This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Chiral effective Lagrangian for doubly charmed baryons
up to 𝒪(q4)\mathcal{O}(q^{4})

Peng-Cheng Qiu School of Physics and Electronics, Hunan University, 410082 Changsha, China    De-Liang Yao [email protected] School of Physics and Electronics, Hunan University, 410082 Changsha, China
Abstract

The chiral effective meson-baryon Lagrangian for the description of interactions between the doubly charmed baryons and Goldstone bosons is constructed up to the order of q4q^{4}. The numbers of linearly independent invariant monomials of 𝒪(q2)\mathcal{O}(q^{2}), 𝒪(q3)\mathcal{O}(q^{3}) and 𝒪(q4)\mathcal{O}(q^{4}) are 8, 32 and 218, in order. The obtained Lagrangian can be used to study the chiral dynamics and relevant phenomenology of the doubly charmed baryons at complete one-loop level in future. For completeness, the non-relativistic reduction of the Lagrangian is also discussed.

I Introduction

One of the most crucial tasks in hadron physics is to explore hadrons containing heavy quarks, since they are not only necessary for completing the hadron spectroscopy but also useful for our understanding of the QCD dynamics. In recent years, plenty of heavy-flavored baryons have been observed at experiments, some of which are even exotic beyond the expectation of the conventional quark model, e.g. the PcP_{c} states as pentaquark candidates reported by LHCb [1, 2]. Though predicted by quark model, members of the spectrum of the doubly and triply heavy-flavored baryons are still absent so far, with the only exception being the Ξcc++\Xi_{cc}^{++} state. The Ξcc++\Xi_{cc}^{++} state is one of the three doubly charmed baryons, showing up in the 𝟐𝟎M\mathbf{20}_{M}-plet representation of flavor SU(4) group [3] concerning u,d,s,cu,d,s,c quarks. The three baryons are denoted by Ξcc++\Xi_{cc}^{++}, Ξcc+\Xi_{cc}^{+} and Ωcc+\Omega_{cc}^{+} with quark constituents [ccu][ccu], [ccd][ccd] and [ccs][ccs] in order.

Nevertheless, the establishment of the existence of the doubly charmed baryons is zigzag. It was first reported in 2002 by SELEX Collaboration [4] that the Ξcc+\Xi_{cc}^{+} state was observed with measured mass 3519±23519\pm 2 MeV [5]. However, this baryon state was not confirmed by any other subsequent experimental groups [6, 7, 8, 9]. Moreover, the experimental value is not consistent with theoretical determinations, e.g., by relativistic quark model [10], effective potential method [11], heavy quark effective theory [12], and lattice QCD [13, 14]. Actually, the SELEX result is also questionable according to the analysis based on heavy quark-diquark symmetry; see, e.g., Ref. [15]. Hence, the realistic existence of the doubly charmed baryons, especially the Ξcc+\Xi_{cc}^{+} state, becomes very unclear. The issue was addressed in 2017 that the observation of the doubly charged state Ξcc++\Xi_{cc}^{++} was announced by the LHCb Collaboration [16], following the theoretical prediction made by Ref. [17]. The reported mass of Ξcc++\Xi_{cc}^{++} is 3621.4±0.783621.4\pm 0.78 MeV, which is in good agreement with previous theoretical results within 1-σ\sigma uncertainty [11, 10, 14]. The finding of the Ξcc++\Xi_{cc}^{++} state has triggered renewed interest in studying doubly charmed baryons, see e.g. Refs. [18, 19, 20, 21, 22]. Experiments are still ongoing to investigate the properties of the Ξcc++\Xi_{cc}^{++} state and also to pursue the other two members, i.e. Ξcc++\Xi_{cc}^{++} and Ωcc+\Omega_{cc}^{+}, in the family of the doubly charmed baryons. Since the existence of the doubly charmed baryons is now robust, it becomes necessary, in the theoretical side, to investigate them and their excited states using model-independent and systematical methods.

Chiral perturbation theory (ChPT) [23, 24, 25] is one such method, which plays a prominent role in the study of the low-energy dynamics of QCD, see e.g. Refs. [26, 27, 28, 29]. It is initially developed for the description of the interactions of the Goldstone bosons stemming from the spontaneous breaking of the SU(3)×L{}_{L}\timesSU(3)R chiral symmetry of QCD [25]. The inclusion of light baryons as degrees of freedom was first done in Ref [30], and various renormalization versions [31, 32, 33, 34, 35, 36] have to be proposed to tackle the power counting problem. In order to study heavy-flavored hadron spectrum, ChPT can also be extended to describe the interactions between heavy hadrons and Goldstone bosons. Traditionally, ChPT for heavy-flavored hadrons was proposed in Refs. [37, 38, 39, 40, 41, 42, 43] by implementing heavy-quark symmetry [44] and heavy quark-diquark symmetry [42, 45, 46] in addition to chiral symmetry, which means a non-relativistic expansion in terms of the inverse of heavy-flavored hadron mass is performed. However, such a non-relativistic expansion distorts the analytic structure of the amplitudes, e.g. the location of the poles of the expanded heavy-flavored hadron propagators are shifted, which could lead to convergence problem. For instance, the scalar form factor of the nucleon at t=4Mπ2t=4M_{\pi}^{2} diverges [47, 34] . It is thus more appropriate to utilize relativistic treatment of the matter fields involved in ChPT. For doubly charmed baryons, covariant χ\chiPT analyses can be found in Refs. [48, 49, 50], where their masses and electromagnetic form factors were studied at loop level. However, a complete and minimal chiral effective Lagrangian for a full one-loop description of interactions between the doubly charmed baryons and Goldstone bosons is still lacking. In this work, we are going to fill this gap.

This manuscript is organized as follows. In Sec. II, the relevant chiral building blocks are introduced. In Sec. III, the procedure of the construction of the Lagrangian is described in detail. Transformation properties and chiral dimension of the building blocks together with other necessary ingredients such as Clifford algebra elements are shown in Sec. III.1. Consequently, invariant monomials are discussed in Sec. III.2, while the reduction of the monomials is shown in Sec. III.3. Our results of the constructed Lagrangian are listed in Sec. IV, Appendix B and Appendix C. A short summary is given in Sec. V.

II Chiral building blocks of the Lagrangian

QCD is the underlying theory of ChPT and its Lagrangian reads

=QCD0+q¯γμ(υμ+γ5aμ)qq¯(siγ5p)q,\displaystyle\mathscr{L}=\mathscr{L}^{0}_{\mathrm{QCD}}+\bar{q}\gamma^{\mu}(\upsilon_{\mu}+\gamma_{5}a_{\mu})q-\bar{q}(s-i\gamma_{5}p)q\ , (1)

where QCD0\mathscr{L}^{0}_{\mathrm{QCD}} is the QCD Lagrangian with massless uu, dd and ss quarks. The QCD0\mathscr{L}^{0}_{\mathrm{QCD}} exhibits a global SU(3)L×SU(3)RSU(3)_{L}\times SU(3)_{R} chiral symmetry, which is spontaneously broken to the subgroup SU(3)VSU(3)_{V} with the emergence of 8 Goldstone bosons according to Goldstone theorem [51]. Here, υμ\upsilon_{\mu}, aμa_{\mu}, ss, and pp are external vector, axial-vector, scalar and pseudoscalar sources, in order.111Throughout this work, the vector and axial vector currents should be regarded as traceless 3×33\times 3 matrices in the flavor space, i. e. υμ=aμ=0\left\langle\upsilon_{\mu}\right\rangle=\left\langle a_{\mu}\right\rangle=0. The underlying Lagrangian possesses a local SU(3)L×SU(3)RSU(3)_{L}\times SU(3)_{R} chiral symmetry due to the presence of the external fields. Furthermore, the Goldstone bosons acquire little masses from the explicit breaking of the chiral symmetry by setting s=diag(mu,md,ms)s={\rm diag}(m_{u},m_{d},m_{s}).

In the chiral effective Lagrangian to be constructed in the following, Goldstone bosons, originating from spontaneously broken chiral symmetry, and the doubly charmed baryons are taken as explicit degrees of freedom. The Goldstone bosons are represented by a matrix UU, which transforms as

UVRUVL+,\displaystyle U\rightarrow V_{R}UV_{L}^{+}\ , (2)

under chiral transformation, where VRV_{R} and VLV_{L} are independent SU(3) matrices. The matrix field UU is parametrized as

U=exp(i2Φ/F),\displaystyle U=\exp(i\sqrt{2}\Phi/F)\ , (3)

with Φ\Phi given by

Φ=(12π0+16ηπ+K+π12π0+16ηK0KK¯026η),\displaystyle\Phi=\begin{pmatrix}\frac{1}{\sqrt{2}}\pi^{0}+\frac{1}{\sqrt{6}}\eta&\pi^{+}&K^{+}\\ \pi^{-}&-\frac{1}{\sqrt{2}}\pi^{0}+\frac{1}{\sqrt{6}}\eta&K^{0}\\ K^{-}&\bar{K}^{0}&-\frac{2}{\sqrt{6}}\eta\end{pmatrix}, (4)

where FF is the Goldstone-boson decay constant in the SU(3)SU(3) chiral limit [52, 53]. The doubly charmed baryons with quantum number JP=12+J^{P}=\frac{1}{2}^{+} are collected in the triplet

ψ=(Ξcc++Ξcc+Ωcc+),\displaystyle\psi=\begin{pmatrix}\Xi^{++}_{cc}\\ \Xi^{+}_{cc}\\ \Omega^{+}_{cc}\end{pmatrix}, (5)

with Ξcc++,Ξcc+\Xi^{++}_{cc},\Xi^{+}_{cc} and Ωcc+\Omega^{+}_{cc} denoting the doubly charmed baryons. The triplet transforms as

ψh(VR,VL,U)ψ,\displaystyle\psi\rightarrow h(V_{R},V_{L},U)\psi, (6)

where the compensator h(VR,VL,U)h(V_{R},V_{L},U) is a nonlinear function of the pion field UU, VRV_{R} and VLV_{L}; and it is given by

h=(VRUVL)VRu,\displaystyle h=(\sqrt{V_{R}UV_{L}^{\dagger}})^{\dagger}V_{R}u\ , (7)

with u=Uu=\sqrt{U}. It is straightforward to derive the chiral transformation property of the corresponding anti-baryon fields, which reads

ψ¯ψ¯h(VR,VL,U).\displaystyle\bar{\psi}\rightarrow\bar{\psi}h^{\dagger}(V_{R},V_{L},U)\ . (8)

For the construction of the chiral effective Lagrangian, it is convenient to use building blocks XX which transform in a uniform way [54]

Xh(VR,VL,U)Xh(VR,VL,U),\displaystyle X\rightarrow h(V_{R},V_{L},U)Xh^{\dagger}(V_{R},V_{L},U)\ , (9)

The building blocks are linear combinations of pion field and external fields. In our case, the following ones are needed,

uμ\displaystyle u_{\mu} =i{u(μirμ)uu(μilμ)u},\displaystyle=i\{u^{\dagger}(\partial_{\mu}-ir_{\mu})u-u(\partial_{\mu}-il_{\mu})u^{\dagger}\},
fμν±\displaystyle f_{\mu\nu}^{\pm} =uFμνLu±uFμνRu,\displaystyle=uF^{L}_{\mu\nu}u^{\dagger}\pm u^{\dagger}F^{R}_{\mu\nu}u,
χ±\displaystyle\chi_{\pm} =uχu±uχu,\displaystyle=u^{\dagger}\chi u^{\dagger}\pm u\chi^{\dagger}u, (10)

where

χ\displaystyle\chi =2B0(s+ip),B0=0|q¯q|0/3F2,\displaystyle=2B_{0}(s+ip),\quad B_{0}=-\left\langle 0|\bar{q}q|0\right\rangle/3F^{2},
FμνR\displaystyle F^{R}_{\mu\nu} =μrννrμi[rν,rμ],rμ=υμ+aμ,\displaystyle=\partial_{\mu}r_{\nu}-\partial_{\nu}r_{\mu}-i[r_{\nu},r_{\mu}],\quad r_{\mu}=\upsilon_{\mu}+a_{\mu},
FμνL\displaystyle F^{L}_{\mu\nu} =μlννlμi[lν,lμ],lμ=υμaμ.\displaystyle=\partial_{\mu}l_{\nu}-\partial_{\nu}l_{\mu}-i[l_{\nu},l_{\mu}],\quad l_{\mu}=\upsilon_{\mu}-a_{\mu}\ . (11)

Here 0|q¯q|0\left\langle 0|\bar{q}q|0\right\rangle denotes the quark condensate, and \left\langle\cdots\right\rangle stands for trace in the flavour space.

The covariant derivative DμD^{\mu} is defined by

Dμ=μ+Γμ,\displaystyle D_{\mu}=\partial_{\mu}+\Gamma_{\mu},
Γμ=12{u(μirμ)u+u(μilμ)u}.\displaystyle\Gamma_{\mu}=\frac{1}{2}\{u^{\dagger}(\partial_{\mu}-ir_{\mu})u+u(\partial_{\mu}-il_{\mu})u^{\dagger}\}. (12)

For the covariant derivative acting on any building block XX, say [Dμ,X][D_{\mu},X], it can be proved that it transforms as

[Dμ,X]h[Dμ,X]h,\displaystyle[D_{\mu},X]\rightarrow h[D_{\mu},X]h^{\dagger}\ , (13)

by making use of Eq. (7) and the identity 2(hΓμΓμh)=2μh2(h\Gamma_{\mu}-\Gamma_{\mu}^{\prime}h)=2\partial_{\mu}h.222Here, Γμ\Gamma_{\mu}^{\prime} is given by Γμ\displaystyle\Gamma_{\mu}^{\prime} =12(VRUVL)(μiVRrμVR+VRμVR)VRUVL\displaystyle=\frac{1}{2}(\sqrt{V_{R}UV_{L}^{\dagger}})^{\dagger}(\partial_{\mu}-iV_{R}r_{\mu}V_{R}^{\dagger}+V_{R}\partial_{\mu}V_{R}^{\dagger})\sqrt{V_{R}UV_{L}^{\dagger}} +12VRUVL(μiVLlμVL+VLμVL)(VRUVL).\displaystyle+\frac{1}{2}\sqrt{V_{R}UV_{L}^{\dagger}}(\partial_{\mu}-iV_{L}l_{\mu}V_{L}^{\dagger}+V_{L}\partial_{\mu}V_{L}^{\dagger})(\sqrt{V_{R}UV_{L}^{\dagger}})^{\dagger}. (14) Nevertheless, for the covariant acting on the baryon field ψ\psi, one has

Dμψh(Dμψ),Dμψ¯(Dμψ¯)h.\displaystyle D_{\mu}\psi\rightarrow h(D_{\mu}\psi)\ ,\quad D_{\mu}\bar{\psi}\rightarrow(D_{\mu}\bar{\psi})h^{\dagger}\ . (15)

In addition, the following three relations [55]

[Dμ,Dν]X\displaystyle[D_{\mu},D_{\nu}]X =14[[uμ,uν],X]i2[fμν+,X],\displaystyle=\frac{1}{4}[[u_{\mu},u_{\nu}],X]-\frac{i}{2}[f_{\mu\nu}^{+},X], (16)
fμν\displaystyle f_{\mu\nu}^{-} =[Dμ,uν][Dν,uμ],\displaystyle=[D_{\mu},u_{\nu}]-[D_{\nu},u_{\mu}], (17)
hμν\displaystyle h_{\mu\nu} =[Dμ,uν]+[Dν,uμ],\displaystyle=[D_{\mu},u_{\nu}]+[D_{\nu},u_{\mu}], (18)

are very useful for the construction of the meson-baryon chiral Lagrangian. The element hμνh_{\mu\nu} on the left-hand side of the third relation can be considered as an extra chiral building block. In consequence, the terms of [Dμ,uν][D_{\mu},u_{\nu}] and [Dν,uμ][D_{\nu},u_{\mu}] can be eliminated by using the last two equalities.

III Construction of the chiral effective Lagrangian

III.1 Transformation properties and chiral dimension

On top of chiral symmetry, the chiral Lagrangian should be invariant under Lorentz transformation, hermitian conjugation (h.c.h.c.), discrete PP and CC symmetries.333According to CPT theorem, any Lorentz invariant term one can write down in the Lagrangian is CPT invariant. Hence, the time reversal invariance is automatically embedded, once Lorentz covariance, hermitian conjugation, spatial inversion and charge conjugation symmetry are implemented in constructing the chiral local Lagrangian. For easy reference, the transformations properties of the building blocks we use are compiled in Table I, which are taken from Refs. [54, 55, 25, 56]. Moreover, one has to know the power counting of these elements, listed in the last column of Table I, such that invariant monomials of the chiral effective Lagrangian can be organized order by order.

TABLE I: Parity (P), charge conjugation (C), hermitian conjugation (h.c.h.c.) transformation properties and chiral dimension (DχD_{\chi}) of the building blocks and the covariant derivative acting on the building blocks. The definitions of pp, cc and hh are shown in Eq. (III.2), Eq. (III.2) and Eq. (III.2).
PP CC h.c.h.c. pp cc hh DχD_{\chi}
uμu_{\mu} uμ-u^{\mu} uμTu_{\mu}^{T} uμu_{\mu} 11 0 0 11
χ+\chi_{+} χ+\chi_{+} χ+T\chi_{+}^{T} χ+\chi_{+} 0 0 0 22
χ\chi_{-} χ-\chi_{-} χT\chi_{-}^{T} χ-\chi_{-} 11 0 11 22
f+μνf_{+}^{\mu\nu} f+μνf_{+\mu\nu} (f+μν)T-(f_{+}^{\mu\nu})^{T} f+μνf_{+}^{\mu\nu} 0 11 0 22
fμνf_{-}^{\mu\nu} fμν-f_{-\mu\nu} (fμν)T(f_{-}^{\mu\nu})^{T} fμνf_{-}^{\mu\nu} 11 0 0 22
hμνh^{\mu\nu} hμν-h_{\mu\nu} (hμν)T(h^{\mu\nu})^{T} hμνh^{\mu\nu} 11 0 0 22
Dμ\overrightarrow{D}_{\mu} Dμ\overrightarrow{D}^{\mu} DμT\overleftarrow{D}_{\mu}^{T} Dμ\overleftarrow{D}_{\mu} 0 0 0 11

Analogously, the transformation properties and power counting of Clifford algebra elements, the imaginary unit, the metric and Levi-Civita tensors are shown in Table II, which usually appear as ingredients of baryon bilinear iψ¯Γψi\bar{\psi}\Gamma\psi [54]. The covariant derivative acting on the baryon fields is of zeroth chiral order, since the mass of baryons cannot be deemed as a small quantity in the chiral limit.

TABLE II: Parity (PP), charge conjugation (CC), hermitian conjugation (h.c.h.c.) transformation properties and chiral dimension (DχD_{\chi}) of the Clifford algebra elements, the metric and Levi-Civita tensors together with the imaginary unit and the covariant derivative acting on the baryon fields. The definitions of pp, cc and hh are shown in Eq. (III.2), Eq. (III.2) and Eq. (III.2).
pp cc hh DχD_{\chi}
ii 0 0 11 0
11 0 0 0 0
γ5\gamma_{5} 11 0 11 11
γμ\gamma_{\mu} 0 11 0 0
γ5γμ\gamma_{5}\gamma_{\mu} 11 0 0 0
σμν\sigma_{\mu\nu} 0 11 0 0
gμνg_{\mu\nu} 0 0 0 0
ϵμνρτ\epsilon_{\mu\nu\rho\tau} 11 0 0 0
Dμψ\overrightarrow{D}_{\mu}\psi 0 11 11 0

III.2 Invariant monomials

With the elements specified in Table I and Table II, we are now in the position to construct all the possible invariant terms. The generic form of any invariant monomial, constrained by Lorentz transformation, chiral symmetry and hermitian conjugation symmetry, in the effective meson-baryon chiral Lagrangian can be written as

(i)mψ¯AΓDnψ+h.c.,(m=0,1).\displaystyle(i)^{m}\bar{\psi}A\Gamma D^{n}\psi+h.c.,\quad(m=0,1). (19)

Here,

  1. (i)

    AA is a product of building blocks and their covariant derivatives. Since the matrix fields do not commute with each other, one should consider all possible permutations. In addition, it is more preferable to express all the products in terms of combinations of (anti)commutators. For instance, uμuνu_{\mu}u_{\nu} can be written as uμuν=({uμ,uν}+[uμ,uν])/2u_{\mu}u_{\nu}=(\{u_{\mu},u_{\nu}\}+[u_{\mu},u_{\nu}])/2.

  2. (ii)

    Γ\Gamma is a product of elements of the Clifford algebra basis and/or the metric tensors, the Levi-Civita tensors. More discussions on Γ\Gamma are shown in Appendix A.

  3. (iii)

    Dn[Dμ1Dμ2Dμn+alltheotherpermutations]D^{n}\equiv\big{[}D^{\mu_{1}}D^{\mu_{2}}\cdots D^{\mu_{n}}+{\rm all~{}the~{}other~{}permutations}\big{]} is a product of n0n\geq 0 covariant derivatives acting on ψ\psi in a totally symmetrized way. It is worth pointing out that the commutators of the covariant derivatives can be translated to the basic building blocks with the help of Eq. (16).

Note that, in Eq. (19), the Lorentz indices are suppressed for brevity. However, one needs to keep in mind that all the Lorentz indices of AA must be properly contracted with those coming from Γ\Gamma and DnD^{n} to guarantee that all the terms are Lorentz scalars.

Let us proceed with the transformation property of Eq. (19) under parity, which reads

{(i)mψ¯AΓDnψ+h.c.}P\displaystyle\quad\{(i)^{m}\bar{\psi}A\Gamma D^{n}\psi+h.c.\}^{P}
=(1)pA+pΓ+pD{(i)mψ¯AΓDnψ+h.c.},\displaystyle=(-1)^{p_{A}+p_{\Gamma}+p_{D}}\{(i)^{m}\bar{\psi}A\Gamma D^{n}\psi+h.c.\}, (20)

where pAp_{A} can be determined from Table I, while pΓp_{\Gamma} and pDp_{D} from Table II. It can be concluded from Eq. (III.2) that the monomial of Eq. (19) survives in the chiral effective chiral Lagrangian only if

(1)pA+pΓ+pD=1.\displaystyle(-1)^{p_{A}+p_{\Gamma}+p_{D}}=1. (21)

Although Eq. (19) is obviously invariant under hermitic conjugation, it is still worthwhile to demonstrate the corresponding transformation property explicitly. Eq. (19) can be rewritten as

(i)mψ¯AΓDnψ+(1)hA+hΓ+m(i)mψ¯DnAΓψ\displaystyle\quad(i)^{m}\bar{\psi}A\Gamma D^{n}\psi+(-1)^{h_{A}+h_{\Gamma}+m}(i)^{m}\bar{\psi}\overleftarrow{D}^{n}A\Gamma\psi
=(i)mψ¯AΓDnψ+(1)hA+hΓ+hD+m(i)mψ¯AΓDnψ+h.o.,\displaystyle=(i)^{m}\bar{\psi}A\Gamma D^{n}\psi+(-1)^{h_{A}+h_{\Gamma}+h_{D}+m}(i)^{m}\bar{\psi}A\Gamma D^{n}\psi+h.o., (22)

where the values of hAh_{A}, hΓh_{\Gamma} and hDh_{D} are calculated with the help of Table I and Table II. Note that the value of hAh_{A} includes an additional factor of 1 for each commutator. The terms on the right hand side of Eq. (III.2) is obtained by making use of integration by parts and the Leibniz rule together with the elimination of total derivatives. The last term h.o.h.o. denotes the sum of higher order pieces with covariant derivatives acting on the building blocks shown Table I, and hence actually can be thrown away from the Lagrangian of a given chiral order under construction. Finally, Eq. (19) can occur in the Lagrangian only if

(1)hA+hΓ+hD+m=1.\displaystyle(-1)^{h_{A}+h_{\Gamma}+h_{D}+m}=1. (23)

Lastly, we check the invariance of Eq. (III.2), equivalent to Eq. (19), under charge conjugation,

{2(i)mψ¯AΓDnψ+h.o.}C\displaystyle\quad\{2(i)^{m}\bar{\psi}A\Gamma D^{n}\psi+h.o.\}^{C}
=(1)cA+cΓ+cD2(i)mψ¯AΓDnψ+h.o.,\displaystyle=(-1)^{c_{A}+c_{\Gamma}+c_{D}}2(i)^{m}\bar{\psi}A\Gamma D^{n}\psi+h.o., (24)

where cAc_{A}, which contains an extra factor of 1 for each commutator, is determined from Table I. Meanwhile, the values of cΓ+cDc_{\Gamma}+c_{D} can be obtained from Table II. Likewise, for a given chiral order, Eq. (19) remains in the Lagrangian only if

(1)cA+cΓ+cD=1.\displaystyle(-1)^{c_{A}+c_{\Gamma}+c_{D}}=1. (25)

III.3 Reduction of the monomials

A list of invariant monomials, some of them might be linearly dependent, can be obtained according to the procedure discussed above. In this section, we will utilize several linear identities to remove these dependent monomials. The first relation stems from the property of matrix trace, namely

abc=bca=cab.\displaystyle\left\langle abc\right\rangle=\left\langle bca\right\rangle=\left\langle cab\right\rangle. (26)

The second relation is Schouten identity

ϵμνλτaρ+ϵνλτρaμ+ϵλτρμaν+ϵτρμνaλ+ϵρμνλaτ=0.\displaystyle\epsilon^{\mu\nu\lambda\tau}a^{\rho}+\epsilon^{\nu\lambda\tau\rho}a^{\mu}+\epsilon^{\lambda\tau\rho\mu}a^{\nu}+\epsilon^{\tau\rho\mu\nu}a^{\lambda}+\epsilon^{\rho\mu\nu\lambda}a^{\tau}=0. (27)

The third relation is obtained by making use of Bianchi identity, Eq. (16) and Eq. (17),

[Dμ,fνλ±]+[Dν,fλμ±]+[Dλ,fμν±]=i2[uμ,fνλ]+i2[uν,fλμ]+i2[uλ,fμν].\displaystyle[D_{\mu},f_{\nu\lambda}^{\pm}]+[D_{\nu},f_{\lambda\mu}^{\pm}]+[D_{\lambda},f_{\mu\nu}^{\pm}]=\frac{i}{2}[u_{\mu},f_{\nu\lambda}^{\mp}]+\frac{i}{2}[u_{\nu},f_{\lambda\mu}^{\mp}]+\frac{i}{2}[u_{\lambda},f_{\mu\nu}^{\mp}]. (28)

It can be used to eliminate certain monomials containing [Dμ,fνλ±][D_{\mu},f_{\nu\lambda}^{\pm}] or [Dν,fλμ±][D_{\nu},f_{\lambda\mu}^{\pm}], [Dλ,fμν±][D_{\lambda},f_{\mu\nu}^{\pm}], as done in Ref. [57].

The fourth relation is the so-called Cayley-Hamilton relation [56]. For any 3×33\times 3 arbitrary matrices aa, bb and cc, the Cayley-Hamilton relation indicates that

abc+bca+cab+acb+cba+bacabcbcacab\displaystyle abc+bca+cab+acb+cba+bac-ab\left\langle c\right\rangle-bc\left\langle a\right\rangle-ca\left\langle b\right\rangle
acbcbabacabcbcacababc\displaystyle-ac\left\langle b\right\rangle-cb\left\langle a\right\rangle-ba\left\langle c\right\rangle-a\left\langle bc\right\rangle-b\left\langle ca\right\rangle-c\left\langle ab\right\rangle-\left\langle abc\right\rangle
acb+abc+bca+cab+abc+bca\displaystyle-\left\langle acb\right\rangle+a\left\langle b\right\rangle\left\langle c\right\rangle+b\left\langle c\right\rangle\left\langle a\right\rangle+c\left\langle a\right\rangle\left\langle b\right\rangle+\left\langle a\right\rangle\left\langle bc\right\rangle+\left\langle b\right\rangle\left\langle ca\right\rangle
+cababc=0,\displaystyle+\left\langle c\right\rangle\left\langle ab\right\rangle-\left\langle a\right\rangle\left\langle b\right\rangle\left\langle c\right\rangle=0\ , (29)

which is usually adopted to replace the terms with two or more traces by those with one trace or without trace.

On the other hand, it is also possible to use equations of motion (EOM) to remove some redundant terms. First of all, the lowest order EOM of the pseudoscalar meson reads

Dμuμ=i2χ~,\displaystyle D_{\mu}u^{\mu}=\frac{i}{2}\widetilde{\chi}_{-}, (30)

where

χ~=χ13χ.\displaystyle\widetilde{\chi}_{-}=\chi_{-}-\frac{1}{3}\left\langle\chi_{-}\right\rangle. (31)

With Eq. (16), Eq. (17) and the EOM of Eq. (30), one can prove that

D2uμ=14[[uν,uμ],uν]i2[fνμ+,uν]+Dνfνμ+i2Dμχ~.\displaystyle D^{2}u_{\mu}=\frac{1}{4}[[u_{\nu},u_{\mu}],u^{\nu}]-\frac{i}{2}[f_{\nu\mu}^{+},u^{\nu}]+D^{\nu}f_{\nu\mu}^{-}+\frac{i}{2}D_{\mu}\widetilde{\chi}_{-}. (32)

Therefore, DμuμD_{\mu}u^{\mu} and D2uμD^{2}u_{\mu} can not be regarded as independent structures [52, 25].

The lowest order EOMs of the baryon fields, obtainable from the Lagrangian in Eq. (47) to be shown in the next section, are

(im+gA2γ5)ψ=0,\displaystyle(i\not{D}-m+\frac{g_{A}}{2}\not{u}\gamma_{5})\psi=0, (33)
ψ¯(i+mgA2γ5)=0,\displaystyle\bar{\psi}(i\overleftarrow{\not{D}}+m-\frac{g_{A}}{2}\not{u}\gamma_{5})=0, (34)

where (im)(i\not{D}-m) is counted as O(q)O(q). Here mm and gAg_{A} are the mass and the axial coupling of the doubly charmed baryons in the SU(3) chiral limit, respectively. Based on the above two equations, one can obtain a few linear relations to eliminate many unnecessary terms. The linear relations we use read [55, 57]:

ψ¯AμiDμψ+h.c.\displaystyle\bar{\psi}A^{\mu}iD_{\mu}\psi+h.c. =˙2mψ¯γμAμψ,\displaystyle\dot{=}2m\bar{\psi}\gamma_{\mu}A^{\mu}\psi, (35)
ψ¯γμ[iDμ,A]ψ\displaystyle\bar{\psi}\gamma_{\mu}[iD^{\mu},A]\psi =˙gA2ψ¯γμγ5[A,uμ]ψ,\displaystyle\dot{=}\frac{g_{A}}{2}\bar{\psi}\gamma^{\mu}\gamma_{5}[A,u_{\mu}]\psi, (36)
ψ¯γ5γμ[iDμ,A]ψ\displaystyle\bar{\psi}\gamma_{5}\gamma_{\mu}[iD^{\mu},A]\psi =˙2mψ¯γ5AψgA2ψ¯γμ[A,uμ]ψ,\displaystyle\dot{=}-2m\bar{\psi}\gamma_{5}A\psi-\frac{g_{A}}{2}\bar{\psi}\gamma^{\mu}[A,u_{\mu}]\psi, (37)
ψ¯γ5γλAμλiDμψ+h.c.\displaystyle\bar{\psi}\gamma_{5}\gamma_{\lambda}A^{\mu\lambda}iD_{\mu}\psi+h.c. =˙2imψ¯γ5σμλAμλψ\displaystyle\dot{=}2im\bar{\psi}\gamma_{5}\sigma_{\mu\lambda}A^{\mu\lambda}\psi
+(ψ¯γ5γμAμλiDλψ+h.c.),\displaystyle+(\bar{\psi}\gamma_{5}\gamma_{\mu}A^{\mu\lambda}iD_{\lambda}\psi+h.c.), (38)
ψ¯γ5γλAμλiDμψ+h.c.\displaystyle\bar{\psi}\gamma_{5}\gamma_{\lambda}A^{\mu\lambda}iD_{\mu}\psi+h.c. =˙mψ¯σνρϵνρμλAμλψ\displaystyle\dot{=}m\bar{\psi}\sigma^{\nu\rho}\epsilon_{\nu\rho\mu\lambda}A^{\mu\lambda}\psi
+(ψ¯γ5γμAμλiDλψ+h.c.),\displaystyle+(\bar{\psi}\gamma_{5}\gamma_{\mu}A^{\mu\lambda}iD_{\lambda}\psi+h.c.), (39)
ψ¯σαβAαβμiDμψ+h.c.\displaystyle\bar{\psi}\sigma_{\alpha\beta}A^{\alpha\beta\mu}iD_{\mu}\psi+h.c. =˙2mψ¯ϵαβμνγ5γνAαβμψ(ψ¯σβμAαβμiDαψ+h.c.)\displaystyle\dot{=}-2m\bar{\psi}\epsilon_{\alpha\beta\mu\nu}\gamma_{5}\gamma^{\nu}A^{\alpha\beta\mu}\psi-(\bar{\psi}\sigma_{\beta\mu}A^{\alpha\beta\mu}iD_{\alpha}\psi+h.c.)
+(ψ¯σαμAαβμiDβψ+h.c.),\displaystyle+(\bar{\psi}\sigma_{\alpha\mu}A^{\alpha\beta\mu}iD_{\beta}\psi+h.c.), (40)

where the symbol =˙\dot{=} means the two objects on the left- and right-hand sides are equal up to some negligible higher order pieces.

III.4 Non-relativistic projection

For completeness, we further consider the doubly charmed baryons as heavy static sources in the non-relativistic limit and perform the so-called heavy baryon (HB) projection [31] of the relativistic Lagrangian. Here, we present a brief introduction to the non-relativistic approach (for more detailed discussions, see e.g. Refs. [31, 32, 26]).

The four-momentum of the doubly charmed baryon can be split as

pμ=mυμ+lμ,\displaystyle p_{\mu}=m\upsilon_{\mu}+l_{\mu}, (41)

where υμ\upsilon_{\mu} denotes the four-velocity satisfying υ2=1\upsilon^{2}=1 and lμl_{\mu} is the small off-shell momentum with υlm\upsilon\cdot l\ll m. The doubly charmed baryon field ψ\psi can be decomposed into large component HH and small component hh via

ψ=eimυx(H+h),\displaystyle\psi=e^{-im\upsilon\cdot x}(H+h), (42)

with

υ̸H=H,υ̸h=h.\displaystyle\not{\upsilon}H=H,\quad\not{\upsilon}h=-h. (43)

In terms of HH and hh, the meson-baryon chiral Lagrangian can be recast as

=H¯𝒜H+h¯H+H¯γ0γ0hh¯𝒞h,\displaystyle\mathscr{L}=\bar{H}\mathcal{A}H+\bar{h}\mathcal{B}H+\bar{H}\gamma_{0}\mathcal{B}^{\dagger}\gamma_{0}h-\bar{h}\mathcal{C}h, (44)

where the operators 𝒜\mathcal{A}, \mathcal{B} and 𝒞\mathcal{C} may be expanded as a series of the low energy momentum qq. In this approach, it is more advantageous to make use of the velocity υμ\upsilon_{\mu} and the spin-operator Sμ=i2γ5σμνυνS_{\mu}=\frac{i}{2}\gamma_{5}\sigma_{\mu\nu}\upsilon^{\nu} to express every baryon bilinear ψ¯Γψ\bar{\psi}\Gamma\psi.

After eliminating the small component hh, the non-relativistic Lagrangian reads

=H¯{𝒜+(γ0γ0)𝒞1}H,\displaystyle\mathscr{L}=\bar{H}\{\mathcal{A}+(\gamma_{0}\mathcal{B}^{\dagger}\gamma_{0})\mathcal{C}^{-1}\mathcal{B}\}H, (45)

where

𝒞1=12mi(υD)+gASu(2m)2+(iυD+gASu)2(2m)3𝒞(2)(2m)2+.\displaystyle\mathcal{C}^{-1}=\frac{1}{2m}-\frac{i(\upsilon\cdot D)+g_{A}S\cdot u}{(2m)^{2}}+\frac{(i\upsilon\cdot D+g_{A}S\cdot u)^{2}}{(2m)^{3}}-\frac{\mathcal{C}^{(2)}}{(2m)^{2}}+\cdots. (46)

IV The chiral effective meson-baryon Lagrangian

Using the method described above, we have constructed the minimal and complete chiral effective meson-baryon Lagrangians up to O(q4)O(q^{4}) both in the relativistic and the non-relativistic forms.

IV.1 The Lagrangian at O(q)O(q)

The lowest order of relativistic chiral effective Lagrangian reads

Mψ(1)=ψ¯(im)ψ+gA2ψ¯γ5ψ,\displaystyle\mathscr{L}_{M\psi}^{(1)}=\bar{\psi}(i\not{D}-m)\psi+\frac{g_{A}}{2}\bar{\psi}\not{u}\gamma_{5}\psi, (47)

where mm is the mass of baryon and gAg_{A} is the axial-vector coupling constant in the SU(3)SU(3) chiral limit. The operator (im)(i\not{D}-m) is counted as O(q)O(q) in the chiral expansion, as discussed in Ref. [54]. In principle, the gAg_{A} coupling is an unknown parameter which needs to be determined by experimental data. In Ref. [48], it was estimated to be |gA|=0.2|g_{A}|=0.2. The above leading order Lagrangian has been used to explore the possible exotic states in the spectrum of doubly charmed baryons [58].

The corresponding non-relativistic Lagrangian can be expressed as

^Mψ(1)=H¯(iυD+gASu)H.\displaystyle\mathscr{\hat{L}}_{M\psi}^{(1)}=\bar{H}(i\upsilon\cdot D+g_{A}S\cdot u)H. (48)

In the non-relativistic Lagrangian of leading order, the doubly charmed baryon mass term disappears and the Dirac matrices have been substituted by υμ\upsilon_{\mu} and SμS_{\mu}.

IV.2 The Lagrangian at O(q2)O(q^{2})

The O(q2)O(q^{2}) meson-baryon Lagrangian can be written as

Mψ(2)=i=18biψ¯Oi(2)ψ,\displaystyle\mathscr{L}_{M\psi}^{(2)}=\sum_{i=1}^{8}b_{i}\bar{\psi}O_{i}^{(2)}\psi, (49)

where bib_{i}’s are unknown low-energy constants (LECs). It was pointed out by Ref. [59] that some of the O(q2)O(q^{2}) LECs can be related to those in the charmed meson Lagrangian [60] by imposing heavy anti-quark-diquark symmetry [61]. The monomials Oi(2)O_{i}^{(2)} are given in the 2nd column of Table LABEL:tab:op2.444There is one more term in the O(q2)O(q^{2}) Lagrangian given by Ref. [62]. However, terms with fμν+\langle f^{+}_{\mu\nu}\rangle do not show up in our case, due to the fact that the external vector and axial vector currents are set to be traceless.

In non-relativistic form, the chiral Lagrangian of O(q2)O(q^{2}) reads

^Mψ(2)=H¯{𝒜(2)+γ0(1)γ0𝒞(0)1(1)}H,\displaystyle\mathscr{\hat{L}}_{M\psi}^{(2)}=\bar{H}\{\mathcal{A}^{(2)}+\gamma_{0}\mathcal{B}^{(1)\dagger}\gamma_{0}\mathcal{C}^{(0)-1}\mathcal{B}^{(1)}\}H, (50)

where

𝒜(2)=i=18biO^i(2).\displaystyle\mathcal{A}^{(2)}=\sum_{i=1}^{8}b_{i}\hat{O}_{i}^{(2)}. (51)

The non-relativistic operators O^i(2)\hat{O}_{i}^{(2)} corresponding to the relativistic monomials Oi(2)O_{i}^{(2)} are listed in the 3rd column of Table LABEL:tab:op2. The second term in the bracket incorporates the 1/m1/m corrections, which are shown in Appendix B. Explicit expressions for (i)\mathcal{B}^{(i)} and 𝒞(i)\mathcal{C}^{(i)} are collected in Appendix B as well. Based on the Lagrangian we obtained here, we have checked that it is straightforward to reproduce the pion-nucleon Lagrangian in Ref. [57] by using the Cayley-Hamilton relation for 2×22\times 2 matrices.

TABLE III: Terms in the relativistic and non-relativistic Lagrangian of O(q2)O(q^{2}).
ii Oi(2)O_{i}^{(2)} O^i(2)\hat{O}_{i}^{(2)}
11 χ+\left\langle\chi_{+}\right\rangle χ+\left\langle\chi_{+}\right\rangle
22 χ~+\widetilde{\chi}_{+} χ~+\widetilde{\chi}_{+}
33 u2u^{2} u2u^{2}
44 u2\left\langle u^{2}\right\rangle u2\left\langle u^{2}\right\rangle
55 {uμ,uν}Dμν+h.c.\{u^{\mu},u^{\nu}\}D_{\mu\nu}+h.c. 8m2(υu)2-8m^{2}(\upsilon\cdot u)^{2}
66 uμuνDμν+h.c.\left\langle u^{\mu}u^{\nu}\right\rangle D_{\mu\nu}+h.c. 4m2(υu)2-4m^{2}\left\langle(\upsilon\cdot u)^{2}\right\rangle
77 i[uμ,uν]σμνi[u^{\mu},u^{\nu}]\sigma_{\mu\nu} 2[Sμ,Sν][uμ,uν]2[S_{\mu},S_{\nu}][u^{\mu},u^{\nu}]
88 f+μνσμνf_{+}^{\mu\nu}\sigma_{\mu\nu} 2i[Sμ,Sν]f+μν-2i[S_{\mu},S_{\nu}]f_{+}^{\mu\nu}

IV.3 The Lagrangian at O(q3)O(q^{3})

The chiral meson-baryon Lagrangian at O(q3)O(q^{3}) takes the form

Mψ(3)=i=132ciψ¯Oi(3)ψ,\displaystyle\mathscr{L}_{M\psi}^{(3)}=\sum_{i=1}^{32}c_{i}\bar{\psi}O_{i}^{(3)}\psi, (52)

where cic_{i} are O(q3)O(q^{3}) LECs and the operators Oi=1,32(3)O_{i=1,\cdots 32}^{(3)} are listed in the 2nd column of Table LABEL:tab:p3.

Also, the O(q3)O(q^{3}) non-relativistic Lagrangian can be written as

^Mψ(3)=H¯{𝒜(3)+γ0(1)γ0𝒞(0)1(2)+γ0(1)γ0𝒞(1)1(1)+γ0(2)γ0𝒞(0)1(1)}H,\displaystyle\mathscr{\hat{L}}_{M\psi}^{(3)}=\bar{H}\{\mathcal{A}^{(3)}+\gamma_{0}\mathcal{B}^{(1)\dagger}\gamma_{0}\mathcal{C}^{(0)-1}\mathcal{B}^{(2)}+\gamma_{0}\mathcal{B}^{(1)\dagger}\gamma_{0}\mathcal{C}^{(1)-1}\mathcal{B}^{(1)}+\gamma_{0}\mathcal{B}^{(2)\dagger}\gamma_{0}\mathcal{C}^{(0)-1}\mathcal{B}^{(1)}\}H, (53)

with

𝒜(3)=i=132ciO^i(3),\displaystyle\mathcal{A}^{(3)}=\sum_{i=1}^{32}c_{i}\hat{O}_{i}^{(3)}, (54)

where the monomials O^i(3)\hat{O}_{i}^{(3)} are collected in the 3rd column of Table LABEL:tab:p3. The 1/m1/m corrections are given in Appendix B.

TABLE IV: Terms in the O(q3)O(q^{3}) relativistic and non-relativistic Lagrangians.
ii Oi(3)O_{i}^{(3)} Oi^(3)\hat{O_{i}}^{(3)}
11 {uμ,{uμ,uν}}γ5γν\{u_{\mu},\{u^{\mu},u^{\nu}\}\}\gamma_{5}\gamma_{\nu} 2{uμ,{uμ,Su}}-2\{u_{\mu},\{u^{\mu},S\cdot u\}\}
22 [uμ,[uμ,uν]]γ5γν[u_{\mu},[u^{\mu},u^{\nu}]]\gamma_{5}\gamma_{\nu} 2[uμ,[uμ,Su]]-2[u_{\mu},[u^{\mu},S\cdot u]]
33 uνγ5γνu2u^{\nu}\gamma_{5}\gamma_{\nu}\left\langle u^{2}\right\rangle 2Suu2-2S\cdot u\left\langle u^{2}\right\rangle
44 uμγ5γνuμuνu_{\mu}\gamma_{5}\gamma_{\nu}\left\langle u^{\mu}u^{\nu}\right\rangle 2uμuμSu-2u_{\mu}\left\langle u^{\mu}S\cdot u\right\rangle
55 {uμ,{uν,uρ}}γ5γμDνρ+h.c.\{u^{\mu},\{u^{\nu},u^{\rho}\}\}\gamma_{5}\gamma_{\mu}D_{\nu\rho}+h.c. 16m2{Su,(υu)2}}16m^{2}\{S\cdot u,(\upsilon\cdot u)^{2}\}\}
66 uμγ5γμuνuρDνρ+h.c.u^{\mu}\gamma_{5}\gamma_{\mu}\left\langle u^{\nu}u^{\rho}\right\rangle D_{\nu\rho}+h.c. 8m2Su(υu)28m^{2}S\cdot u\left\langle(\upsilon\cdot u)^{2}\right\rangle
77 iϵμνρτ{[uμ,uν],uρ}γτi\epsilon_{\mu\nu\rho\tau}\{[u^{\mu},u^{\nu}],u^{\rho}\}\gamma^{\tau} iϵμνρτ{[uμ,uν],uρ}υτi\epsilon_{\mu\nu\rho\tau}\{[u^{\mu},u^{\nu}],u^{\rho}\}\upsilon^{\tau}
88 iϵμνρτγτ[uμ,uν]uρi\epsilon_{\mu\nu\rho\tau}\gamma^{\tau}\left\langle[u^{\mu},u^{\nu}]u^{\rho}\right\rangle iϵμνρτυτ[uμ,uν]uρi\epsilon_{\mu\nu\rho\tau}\upsilon^{\tau}\left\langle[u^{\mu},u^{\nu}]u^{\rho}\right\rangle
99 iϵμνλτ{uμ,{uν,uρ}}σλτDρ+h.c.i\epsilon_{\mu\nu\lambda\tau}\{u^{\mu},\{u^{\nu},u^{\rho}\}\}\sigma^{\lambda\tau}D_{\rho}+h.c. 4imϵμνλτ{uμ,{uν,υu}}[Sλ,Sτ]-4im\epsilon_{\mu\nu\lambda\tau}\{u^{\mu},\{u^{\nu},\upsilon\cdot u\}\}[S^{\lambda},S^{\tau}]
1010 iϵμνλτuμσλτuνuρDρ+h.c.i\epsilon_{\mu\nu\lambda\tau}u^{\mu}\sigma^{\lambda\tau}\left\langle u^{\nu}u^{\rho}\right\rangle D_{\rho}+h.c. 4imϵμνλτuμuνυu[Sλ,Sτ]-4im\epsilon_{\mu\nu\lambda\tau}u^{\mu}\left\langle u^{\nu}\upsilon\cdot u\right\rangle[S^{\lambda},S^{\tau}]
1111 i[uμ,hμν]γνi[u_{\mu},h^{\mu\nu}]\gamma_{\nu} i[uμ,hμν]υνi[u_{\mu},h^{\mu\nu}]\upsilon_{\nu}
1212 i[uμ,hνρ]γμDνρ+h.c.i[u^{\mu},h^{\nu\rho}]\gamma_{\mu}D_{\nu\rho}+h.c. 4im2[υu,hνρ]υνυρ-4im^{2}[\upsilon\cdot u,h^{\nu\rho}]\upsilon_{\nu}\upsilon_{\rho}
1313 i{uμ,hνρ}σμνDρ+h.c.i\{u^{\mu},h^{\nu\rho}\}\sigma_{\mu\nu}D_{\rho}+h.c. 4im{uμ,hνρ}[Sμ,Sν]υρ-4im\{u^{\mu},h^{\nu\rho}\}[S_{\mu},S_{\nu}]\upsilon_{\rho}
1414 iσμνuμhνρDρ+h.c.i\sigma_{\mu\nu}\left\langle u^{\mu}h^{\nu\rho}\right\rangle D_{\rho}+h.c. 4im[Sμ,Sν]uμhνρυρ-4im[S_{\mu},S_{\nu}]\left\langle u^{\mu}h^{\nu\rho}\right\rangle\upsilon_{\rho}
1515 {uμ,χ~+}γ5γμ\{u^{\mu},\widetilde{\chi}_{+}\}\gamma_{5}\gamma_{\mu} 2{Su,χ~+}-2\{S\cdot u,\widetilde{\chi}_{+}\}
1616 uμγ5γμχ+u^{\mu}\gamma_{5}\gamma_{\mu}\left\langle\chi_{+}\right\rangle 2Suχ+-2S\cdot u\left\langle\chi_{+}\right\rangle
1717 γ5γμuμχ~+\gamma_{5}\gamma_{\mu}\left\langle u^{\mu}\widetilde{\chi}_{+}\right\rangle 2Suχ~+-2\left\langle S\cdot u\widetilde{\chi}_{+}\right\rangle
1818 iγ5γμ[Dμ,χ~]i\gamma_{5}\gamma_{\mu}[D^{\mu},\widetilde{\chi}_{-}] 2i[SD,χ~]-2i[S\cdot D,\widetilde{\chi}_{-}]
1919 iγ5γμ[Dμ,χ]i\gamma_{5}\gamma_{\mu}\left\langle[D^{\mu},\chi_{-}]\right\rangle 2i[SD,χ]-2i\left\langle[S\cdot D,\chi_{-}]\right\rangle
2020 [χ~,uμ]γμ[\widetilde{\chi}_{-},u^{\mu}]\gamma_{\mu} [χ~,υu][\widetilde{\chi}_{-},\upsilon\cdot u]
2121 i[uμ,f+μν]γ5γνi[u_{\mu},f_{+}^{\mu\nu}]\gamma_{5}\gamma_{\nu} 2i[uμ,f+μν]Sν-2i[u_{\mu},f_{+}^{\mu\nu}]S_{\nu}
2222 ϵμνρτ{uμ,f+νρ}γτ\epsilon_{\mu\nu\rho\tau}\{u^{\mu},f_{+}^{\nu\rho}\}\gamma^{\tau} ϵμνρτ{uμ,f+νρ}υτ\epsilon_{\mu\nu\rho\tau}\{u^{\mu},f_{+}^{\nu\rho}\}\upsilon^{\tau}
2323 ϵμνρτγτuμf+νρ\epsilon_{\mu\nu\rho\tau}\gamma^{\tau}\left\langle u^{\mu}f_{+}^{\nu\rho}\right\rangle ϵμνρτυτuμf+νρ\epsilon_{\mu\nu\rho\tau}\upsilon^{\tau}\left\langle u^{\mu}f_{+}^{\nu\rho}\right\rangle
2424 ϵνρλτ[uμ,f+νρ]σλτDμ+h.c.\epsilon_{\nu\rho\lambda\tau}[u^{\mu},f^{\nu\rho}_{+}]\sigma^{\lambda\tau}D_{\mu}+h.c. 4mϵνρλτ[υu,f+νρ][Sλ,Sτ]-4m\epsilon_{\nu\rho\lambda\tau}[\upsilon\cdot u,f^{\nu\rho}_{+}][S^{\lambda},S^{\tau}]
2525 i[Dμ,f+μν]Dν+h.c.i[D_{\mu},f^{\mu\nu}_{+}]D_{\nu}+h.c. 2m[Dμ,f+μν]υν2m[D_{\mu},f^{\mu\nu}_{+}]\upsilon_{\nu}
2626 i[uμ,fμν]γνi[u_{\mu},f^{\mu\nu}_{-}]\gamma_{\nu} i[uμ,fμν]υνi[u_{\mu},f^{\mu\nu}_{-}]\upsilon_{\nu}
2727 ϵμνρτ{uμ,fνρ}γ5γτ\epsilon_{\mu\nu\rho\tau}\{u^{\mu},f_{-}^{\nu\rho}\}\gamma_{5}\gamma^{\tau} 2ϵμνρτ{uμ,fνρ}Sτ-2\epsilon_{\mu\nu\rho\tau}\{u^{\mu},f_{-}^{\nu\rho}\}S^{\tau}
2828 ϵμνρτγ5γτuμfνρ\epsilon_{\mu\nu\rho\tau}\gamma_{5}\gamma^{\tau}\left\langle u^{\mu}f_{-}^{\nu\rho}\right\rangle 2ϵμνρτSτuμfνρ-2\epsilon_{\mu\nu\rho\tau}S^{\tau}\left\langle u^{\mu}f_{-}^{\nu\rho}\right\rangle
2929 i{uμ,fνρ}σμνDρ+h.c.i\{u^{\mu},f^{\nu\rho}_{-}\}\sigma_{\mu\nu}D_{\rho}+h.c. 4im{uμ,fνρ}[Sμ,Sν]υρ-4im\{u^{\mu},f^{\nu\rho}_{-}\}[S_{\mu},S_{\nu}]\upsilon_{\rho}
3030 iσμνuμfνρDρ+h.c.i\sigma_{\mu\nu}\left\langle u^{\mu}f^{\nu\rho}_{-}\right\rangle D_{\rho}+h.c. 4im[Sμ,Sν]υρuμfνρ-4im[S_{\mu},S_{\nu}]\upsilon_{\rho}\left\langle u^{\mu}f^{\nu\rho}_{-}\right\rangle
3131 [Dμ,fμν]γ5γν[D_{\mu},f^{\mu\nu}_{-}]\gamma_{5}\gamma_{\nu} 2Sν[Dμ,fμν]-2S_{\nu}[D_{\mu},f^{\mu\nu}_{-}]
3232 [Dλ,fμν]γ5γμDνλ+h.c.[D^{\lambda},f^{\mu\nu}_{-}]\gamma_{5}\gamma_{\mu}D_{\nu\lambda}+h.c. 8m2Sμ[υD,fμν]υν8m^{2}S_{\mu}[\upsilon\cdot D,f^{\mu\nu}_{-}]\upsilon_{\nu}

IV.4 The Lagrangian at O(q4)O(q^{4})

The chiral effective meson-baryon Lagrangian at O(q4)O(q^{4}) reads

Mψ(4)=i=1218diψ¯Oi(4)ψ,\displaystyle\mathscr{L}_{M\psi}^{(4)}=\sum_{i=1}^{218}d_{i}\bar{\psi}O_{i}^{(4)}\psi, (55)

where did_{i} are LECs and the terms of O(q4)O(q^{4}) are tabulated in the 2nd column of Table LABEL:tab:p4. The last three terms are contact terms (See Refs. [56, 63] for analogous operators). It should be noted that they are combinations depending only on external fields and therefore are not directly accessible experimentally. Furthermore, as pointed out by Ref. [56], it is more convenient to express the contact terms in terms of the LR-basis, i.e. FR/LμνF^{\mu\nu}_{R/L}, and the χ\chi element, rather than those chiral building blocks in Table I.

The O(q4)O(q^{4}) meson-baryon non-relativistic Lagrangian which contains the 1/m1/m corrections takes the form

^Mψ(4)\displaystyle\mathscr{\hat{L}}_{M\psi}^{(4)} =H¯{𝒜(4)+γ0(1)γ0𝒞(0)1(3)+γ0(1)γ0𝒞(1)1(2)+γ0(1)γ0𝒞(2)1(1)\displaystyle=\bar{H}\{\mathcal{A}^{(4)}+\gamma_{0}\mathcal{B}^{(1)\dagger}\gamma_{0}\mathcal{C}^{(0)-1}\mathcal{B}^{(3)}+\gamma_{0}\mathcal{B}^{(1)\dagger}\gamma_{0}\mathcal{C}^{(1)-1}\mathcal{B}^{(2)}+\gamma_{0}\mathcal{B}^{(1)\dagger}\gamma_{0}\mathcal{C}^{(2)-1}\mathcal{B}^{(1)}
+γ0(2)γ0𝒞(0)1(2)+γ0(2)γ0𝒞(1)1(1)+γ0(3)γ0𝒞(0)1(1)}H,\displaystyle+\gamma_{0}\mathcal{B}^{(2)\dagger}\gamma_{0}\mathcal{C}^{(0)-1}\mathcal{B}^{(2)}+\gamma_{0}\mathcal{B}^{(2)\dagger}\gamma_{0}\mathcal{C}^{(1)-1}\mathcal{B}^{(1)}+\gamma_{0}\mathcal{B}^{(3)\dagger}\gamma_{0}\mathcal{C}^{(0)-1}\mathcal{B}^{(1)}\}H, (56)

with

𝒜(3)=i=1218diO^i(4),\displaystyle\mathcal{A}^{(3)}=\sum_{i=1}^{218}d_{i}\hat{O}_{i}^{(4)}, (57)

where the operators O^i(4)\hat{O}_{i}^{(4)} are compiled in the 3rd column of Table LABEL:tab:p4.

V Summary

Based on chiral symmetry and basic invariances such as Lorentz invariance, we have constructed the chiral effective Lagrangian for the description of the interactions between the doubly charmed ground-state baryons and Goldstone bosons up to O(q4)O(q^{4}). Complete and minimal sets of O(q3)O(q^{3}) and O(q4)O(q^{4}) operators are established for the first time. The numbers of O(q3)O(q^{3}) and O(q4)O(q^{4}) terms are 32 and 218, respectively. The involved LECs are expected to be determined by, e.g. experimental or lattice QCD data in future. The obtained Lagrangian is sufficient for comprehensive analyses of the low-energy physics of the doubly charmed baryons up to the fourth order, enabling us to explore the doubly charmed spectroscopy with high accuracy. Furthermore, it can be readily extended to the sector of doubly bottomed baryons according to heavy quark flavor symmetry.

Acknowledgments

We would like to thank Qin-He Yang for useful discussions. This work is supported by National Nature Science Foundations of China (NSFC) under Contract No. 11905258 and by the Fundamental Research Funds for the Central Universities.

Appendix A Types of Θμν\Theta_{\mu\nu\dots}

In this Appendix, a brief introduction to the EOM constraints on the chiral Lagrangian is presented; see Refs. [57, 63] for more discussions. Γ\Gamma can be one of the Clifford algebra elements {11, γ5γμ\gamma_{5}\gamma_{\mu}, σμν\sigma_{\mu\nu}} or the Levi-Civita tensor ϵμνλτ\epsilon_{\mu\nu\lambda\tau}.

  • For the Clifford algebra elements {11, γ5γμ\gamma_{5}\gamma_{\mu}, σμν\sigma_{\mu\nu}}, their indices should be distinguished from those of the covariant derivatives that act on the baryon field ψ\psi.

  • For ϵμνλτ\epsilon_{\mu\nu\lambda\tau}, only one of its indices can be contracted with those of the covariant derivatives that act on the baryon field ψ\psi.

Therefore, it is more convenient to use Θμν=(ΓDn)μν\Theta_{\mu\nu\dots}=(\Gamma D^{n})_{\mu\nu\dots}, taken from Ref. [63], to construct our chiral Lagrangian. The types of Θμν\Theta_{\mu\nu\dots} we need are as follows:

1;\displaystyle 1;
γ5γμ,Dμ;\displaystyle\gamma_{5}\gamma_{\mu},D_{\mu};
σμν,γ5γμDν,Dμν;\displaystyle\sigma_{\mu\nu},\gamma_{5}\gamma_{\mu}D_{\nu},D_{\mu\nu};
γ5γμDνλ,σμνDλ,ϵμνλρDρ,Dμνλ;\displaystyle\gamma_{5}\gamma_{\mu}D_{\nu\lambda},\sigma_{\mu\nu}D_{\lambda},\epsilon_{\mu\nu\lambda\rho}D^{\rho},D_{\mu\nu\lambda};
ϵμνλρ,γ5γμDνλρ,σμνDλρ,ϵμνλτDτρ,Dμνλρ.\displaystyle\epsilon_{\mu\nu\lambda\rho},\gamma_{5}\gamma_{\mu}D_{\nu\lambda\rho},\sigma_{\mu\nu}D_{\lambda\rho},\epsilon_{\mu\nu\lambda\tau}{D^{\tau}}_{\rho},D_{\mu\nu\lambda\rho}. (58)

Appendix B Some explicit expressions for non-relativistic Lagrangian

Basic relations regarding the covariant spin-operator SμS_{\mu} are given below (ϵ0123=1\epsilon^{0123}=-1):

Sυ=0,{Sμ,Sν}=12(υμυνgμν),[Sμ,Sν]=iϵμναβυαSβ.\displaystyle S\cdot\upsilon=0,\quad\{S_{\mu},S_{\nu}\}=\frac{1}{2}(\upsilon_{\mu}\upsilon_{\nu}-g_{\mu\nu}),\quad[S_{\mu},S_{\nu}]=i\epsilon_{\mu\nu\alpha\beta}\upsilon^{\alpha}S^{\beta}. (59)

By using the above equalities, the Dirac bi-linears can be rewritten as

H¯γμH=υμH¯H,\displaystyle\bar{H}\gamma_{\mu}H=\upsilon_{\mu}\bar{H}H, h¯γμH=2h¯γ5SμH,\displaystyle\bar{h}\gamma_{\mu}H=-2\bar{h}\gamma_{5}S_{\mu}H,
H¯γμγ5H=2H¯SμH,\displaystyle\bar{H}\gamma_{\mu}\gamma_{5}H=2\bar{H}S_{\mu}H, h¯γμγ5H=υμh¯γ5H,\displaystyle\bar{h}\gamma_{\mu}\gamma_{5}H=-\upsilon_{\mu}\bar{h}\gamma_{5}H,
H¯σμνH=2iH¯[Sμ,Sν]H,\displaystyle\bar{H}\sigma^{\mu\nu}H=-2i\bar{H}[S^{\mu},S^{\nu}]H, h¯σμνH=2ih¯γ5(υμSνυνSμ)H.\displaystyle\bar{h}\sigma^{\mu\nu}H=2i\bar{h}\gamma_{5}(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})H. (60)

Subsequently, we can readily obtain some relevant explicit expressions of (i)\mathcal{B}^{(i)} and 𝒞(i)\mathcal{C}^{(i)}:

(1)\displaystyle\mathcal{B}^{(1)} =2iγ5SDgA2γ5υu,\displaystyle=-2i\gamma_{5}S\cdot D-\frac{g_{A}}{2}\gamma_{5}\upsilon\cdot u, (61)
(2)\displaystyle\mathcal{B}^{(2)} =2b7γ5(υμSνυνSμ)[uμ,uν]+2ib8γ5(υμSνυνSμ)f+μν,\displaystyle=-2b_{7}\gamma_{5}(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})[u_{\mu},u_{\nu}]+2ib_{8}\gamma_{5}(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})f_{+\mu\nu}, (62)
(3)\displaystyle\mathcal{B}^{(3)} =γ5(c1{uμ,{uμ,υu}}+c2[uμ,[uμ,υu]]+c3υuu2+c4uμuμυu\displaystyle=\gamma_{5}(c_{1}\{u_{\mu},\{u^{\mu},\upsilon\cdot u\}\}+c_{2}[u_{\mu},[u^{\mu},\upsilon\cdot u]]+c_{3}\upsilon\cdot u\left\langle u^{2}\right\rangle+c_{4}u_{\mu}\left\langle u^{\mu}\upsilon\cdot u\right\rangle
16m2c5(υu)34m2c6υu(υu)2+c15{υu,χ~+}+c16υuχ+\displaystyle-16m^{2}c_{5}(\upsilon\cdot u)^{3}-4m^{2}c_{6}\upsilon\cdot u\left\langle(\upsilon\cdot u)^{2}\right\rangle+c_{15}\{\upsilon\cdot u,\widetilde{\chi}_{+}\}+c_{16}\upsilon\cdot u\left\langle\chi_{+}\right\rangle
+c17υuχ~++ic18[υD,χ~]+ic19[υD,χ]+ic21[uμ,f+μν]υν\displaystyle+c_{17}\left\langle\upsilon\cdot u\widetilde{\chi}_{+}\right\rangle+ic_{18}[\upsilon\cdot D,\widetilde{\chi}_{-}]+ic_{19}\left\langle[\upsilon\cdot D,\chi_{-}]\right\rangle+ic_{21}[u_{\mu},f_{+}^{\mu\nu}]\upsilon_{\nu}
+c27ϵμνρτ{uμ,fνρ}υτ+c28ϵμνρτυτuμfνρ+c31υν[Dμ,fμν]\displaystyle+c_{27}\epsilon_{\mu\nu\rho\tau}\{u^{\mu},f_{-}^{\nu\rho}\}\upsilon^{\tau}+c_{28}\epsilon_{\mu\nu\rho\tau}\upsilon^{\tau}\left\langle u^{\mu}f_{-}^{\nu\rho}\right\rangle+c_{31}\upsilon_{\nu}[D_{\mu},f^{\mu\nu}_{-}]
4m2c32[υD,fμν]υμυν)2iϵμνρτγ5Sτ(c7{[uμ,uν],uρ}+c8[uμ,uν]uρ)\displaystyle-4m^{2}c_{32}[\upsilon\cdot D,f^{\mu\nu}_{-}]\upsilon_{\mu}\upsilon_{\nu})-2i\epsilon_{\mu\nu\rho\tau}\gamma_{5}S^{\tau}(c_{7}\{[u^{\mu},u^{\nu}],u^{\rho}\}+c_{8}\left\langle[u^{\mu},u^{\nu}]u^{\rho}\right\rangle)
+4imϵμνλτγ5(υλSτυτSλ){c9{uμ,{uν,υu}}+c10uμuνυu}\displaystyle+4im\epsilon_{\mu\nu\lambda\tau}\gamma_{5}(\upsilon^{\lambda}S^{\tau}-\upsilon^{\tau}S^{\lambda})\{c_{9}\{u^{\mu},\{u^{\nu},\upsilon\cdot u\}\}+c_{10}u^{\mu}\left\langle u^{\nu}\upsilon\cdot u\right\rangle\}
2ic11[uμ,hμν]γ5Sν+8im2c12γ5[Su,hνρ]υνυρ+4imγ5(υμSνυνSμ)υρ\displaystyle-2ic_{11}[u_{\mu},h^{\mu\nu}]\gamma_{5}S_{\nu}+8im^{2}c_{12}\gamma_{5}[S\cdot u,h^{\nu\rho}]\upsilon_{\nu}\upsilon_{\rho}+4im\gamma_{5}(\upsilon_{\mu}S_{\nu}-\upsilon_{\nu}S_{\mu})\upsilon_{\rho}
(c13{uμ,hνρ}+c14uμhνρ+c29{uμ,fνρ}+c30uμfνρ)2c20γ5[χ~,Su]\displaystyle(c_{13}\{u^{\mu},h^{\nu\rho}\}+c_{14}\left\langle u^{\mu}h^{\nu\rho}\right\rangle+c_{29}\{u^{\mu},f^{\nu\rho}_{-}\}+c_{30}\left\langle u^{\mu}f^{\nu\rho}_{-}\right\rangle)-2c_{20}\gamma_{5}[\widetilde{\chi}_{-},S\cdot u]
2ϵμνρτγ5Sτ(c22{uμ,f+νρ}+c23uμf+νρ)+4mc24ϵνρλτ[υu,f+νρ]γ5(υλSτυτSλ)\displaystyle-2\epsilon_{\mu\nu\rho\tau}\gamma_{5}S^{\tau}(c_{22}\{u^{\mu},f_{+}^{\nu\rho}\}+c_{23}\left\langle u^{\mu}f_{+}^{\nu\rho}\right\rangle)+4mc_{24}\epsilon_{\nu\rho\lambda\tau}[\upsilon\cdot u,f^{\nu\rho}_{+}]\gamma_{5}(\upsilon^{\lambda}S^{\tau}-\upsilon^{\tau}S^{\lambda})
2ic26[uμ,fμν]γ5Sν.\displaystyle-2ic_{26}[u_{\mu},f^{\mu\nu}_{-}]\gamma_{5}S_{\nu}. (63)
𝒞(0)\displaystyle\mathcal{C}^{(0)} =2m,\displaystyle=2m, (64)
𝒞(1)\displaystyle\mathcal{C}^{(1)} =iυD+gASu,\displaystyle=i\upsilon\cdot D+g_{A}S\cdot u, (65)
𝒞(2)\displaystyle\mathcal{C}^{(2)} =b1χ+b2χ~+b3u2b4u2+8m2b5(υu)2+4m2b6(υu)2\displaystyle=-b_{1}\left\langle\chi_{+}\right\rangle-b_{2}\widetilde{\chi}_{+}-b_{3}u^{2}-b_{4}\left\langle u^{2}\right\rangle+8m^{2}b_{5}(\upsilon\cdot u)^{2}+4m^{2}b_{6}\left\langle(\upsilon\cdot u)^{2}\right\rangle
2b7[Sμ,Sν][uμ,uν]+2ib8[Sμ,Sν]f+μν.\displaystyle-2b_{7}[S^{\mu},S^{\nu}][u_{\mu},u_{\nu}]+2ib_{8}[S_{\mu},S_{\nu}]f_{+}^{\mu\nu}. (66)
γ0(1)γ0𝒞(0)1(1)\displaystyle\gamma_{0}\mathcal{B}^{(1)\dagger}\gamma_{0}\mathcal{C}^{(0)-1}\mathcal{B}^{(1)} =2m(SD)2igA2m{SD,υu}gA28m(υu)2,\displaystyle=\frac{2}{m}(S\cdot D)^{2}-\frac{ig_{A}}{2m}\{S\cdot D,\upsilon\cdot u\}-\frac{g_{A}^{2}}{8m}(\upsilon\cdot u)^{2}, (67)
γ0(1)γ0𝒞(0)1(2)\displaystyle\gamma_{0}\mathcal{B}^{(1)\dagger}\gamma_{0}\mathcal{C}^{(0)-1}\mathcal{B}^{(2)} =2imb7SD(υμSνυνSμ)[uμ,uν]2mb8SD(υμSνυνSμ)f+μν\displaystyle=-\frac{2i}{m}b_{7}S\cdot D(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})[u_{\mu},u_{\nu}]-\frac{2}{m}b_{8}S\cdot D(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})f_{+\mu\nu}
+igA2mb8(υμSνυνSμ)υuf+μνgA2mb7(υμSνυνSμ)υu[uμ,uν],\displaystyle+\frac{ig_{A}}{2m}b_{8}(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})\upsilon\cdot uf_{+\mu\nu}-\frac{g_{A}}{2m}b_{7}(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})\upsilon\cdot u[u_{\mu},u_{\nu}], (68)
γ0(1)γ0𝒞(1)1(1)\displaystyle\gamma_{0}\mathcal{B}^{(1)\dagger}\gamma_{0}\mathcal{C}^{(1)-1}\mathcal{B}^{(1)} =im2SDυDSDgA4m2υuυDSDgA4m2SDυDυu\displaystyle=-\frac{i}{m^{2}}S\cdot D\upsilon\cdot DS\cdot D-\frac{g_{A}}{4m^{2}}\upsilon\cdot u\upsilon\cdot DS\cdot D-\frac{g_{A}}{4m^{2}}S\cdot D\upsilon\cdot D\upsilon\cdot u
+igA216m2υuυDυugAm2SDSuSD+igA24m2υuSuSD\displaystyle+\frac{ig_{A}^{2}}{16m^{2}}\upsilon\cdot u\upsilon\cdot D\upsilon\cdot u-\frac{g_{A}}{m^{2}}S\cdot DS\cdot uS\cdot D+\frac{ig_{A}^{2}}{4m^{2}}\upsilon\cdot uS\cdot uS\cdot D
+igA24m2SDSuυu+gA316m2υuSuυu,\displaystyle+\frac{ig_{A}^{2}}{4m^{2}}S\cdot DS\cdot u\upsilon\cdot u+\frac{g_{A}^{3}}{16m^{2}}\upsilon\cdot uS\cdot u\upsilon\cdot u, (69)
γ0(2)γ0𝒞(0)1(1)\displaystyle\gamma_{0}\mathcal{B}^{(2)\dagger}\gamma_{0}\mathcal{C}^{(0)-1}\mathcal{B}^{(1)} =2imb7(υμSνυνSμ)[uμ,uν]SD+2mb8(υμSνυνSμ)f+μνSD\displaystyle=\frac{2i}{m}b_{7}(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})[u_{\mu},u_{\nu}]S\cdot D+\frac{2}{m}b_{8}(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})f_{+\mu\nu}S\cdot D
igA2mb8(υμSνυνSμ)f+μνυu+gA2mb7(υμSνυνSμ)[uμ,uν]υu,\displaystyle-\frac{ig_{A}}{2m}b_{8}(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})f_{+\mu\nu}\upsilon\cdot u+\frac{g_{A}}{2m}b_{7}(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})[u_{\mu},u_{\nu}]\upsilon\cdot u, (70)
γ0(1)γ0𝒞(0)1(3)\displaystyle\gamma_{0}\mathcal{B}^{(1)\dagger}\gamma_{0}\mathcal{C}^{(0)-1}\mathcal{B}^{(3)} =4ϵμνλτSD(υλSτυτSλ)(c9{uμ,{uν,υu}}+c10uμuνυu)\displaystyle=-4\epsilon_{\mu\nu\lambda\tau}S\cdot D(\upsilon^{\lambda}S^{\tau}-\upsilon^{\tau}S^{\lambda})(c_{9}\{u^{\mu},\{u^{\nu},\upsilon\cdot u\}\}+c_{10}u^{\mu}\left\langle u^{\nu}\upsilon\cdot u\right\rangle)
4SD(υμSνυνSμ)υρ(c13{uμ,hνρ}+c14uμhνρ+c29{uμ,fνρ}\displaystyle-4S\cdot D(\upsilon_{\mu}S_{\nu}-\upsilon_{\nu}S_{\mu})\upsilon_{\rho}(c_{13}\{u^{\mu},h^{\nu\rho}\}+c_{14}\left\langle u^{\mu}h^{\nu\rho}\right\rangle+c_{29}\{u^{\mu},f^{\nu\rho}_{-}\}
+c30uμfνρ)+4ic24ϵνρλτSD[υu,f+νρ](υλSτυτSλ)\displaystyle+c_{30}\left\langle u^{\mu}f^{\nu\rho}_{-}\right\rangle)+4ic_{24}\epsilon_{\nu\rho\lambda\tau}S\cdot D[\upsilon\cdot u,f^{\nu\rho}_{+}](\upsilon^{\lambda}S^{\tau}-\upsilon^{\tau}S^{\lambda})
+1mSD(ic1{uμ,{uμ,υu}}+ic2[uμ,[uμ,υu]]+2c11[uμ,hμν]Sν\displaystyle+\frac{1}{m}S\cdot D(ic_{1}\{u_{\mu},\{u^{\mu},\upsilon\cdot u\}\}+ic_{2}[u_{\mu},[u^{\mu},\upsilon\cdot u]]+2c_{11}[u_{\mu},h^{\mu\nu}]S_{\nu}
+ic15{υu,χ~+}+ic16υuχ++ic17υuχ~+c18[υD,χ~]\displaystyle+ic_{15}\{\upsilon\cdot u,\widetilde{\chi}_{+}\}+ic_{16}\upsilon\cdot u\left\langle\chi_{+}\right\rangle+ic_{17}\left\langle\upsilon\cdot u\widetilde{\chi}_{+}\right\rangle-c_{18}[\upsilon\cdot D,\widetilde{\chi}_{-}]
c19[υD,χ]2ic20[χ~,Su]c21[uμ,f+μν]υν+2c26[uμ,fμν]Sν)\displaystyle-c_{19}\left\langle[\upsilon\cdot D,\chi_{-}]\right\rangle-2ic_{20}[\widetilde{\chi}_{-},S\cdot u]-c_{21}[u_{\mu},f_{+}^{\mu\nu}]\upsilon_{\nu}+2c_{26}[u_{\mu},f^{\mu\nu}_{-}]S_{\nu})
2imϵμνρτSDSτ(c22{uμ,f+νρ}+c23uμf+νρ)+imϵμνρτSD\displaystyle-\frac{2i}{m}\epsilon_{\mu\nu\rho\tau}S\cdot DS^{\tau}(c_{22}\{u^{\mu},f_{+}^{\nu\rho}\}+c_{23}\left\langle u^{\mu}f_{+}^{\nu\rho}\right\rangle)+\frac{i}{m}\epsilon_{\mu\nu\rho\tau}S\cdot D
(c27{uμ,fνρ}υτ+c28υτuμfνρ)+imSD(c3υuu2\displaystyle(c_{27}\{u^{\mu},f_{-}^{\nu\rho}\}\upsilon^{\tau}+c_{28}\upsilon^{\tau}\left\langle u^{\mu}f_{-}^{\nu\rho}\right\rangle)+\frac{i}{m}S\cdot D(c_{3}\upsilon\cdot u\left\langle u^{2}\right\rangle
+c31υν[Dμ,fμν]+c4uμuμυu)+2mc7ϵμνρτSD{[uμ,uν],uρ}Sτ\displaystyle+c_{31}\upsilon_{\nu}[D_{\mu},f^{\mu\nu}_{-}]+c_{4}u_{\mu}\left\langle u^{\mu}\upsilon\cdot u\right\rangle)+\frac{2}{m}c_{7}\epsilon_{\mu\nu\rho\tau}S\cdot D\{[u^{\mu},u^{\nu}],u^{\rho}\}S^{\tau}
+2mc8ϵμνρτSDSτ[uμ,uν]uρ8mc12SD[Su,hνρ]υνυρ\displaystyle+\frac{2}{m}c_{8}\epsilon_{\mu\nu\rho\tau}S\cdot DS^{\tau}\left\langle[u^{\mu},u^{\nu}]u^{\rho}\right\rangle-8mc_{12}S\cdot D[S\cdot u,h^{\nu\rho}]\upsilon_{\nu}\upsilon_{\rho}
4imc32SD[υD,fμν]υμυν4imc5SD{4c5(υu)3\displaystyle-4imc_{32}S\cdot D[\upsilon\cdot D,f^{\mu\nu}_{-}]\upsilon_{\mu}\upsilon_{\nu}-4imc_{5}S\cdot D\{4c_{5}(\upsilon\cdot u)^{3}
+c6υu(υu)2}+igAϵμνλτ(υλSτυτSλ)(c9υu{uμ,{uν,υu}}\displaystyle+c_{6}\upsilon\cdot u\left\langle(\upsilon\cdot u)^{2}\right\rangle\}+ig_{A}\epsilon_{\mu\nu\lambda\tau}(\upsilon^{\lambda}S^{\tau}-\upsilon^{\tau}S^{\lambda})(c_{9}\upsilon\cdot u\{u^{\mu},\{u^{\nu},\upsilon\cdot u\}\}
+c10υuuμuνυu)+igAc13υu(υμSνυνSμ){uμ,hνρ}υρ\displaystyle+c_{10}\upsilon\cdot uu^{\mu}\left\langle u^{\nu}\upsilon\cdot u\right\rangle)+ig_{A}c_{13}\upsilon\cdot u(\upsilon_{\mu}S_{\nu}-\upsilon_{\nu}S_{\mu})\{u^{\mu},h^{\nu\rho}\}\upsilon_{\rho}
+igAc14υu(υμSνυνSμ)uμhνρυρ+gAc24ϵνρλτυu[υu,f+νρ]\displaystyle+ig_{A}c_{14}\upsilon\cdot u(\upsilon_{\mu}S_{\nu}-\upsilon_{\nu}S_{\mu})\left\langle u^{\mu}h^{\nu\rho}\right\rangle\upsilon_{\rho}+g_{A}c_{24}\epsilon_{\nu\rho\lambda\tau}\upsilon\cdot u[\upsilon\cdot u,f^{\nu\rho}_{+}]
(υλSτυτSλ)+igAc29υu(υμSνυμSν)υρ{uμ,fνρ}\displaystyle(\upsilon^{\lambda}S^{\tau}-\upsilon^{\tau}S^{\lambda})+ig_{A}c_{29}\upsilon\cdot u(\upsilon_{\mu}S_{\nu}-\upsilon_{\mu}S_{\nu})\upsilon_{\rho}\{u^{\mu},f^{\nu\rho}_{-}\}
+igAc30υu(υμSνυμSν)υρuμfνρ+gA4mc1υu{uμ,{uμ,υu}}\displaystyle+ig_{A}c_{30}\upsilon\cdot u(\upsilon_{\mu}S_{\nu}-\upsilon_{\mu}S_{\nu})\upsilon_{\rho}\left\langle u^{\mu}f^{\nu\rho}_{-}\right\rangle+\frac{g_{A}}{4m}c_{1}\upsilon\cdot u\{u_{\mu},\{u^{\mu},\upsilon\cdot u\}\}
igA2mc11υu[uμ,hμν]Sν+gA4mυu(c15{υu,χ~+}+c16υuχ+\displaystyle-\frac{ig_{A}}{2m}c_{11}\upsilon\cdot u[u_{\mu},h^{\mu\nu}]S_{\nu}+\frac{g_{A}}{4m}\upsilon\cdot u(c_{15}\{\upsilon\cdot u,\widetilde{\chi}_{+}\}+c_{16}\upsilon\cdot u\left\langle\chi_{+}\right\rangle
+c17υuχ~++ic18[υD,χ~])+gA4mc2υu[uμ,[uμ,υu]]\displaystyle+c_{17}\left\langle\upsilon\cdot u\widetilde{\chi}_{+}\right\rangle+ic_{18}[\upsilon\cdot D,\widetilde{\chi}_{-}])+\frac{g_{A}}{4m}c_{2}\upsilon\cdot u[u_{\mu},[u^{\mu},\upsilon\cdot u]]
+igA4mc19υu[υD,χ]gA2mc20υu[χ~,Su]\displaystyle+\frac{ig_{A}}{4m}c_{19}\upsilon\cdot u\left\langle[\upsilon\cdot D,\chi_{-}]\right\rangle-\frac{g_{A}}{2m}c_{20}\upsilon\cdot u[\widetilde{\chi}_{-},S\cdot u]
+igA4mc21υu[uμ,f+μν]υνgA2mϵμνρτυuSτ(c22{uμ,f+νρ}+c23uμf+νρ)\displaystyle+\frac{ig_{A}}{4m}c_{21}\upsilon\cdot u[u_{\mu},f_{+}^{\mu\nu}]\upsilon_{\nu}-\frac{g_{A}}{2m}\epsilon_{\mu\nu\rho\tau}\upsilon\cdot uS^{\tau}(c_{22}\{u^{\mu},f_{+}^{\nu\rho}\}+c_{23}\left\langle u^{\mu}f_{+}^{\nu\rho}\right\rangle)
igA2mc26υu[uμ,fμν]Sν+gA4mc27ϵμνρτυu{uμ,fνρ}υτ\displaystyle-\frac{ig_{A}}{2m}c_{26}\upsilon\cdot u[u_{\mu},f^{\mu\nu}_{-}]S_{\nu}+\frac{g_{A}}{4m}c_{27}\epsilon_{\mu\nu\rho\tau}\upsilon\cdot u\{u^{\mu},f_{-}^{\nu\rho}\}\upsilon^{\tau}
+gA4mc28ϵμνρτυuυτuμfνρ+gA4mc3(υu)2u2\displaystyle+\frac{g_{A}}{4m}c_{28}\epsilon_{\mu\nu\rho\tau}\upsilon\cdot u\upsilon^{\tau}\left\langle u^{\mu}f_{-}^{\nu\rho}\right\rangle+\frac{g_{A}}{4m}c_{3}(\upsilon\cdot u)^{2}\left\langle u^{2}\right\rangle
+gA4mc31υuυν[Dμ,fμν]+gA4mc4υuuμuμυu\displaystyle+\frac{g_{A}}{4m}c_{31}\upsilon\cdot u\upsilon_{\nu}[D_{\mu},f^{\mu\nu}_{-}]+\frac{g_{A}}{4m}c_{4}\upsilon\cdot uu_{\mu}\left\langle u^{\mu}\upsilon\cdot u\right\rangle
igA2mc7ϵμνρτυu{[uμ,uν],uρ}SτigA2mc8ϵμνρτυuSτ[uμ,uν]uρ\displaystyle-\frac{ig_{A}}{2m}c_{7}\epsilon_{\mu\nu\rho\tau}\upsilon\cdot u\{[u^{\mu},u^{\nu}],u^{\rho}\}S^{\tau}-\frac{ig_{A}}{2m}c_{8}\epsilon_{\mu\nu\rho\tau}\upsilon\cdot uS^{\tau}\left\langle[u^{\mu},u^{\nu}]u^{\rho}\right\rangle
+2imgAc12υu[Su,hνρ]υνυρmgAc32υu[υD,fμν]υμυν\displaystyle+2img_{A}c_{12}\upsilon\cdot u[S\cdot u,h^{\nu\rho}]\upsilon_{\nu}\upsilon_{\rho}-mg_{A}c_{32}\upsilon\cdot u[\upsilon\cdot D,f^{\mu\nu}_{-}]\upsilon_{\mu}\upsilon_{\nu}
4mgAc5(υu)4mgAc6(υu)2(υu)2,\displaystyle-4mg_{A}c_{5}(\upsilon\cdot u)^{4}-mg_{A}c_{6}(\upsilon\cdot u)^{2}\left\langle(\upsilon\cdot u)^{2}\right\rangle, (71)
γ0(1)γ0𝒞(1)1(2)\displaystyle\gamma_{0}\mathcal{B}^{(1)\dagger}\gamma_{0}\mathcal{C}^{(1)-1}\mathcal{B}^{(2)} =1m2b7SD(υDigASu)(υμSνυνSμ)[uμ,uν]\displaystyle=-\frac{1}{m^{2}}b_{7}S\cdot D(\upsilon\cdot D-ig_{A}S\cdot u)(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})[u_{\mu},u_{\nu}]
+igA4m2b7υu(υDigASu)(υμSνυνSμ)[uμ,uν]\displaystyle+\frac{ig_{A}}{4m^{2}}b_{7}\upsilon\cdot u(\upsilon\cdot D-ig_{A}S\cdot u)(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})[u_{\mu},u_{\nu}]
+im2b8SD(υDigASu)(υμSνυνSμ)f+μν\displaystyle+\frac{i}{m^{2}}b_{8}S\cdot D(\upsilon\cdot D-ig_{A}S\cdot u)(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})f_{+\mu\nu}
+gA4m2b8υu(υDigASu)(υμSνυνSμ)f+μν,\displaystyle+\frac{g_{A}}{4m^{2}}b_{8}\upsilon\cdot u(\upsilon\cdot D-ig_{A}S\cdot u)(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})f_{+\mu\nu}, (72)
γ0(1)γ0𝒞(2)1(1)\displaystyle\gamma_{0}\mathcal{B}^{(1)\dagger}\gamma_{0}\mathcal{C}^{(2)-1}\mathcal{B}^{(1)} =12m3SD(υD)2SD+igA2m3SD{υD,Su}SD\displaystyle=-\frac{1}{2m^{3}}S\cdot D(\upsilon\cdot D)^{2}S\cdot D+\frac{ig_{A}}{2m^{3}}S\cdot D\{\upsilon\cdot D,S\cdot u\}S\cdot D
+gA22m3SD(Su)2SD1m2SDC(2)SD\displaystyle+\frac{g_{A}^{2}}{2m^{3}}S\cdot D(S\cdot u)^{2}S\cdot D-\frac{1}{m^{2}}S\cdot DC_{(2)}S\cdot D
+gA232m3υu(υD)2υuigA332m3υu{υD,Su}υu\displaystyle+\frac{g_{A}^{2}}{32m^{3}}\upsilon\cdot u(\upsilon\cdot D)^{2}\upsilon\cdot u-\frac{ig_{A}^{3}}{32m^{3}}\upsilon\cdot u\{\upsilon\cdot D,S\cdot u\}\upsilon\cdot u
gA432m3υu(Su)2υu+gA216m2υuC(2)υu\displaystyle-\frac{g_{A}^{4}}{32m^{3}}\upsilon\cdot u(S\cdot u)^{2}\upsilon\cdot u+\frac{g_{A}^{2}}{16m^{2}}\upsilon\cdot uC_{(2)}\upsilon\cdot u
+igA8m3SD(υD)2υu+gA28m3SD{υD,Su}υu\displaystyle+\frac{ig_{A}}{8m^{3}}S\cdot D(\upsilon\cdot D)^{2}\upsilon\cdot u+\frac{g_{A}^{2}}{8m^{3}}S\cdot D\{\upsilon\cdot D,S\cdot u\}\upsilon\cdot u
igA38m3SD(Su)2υu+igA4m2SDC(2)υu\displaystyle-\frac{ig_{A}^{3}}{8m^{3}}S\cdot D(S\cdot u)^{2}\upsilon\cdot u+\frac{ig_{A}}{4m^{2}}S\cdot DC_{(2)}\upsilon\cdot u
+igA8m3υu(υD)2SD+gA28m3υu{υD,Su}SD\displaystyle+\frac{ig_{A}}{8m^{3}}\upsilon\cdot u(\upsilon\cdot D)^{2}S\cdot D+\frac{g_{A}^{2}}{8m^{3}}\upsilon\cdot u\{\upsilon\cdot D,S\cdot u\}S\cdot D
igA38m3υu(Su)2SD+igA4m2υuC(2)SD,\displaystyle-\frac{ig_{A}^{3}}{8m^{3}}\upsilon\cdot u(S\cdot u)^{2}S\cdot D+\frac{ig_{A}}{4m^{2}}\upsilon\cdot uC_{(2)}S\cdot D, (73)
1m2SDC(2)SD\displaystyle-\frac{1}{m^{2}}S\cdot DC_{(2)}S\cdot D =1m2SD{b1χ++b2χ~++b3u2+b4u2\displaystyle=\frac{1}{m^{2}}S\cdot D\{b_{1}\left\langle\chi_{+}\right\rangle+b_{2}\widetilde{\chi}_{+}+b_{3}u^{2}+b_{4}\left\langle u^{2}\right\rangle
+2b7[Sμ,Sν][uμ,uν]2ib8[Sμ,Sν]f+μν}SD\displaystyle+2b_{7}[S^{\mu},S^{\nu}][u_{\mu},u_{\nu}]-2ib_{8}[S_{\mu},S_{\nu}]f_{+}^{\mu\nu}\}S\cdot D
4SD{2b5(υu)2+b6(υu)2}SD,\displaystyle-4S\cdot D\{2b_{5}(\upsilon\cdot u)^{2}+b_{6}\left\langle(\upsilon\cdot u)^{2}\right\rangle\}S\cdot D, (74)
gA216m2υuC(2)υu\displaystyle\frac{g_{A}^{2}}{16m^{2}}\upsilon\cdot uC_{(2)}\upsilon\cdot u =gA216m2υu{b1χ++b2χ~++b3u2+b4u2\displaystyle=-\frac{g_{A}^{2}}{16m^{2}}\upsilon\cdot u\{b_{1}\left\langle\chi_{+}\right\rangle+b_{2}\widetilde{\chi}_{+}+b_{3}u^{2}+b_{4}\left\langle u^{2}\right\rangle
+2b7[Sμ,Sν][uμ,uν]2ib8[Sμ,Sν]f+μν}υu\displaystyle+2b_{7}[S^{\mu},S^{\nu}][u_{\mu},u_{\nu}]-2ib_{8}[S_{\mu},S_{\nu}]f_{+}^{\mu\nu}\}\upsilon\cdot u
+gA24υu{2b5(υu)2+b6(υu)2}υu,\displaystyle+\frac{g_{A}^{2}}{4}\upsilon\cdot u\{2b_{5}(\upsilon\cdot u)^{2}+b_{6}\left\langle(\upsilon\cdot u)^{2}\right\rangle\}\upsilon\cdot u, (75)
igA2m2SDC(2)υu\displaystyle\frac{ig_{A}}{2m^{2}}S\cdot DC_{(2)}\upsilon\cdot u =igA2m2SD{b1χ++b2χ~++b3u2+b4u2\displaystyle=-\frac{ig_{A}}{2m^{2}}S\cdot D\{b_{1}\left\langle\chi_{+}\right\rangle+b_{2}\widetilde{\chi}_{+}+b_{3}u^{2}+b_{4}\left\langle u^{2}\right\rangle
+2b7[Sμ,Sν][uμ,uν]2ib8[Sμ,Sν]f+μν}υu\displaystyle+2b_{7}[S^{\mu},S^{\nu}][u_{\mu},u_{\nu}]-2ib_{8}[S_{\mu},S_{\nu}]f_{+}^{\mu\nu}\}\upsilon\cdot u
+2igASD{2b5(υu)2+b6(υu)2}υu,\displaystyle+2ig_{A}S\cdot D\{2b_{5}(\upsilon\cdot u)^{2}+b_{6}\left\langle(\upsilon\cdot u)^{2}\right\rangle\}\upsilon\cdot u, (76)
igA2m2υuC(2)SD\displaystyle\frac{ig_{A}}{2m^{2}}\upsilon\cdot uC_{(2)}S\cdot D =igA2m2υu{b1χ++b2χ~++b3u2+b4u2\displaystyle=-\frac{ig_{A}}{2m^{2}}\upsilon\cdot u\{b_{1}\left\langle\chi_{+}\right\rangle+b_{2}\widetilde{\chi}_{+}+b_{3}u^{2}+b_{4}\left\langle u^{2}\right\rangle
+2b7[Sμ,Sν][uμ,uν]2ib8[Sμ,Sν]f+μν}SD\displaystyle+2b_{7}[S^{\mu},S^{\nu}][u_{\mu},u_{\nu}]-2ib_{8}[S_{\mu},S_{\nu}]f_{+}^{\mu\nu}\}S\cdot D
+2igAυu{2b5(υu)2+b6(υu)2}SD,\displaystyle+2ig_{A}\upsilon\cdot u\{2b_{5}(\upsilon\cdot u)^{2}+b_{6}\left\langle(\upsilon\cdot u)^{2}\right\rangle\}S\cdot D, (77)
γ0(2)γ0𝒞(0)1(2)\displaystyle\gamma_{0}\mathcal{B}^{(2)\dagger}\gamma_{0}\mathcal{C}^{(0)-1}\mathcal{B}^{(2)} =2m(υμSνυνSμ)2{b72([uμ,uν])2b82(f+μν)2}\displaystyle=\frac{2}{m}(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})^{2}\{b_{7}^{2}([u_{\mu},u_{\nu}])^{2}-b_{8}^{2}(f_{+\mu\nu})^{2}\}
2imb7b8(υμSνυνSμ)2{[uμ,uν],f+μν},\displaystyle-\frac{2i}{m}b_{7}b_{8}(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})^{2}\{[u_{\mu},u_{\nu}],f_{+}^{\mu\nu}\}, (78)
γ0(2)γ0𝒞(1)1(1)\displaystyle\gamma_{0}\mathcal{B}^{(2)\dagger}\gamma_{0}\mathcal{C}^{(1)-1}\mathcal{B}^{(1)} =1m2b7(υμSνυνSμ)[uμ,uν](υDigASu)SD\displaystyle=\frac{1}{m^{2}}b_{7}(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})[u_{\mu},u_{\nu}](\upsilon\cdot D-ig_{A}S\cdot u)S\cdot D
igA4m2b7(υμSνυνSμ)[uμ,uν](υDigASu)υu\displaystyle-\frac{ig_{A}}{4m^{2}}b_{7}(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})[u_{\mu},u_{\nu}](\upsilon\cdot D-ig_{A}S\cdot u)\upsilon\cdot u
im2b8(υμSνυνSμ)f+μν(υDigASu)SD\displaystyle-\frac{i}{m^{2}}b_{8}(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})f_{+\mu\nu}(\upsilon\cdot D-ig_{A}S\cdot u)S\cdot D
gA4m2b8(υμSνυνSμ)f+μν(υDigASu)υu,\displaystyle-\frac{g_{A}}{4m^{2}}b_{8}(\upsilon^{\mu}S^{\nu}-\upsilon^{\nu}S^{\mu})f_{+\mu\nu}(\upsilon\cdot D-ig_{A}S\cdot u)\upsilon\cdot u, (79)
γ0(3)γ0𝒞(0)1(1)\displaystyle\gamma_{0}\mathcal{B}^{(3)\dagger}\gamma_{0}\mathcal{C}^{(0)-1}\mathcal{B}^{(1)} =4ϵμνλτ(c9{uμ,{uν,υu}}+c10uμuνυu)(υλSτυτSλ)SD\displaystyle=4\epsilon_{\mu\nu\lambda\tau}(c_{9}\{u^{\mu},\{u^{\nu},\upsilon\cdot u\}\}+c_{10}u^{\mu}\left\langle u^{\nu}\upsilon\cdot u\right\rangle)(\upsilon^{\lambda}S^{\tau}-\upsilon^{\tau}S^{\lambda})S\cdot D
+4(c13{uμ,hνρ}+c14uμhνρ)(υμSνυνSμ)υρSD\displaystyle+4(c_{13}\{u^{\mu},h^{\nu\rho}\}+c_{14}\left\langle u^{\mu}h^{\nu\rho}\right\rangle)(\upsilon_{\mu}S_{\nu}-\upsilon_{\nu}S_{\mu})\upsilon_{\rho}S\cdot D
4ic24ϵνρλτ[υu,f+νρ](υλSτυτSλ)SD\displaystyle-4ic_{24}\epsilon_{\nu\rho\lambda\tau}[\upsilon\cdot u,f^{\nu\rho}_{+}](\upsilon^{\lambda}S^{\tau}-\upsilon^{\tau}S^{\lambda})S\cdot D
+4(c29{uμ,fνρ}+c30uμfνρ)(υμSνυμSν)υρSD\displaystyle+4(c_{29}\{u^{\mu},f^{\nu\rho}_{-}\}+c_{30}\left\langle u^{\mu}f^{\nu\rho}_{-}\right\rangle)(\upsilon_{\mu}S_{\nu}-\upsilon_{\mu}S_{\nu})\upsilon_{\rho}S\cdot D
+im(c1{uμ,{uμ,υu}}2ic11[uμ,hμν]Sν+c15{υu,χ~+}\displaystyle+\frac{i}{m}(c_{1}\{u_{\mu},\{u^{\mu},\upsilon\cdot u\}\}-2ic_{11}[u_{\mu},h^{\mu\nu}]S_{\nu}+c_{15}\{\upsilon\cdot u,\widetilde{\chi}_{+}\}
+c16υuχ++c17υuχ~++ic18[υD,χ~]+c2[uμ,[uμ,υu]]\displaystyle+c_{16}\upsilon\cdot u\left\langle\chi_{+}\right\rangle+c_{17}\left\langle\upsilon\cdot u\widetilde{\chi}_{+}\right\rangle+ic_{18}[\upsilon\cdot D,\widetilde{\chi}_{-}]+c_{2}[u_{\mu},[u^{\mu},\upsilon\cdot u]]
+ic19[υD,χ]+2c20[χ~,Su]+ic21[uμ,f+μν]υν)SD\displaystyle+ic_{19}\left\langle[\upsilon\cdot D,\chi_{-}]\right\rangle+2c_{20}[\widetilde{\chi}_{-},S\cdot u]+ic_{21}[u_{\mu},f_{+}^{\mu\nu}]\upsilon_{\nu})S\cdot D
2imϵμνρτ(c22{uμ,f+νρ}+c23uμf+νρ)SτSD\displaystyle-\frac{2i}{m}\epsilon_{\mu\nu\rho\tau}(c_{22}\{u^{\mu},f_{+}^{\nu\rho}\}+c_{23}\left\langle u^{\mu}f_{+}^{\nu\rho}\right\rangle)S^{\tau}S\cdot D
+2mc26[uμ,fμν]SνSDimc31υν[Dμ,fμν]SD\displaystyle+\frac{2}{m}c_{26}[u_{\mu},f^{\mu\nu}_{-}]S_{\nu}S\cdot D-\frac{i}{m}c_{31}\upsilon_{\nu}[D_{\mu},f^{\mu\nu}_{-}]S\cdot D
+imϵμνρτ(c27{uμ,fνρ}+c28uμfνρ)υτSD\displaystyle+\frac{i}{m}\epsilon_{\mu\nu\rho\tau}(c_{27}\{u^{\mu},f_{-}^{\nu\rho}\}+c_{28}\left\langle u^{\mu}f_{-}^{\nu\rho}\right\rangle)\upsilon^{\tau}S\cdot D
+im(c3υuu2+c4uμuμυu)SD\displaystyle+\frac{i}{m}(c_{3}\upsilon\cdot u\left\langle u^{2}\right\rangle+c_{4}u_{\mu}\left\langle u^{\mu}\upsilon\cdot u\right\rangle)S\cdot D
+2mϵμνρτ(c7{[uμ,uν],uρ}+c8[uμ,uν]uρ)SτSD\displaystyle+\frac{2}{m}\epsilon_{\mu\nu\rho\tau}(c_{7}\{[u^{\mu},u^{\nu}],u^{\rho}\}+c_{8}\left\langle[u^{\mu},u^{\nu}]u^{\rho}\right\rangle)S^{\tau}S\cdot D
8mc12[Su,hνρ]υνυρSD+4imc32[υD,fμν]υμυνSD\displaystyle-8mc_{12}[S\cdot u,h^{\nu\rho}]\upsilon_{\nu}\upsilon_{\rho}S\cdot D+4imc_{32}[\upsilon\cdot D,f^{\mu\nu}_{-}]\upsilon_{\mu}\upsilon_{\nu}S\cdot D
4im(4c5(υu)3+c6υu(υu)2)SD\displaystyle-4im(4c_{5}(\upsilon\cdot u)^{3}+c_{6}\upsilon\cdot u\left\langle(\upsilon\cdot u)^{2}\right\rangle)S\cdot D
igAϵμνλτ(c9{uμ,{uν,υu}}+c10uμuνυu)(υλSτυτSλ)υu\displaystyle-ig_{A}\epsilon_{\mu\nu\lambda\tau}(c_{9}\{u^{\mu},\{u^{\nu},\upsilon\cdot u\}\}+c_{10}u^{\mu}\left\langle u^{\nu}\upsilon\cdot u\right\rangle)(\upsilon^{\lambda}S^{\tau}-\upsilon^{\tau}S^{\lambda})\upsilon\cdot u
igA(c13{uμ,hνρ}+c14uμhνρ)(υμSνυνSμ)υρυu\displaystyle-ig_{A}(c_{13}\{u^{\mu},h^{\nu\rho}\}+c_{14}\left\langle u^{\mu}h^{\nu\rho}\right\rangle)(\upsilon_{\mu}S_{\nu}-\upsilon_{\nu}S_{\mu})\upsilon_{\rho}\upsilon\cdot u
gAc24ϵνρλτ[υu,f+νρ](υλSτυτSλ)υu\displaystyle-g_{A}c_{24}\epsilon_{\nu\rho\lambda\tau}[\upsilon\cdot u,f^{\nu\rho}_{+}](\upsilon^{\lambda}S^{\tau}-\upsilon^{\tau}S^{\lambda})\upsilon\cdot u
igA(c29{uμ,fνρ}+c30uμfνρ)(υμSνυμSν)υρυu\displaystyle-ig_{A}(c_{29}\{u^{\mu},f^{\nu\rho}_{-}\}+c_{30}\left\langle u^{\mu}f^{\nu\rho}_{-}\right\rangle)(\upsilon_{\mu}S_{\nu}-\upsilon_{\mu}S_{\nu})\upsilon_{\rho}\upsilon\cdot u
+gA4m(c1{uμ,{uμ,υu}}2ic11[uμ,hμν]Sν+c15{υu,χ~+}\displaystyle+\frac{g_{A}}{4m}(c_{1}\{u_{\mu},\{u^{\mu},\upsilon\cdot u\}\}-2ic_{11}[u_{\mu},h^{\mu\nu}]S_{\nu}+c_{15}\{\upsilon\cdot u,\widetilde{\chi}_{+}\}
+c16υuχ++c17υuχ~++ic18[υD,χ~]+c2[uμ,[uμ,υu]]\displaystyle+c_{16}\upsilon\cdot u\left\langle\chi_{+}\right\rangle+c_{17}\left\langle\upsilon\cdot u\widetilde{\chi}_{+}\right\rangle+ic_{18}[\upsilon\cdot D,\widetilde{\chi}_{-}]+c_{2}[u_{\mu},[u^{\mu},\upsilon\cdot u]]
+ic19[υD,χ]+2c20[χ~,Su]+ic21[uμ,f+μν]υν)υu\displaystyle+ic_{19}\left\langle[\upsilon\cdot D,\chi_{-}]\right\rangle+2c_{20}[\widetilde{\chi}_{-},S\cdot u]+ic_{21}[u_{\mu},f_{+}^{\mu\nu}]\upsilon_{\nu})\upsilon\cdot u
gA2mϵμνρτ(c22{uμ,f+νρ}+c23uμf+νρ)Sτυu\displaystyle-\frac{g_{A}}{2m}\epsilon_{\mu\nu\rho\tau}(c_{22}\{u^{\mu},f_{+}^{\nu\rho}\}+c_{23}\left\langle u^{\mu}f_{+}^{\nu\rho}\right\rangle)S^{\tau}\upsilon\cdot u
igA2mc26[uμ,fμν]Sνυu+gA4mc3υuu2υu\displaystyle-\frac{ig_{A}}{2m}c_{26}[u_{\mu},f^{\mu\nu}_{-}]S_{\nu}\upsilon\cdot u+\frac{g_{A}}{4m}c_{3}\upsilon\cdot u\left\langle u^{2}\right\rangle\upsilon\cdot u
+gA4mϵμνρτ(c27{uμ,fνρ}+c28uμfνρ)υτυu\displaystyle+\frac{g_{A}}{4m}\epsilon_{\mu\nu\rho\tau}(c_{27}\{u^{\mu},f_{-}^{\nu\rho}\}+c_{28}\left\langle u^{\mu}f_{-}^{\nu\rho}\right\rangle)\upsilon^{\tau}\upsilon\cdot u
gA4mc31υν[Dμ,fμν]υu+gA4mc4uμuμυuυu\displaystyle-\frac{g_{A}}{4m}c_{31}\upsilon_{\nu}[D_{\mu},f^{\mu\nu}_{-}]\upsilon\cdot u+\frac{g_{A}}{4m}c_{4}u_{\mu}\left\langle u^{\mu}\upsilon\cdot u\right\rangle\upsilon\cdot u
igA2mϵμνρτ(c7{[uμ,uν],uρ}+c8[uμ,uν]uρ)Sτυu\displaystyle-\frac{ig_{A}}{2m}\epsilon_{\mu\nu\rho\tau}(c_{7}\{[u^{\mu},u^{\nu}],u^{\rho}\}+c_{8}\left\langle[u^{\mu},u^{\nu}]u^{\rho}\right\rangle)S^{\tau}\upsilon\cdot u
+2imgAc12[Su,hνρ]υνυρυu+mgAc32[υD,fμν]υμυνυu\displaystyle+2img_{A}c_{12}[S\cdot u,h^{\nu\rho}]\upsilon_{\nu}\upsilon_{\rho}\upsilon\cdot u+mg_{A}c_{32}[\upsilon\cdot D,f^{\mu\nu}_{-}]\upsilon_{\mu}\upsilon_{\nu}\upsilon\cdot u
4mgAc5(υu)4mgAc6υu(υu)2υu.\displaystyle-4mg_{A}c_{5}(\upsilon\cdot u)^{4}-mg_{A}c_{6}\upsilon\cdot u\left\langle(\upsilon\cdot u)^{2}\right\rangle\upsilon\cdot u. (80)

Appendix C The 𝒪(q4)\mathcal{O}(q^{4}) operators

TABLE V: Terms in the O(q4)O(q^{4}) relativistic and non-relativistic Lagrangians.
ii Oi(4)O_{i}^{(4)} O^i(4)\hat{O}_{i}^{(4)}
11 {uμ,{{uμ,uν},uν}}\{u^{\mu},\{\{u_{\mu},u^{\nu}\},u_{\nu}\}\} {uμ,{{uμ,uν},uν}}\{u^{\mu},\{\{u_{\mu},u^{\nu}\},u_{\nu}\}\}
22 {uμ,[[uμ,uν],uν]}\{u^{\mu},[[u_{\mu},u^{\nu}],u_{\nu}]\} {uμ,[[uμ,uν],uν]}\{u^{\mu},[[u_{\mu},u^{\nu}],u_{\nu}]\}
33 [uμ,{[uμ,uν],uν}][u^{\mu},\{[u_{\mu},u^{\nu}],u_{\nu}\}] [uμ,{[uμ,uν],uν}][u^{\mu},\{[u_{\mu},u^{\nu}],u_{\nu}\}]
44 {uμ,{uμ,uν}}uν\left\langle\{u^{\mu},\{u_{\mu},u^{\nu}\}\}u_{\nu}\right\rangle {uμ,{uμ,uν}}uν\left\langle\{u^{\mu},\{u_{\mu},u^{\nu}\}\}u_{\nu}\right\rangle
55 [uμ,[uμ,uν]]uν\left\langle[u^{\mu},[u_{\mu},u^{\nu}]]u_{\nu}\right\rangle [uμ,[uμ,uν]]uν\left\langle[u^{\mu},[u_{\mu},u^{\nu}]]u_{\nu}\right\rangle
66 uμu2uμu^{\mu}\left\langle u^{2}u_{\mu}\right\rangle uμu2uμu^{\mu}\left\langle u^{2}u_{\mu}\right\rangle
77 uμuμu2u^{\mu}u_{\mu}\left\langle u^{2}\right\rangle u2u2u^{2}\left\langle u^{2}\right\rangle
88 uμuνuμuνu^{\mu}u^{\nu}\left\langle u_{\mu}u_{\nu}\right\rangle uμuνuμuνu^{\mu}u^{\nu}\left\langle u_{\mu}u_{\nu}\right\rangle
99 i{uμ,{uμ,[uν,uλ]}}σνλi\{u^{\mu},\{u_{\mu},[u^{\nu},u^{\lambda}]\}\}\sigma_{\nu\lambda} 2{uμ,{uμ,[uν,uλ]}}[Sν,Sλ]2\{u^{\mu},\{u_{\mu},[u^{\nu},u^{\lambda}]\}\}[S_{\nu},S_{\lambda}]
1010 i[uμ,[uμ,[uν,uλ]]]σνλi[u^{\mu},[u_{\mu},[u^{\nu},u^{\lambda}]]]\sigma_{\nu\lambda} 2[uμ,[uμ,[uν,uλ]]][Sν,Sλ]2[u^{\mu},[u_{\mu},[u^{\nu},u^{\lambda}]]][S_{\nu},S_{\lambda}]
1111 i[uν,{uμ,{uμ,uλ}}]σνλi[u^{\nu},\{u_{\mu},\{u^{\mu},u^{\lambda}\}\}]\sigma_{\nu\lambda} 2[uν,{uμ,{uμ,uλ}}][Sν,Sλ]2[u^{\nu},\{u_{\mu},\{u^{\mu},u^{\lambda}\}\}][S_{\nu},S_{\lambda}]
1212 i[uν,[uμ,[uμ,uλ]]]σνλi[u^{\nu},[u_{\mu},[u^{\mu},u^{\lambda}]]]\sigma_{\nu\lambda} 2[uν,[uμ,[uμ,uλ]]][Sν,Sλ]2[u^{\nu},[u_{\mu},[u^{\mu},u^{\lambda}]]][S_{\nu},S_{\lambda}]
1313 i[uμ,uν]u2σμνi\left\langle[u_{\mu},u_{\nu}]u^{2}\right\rangle\sigma^{\mu\nu} 2[Sμ,Sν][uμ,uν]u22[S^{\mu},S^{\nu}]\left\langle[u_{\mu},u_{\nu}]u^{2}\right\rangle
1414 i[uμ,{uλ,uν}]uλσμνi\left\langle[u_{\mu},\{u^{\lambda},u_{\nu}\}]u_{\lambda}\right\rangle\sigma^{\mu\nu} 2[Sμ,Sν][uμ,{uλ,uν}]uλ2[S^{\mu},S^{\nu}]\left\langle[u_{\mu},\{u^{\lambda},u_{\nu}\}]u_{\lambda}\right\rangle
1515 iuμuμ[uν,uλ]σνλiu^{\mu}\left\langle u_{\mu}[u_{\nu},u_{\lambda}]\right\rangle\sigma^{\nu\lambda} 2[Sν,Sλ]uμuμ[uν,uλ]2[S^{\nu},S^{\lambda}]u^{\mu}\left\langle u_{\mu}[u_{\nu},u_{\lambda}]\right\rangle
1616 i[uμ,uν]u2σμνi[u^{\mu},u^{\nu}]\left\langle u^{2}\right\rangle\sigma_{\mu\nu} 2[uμ,uν][Sμ,Sν]u22[u^{\mu},u^{\nu}][S_{\mu},S_{\nu}]\left\langle u^{2}\right\rangle
1717 i[uμ,uλ]uνuλσμνi[u^{\mu},u^{\lambda}]\left\langle u^{\nu}u_{\lambda}\right\rangle\sigma_{\mu\nu} 2[uμ,uλ][Sμ,Sν]uνuλ2[u^{\mu},u^{\lambda}][S_{\mu},S_{\nu}]\left\langle u^{\nu}u_{\lambda}\right\rangle
1818 {uμ,{uμ,{uν,uλ}}}Dνλ+h.c.\{u^{\mu},\{u_{\mu},\{u^{\nu},u^{\lambda}\}\}\}D_{\nu\lambda}+h.c. 8m2{uμ,{uμ,(υu)2}}-8m^{2}\{u^{\mu},\{u_{\mu},(\upsilon\cdot u)^{2}\}\}
1919 [uμ,[uμ,{uν,uλ}]]Dνλ+h.c.[u^{\mu},[u_{\mu},\{u^{\nu},u^{\lambda}\}]]D_{\nu\lambda}+h.c. 8m2[uμ,[uμ,(υu)2]]-8m^{2}[u^{\mu},[u_{\mu},(\upsilon\cdot u)^{2}]]
2020 {uν,{uμ,{uμ,uλ}}}Dνλ+h.c.\{u^{\nu},\{u_{\mu},\{u^{\mu},u^{\lambda}\}\}\}D_{\nu\lambda}+h.c. 4m2{υu,{uμ,{uμ,υu}}}-4m^{2}\{\upsilon\cdot u,\{u_{\mu},\{u^{\mu},\upsilon\cdot u\}\}\}
2121 {uν,[uμ,[uμ,uλ]]}Dνλ+h.c.\{u^{\nu},[u_{\mu},[u^{\mu},u^{\lambda}]]\}D_{\nu\lambda}+h.c. 4m2{υu,[uμ,[uμ,υu]]}-4m^{2}\{\upsilon\cdot u,[u_{\mu},[u^{\mu},\upsilon\cdot u]]\}
2222 {uμ,{uλ,uν}}uλDμν+h.c.\left\langle\{u_{\mu},\{u^{\lambda},u_{\nu}\}\}u_{\lambda}\right\rangle D^{\mu\nu}+h.c. 4m2{υu,{uλ,υu}}uλ-4m^{2}\left\langle\{\upsilon\cdot u,\{u^{\lambda},\upsilon\cdot u\}\}u_{\lambda}\right\rangle
2323 {uμ,uν}u2Dμν+h.c.\left\langle\{u_{\mu},u_{\nu}\}u^{2}\right\rangle D^{\mu\nu}+h.c. 8m2(υu)2u2-8m^{2}\left\langle(\upsilon\cdot u)^{2}u^{2}\right\rangle
2424 uμuνu2Dμν+h.c.u^{\mu}\left\langle u_{\nu}u^{2}\right\rangle{D_{\mu}}^{\nu}+h.c. 4m2υuυuu2-4m^{2}\upsilon\cdot u\left\langle\upsilon\cdot uu^{2}\right\rangle
2525 uλ{uμ,uν}uλDμν+h.c.u^{\lambda}\left\langle\{u_{\mu},u_{\nu}\}u_{\lambda}\right\rangle D^{\mu\nu}+h.c. 8m2uλ(υu)2uλ-8m^{2}u^{\lambda}\left\langle(\upsilon\cdot u)^{2}u_{\lambda}\right\rangle
2626 u2uνuλDνλ+h.c.u^{2}\left\langle u_{\nu}u_{\lambda}\right\rangle D^{\nu\lambda}+h.c. 4m2u2(υu)2-4m^{2}u^{2}\left\langle(\upsilon\cdot u)^{2}\right\rangle
2727 {uμ,uν}u2Dμν+h.c.\{u^{\mu},u^{\nu}\}\left\langle u^{2}\right\rangle D_{\mu\nu}+h.c. 8m2(υu)2u2-8m^{2}(\upsilon\cdot u)^{2}\left\langle u^{2}\right\rangle
2828 {uμ,uν}uνuλDμλ+h.c.\{u^{\mu},u^{\nu}\}\left\langle u_{\nu}u_{\lambda}\right\rangle{D_{\mu}}^{\lambda}+h.c. 4m2{υu,uν}uνυu-4m^{2}\{\upsilon\cdot u,u^{\nu}\}\left\langle u_{\nu}\upsilon\cdot u\right\rangle
2929 i{uλ,{uρ,[uμ,uν]}}σμνDλρ+h.c.i\{u^{\lambda},\{u^{\rho},[u^{\mu},u^{\nu}]\}\}\sigma_{\mu\nu}D_{\lambda\rho}+h.c. 8m2{υu,{υu,[uμ,uν]}}[Sμ,Sν]-8m^{2}\{\upsilon\cdot u,\{\upsilon\cdot u,[u^{\mu},u^{\nu}]\}\}[S_{\mu},S_{\nu}]
3030 i[uλ,[uρ,[uμ,uν]]]σμνDλρ+h.c.i[u^{\lambda},[u^{\rho},[u^{\mu},u^{\nu}]]]\sigma_{\mu\nu}D_{\lambda\rho}+h.c. 8m2[υu,[υu,[uμ,uν]]][Sμ,Sν]-8m^{2}[\upsilon\cdot u,[\upsilon\cdot u,[u^{\mu},u^{\nu}]]][S_{\mu},S_{\nu}]
3131 i[uμ,{uλ,{uρ,uν}}]σμνDλρ+h.c.i[u^{\mu},\{u^{\lambda},\{u^{\rho},u^{\nu}\}\}]\sigma_{\mu\nu}D_{\lambda\rho}+h.c. 8m2[uμ,{υu,{υu,uν}}][Sμ,Sν]-8m^{2}[u^{\mu},\{\upsilon\cdot u,\{\upsilon\cdot u,u^{\nu}\}\}][S_{\mu},S_{\nu}]
3232 i[uμ,[uλ,[uρ,uν]]]σμνDλρ+h.c.i[u^{\mu},[u^{\lambda},[u^{\rho},u^{\nu}]]]\sigma_{\mu\nu}D_{\lambda\rho}+h.c. 8m2[uμ,[υu,[υu,uν]]][Sμ,Sν]-8m^{2}[u^{\mu},[\upsilon\cdot u,[\upsilon\cdot u,u^{\nu}]]][S_{\mu},S_{\nu}]
3333 i{[uμ,uν],uλ}uρσμνDλρ+h.c.i\left\langle\{[u_{\mu},u_{\nu}],u_{\lambda}\}u_{\rho}\right\rangle\sigma^{\mu\nu}D^{\lambda\rho}+h.c. 8m2{[uμ,uν],υu}υu[Sμ,Sν]-8m^{2}\left\langle\{[u_{\mu},u_{\nu}],\upsilon\cdot u\}\upsilon\cdot u\right\rangle[S^{\mu},S^{\nu}]
3434 i[uμ,{uλ,uν}]uρσμνDλρ+h.c.i\left\langle[u_{\mu},\{u_{\lambda},u_{\nu}\}]u_{\rho}\right\rangle\sigma^{\mu\nu}D^{\lambda\rho}+h.c. 8m2[uμ,{υu,uν}]υu[Sμ,Sν]-8m^{2}\left\langle[u_{\mu},\{\upsilon\cdot u,u_{\nu}\}]\upsilon\cdot u\right\rangle[S^{\mu},S^{\nu}]
3535 iuμ[uν,uλ]uρσνλDμρ+h.c.iu^{\mu}\left\langle[u_{\nu},u_{\lambda}]u_{\rho}\right\rangle\sigma^{\nu\lambda}{D_{\mu}}^{\rho}+h.c. 8m2υu[uν,uλ]υu[Sν,Sλ]-8m^{2}\upsilon\cdot u\left\langle[u_{\nu},u_{\lambda}]\upsilon\cdot u\right\rangle[S^{\nu},S^{\lambda}]
3636 i[uμ,uν]uλuρσμνDλρ+h.c.i[u^{\mu},u^{\nu}]\left\langle u_{\lambda}u_{\rho}\right\rangle\sigma_{\mu\nu}D^{\lambda\rho}+h.c. 8m2[uμ,uν][Sμ,Sν](υu)2-8m^{2}[u^{\mu},u^{\nu}][S_{\mu},S_{\nu}]\left\langle(\upsilon\cdot u)^{2}\right\rangle
3737 i[uμ,uν]uλuρσμλDνρ+h.c.i[u^{\mu},u^{\nu}]\left\langle u_{\lambda}u_{\rho}\right\rangle{\sigma_{\mu}}^{\lambda}{D_{\nu}}^{\rho}+h.c. 8m2[uμ,υu][Sμ,Sλ]uλυu-8m^{2}[u^{\mu},\upsilon\cdot u][S_{\mu},S^{\lambda}]\left\langle u_{\lambda}\upsilon\cdot u\right\rangle
3838 {uμ,{uν,{uλ,uρ}}}Dμνλρ+h.c.\{u^{\mu},\{u^{\nu},\{u^{\lambda},u^{\rho}\}\}\}D_{\mu\nu\lambda\rho}+h.c. 384m4(υu)4384m^{4}(\upsilon\cdot u)^{4}
3939 {uμ,{uν,uλ}}uρDμνλρ+h.c.\left\langle\{u_{\mu},\{u_{\nu},u_{\lambda}\}\}u_{\rho}\right\rangle D^{\mu\nu\lambda\rho}+h.c. 192m4(υu)4192m^{4}\left\langle(\upsilon\cdot u)^{4}\right\rangle
4040 uμ{uν,uλ}uρDμνλρ+h.c.u^{\mu}\left\langle\{u_{\nu},u_{\lambda}\}u_{\rho}\right\rangle{D_{\mu}}^{\nu\lambda\rho}+h.c. 96m4υu(υu)396m^{4}\upsilon\cdot u\left\langle(\upsilon\cdot u)^{3}\right\rangle
4141 {uμ,uν}uλuρDμνλρ+h.c.\{u^{\mu},u^{\nu}\}\left\langle u_{\lambda}u_{\rho}\right\rangle{D_{\mu\nu}}^{\lambda\rho}+h.c. 96m4(υu)2(υu)296m^{4}(\upsilon\cdot u)^{2}\left\langle(\upsilon\cdot u)^{2}\right\rangle
4242 ϵμνλρ[[uμ,uν],fλρ]\epsilon^{\mu\nu\lambda\rho}[[u_{\mu},u_{\nu}],f_{-\lambda\rho}] ϵμνλρ[[uμ,uν],fλρ]\epsilon^{\mu\nu\lambda\rho}[[u_{\mu},u_{\nu}],f_{-\lambda\rho}]
4343 ϵμνλρuμuνfλρ\epsilon^{\mu\nu\lambda\rho}u_{\mu}\left\langle u_{\nu}f_{-\lambda\rho}\right\rangle ϵμνλρuμuνfλρ\epsilon^{\mu\nu\lambda\rho}u_{\mu}\left\langle u_{\nu}f_{-\lambda\rho}\right\rangle
4444 {[uμ,uν],fμλ}γ5γνDλ+h.c.\{[u^{\mu},u^{\nu}],{f_{-\mu}}^{\lambda}\}\gamma_{5}\gamma_{\nu}D_{\lambda}+h.c. 4im{[uμ,Su],fμλ}υλ4im\{[u^{\mu},S\cdot u],{f_{-\mu}}^{\lambda}\}\upsilon_{\lambda}
4545 [{uμ,uν},fμλ]γ5γνDλ+h.c.[\{u^{\mu},u^{\nu}\},{f_{-\mu}}^{\lambda}]\gamma_{5}\gamma_{\nu}D_{\lambda}+h.c. 4im[{uμ,Su},fμλ]υλ4im[\{u^{\mu},S\cdot u\},{f_{-\mu}}^{\lambda}]\upsilon_{\lambda}
4646 {[uμ,uν],fμλ}γ5γλDν+h.c.\{[u^{\mu},u^{\nu}],{f_{-\mu}}^{\lambda}\}\gamma_{5}\gamma_{\lambda}D_{\nu}+h.c. 4im{[uμ,υu],fμλ}Sλ4im\{[u^{\mu},\upsilon\cdot u],{f_{-\mu}}^{\lambda}\}S_{\lambda}
4747 [{uμ,uν},fμλ]γ5γλDν+h.c.[\{u^{\mu},u^{\nu}\},{f_{-\mu}}^{\lambda}]\gamma_{5}\gamma_{\lambda}D_{\nu}+h.c. 4im[{uμ,υu},fμλ]Sλ4im[\{u^{\mu},\upsilon\cdot u\},{f_{-\mu}}^{\lambda}]S_{\lambda}
4848 {uμ,[uλ,fμν]}γ5γνDλ+h.c.\{u^{\mu},[u^{\lambda},{f_{-\mu}}^{\nu}]\}\gamma_{5}\gamma_{\nu}D_{\lambda}+h.c. 4im{uμ,[υu,fμν]}Sν4im\{u^{\mu},[\upsilon\cdot u,{f_{-\mu}}^{\nu}]\}S_{\nu}
4949 {uμ,[uλ,fμν]}γ5γλDν+h.c.\{u^{\mu},[u^{\lambda},{f_{-\mu}}^{\nu}]\}\gamma_{5}\gamma_{\lambda}D_{\nu}+h.c. 4im{uμ,[Su,fμν]}υν4im\{u^{\mu},[S\cdot u,{f_{-\mu}}^{\nu}]\}\upsilon_{\nu}
5050 {uμ,[uμ,fνλ]}γ5γνDλ+h.c.\{u^{\mu},[u_{\mu},f_{-}^{\nu\lambda}]\}\gamma_{5}\gamma_{\nu}D_{\lambda}+h.c. 4im{uμ,[uμ,fνλ]}Sνυλ4im\{u^{\mu},[u_{\mu},f_{-}^{\nu\lambda}]\}S_{\nu}\upsilon_{\lambda}
5151 [uμ,uλ]fνλγ5γμDν+h.c.\left\langle[u_{\mu},u^{\lambda}]f_{-\nu\lambda}\right\rangle\gamma_{5}\gamma^{\mu}D^{\nu}+h.c. 4im[Su,uλ]fνλυν4im\left\langle[S\cdot u,u^{\lambda}]f_{-\nu\lambda}\right\rangle\upsilon^{\nu}
5252 [uν,uλ]fμλγ5γμDν+h.c.\left\langle[u_{\nu},u^{\lambda}]f_{-\mu\lambda}\right\rangle\gamma_{5}\gamma^{\mu}D^{\nu}+h.c. 4im[υu,uλ]fμλSμ4im\left\langle[\upsilon\cdot u,u^{\lambda}]f_{-\mu\lambda}\right\rangle S^{\mu}
5353 {uμ,[uμ,hνλ]}γ5γνDλ+h.c.\{u^{\mu},[u_{\mu},h^{\nu\lambda}]\}\gamma_{5}\gamma_{\nu}D_{\lambda}+h.c. 4im{uμ,[uμ,hνλ]}Sνυλ4im\{u^{\mu},[u_{\mu},h^{\nu\lambda}]\}S_{\nu}\upsilon_{\lambda}
5454 {[uμ,uν],hμλ}γ5γνDλ+h.c.\{[u^{\mu},u^{\nu}],{h_{\mu}}^{\lambda}\}\gamma_{5}\gamma_{\nu}D_{\lambda}+h.c. 4im{[uμ,Su],hμλ}υλ4im\{[u^{\mu},S\cdot u],{h_{\mu}}^{\lambda}\}\upsilon_{\lambda}
5555 [{uμ,uν},hμλ]γ5γνDλ+h.c.[\{u^{\mu},u^{\nu}\},{h_{\mu}}^{\lambda}]\gamma_{5}\gamma_{\nu}D_{\lambda}+h.c. 4im[{uμ,Su},hμλ]υλ4im[\{u^{\mu},S\cdot u\},{h_{\mu}}^{\lambda}]\upsilon_{\lambda}
5656 {[uμ,uν],hμλ}γ5γλDν+h.c.\{[u^{\mu},u^{\nu}],{h_{\mu}}^{\lambda}\}\gamma_{5}\gamma_{\lambda}D_{\nu}+h.c. 4im{[uμ,υu],hμλ}Sλ4im\{[u^{\mu},\upsilon\cdot u],{h_{\mu}}^{\lambda}\}S_{\lambda}
5757 [{uμ,uν},hμλ]γ5γλDν+h.c.[\{u^{\mu},u^{\nu}\},{h_{\mu}}^{\lambda}]\gamma_{5}\gamma_{\lambda}D_{\nu}+h.c. 4im[{uμ,υu},hμλ]Sλ4im[\{u^{\mu},\upsilon\cdot u\},{h_{\mu}}^{\lambda}]S_{\lambda}
5858 {uμ,[uλ,hμν]}γ5γνDλ+h.c.\{u^{\mu},[u^{\lambda},{h_{\mu}}^{\nu}]\}\gamma_{5}\gamma_{\nu}D_{\lambda}+h.c. 4im{uμ,[υu,hμν]}Sν4im\{u^{\mu},[\upsilon\cdot u,{h_{\mu}}^{\nu}]\}S_{\nu}
5959 {uμ,[uλ,hμν]}γ5γλDν+h.c.\{u^{\mu},[u^{\lambda},{h_{\mu}}^{\nu}]\}\gamma_{5}\gamma_{\lambda}D_{\nu}+h.c. 4im{uμ,[Su,hμν]}υν4im\{u^{\mu},[S\cdot u,{h_{\mu}}^{\nu}]\}\upsilon_{\nu}
6060 [uμ,uλ]hνλγ5γμDν+h.c.\left\langle[u_{\mu},u^{\lambda}]h_{\nu\lambda}\right\rangle\gamma_{5}\gamma^{\mu}D^{\nu}+h.c. 4im[Su,uλ]hνλυν4im\left\langle[S\cdot u,u^{\lambda}]h_{\nu\lambda}\right\rangle\upsilon^{\nu}
6161 [uν,uλ]hμλγ5γμDν+h.c.\left\langle[u_{\nu},u^{\lambda}]h_{\mu\lambda}\right\rangle\gamma_{5}\gamma^{\mu}D^{\nu}+h.c. 4im[υu,uλ]hμλSμ4im\left\langle[\upsilon\cdot u,u^{\lambda}]h_{\mu\lambda}\right\rangle S^{\mu}
6262 ϵμνλρ[[uμ,uν],fλσ]Dρσ+h.c.\epsilon^{\mu\nu\lambda\rho}[[u_{\mu},u_{\nu}],{f_{-\lambda}}^{\sigma}]D_{\rho\sigma}+h.c. 4m2ϵμνλρ[[uμ,uν],fλσ]υρυσ-4m^{2}\epsilon^{\mu\nu\lambda\rho}[[u_{\mu},u_{\nu}],{f_{-\lambda}}^{\sigma}]\upsilon_{\rho}\upsilon_{\sigma}
6363 ϵμνλρ{{uμ,uσ},fνλ}Dρσ+h.c.\epsilon^{\mu\nu\lambda\rho}\{\{u_{\mu},u^{\sigma}\},f_{-\nu\lambda}\}D_{\rho\sigma}+h.c. 4m2ϵμνλρ{{uμ,υu},fνλ}υρ-4m^{2}\epsilon^{\mu\nu\lambda\rho}\{\{u_{\mu},\upsilon\cdot u\},f_{-\nu\lambda}\}\upsilon_{\rho}
6464 ϵμνλρ[[uμ,uσ],fνλ]Dρσ+h.c.\epsilon^{\mu\nu\lambda\rho}[[u_{\mu},u^{\sigma}],f_{-\nu\lambda}]D_{\rho\sigma}+h.c. 4m2ϵμνλρ[[uμ,υu],fνλ]υρ-4m^{2}\epsilon^{\mu\nu\lambda\rho}[[u_{\mu},\upsilon\cdot u],f_{-\nu\lambda}]\upsilon_{\rho}
6565 ϵμνλρ{uμ,{fνλ,uσ}}Dρσ+h.c.\epsilon^{\mu\nu\lambda\rho}\{u_{\mu},\{f_{-\nu\lambda},u^{\sigma}\}\}D_{\rho\sigma}+h.c. 4m2ϵμνλρ{uμ,{fνλ,υu}}υρ-4m^{2}\epsilon^{\mu\nu\lambda\rho}\{u_{\mu},\{f_{-\nu\lambda},\upsilon\cdot u\}\}\upsilon_{\rho}
6666 ϵμνλρ{uν,uσ}fλρDμσ+h.c.\epsilon^{\mu\nu\lambda\rho}\left\langle\{u_{\nu},u_{\sigma}\}f_{-\lambda\rho}\right\rangle{D_{\mu}}^{\sigma}+h.c. 4m2ϵμνλρυμ{uν,υu}fλρ-4m^{2}\epsilon^{\mu\nu\lambda\rho}\upsilon_{\mu}\left\langle\{u_{\nu},\upsilon\cdot u\}f_{-\lambda\rho}\right\rangle
6767 ϵμνλρuμuνfλσDρσ+h.c.\epsilon^{\mu\nu\lambda\rho}u_{\mu}\left\langle u_{\nu}{f_{-\lambda}}^{\sigma}\right\rangle D_{\rho\sigma}+h.c. 4m2ϵμνλρuμυρυσuνfλσ-4m^{2}\epsilon^{\mu\nu\lambda\rho}u_{\mu}\upsilon_{\rho}\upsilon_{\sigma}\left\langle u_{\nu}{f_{-\lambda}}^{\sigma}\right\rangle
6868 ϵμνλρuμuσfνλDρσ+h.c.\epsilon^{\mu\nu\lambda\rho}u_{\mu}\left\langle u^{\sigma}f_{-\nu\lambda}\right\rangle D_{\rho\sigma}+h.c. 4m2ϵμνλρuμυρυufνλ-4m^{2}\epsilon^{\mu\nu\lambda\rho}u_{\mu}\upsilon_{\rho}\left\langle\upsilon\cdot uf_{-\nu\lambda}\right\rangle
6969 ϵμνλρuσuμfνλDρσ+h.c.\epsilon^{\mu\nu\lambda\rho}u^{\sigma}\left\langle u_{\mu}f_{-\nu\lambda}\right\rangle D_{\rho\sigma}+h.c. 4m2ϵμνλρυuυρuμfνλ-4m^{2}\epsilon^{\mu\nu\lambda\rho}\upsilon\cdot u\upsilon_{\rho}\left\langle u_{\mu}f_{-\nu\lambda}\right\rangle
7070 ϵμνλρfμνuρuσDλσ+h.c.\epsilon^{\mu\nu\lambda\rho}f_{-\mu\nu}\left\langle u_{\rho}u_{\sigma}\right\rangle{D_{\lambda}}^{\sigma}+h.c. 4m2ϵμνλρfμνυλuρυu-4m^{2}\epsilon^{\mu\nu\lambda\rho}f_{-\mu\nu}\upsilon_{\lambda}\left\langle u_{\rho}\upsilon\cdot u\right\rangle
7171 ϵμνλρ[[uμ,uν],hλσ]Dρσ+h.c.\epsilon^{\mu\nu\lambda\rho}[[u_{\mu},u_{\nu}],{h_{\lambda}}^{\sigma}]D_{\rho\sigma}+h.c. 4m2ϵμνλρ[[uμ,uν],hλσ]υρυσ-4m^{2}\epsilon^{\mu\nu\lambda\rho}[[u_{\mu},u_{\nu}],{h_{\lambda}}^{\sigma}]\upsilon_{\rho}\upsilon_{\sigma}
7272 ϵμνλρuμuλhρσDνσ+h.c.\epsilon^{\mu\nu\lambda\rho}u_{\mu}\left\langle u_{\lambda}h_{\rho\sigma}\right\rangle{D_{\nu}}^{\sigma}+h.c. 4m2ϵμνλρuμυνυσuλhρσ-4m^{2}\epsilon^{\mu\nu\lambda\rho}u_{\mu}\upsilon_{\nu}\upsilon^{\sigma}\left\langle u_{\lambda}h_{\rho\sigma}\right\rangle
7373 [{uμ,uν},fλρ]γ5γλDμνρ+h.c.[\{u^{\mu},u^{\nu}\},f_{-}^{\lambda\rho}]\gamma_{5}\gamma_{\lambda}D_{\mu\nu\rho}+h.c. 48im3[(υu)2,fλρ]Sλυρ-48im^{3}[(\upsilon\cdot u)^{2},f_{-}^{\lambda\rho}]S_{\lambda}\upsilon_{\rho}
7474 [{uμ,uν},hλρ]γ5γλDμνρ+h.c.[\{u^{\mu},u^{\nu}\},h^{\lambda\rho}]\gamma_{5}\gamma_{\lambda}D_{\mu\nu\rho}+h.c. 48im3[(υu)2,hλρ]Sλυρ-48im^{3}[(\upsilon\cdot u)^{2},h^{\lambda\rho}]S_{\lambda}\upsilon_{\rho}
7575 {[uμ,uν],hλρ}γ5γμDνλρ+h.c.\{[u^{\mu},u^{\nu}],h^{\lambda\rho}\}\gamma_{5}\gamma_{\mu}D_{\nu\lambda\rho}+h.c. 24im3{[Su,υu],hλρ}υλυρ-24im^{3}\{[S\cdot u,\upsilon\cdot u],h^{\lambda\rho}\}\upsilon_{\lambda}\upsilon_{\rho}
7676 {uμ,[uν,hλρ]}γ5γμDνλρ+h.c.\{u^{\mu},[u^{\nu},h^{\lambda\rho}]\}\gamma_{5}\gamma_{\mu}D_{\nu\lambda\rho}+h.c. 24im3{Su,[υu,hλρ]}υλυρ-24im^{3}\{S\cdot u,[\upsilon\cdot u,h^{\lambda\rho}]\}\upsilon_{\lambda}\upsilon_{\rho}
7777 {uν,[uμ,hλρ]}γ5γμDνλρ+h.c.\{u^{\nu},[u^{\mu},h^{\lambda\rho}]\}\gamma_{5}\gamma_{\mu}D_{\nu\lambda\rho}+h.c. 24im3{υu,[Su,hλρ]}υλυρ-24im^{3}\{\upsilon\cdot u,[S\cdot u,h^{\lambda\rho}]\}\upsilon_{\lambda}\upsilon_{\rho}
7878 [uμ,uν]hλργ5γμDνλρ+h.c.\left\langle[u_{\mu},u_{\nu}]h_{\lambda\rho}\right\rangle\gamma_{5}\gamma^{\mu}D^{\nu\lambda\rho}+h.c. 24im3[Su,υu]hλρυλυρ-24im^{3}\left\langle[S\cdot u,\upsilon\cdot u]h_{\lambda\rho}\right\rangle\upsilon_{\lambda}\upsilon_{\rho}
7979 i{[uμ,uν],f+μν}i\{[u_{\mu},u_{\nu}],f_{+}^{\mu\nu}\} i{[uμ,uν],f+μν}i\{[u_{\mu},u_{\nu}],f_{+}^{\mu\nu}\}
8080 i{uμ,[uν,f+μν]}i\{u_{\mu},[u_{\nu},f_{+}^{\mu\nu}]\} i{uμ,[uν,f+μν]}i\{u_{\mu},[u_{\nu},f_{+}^{\mu\nu}]\}
8181 i[uμ,uν]f+μνi\left\langle[u_{\mu},u_{\nu}]f_{+}^{\mu\nu}\right\rangle i[uμ,uν]f+μνi\left\langle[u_{\mu},u_{\nu}]f_{+}^{\mu\nu}\right\rangle
8282 {uμ,{uμ,f+νλ}}σνλ\{u^{\mu},\{u_{\mu},f_{+}^{\nu\lambda}\}\}\sigma_{\nu\lambda} 2i{uμ,{uμ,f+νλ}}[Sν,Sλ]-2i\{u^{\mu},\{u_{\mu},f_{+}^{\nu\lambda}\}\}[S_{\nu},S_{\lambda}]
8383 [uμ,[uμ,f+νλ]]σνλ[u^{\mu},[u_{\mu},f_{+}^{\nu\lambda}]]\sigma_{\nu\lambda} 2i[uμ,[uμ,f+νλ]][Sν,Sλ]-2i[u^{\mu},[u_{\mu},f_{+}^{\nu\lambda}]][S_{\nu},S_{\lambda}]
8484 {uμ,{uλ,f+μν}}σνλ\{u_{\mu},\{u^{\lambda},f_{+}^{\mu\nu}\}\}\sigma_{\nu\lambda} 2i{uμ,{uλ,f+μν}}[Sν,Sλ]-2i\{u_{\mu},\{u^{\lambda},f_{+}^{\mu\nu}\}\}[S_{\nu},S_{\lambda}]
8585 [uμ,[uλ,f+μν]]σνλ[u_{\mu},[u^{\lambda},f_{+}^{\mu\nu}]]\sigma_{\nu\lambda} 2i[uμ,[uλ,f+μν]][Sν,Sλ]-2i[u_{\mu},[u^{\lambda},f_{+}^{\mu\nu}]][S_{\nu},S_{\lambda}]
8686 {uλ,{uμ,f+μν}}σνλ\{u^{\lambda},\{u_{\mu},f_{+}^{\mu\nu}\}\}\sigma_{\nu\lambda} 2i{uλ,{uμ,f+μν}}[Sν,Sλ]-2i\{u^{\lambda},\{u_{\mu},f_{+}^{\mu\nu}\}\}[S_{\nu},S_{\lambda}]
8787 f+μνu2σμνf_{+}^{\mu\nu}\left\langle u^{2}\right\rangle\sigma_{\mu\nu} 2i[Sμ,Sν]f+μνu2-2i[S_{\mu},S_{\nu}]f_{+}^{\mu\nu}\left\langle u^{2}\right\rangle
8888 uμf+νλuμσνλu^{\mu}\left\langle f_{+\nu\lambda}u_{\mu}\right\rangle\sigma^{\nu\lambda} 2iuμ[Sν,Sλ]f+νλuμ-2iu^{\mu}[S^{\nu},S^{\lambda}]\left\langle f_{+\nu\lambda}u_{\mu}\right\rangle
8989 f+μνuνuλσμλf_{+}^{\mu\nu}\left\langle u_{\nu}u_{\lambda}\right\rangle{\sigma_{\mu}}^{\lambda} 2if+μν[Sμ,Sλ]uνuλ-2if_{+}^{\mu\nu}[S_{\mu},S^{\lambda}]\left\langle u_{\nu}u_{\lambda}\right\rangle
9090 uμf+νλuλσμνu^{\mu}\left\langle{f_{+\nu}}^{\lambda}u_{\lambda}\right\rangle{\sigma_{\mu}}^{\nu} 2iuμ[Sμ,Sν]f+νλuλ-2iu^{\mu}[S_{\mu},S^{\nu}]\left\langle{f_{+\nu}}^{\lambda}u_{\lambda}\right\rangle
9191 uμf+μνuλσνλu^{\mu}\left\langle f_{+\mu\nu}u_{\lambda}\right\rangle\sigma^{\nu\lambda} 2iuμ[Sν,Sλ]f+μνuλ-2iu^{\mu}[S^{\nu},S^{\lambda}]\left\langle f_{+\mu\nu}u_{\lambda}\right\rangle
9292 i{[uμ,uλ],f+μν}Dνλ+h.c.i\{[u_{\mu},u^{\lambda}],f_{+}^{\mu\nu}\}D_{\nu\lambda}+h.c. 4im2{[uμ,υu],f+μν}υν-4im^{2}\{[u_{\mu},\upsilon\cdot u],f_{+}^{\mu\nu}\}\upsilon_{\nu}
9393 i[{uμ,uλ},f+μν]Dνλ+h.c.i[\{u_{\mu},u^{\lambda}\},f_{+}^{\mu\nu}]D_{\nu\lambda}+h.c. 4im2[{uμ,υu},f+μν]υν-4im^{2}[\{u_{\mu},\upsilon\cdot u\},f_{+}^{\mu\nu}]\upsilon_{\nu}
9494 i{uμ,[uλ,f+μν]}Dνλ+h.c.i\{u_{\mu},[u^{\lambda},f_{+}^{\mu\nu}]\}D_{\nu\lambda}+h.c. 4im2{uμ,[υu,f+μν]}υν-4im^{2}\{u_{\mu},[\upsilon\cdot u,f_{+}^{\mu\nu}]\}\upsilon_{\nu}
9595 i[uν,uλ]f+μλDμν+h.c.i\left\langle[u_{\nu},u_{\lambda}]{f_{+\mu}}^{\lambda}\right\rangle D^{\mu\nu}+h.c. 4im2[υu,uλ]f+μλυμ-4im^{2}\left\langle[\upsilon\cdot u,u_{\lambda}]{f_{+\mu}}^{\lambda}\right\rangle\upsilon^{\mu}
9696 {uλ,{uρ,f+μν}}σμνDλρ+h.c.\{u^{\lambda},\{u^{\rho},f_{+}^{\mu\nu}\}\}\sigma_{\mu\nu}D_{\lambda\rho}+h.c. 8im2{υu,{υu,f+μν}}[Sμ,Sν]8im^{2}\{\upsilon\cdot u,\{\upsilon\cdot u,f_{+}^{\mu\nu}\}\}[S_{\mu},S_{\nu}]
9797 [uλ,[uρ,f+μν]]σμνDλρ+h.c.[u^{\lambda},[u^{\rho},f_{+}^{\mu\nu}]]\sigma_{\mu\nu}D_{\lambda\rho}+h.c. 8im2[υu,[υu,f+μν]][Sμ,Sν]8im^{2}[\upsilon\cdot u,[\upsilon\cdot u,f_{+}^{\mu\nu}]][S_{\mu},S_{\nu}]
9898 {uλ,{uρ,f+μν}}σμλDνρ+h.c.\{u^{\lambda},\{u^{\rho},f_{+}^{\mu\nu}\}\}\sigma_{\mu\lambda}D_{\nu\rho}+h.c. 8im2{uλ,{υu,f+μν}}[Sμ,Sλ]υν8im^{2}\{u^{\lambda},\{\upsilon\cdot u,f_{+}^{\mu\nu}\}\}[S_{\mu},S_{\lambda}]\upsilon_{\nu}
9999 [uλ,[uρ,f+μν]]σμλDνρ+h.c.[u^{\lambda},[u^{\rho},f_{+}^{\mu\nu}]]\sigma_{\mu\lambda}D_{\nu\rho}+h.c. 8im2[uλ,[υu,f+μν]][Sμ,Sλ]υν8im^{2}[u^{\lambda},[\upsilon\cdot u,f_{+}^{\mu\nu}]][S_{\mu},S_{\lambda}]\upsilon_{\nu}
100100 {uρ,{uλ,f+μν}}σμλDνρ+h.c.\{u^{\rho},\{u^{\lambda},f_{+}^{\mu\nu}\}\}\sigma_{\mu\lambda}D_{\nu\rho}+h.c. 8im2{υu,{uλ,f+μν}}[Sμ,Sλ]υν8im^{2}\{\upsilon\cdot u,\{u^{\lambda},f_{+}^{\mu\nu}\}\}[S_{\mu},S_{\lambda}]\upsilon_{\nu}
101101 f+μνuλuρσμνDλρ+h.c.f_{+}^{\mu\nu}\left\langle u_{\lambda}u_{\rho}\right\rangle\sigma_{\mu\nu}D^{\lambda\rho}+h.c. 8im2f+μν[Sμ,Sν](υu)28im^{2}f_{+}^{\mu\nu}[S_{\mu},S_{\nu}]\left\langle(\upsilon\cdot u)^{2}\right\rangle
102102 f+μνuλuρσμλDνρ+h.c.f_{+}^{\mu\nu}\left\langle u_{\lambda}u_{\rho}\right\rangle{\sigma_{\mu}}^{\lambda}{D_{\nu}}^{\rho}+h.c. 8im2f+μν[Sμ,Sλ]υνuλυu8im^{2}f_{+}^{\mu\nu}[S_{\mu},S^{\lambda}]\upsilon_{\nu}\left\langle u_{\lambda}\upsilon\cdot u\right\rangle
103103 uμf+νλuρσμνDλρ+h.c.u^{\mu}\left\langle f_{+\nu\lambda}u_{\rho}\right\rangle{\sigma_{\mu}}^{\nu}D^{\lambda\rho}+h.c. 8im2uμ[Sμ,Sν]f+νλυuυλ8im^{2}u^{\mu}[S_{\mu},S^{\nu}]\left\langle f_{+\nu\lambda}\upsilon\cdot u\right\rangle\upsilon^{\lambda}
104104 uμf+νλuρσνλDμρ+h.c.u^{\mu}\left\langle f_{+\nu\lambda}u_{\rho}\right\rangle\sigma^{\nu\lambda}{D_{\mu}}^{\rho}+h.c. 8im2υu[Sν,Sλ]f+νλυu8im^{2}\upsilon\cdot u[S^{\nu},S^{\lambda}]\left\langle f_{+\nu\lambda}\upsilon\cdot u\right\rangle
105105 uμf+νρuλσνλDμρ+h.c.u^{\mu}\left\langle f_{+\nu\rho}u_{\lambda}\right\rangle\sigma^{\nu\lambda}{D_{\mu}}^{\rho}+h.c. 8im2υu[Sν,Sλ]f+νρuλυρ8im^{2}\upsilon\cdot u[S^{\nu},S^{\lambda}]\left\langle f_{+\nu\rho}u_{\lambda}\right\rangle\upsilon^{\rho}
106106 i{[uμ,uν],χ~}γ5γμDν+h.c.i\{[u^{\mu},u^{\nu}],\widetilde{\chi}_{-}\}\gamma_{5}\gamma_{\mu}D_{\nu}+h.c. 4m{[Su,υu],χ~}-4m\{[S\cdot u,\upsilon\cdot u],\widetilde{\chi}_{-}\}
107107 i[{uμ,uν},χ~]γ5γμDν+h.c.i[\{u^{\mu},u^{\nu}\},\widetilde{\chi}_{-}]\gamma_{5}\gamma_{\mu}D_{\nu}+h.c. 4m[{Su,υu},χ~]-4m[\{S\cdot u,\upsilon\cdot u\},\widetilde{\chi}_{-}]
108108 i{uμ,[uν,χ~]}γ5γμDν+h.c.i\{u^{\mu},[u^{\nu},\widetilde{\chi}_{-}]\}\gamma_{5}\gamma_{\mu}D_{\nu}+h.c. 4m{Su,[υu,χ~]}-4m\{S\cdot u,[\upsilon\cdot u,\widetilde{\chi}_{-}]\}
109109 i[uμ,uν]χ~γ5γμDν+h.c.i\left\langle[u_{\mu},u_{\nu}]\widetilde{\chi}_{-}\right\rangle\gamma_{5}\gamma^{\mu}D^{\nu}+h.c. 4m[Su,υu]χ~-4m\left\langle[S\cdot u,\upsilon\cdot u]\widetilde{\chi}_{-}\right\rangle
110110 i[uμ,uν]χγ5γμDν+h.c.i[u_{\mu},u_{\nu}]\left\langle\chi_{-}\right\rangle\gamma_{5}\gamma^{\mu}D^{\nu}+h.c. 4m[Su,υu]χ-4m[S\cdot u,\upsilon\cdot u]\left\langle\chi_{-}\right\rangle
111111 {uμ,{uμ,χ~+}}\{u_{\mu},\{u^{\mu},\widetilde{\chi}_{+}\}\} {uμ,{uμ,χ~+}}\{u_{\mu},\{u^{\mu},\widetilde{\chi}_{+}\}\}
112112 [uμ,[uμ,χ~+]][u_{\mu},[u^{\mu},\widetilde{\chi}_{+}]] [uμ,[uμ,χ~+]][u_{\mu},[u^{\mu},\widetilde{\chi}_{+}]]
113113 uμuμχ~+u^{\mu}\left\langle u_{\mu}\widetilde{\chi}_{+}\right\rangle uμuμχ~+u^{\mu}\left\langle u_{\mu}\widetilde{\chi}_{+}\right\rangle
114114 χ~+u2\widetilde{\chi}_{+}\left\langle u^{2}\right\rangle χ~+u2\widetilde{\chi}_{+}\left\langle u^{2}\right\rangle
115115 u2χ+u^{2}\left\langle\chi_{+}\right\rangle u2χ+u^{2}\left\langle\chi_{+}\right\rangle
116116 i{uμ,[uν,χ~+]}σμνi\{u^{\mu},[u^{\nu},\widetilde{\chi}_{+}]\}\sigma_{\mu\nu} 2{uμ,[uν,χ~+]}[Sμ,Sν]2\{u^{\mu},[u^{\nu},\widetilde{\chi}_{+}]\}[S_{\mu},S_{\nu}]
117117 i[uμ,{uν,χ~+}]σμνi[u^{\mu},\{u^{\nu},\widetilde{\chi}_{+}\}]\sigma_{\mu\nu} 2[uμ,{uν,χ~+}][Sμ,Sν]2[u^{\mu},\{u^{\nu},\widetilde{\chi}_{+}\}][S_{\mu},S_{\nu}]
118118 i[uμ,uν]χ~+σμνi\left\langle[u_{\mu},u_{\nu}]\widetilde{\chi}_{+}\right\rangle\sigma^{\mu\nu} 2[Sμ,Sν][uμ,uν]χ~+2[S^{\mu},S^{\nu}]\left\langle[u_{\mu},u_{\nu}]\widetilde{\chi}_{+}\right\rangle
119119 i[uμ,uν]χ+σμνi[u^{\mu},u^{\nu}]\left\langle\chi_{+}\right\rangle\sigma_{\mu\nu} 2[uμ,uν][Sμ,Sν]χ+2[u^{\mu},u^{\nu}][S_{\mu},S_{\nu}]\left\langle\chi_{+}\right\rangle
120120 {uμ,{uν,χ~+}}Dμν+h.c.\{u^{\mu},\{u^{\nu},\widetilde{\chi}_{+}\}\}D_{\mu\nu}+h.c. 4m2{υu,{υu,χ~+}}-4m^{2}\{\upsilon\cdot u,\{\upsilon\cdot u,\widetilde{\chi}_{+}\}\}
121121 [uμ,[uν,χ~+]]Dμν+h.c.[u^{\mu},[u^{\nu},\widetilde{\chi}_{+}]]D_{\mu\nu}+h.c. 4m2[υu,[υu,χ~+]]-4m^{2}[\upsilon\cdot u,[\upsilon\cdot u,\widetilde{\chi}_{+}]]
122122 uμuνχ~+Dμν+h.c.u^{\mu}\left\langle u_{\nu}\widetilde{\chi}_{+}\right\rangle{D_{\mu}}^{\nu}+h.c. 4m2υuυuχ~+-4m^{2}\upsilon\cdot u\left\langle\upsilon\cdot u\widetilde{\chi}_{+}\right\rangle
123123 χ~+uμuνDμν+h.c.\widetilde{\chi}_{+}\left\langle u_{\mu}u_{\nu}\right\rangle D^{\mu\nu}+h.c. 4m2χ~+(υu)2-4m^{2}\widetilde{\chi}_{+}\left\langle(\upsilon\cdot u)^{2}\right\rangle
124124 {uμ,uν}χ+Dμν+h.c.\{u^{\mu},u^{\nu}\}\left\langle\chi_{+}\right\rangle D_{\mu\nu}+h.c. 8m2(υu)2χ+-8m^{2}(\upsilon\cdot u)^{2}\left\langle\chi_{+}\right\rangle
125125 [uμ,[Dν,χ~+]]γ5γνDμ+h.c.[u^{\mu},[D^{\nu},\widetilde{\chi}_{+}]]\gamma_{5}\gamma_{\nu}D_{\mu}+h.c. 4im[υu,[SD,χ~+]]4im[\upsilon\cdot u,[S\cdot D,\widetilde{\chi}_{+}]]
126126 [uμ,[Dν,χ~+]]γ5γμDν+h.c.[u^{\mu},[D^{\nu},\widetilde{\chi}_{+}]]\gamma_{5}\gamma_{\mu}D_{\nu}+h.c. 4im[Su,[υD,χ~+]]4im[S\cdot u,[\upsilon\cdot D,\widetilde{\chi}_{+}]]
127127 i{uμ,[Dμ,χ~]}i\{u^{\mu},[D_{\mu},\widetilde{\chi}_{-}]\} i{uμ,[Dμ,χ~]}i\{u^{\mu},[D_{\mu},\widetilde{\chi}_{-}]\}
128128 iuμ[Dμ,χ~]i\left\langle u^{\mu}[D_{\mu},\widetilde{\chi}_{-}]\right\rangle iuμ[Dμ,χ~]i\left\langle u^{\mu}[D_{\mu},\widetilde{\chi}_{-}]\right\rangle
129129 iuμ[Dμ,χ]iu^{\mu}\left\langle[D_{\mu},\chi_{-}]\right\rangle iuμ[Dμ,χ]iu^{\mu}\left\langle[D_{\mu},\chi_{-}]\right\rangle
130130 [uμ,[Dν,χ~]]σμν[u^{\mu},[D^{\nu},\widetilde{\chi}_{-}]]\sigma_{\mu\nu} 2i[uμ,[Dν,χ~]][Sμ,Sν]-2i[u^{\mu},[D^{\nu},\widetilde{\chi}_{-}]][S_{\mu},S_{\nu}]
131131 i{uμ,[Dν,χ~]}Dμν+h.c.i\{u^{\mu},[D^{\nu},\widetilde{\chi}_{-}]\}D_{\mu\nu}+h.c. 4im2{υu,[υD,χ~]}-4im^{2}\{\upsilon\cdot u,[\upsilon\cdot D,\widetilde{\chi}_{-}]\}
132132 iuμ[Dν,χ~]Dμν+h.c.i\left\langle u^{\mu}[D^{\nu},\widetilde{\chi}_{-}]\right\rangle D_{\mu\nu}+h.c. 4im2υu[υD,χ~]-4im^{2}\left\langle\upsilon\cdot u[\upsilon\cdot D,\widetilde{\chi}_{-}]\right\rangle
133133 iuμ[Dν,χ]Dμν+h.c.iu^{\mu}\left\langle[D_{\nu},\chi_{-}]\right\rangle{D_{\mu}}^{\nu}+h.c. 4im2υu[υD,χ]-4im^{2}\upsilon\cdot u\left\langle[\upsilon\cdot D,\chi_{-}]\right\rangle
134134 i{[Dμ,f+μν],uλ}γ5γνDλ+h.c.i\{[D^{\mu},{f_{+\mu}}^{\nu}],u^{\lambda}\}\gamma_{5}\gamma_{\nu}D_{\lambda}+h.c. 4m{[Dμ,f+μν],υu}Sν-4m\{[D^{\mu},{f_{+\mu}}^{\nu}],\upsilon\cdot u\}S_{\nu}
135135 i{[Dμ,f+μν],uλ}γ5γλDν+h.c.i\{[D^{\mu},{f_{+\mu}}^{\nu}],u^{\lambda}\}\gamma_{5}\gamma_{\lambda}D_{\nu}+h.c. 4m{[Dμ,f+μν],Su}υν-4m\{[D^{\mu},{f_{+\mu}}^{\nu}],S\cdot u\}\upsilon_{\nu}
136136 i{[Dμ,f+λν],uλ}γ5γμDν+h.c.i\{[D^{\mu},{f_{+\lambda}}^{\nu}],u^{\lambda}\}\gamma_{5}\gamma_{\mu}D_{\nu}+h.c. 4m{[SD,f+λν],uλ}υν-4m\{[S\cdot D,{f_{+\lambda}}^{\nu}],u^{\lambda}\}\upsilon_{\nu}
137137 i{[Dμ,f+νλ],uμ}γ5γνDλ+h.c.i\{[D^{\mu},f_{+}^{\nu\lambda}],u_{\mu}\}\gamma_{5}\gamma_{\nu}D_{\lambda}+h.c. 4m{[Dμ,f+νλ],uμ}Sνυλ-4m\{[D^{\mu},f_{+}^{\nu\lambda}],u_{\mu}\}S_{\nu}\upsilon_{\lambda}
138138 i[Dμ,f+νλ]uλγ5γμDν+h.c.i\left\langle[D_{\mu},{f_{+\nu}}^{\lambda}]u_{\lambda}\right\rangle\gamma_{5}\gamma^{\mu}D^{\nu}+h.c. 4m[SD,f+νλ]uλυν-4m\left\langle[S\cdot D,{f_{+\nu}}^{\lambda}]u_{\lambda}\right\rangle\upsilon_{\nu}
139139 i[Dλ,f+μλ]uνγ5γμDν+h.c.i\left\langle[D^{\lambda},f_{+\mu\lambda}]u_{\nu}\right\rangle\gamma_{5}\gamma^{\mu}D^{\nu}+h.c. 4mSμ[Dλ,f+μλ]υu-4mS^{\mu}\left\langle[D^{\lambda},f_{+\mu\lambda}]\upsilon\cdot u\right\rangle
140140 i[Dμ,f+νλ]uμγ5γνDλ+h.c.i\left\langle[D^{\mu},f_{+}^{\nu\lambda}]u_{\mu}\right\rangle\gamma_{5}\gamma_{\nu}D_{\lambda}+h.c. 4m[Dμ,f+νλ]uμSνυλ-4m\left\langle[D^{\mu},f_{+}^{\nu\lambda}]u_{\mu}\right\rangle S_{\nu}\upsilon_{\lambda}
141141 i[Dλ,f+νλ]uμγ5γμDν+h.c.i\left\langle[D^{\lambda},f_{+\nu\lambda}]u_{\mu}\right\rangle\gamma_{5}\gamma^{\mu}D^{\nu}+h.c. 4m[Dλ,f+νλ]Suυν-4m\left\langle[D^{\lambda},f_{+\nu\lambda}]S\cdot u\right\rangle\upsilon^{\nu}
142142 {uμ,[Dν,fμν]}\{u^{\mu},[D^{\nu},f_{-\mu\nu}]\} {uμ,[Dν,fμν]}\{u^{\mu},[D^{\nu},f_{-\mu\nu}]\}
143143 uμ[Dν,fμν]\left\langle u^{\mu}[D^{\nu},f_{-\mu\nu}]\right\rangle uμ[Dν,fμν]\left\langle u^{\mu}[D^{\nu},f_{-\mu\nu}]\right\rangle
144144 i[uμ,[Dμ,fνλ]]σνλi[u^{\mu},[D_{\mu},f^{\nu\lambda}_{-}]]\sigma_{\nu\lambda} 2[uμ,[Dμ,fνλ]][Sν,Sλ]2[u^{\mu},[D_{\mu},f^{\nu\lambda}_{-}]][S_{\nu},S_{\lambda}]
145145 i[uμ,[Dν,fνλ]]σμλi[u^{\mu},[D^{\nu},{f_{-\nu}}^{\lambda}]]\sigma_{\mu\lambda} 2[uμ,[Dν,fνλ]][Sμ,Sλ]2[u^{\mu},[D^{\nu},{f_{-\nu}}^{\lambda}]][S_{\mu},S_{\lambda}]
146146 i[uν,[Dμ,fνλ]]σμλi[u_{\nu},[D^{\mu},f^{\nu\lambda}_{-}]]\sigma_{\mu\lambda} 2[uν,[Dμ,fνλ]][Sμ,Sλ]2[u_{\nu},[D^{\mu},f^{\nu\lambda}_{-}]][S_{\mu},S_{\lambda}]
147147 {uλ,[Dμ,fμν]}Dνλ+h.c.\{u^{\lambda},[D_{\mu},f_{-}^{\mu\nu}]\}D_{\nu\lambda}+h.c. 4m2{υu,[Dμ,fμν]}υν-4m^{2}\{\upsilon\cdot u,[D_{\mu},f_{-}^{\mu\nu}]\}\upsilon_{\nu}
148148 {uμ,[Dλ,fμν]}Dνλ+h.c.\{u_{\mu},[D^{\lambda},f_{-}^{\mu\nu}]\}D_{\nu\lambda}+h.c. 4m2{uμ,[υD,fμν]}υν-4m^{2}\{u_{\mu},[\upsilon\cdot D,f_{-}^{\mu\nu}]\}\upsilon_{\nu}
149149 uμ[Dλ,fμν]Dνλ+h.c.\left\langle u_{\mu}[D^{\lambda},f_{-}^{\mu\nu}]\right\rangle D_{\nu\lambda}+h.c. 4m2υνuμ[υD,fμν]-4m^{2}\upsilon_{\nu}\left\langle u_{\mu}[\upsilon\cdot D,f_{-}^{\mu\nu}]\right\rangle
150150 uλ[Dμ,fμν]Dνλ+h.c.\left\langle u^{\lambda}[D_{\mu},f_{-}^{\mu\nu}]\right\rangle D_{\nu\lambda}+h.c. 4m2υνυu[Dμ,fμν]-4m^{2}\upsilon_{\nu}\left\langle\upsilon\cdot u[D_{\mu},f_{-}^{\mu\nu}]\right\rangle
151151 χ~+2\widetilde{\chi}_{+}^{2} χ~+2\widetilde{\chi}_{+}^{2}
152152 χ~+2\left\langle\widetilde{\chi}_{+}^{2}\right\rangle χ~+2\left\langle\widetilde{\chi}_{+}^{2}\right\rangle
153153 χ~+χ+\widetilde{\chi}_{+}\left\langle\chi_{+}\right\rangle χ~+χ+\widetilde{\chi}_{+}\left\langle\chi_{+}\right\rangle
154154 χ+2\left\langle\chi_{+}\right\rangle^{2} χ+2\left\langle\chi_{+}\right\rangle^{2}
155155 {f+μν,χ~+}σμν\{f_{+}^{\mu\nu},\widetilde{\chi}_{+}\}\sigma_{\mu\nu} 2i{f+μν,χ~+}[Sμ,Sν]-2i\{f_{+}^{\mu\nu},\widetilde{\chi}_{+}\}[S_{\mu},S_{\nu}]
156156 f+μνχ~+σμν\left\langle f_{+\mu\nu}\widetilde{\chi}_{+}\right\rangle\sigma^{\mu\nu} 2i[Sμ,Sν]f+μνχ~+-2i[S^{\mu},S^{\nu}]\left\langle f_{+\mu\nu}\widetilde{\chi}_{+}\right\rangle
157157 f+μνχ+σμνf_{+}^{\mu\nu}\left\langle\chi_{+}\right\rangle\sigma_{\mu\nu} 2if+μν[Sμ,Sν]χ+-2if_{+}^{\mu\nu}[S_{\mu},S_{\nu}]\left\langle\chi_{+}\right\rangle
158158 [χ~+,hμν]γ5γμDν+h.c.[\widetilde{\chi}_{+},h^{\mu\nu}]\gamma_{5}\gamma_{\mu}D_{\nu}+h.c. 4im[χ~+,hμν]Sμυν4im[\widetilde{\chi}_{+},h^{\mu\nu}]S_{\mu}\upsilon_{\nu}
159159 [χ~+,fμν]γ5γμDν+h.c.[\widetilde{\chi}_{+},f_{-}^{\mu\nu}]\gamma_{5}\gamma_{\mu}D_{\nu}+h.c. 4im[χ~+,fμν]Sμυν4im[\widetilde{\chi}_{+},f_{-}^{\mu\nu}]S_{\mu}\upsilon_{\nu}
160160 [D2,χ~+][D^{2},\widetilde{\chi}_{+}] [D2,χ~+][D^{2},\widetilde{\chi}_{+}]
161161 [D2,χ+]\left\langle[D^{2},\chi_{+}]\right\rangle [D2,χ+]\left\langle[D^{2},\chi_{+}]\right\rangle
162162 χ~2\widetilde{\chi}_{-}^{2} χ~2\widetilde{\chi}_{-}^{2}
163163 χ~2\left\langle\widetilde{\chi}_{-}^{2}\right\rangle χ~2\left\langle\widetilde{\chi}_{-}^{2}\right\rangle
164164 χ~χ\widetilde{\chi}_{-}\left\langle\chi_{-}\right\rangle χ~χ\widetilde{\chi}_{-}\left\langle\chi_{-}\right\rangle
165165 χ2\left\langle\chi_{-}\right\rangle^{2} χ2\left\langle\chi_{-}\right\rangle^{2}
166166 {f+μν,χ~}γ5γμDν+h.c.\{f_{+}^{\mu\nu},\widetilde{\chi}_{-}\}\gamma_{5}\gamma_{\mu}D_{\nu}+h.c. 4im{f+μν,χ~}Sμυν4im\{f_{+}^{\mu\nu},\widetilde{\chi}_{-}\}S_{\mu}\upsilon_{\nu}
167167 f+μνχ~γ5γμDν+h.c.\left\langle f_{+}^{\mu\nu}\widetilde{\chi}_{-}\right\rangle\gamma_{5}\gamma_{\mu}D_{\nu}+h.c. 4imf+μνχ~Sμυν4im\left\langle f_{+}^{\mu\nu}\widetilde{\chi}_{-}\right\rangle S_{\mu}\upsilon_{\nu}
168168 f+μνχγ5γμDν+h.c.f_{+}^{\mu\nu}\left\langle\chi_{-}\right\rangle\gamma_{5}\gamma_{\mu}D_{\nu}+h.c. 4imf+μνχSμυν4imf_{+}^{\mu\nu}\left\langle\chi_{-}\right\rangle S_{\mu}\upsilon_{\nu}
169169 i{hμν,χ~}Dμν+h.c.i\{h^{\mu\nu},\widetilde{\chi}_{-}\}D_{\mu\nu}+h.c. 4im2{hμν,χ~}υμυν-4im^{2}\{h^{\mu\nu},\widetilde{\chi}_{-}\}\upsilon_{\mu}\upsilon_{\nu}
170170 ihμνχ~Dμν+h.c.i\left\langle h_{\mu\nu}\widetilde{\chi}_{-}\right\rangle D^{\mu\nu}+h.c. 4im2υμυνhμνχ~-4im^{2}\upsilon^{\mu}\upsilon^{\nu}\left\langle h_{\mu\nu}\widetilde{\chi}_{-}\right\rangle
171171 ihμνχDμν+h.c.ih_{\mu\nu}\left\langle\chi_{-}\right\rangle D^{\mu\nu}+h.c. 4im2hμνυμυνχ-4im^{2}h_{\mu\nu}\upsilon^{\mu}\upsilon^{\nu}\left\langle\chi_{-}\right\rangle
172172 [fμν,χ~]σμν[f_{-}^{\mu\nu},\widetilde{\chi}_{-}]\sigma_{\mu\nu} 2i[fμν,χ~][Sμ,Sν]-2i[f_{-}^{\mu\nu},\widetilde{\chi}_{-}][S_{\mu},S_{\nu}]
173173 {f+μν,f+μν}\{f_{+}^{\mu\nu},f_{+\mu\nu}\} {f+μν,f+μν}\{f_{+}^{\mu\nu},f_{+\mu\nu}\}
174174 f+μνf+μν\left\langle f_{+}^{\mu\nu}f_{+\mu\nu}\right\rangle f+μνf+μν\left\langle f_{+}^{\mu\nu}f_{+\mu\nu}\right\rangle
175175 i[f+μν,f+μλ]σνλi[f_{+}^{\mu\nu},{f_{+\mu}}^{\lambda}]\sigma_{\nu\lambda} 2[f+μν,f+μλ][Sν,Sλ]2[f_{+}^{\mu\nu},{f_{+\mu}}^{\lambda}][S_{\nu},S_{\lambda}]
176176 {f+μν,f+μλ}Dνλ+h.c.\{f_{+}^{\mu\nu},{f_{+\mu}}^{\lambda}\}D_{\nu\lambda}+h.c. 4m2{f+μν,f+μλ}υνυλ-4m^{2}\{f_{+}^{\mu\nu},{f_{+\mu}}^{\lambda}\}\upsilon_{\nu}\upsilon_{\lambda}
177177 f+μλf+νλDμν+h.c.\left\langle{f_{+\mu}}^{\lambda}f_{+\nu\lambda}\right\rangle D^{\mu\nu}+h.c. 4m2υμυνf+μλf+νλ-4m^{2}\upsilon^{\mu}\upsilon^{\nu}\left\langle{f_{+\mu}}^{\lambda}f_{+\nu\lambda}\right\rangle
178178 i[f+μν,f+λρ]σμλDνρ+h.c.i[f_{+}^{\mu\nu},f_{+}^{\lambda\rho}]\sigma_{\mu\lambda}D_{\nu\rho}+h.c. 8m2[f+μν,f+λρ][Sμ,Sλ]υνυρ-8m^{2}[f_{+}^{\mu\nu},f_{+}^{\lambda\rho}][S_{\mu},S_{\lambda}]\upsilon_{\nu}\upsilon_{\rho}
179179 i{f+μν,hμλ}γ5γνDλ+h.c.i\{f_{+}^{\mu\nu},{h_{\mu}}^{\lambda}\}\gamma_{5}\gamma_{\nu}D_{\lambda}+h.c. 4m{f+μν,hμλ}Sνυλ-4m\{f_{+}^{\mu\nu},{h_{\mu}}^{\lambda}\}S_{\nu}\upsilon_{\lambda}
180180 i{f+μν,hμλ}γ5γλDν+h.c.i\{f_{+}^{\mu\nu},{h_{\mu}}^{\lambda}\}\gamma_{5}\gamma_{\lambda}D_{\nu}+h.c. 4m{f+μν,hμλ}Sλυν-4m\{f_{+}^{\mu\nu},{h_{\mu}}^{\lambda}\}S_{\lambda}\upsilon_{\nu}
181181 if+μλhνλγ5γμDν+h.c.i\left\langle{f_{+\mu}}^{\lambda}h_{\nu\lambda}\right\rangle\gamma_{5}\gamma^{\mu}D^{\nu}+h.c. 4mSμυνf+μλhνλ-4mS^{\mu}\upsilon^{\nu}\left\langle{f_{+\mu}}^{\lambda}h_{\nu\lambda}\right\rangle
182182 if+νλhμλγ5γμDν+h.c.i\left\langle{f_{+\nu}}^{\lambda}h_{\mu\lambda}\right\rangle\gamma_{5}\gamma^{\mu}D^{\nu}+h.c. 4mSμυνf+νλhμλ-4mS^{\mu}\upsilon^{\nu}\left\langle{f_{+\nu}}^{\lambda}h_{\mu\lambda}\right\rangle
183183 iϵμνλρ[f+μν,hλσ]Dρσ+h.c.i\epsilon^{\mu\nu\lambda\rho}[f_{+\mu\nu},{h_{\lambda}}^{\sigma}]D_{\rho\sigma}+h.c. 4im2ϵμνλρ[f+μν,hλσ]υρυσ-4im^{2}\epsilon^{\mu\nu\lambda\rho}[f_{+\mu\nu},{h_{\lambda}}^{\sigma}]\upsilon_{\rho}\upsilon_{\sigma}
184184 i{f+μν,hλρ}γ5γμDνλρ+h.c.i\{f_{+}^{\mu\nu},h^{\lambda\rho}\}\gamma_{5}\gamma_{\mu}D_{\nu\lambda\rho}+h.c. 24m3{f+μν,hλρ}Sμυνυλυρ24m^{3}\{f_{+}^{\mu\nu},h^{\lambda\rho}\}S_{\mu}\upsilon_{\nu}\upsilon_{\lambda}\upsilon_{\rho}
185185 if+μνhλργ5γμDνλρ+h.c.i\left\langle f_{+\mu\nu}h_{\lambda\rho}\right\rangle\gamma_{5}\gamma^{\mu}D^{\nu\lambda\rho}+h.c. 24m3Sμυνυλυρf+μνhλρ24m^{3}S^{\mu}\upsilon^{\nu}\upsilon^{\lambda}\upsilon^{\rho}\left\langle f_{+\mu\nu}h_{\lambda\rho}\right\rangle
186186 iϵμνλρ[f+μν,fλρ]i\epsilon^{\mu\nu\lambda\rho}[f_{+\mu\nu},f_{-\lambda\rho}] iϵμνλρ[f+μν,fλρ]i\epsilon^{\mu\nu\lambda\rho}[f_{+\mu\nu},f_{-\lambda\rho}]
187187 i{f+μν,fμλ}γ5γνDλ+h.c.i\{f_{+}^{\mu\nu},{f_{-\mu}}^{\lambda}\}\gamma_{5}\gamma_{\nu}D_{\lambda}+h.c. 4mSνυλ{f+μν,fμλ}-4mS_{\nu}\upsilon_{\lambda}\{f_{+}^{\mu\nu},{f_{-\mu}}^{\lambda}\}
188188 i{f+μν,fμλ}γ5γλDν+h.c.i\{f_{+}^{\mu\nu},{f_{-\mu}}^{\lambda}\}\gamma_{5}\gamma_{\lambda}D_{\nu}+h.c. 4mSλυν{f+μν,fμλ}-4mS_{\lambda}\upsilon_{\nu}\{f_{+}^{\mu\nu},{f_{-\mu}}^{\lambda}\}
189189 if+μλfνλγ5γμDν+h.c.i\left\langle{f_{+\mu}}^{\lambda}f_{-\nu\lambda}\right\rangle\gamma_{5}\gamma^{\mu}D^{\nu}+h.c. 4mSμυνf+μλfνλ-4mS^{\mu}\upsilon^{\nu}\left\langle{f_{+\mu}}^{\lambda}f_{-\nu\lambda}\right\rangle
190190 if+νλfμλγ5γμDν+h.c.i\left\langle{f_{+\nu}}^{\lambda}f_{-\mu\lambda}\right\rangle\gamma_{5}\gamma^{\mu}D^{\nu}+h.c. 4mSμυνf+νλfμλ-4mS^{\mu}\upsilon^{\nu}\left\langle{f_{+\nu}}^{\lambda}f_{-\mu\lambda}\right\rangle
191191 iϵμνλρ[f+μν,fλσ]Dρσ+h.c.i\epsilon^{\mu\nu\lambda\rho}[f_{+\mu\nu},{f_{-\lambda}}^{\sigma}]D_{\rho\sigma}+h.c. 4im2ϵμνλρ[f+μν,fλσ]υρυσ-4im^{2}\epsilon^{\mu\nu\lambda\rho}[f_{+\mu\nu},{f_{-\lambda}}^{\sigma}]\upsilon_{\rho}\upsilon_{\sigma}
192192 iϵμνλρ[f+μσ,fνλ]Dρσ+h.c.i\epsilon^{\mu\nu\lambda\rho}[{f_{+\mu}}^{\sigma},f_{-\nu\lambda}]D_{\rho\sigma}+h.c. 4im2ϵμνλρ[f+μσ,fνλ]υρυσ-4im^{2}\epsilon^{\mu\nu\lambda\rho}[{f_{+\mu}}^{\sigma},f_{-\nu\lambda}]\upsilon_{\rho}\upsilon_{\sigma}
193193 [D2,f+νλ]σνλ[D^{2},f_{+}^{\nu\lambda}]\sigma_{\nu\lambda} 2i[D2,f+νλ][Sν,Sλ]-2i[D^{2},f_{+}^{\nu\lambda}][S_{\nu},S_{\lambda}]
194194 [Dμν,f+νλ]σμλ[{D_{\mu}}^{\nu},f_{+\nu\lambda}]\sigma^{\mu\lambda} 2i[Dμν,f+νλ][Sμ,Sλ]-2i[{D_{\mu}}^{\nu},f_{+\nu\lambda}][S^{\mu},S^{\lambda}]
195195 [Dμν,f+λρ]σλρDμν+h.c.[D^{\mu\nu},f_{+}^{\lambda\rho}]\sigma_{\lambda\rho}D_{\mu\nu}+h.c. 8im2[Dμν,f+λρ][Sλ,Sρ]υμυν8im^{2}[D^{\mu\nu},f_{+}^{\lambda\rho}][S_{\lambda},S_{\rho}]\upsilon_{\mu}\upsilon_{\nu}
196196 [Dμν,f+λρ]σμλDνρ+h.c.[D^{\mu\nu},f_{+}^{\lambda\rho}]\sigma_{\mu\lambda}D_{\nu\rho}+h.c. 8im2[Dμν,f+λρ][Sμ,Sλ]υνυρ8im^{2}[D^{\mu\nu},f_{+}^{\lambda\rho}][S_{\mu},S_{\lambda}]\upsilon_{\nu}\upsilon_{\rho}
197197 {hμν,hμν}\{h^{\mu\nu},h_{\mu\nu}\} {hμν,hμν}\{h^{\mu\nu},h_{\mu\nu}\}
198198 hμνhμν\left\langle h^{\mu\nu}h_{\mu\nu}\right\rangle hμνhμν\left\langle h^{\mu\nu}h_{\mu\nu}\right\rangle
199199 i[hμν,hμλ]σνλi[h^{\mu\nu},{h_{\mu}}^{\lambda}]\sigma_{\nu\lambda} 2[hμν,hμλ][Sν,Sλ]2[h^{\mu\nu},{h_{\mu}}^{\lambda}][S_{\nu},S_{\lambda}]
200200 {hμν,hμλ}Dνλ+h.c.\{h^{\mu\nu},{h_{\mu}}^{\lambda}\}D_{\nu\lambda}+h.c. 4m2{hμν,hμλ}υνυλ-4m^{2}\{h^{\mu\nu},{h_{\mu}}^{\lambda}\}\upsilon_{\nu}\upsilon_{\lambda}
201201 hμλhνλDμν+h.c.\left\langle{h_{\mu}}^{\lambda}h_{\nu\lambda}\right\rangle D^{\mu\nu}+h.c. 4m2υμυνhμλhνλ-4m^{2}\upsilon^{\mu}\upsilon^{\nu}\left\langle{h_{\mu}}^{\lambda}h_{\nu\lambda}\right\rangle
202202 i[hμν,hλρ]σμλDνρ+h.c.i[h^{\mu\nu},h^{\lambda\rho}]\sigma_{\mu\lambda}D_{\nu\rho}+h.c. 8m2[hμν,hλρ][Sμ,Sλ]υνυρ-8m^{2}[h^{\mu\nu},h^{\lambda\rho}][S_{\mu},S_{\lambda}]\upsilon_{\nu}\upsilon_{\rho}
203203 {hμν,hλρ}Dμνλρ+h.c.\{h^{\mu\nu},h^{\lambda\rho}\}D_{\mu\nu\lambda\rho}+h.c. 48m4{hμν,hλρ}υμυνυλυρ48m^{4}\{h^{\mu\nu},h^{\lambda\rho}\}\upsilon_{\mu}\upsilon_{\nu}\upsilon_{\lambda}\upsilon_{\rho}
204204 hμνhλρDμνλρ+h.c.\left\langle h_{\mu\nu}h_{\lambda\rho}\right\rangle D^{\mu\nu\lambda\rho}+h.c. 48m4υμυνυλυρhμνhλρ48m^{4}\upsilon^{\mu}\upsilon^{\nu}\upsilon^{\lambda}\upsilon^{\rho}\left\langle h_{\mu\nu}h_{\lambda\rho}\right\rangle
205205 i[fμν,hμλ]σνλi[f_{-}^{\mu\nu},{h_{\mu}}^{\lambda}]\sigma_{\nu\lambda} 2[fμν,hμλ][Sν,Sλ]2[f_{-}^{\mu\nu},{h_{\mu}}^{\lambda}][S_{\nu},S_{\lambda}]
206206 {fμν,hμλ}Dνλ+h.c.\{f^{\mu\nu}_{-},{h_{\mu}}^{\lambda}\}D_{\nu\lambda}+h.c. 4m2υνυλ{fμν,hμλ}-4m^{2}\upsilon_{\nu}\upsilon_{\lambda}\{f^{\mu\nu}_{-},{h_{\mu}}^{\lambda}\}
207207 fμλhνλDμν+h.c.\left\langle{f_{-\mu}}^{\lambda}h_{\nu\lambda}\right\rangle D^{\mu\nu}+h.c. 4m2υμυνfμλhνλ-4m^{2}\upsilon^{\mu}\upsilon^{\nu}\left\langle{f_{-\mu}}^{\lambda}h_{\nu\lambda}\right\rangle
208208 i[fμν,hλρ]σμνDλρ+h.c.i[f^{\mu\nu}_{-},h^{\lambda\rho}]\sigma_{\mu\nu}D_{\lambda\rho}+h.c. 8m2[fμν,hλρ][Sμ,Sν]υλυρ-8m^{2}[f^{\mu\nu}_{-},h^{\lambda\rho}][S_{\mu},S_{\nu}]\upsilon_{\lambda}\upsilon_{\rho}
209209 i[fμν,hλρ]σμλDνρ+h.c.i[f^{\mu\nu}_{-},h^{\lambda\rho}]\sigma_{\mu\lambda}D_{\nu\rho}+h.c. 8m2[fμν,hλρ][Sμ,Sλ]υνυρ-8m^{2}[f^{\mu\nu}_{-},h^{\lambda\rho}][S_{\mu},S_{\lambda}]\upsilon_{\nu}\upsilon_{\rho}
210210 {fμν,fμν}\{f_{-}^{\mu\nu},f_{-\mu\nu}\} {fμν,fμν}\{f_{-}^{\mu\nu},f_{-\mu\nu}\}
211211 fμνfμν\left\langle f_{-}^{\mu\nu}f_{-\mu\nu}\right\rangle fμνfμν\left\langle f_{-}^{\mu\nu}f_{-\mu\nu}\right\rangle
212212 i[fμν,fμλ]σνλi[f_{-}^{\mu\nu},{f_{-\mu}}^{\lambda}]\sigma_{\nu\lambda} 2[fμν,fμλ][Sν,Sλ]2[f_{-}^{\mu\nu},{f_{-\mu}}^{\lambda}][S_{\nu},S_{\lambda}]
213213 {fμν,fμλ}Dνλ+h.c.\{f_{-}^{\mu\nu},{f_{-\mu}}^{\lambda}\}D_{\nu\lambda}+h.c. 4m2{fμν,fμλ}υνυλ-4m^{2}\{f_{-}^{\mu\nu},{f_{-\mu}}^{\lambda}\}\upsilon_{\nu}\upsilon_{\lambda}
214214 fμλfνλDμν+h.c.\left\langle{f_{-\mu}}^{\lambda}f_{-\nu\lambda}\right\rangle D^{\mu\nu}+h.c. 4m2υμυνfμλfνλ-4m^{2}\upsilon^{\mu}\upsilon^{\nu}\left\langle{f_{-\mu}}^{\lambda}f_{-\nu\lambda}\right\rangle
215215 i[fμν,fλρ]σμλDνρ+h.c.i[f_{-}^{\mu\nu},f_{-}^{\lambda\rho}]\sigma_{\mu\lambda}D_{\nu\rho}+h.c. 8m2[fμν,fλρ][Sμ,Sλ]υνυρ-8m^{2}[f_{-}^{\mu\nu},f_{-}^{\lambda\rho}][S_{\mu},S_{\lambda}]\upsilon_{\nu}\upsilon_{\rho}
216216 χχ\left\langle\chi\chi^{\dagger}\right\rangle χχ\left\langle\chi\chi^{\dagger}\right\rangle
217217 FRμνFRμν+FLμνFLμν\left\langle F_{R}^{\mu\nu}F_{R\mu\nu}+F_{L}^{\mu\nu}F_{L\mu\nu}\right\rangle FRμνFRμν+FLμνFLμν\left\langle F_{R}^{\mu\nu}F_{R\mu\nu}+F_{L}^{\mu\nu}F_{L\mu\nu}\right\rangle
218218 FRμλFRνλ+FLμλFLνλDμν+h.c.\left\langle{F_{R\mu}}^{\lambda}F_{R\nu\lambda}+{F_{L\mu}}^{\lambda}F_{L\nu\lambda}\right\rangle D^{\mu\nu}+h.c. 4m2υμυνFRμλFRνλ+FLμλFLνλ-4m^{2}\upsilon^{\mu}\upsilon^{\nu}\left\langle{F_{R\mu}}^{\lambda}F_{R\nu\lambda}+{F_{L\mu}}^{\lambda}F_{L\nu\lambda}\right\rangle

References