Klunko,9 A. S. Moskvitin,10 I. E. Molotov,11 R. Ya. Inasaridze12
1National Research Institute "Higher School of Economics", ul. Myasnitskaya 21/4, build. 5, Moscow 101000, Russia
2Space Research Institute, Russian Academy of Sciences, ul. Profsoyuznaya 84/32, Moscow 117997, Russia
3Lebedev Physical Institute, Russian Academy of Sciences, Leninskiy Prospekt 53, Moscow 119991, Russia
4Fesenkov Astrophysical Institute, Observatory 23, Almaty 05002, Kazakhstan
5Institute of Astronomy, ul. Pyatnitskaya 48, Moscow 119017, Russia
6Petrozavodsk State University, Prospekt Lenina 33, Petrozavodsk 185035, Republic of Karelia, Russia
7Crimean Astrophysical Observatory, p. Nauchny 185035, Republic of Crimea, Russia
8Mirzo Ulug’bek nomidagi Astronomiya instituti, Astronomicheskaya str. 33, Toshkent 100052, O‘zbekiston
9Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Siberian Branch, ul. Lermontova 126a, Irkutsk 664033, Russia
10Special Astrophysical Observatory, Russian Academy of Sciences, Nizhnii Arkhyz 369167, Karachai-Cherkessian Republic, Russia
11Keldysh Institute of Applied Mathematics, Miusskaya Ploshchad’ 4, Moscow 125047, Russia
12Evgeni Kharadze Georgian National Astrophysical Observatory, Abastumani 0301, Georgia
E-mail: [email protected]
Abstract

We present the results of our analysis of multiwavelength observations for the long gamma-ray burst GRB 200829A. The burst redshift z1.29±0.04z\approx 1.29\pm 0.04 has been determined photometrically at the afterglow phase. In gamma rays the event is one of the brightest (in isotropic equivalent), Eiso1054E_{iso}\gtrsim 10^{54} erg. The multicolor light curve of the GRB 200829A afterglow is characterized by chromatic behavior and the presence of a plateau gradually transitioning into a power-law decay that can also be interpreted as a quasi-synchronous inhomogeneity (flare). We assume that the presence of a chromatic inhomogeneity in the early afterglow is consistent with the model of a structured jet.

keywords:
gamma-ray bursts, afterglow, photometric observations, optical transients
pubyear: 2015pagerange: Chromatic Afterglow of GRB 200829A9

1 Introduction

The cosmological nature of gamma-ray bursts (GRBs) proposed at the beginning of their studies (Prilutskii & Usov, 1975; Paczynski, 1986) has been confirmed by measuring their redshifts. The median redshift for long bursts is zmed=1.67z_{med}=1.67 (see, e.g., Daigne et al. 2006; Tsvetkova et al. 2017, 2021). At the same time, the fraction of events with redshifts directly measured through optical spectroscopic observations is 5%\sim 5\% of events (Kaneko et al., 2006; Butler et al., 2007; Lien et al., 2016; von Kienlin et al., 2020). There are other known z estimation methods, for example, modeling the photometric afterglow magnitudes (Schady et al., 2010), the spectroscopic or photometric method of modeling broadband host galaxy spectra (see, e.g., Volnova et al. 2014).

Long GRBs are associated with the core collapse of massive stars (Colgate, 1968; Bisnovatyi-Kogan et al., 1975; Woosley, 1993; Paczyński, 1998) and, as a rule, a supernova (SN) is detected in 10%\sim 10\% of the events with a registered optical component, for example, SN 1998bw, SN 2003dh, SN 2013dx, and GRB 181201A (Wang & Wheeler, 1998; Woosley et al., 1999; Mazzali et al., 2003; Volnova et al., 2017; Belkin et al., 2020). However, it is difficult to detect an SN for GRBs at z1z\gtrsim 1, since it becomes too faint. The farthest SN from GRBs was associated with GRB 000911 at z=1.06z=1.06 (Lazzati et al., 2001; Masetti et al., 2005).

The color evolution between optical and X-ray afterglow light curves detected, for example, for GRB 050525A (Oates et al., 2011; Resmi et al., 2012) and GRB 130831A (De Pasquale et al., 2016) is not explained by the standard afterglow model (Sari et al., 1999; Piran, 2004; Kumar & Zhang, 2015). The afterglow light curve in the standard model decays monotonically (as a power law with an exponent close to unity) and synchronously in the optical and X-ray bands. The chromaticity is explained, for example, using the model of a structured jet, in which the optical and X-ray emissions are simultaneously observed from different jet regions with different Lorentz factors (Beniamini et al., 2020; Lamb et al., 2021; Duque et al., 2022). The existence of a structured jet was shown to be possible in numerical simulations (see, e.g., Komissarov et al. 2009).

The X-ray flare can closely follow the flare in the GRB prompt phase, but with a lower amplitude and energy (Duque et al., 2022). The presence of a plateau on the light curve is also associated with a small initial Lorentz factor of the jet (<Γ0>51<\Gamma_{0}>\sim 51, see Dereli-Bégué et al. 2022) or the formation of a magnetar with a magnetic field B10151016B\sim 10^{15}-10^{16} G (de Pasquale et al., 2007; Metzger et al., 2011; Rowlinson et al., 2013). A correlation between the X-ray plateau duration and the burst luminosity was found by Dainotti et al. (2008); Dainotti et al. (2021, 2022). The evolution of the views about GRBs and relevant reviews can be found, for example, in Rozental et al. (1983); Luchkov et al. (1996); Postnov (1999); Levan (2018); Pozanenko et al. (2021); Yu et al. (2022).

An extensive study of GRBs in the gamma-ray, X-ray, and optical bands was initiated by the Swift observatory (Hill et al., 2006). GRB 200829A is one of the brightest GRBs detected by this observatory. The multiwavelength light curve of the early afterglow from this burst has two inhomogeneities: a plateau and a chromatic flare. The plateau can be associated with the formation of an unstable magnetar with a strong magnetic field. The chromatic behavior of the flare probably arises when observing different jet zones in the X-ray and optical bands, closer to or farther from the jet axis, respectively. The paper is organized as follows. First, we present the results of the observations with space observatories in which the GRB was detected and the first ground-based observations of its optical afterglow. Subsequently, we present the results of processing the data obtained with space gamma-ray telescopes in the burst prompt phase. GRB 200829A is one of the most powerful (in isotropic equivalent) GRBs in the energy range 1 keV–10 MeV. In the next section we provide the observational data for the afterglow in the optical and X-ray bands and construct its light curves. Their joint analysis showed the presence of a plateau and a chromatic flare in the early afterglow. Then, we present the procedure and the redshift estimate obtained by modeling the multicolor light curve of the early afterglow in the optical and X-ray bands. The redshift estimate for GRB 200829A is z=1.29±0.04z=1.29\pm 0.04. The results of the detection and analysis of the observations of the host galaxy follow next. We obtain estimates of the absorption parameters, the star formation rate, and the mass of the GRB 200829A host galaxy consistent with the parameters of other host galaxies of long GRBs. In the next section we present the results of our analysis of the chromatic inhomogeneity and the plateau on the light curve. Our estimates of the physical parameters are consistent with the model of a structured jet (Beniamini et al., 2020; Lamb et al., 2021; Duque et al., 2022) as a cause of the chromatic behavior. The plateau end time and the isotropic energy in the 0.3–10 keV band are in agreement with the correlation presented by Dainotti et al. (2008); Dainotti et al. (2021, 2022). In the final section we systematize the results of the observations and their analysis.

The luminosity distance DLD_{L} in this paper was calculated using the Λ\LambdaCDM model of the Universe with the following cosmological parameters: H0=69.6±0.7H_{0}=69.6\pm 0.7 km s-1 Mpc-1, Ωm=0.286±0.008\Omega_{m}=0.286\pm 0.008, and ΩΛ=0.714±0.008\Omega_{\Lambda}=0.714\pm 0.008 (Bennett et al., 2014). The statistical errors are given at the 1σ1\sigma (66.7%) confidence level, unless stated otherwise.

2 Observations

2.1 Detection and the first observations

GRB 200829A was detected as a bright GRB of duration 30\sim 30 s with the BAT instrument onboard the Swift space observatory; the report on its detection was distributed via the GCN/TAN111https://gcn.nasa.gov automated alert system (Siegel et al., 2020). The Swift observatory also detected an X-ray component of GRB 200829A with the XRT (0.3–10 keV). The X-ray source was found on August 29, 2020, at 14:01:43.1 UT, i.e., 128.7 s after the BAT trigger at 27′′27^{\prime\prime} from the center of the error circle for the gamma-ray component (Siegel et al., 2020; Goad et al., 2020).

The Swift Ultraviolet/Optical Telescope (UVOT) began to observe the GRB 200829A field almost immediately after the XRT. It detected a bright optical afterglow with a magnitude white=14.28±0.14white=14.28\pm 0.14 (Siegel et al., 2020) at coordinates (J2000) R.A. = 16:44:49.14 and Dec. = +72:19:45.63 with a statistical error of ±0.35′′\pm 0.35^{\prime\prime} (90% confidence; Kuin et al. 2020). In the subsequent UVOT observations the source continued to fade (Kuin et al., 2020).

2.2 Ground observations

The ground-based optical observations of the fading afterglow of GRB 200829A began \sim 1 hr after the BAT trigger (Pozanenko et al., 2020) with the 1-meter Zeiss-1000 telescope of the Tien-Shan Astronomical Observatory (TShAO) as the part of GRB-IKI-FuN network (Volnova et al. 2021). One hour after the trigger the magnitude of the source was R=16.8±0.1R=16.8\pm 0.1 in a single image (Fig.1) with an exposure time of 60 s.

Refer to caption
Figure 1: Image of the GRB 200829A (highlighted by the red circle) field taken with TShAO Zeiss-1000 on August 29, 2020, at 14:49:05 UT. The catalogued USNO-B1.0 objects are marked by the yellow circles and are labeled in the figure. In the image the north is upward and the east is leftward.

The observations for 2.83 h, beginning from September 29, 2022, 14:49:05 UT, with the Zeiss-1000 telescope at TShAO allowed a detailed R-band light curve with a time resolution 60\sim 60 s to be constructed. Other instruments of the GRB-IKI-FuN network were additionally used to observe the fading afterglow. For example, the observations with the RC-36 telescope of the Kitab Observatory were carried out without a filter quasi-synchronously with TShAO. Beginning from August 29, 2020, 17:25 UT, telescopes on the Crimean Peninsula joined the observations: Zeiss-1000 at the observatory on Mount Koshka in the R and I filters, AZT-11 at the Crimean Astrophysical Observatory (CrAO) in the R filter. Owing to the coordinated work of several telescopes, a detailed light curve was constructed over 12 h of observations. One day after the trigger the optical transient was observed with the AS-32 telescope of the Abastumani Astrophysical Observatory (AbAO) in the R filter and the Zeiss-1000 telescopes (Mount Koshka and the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) in the R and I filters). Upper limits in the R filter were also obtained on the third and fifth days after the trigger in the observations with the AZT-33IK telescope at the Mondy observatory of the Institute of Solar-Terrestrial Physics, the Siberian Branch of the Russian Academy of Sciences. When the afterglow could no longer be observed with other telescopes due to the source brightness decline, R22m.5R\gtrsim 22^{m}.5, the AZT-22 telescope of the Maidanak Astronomical Observatory (MAO) was used. MAO is located in a unique climatic region and, for this reason, the seeing (angular resolution) here reaches 0′′.70^{\prime\prime}.7. A total of four deep upper limits were obtained in the RR filter: three in the period from 13 to 45 days after the burst.

3 Prompt emission phase (gamma-rays)

3.1 GBM/Fermi data analysis

In our analysis of GRB 200829A we used the publicly accessible data of the GBM/Fermi experiment222ftp://legacy.gsfc.nasa.gov/fermi/data/.

3.1.1 Light curve

The light curve in the energy range 7-850 keV constructed using data from the NaI04 and NaI08 detectors of the GBM/Fermi experiment most illuminated by the GRB 200829A source is presented in Fig.2.

Refer to caption
Figure 2: Light curve of GRB 200829A in the energy range 7–850 keV with a time resolution of 0.5 s (from GBM/Fermi data). The observed flux in counts per second over the background model is along the vertical axis; the time since the GBM/Fermi trigger in seconds is along the horizontal axis. The 1σ1\sigma flux errors are shown. The vertical dotted lines mark the boundaries of the intervals used in our spectral analysis (see Table 1). The inset shows the light curve of the main episode with a time resolution of 0.05 s.

The light curve can be arbitrarily divided into two activity episodes of approximately equal duration: the dim initial and main bright ones. The total duration of the gamma-ray emission from GRB 200829A in the GBM/Fermi experiment is more than 30 s, with the formal duration parameters T90=8.4±0.1T_{90}=8.4\pm 0.1 s and T50=2.5±T_{50}=2.5\pm 0.1 s (Koshut et al., 1996) covering only the brightest part of the main episode. The values obtained characterize GRB 200829A as a long burst (type II, a collapsar) (see, e.g., Kouveliotou et al. 1993; Minaev et al. 2010b; Minaev & Pozanenko 2017).

As can be seen from Fig.2, both initial and main burst episodes have a complex structure that consists of a large number of overlapping pulses whose parameters, therefore, are impossible to reveal. Due to the superposition of pulses, analyzing the spectral evolution by the method of cross-correlation analysis for this burst is meaningless (see, e.g., Minaev et al. 2014).

3.1.2 Spectral analysis

To construct and fit the energy spectra, we used the RMfit v4.3.2 software package specially developed to analyze the GBM/Fermi data333http://fermi.gsfc.nasa.gov/ssc/data/analysis/rmfit/. The technique of spectral analysis, including the choice of an optimal spectral model, is similar to that used in Gruber et al. (2014). We analyzed the energy spectra based on data from the most illuminated NaI04NaI_{04}, NaI08NaI_{08}, BGO00BGO_{00}, and BGO01BGO_{01} detectors.

We analyzed the energy spectrum of GRB 200829A in five different time intervals (Fig.2). Intervals A, B, C, D, and E correspond to the integrated spectrum of the event, the initial dim episode, the main part of the main episode, the decay stage of the main episode, and the peak in the light curve (the peak flux on a time scale of 1 s), respectively.

The energy spectrum of all the investigated components of GRB 200829A is unsatisfactorily described by both simple power-law model and thermal model; the optimal model is a power law with an exponential cutoff (CPL) or a broken power law (Band et al. 1993). The results of our spectral analysis (the parameters of the optimal spectral models) are presented in Table LABEL:tab:gbmspectra.

Table 1: Results of our spectral analysis of GRB 200829A in the gamma-ray band based on GBM/Fermi data
Interval a Spectral α\alpha β\beta EpE_{p}c Fluence d Eiso e EHEH f
(c) model b (keV) (10510^{-5} erg cm-2) (105310^{53} erg)
A = -1 – 31 Band 0.552±0.014-0.552\pm 0.014 2.468±0.026-2.468\pm 0.026 357±5357\pm 5 22.17±0.0822.17\pm 0.08 13.02±0.1313.02\pm 0.13 0.45
B = -1 – 16 CPL 1.23±0.10-1.23\pm 0.10 249±37249\pm 37 0.68±0.040.68\pm 0.04 0.323±0.0250.323\pm 0.025 1.42
C = 16 – 23 Band 0.392±0.013-0.392\pm 0.013 2.477±0.016-2.477\pm 0.016 363±4363\pm 4 20.55±0.0620.55\pm 0.06 12.16±0.0812.16\pm 0.08 0.47
D = 23 – 31 Band 0.89±0.10-0.89\pm 0.10 2.30±0.09-2.30\pm 0.09 136±13136\pm 13 1.189±0.0261.189\pm 0.026 0.66±0.040.66\pm 0.04 0.57
E = 19.5 – 20.5 Band 0.333±0.023-0.333\pm 0.023 2.288±0.020-2.288\pm 0.020 393±8393\pm 8 6.011±0.0336.011\pm 0.033 3.88±0.043.88\pm 0.04 0.79
a The time interval relative to the GBM/Fermi trigger.
b CPL is a power law with an exponential cutoff, Band is a broken power law (Band et al. 1993).
c The peak energy in the energy spectrum νFν\nu F\nu.
d The fluence in the range 10 – 1000 keV in the observer frame.
e The isotropic equivalent energy in the range 1 keV - 10 MeV in the source frame (z=1.29±0.04z=1.29\pm 0.04, see below).
f The classification parameter EHEH (Eq 2).

As an example, Fig.3 shows the integrated energy spectrum fitted by a broken power law (Band et al. 1993) with the parameter Ep=357±5E_{p}=357\pm 5 keV characterizing the position of the peak in the energy spectrum νFν\nu F_{\nu} . The derived parameters of the energy spectrum for all the investigated components of the light curve are typical for GRBs (see, e.g., Gruber et al. 2014). It can be seen from Fig. 3 that the scatter of data points relative to the model is fairly large. This is apparently due to the systematic effects (for example, inaccurate response matrices and detector cross-calibration) that arise when reconstructing the photon spectrum with the RMfit v4.3.2 software package.

Refer to caption
Figure 3: The energy spectrum νFν\nu F\nu of GRB 200829A constructed using data from the NaI04NaI_{04}, NaI08NaI_{08}, BGO00BGO_{00}, and BGO01BGO_{01} detectors of the GBM/Fermi experiment in the time interval A = –1 – 31 s relative to the trigger covering the GRB prompt phase (the upper part of the figure). The smooth curve indicates a broken power-law spectral fit (Band et al., 1993)). The deviation of the spectral model from the experimental data expressed in standard deviations is shown in the lower part.

3.1.3 Ep,iE_{p,i}EisoE_{iso} correlation

GRBs are characterized by a number of correlations between various observed parameters. One of the best-known ones is the correlation of the isotropic equivalent energy released in the energy range 1 keV – 10 MeV, EisoE_{iso} , with the position of the extremum in the energy spectrum νFν\nu F_{\nu} in the source frame, Ep,iE_{p,i} (Amati et al. 2002). The nature of the correlation is still the subject of discussion. One possible explanation implies viewing angle effects: the smaller the angle between the source–observer line and the jet axis, the brighter and spectrally harder the GRB (Eichler & Levinson 2004; Levinson & Eichler 2005; Pozanenko et al. 2018). The parameter EisoE_{iso} is calculated from Eq. (1), where FF is the fluence (time-integrated flux) in the energy range 1 keV – 10 MeV in the source frame, DLD_{L} is the luminosity distance to the source, and zz is its redshift. The corresponding values of the parameter EisoE_{iso} for GRB 200829A were calculated using the redshift z=1.29±0.04z=1.29\pm 0.04 and are given in Table LABEL:tab:gbmspectra. To estimate the fluence in the energy range 1 keV – 10 MeV, we used an extrapolation of the spectral model to low energies (below 6 keV in the observer frame),

Eiso=4πDL2F1+z.E_{iso}=\frac{4\pi D_{L}^{~{}2}F}{1+z}. (1)

Fig.4 presents a Ep,iE_{p,i}EisoE_{iso} diagram for one of the most complete samples of 317 GRBs with known redshifts and determined parameters Ep,iE_{p,i} published in Minaev & Pozanenko (2020b, 2021) and for 7 giant flares from soft gamma repeaters (SGRs), for which the Ep,iE_{p,i}EisoE_{iso} correlation was first found by Minaev & Pozanenko (2020a).

Refer to caption
Figure 4: Ep,iE_{p,i}EisoE_{iso} diagram for type I (blue squares) and type II (red circles) GRBs and SGR giant flares (magenta unfilled squares) with the corresponding fits (solid lines) and 2σ2\sigma correlation regions (dashed lines). The black unfilled circles indicate the positions of GRB 200829A and its individual episodes (see Table LABEL:tab:gbmspectra).

On the Ep,iE_{p,i}EisoE_{iso} diagram GRB 200829A occupies a position typical for long (type II) GRBs, while being one of the brightest bursts with Eiso>1054E_{iso}>10^{54} erg. The individual burst episodes are also located in the correlation region of long GRBs.

3.1.4 T90,iT_{90,i}EHEH diagram

The Ep,iE_{p,i}EisoE_{iso} correlation can also be used for the classification of GRBs, since the correlation region of type I (short) GRBs is above the correlation region of type II (long) GRBs, with the correlation for both types of GRBs being described by a power law with a single index, α=0.4\alpha=-0.4 (Minaev & Pozanenko, 2020a, b). For this purpose, Minaev & Pozanenko (2020b) introduced the parameter EH (Eq. 2) that characterizes the GRB position on the Ep,iE_{p,i}EisoE_{iso} diagram. Compared to type II GRBs, type I GRBs have a greater spectral hardness Ep,iE_{p,i} at a lower total energy EisoE_{iso} and, as a consequence, a larger value of the parameter EHEH:

EH=(Ep,i/100keV)(Eiso/1051erg)0.4.EH=\frac{(E_{p,i}/100~{}{keV})}{(E_{iso}/10^{51}~{}{erg})^{~{}0.4}}. (2)

The most efficient GRB classification method suggests a joint analysis of the parameter EHEH and the duration parameter T90,iT_{90,i} measured in the source frame (Minaev & Pozanenko, 2020a, b, 2021). Fig.5 presents a T90,iT_{90,i}EHEH diagram for 317 GRBs and 7 giant SGR flares from Minaev & Pozanenko (2020a, b, 2021) that provides the best separation into clusters of the corresponding types of transients (the smallest overlap region) among the known classification schemes.

Refer to caption
Figure 5: T90,iT_{90,i}EHEH diagram for type I (blue squares), type II (red circles) GRBs, and giant SGR flares (pink open squares) with the corresponding results of a cluster analysis (the 1σ1\sigma and 2σ2\sigma cluster regions are indicated by the thick solid and thin dashed curves, respectively). The black unfilled circle indicates the position of GRB 200829A.

GRB 200829A being investigated is located within the 1σ1\sigma cluster region of type II (long) GRBs, although it has a relatively small value of the duration parameter, T90,i=3.7T_{90,i}=3.7 s, corresponding to the overlap region of the duration distributions for the classes of long and short bursts, emphasizing the stability of the classification system based on the T90,iT_{90,i}EHEH diagram method. The values of the parameter EHEH for GRB 200829A and its individual episodes are given in Table LABEL:tab:gbmspectra.

3.2 BAT/Swift Data Analysis

As has been shown above, GRB 200829A is characterized by a fairly hard energy spectrum with Ep>350E_{p}>350 keV located outside the effective BAT/Swift sensitivity range, 15 – 150 keV. Therefore, in this section devoted to analyzing the burst based on BAT/Swift data, we restricted our study only to its light curve.

As the data source we used the publicly accessible service444https://www.swift.ac.uk/burst_analyser/. Although the trigger time in the BAT/Swift experiment differs by 79.74 s from that in GBM/Fermi, as the trigger time T0T_{0} we will use the trigger time of the latter, since it corresponds more closely to the start time of the burst prompt phase (Fig.2).

The light curve constructed in the 15 – 50 keV energy band is presented in Fig.6. After binning the light curve by the signal accumulation method until a certain statistical significance was reached, we detected a weak, but statistically significant extended emission with a duration 1000\sim 1000 s that is a separate component of the light curve.

Refer to caption
Figure 6: Light curve of GRB 200829A in the 15 – 50 keV energy band (from BAT/Swift data). The energy flux in erg cm-2 s-1 is along the vertical axis; the time since the GBM/Fermi trigger in seconds is along the horizontal axis. The 1σ1\sigma flux errors are shown. The light curve is fitted by the sum of an exponential model and a broken power law (blue dashed lines). The red solid line is their sum; the vertical red dotted straight line marks the beginning of the time interval in which the fit was constructed.

The light curves of individual pulses at the prompt phase of GRBs are usually characterized by the so- called FRED shape (fast rise – exponential decay, see, e.g., Norris et al. 2005; Hakkila & Preece 2011; Minaev et al. 2014). The light curve of GRB 200829A has a complex shape and is a superposition of several significantly overlapping FRED pulses, making it difficult to fit the light curve of the entire prompt phase. Therefore, when jointly fitting the component of the prompt phase and the extended emission, we used only the decay stage of the last pulse of the prompt phase that was described by an exponential model.

The light curve of the extended emission is characterized by an initial quasi-plateau stage followed by a power-law flux decline. To describe this component of the light curve, we used a broken power law (Beuermann et al., 1999).

The results of jointly fitting the decay stage of the prompt phase and the extended emission component by the above models are presented in Fig.6. At the initial stage the index of the light curve for the extended emission is α=0.34±0.27\alpha=0.34\pm 0.27, which does not rule out the plateau stage (α=0\alpha=0), the break in the light curve is observed at tbr=143±38t_{br}=143\pm 38 s, and the index after the break is β=1.28±0.18\beta=-1.28\pm 0.18. The index after the break is close to a value typical for an afterglow (β1\beta\sim-1), suggesting a connection of the extended emission component with the afterglow, which is typical for bright GRBs (see, e.g., Mozgunov et al. 2021). In our further analysis of the X-ray and optical data this interpretation will be confirmed.

3.3 SPI-ACS/INTEGRAL Data Analysis

GRB 200829A was also detected by the anticoincidence shield (ACS) of the SPI gamma-ray spectrometer onboard the INTEGRAL observatory (von Kienlin et al., 2003).

The light curve of GRB 200829A at energies above 80 keV with a time resolution of 0.5 s constructed from the SPI-ACS/INTEGRAL data555http://isdc.unige.ch/s̃avchenk/spiacs-online/spiacs-ipnlc.pl is presented in Fig. 7. Despite the stable back-ground conditions in the time interval from -5000 to 5000 s around the GRB typical for the SPI- ACS detector (Minaev et al., 2010a; Mozgunov et al., 2021), no extended emission was detected by SPI-ACS/INTEGRAL, although it was recorded in the BAT/Swift experiment with great confidence.

Refer to caption
Figure 7: Light curve of GRB 200829A at energies above 80 keV with a time resolution of 0.5 s (from SPI-ACS/INTEGRAL data). The observed flux in counts per second over the background model is along the vertical axis; the time since the GBM/Fermi trigger in seconds is along the horizontal axis. The 1σ1\sigma flux errors are shown.

This is probably due to the relatively soft energy spectrum (the small fraction of high-energy emission) of this component and the high lower sensitivity threshold of the ACS detector (80 keV). A possible precursor (Minaev & Pozanenko, 2017) was not detected either. Although several dim episodes with a total duration of about 15 s, from which the burst prompt phase begins, were recorded in the SPI-ACS experiment (Fig. 7), the duration parameters T90T_{90} and T50T_{50} cover only the main bright episode and are T90=5.5±0.1T_{90}=5.5\pm 0.1 s and T50=2.1±0.1T_{50}=2.1\pm 0.1 s, confirming the classification of this burst as type II (long).

According to the SPI-ACS/INTEGRAL data, the time-integrated flux from GRB 200829A was F=(115.3±0.3)×104F=(115.3\pm 0.3)\times 10^{4} counts. Using the cross-calibration of the SPI-ACS and GBM experiments for GRBs from Pozanenko et al. 2020, we obtain an estimate of the fluence in the energy range 10 – 1000 keV, F2.9×104F\gtrsim 2.9\times 10^{-4} erg cm-2.

Given the systematic calibration error for the SPI-ACS response to GRB energy spectra differing in shape, the estimated fluence can vary within the range 8.4×1058.4\times 10^{5}9.8×1049.8\times 10^{-4} erg cm-2 (at 2σ2\sigma confidence). The estimated fluence agrees well with the value obtained through our spectral analysis of the GBM/Fermi data (Table LABEL:tab:gbmspectra).

4 Afterglow

In our analysis we used the public Swift Burst Analyzer666https://www.swift.ac.uk/burst_analyser/00993768 data (Evans et al., 2007, 2009) from the BAT, XRT, and UVOT experiments onboard Swift to construct the gamma-ray, X-ray, and optical light curves, respectively. We also used the public observational data accessible via the GCN/TAN service777https://gcn.gsfc.nasa.gov/other/200829A.gcn3: the observations with the RC80 robotic telescope at the Konkoly Observatory (Vinko et al., 2020) in the rr^{\prime}, and ii^{\prime} filters, the observations with the Zeiss-1000 SAO RAS telescope in the RcR_{c} and IcI_{c} filters, the observations with the NEXT telescope (Zhu et al., 2020a, b) and the observations with the Liverpool telescope (Izzo, 2020) in the gg^{\prime}, rr^{\prime}, ii^{\prime}, and zz^{\prime} filters. The publicly available images from the Nordic Optical Telescope (NOT) in the rr^{\prime} filter were retrieved from the NOT FITS Header Archive888http://www.not.iac.es/observing/forms/fitsarchive/. The light curves were fitted using the lmfit999https://github.com/lmfit/lmfit-py package (Newville et al., 2021) for python.

4.1 Analysis of the optical observations

The afterglow of GRB 200829A was observed for the first 3\sim 3 days in the X-ray and optical bands. To construct the optical light curve of the GRB 200829A afterglow, we processed the GRB-IKI-FuN observational data and the publicly accessible Nordic Optical Telescope (NOT) data using the developed software pipeline (Pankov et al., 2022) based on the APEX package (Kouprianov, 2012; Devyatkin et al., 2010). The standard data processing procedure includes the calibration and quality control of the original images, their alignment and stacking (if required), the extraction of objects in the images, the astrometry and photometry, the construction of a local catalog, the search for and identification of transients in it. In addition to the software pipeline (Pankov et al., 2020), we used the PyRAF software package (Science Software Branch at STScI, 2012) in individual cases, for example, when an optical transient had a low signal-to-noise ratio, S/N<5S/N<5. We performed the astrometry of images based on the USNO-B1.0 reference catalog (Monet et al., 2003). The photometric calibration stars were chosen by cross-matching the stars from USNO-B1.0 with the PanSTARRS PS1 catalog (Chambers et al., 2016). This allowed us to calibrate the source magnitudes in the images taken both in RR, II, and in rr using the same stars. The photometry of images without a filter was performed relative to the R magnitude. A log of optical observations is given in Appendix A. Figure 8 presents a multicolor optical light curve; for clarity, the magnitudes in all filters, except RR, were separated relative to their initial values.

Refer to caption
Figure 8: Multicolor optical light curve of GRB 200829A. The time since the GBM trigger (days) is along the horizontal axis, and the apparent magnitude is along the vertical axis. The symbols designate the photometric magnitudes obtained in various filters. The dashed line indicates the brightness level of the GRB 200829A host galaxy. The unfilled symbols designate the upper limits (at 3σ3\sigma confidence level).

A break in the RR filter, which may be related to the geometrical viewing angle effect typical for relativistic jets (Sari et al., 1999; Piran, 2004), is traceable in Fig.8. The magnitudes in the light curve were not corrected for the Galactic extinction characterized by the color excess E(BV)=0.0364E(B-V)=0.0364 (Schlegel et al., 1998) toward GRB 200829A. Since it is impossible to establish the spectral evolution at the entire optical afterglow stage due to insufficient quasisynchronous coverage in different filters, we assume its absence. Under this assumption the light curves in the gg, rr, ii, zz, II, uu, bb, vv, uvw1uvw1, uvw2uvw2 filters and in clearclear and whitewhite light were reduced to the R light curve (the data are presented predominantly in this filter) by additionally multiplying the flux by the appropriate numerical coefficient at which the best agreement with the data from the χ2\chi^{2} test is achieved. In our subsequent analysis of the afterglow we will consider this monochromatic optical light curve.

4.2 Analysis of the X-ray observations

The X-ray afterglow was also observed quasisynchronously with the optical one by the XRT/Swift instrument (Burrows et al., 2005a). The XRT is a Wolter I telescope with a focal length of EFF=3500EFF=3500 mm and a FOV=23.6×23.6FOV=23.6^{\prime}\times 23.6^{\prime}. An E2V CCD detector with 600×600600\times 600 pixels and cooled to 100-100 C was mounted at the focal plane. As a result, an angular resolution of θ3′′\theta\sim 3^{\prime\prime} is achieved. The telescope operates in the 0.3 – 10 keV energy band in several modes, among which are Windowed Timing (WT), and Photon Counting (PC). In the WT mode a good time resolution (\sim 1.8 ms) is achieved, but, at the cost of, the angular and spectral resolutions. In the PC mode the signal readout rate from the CCD is reduced to \sim 2.5 s, but other characteristics do not change. The WT and PC modes are used at fluxes FX=1600F_{X}=1-600, and FX<1F_{X}<1 mCrab, respectively (Burrows et al., 2005a).

The X-ray light curve of GRB 200829A was constructed from the data publicly available via the Swift Burst Analyzer101010https://www.swift.ac.uk/burst_analyser/00993768/ service. The data contain the results of observations (time and flux) in the WT and PC modes and span a period 2\sim 2 days. The observed X-ray flux was grouped into bins whose duration increases on a logarithmic scale, starting from 60 s. The Galactic extinction on the line of sight was not taken into account. Thus, the light curve was smoothed, while the significance of individual measurements was improved. Fig.9 presents the X-ray light curve of the GRB 200829A afterglow.

Refer to caption
Figure 9: The upper panel shows the X-ray light curve of GRB 200829A. The time since the GBM trigger in days is along the horizontal axis, while the observed flux density in Jy is along the vertical axis. The circles designate the values, while the thick solid line indicates the broken power law fit. The lower panel shows the deviation of the experimental flux densities from the fit in standard deviations σ\sigma.

According to Fig. 9, a break is traceable in the X-ray light curve, as in the optical one. Fitting the light curve by the Beuermann function (Beuermann et al., 1999) allowed us to determine the slope of the light curve and the position of the break on the time scale. For example, the slope is α1=1.06±0.03\alpha_{1}=1.06\pm 0.03 before the break and α2=1.88±0.06\alpha_{2}=1.88\pm 0.06 after the break. Note that the slope for the X-ray afterglow α1=1.06±0.03\alpha_{1}=1.06\pm 0.03 before the break agrees well with the slope for the extended emission in the soft 15 – 50 keV gamma-ray band β=1.28±0.18\beta=1.28\pm 0.18 found previously. Hence a correlation of the observed extended emission and the afterglow can be assumed. According to this assumption, the gamma-ray light curve was rescaled to the X-ray light curve in the time interval 100 – 1000 s relative to T0T_{0} (in which the data from both telescopes were obtained) assuming the afterglow to be achromatic in the X-ray and soft gamma-ray bands. According to the χ2\chi^{2} test, the conversion coefficient is k=FXRT/FBAT=4.54k=F_{XRT}/F_{BAT}=4.54. Thus, we constructed the most complete light curve of the X-ray afterglow that will be used in our further analysis.

4.3 Multiwavelength light curve

Let us investigate the previously constructed X-ray and optical light curves (presented together in Fig. 10) and fit and interpret them.

Refer to caption
Figure 10: The upper panel shows the light curve of GRB 200829A. The time since the GBM trigger tT0t-T_{0} (days) is along the horizontal axis, while the spectral flux density (Jy) is along the vertical axis. The photometric values in the optical filters (red filled squares) were combined into a single monochromatic curve. The X-ray light curve (violet filled triangles) was combined with the gamma-ray one (dark-blue filled squares) assuming that the extended emission corresponds to the X-ray afterglow. The open symbols designate the upper limits. The model curves are marked by the solid lines. The lower panel shows a graph of the evolution of the optical-to-X-ray flux ratio.

In Fig. 10 both X-ray and optical light curves consist of three episodes (not counting the burst prompt phase): a flare gradually decays into a power-law flux decline and then a break after which the flux fades according to a steeper law. At the same time, the leading edge of the flash looks rather steep against the background of the power-law decay. Since in the optical light curve the time of the peak cannot be unambiguously determined due to the absence of data, we assume that it coincides with that for the X-ray band.

To fit the light curves, we chose a function in the form of a sum of two power laws with a smooth break (Beuermann et al., 1999) defined by Eq.3:

F(t)=(F1n+F2n)1n+(F3n+F4n)1nF(t)=(F_{1}^{-n}+F_{2}^{-n})^{-\frac{1}{n}}+(F_{3}^{-n}+F_{4}^{-n})^{-\frac{1}{n}} (3)

where, Fi=(tT0tbj)αiF_{i}=(\frac{t-T_{0}}{t_{b_{j}}})^{\alpha_{i}}, tt – the time since trigger (days), tbit_{b_{i}} – the break time (days), αi\alpha_{i} – are the indices before and after the break, nn – the smoothing parameter (n>0n>0), i=1,2,3,4i={1,2,3,4}, j=1j=1 at i=1,2i=1,2, and j=2j=2 at i=3,4i=3,4. The fitting results are presented in the Table LABEL:table:ag_fit; the values marked by * were fixed. The fitting by the two-component model was performed in the intervals 50\sim 50 s – 3.66 days in the X-ray band and 283 s – 2.80 days in the optical band (relative to the GBM/Fermi trigger). Fig.10 (bottom) demonstrates the color evolution between the X-ray and optical bands.

Table 2: Afterglow fitting results
Range F1F_{1} α1\alpha_{1} α2\alpha_{2} tb1t_{b_{1}} F2F_{2} α3\alpha_{3} α4\alpha_{4} tb1t_{b_{1}} nn χ2\chi^{2} / d.f
mJy ×103\times 10^{-3} day mJy day
X-ray 0.52±0.100.52\pm 0.10 1.2±1.0-1.2\pm 1.0 2.7±0.52.7\pm 0.5 1.9±0.41.9\pm 0.4 0.06±0.030.06\pm 0.03 0.5±0.20.5\pm 0.2 1.6±0.11.6\pm 0.1 0.02±0.010.02\pm 0.01 1* 0.34
Optical 10±310\pm 3 1.2-1.2* 1.9±0.21.9\pm 0.2 1.91.9* 0.27±0.040.27\pm 0.04 0.3±0.10.3\pm 0.1 1.64±0.081.64\pm 0.08 0.15±0.030.15\pm 0.03 11* 1.11.1

4.4 Redshift estimation

To estimate the redshift, we used the technique of simultaneously fitting the spectral energy distribution in the optical and X-ray bands under absorption conditions (Schady et al., 2010). The time-sliced XRT X-ray spectrum and the UVOT optical images were retrieved via the Swift Burst Analyser service. The spectra span the time interval 1554 – 1638 s relative to T0T_{0}, where no significant color evolution is observed. The data were processed with the HEASOFT111111https://heasarc.gsfc.nasa.gov/ftools (Blackburn, 1995) software package. Figure 11 presents a multiwavelength spectrum of the GRB 200829A afterglow fitted by the model curve (see below).

Refer to caption
Figure 11: Spectrum of GRB 200829A in the interval 1554 – 1638 s relative to T0T_{0}. The emission frequency (Hz) is along the horizontal axis, while flux (Jy) is along the vertical axis. The model is designated by the black circles, while the remaining symbols mark the data.

As the spectral model we use a power law and a broken power law. The model takes into account the optical extinction by interstellar dust grains and the photoelectric X-ray absorption and is represented by Eq. (4) in terms of XSPEC (HEASOFT), where the zdust components are responsible for the optical extinction.

F=zdust×zdust×phabs×zphabs×powerlaw\texttt{F}=\texttt{zdust}\times\texttt{zdust}\times\texttt{phabs}\times\texttt{zphabs}\times\texttt{powerlaw} (4)

These components are based on an empirical dust extinction law (Pei, 1992). Three extinction laws are available in XSPEC: the Milky Way (MW), the Large Magellanic Cloud (LMC), and the Small Magellanic Cloud (SMC). The extinction model is characterized by the color excess E(BV)E(B-V), the total-to-selective extinction ratio R(V)=A(V)/E(BV)R(V)=A(V)/E(B-V), where A(V)A(V) is the extinction, and the redshift zz. The phabs and zphabs components allow the absorption by hydrogen in the Galaxy and the burst host galaxy to be taken into account. Both components are defined by the column density NHN_{H} in units of 102210^{-22} cm-2, while zphabs is also defined by the redshift zz. The powerlaw component is responsible for the power law spectrum and is specified by the spectral index β\beta and the normalization KK (photons-1 keV-1 cm2{-2} at 1 keV). During our fitting the Galactic extinction parameters were fixed: E(BV)=0.0364E(B-V)=0.0364 (Schlegel et al., 1998), R(V)=3.08R(V)=3.08 (Pei, 1992), A(V)=R(V)E(BV)=0.20A(V)=R(V)E(B-V)=0.20, and NH=0.039×1022N_{H}=0.039\times 10^{-22} cm-2 (HI4PI Collaboration et al., 2016). The redshift of the Galaxy was also fixed (z=0z=0). We found that the spectral data cannot be fitted with the broken power law and, therefore, this model was not considered. Table 3 presents the results of fitting the spectral data for the early afterglow of GRB 200829A by the model defined in Eq. (4). The best spectral fit from the standpoint of the χ2/d.f.\chi^{2}/d.f. test is achieved when choosing the MW extinction law for the GRB host galaxy (see Table 3). The estimate of the photometric redshift z=1.29±0.04z=1.29\pm 0.04 consistent with the independent estimate of z=1.25±0.02z=1.25\pm 0.02 obtained previously by Oates et al. (2020) by the same method corresponds to it. However, in contrast to Oates et al. (2020), we also provide our estimates of the extinction parameters in the burst host galaxy. Note that in both cases the error is statistical. Below, z=1.29±0.04z=1.29\pm 0.04 will be deemed to be the redshift of GRB 200829A.

Table 3: Results of fitting the multiwavelength spectrum of the early afterglow.
Extinction law E(BV)E(B-V) R(V)R(V) A(V)A(V) zz nHnH β\beta χ2/d.f.\chi^{2}/d.f.
mag mag 102210^{22} cm-2
MW 0.36±0.020.36\pm 0.02 3.08* 1.11±0.021.11\pm 0.02 1.29±0.041.29\pm 0.04 0.26±0.030.26\pm 0.03 1.72±0.021.72\pm 0.02 248/236248/236
LMC 0.31±0.210.31\pm 0.21 3.16* 0.98±0.210.98\pm 0.21 0.40±0.750.40\pm 0.75 0.42±0.590.42\pm 0.59 1.56±0.011.56\pm 0.01 329/236329/236
SMC 0.19±0.040.19\pm 0.04 2.93* 0.56±0.040.56\pm 0.04 1.36±0.331.36\pm 0.33 0.17±0.060.17\pm 0.06 1.60±0.021.60\pm 0.02 316/236316/236

The values of E(BV)E(B-V), R(V)R(V), A(V)A(V), and NHN_{H} are given for the host galaxy, and the corresponding values for the Galaxy were fixed: E(BV)=0.0364E(B-V)=0.0364 mag, R(V)=3.08R(V)=3.08, A(V)=0.20A(V)=0.20 mag, and NH=0.039×1022N_{H}=0.039\times 10^{-22} cm-2. The values of the fixed parameters are denoted with "*" symbol.

5 Host galaxy

We detected the host galaxy of GRB 200829A and calculated its contribution to the optical light curve using the observation with the Big Telescope Azimuthal (BTA) at SAO RAS 2\sim 2 years after the GRB. The BTA observation was carried out on July 31, 2022, at 18:30 UT with SCORPIO-1 (with a E2V CCD42-40 array) in the RR filter. A host galaxy candidate, whose coordinates coincided with those of GRB 200829A within the ±0.1′′\pm 0.1^{\prime\prime} error limits and whose brightness uncorrected for the Galactic extinction was R=25.50.3+0.4R=25.5^{+0.4}_{-0.3}, was found in the image with a total exposure time of 2910 s. Figure 12 presents a fragment of the image in which the host galaxy candidate is marked.

Refer to caption
Figure 12: Fragment of the RR-band image of the GRB 200829A field obtained with the BTA telescope at SAO RAS. A diffuse object, the host galaxy, is seen at the location of the transient.

The apparent magnitude after its correction for the Galactic extinction AR=0.083A_{R}=0.083 (Schlafly & Finkbeiner, 2011) is R=25.40.3+0.4R=25.4^{+0.4}_{-0.3}. This magnitude is consistent with the magnitude of a sample of host galaxies for z=1.29z=1.29 (see, e.g., Pozanenko et al. 2008). The absolute magnitude of the host galaxy is MR19.44M_{R}\sim-19.44 for z=1.29z=1.29. Let us estimate the star formation rate (SFR) and the host mass MhostM_{host} from the relation logSFR=0.381Mr8.029±0.486\log{SFR}=-0.381M_{r}-8.029\pm 0.486 MM_{\odot} yr-1, where MrM_{r} is the absolute rr magnitude of a spiral galaxy (see, e.g., Mahajan et al. 2018). The absolute magnitude of the GRB 200829A host galaxy will be Mr=19.20M_{r}=-19.20, given the conversion of the magnitude from RR to rr (r=R+0.21r=R+0.21), and the correction for the Galactic extinction Ar=0.088A_{r}=0.088 (Schlafly & Finkbeiner, 2011). The SFR estimate will then be logSFR0.715±0.486Mlog{SFR}\approx-0.715\pm 0.486M_{\odot} yr-1, whence we can estimate the host mass as SFR×TageSFR\times T_{age} , where TageT_{age} is the host age. We obtain an estimate of the host mass Mhost8.5×109MM_{host}\sim 8.5\times 10^{9}M_{\odot}. For comparison, the absolute magnitude of the GRB 181201A host galaxy is MR=18.5±0.2M_{R}=-18.5\pm 0.2, while its mass is 1.2×109M\sim 1.2\times 10^{9}M_{\odot} (Belkin et al., 2020) (from the results of modelling the galaxy spectrum).

Refer to caption
Figure 13: Plot of the NHA(V)N_{H}-A(V) relation. The blue squares mark the values from the GRB host galaxies (Covino et al., 2013), while the green line marks the linear law log(y)=1.6log(x)\log(y)=1.6\log(x) that the overwhelming majority of galaxies in the sample match. The red star designates NHA(V)N_{H}--A(V) for the GRB 200829A host galaxy.

The previously obtained spectral fitting results (see Table 3) also allow one to determine the ratio NH/A(V)N_{H}/A(V), from which the similarity of dust properties in various galaxies to be judged. If the dust properties are the same in the Universe, then the ratio NH/A(V)N_{H}/A(V) must increase linearly with distance to the galaxy. For example, for the host galaxy of GRB 200829A NH/A(V)2.4×1022N_{H}/A(V)\approx 2.4\times 10^{22} cm-2. The column density-to-extinction ratio for the host galaxy of GRB 200829A is consistent with most host galaxies of other GRBs represented in the sample (Covino et al., 2013), for which NH/A(V)1.6×1021N_{H}/A(V)\approx 1.6\times 10^{21} cm-2, as is clearly shown in Fig. 13.

6 Possible SN

The long GRB 200829A could be accompanied by an SN. The SN search campaign was undertaken at the AZT-22 MAO telescope in the period 10 – 46 days after the GRB detection. This period corresponds to a typical SN peak (8 – 40 days) in the source frame (see, e.g. Belkin et al. 2020). During the observations the upper limit was R=24.0R=24.0 (3σ3\sigma); however, no SN was detected. The upper limit for the absolute magnitude of a possible SN at z=1.29z=1.29 is MR>23.0M_{R}>-23.0. Here we made a correction for the extinction in the Galaxy AR,MW=0.083A_{R,MW}=0.083 and the GRB host galaxy Aλ=2.14±0.04A_{\lambda}=2.14\pm 0.04, where λ=0.641×(1+z)\lambda=0.641\times(1+z) μ\mum is the effective wavelength of the R filter at redshift zz. AλA_{\lambda} was calculated from the following formula Eq.(5):

AVE(BR)ξ(λB1+z)ξ(λR1+z)A_{V}\simeq\frac{E(B-R)}{\xi(\frac{\lambda_{B}}{1+z})\xi(\frac{\lambda_{R}}{1+z})} (5)

where, E(BR)E(B-R) – is the color index between the BB and RR filters, ξ\xi – is the extinction law, a λB\lambda_{B} and λR\lambda_{R}, effective wavelengths of the filters BB, and RR, respectively.

Our estimate is consistent with the absolute magnitude distribution of SNe from GRBs (Belkin et al., 2020).

7 Discussion

7.1 Chromatic behavior of the light curve

The multiwavelength light curve (Fig. 10) of GRB 200829A has an asynchronous (chromatic) behavior in the early afterglow that encompasses the irregularity (flare) and continues up until the jet break. The chromaticity during the flare can be interpreted in terms of the model of a structured jet (see, e.g., Duque et al. 2022). According to this model, harder emission is observed closer to the jet axis and, for this reason, the X-ray emission corresponds to the part of the jet that is characterized by a larger gamma factor. Let us estimate the gamma factor of the jet from the following formula (see, e.g., Han et al. 2022):

Γ0=2[3Eγ(1+z)332πnmpc5ηtp3]1/8\Gamma_{0}=2\bigg{[}\frac{3E_{\gamma}(1+z)^{3}}{32\pi nm_{p}c^{5}\eta t_{p}^{3}}\bigg{]}^{1/8} (6)

where, mpm_{p} – is the proton mass, cc – is the speed of light, Eγ=2π(1cosθj)EisoE_{\gamma}=2\pi(1-\cos{\theta_{j}})E_{iso} – is the gamma-ray energy of the jet corrected for its opening angle θj\theta_{j}, η=Eγ/ξEiso\eta=E_{\gamma}/\xi E_{iso}, tp=tbα1/α2)1/ω(α2α1)t_{p}=t_{b}-\alpha_{1}/\alpha_{2})^{1/{\omega(\alpha_{2}-\alpha_{1})}}, tbt_{b} – is the break time relative to T0T_{0} (days), α1\alpha_{1}, α2\alpha_{2} – are the power-law slopes of the light curve before and after the break, respectively, and ω=1\omega=1. Note that in the light curve the jet break cannot be unambiguously determined. Therefore, we will choose tbt_{b} from Table LABEL:table:ag_fit in such a way that the open angle is not an extreme one. For example,

  1. 1.

    tb=T0+1.9×103t_{b}=T_{0}+1.9\times 10^{-3} days corresponds to the flare peak in the early afterglow,

  2. 2.

    tb=T0+0.02t_{b}=T_{0}+0.02 days corresponds to the break of the second component in the X-ray band,

  3. 3.

    tb=T0+0.15t_{b}=T_{0}+0.15 days corresponds to the break of the second component in the optical band.

The opening angle of the jet cone can be determined from the formula given below (e.g. Sari et al., 1999; Zhang et al., 2007):

θj0.161(tb1+z)3/8(ξE52n)1/8\theta_{j}\sim 0.161{(\frac{t_{b}}{1+z})}^{3/8}{(\frac{\xi E_{52}}{n})}^{-1/8} (7)

where, tbt_{b} is the break time relative to T0T_{0} (days), zz is the redshift, E52E_{52} is the isotropic energy EisoE_{iso} in units of 105210^{52} erg, n=1n=1 cm-3 is the ISM density, and the kinetic energy-to-radiation conversion factor is ξ=0.1\xi=0.1 (e.g. Zhang et al., 2007). The jet opening angle will then be: θj(a)0.4740.039+0.035\theta_{j}(a)\approx 0.474^{+0.035}_{-0.039} , θj(b)1.150.32+0.47\theta_{j}(b)\approx 1.15^{+0.47}_{-0.32} or θj(c)2.440.35+0.71\theta_{j}(c)\approx 2.44^{+0.71}_{-0.35} . The typical angle θj\theta_{j}determined for bursts with a jet break (e.g. Wang et al., 2018) is known to be θj2.5±1.0\theta_{j}\approx 2.5\pm 1.0 . Thus, the inhomogeneity (flare) in the afterglow light curve is probably not connected with the jet break since the opening angle θj(a)0.5\theta_{j}(a)\sim 0.5^{\circ} would be anomalously narrow. In cases b) and c) he values turn out to be appropriate. At the same time, the opening angle derived from the X-ray data is narrower than from the optical ones. In cases (b) and (c) we will estimate the energy contained within the jet from the formula Eγ=2π(1cosθj)EisoE_{\gamma}=2\pi(1-\cos{\theta_{j}})E_{iso}. We will obtain, Eγ,O=7.041.85+4.72×1051E_{\gamma,O}=7.04^{+4.72}_{-1.85}\times 10^{51} erg when estimated from the optical light curve and Eγ,X=1.550.75+1.51×1051E_{\gamma,X}=1.55^{+1.51}_{-0.75}\times 10^{51} erg when estimated from the X-ray light curve. The gamma factors determined from the X-ray, ΓX=19799+170\Gamma_{X}=197^{+170}_{-99}, and optical, ΓO=12034+85\Gamma_{O}=120^{+85}_{-34} light curves then formally coincide within the error limits.

7.2 Inhomogeneity in the early afterglow

Our previous analysis showed that the light curve of the GRB 200829A afterglow contains a flare-type inhomogeneity at the early phase. The flares in GRB light curves were considered, for example, in the following papers Piro et al. (2005); Perna et al. (2006); Swenson et al. (2013); Yi et al. (2017); Mazaeva et al. (2018). For instance, Swenson et al. (2013) investigated the duration as a function of the flare peak time Δt/tpeak\Delta t/t_{peak} based on a sample of bursts from the second UVOT/Swift catalog. During the analysis it was established that Δt/tpeak<0.5\Delta t/t_{peak}<0.5 for more than 80% of the bursts from the sample. Yi et al. (2017) and Mazaeva et al. (2018) also established that the flares have a linear FWHMFWHMtpeakt_{peak} correlation as well. Figure 14 presents the profile of the flare in the X-ray light curve of GRB 200829A obtained by subtracting the afterglow model.

Refer to caption
Figure 14: Profile of the flare in the X-ray light curve of GRB 20089A after the afterglow model subtraction. The spectral flux density in mJy is along the vertical axis, while the time since T0T_{0} in seconds is along the horizontal axis. The model is designated by the blue solid line, while the observational data are indicated by the violet squares. The data corresponding to the powerful pulse in the burst prompt phase are not shown.

The flare being investigated in this paper has FWHM146FWHM\approx 146 s and tpeak132t_{peak}\approx 132 s. The values obtained are consistent with the FWHMFWHMtpeakt_{p}eak correlation (Yi et al., 2017; Mazaeva et al., 2018) and are probably further evidence for the unified physical nature of the flares in GRB light curves. The flares may arise at the shock fed by the burst central engine (Burrows et al., 2005b; de Pasquale et al., 2007; Barkov et al., 2021), from the simultaneous observation of different structured-jet zones (Beniamini et al., 2020; Duque et al., 2022), or a variable accretion rate M˙\dot{M} (e.g. Perna et al., 2006).

Our analysis of the first \sim 250 s of the X-ray light curve for GRB 200829A (Fig. 6) does not reject the hypothesis about a plateau either. Owing to its strong magnetic field, the newly formed magnetar is believed to provide energy pumping and to maintain the luminosity at an approximately constant level for some time equal to the plateau duration (de Pasquale et al., 2007; Metzger et al., 2011; Rowlinson et al., 2013). Let us determine the energy release of the plateau in the X-ray light curve of GRB 200829A. First, we need to determine the plateau fluence in the 0.3–10 keV energy band (Δν=7.3×1016\Delta\nu=7.3\times 10^{16}2.4×10182.4\times 10^{18} Hz) from Eq. (8)

Fplat=t1t2fν(t)𝑑tΔνF_{plat}=\int_{t_{1}}^{t_{2}}f_{\nu}(t)dt\Delta\nu (8)

where the times t1=51.8t_{1}=51.8 s, and t2=86.4t_{2}=86.4 s specify the light curve segment with a power-law slope 0\sim 0, corresponding to the plateau, and fν(t)f_{\nu}(t) is the spectral flux density. Having substituted all of the necessary values, we obtain the plateau fluence Fplat=1.3×1010F_{plat}=1.3\times 10^{-10} erg cm-2. The plateau energy in the 0.3 – 10 keV band calculated from Eq. (8), will then be Eplateu=5.8×1047E_{plateu}=5.8\times 10^{47} erg. Note that such values are consistent with the LXL_{X}TaT_{a}, where LxL_{x} – is the plateau luminosity in the 0.3 - 10 keV, and Ta=t2/(1+z)T_{a}=t_{2}/(1+z) is the time at the end of the plateau stage in the source frame (Dainotti et al., 2008; Dainotti et al., 2021).

Table 4: Parameters of GRB 200829A
R.A. Dec zz EisoE_{iso} θj,O\theta_{j,O} θj,X\theta_{j,X} ΓO\Gamma_{O} ΓX\Gamma_{X} Eγ,OE_{\gamma,O} Eγ,XE_{\gamma,X}
Hours Degrees 105410^{54} erg 105110^{51} erg 105110^{51} erg
16:44:49.14 +72:19:45.63 1.29±0.041.29\pm 0.04 1.30±+0.011.30\pm+0.01 2.440.20+0.182.44^{+0.18}_{-0.20} 1.130.27+0.201.13^{+0.20}_{-0.27} 12223+77122^{+77}_{-23} 19949+157199^{+157}_{-49} 7.221.20+1.187.22^{+1.18}_{-1.20} 1.590.66+0.601.59^{+0.60}_{-0.66}
Table 5: Parameters of the host galaxy
MR,HostM_{R,Host} logSFR\log SFR MHostM_{Host} A(V)A(V) NHN_{H}
mag MM_{\odot} yr-1 ×109\times 10^{9} MM_{\odot} mag ×1021\times 10^{21} cm-2
19.44-19.44 0.715±0.486-0.715\pm 0.486 8.5\sim 8.5 1.11±0.021.11\pm 0.02 2.6±0.32.6\pm 0.3

8 Conclusions

The parameters of GRB 200829A and its host galaxy determined in this paper are given in Tables 4 and 5, respectively.

Note some properties of GRB 200829A. In particular, the gamma-ray light curve exhibits a complex structure that is a superposition of pulses with different spectral hardness. Therefore, a proper determination of the spectral lag turned out to be impossible. Our analysis of the gamma-ray BAT/Swift, GBM/Fermi, and SPI-ACS/INTEGRAL data showed that the event belongs to the class of long GRBs (Minaev and Pozanenko 2020a). GRB 200829A is among other \sim15 most powerful events in isotropic equivalent energy (Eiso1054E_{iso}\gtrsim 10^{54} erg). A plateau gradually transitioning into extended emission with a duration \sim800 s is traced in the BAT/Swift light curve, while the flux decays as a power law with a slope α1\alpha\sim-1 typical for an afterglow (Mozgunov et al., 2021).

Based on the results of UVOT/Swift and XRT/Swift observations, we made an independent photometric redshift estimate for GRB 200829A, z=1.29±0.04z=1.29\pm 0.04.

No signature of SN from GRB 200829A was detected during its optical observations within 10 – 40 days after T0T_{0}. The upper limit on the absolute magnitude of SN at maximum MR>23M_{R}>-23 is consistent with the well-known absolute magnitude distribution of SNe associated with GRBs (Belkin & Pozanenko, 2022).

The host galaxy of GRB 200829A was found with the BTA telescope at SAO RAS. Its absolute magnitude corrected for the Galactic extinction is MR19.44M_{R}\sim-19.44 at z=1.29z=1.29, the star formation rate is logSFR0.7\log{SFR}\sim-0.7 MM_{\odot} yr-1, and the mass is 8×109\sim 8\times 10^{9} MM_{\odot}. The absorption on the line of sight is consistent with the linear correlation NH1.6A(V)N_{H}\gtrsim 1.6A(V) observed in GRB host galaxies (Covino et al., 2013).

A joint analysis of the optical and X-ray observations of the GRB 200829A afterglow showed a chromatic behavior of the early afterglow before the break in the optical light curve (about 0.15 days since the GBM/Fermi trigger). The presence of a chromatic feature is consistent with the model of a structured jet.

Acknowledgments

N.S. Pankov, A.S. Pozanenko, P.Yu. Minaev, S.O. Belkin, E.V. Klunko, and A.A. Volnova thank the Ministry of Education and Science of the Russian Federation for its financial support, project no. 075-15-2022-1221 (2022-BRICS-8847-2335). This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. Based on observations made with the Nordic Optical Telescope, owned in collaboration by the University of Turku and Aarhus University, and operated jointly by Aarhus University, the University of Turku and the University of Oslo, representing Denmark, Finland and Norway, the University of Iceland and Stockholm University at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias.

References

  • Amati et al. (2002) Amati L., et al., 2002, A&A, 390, 81
  • Band et al. (1993) Band D., et al., 1993, ApJ, 413, 281
  • Barkov et al. (2021) Barkov M. V., Luo Y., Lyutikov M., 2021, ApJ, 907, 109
  • Belkin & Pozanenko (2022) Belkin S., Pozanenko A., 2022, in Pozanenko A., Stupnikov S., Thalheim B., Mendez E., Kiselyova N., eds, Data Analytics and Management in Data Intensive Domains. Springer International Publishing, Cham, pp 74–91
  • Belkin et al. (2020) Belkin S. O., et al., 2020, Astronomy Letters, 46, 783
  • Beniamini et al. (2020) Beniamini P., Duque R., Daigne F., Mochkovitch R., 2020, MNRAS, 492, 2847
  • Bennett et al. (2014) Bennett C. L., Larson D., Weiland J. L., Hinshaw G., 2014, ApJ, 794, 135
  • Beuermann et al. (1999) Beuermann K., et al., 1999, A&A, 352, L26
  • Bisnovatyi-Kogan et al. (1975) Bisnovatyi-Kogan G. S., Imshennik V. S., Nadyozhin D. K., Chechetkin V. M., 1975, Ap&SS, 35, 3
  • Blackburn (1995) Blackburn J. K., 1995, in Shaw R. A., Payne H. E., Hayes J. J. E., eds, Astronomical Society of the Pacific Conference Series Vol. 77, Astronomical Data Analysis Software and Systems IV. p. 367
  • Burrows et al. (2005a) Burrows D. N., et al., 2005a, Space Sci. Rev., 120, 165
  • Burrows et al. (2005b) Burrows D. N., et al., 2005b, Science, 309, 1833
  • Butler et al. (2007) Butler N. R., Kocevski D., Bloom J. S., Curtis J. L., 2007, ApJ, 671, 656
  • Chambers et al. (2016) Chambers K. C., et al., 2016, arXiv e-prints, p. arXiv:1612.05560
  • Colgate (1968) Colgate S. A., 1968, Canadian Journal of Physics Supplement, 46, 476
  • Covino et al. (2013) Covino S., et al., 2013, MNRAS, 432, 1231
  • Daigne et al. (2006) Daigne F., Rossi E. M., Mochkovitch R., 2006, MNRAS, 372, 1034
  • Dainotti et al. (2008) Dainotti M. G., Cardone V. F., Capozziello S., 2008, MNRAS, 391, L79
  • Dainotti et al. (2021) Dainotti M. G., Lenart A. Ł., Fraija N., Nagataki S., Warren D. C., De Simone B., Srinivasaragavan G., Mata A., 2021, PASJ, 73, 970
  • Dainotti et al. (2022) Dainotti M. G., et al., 2022, ApJS, 261, 25
  • De Pasquale et al. (2016) De Pasquale M., et al., 2016, MNRAS, 455, 1027
  • Dereli-Bégué et al. (2022) Dereli-Bégué H., Pe’er A., Ryde F., Oates S. R., Zhang B., Dainotti M. G., 2022, Nature Communications, 13, 5611
  • Devyatkin et al. (2010) Devyatkin A. V., Gorshanov D. L., Kouprianov V. V., Verestchagina I. A., 2010, Solar System Research, 44, 68
  • Duque et al. (2022) Duque R., Beniamini P., Daigne F., Mochkovitch R., 2022, MNRAS, 513, 951
  • Eichler & Levinson (2004) Eichler D., Levinson A., 2004, ApJ, 614, L13
  • Evans et al. (2007) Evans P. A., et al., 2007, A&A, 469, 379
  • Evans et al. (2009) Evans P. A., et al., 2009, MNRAS, 397, 1177
  • Goad et al. (2020) Goad M. R., Osborne J. P., Beardmore A. P., Evans P. A., Swift-XRT Team 2020, GRB Coordinates Network, 28313, 1
  • Gruber et al. (2014) Gruber D., et al., 2014, ApJS, 211, 12
  • HI4PI Collaboration et al. (2016) HI4PI Collaboration et al., 2016, A&A, 594, A116
  • Hakkila & Preece (2011) Hakkila J., Preece R. D., 2011, ApJ, 740, 104
  • Han et al. (2022) Han S., Li X., Jiang L., Jin Z., He H., Wang Y., Wei D., 2022, Universe, 8
  • Hill et al. (2006) Hill J. E., et al., 2006, ApJ, 639, 303
  • Izzo (2020) Izzo L., 2020, GRB Coordinates Network, 28331, 1
  • Kaneko et al. (2006) Kaneko Y., Preece R. D., Briggs M. S., Paciesas W. S., Meegan C. A., Band D. L., 2006, ApJS, 166, 298
  • Komissarov et al. (2009) Komissarov S. S., Vlahakis N., Königl A., Barkov M. V., 2009, MNRAS, 394, 1182
  • Koshut et al. (1996) Koshut T. M., Paciesas W. S., Kouveliotou C., van Paradijs J., Pendleton G. N., Fishman G. J., Meegan C. A., 1996, ApJ, 463, 570
  • Kouprianov (2012) Kouprianov V., 2012, in 39th COSPAR Scientific Assembly. p. 974
  • Kouveliotou et al. (1993) Kouveliotou C., Meegan C. A., Fishman G. J., Bhat N. P., Briggs M. S., Koshut T. M., Paciesas W. S., Pendleton G. N., 1993, ApJ, 413, L101
  • Kuin et al. (2020) Kuin N. P. M., Siegel M. H., Swift/UVOT Team 2020, GRB Coordinates Network, 28311, 1
  • Kumar & Zhang (2015) Kumar P., Zhang B., 2015, Physics Reports, 561, 1
  • Lamb et al. (2021) Lamb G. P., Kann D. A., Fernández J. J., Mandel I., Levan A. J., Tanvir N. R., 2021, MNRAS, 506, 4163
  • Lazzati et al. (2001) Lazzati D., et al., 2001, A&A, 378, 996
  • Levan (2018) Levan A., 2018, Gamma-Ray Bursts. AAS-IOP astronomy, Institute of Physics Publishing, https://books.google.ru/books?id=sx-RtAEACAAJ
  • Levinson & Eichler (2005) Levinson A., Eichler D., 2005, ApJ, 629, L13
  • Lien et al. (2016) Lien A., et al., 2016, ApJ, 829, 7
  • Luchkov et al. (1996) Luchkov B. I., Mitrofanov I. G., Rozental’ I. L., 1996, Physics-Uspekhi, 39, 695
  • Mahajan et al. (2018) Mahajan S., et al., 2018, MNRAS, 475, 788
  • Masetti et al. (2005) Masetti N., et al., 2005, A&A, 438, 841
  • Mazaeva et al. (2018) Mazaeva E., Pozanenko A., Minaev P., 2018, International Journal of Modern Physics D, 27, 1844012
  • Mazzali et al. (2003) Mazzali P. A., et al., 2003, ApJ, 599, L95
  • Metzger et al. (2011) Metzger B. D., Giannios D., Thompson T. A., Bucciantini N., Quataert E., 2011, MNRAS, 413, 2031
  • Minaev & Pozanenko (2017) Minaev P. Y., Pozanenko A. S., 2017, Astronomy Letters, 43, 1
  • Minaev & Pozanenko (2020a) Minaev P. Y., Pozanenko A. S., 2020a, Astronomy Letters, 46, 573
  • Minaev & Pozanenko (2020b) Minaev P. Y., Pozanenko A. S., 2020b, MNRAS, 492, 1919
  • Minaev & Pozanenko (2021) Minaev P. Y., Pozanenko A. S., 2021, MNRAS, 504, 926
  • Minaev et al. (2010a) Minaev P. Y., Pozanenko A. S., Loznikov V. M., 2010a, Astronomy Letters, 36, 707
  • Minaev et al. (2010b) Minaev P. Y., Pozanenko A. S., Loznikov V. M., 2010b, Astrophysical Bulletin, 65, 326
  • Minaev et al. (2014) Minaev P. Y., Pozanenko A. S., Molkov S. V., Grebenev S. A., 2014, Astronomy Letters, 40, 235
  • Monet et al. (2003) Monet D. G., et al., 2003, AJ, 125, 984
  • Moskvitin et al. (2020a) Moskvitin A. S., Aitov V. N., GRB follow-up Team 2020a, GRB Coordinates Network, 28322, 1
  • Moskvitin et al. (2020b) Moskvitin A. S., Aitov V. N., GRB follow-up Team 2020b, GRB Coordinates Network, 28328, 1
  • Mozgunov et al. (2021) Mozgunov G. Y., Minaev P. Y., Pozanenko A. S., 2021, Astronomy Letters, 47, 150
  • Newville et al. (2021) Newville M., et al., 2021, lmfit/lmfit-py: 1.0.3, doi:10.5281/zenodo.5570790, https://doi.org/10.5281/zenodo.5570790
  • Norris et al. (2005) Norris J. P., Bonnell J. T., Kazanas D., Scargle J. D., Hakkila J., Giblin T. W., 2005, ApJ, 627, 324
  • Oates et al. (2011) Oates S. R., et al., 2011, MNRAS, 412, 561
  • Oates et al. (2020) Oates S. R., Kuin N. P. M., De Pasquale M., Campana S., Tohuvavohu A., Siegel M. H., Neil Gehrels Swift Observatory Team 2020, GRB Coordinates Network, 28338, 1
  • Paczynski (1986) Paczynski B., 1986, ApJ, 308, L43
  • Paczyński (1998) Paczyński B., 1998, in Meegan C. A., Preece R. D., Koshut T. M., eds, American Institute of Physics Conference Series Vol. 428, Gamma-Ray Bursts, 4th Hunstville Symposium. pp 783–787 (arXiv:astro-ph/9706232), doi:10.1063/1.55404
  • Pankov et al. (2020) Pankov N., et al., 2020, GRB Coordinates Network, 28329, 1
  • Pankov et al. (2022) Pankov N., Pozanenko A., Kouprianov V., Belkin S., 2022, in Pozanenko A., Stupnikov S., Thalheim B., Mendez E., Kiselyova N., eds, Data Analytics and Management in Data Intensive Domains. Springer International Publishing, Cham, pp 104–134
  • Pei (1992) Pei Y. C., 1992, ApJ, 395, 130
  • Perna et al. (2006) Perna R., Armitage P. J., Zhang B., 2006, ApJ, 636, L29
  • Piran (2004) Piran T., 2004, Reviews of Modern Physics, 76, 1143
  • Piro et al. (2005) Piro L., et al., 2005, ApJ, 623, 314
  • Postnov (1999) Postnov K. A., 1999, Phys. Usp., 42, 469
  • Pozanenko et al. (2008) Pozanenko A. S., Rumyantsev V. V., Loznikov V. M., Volnova A. A., Shulga A. P., 2008, Astronomy Letters, 34, 141
  • Pozanenko et al. (2018) Pozanenko A. S., et al., 2018, ApJ, 852, L30
  • Pozanenko et al. (2020) Pozanenko A., Reva I., Serebryanskiy A., Belkin S., Krugov M., Mazaeva E., Volnova A., IKI-GRB-FuN 2020, GRB Coordinates Network, 28308, 1
  • Pozanenko et al. (2021) Pozanenko A. S., Barkov M. V., Minaev P. Y., Volnova A. A., 2021, Astronomy Letters, 47, 791
  • Prilutskii & Usov (1975) Prilutskii O. F., Usov V. V., 1975, Ap&SS, 34, 395
  • Resmi et al. (2012) Resmi L., et al., 2012, MNRAS, 427, 288
  • Rowlinson et al. (2013) Rowlinson A., O’Brien P. T., Metzger B. D., Tanvir N. R., Levan A. J., 2013, MNRAS, 430, 1061
  • Rozental et al. (1983) Rozental I. L., Usov V. V., Estulin I. V., 1983, Uspekhi Fizicheskikh Nauk, 140, 97
  • Sari et al. (1999) Sari R., Piran T., Halpern J. P., 1999, ApJ, 519, L17
  • Schady et al. (2010) Schady P., et al., 2010, MNRAS, 401, 2773
  • Schlafly & Finkbeiner (2011) Schlafly E. F., Finkbeiner D. P., 2011, ApJ, 737, 103
  • Schlegel et al. (1998) Schlegel D. J., Finkbeiner D. P., Davis M., 1998, ApJ, 500, 525
  • Science Software Branch at STScI (2012) Science Software Branch at STScI 2012, PyRAF: Python alternative for IRAF, Astrophysics Source Code Library, record ascl:1207.011 (ascl:1207.011)
  • Siegel et al. (2020) Siegel M. H., Gropp J. D., Kennea J. A., Kuin N. P. M., Laha S., Sbarufatti B., Neil Gehrels Swift Observatory Team 2020, GRB Coordinates Network, 28307, 1
  • Swenson et al. (2013) Swenson C. A., Roming P. W. A., De Pasquale M., Oates S. R., 2013, ApJ, 774, 2
  • Tsvetkova et al. (2017) Tsvetkova A., et al., 2017, ApJ, 850, 161
  • Tsvetkova et al. (2021) Tsvetkova A., et al., 2021, ApJ, 908, 83
  • Vinko et al. (2020) Vinko J., Vida K., Pal A., Kriskovics L., Szakats R., Ordasi A., Sarneczky K., 2020, GRB Coordinates Network, 28316, 1
  • Volnova et al. (2014) Volnova A. A., et al., 2014, MNRAS, 442, 2586
  • Volnova et al. (2017) Volnova A. A., et al., 2017, MNRAS, 467, 3500
  • Volnova et al. (2021) Volnova A., Pozanenko A., Mazaeva E., Belkin S., Minaev P., 2021, in Sychev A., Makhortov S., Thalheim B., eds, Data Analytics and Management in Data Intensive Domains. Springer International Publishing, Cham, pp 148–159
  • Wang & Wheeler (1998) Wang L., Wheeler J. C., 1998, ApJ, 504, L87
  • Wang et al. (2018) Wang X.-G., Zhang B., Liang E.-W., Lu R.-J., Lin D.-B., Li J., Li L., 2018, ApJ, 859, 160
  • Woosley (1993) Woosley S. E., 1993, ApJ, 405, 273
  • Woosley et al. (1999) Woosley S. E., Eastman R. G., Schmidt B. P., 1999, ApJ, 516, 788
  • Yi et al. (2017) Yi S.-X., Yu H., Wang F. Y., Dai Z.-G., 2017, ApJ, 844, 79
  • Yu et al. (2022) Yu Y.-W., Gao H., Wang F.-Y., Zhang B.-B., 2022, arXiv e-prints, p. arXiv:2204.04417
  • Zhang et al. (2007) Zhang B., Zhang B.-B., Liang E.-W., Gehrels N., Burrows D. N., Mészáros P., 2007, ApJ, 655, L25
  • Zhu et al. (2020a) Zhu Z. P., Y Fu S., Liu X., Xu D., Gao X., Zhang X., Liu J. Z., 2020a, GRB Coordinates Network, 28324, 1
  • Zhu et al. (2020b) Zhu Z. P., Y Fu S., Liu X., Xu D., Gao X., Zhang X., Liu J. Z., 2020b, GRB Coordinates Network, 28330, 1
  • de Pasquale et al. (2007) de Pasquale M., et al., 2007, MNRAS, 377, 1638
  • von Kienlin et al. (2003) von Kienlin A., Beckmann V., Rau A., et al. 2003, A&A, 411, L299
  • von Kienlin et al. (2020) von Kienlin A., et al., 2020, ApJ, 893, 46
Table 6: Log of optical observations. The magnitudes in the UVOT/Swift uu, bb, vv, uvw1uvw1, uvw2uvw2, whitewhite, ClearClear, RR, and II filters are given in the Vega photometric system, those in the gg, rr, ii, and zz filters are given in the AB photometric system. The values are given without any correction for the extinction in the Galaxy and the GRB 200829A host galaxy. Continue in Table 7.
tT0t-T_{0} Magnitude Flux density Observatory/Telescope Filter GCN no.
days mJy
0.002361 13.88±0.0813.88\pm 0.08 10.2130.777+0.77710.213^{+0.777}_{-0.777} Swift/UVOT v -
0.003391 14.33±0.0714.33\pm 0.07 3.5660.689+0.6893.566^{+0.689}_{-0.689} Swift/UVOT white -
0.003391 14.33±0.0714.33\pm 0.07 3.5660.689+0.6893.566^{+0.689}_{-0.689} Swift/UVOT white -
0.005810 14.55±0.0514.55\pm 0.05 2.1890.104+0.1042.189^{+0.104}_{-0.104} Swift/UVOT u -
0.007431 15.82±0.0815.82\pm 0.08 1.9060.134+0.1341.906^{+0.134}_{-0.134} Swift/UVOT b -
0.007720 15.46±0.0815.46\pm 0.08 1.2630.248+0.2481.263^{+0.248}_{-0.248} Swift/UVOT white -
0.008009 17.04±0.2817.04\pm 0.28 0.1130.029+0.0290.113^{+0.029}_{-0.029} Swift/UVOT uvw2 -
0.008299 15.43±0.1015.43\pm 0.10 2.4540.230+0.2302.454^{+0.230}_{-0.230} Swift/UVOT v -
0.008866 15.46±0.1415.46\pm 0.14 0.5820.074+0.0740.582^{+0.074}_{-0.074} Swift/UVOT uvw1 -
0.009155 15.08±0.0915.08\pm 0.09 1.3390.103+0.1031.339^{+0.103}_{-0.103} Swift/UVOT u -
0.009444 16.13±0.0916.13\pm 0.09 1.4300.112+0.1121.430^{+0.112}_{-0.112} Swift/UVOT b -
0.009734 15.66±0.0815.66\pm 0.08 1.0490.206+0.2061.049^{+0.206}_{-0.206} Swift/UVOT white -
0.010023 18.37±0.5218.37\pm 0.52 0.0330.016+0.0160.033^{+0.016}_{-0.016} Swift/UVOT uvw2 -
0.010301 15.89±0.1215.89\pm 0.12 1.5990.182+0.1821.599^{+0.182}_{-0.182} Swift/UVOT v -
0.010880 15.63±0.1415.63\pm 0.14 0.4970.067+0.0670.497^{+0.067}_{-0.067} Swift/UVOT uvw1 -
0.011944 16.00±0.0716.00\pm 0.07 0.7680.148+0.1480.768^{+0.148}_{-0.148} Swift/UVOT white -
0.013275 16.20±0.1416.20\pm 0.14 1.2050.157+0.1571.205^{+0.157}_{-0.157} Swift/UVOT v -
0.013843 16.08±0.1716.08\pm 0.17 0.3300.053+0.0530.330^{+0.053}_{-0.053} Swift/UVOT uvw1 -
0.014120 15.55±0.1015.55\pm 0.10 0.8690.077+0.0770.869^{+0.077}_{-0.077} Swift/UVOT u -
0.014410 16.39±0.1016.39\pm 0.10 1.1310.097+0.0971.131^{+0.097}_{-0.097} Swift/UVOT b -
0.014688 16.29±0.0916.29\pm 0.09 0.5900.117+0.1170.590^{+0.117}_{-0.117} Swift/UVOT white -
0.015324 16.32±0.2016.32\pm 0.20 1.0810.198+0.1981.081^{+0.198}_{-0.198} Swift/UVOT v -
0.015845 16.13±0.1816.13\pm 0.18 0.3160.051+0.0510.316^{+0.051}_{-0.051} Swift/UVOT uvw1 -
0.016123 15.80±0.1115.80\pm 0.11 0.6930.066+0.0660.693^{+0.066}_{-0.066} Swift/UVOT u -
0.016458 16.47±0.1216.47\pm 0.12 1.0490.117+0.1171.049^{+0.117}_{-0.117} Swift/UVOT b -
0.016701 16.26±0.0916.26\pm 0.09 0.6020.119+0.1190.602^{+0.119}_{-0.119} Swift/UVOT white -
0.016991 18.24±0.4818.24\pm 0.48 0.0370.017+0.0170.037^{+0.017}_{-0.017} Swift/UVOT uvw2 -
0.017280 16.41±0.1616.41\pm 0.16 0.9910.141+0.1410.991^{+0.141}_{-0.141} Swift/UVOT v -
0.017847 16.84±0.2416.84\pm 0.24 0.1630.036+0.0360.163^{+0.036}_{-0.036} Swift/UVOT uvw1 -
0.018148 16.03±0.1116.03\pm 0.11 0.5590.058+0.0580.559^{+0.058}_{-0.058} Swift/UVOT u -
0.018438 16.82±0.1116.82\pm 0.11 0.7590.077+0.0770.759^{+0.077}_{-0.077} Swift/UVOT b -
0.018727 16.42±0.0916.42\pm 0.09 0.5190.103+0.1030.519^{+0.103}_{-0.103} Swift/UVOT white -
0.019306 16.63±0.1716.63\pm 0.17 0.8090.128+0.1280.809^{+0.128}_{-0.128} Swift/UVOT v -
0.019873 16.36±0.1916.36\pm 0.19 0.2550.046+0.0460.255^{+0.046}_{-0.046} Swift/UVOT uvw1 -
0.020150 15.99±0.1115.99\pm 0.11 0.5820.060+0.0600.582^{+0.060}_{-0.060} Swift/UVOT u -
0.020440 16.81±0.1116.81\pm 0.11 0.7680.077+0.0770.768^{+0.077}_{-0.077} Swift/UVOT b -
0.035551 16.29±0.1316.29\pm 0.13 0.8640.113+0.1000.864^{+0.100}_{-0.113} TShAO/Zeiss-1000 R -
0.036296 16.34±0.0816.34\pm 0.08 0.8280.066+0.0610.828^{+0.061}_{-0.066} TShAO/Zeiss-1000 R -
0.037041 16.25±0.1216.25\pm 0.12 0.8980.103+0.0920.898^{+0.092}_{-0.103} TShAO/Zeiss-1000 R -
0.037785 16.37±0.1116.37\pm 0.11 0.8050.084+0.0760.805^{+0.076}_{-0.084} TShAO/Zeiss-1000 R -
0.038524 16.41±0.1016.41\pm 0.10 0.7730.072+0.0660.773^{+0.066}_{-0.072} TShAO/Zeiss-1000 R -
0.039271 16.36±0.0816.36\pm 0.08 0.8100.064+0.0590.810^{+0.059}_{-0.064} TShAO/Zeiss-1000 R -
0.040015 16.37±0.0716.37\pm 0.07 0.8020.057+0.0530.802^{+0.053}_{-0.057} TShAO/Zeiss-1000 R -
0.040756 16.43±0.0716.43\pm 0.07 0.7630.049+0.0460.763^{+0.046}_{-0.049} TShAO/Zeiss-1000 R -
0.041500 16.42±0.0516.42\pm 0.05 0.7710.039+0.0370.771^{+0.037}_{-0.039} TShAO/Zeiss-1000 R -
0.042240 16.45±0.0516.45\pm 0.05 0.7470.035+0.0340.747^{+0.034}_{-0.035} TShAO/Zeiss-1000 R -
0.042984 16.45±0.0616.45\pm 0.06 0.7500.043+0.0410.750^{+0.041}_{-0.043} TShAO/Zeiss-1000 R -
0.043734 16.49±0.0816.49\pm 0.08 0.7180.057+0.0530.718^{+0.053}_{-0.057} TShAO/Zeiss-1000 R -
0.044479 16.48±0.0716.48\pm 0.07 0.7240.050+0.0460.724^{+0.046}_{-0.050} TShAO/Zeiss-1000 R -
0.045224 16.42±0.0716.42\pm 0.07 0.7650.054+0.0500.765^{+0.050}_{-0.054} TShAO/Zeiss-1000 R -
0.045982 16.51±0.0616.51\pm 0.06 0.7040.037+0.0350.704^{+0.035}_{-0.037} TShAO/Zeiss-1000 R -
0.046728 16.52±0.0716.52\pm 0.07 0.6990.049+0.0450.699^{+0.045}_{-0.049} TShAO/Zeiss-1000 R -
0.047472 16.55±0.0616.55\pm 0.06 0.6820.041+0.0380.682^{+0.038}_{-0.041} TShAO/Zeiss-1000 R -
0.048218 16.54±0.0816.54\pm 0.08 0.6910.054+0.0500.691^{+0.050}_{-0.054} TShAO/Zeiss-1000 R -
0.048963 16.58±0.0616.58\pm 0.06 0.6620.040+0.0380.662^{+0.038}_{-0.040} TShAO/Zeiss-1000 R -
0.049708 16.54±0.0716.54\pm 0.07 0.6890.044+0.0410.689^{+0.041}_{-0.044} TShAO/Zeiss-1000 R -
0.050451 16.52±0.0516.52\pm 0.05 0.6970.034+0.0320.697^{+0.032}_{-0.034} TShAO/Zeiss-1000 R -
Table 7: Log of optical observations. Continue in Table 8.
tT0t-T_{0} Magnitude Flux density Observatory/Telescope Filter GCN no.
days mJy
0.051197 16.51±0.0716.51\pm 0.07 0.7060.046+0.0430.706^{+0.043}_{-0.046} TShAO/Zeiss-1000 R -
0.051941 16.55±0.0816.55\pm 0.08 0.6790.052+0.0480.679^{+0.048}_{-0.052} TShAO/Zeiss-1000 R -
0.052685 16.64±0.0816.64\pm 0.08 0.6280.050+0.0460.628^{+0.046}_{-0.050} TShAO/Zeiss-1000 R -
0.053429 16.66±0.0716.66\pm 0.07 0.6180.040+0.0370.618^{+0.037}_{-0.040} TShAO/Zeiss-1000 R -
0.054173 16.64±0.0816.64\pm 0.08 0.6300.046+0.0430.630^{+0.043}_{-0.046} TShAO/Zeiss-1000 R -
0.054916 16.66±0.0816.66\pm 0.08 0.6180.047+0.0430.618^{+0.043}_{-0.047} TShAO/Zeiss-1000 R -
0.055662 16.64±0.0816.64\pm 0.08 0.6240.050+0.0460.624^{+0.046}_{-0.050} TShAO/Zeiss-1000 R -
0.056408 16.69±0.0716.69\pm 0.07 0.5990.037+0.0350.599^{+0.035}_{-0.037} TShAO/Zeiss-1000 R -
0.057151 16.68±0.0616.68\pm 0.06 0.6020.036+0.0340.602^{+0.034}_{-0.036} TShAO/Zeiss-1000 R -
0.057897 16.67±0.0716.67\pm 0.07 0.6100.042+0.0400.610^{+0.040}_{-0.042} TShAO/Zeiss-1000 R -
0.058641 16.72±0.0616.72\pm 0.06 0.5830.030+0.0290.583^{+0.029}_{-0.030} TShAO/Zeiss-1000 R -
0.059387 16.66±0.0816.66\pm 0.08 0.6160.048+0.0440.616^{+0.044}_{-0.048} TShAO/Zeiss-1000 R -
0.060131 16.71±0.0716.71\pm 0.07 0.5880.036+0.0340.588^{+0.034}_{-0.036} TShAO/Zeiss-1000 R -
0.060873 16.74±0.0816.74\pm 0.08 0.5710.042+0.0390.571^{+0.039}_{-0.042} TShAO/Zeiss-1000 R -
0.061146 17.50±0.0817.50\pm 0.08 0.1920.038+0.0380.192^{+0.038}_{-0.038} Swift/UVOT white -
0.061617 16.75±0.0816.75\pm 0.08 0.5660.042+0.0390.566^{+0.039}_{-0.042} TShAO/Zeiss-1000 R -
0.062361 16.73±0.0716.73\pm 0.07 0.5750.038+0.0350.575^{+0.035}_{-0.038} TShAO/Zeiss-1000 R -
0.063109 16.75±0.0816.75\pm 0.08 0.5690.043+0.0400.569^{+0.040}_{-0.043} TShAO/Zeiss-1000 R -
0.065139 16.76±0.0916.76\pm 0.09 0.5600.051+0.0460.560^{+0.046}_{-0.051} TShAO/Zeiss-1000 R -
0.065887 16.77±0.0716.77\pm 0.07 0.5550.037+0.0350.555^{+0.035}_{-0.037} TShAO/Zeiss-1000 R -
0.066630 16.77±0.0716.77\pm 0.07 0.5540.038+0.0360.554^{+0.036}_{-0.038} TShAO/Zeiss-1000 R -
0.067374 16.82±0.0616.82\pm 0.06 0.5310.028+0.0270.531^{+0.027}_{-0.028} TShAO/Zeiss-1000 R -
0.068041 16.88±0.1916.88\pm 0.19 0.5020.093+0.0790.502^{+0.079}_{-0.093} Kitab-ISON/RC36 Clear -
0.068117 16.92±0.0816.92\pm 0.08 0.4830.035+0.0330.483^{+0.033}_{-0.035} TShAO/Zeiss-1000 R -
0.068863 16.78±0.0716.78\pm 0.07 0.5510.036+0.0340.551^{+0.034}_{-0.036} TShAO/Zeiss-1000 R -
0.069605 16.77±0.0916.77\pm 0.09 0.5550.046+0.0430.555^{+0.043}_{-0.046} TShAO/Zeiss-1000 R -
0.070350 16.86±0.0716.86\pm 0.07 0.5150.032+0.0300.515^{+0.030}_{-0.032} TShAO/Zeiss-1000 R -
0.071093 16.86±0.0816.86\pm 0.08 0.5120.037+0.0350.512^{+0.035}_{-0.037} TShAO/Zeiss-1000 R -
0.071839 16.81±0.0516.81\pm 0.05 0.5360.025+0.0240.536^{+0.024}_{-0.025} TShAO/Zeiss-1000 R -
0.072582 16.89±0.0916.89\pm 0.09 0.4990.045+0.0410.499^{+0.041}_{-0.045} TShAO/Zeiss-1000 R -
0.073053 16.79±0.2116.79\pm 0.21 0.5480.120+0.0980.548^{+0.098}_{-0.120} Kitab-ISON/RC36 Clear -
0.073328 16.89±0.0916.89\pm 0.09 0.4980.043+0.0390.498^{+0.039}_{-0.043} TShAO/Zeiss-1000 R -
0.074074 16.92±0.0816.92\pm 0.08 0.4850.039+0.0360.485^{+0.036}_{-0.039} TShAO/Zeiss-1000 R -
0.074818 16.87±0.0816.87\pm 0.08 0.5080.039+0.0360.508^{+0.036}_{-0.039} TShAO/Zeiss-1000 R -
0.075561 16.88±0.0916.88\pm 0.09 0.5030.041+0.0380.503^{+0.038}_{-0.041} TShAO/Zeiss-1000 R -
0.076305 16.95±0.0916.95\pm 0.09 0.4730.041+0.0380.473^{+0.038}_{-0.041} TShAO/Zeiss-1000 R -
0.077049 16.90±0.0916.90\pm 0.09 0.4930.044+0.0410.493^{+0.041}_{-0.044} TShAO/Zeiss-1000 R -
0.077791 16.96±0.0916.96\pm 0.09 0.4650.042+0.0390.465^{+0.039}_{-0.042} TShAO/Zeiss-1000 R -
0.078076 17.11±0.1817.11\pm 0.18 0.4070.072+0.0610.407^{+0.061}_{-0.072} Kitab-ISON/RC36 Clear -
0.078532 16.97±0.0716.97\pm 0.07 0.4630.033+0.0310.463^{+0.031}_{-0.033} TShAO/Zeiss-1000 R -
0.079277 16.94±0.0716.94\pm 0.07 0.4780.032+0.0300.478^{+0.030}_{-0.032} TShAO/Zeiss-1000 R -
0.080020 16.93±0.0716.93\pm 0.07 0.4810.034+0.0320.481^{+0.032}_{-0.034} TShAO/Zeiss-1000 R -
0.080766 17.03±0.0917.03\pm 0.09 0.4380.036+0.0330.438^{+0.033}_{-0.036} TShAO/Zeiss-1000 R -
0.081412 17.65±0.0817.65\pm 0.08 0.1680.033+0.0330.168^{+0.033}_{-0.033} Swift/UVOT white -
0.081512 16.95±0.0716.95\pm 0.07 0.4700.034+0.0310.470^{+0.031}_{-0.034} TShAO/Zeiss-1000 R -
0.082256 17.05±0.0817.05\pm 0.08 0.4280.034+0.0320.428^{+0.032}_{-0.034} TShAO/Zeiss-1000 R -
0.083000 17.01±0.0817.01\pm 0.08 0.4460.035+0.0330.446^{+0.033}_{-0.035} TShAO/Zeiss-1000 R -
0.083099 17.27±0.2817.27\pm 0.28 0.3500.103+0.0790.350^{+0.079}_{-0.103} Kitab-ISON/RC36 Clear -
0.083745 17.02±0.0917.02\pm 0.09 0.4410.038+0.0350.441^{+0.035}_{-0.038} TShAO/Zeiss-1000 R -
0.084490 17.00±0.1017.00\pm 0.10 0.4520.044+0.0400.452^{+0.040}_{-0.044} TShAO/Zeiss-1000 R -
0.085234 17.06±0.0917.06\pm 0.09 0.4250.036+0.0330.425^{+0.033}_{-0.036} TShAO/Zeiss-1000 R -
0.085977 17.03±0.0917.03\pm 0.09 0.4380.037+0.0340.438^{+0.034}_{-0.037} TShAO/Zeiss-1000 R -
0.086720 16.99±0.0916.99\pm 0.09 0.4560.041+0.0380.456^{+0.038}_{-0.041} TShAO/Zeiss-1000 R -
0.087465 17.00±0.0617.00\pm 0.06 0.4490.026+0.0240.449^{+0.024}_{-0.026} TShAO/Zeiss-1000 R -
0.088110 17.31±0.2917.31\pm 0.29 0.3400.102+0.0790.340^{+0.079}_{-0.102} Kitab-ISON/RC36 Clear -
0.088206 17.04±0.0717.04\pm 0.07 0.4330.027+0.0250.433^{+0.025}_{-0.027} TShAO/Zeiss-1000 R -
0.088952 16.97±0.0616.97\pm 0.06 0.4630.026+0.0250.463^{+0.025}_{-0.026} TShAO/Zeiss-1000 R -
0.089692 17.08±0.0917.08\pm 0.09 0.4180.037+0.0340.418^{+0.034}_{-0.037} TShAO/Zeiss-1000 R -
0.090437 17.09±0.0817.09\pm 0.08 0.4130.030+0.0280.413^{+0.028}_{-0.030} TShAO/Zeiss-1000 R -
Table 8: Log of optical observations. Continue in Table 9.
tT0t-T_{0} Magnitude Flux density Observatory/Telescope Filter GCN no.
days mJy
0.091182 17.05±0.0917.05\pm 0.09 0.4310.036+0.0330.431^{+0.033}_{-0.036} TShAO/Zeiss-1000 R -
0.091927 17.09±0.0717.09\pm 0.07 0.4130.029+0.0270.413^{+0.027}_{-0.029} TShAO/Zeiss-1000 R -
0.092672 17.04±0.0917.04\pm 0.09 0.4350.039+0.0360.435^{+0.036}_{-0.039} TShAO/Zeiss-1000 R -
0.093134 16.81±0.1716.81\pm 0.17 0.5350.088+0.0760.535^{+0.076}_{-0.088} Kitab-ISON/RC36 Clear -
0.093926 17.14±0.0817.14\pm 0.08 0.3970.031+0.0290.397^{+0.029}_{-0.031} TShAO/Zeiss-1000 R -
0.094673 17.19±0.1017.19\pm 0.10 0.3790.036+0.0320.379^{+0.032}_{-0.036} TShAO/Zeiss-1000 R -
0.095420 17.19±0.0817.19\pm 0.08 0.3770.030+0.0280.377^{+0.028}_{-0.030} TShAO/Zeiss-1000 R -
0.096163 17.00±0.0617.00\pm 0.06 0.4520.027+0.0250.452^{+0.025}_{-0.027} TShAO/Zeiss-1000 R -
0.098157 16.86±0.1716.86\pm 0.17 0.5100.087+0.0740.510^{+0.074}_{-0.087} Kitab-ISON/RC36 Clear -
0.103180 16.82±0.2216.82\pm 0.22 0.5320.121+0.0980.532^{+0.098}_{-0.121} Kitab-ISON/RC36 Clear -
0.108203 17.15±0.2217.15\pm 0.22 0.3910.088+0.0720.391^{+0.072}_{-0.088} Kitab-ISON/RC36 Clear -
0.113215 17.11±0.2317.11\pm 0.23 0.4070.097+0.0790.407^{+0.079}_{-0.097} Kitab-ISON/RC36 Clear -
0.118238 17.39±0.2717.39\pm 0.27 0.3140.087+0.0680.314^{+0.068}_{-0.087} Kitab-ISON/RC36 Clear -
0.119339 17.29±0.0817.29\pm 0.08 0.3440.026+0.0240.344^{+0.024}_{-0.026} TShAO/Zeiss-1000 R -
0.120315 17.33±0.0717.33\pm 0.07 0.3330.023+0.0220.333^{+0.022}_{-0.023} TShAO/Zeiss-1000 R -
0.121292 17.26±0.0817.26\pm 0.08 0.3560.026+0.0250.356^{+0.025}_{-0.026} TShAO/Zeiss-1000 R -
0.122265 17.39±0.0617.39\pm 0.06 0.3140.019+0.0180.314^{+0.018}_{-0.019} TShAO/Zeiss-1000 R -
0.123244 17.33±0.0717.33\pm 0.07 0.3340.022+0.0200.334^{+0.020}_{-0.022} TShAO/Zeiss-1000 R -
0.123261 17.17±0.2417.17\pm 0.24 0.3850.097+0.0770.385^{+0.077}_{-0.097} Kitab-ISON/RC36 Clear -
0.124219 17.43±0.0817.43\pm 0.08 0.3020.022+0.0210.302^{+0.021}_{-0.022} TShAO/Zeiss-1000 R -
0.125192 17.30±0.0817.30\pm 0.08 0.3410.028+0.0260.341^{+0.026}_{-0.028} TShAO/Zeiss-1000 R -
0.126167 17.44±0.1017.44\pm 0.10 0.3010.029+0.0260.301^{+0.026}_{-0.029} TShAO/Zeiss-1000 R -
0.127143 17.39±0.0817.39\pm 0.08 0.3140.023+0.0210.314^{+0.021}_{-0.023} TShAO/Zeiss-1000 R -
0.128123 17.45±0.0817.45\pm 0.08 0.2990.024+0.0220.299^{+0.022}_{-0.024} TShAO/Zeiss-1000 R -
0.128284 17.16±0.2217.16\pm 0.22 0.3890.087+0.0710.389^{+0.071}_{-0.087} Kitab-ISON/RC36 Clear -
0.129104 17.37±0.0717.37\pm 0.07 0.3210.021+0.0190.321^{+0.019}_{-0.021} TShAO/Zeiss-1000 R -
0.130078 17.38±0.0917.38\pm 0.09 0.3180.027+0.0250.318^{+0.025}_{-0.027} TShAO/Zeiss-1000 R -
0.131051 17.46±0.1017.46\pm 0.10 0.2940.028+0.0260.294^{+0.026}_{-0.028} TShAO/Zeiss-1000 R -
0.132032 17.45±0.1017.45\pm 0.10 0.2980.029+0.0260.298^{+0.026}_{-0.029} TShAO/Zeiss-1000 R -
0.133003 17.49±0.0917.49\pm 0.09 0.2870.025+0.0230.287^{+0.023}_{-0.025} TShAO/Zeiss-1000 R -
0.133978 17.34±0.0817.34\pm 0.08 0.3280.027+0.0250.328^{+0.025}_{-0.027} TShAO/Zeiss-1000 R -
0.134954 17.36±0.1017.36\pm 0.10 0.3220.030+0.0270.322^{+0.027}_{-0.030} TShAO/Zeiss-1000 R -
0.135935 17.40±0.0717.40\pm 0.07 0.3120.020+0.0190.312^{+0.019}_{-0.020} TShAO/Zeiss-1000 R -
0.136912 17.23±0.0917.23\pm 0.09 0.3640.031+0.0290.364^{+0.029}_{-0.031} TShAO/Zeiss-1000 R -
0.137886 17.36±0.0917.36\pm 0.09 0.3230.028+0.0250.323^{+0.025}_{-0.028} TShAO/Zeiss-1000 R -
0.138562 17.31±0.2617.31\pm 0.26 0.3400.093+0.0730.340^{+0.073}_{-0.093} Kitab-ISON/RC36 Clear -
0.141863 17.58±0.0917.58\pm 0.09 0.2240.019+0.0180.224^{+0.018}_{-0.019} Koshka (INASAN)/Zeiss-1000 I -
0.143123 17.72±0.0917.72\pm 0.09 0.2500.036+0.0350.250^{+0.035}_{-0.036} Koshka (INASAN)/Zeiss-1000 R -
0.147173 17.30±0.1917.30\pm 0.19 0.3420.064+0.0540.342^{+0.054}_{-0.064} Kitab-ISON/RC36 Clear -
0.148628 17.45±0.1017.45\pm 0.10 0.2960.029+0.0270.296^{+0.027}_{-0.029} TShAO/Zeiss-1000 R -
0.149606 17.44±0.1417.44\pm 0.14 0.3010.040+0.0360.301^{+0.036}_{-0.040} TShAO/Zeiss-1000 R -
0.150584 17.57±0.1217.57\pm 0.12 0.2660.031+0.0280.266^{+0.028}_{-0.031} TShAO/Zeiss-1000 R -
0.151559 17.36±0.1117.36\pm 0.11 0.3240.033+0.0300.324^{+0.030}_{-0.033} TShAO/Zeiss-1000 R -
0.152531 17.53±0.1017.53\pm 0.10 0.2760.026+0.0240.276^{+0.024}_{-0.026} TShAO/Zeiss-1000 R -
0.153510 17.52±0.1117.52\pm 0.11 0.2790.029+0.0270.279^{+0.027}_{-0.029} TShAO/Zeiss-1000 R -
0.154643 17.72±0.1017.72\pm 0.10 0.2490.037+0.0360.249^{+0.036}_{-0.037} Koshka (INASAN)/Zeiss-1000 R -
0.154643 17.71±0.1317.71\pm 0.13 0.1990.025+0.0220.199^{+0.022}_{-0.025} Koshka (INASAN)/Zeiss-1000 I -
0.158932 17.48±0.2217.48\pm 0.22 0.2890.066+0.0530.289^{+0.053}_{-0.066} Kitab-ISON/RC36 Clear -
0.169696 17.11±0.1717.11\pm 0.17 0.4080.071+0.0600.408^{+0.060}_{-0.071} Kitab-ISON/RC36 Clear -
0.176090 17.65±0.0917.65\pm 0.09 0.2100.018+0.0170.210^{+0.017}_{-0.018} SAO RAS/Zeiss-1000 I 28322
0.177833 18.03±0.1118.03\pm 0.11 0.2110.048+0.0470.211^{+0.047}_{-0.048} CrAO/AZT-11 R -
0.180448 17.57±0.2417.57\pm 0.24 0.2660.066+0.0530.266^{+0.053}_{-0.066} Kitab-ISON/RC36 Clear -
0.182092 17.71±0.1017.71\pm 0.10 0.2330.023+0.0210.233^{+0.021}_{-0.023} CrAO/AZT-11 R -
0.182093 17.91±0.0917.91\pm 0.09 0.2310.048+0.0470.231^{+0.047}_{-0.048} CrAO/AZT-11 R -
0.185933 17.90±0.0917.90\pm 0.09 0.1670.014+0.0130.167^{+0.013}_{-0.014} Koshka (INASAN)/Zeiss-1000 I -
0.186352 17.81±0.1017.81\pm 0.10 0.2130.020+0.0180.213^{+0.018}_{-0.020} CrAO/AZT-11 R -
0.186353 18.01±0.1218.01\pm 0.12 0.2140.049+0.0480.214^{+0.048}_{-0.049} CrAO/AZT-11 R -
0.190413 18.00±0.0818.00\pm 0.08 0.1970.033+0.0320.197^{+0.032}_{-0.033} Koshka (INASAN)/Zeiss-1000 R -
0.190611 17.73±0.1017.73\pm 0.10 0.2290.022+0.0200.229^{+0.020}_{-0.022} CrAO/AZT-11 R -
Table 9: Log of optical observations, last table.
tT0t-T_{0} Magnitude Flux density Observatory/Telescope Filter GCN no.
days mJy
0.190613 17.99±0.1117.99\pm 0.11 0.2180.049+0.0480.218^{+0.048}_{-0.049} CrAO/AZT-11 R -
0.194870 17.80±0.1017.80\pm 0.10 0.2150.021+0.0190.215^{+0.019}_{-0.021} CrAO/AZT-11 R -
0.194873 18.11±0.1318.11\pm 0.13 0.1990.049+0.0480.199^{+0.048}_{-0.049} CrAO/AZT-11 R -
0.196467 17.68±0.2117.68\pm 0.21 0.2410.051+0.0420.241^{+0.042}_{-0.051} Kitab-ISON/RC36 Clear -
0.215673 18.04±0.1018.04\pm 0.10 0.1470.014+0.0130.147^{+0.013}_{-0.014} Koshka (INASAN)/Zeiss-1000 I -
0.220163 18.16±0.0718.16\pm 0.07 0.1710.031+0.0310.171^{+0.031}_{-0.031} Koshka (INASAN)/Zeiss-1000 R -
0.230043 18.24±0.0918.24\pm 0.09 0.1840.016+0.0150.184^{+0.015}_{-0.016} Konkoly/RC80 r -
0.230043 18.49±0.1118.49\pm 0.11 0.1460.016+0.0140.146^{+0.014}_{-0.016} Konkoly/RC80 i -
0.245413 18.27±0.0918.27\pm 0.09 0.1330.013+0.0120.133^{+0.012}_{-0.013} Koshka (INASAN)/Zeiss-1000 I -
0.249893 18.24±0.0718.24\pm 0.07 0.1620.031+0.0310.162^{+0.031}_{-0.031} Koshka (INASAN)/Zeiss-1000 R -
0.250093 18.56±0.0418.56\pm 0.04 0.1370.005+0.0050.137^{+0.005}_{-0.005} Nanshan/NEXT r 28324
0.267623 18.50±0.0518.50\pm 0.05 0.1450.007+0.0070.145^{+0.007}_{-0.007} Nanshan/NEXT i 28324
0.272891 18.91±0.0518.91\pm 0.05 0.0990.005+0.0040.099^{+0.004}_{-0.005} Liverpool g 28331
0.275143 18.31±0.0818.31\pm 0.08 0.1150.009+0.0080.115^{+0.008}_{-0.009} Koshka (INASAN)/Zeiss-1000 I -
0.277891 18.55±0.0418.55\pm 0.04 0.1380.005+0.0050.138^{+0.005}_{-0.005} Liverpool r 28331
0.279623 18.64±0.0618.64\pm 0.06 0.1500.031+0.0310.150^{+0.031}_{-0.031} Koshka (INASAN)/Zeiss-1000 R -
0.280923 18.89±0.0418.89\pm 0.04 0.1010.004+0.0040.101^{+0.004}_{-0.004} Nanshan/NEXT g 28324
0.282891 18.65±0.0418.65\pm 0.04 0.1260.005+0.0050.126^{+0.005}_{-0.005} Liverpool i 28331
0.287891 18.57±0.0418.57\pm 0.04 0.1360.005+0.0050.136^{+0.005}_{-0.005} Liverpool z 28331
0.304883 18.51±0.1118.51\pm 0.11 0.0950.010+0.0090.095^{+0.009}_{-0.010} Koshka (INASAN)/Zeiss-1000 I -
0.309373 18.44±0.0918.44\pm 0.09 0.1370.031+0.0310.137^{+0.031}_{-0.031} Koshka (INASAN)/Zeiss-1000 R -
0.334613 18.53±0.0918.53\pm 0.09 0.0940.008+0.0070.094^{+0.007}_{-0.008} Koshka (INASAN)/Zeiss-1000 I -
0.339103 18.46±0.0918.46\pm 0.09 0.1350.031+0.0310.135^{+0.031}_{-0.031} Koshka (INASAN)/Zeiss-1000 R -
0.375793 18.85±0.1218.85\pm 0.12 0.0990.031+0.0310.099^{+0.031}_{-0.031} Koshka (INASAN)/Zeiss-1000 R -
0.400093 18.73±0.0818.73\pm 0.08 0.0780.006+0.0060.078^{+0.006}_{-0.006} Koshka (INASAN)/Zeiss-1000 I -
0.452193 18.90±0.0818.90\pm 0.08 0.0960.030+0.0300.096^{+0.030}_{-0.030} Koshka (INASAN)/Zeiss-1000 R -
0.602836 20.06±0.1220.06\pm 0.12 0.0180.004+0.0040.018^{+0.004}_{-0.004} Swift/UVOT white -
1.062923 >20.4>20.4 >0.02535>0.02535 Nanshan/NEXT r 28330
1.150123 20.37±0.1320.37\pm 0.13 0.0200.003+0.0020.020^{+0.002}_{-0.003} SAO RAS/Zeiss-1000 R 28322
1.167123 20.14±0.1020.14\pm 0.10 0.0210.002+0.0020.021^{+0.002}_{-0.002} SAO RAS/Zeiss-1000 I 28322
1.291593 20.14±0.2020.14\pm 0.20 0.0210.004+0.0040.021^{+0.004}_{-0.004} Koshka (INASAN)/Zeiss-1000 I 28333
1.293093 20.99±0.2520.99\pm 0.25 0.0290.028+0.0280.029^{+0.028}_{-0.028} Koshka (INASAN)/Zeiss-1000 R 28333
1.307923 20.99±0.1620.99\pm 0.16 0.0150.002+0.0020.015^{+0.002}_{-0.002} Nanshan/NEXT r 28330
1.346603 21.01±0.0521.01\pm 0.05 0.0140.001+0.0010.014^{+0.001}_{-0.001} NOT r -
1.361891 21.17±0.0921.17\pm 0.09 0.0120.001+0.0010.012^{+0.001}_{-0.001} Liverpool g 28331
1.365891 21.13±0.1021.13\pm 0.10 0.0130.001+0.0010.013^{+0.001}_{-0.001} Liverpool r 28331
1.370891 21.25±0.0921.25\pm 0.09 0.0110.001+0.0010.011^{+0.001}_{-0.001} Liverpool i 28331
1.375891 20.50±0.0820.50\pm 0.08 0.0230.002+0.0020.023^{+0.002}_{-0.002} Liverpool z 28331
2.194383 21.54±0.4021.54\pm 0.40 0.0070.003+0.0020.007^{+0.002}_{-0.003} AbAO/AS-32 R -
2.728877 22.40±0.3422.40\pm 0.34 0.0020.001+0.0010.002^{+0.001}_{-0.001} Swift/UVOT white -
2.802903 22.40±0.0822.40\pm 0.08 0.0040.0005+0.00050.004^{+0.0005}_{-0.0005} NOT r -
3.15717 >20.4 >0.021 Mondy/AZT-33IK R -
5.20315 >21.5 >0.008 Mondy/AZT-33IK R -
13.070211 >23.6>23.6 >0.00103>0.00103 MAO/AZT-22 R -
17.077277 >23.7>23.7 >0.00094>0.00094 MAO/AZT-22 R -
44.561496 >23.9>23.9 >0.00078>0.00078 MAO/AZT-22 R -
349.653193 >24.5>24.5 >0.00057>0.00057 MAO/AZT-22 R -
701.205657 25.46±0.3525.46\pm 0.35 0.000200.00028+0.000150.00020^{+0.00015}_{-0.00028} SAO RAS/BTA R -
References: GCN 28308 – Pozanenko et al. (2020), GCN 28316 – Vinko et al. (2020), GCN 28324 – Moskvitin et al. (2020a),
GCN 28324 – Zhu et al. (2020a), GCN 28328 – Moskvitin et al. (2020b), GCN 28330 – Zhu et al. (2020b), GCN 28331 – Izzo (2020),
GCN 28333 – Volnova et al. (2021)