This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\epstopdfDeclareGraphicsRule

.pdfpng.pngconvert #1 \OutputFile \AppendGraphicsExtensions.pdf

Chemical abundances in Seyfert galaxies – VII. Direct abundance determination of neon based on optical and infrared emission lines

Mark Armah,1,2 O. L. Dors,1 C. P. Aydar,3 M. V. Cardaci,4,5 G. F. Hägele,4,5 Anna Feltre,6,7 R. Riffel,2 R. A. Riffel8 and A. C. Krabbe1
1 Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, CEP: 12244-000, São José dos Campos, SP, Brazil
2 Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil
3 Universidade de São Paulo. R. do Matão, 1226, CEP: 05508-090, São Paulo, SP, Brazil
4 Instituto de Astrofísica de La Plata (CONICET-UNLP), Argentina
5 Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina
6 SISSA, Via Bonomea 265, 34136 Trieste, Italy
7 INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via P. Gobetti 93/3, 40129 Bologna, Italy
8Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
E-mail: [email protected]: [email protected]
(Accepted XXX. Received YYY; in original form ZZZ)
Abstract

For the first time, neon abundance has been derived in the narrow line region from a sample of Seyfert 2 nuclei. In view of this, we compiled from the literature fluxes of optical and infrared (IR) narrow emission lines for 35 Seyfert 2 nuclei in the local universe (z 0.06z\>\la\>0.06). The relative intensities of emission lines were used to derive the ionic and total neon and oxygen abundances through electron temperature estimations (TeT_{\rm e}-method). For the neon, abundance estimates were obtained by using both TeT_{\rm e}-method and IR-method. Based on photoionization model results, we found a lower electron temperature [te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}})] for the gas phase where the Ne2+ is located in comparison with t3t_{3} for the O2+ ion. We find that the differences (D) between Ne2+/H+ ionic abundances calculated from IR-method and TeT_{\mathrm{e}}{-}method (assuming t3t_{3} in the Ne2+/H+ derivation) are similar to the derivations in star-forming regions (SFs) and they are reduced by a mean factor of 3\sim 3 when te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) is considered. We propose a semi-empirical Ionization Correction Factor (ICF) for the neon, based on [Ne ii]12.81µm\micron, [Ne iii]15.56µm\micron and oxygen ionic abundance ratios. We find that the average Ne/H abundance for the Seyfert 2s sample is nearly 2 times higher than similar estimate for SFs. Finally, for the very high metallicity regime (i.e. [12+log(O/H) 8.80\rm 12+log(O/H)\>\ga\>8.80]) an increase in Ne/O with O/H is found, which likely indicates secondary stellar production for the neon.

keywords:
galaxies: active – galaxies: abundances – galaxies: evolution – galaxies: nuclei – galaxies: ISM – galaxies: Seyfert –ISM: abundances
pubyear: 2021pagerange: Chemical abundances in Seyfert galaxies – VII. Direct abundance determination of neon based on optical and infrared emission linesChemical abundances in Seyfert galaxies – VII. Direct abundance determination of neon based on optical and infrared emission lines

1 Introduction

Active Galactic Nuclei (AGNs) present prominent emission lines in their spectra, whose relative intensities can be used to estimate the metallicity and elemental abundances of heavy elements (O, N, Ne, S, etc.) in the gas-phase of these objects. This feature, together with their high luminosity, has made these objects essential to chemical evolution studies of galaxies along the Hubble time.

The first chemical abundance study in AGNs, based on direct determination of the electron temperature (hereafter TeT_{\rm e}-method), was carried out by Osterbrock & Miller (1975) for the radio galaxy 3C 405 (Cygnus A). These authors derived the oxygen abundance relative to hydrogen (O/H) (among other elements) in the order of 12+log(O/H)=8.60. Most AGN studies have mainly been carried out following this aforementioned pioneering work. In fact, Ferland & Netzer (1983) compared observational optical emission line ratios to photoionization model predictions built with the first version of the Cloudy code (Ferland & Truran, 1980) and found that the metallicities of Seyfert 2s are in the range 0.1(Z/Z) 10.1\>\la\>(Z/{\rm Z_{\odot}})\>\la\>1, but the nitrogen abundance can have a relative enhancement in relation with oxygen, which is analogous to H ii regions. Thereafter, several studies have relied on the estimations of metallicities for AGNs using photoionization models in the local universe (e.g. Stasińska 1984; Ferland & Osterbrock 1986; Storchi-Bergmann et al. 1998; Groves et al. 2006; Feltre et al. 2016; Castro et al. 2017; Pérez-Montero et al. 2019; Thomas et al. 2019; Carvalho et al. 2020) as well as at high redshifts (e.g. Nagao et al. 2006; Matsuoka et al. 2009; Matsuoka et al. 2018; Nakajima et al. 2018; Dors et al. 2014; Dors et al. 2018; Dors et al. 2019; Mignoli et al. 2019; Guo et al. 2020).

Since oxygen presents prominent emission lines (e.g. [O ii]λ3726\lambda 3726 Å+λ3729\lambda 3729 Å, [O iii]λ4959,λ5007\lambda 4959,\lambda 5007 Å) in the optical spectrum of gaseous nebulae, emitted by its most abundant ions (O+\rm O^{+}, O2+\rm O^{2+}), it has usually been used as metallicity tracer for the gas phase of line-emitting objects (e.g. Dors 2021; Kewley et al. 2019). Specifically, Flury & Moran (2020) and Dors et al. (2020c) found that the O3+\rm O^{3+} abundance in AGNs is not larger than 20 per cent of the total O/H abundance. Therefore, the oxygen abundance determination has usually been derived through only the lines emitted by O+\rm O^{+} and O2+\rm O^{2+} ions (for a review, see Dors et al. 2020b). On the other hand, the abundances of other heavy elements, e.g. N, Ne, S, etc., are poorly known in AGNs. Dors et al. (2017) presented the first quantitative nitrogen abundance determination for a sample of 44 Seyfert 2 nuclei in the local universe (z 0.1z\>\la\>0.1; see also Contini 2017; Pérez-Montero et al. 2019). Moreover, for the sulphur, only qualitative abundance determinations, based on the comparison between observational line ratios and photoionization model predictions were performed by Storchi-Bergmann & Pastoriza (1990).

In galaxy evolution and stellar nucleosynthesis, the knowledge of neon abundance is relevant, especially among the heavy elements. Neon is one of the noble gas elements which does not combine with itself or with other chemical species in the formation of molecules and dust grains (e.g. Jenkins 1987; Henry 1993; Sofia et al. 1994; Sofia 2004; Brinchmann et al. 2013). Therefore, the depletion of abundance in the gas phase process is not expected in neon, conversely to such occurrence in the oxygen (e.g. Izotov et al. 2006; Pilyugin et al. 2007) and refractory elements (e.g. Mg, Si, Fe; Osterbrock et al. 1992; Peimbert et al. 1992, 1993; Garnett et al. 1995; Peimbert & Peimbert 2010) trapped in dust. Regarding chemical galaxy evolution, the chemical abundances of neon and oxygen are expected to closely trace each other (Crockett et al., 2006) due to the fact that both elements are produced in stars more massive than 10 M{\rm M_{\odot}} (e.g. Woosley & Weaver 1995) and a constant Ne/O abundance ratio over a wide range of O/H abundance is supposed to be found. However, chemical abundance studies of star-forming regions have revealed a slight dependence of Ne/O on O/H (see Dors et al. 2013 and references therein), which brings forth a worthwhile means of cross-checking the stellar nucleosynthesis theory.

The study of neon and oxygen abundances in AGNs can also provide important insights into the origin of heavy elements, mainly in the regime of high metallicities. Unfortunately, neon abundance in relation with hydrogen (Ne/H) in AGNs is rarely found in the literature, and only a few AGNs relative abundance of Ne with other heavy elements has been derived. For instance, Nussbaumer & Osterbrock (1970), by using the TeT_{\rm e}-method, derived the Fe/Ne abundance ratio for NGC 4151 to be 0.11. Assuming a solar abundance ratio (Fe/Ne) = 0.282 (Holweger, 2001) shows that AGNs have an overabundance of Fe, as found by Hamann & Ferland (1993). The above result indicates a very high and oversolar neon abundance. Furthermore, based on a comparison between observational soft X-ray spectrum of the Narrow Line Quasar PG1404+226 (zz = 0.098) and photoionization model predictions, Ulrich et al. (1999) found that the abundances of oxygen and neon are about 0.2 and 4 times the solar value, respectively, which again implies an overabundance value of neon. However, Shields et al. (2010), who compared AGNs spectra from the Sloan Digital Sky Survey (SDSS, York et al. 2000) in the redshift range of 0.2<z< 0.350.2\><\>z\><\>0.35 with photoionization model predictions, found no significant difference for the Fe/Ne abundance ratios in the sample of objects considered.

With the foregoing in mind, the primary aim of this study is to derive neon abundance in relation with hydrogen (Ne/H) in the NLRs of relatively large sample of Seyfert 2s at low redshift (z 0.06)z\>\la\>0.06) and compare the results with previous SFs findings. In view of this, we compiled from the literature narrow optical and infrared (IR) emission line intensities for Seyfert 2 galaxies. These observational data will be used to derive the twice ionized (Ne2+/H+)(\rm{Ne^{2+}/H^{+}}) and total (Ne/H and O/H) abundances through the TeT_{\rm e}-method and infrared emission lines method. Also, it is possible to derive the singly ionized neon abundance relative to hydrogen (Ne+/H+\rm{Ne^{+}/H^{+}}) through infrared emission lines. The use of TeT_{\rm e}-method, based on direct temperature determinations via optical lines (for a review see Peimbert et al. 2017; Pérez-Montero 2017) can lead to non-negligible deviations in the estimations of abundances, in the sense that abundances can be underestimated in relation with other distinct methods. Therefore, we also consider Ne/H abundances derived from IR lines, which have weak dependence on the electron temperature (Simpson, 1975).

This paper is organized as follows. In Section 2, we describe the observational data. In Sect. 3 details to the calculations of the ionic abundances from TeT_{\rm e}-method and infrared emission lines are presented. Descriptions of the calculation of the total neon and oxygen abundances are given in Sect. 4. The results and discussions are presented in Sect. 5 and Sect. 6, respectively. Finally, we summarize our conclusions in Sect. 7.

2 Observational data

In order to study the Ne+2/H+\mathrm{Ne^{+2}/H^{+}} abundances we take into account the fact that Dors et al. (2013) found Ne2+/H+\rm{Ne^{2+}/H^{+}} abundance estimations in H ii regions using the TeT_{\rm e}-method are lower by a factor of 4\sim 4 than those obtained through infrared lines, which are less sensitive to electron temperature. Therefore, we consider AGN emission lines measured in both wavelength ranges in order to ascertain if similar discrepancy exists in AGNs. The caveat here is that it is unknown which among the TeT_{\rm e}- and IR-methods provides more accurate abundance values.

We limit the abundance determinations to the NLRs of Seyfert 2s because shocks with low velocity (lower than 400 km s-1, Contini 2017; Dors et al. 2020a) are expected in this type of object and the TeT_{\rm e}-method was adapted for this object type in a previous paper (Dors et al., 2020c). The selection criteria for the objects are:

  1. 1.

    The objects must be classified as Seyfert 2 nuclei.

  2. 2.

    They must have the narrow optical [O ii]λ3726\lambda 3726 + λ\lambda3729, [Ne iii]λ\lambda3869, [O iii]λ\lambda4363, Hβ\beta, [O iii]λ\lambda5007, Hα\alpha and [S ii]λ\lambda6716, λ\lambda6731 emission-line fluxes measured.

  3. 3.

    The [Ne iii]λ\lambda15.56 µm emission-line fluxes should also be measured. The flux of the [Ne ii]12.81µm\micron line is considered in the compiled data when it is available in the original work.

The optical data consists of emission lines observed in the wavelength range of 3500<λ3500\><\>\lambda(Å)< 8000\><\>8000 obtained with

  1. 1.

    low-dispersion spectra (R510R\sim 5-10 Å) using telescopes at the Las Campanas, Anglo-Australian, Lick and European Southern observatories and

  2. 2.

    Faint Object Spectrograph spectroscopy (FOS) on board the Hubble Space Telescope (HST) at 3 500<λ3\,500\><\>\lambda (Å)< 7 000\><\>7\,000 (R5R\sim 5 Å).

The infrared observational data from near to mid infrared spectroscopic observations were obtained from the following:

  1. 1.

    Photodetector Array Camera and Spectrometer (PACS) instrument on board the European Space Agency (ESA) Herschel Space Observatory in the short cross-dispersed mode (R360R\sim 360) covering the JHKJHK-bands, together with an ancillary data,

  2. 2.

    SpitzerSpitzer-Infrared Spectrometer (IRS) spectroscopic survey consisting of the short wavelengths ranging from 9.9 to 19.6 µm covered by the Short-High (SH) module in the high spectral resolution mode (R600R\sim 600) and from 8 to 2.4 µm,

  3. 3.

    medium resolution (R1 500R\sim 1\,500) of Infrared Space Observatory Short Wavelength Spectrometer (ISO-SWS) 2.4452.4-45 µm spectra,

  4. 4.

    the cooled grating spectrometer 4 (CGS4) on United Kingdom Infrared Telescope (UKIRT) for both high-resolution (R=1 260R=1\,260) and low-resolution (R=345R=345 and 425) JHKJHK-band spectra of 4 µm spectroscopy with ISAAC at the European Southern Observatory Very Large Telescope array (ESO VLT),

  5. 5.

    Infrared array spectrometer - IRSPEC (R1 500R\sim 1\,500) at the ESO 3.6 m telescope,

  6. 6.

    Infrared Spectrometer And Array Camera Long Wavelength (ISAAC-LW) medium resolution spectroscopy mode covering a range of 3.93 to 4.17 µm at spectral resolving power 2500\sim 2500,

  7. 7.

    Anglo-Australian Telescope NIR integral field spectroscopy of moderate resolution (R2 100R\sim 2\,100) KLKL-bands spectra from 2.17 - 2.43µm, and

  8. 8.

    HH (1.5 - 1.8 µm) and KK (2.0 - 2.4 µm) bands corresponding to the spectral resolutions λ/Δλ=1 700\lambda/\Delta\lambda=1\,700 and λ/Δλ=1 570\lambda/\Delta\lambda=1\,570, respectively, using the Keck NIR longslit spectrograph NIRSPEC.

In Tables A1 and A2, available as supplementary material, the objects identifications, the optical and infrared observational emission line fluxes and the bibliographic references to the origins of the data are listed.

The observational data considered in this work consist of a heterogeneous sample, thus, the data were obtained with different instrumentation and observational techniques with different apertures, which could potentially introduce some uncertainties in the derivation of physical properties for the objects under consideration. Dors et al. (2013) analysed these effects on oxygen abundance determinations in star-forming regions and did not find any bias in the physical conditions of the objects obtained by using a similarly heterogeneous samples. A particular concern in AGN studies is the emission contribution from H ii regions to the measured AGN flux, which can be located at few parsecs away from the AGN (e.g. Boer & Schulz 1993; Elmegreen et al. 2002; Díaz et al. 2007; Dors et al. 2008; Böker et al. 2008; Riffel et al. 2009; Hägele et al. 2013; Álvarez-Álvarez et al. 2015; Riffel et al. 2016; Dametto et al. 2019). In fact, Thomas et al. (2018a), who considered a large sample of AGNs data taken from the Sloan Digital Sky Survey (SDSS, York et al. 2000), found that, even for strong AGNs [withlog([iii]λ5007/Hβ) 0.9]\mathrm{[with\>log([\text{O\,{iii}}]\lambda 5007/H\beta)\>\ga\>0.9]}, 30\sim 30 per cent of the Balmer line fluxes, on average, is emitted by H ii regions (see also Davies et al. 2014a, b; D’Agostino et al. 2018, 2019; Thomas et al. 2018b).

Dors et al. (2020b) investigated the aperture effect on oxygen abundance and electron density estimates in a sample of local AGNs (z 0.4)z\>\la\>0.4) using SDSS spectra (York et al., 2000), which were obtained with a fixed diameter of the fibres of 3\sim 3 arcsec. Since H ii regions generally have lower O/H abundances (e.g. Kennicutt et al. 2003; Groves et al. 2006) and electron density values (e.g. Copetti et al. 2000; Dors et al. 2014) than similar estimations in AGNs, if the emission from H ii regions contributes significantly to the observed emission-line fluxes in AGNs, a decrease in O/H and NeN_{\rm e} with increasing redshift (a greater number of H ii regions were included within the fiber at larger distances) would be expected. However, no correlation between O/H or NeN_{\rm e} with the redshift was derived by these authors, indicating negligible aperture effects on the AGN parameter estimations. Moreover, Kewley et al. (2005) found that the derived metallicity can vary by a factor of only 0.14 dex from the value obtained when the fluxes are measured with the assumption of an aperture capturing less than 20 per cent of the total emissions from a galaxy. The object of our sample with the highest redshift is Cygnus A (z=0.05607z=0.05607), where assuming a spatially flat cosmology with the present-day Hubble parameter being H0H_{0} = 71 kms1Mpc1\rm km\>s^{-1}Mpc^{-1}, the total present matter density Ωm=0.270\Omega_{m}=0.270, the total present vacuum density Ωvac=0.730\Omega_{\rm vac}=0.730 (Wright, 2006) and a typical aperture of 2 arcsec, corresponds to a physical scale in the center of this galaxy of about 2 kpc, i.e. the emissions are mainly from an AGN.

In Figure 1 we show plots for Paβ\beta and Brγ\gamma versus all other strong Paschen and Brackett line series samples of our IR observational data compiled from the literature (i.e. taken from Moorwood & Oliva 1988; Kawara et al. 1989; Oliva et al. 1994; Goldader et al. 1995, 1997; Veilleux et al. 1997, 1999; Bryant & Hunstead 1999; Gilli et al. 2000; Winge et al. 2000; Lutz et al. 2002; Reunanen et al. 2002; Sturm et al. 2002; Rodríguez-Ardila et al. 2005; Riffel et al. 2006; Ramos Almeida et al. 2009; Onori et al. 2017) which have strong Paschen and Brackett line series corresponding to Paβ\beta and Brγ\gamma. It can be seen from Fig. 1 that the IR H i line fluxes have a clear linear correlation for all the strong emission lines with somewhat scattering in the points, which is probably due to the heterogeneity of the sample. However, we show (see below) that abundance estimates assuming different IR H i lines have a very good agreement with each other, therefore, this observed scatter in Fig. 1 has no effect on our abundance results. Since most of the observed hydrogen recombination lines have been reddening-corrected by the original authors and the infrared line series show little deviations with Paβ\beta and Brγ\gamma, we considered them in our abundance estimations without further consideration for extinction correction.

2.1 Diagnostic diagrams

Although the objects in our sample have been classified as AGNs by the authors from which the data were compiled, we produced an additional test based on standard Baldwin-Phillips-Terlevich (BPT) diagrams (Baldwin et al., 1981; Veilleux & Osterbrock, 1987). These diagnostic diagrams, based on optical emission-line ratios, have been used to distinguish objects whose main ionization mechanisms are massive stars from those that are mainly ionized by AGNs and/or gas shocks (see also Kewley et al. 2001, 2013; Kauffmann et al. 2003; Pérez-Montero et al. 2013; Ji & Yan 2020). We adopted the criteria proposed by Kewley et al. (2001) where all objects with

log([iii]λ5007/Hβ)>0.61[log([ii]λ6584/Hα)0.47]+1.19,{}\mathrm{\log([\text{O\,{iii}}]\lambda 5007/H\beta})>\frac{0.61}{[\mathrm{\log([\text{N\,{ii}}]\lambda 6584/H\alpha)-0.47}]}+1.19, (1)
log([iii]λ5007/Hβ)>0.72[log([ii]λ6725/Hα)0.32]+1.30{}\mathrm{\log([\text{O\,{iii}}]\lambda 5007/H\beta})>\frac{0.72}{[\mathrm{\log([\text{S\,{ii}}]\lambda 6725/H\alpha)-0.32}]}+1.30 (2)

and

log([iii]λ5007/Hβ)>0.73[log([i]λ6300/Hα)+0.59]+1.33{}\mathrm{\log([\text{O\,{iii}}]\lambda 5007/H\beta})>\frac{0.73}{[\mathrm{\log([\text{O\,{i}}]\lambda 6300/H\alpha)+0.59}]}+1.33 (3)

have AGNs as their main ionization mechanism. The [S ii]λ\lambda6725 line above represents the sum of the [S ii]λ\lambda6717 and [S ii]λ\lambda6731 lines. Fig. 2 further confirms that the ionizing sources of the objects in our sample are indeed AGNs. Additionally, it can be seen that the objects cover a large range of ionization degree and metallicity since a wide range of [O iii]/Hβ\beta and [N ii]/Hα\alpha are observed (e.g. Feltre et al. 2016; Agostino et al. 2021).

Refer to caption
Figure 1: Strong IR emission line (in units of 10-14 erg cm-2 s-1) ratios for each spectra in our sample for which the Paschen and Brackett series were detected. Left-column: plots for the measured Paβ\beta line flux versus measured Paα\alpha, Paγ\gamma and Paδ\delta. Right-column: plots for the measured Brγ\gamma line flux versus other measured Brackett series (Brα\alpha, Brβ\beta and Brδ\delta).
Refer to caption
Figure 2: Diagnostic diagrams for emission-line ratios of log([O iii]λ5007\lambda 5007/Hβ\beta) versus log([N ii]λ6584\lambda 6584/Hα\alpha), log([S ii](λ\lambda6725)/Hα\alpha), and log([O i](λ\lambda6300)/Hα\alpha). [S ii]λ\lambda6725 represents the sum of the lines [S ii]λ\lambda6717 and [S ii]λ\lambda6731. Points represent objects of our sample (see Sect. 2). Red lines, by Kewley et al. (2001) and represented by Eqs. 1, 2 and 3, separate objects ionized by massive stars from those ionized by gas shocks and/or AGN-like objects, as indicated. Error bar, in left panel, represents the typical uncertainty (0.1 dex) in emission-line ratio measurements (e.g. Kraemer et al. 1994).

2.2 Reddening correction

We performed the reddening correction to the optical emission lines by considering the expression

I(λ)I(Hβ)=F(λ)F(Hβ)×10c(Hβ)[f(λ)f(Hβ)],{}\frac{I(\lambda)}{I\mathrm{(H\beta)}}=\frac{F(\lambda)}{F\mathrm{(H\beta)}}\times 10^{c\mathrm{(H\beta)}[f(\lambda)-f\mathrm{(H\beta)}]}, (4)

where I(λ)I(\lambda) is the intensity (reddening corrected) of the emission line at a given wavelength λ\lambda, F(λ)F(\lambda) is the observed flux of the emission line, f(λ)f(\lambda) is the adopted reddening curve normalized to Hβ\beta and cc(Hβ\beta) is the interstellar extinction coefficient. The extinction coefficient of interest is normally calculated using the Hα\alpha/Hβ\beta line ratio and comparing it with its theoretical value. For instance, the estimation by Hummer & Storey (1987) for a temperature of 10 000 K and an electron density of 100 cm-3 produces II(Hα\alpha/Hβ\beta) = 2.86. Following the parameterization by Whitford (1958), adopting the reddening curve by Miller & Mathews (1972) and using a consensual assumed value of the ratio of total to selective absorption in the optical VV band, with RV=3.1R_{V}=3.1, for the diffuse interstellar medium (see Cardelli et al., 1989; O’Donnell, 1994; Fitzpatrick, 1999, and references therein), we deduce the logarithmic extinction at Hβ\beta expressed as

c(Hβ)=3.10×[log(F(Hα)F(Hβ))log(I(Hα)I(Hβ))].{}c(\mathrm{H\beta})=3.10\times\left[\log\left(\frac{F\mathrm{(H\alpha)}}{F\mathrm{(H\beta)}}\right)-\log\left(\frac{I\mathrm{(H\alpha)}}{I\mathrm{(H\beta)}}\right)\right]. (5)

The optical extinction curves in the extragalactic environment are closely parallel to those of the Milky Way in all related extinction studies, with RVR_{V} values comparable to the canonical value of 3.1 (e.g. McCall 2004; Finkelman et al. 2008).

In comparison with the Case B recombination value of 2.86, Halpern (1982) and Halpern & Steiner (1983), adopting photoionization models, found that II(Hα\alpha/Hβ\beta) is close to 3.10 in AGNs with high and low ionization degree. This contradicts Heckman (1980) preposition of an anomalously high Balmer decrement in these objects. Therefore, II(Hα\alpha/Hβ\beta) = 2.86 and 3.10 intrinsic ratios are usually considered to be estimations for H ii regions and AGNs, respectively (Ferland & Netzer, 1983; Gaskell, 1982, 1984; Gaskell & Ferland, 1984; Veilleux & Osterbrock, 1987; Wysota & Gaskell, 1988). Particularly, in AGNs, there is a large transition zone, or partly ionized region, in which H0 coexists with H+ and free electrons. In this zone, collisional excitation is also important in addition to recombination (Ferland & Netzer, 1983; Halpern & Steiner, 1983). The main effect of collisional excitation is to enhance Hα\alpha. The higher Balmer lines are less affected because of their large re-excitation energies and smaller excitation cross-sections.

In order to check the Hα\alpha/Hβ\beta value assumed in our reddening correction, we consider results from AGNs photoionization models built with the Cloudy code (Ferland et al., 2013) by Carvalho et al. (2020). This grid of models assume a wide range of nebular parameters, i.e. a Spectral Energy Distribution with power law αox=0.8,1.1,1.4\alpha_{ox}=-0.8,-1.1,-1.4, oxygen abundances in the range of 8.0 12+log(O/H) 9.0\rm 8.0\>\lid\>12+\log(O/H)\>\lid\>9.0, logarithm of the ionization parameter (U)U) in the range of 4.0logU0.5-4.0\>\lid\>\log U\>\lid\>-0.5, and electron density NeN_{\rm e}= 100, 500 and 3000 cm3\rm cm^{-3}. The AGN parameters considered in the models built by Carvalho et al. (2020) cover practically all the range of physical properties of a large sample of Seyfert 2 nuclei. We excluded models with αox=1.4\alpha_{ox}=-1.4 and logU=4.0\log U=-4.0 because they predicted emission lines which are not consistent with observational data (see Pérez-Montero et al. 2019; Carvalho et al. 2020). The Carvalho et al. (2020) models assume constant electron density along the nebular radius while spatially resolved studies of AGNs have found NeN_{\rm e} variations from 100\sim 100 to 3000cm3\sim 3000\>\rm cm^{-3} along the NLRs of some AGNs (e.g. Freitas et al. 2018; Kakkad et al. 2018; Mingozzi et al. 2019; Riffel et al. 2021a). However, to provide a simple test for this problem, Dors et al. (2019) built AGN photoionization models assuming a profile density similar to observational estimations by Revalski et al. (2018a) in the Seyfert 2 Mrk 573, i.e. with a central electron density peak at 3000cm3\rm\sim 3000\>cm^{-3} and a decrease in this value following a shallow power law. Dors et al. (2019) found that predicted emission lines assuming this density profile are very similar to those considering a constant electron density along the AGN radius. Therefore, NeN_{\rm e} variations have almost a negligible effect on emission lines and abundances predicted by photoionization models, at least for the low electron density limit (104cm3\la 10^{4}\>\rm cm^{-3}).

In Fig. 3, bottom panel, we show the model predictions of the gas ionization degree parameterized by the [O iii]λ5007\lambda 5007/[O ii]λ3727\lambda 3727 line ratio versus Hα\alpha/Hβ\beta ratio. In this figure, the expected values for the Hα\alpha/Hβ\beta ratio, considering the theoretical values by Storey & Hummer (1995) for different temperature values of 5000 K, 10 000 K and 20 000 K are indicated by the solid black lines representing 3.10, 2.86 and 2.69, respectively. We notice that most of the models (\sim95 %) predict Hα\alpha/Hβ\beta values in the range from 2.69 to 3.10. In Fig. 3, top panel, the distribution of Hα\alpha/Hβ\beta values predicted by the models is shown, where it can be seen that, the most representative value is around (Hα\alpha/Hβ\beta)=2.90 with an average value of 2.89±0.222.89\pm 0.22. Therefore, for the intrinsic ratio of Seyfert 2 nuclei, we adopted the theoretical value given by (Hα\alpha/Hβ\beta)=2.86.

Refer to caption
Figure 3: Bottom panel: [O iii]λ5007\lambda 5007/[O ii]λ5007\lambda 5007 versus Hα\alpha/Hβ\beta. The red points represent AGN photoionization model predictions taken from Carvalho et al. (2020). The black lines represent the theoretical values from Storey & Hummer (1995) for temperatures of 5000 K (3.10), 10 000 K (2.86) and 20 000 K (2.69). Top panel: Distribution of Hα\alpha/Hβ\beta values. The average for the Hα\alpha/Hβ\beta values is indicated.

The wavelength dependence in the optical domain, f(λ)f(\lambda), is the reddening value for the line derived from the curve given by Whitford (1958), which is defined such that f()=1f(\infty)=-1 and f(Hβ)=0f({\rm H}\beta)=0. An analytical expression for the estimation of f(λ)f(\lambda) following the proposal by Kaler (1976) was used in the derivation of the extinction curve, which is given by:

f(λ)=2.5659λ24.8545λ+1.7545,{}f(\lambda)=2.5659\lambda^{2}-4.8545\lambda+1.7545, (6)

with λ\lambda in units of micrometers within the range 0.35λ(μm) 0.70\mathrm{0.35\>\la\>\lambda(\mu m)\>\la\>0.70}. We adopted negligible intrinsic reddening when the apparent Balmer decrement from the original work is 2.86\la 2.86 and the extinction correction constant indicates a value of zero as shown in Table A3, thus, cc(Hβ\beta) = 0.0

Since several measurements for the emission lines compiled from the literature do not have their errors listed in the original papers where the data were compiled, we adopted a typical error of 10% for strong emission-lines (e.g. [O iii]λ\lambda5007) and 20 % for weak emission lines, in the case of [O iii]λ\lambda4363 (see, for instance, Kraemer et al. 1994; Hägele et al. 2008). These errors were used to calculate the uncertainties in the derived values of electron temperatures (in order of 800 K) and abundances (in order of 0.1 dex).

3 Ionic abundance determinations

The main goal of this work is to estimate the total abundance of neon in relation with hydrogen (Ne/H) for the NLRs of a sample of Seyfert 2 objects. This can be carried out by using optical and infrared emission lines. In view of this, for optical lines, we adopted the TeT_{\rm e}-method used by Dors et al. (2020c) to be applied in the studies of Seyfert 2 nuclei. Regarding abundances obtained through infrared lines, the methodology proposed by Dors et al. (2013) was adopted in this work, which is based on Petrosian (1970), Simpson (1975), Förster Schreiber et al. (2001), and Vermeij & van der Hulst (2002).

The observational optical data compiled from the literature make it possible to estimate only the Ne2+/H+\rm Ne^{2+}/H^{+} ionic abundance. Therefore, to obtain Ne/H, Ionization Correction Factors (ICFs) based on the neon infrared lines and photoionization models were employed. The O/H abundance for our sample was calculated by using only the TeT_{\rm e}-method, since there are few emission lines of this element measured in the infrared wavelength range under consideration (e.g. van Loon et al. 2010). In the succeeding subsections, each of the adopted methodology in the estimations of the Ne and O abundances is succinctly described.

3.1 TeT_{\rm e}-method

In determining ionic abundances using the TeT_{\rm e}-method, basically, it is necessary to obtain measurements of the intensity of the emission lines emitted by the ions under consideration and the representative values of the electron temperature (TeT_{\rm e}) and electron density (NeN_{\rm e}) of the gas region where these ions are located (Osterbrock, 1989).

Hägele et al. (2008) obtained, from the task temden of iraf111Image Reduction and Analysis Facility (iraf) is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation. (De Robertis et al., 1987; Shaw & Dufour, 1995), functions to determine electron temperatures. It is considered that t3t_{3} and t2t_{2} are the electron temperatures (in units of 10410^{4} K) for the electrons that are exciting the O2+ and O+ ions in the high and low ionization zones, respectively. The expressions obtained by Hägele et al. (2008) were assumed to calculate t3t_{3}, O2+/H+\rm O^{2+}/H^{+}, O+/H+\rm O^{+}/H^{+} and Ne2+/H+\rm Ne^{2+}/H^{+}.

First, for each object in our sample, the electron temperature in the high-ionization zone (t3t_{3}) was obtained by using the expression

t3=0.82540.0002415×RO3+47.77RO3,{}t_{3}=0.8254-0.0002415\times{R_{\rm O3}}+\frac{47.77}{{R_{\rm O3}}}, (7)

where RO3{R_{\rm O3}} = [O iii](λ4959\lambda 4959Å + λ5007\lambda 5007Å)/λ4363\lambda 4363Å. This relation is valid for a range 30RO3700{30\la R_{\rm O3}\la 700}, corresponding to a temperature range of 0.7t3 2.30.7\>\la\>t_{3}\>\la\>2.3. Only objects with t3t_{3} in this range of values were considered in the present analysis.

Consequently, it is not possible to explicitly estimate t2t_{2} in the AGN spectra of our sample where the [O ii]λ\lambda3727Å/λ\lambda7325Å emission line ratio can not be measured. Thus, we assumed the t2t_{2}-t3t_{3} relation derived by Dors et al. (2020c) from a grid of photoionization models built using the Cloudy code (Ferland et al., 2013). The theoretical resulting relation is given by

t2=(a×t33)+(b×t32)+(c×t3)+d,t_{2}=({\rm a}\times t_{3}^{3})+({\rm b}\times t_{3}^{2})+({\rm c}\times t_{3})+{\rm d}, (8)

where a=0.17\rm a=0.17, b=1.07\rm b=-1.07, c=2.07\rm c=2.07 and d=0.33\rm d=-0.33.

The t3t_{3}-t2t_{2} relation for SFs has issue of some uncertainties due to the large scatter between these temperatures, around 900 K (e.g. Berg et al. 2020) and this problem has been addressed in several chemical abundance studies. For example, Hägele et al. (2008) pointed out that the scatter in the t3t_{3}-t2t_{2} relation can be due to electron density effects because the [O ii] temperature is somewhat dependent on the density. Curti et al. (2017) pointed out that the [O iii]λ\lambda4363 can be contaminated by the neighboring [Fe ii]λ\lambda4360 line, mainly for objects with high metallicity (12+log(O/H) 8.4\rm 12+\log(O/H)\>\ga\>8.4). Recently, Arellano-Córdova & Rodríguez (2020) showed that the t3t_{3} and tet_{\rm e}(N ii) (t2)\approx t_{2}) relation depends on the ionization degree of the gas phase in SFs. In fact, the model results adopted to derive Eq. 8 by Dors et al. (2020c) also present a large scatter, which is not explained by electron density effects. However, Riffel et al. (2021a) showed that the relation given by Eq. 8 is in consonance with direct estimates of temperature for AGNs when no clear gas outflows are present in these objects. Unfortunately, direct estimates of t2t_{2} for AGNs are rare in the literature and we stress that the use of Eq. 8 can yield somewhat uncertain in O+\rm O^{+} temperature estimates.

We make use of the relations to estimate ionic abundance of the singly and doubly ionized oxygen originally derived by Pagel et al. (1992) and in its current form given by Hägele et al. (2008) as:

12+log(O2+H+)=log(I(4959Å)+I(5007Å)I(Hβ))+6.144+1.251t30.55×logt3{}\begin{split}12+\log\left(\frac{\mathrm{O^{2+}}}{\mathrm{H^{+}}}\right)=&\log\left(\frac{I(4959\>{\textup{\AA}})+I(5007\>{\textup{\AA}})}{I\mathrm{(H\beta)}}\right)+6.144\\ \\ &+\frac{1.251}{t_{3}}-0.55\times\log t_{3}\end{split} (9)

and

12+log(O+H+)=log(I(3727Å)I(Hβ))+5.992+1.583t20.681×logt2+log[1+2.3ne]\begin{split}12+\log\left(\frac{\mathrm{O^{+}}}{\mathrm{H^{+}}}\right)=&\log\left(\frac{I(3727\>{\textup{\AA}})}{I\mathrm{(H\beta)}}\right)+5.992+\frac{1.583}{t_{2}}\\ \\ &-0.681\times\log t_{2}+\log[1+2.3n_{\mathrm{e}}]\end{split} (10)

where ne=104×Nen_{\rm e}=10^{-4}\>\times\>N_{\rm e}.

The electron density NeN_{\rm e} for each object was derived through the relation of this parameter with the line ratio [S ii]λ6717\lambda 6717/[S ii]λ6731\lambda 6731 by using the iraf code (Tody, 1986; De Robertis et al., 1987; Shaw & Dufour, 1995) and assuming the t2t_{2} value obtained for each object. We derived electron density values in the range of 300Ne(cm3)3 500300\>\la\>N_{\rm e}\rm(cm^{-3})\>\la 3\,500, with an average value of 1 000cm3\rm\sim 1\,000\>cm^{-3}. In Dors et al. (2020c), a detailed analysis of the effect of the electron density on the direct abundance determination was presented and it is not repeated here. We only point out to the fact that, despite high NeN_{\rm e} values in order of 13 000 - 80 000 cm3{\rm cm^{-3}} derived when optical lines emitted by ions with higher ionization potential than the S+{\rm S^{+}} are used to derive the electron density, e.g. [Ar iv]λ4711\lambda 4711/λ4740\lambda 4740 line ratio (see Congiu et al. 2017; Riffel et al. 2021a), these values are much lower than the critical densities (e.g. see Vaona et al. 2012) for the optical lines used here. Additionally, the electron density determined from the line ratio [S ii]λ6717\lambda 6717/[S ii]λ6731\lambda 6731 is much lower than that obtained using auroral and transauroral lines, as well as ionization parameter based approach (Davies et al., 2020).

Generally, in H ii regions studies, the same temperature t3t_{3} is used to estimate the O2+{\rm O^{2+}} and Ne2+{\rm Ne^{2+}} ionic abundances. This approach is based on the similarity of O+{\rm O^{+}} and Ne+{\rm Ne^{+}} ionization potentials, i.e. 35.12 and 40.96 eV, respectively, which indicates that both ions coexist in similar nebular regions. The same assumption is considered for O+{\rm O^{+}} and N+{\rm N^{+}}, which is to assume t2t_{2} for both cases whenever it is not possible to directly derive the TeT_{\rm e} from the [N ii]λ6584/λ5755\mathrm{\lambda 6584/\lambda 5755}. However, Dors et al. (2020c) found for AGNs (see also Riffel et al. 2021a) a slight deviation from the equality of the temperature for the O+\rm O^{+} (t2t_{2}) and N+\rm N^{+} [te(ii)t_{\rm e}({\rm\text{N\,{ii}}})]. Therefore, in order to test if the temperature for Ne2+{\rm Ne^{2+}}, defined for te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}), can be considered to be the same as t3t_{3}, we used results from the grid of AGN photoionization models built with the Cloudy code by Carvalho et al. (2020). In Fig. 4, the model predicted values for te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) versus t3t_{3} are shown. In each panel of Fig. 4, the model results are discriminated in accordance with the parameters αox\alpha_{ox} (botton panel), NeN_{\rm e} (midle panel) and logU\log U (top panel) assumed in the models. It can be seen that for t3 1.0t_{3}\>\ga\>1.0, the models predict te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) lower than t3t_{3} and the outlier of a point can not be explained by the variation in the nebular parameter assumed in the models. It is worth mentioning that the variations in the nebular parameters produce temperatures, in most part, within the uncertainty of ±800\pm 800 K derived in direct estimates (e.g. Kennicutt et al. 2003; Hägele et al. 2008). In the top panel of Fig. 4, we can note that for objects with higher ionization parameter a high difference between the temperatures closer to the 1 to 1 relation is derived. The fit to the estimations considering all the points in Fig. 4 produces the relation

te(Ne iii)=0.1914×t331.1344×t32+2.334×t30.4854.t_{\rm e}({\rm\text{Ne\,{iii}}})=0.1914\times t_{3}^{3}-1.1344\times t_{3}^{2}+2.334\times t_{3}-0.4854. (11)
Refer to caption
Figure 4: Temperature values for te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) versus t3t_{3} predicted by the photoionization models built by Carvalho et al. (2020). Temperatures are in units of 10410^{4} K. The solid line represents the equality between the estimates while the continuum curve represents the fitting to the points given by Eq. 11. Dashed curves represent the deviations of Eq. 11 by ±800\pm 800 K, i.e. typical uncertainties derived in direct electron temperature estimations (e.g. Kennicutt et al. 2003; Hägele et al. 2008). In each panel, points with different colours represent photoionization models assuming different nebular parameters, as indicated.

In order to produce an additional test for ascertaining the te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) and t3t_{3} relations between AGNs and H ii regions, we analyse the electron temperature (TeT_{\rm e}) as well as the O2+/O\rm O^{2+}/O and Ne2+/Ne\rm Ne^{2+}/Ne ionic abundance structures along the nebular radius. In view of this, we consider photoionization models built with the Cloudy code in order to represent both kind of objects. For both models we adopt the same nebular parameters, i.e. electron density Ne=500cm3N_{\rm e}=500\>\rm cm^{-3}, solar metallicity (Z/Z)=1.0(Z/\rm Z_{\odot})=1.0, and logarithm of the ionization parameter logU=2.5\log U=-2.5. The outer radius in both AGN and H ii region models was considered to be the radius at which the electron temperature of the gas reaches 4 000 K, i.e. the default lowest allowed kinetic temperature by the Cloudy code. It is worth noting that gases cooler than \sim4 000 K practically do not emit the optical and infrared emission lines considered in this work. Despite the fact that AGNs have slightly larger NeN_{\rm e} values (by a factor of 2\sim 2) than H ii regions (see, e.g. Copetti et al. 2000; Vaona et al. 2012), the same value for this parameter was used in both models in order to maintain consistency. For the lower electron density regime, the NeN_{\rm e} value does not change the temperature and ionization structure predicted by the photoionization models. For the AGN model, we adopt the SED as being a power law described by the slope αox=1.1\alpha_{ox}=-1.1 (for a detailed description of this SED see Krabbe et al. 2021). The SED for the H ii region model was taken from starburst99 code (Leitherer et al., 1999) and it assumes a stellar cluster formed instantaneously with the age of 2.5 Myr, which is a typical age of normal star-forming regions (e.g. Dors et al. 2008). For detailed description of the AGN and H ii region models see Dors et al. (2018) and Carvalho et al. (2020). The model results from AGN and H ii region are compared with each other in Fig. 5. In the bottom panel of this figure, it can be seen that the AGN model presents a very distinct temperature distribution over the nebular radius as compared to the H ii region one, implying that the former has a stronger decrease with the radius than the latter. Also, the O2+/O\rm O^{2+}/O and Ne2+/Ne\rm Ne^{2+}/Ne ionization structures are very distinct for both kind of objects. Similar ionic abundance distributions for both ionic ratios are derived for the H ii region, confirming the assumption of Te(iii)Te(Ne iii)T_{\rm e}(\text{O\,{iii}})\approx T_{\rm e}(\text{Ne\,{iii}}). However, for the AGN model, the Ne2+/Ne\rm Ne^{2+}/Ne ionic abundance extends to an outer nebular radius (lower temperature) in comparison with O2+/O\rm O^{2+}/O, implying that the approach Te(iii)Te(Ne iii)T_{\rm e}(\text{O\,{iii}})\approx T_{\rm e}(\text{Ne\,{iii}}) is not valid for this object class. Moreover, the neon and oxygen ionic abundance structures for the AGN clearly indicate that the supposition (Ne2+/O2+)=(Ne/O)\rm(Ne^{2+}/O^{2+})=(Ne/O), usually assumed to derive the total neon abundance in H ii region studies (e.g. Kennicutt et al. 2003), can not be applied to AGNs. The result shown in Fig 4 is further supported by this simulation.

Refer to caption
Figure 5: Bottom panel: Profiles for the electron temperature (TeT_{\rm e}, in units of 10410^{4} K) over the nebular radius predicted by AGN and H ii region photoionization models built with the Cloudy code (Ferland et al., 2013) versus the distance RR from the innermost gas region normalized by the outermost radius ReR_{\rm e} of each model. Different colours represent predictions for AGN and H ii region models, as indicated. Middle and top panels: Same as bottom panel but for predictions of the fractional abundances O2+/O\rm O^{2+}/O and Ne2+/Ne\rm Ne^{2+}/Ne as indicated. The same nebular parameters are assumed in both AGN and H ii region models: electron density Ne=500cm3N_{\rm e}=500\>\rm cm^{-3}, solar metallicity (Z/Z)=1.0(Z/\rm Z_{\odot})=1.0, and logarithm of the ionization parameter logU=2.5\log U=-2.5. The AGN SED was considered as a power law described by the slope αox=1.1\alpha_{ox}=-1.1. The H ii region SED was assumed to be a stellar cluster formed instantaneously with the age of 2.5 Myr taken from the starburst99 code (Leitherer et al., 1999).

To estimate the Ne2+/H+{\rm Ne^{2+}/H^{+}} abundances we use the relation given by Hägele et al. (2008):

12+log(Ne2+H+)Op.=log[I(3869Å)I(Hβ)]+6.486+1.558te0.504×logte,{}\begin{split}12+\log\left(\mathrm{\frac{Ne^{2+}}{H^{+}}}\right)_{\mathrm{Op.}}=&\log\left[\frac{I(3869\>{\textup{\AA}})}{I\mathrm{(H\beta)}}\right]+6.486+\frac{1.558}{t_{\rm e}}\\ \\ &-0.504\times\log t_{\rm e},\end{split} (12)

where tet_{\rm e} is the electron temperature. We considered both t3t_{3} and te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) in the estimations for Ne2+/H+{\rm Ne^{2+}/H^{+}}.

3.2 Infrared – lines method

The infrared{-}lines method (hereafter, IR-method) is based on determining the abundance of a given element using intensities of emission lines in the infrared spectral region (for a review, see Fernández-Ontiveros et al. 2017). Infrared emission lines have the advantage over optical lines for being less dependent on the electron temperature and on reddening correction, however, they have lower critical density (1046cm310^{4-6}~{}{\rm cm^{-3}}; e.g. Förster Schreiber et al. 2001) than the others (1048cm310^{4-8}~{}{\rm cm^{-3}}; e.g. Vaona et al. 2012).

Regarding the IR lines involved in our study, the critical electron density NcN_{\rm c} for the [Ne ii]12.81µm12.81\micron and [Ne iii]15.56µm15.56\micron emission lines are 7.1×1057.1\times 10^{5} and 2.1×1052.1\times 10^{5} cm-3 (Osterbrock & Ferland, 2006), respectively. The electron densities for the NLRs of our sample (see Sect. 3.1) derived from the S+\rm S^{+} line ratio (300Ne(cm3) 3500)(300\>\la\>N_{\rm e}(\rm cm^{-3})\>\la\>3500) are much lower than the NcN_{\rm c} values. However, NeN_{\rm e} derived from line ratios emitted by ions with different ionization potential (IP) other than the S+\rm S^{+} (IP=10.36 eV) can reveal gas regions with higher NeN_{\rm e} values than the ones derived for our objects and, consequently, indicate an influence on physical properties based on IR lines. In fact, NeN_{\rm e} estimates from the [O iii]52µm\micron/88µm\micron line ratio [PI(O2+)=35.12\rm O^{2+})=35.12 eV] carried out by Vermeij & van der Hulst (2002) for H ii regions showed electron densities lower than 2 000 cm3\rm cm^{-3}. Also, Storchi-Bergmann et al. (2009), who built NeN_{\rm e} map based on the [Fe ii]1.533µm\micron/1.644µm\micron [PI(Fe+)=7.90\rm Fe^{+})=7.90 eV] for the NLR of NGC 4151, found values between 1 000 and 10 000 cm3\rm cm^{-3}. Finally, NeN_{\rm e} determinations based on [S ii]λ6716/λ6731\lambda 6716/\lambda 6731 and [Ar ivλ4711/λ4740\lambda 4711/\lambda 4740 [IP(A3+)=40.74\rm A^{3+})=40.74 eV] line ratios in two Seyfert 2 (IC 5063 and NGC 7212) by Congiu et al. (2017) show NeN_{\rm e} values ranging from \sim200 to \sim13 000 cm3\rm cm^{-3}. Although studies indicate the existence of an electron density stratification in NLRs of AGNs with values higher than the ones for our sample (see also, e.g. Kakkad et al. 2018; Freitas et al. 2018), effects of collisional de-excitation are probably negligible in our IR abundance estimates. Furthermore, we selected emissivity ratio values considering lower electron density compared to the aforementioned NcN_{\rm c} values (see Table 1).

The Ne+ and Ne2+ ionic abundances can be determined using the intensities of the [Ne ii]12.81µm\micron and [Ne iii]15.56µm\micron emission lines following a similar methodology presented by Dors et al. (2013). Considering two ions Xi+ and H+, the ratio of their ionic abundances is determined by

N(Xi+)N(H+)=Iλ(Xi+)Nejλ(H+)Iλ(H+)Nejλ(Xi+),\frac{{\rm N({X^{\rm i+}}})}{{\rm N}(\mathrm{{H^{+}}})}=\frac{I_{\lambda}\mathrm{(X^{\rm i+})}N_{e}j_{{\lambda}\mathrm{(H^{+})}}}{I_{\lambda}\mathrm{(H^{+})}N_{e}j_{\mathrm{{\lambda}(X^{\rm i+})}}}, (13)

where, N(Xi+{\mathrm{X^{\rm i+}}}) and N(H+{\mathrm{H^{+}}}) are the abundances of the Xi+ and H+ ions, IλI_{\lambda}(X)i+{}^{i+}) is the intensity of a given emission line emitted by Xi+, IλI_{\lambda}(H)+{}^{+}) is the intensity of a reference hydrogen line, while jλ(Hi+)j_{{\lambda}\mathrm{(H^{\rm i+})}} and jλ(X+)j_{{\lambda}\mathrm{(X^{+})}} are the emissivity values. In Dors et al. (2013) the emissivity values were obtained from the ionic routine of the nebular package of iraf, which uses the Ne atomic parameters from Mendoza (1983), Saraph & Tully (1994), Galavis et al. (1997), Badnell et al. (2006), Griffin et al. (2001), Kaufman & Sugar (1986), Butler & Zeippen (1994) and McLaughlin & Bell (2000). In all abundance determinations, these emissivity values are believed to be constant as they differ by less than 5%5\,\% over a wide temperature range (Simpson, 1975).

Using this method, any error in the determination of these emissivities directly translates into a systematic shift to the derived neon ionic abundance. To obtain the Ne+ and Ne2+ ionic abundances with respect to hydrogen (H+), near to mid-infrared H i recombination lines must be preferably used as reference line, such as Pα\alpha, Pβ\beta, Pγ\gamma, Pδ\delta, Brα\alpha, Brβ\beta, Brγ\gamma, Brδ\delta and Br11, which are detected in most of the sources under consideration.

The emission coefficient for lines in the infrared has a weak dependence on the electronic temperature, which, in general, is disregarded. Therefore, abundance of a given ion can be obtained directly from the ratio between an emission line observed in the infrared and a hydrogen reference line. The calculation of Ne+ and Ne2+ ionic abundances can be obtained by the general relations with their emission lines:

Ne+H+=I(12.81µm)I(Hβ)×1.322×104{}\frac{\mathrm{Ne^{+}}}{\mathrm{H^{+}}}=\frac{I({12.81}{\micron})}{I\mathrm{(H\beta)}}\times 1.322\times 10^{-4} (14)

and

Ne2+H+=I(15.56µm)I(Hβ)×6.323×105,{}\frac{\mathrm{Ne^{2+}}}{\mathrm{H^{+}}}=\frac{I({15.56}{\micron})}{I\mathrm{(H\beta)}}\times 6.323\times 10^{-5}, (15)

respectively.

Based on the above assumptions together with the values of the hydrogen line emissivities relative to Hβ\mathrm{H\beta} listed in Table 1 and Eqs. 14 and 15, we deduce the following relations:

Ne+H+=I(12.81µm)I(Paschen)×k(Hβ)1,\frac{\mathrm{Ne^{+}}}{\mathrm{H^{+}}}=\frac{I({12.81}~{}{\micron})}{I\mathrm{(Paschen)}}\times k\mathrm{{}_{1}(H\beta)}, (16)
Ne+H+=I(12.81µm)I(Brackett)×k(Hβ)1,\frac{\mathrm{Ne^{+}}}{\mathrm{H^{+}}}=\frac{I({12.81}~{}{\micron})}{I\mathrm{(Brackett)}}\times k\mathrm{{}_{1}(H\beta)}, (17)
Ne2+H+=I(15.56µm)I(Paschen)×k(Hβ)2\frac{\mathrm{Ne^{2+}}}{\mathrm{H^{+}}}=\frac{I({15.56}~{}{\micron})}{I\mathrm{(Paschen)}}\times k\mathrm{{}_{2}(H\beta)} (18)

and

Ne2+H+=I(15.56µm)I(Brackett)×k(Hβ)2,\frac{\mathrm{Ne^{2+}}}{\mathrm{H^{+}}}=\frac{I({15.56}~{}{\micron})}{I\mathrm{(Brackett)}}\times k\mathrm{{}_{2}(H\beta)}, (19)

where k(Hβ)1k\mathrm{{}_{1}(H\beta)} and k(Hβ)2k\mathrm{{}_{2}(H\beta)} are the constants derived from the emissivity ratio values presented in Table 1.

Table 1: H i emissivity ratio values assuming the Case B taken from Osterbrock & Ferland (2006) for electron density Ne=104cm3N_{\rm e}=10^{4}\>\rm cm^{-3} and electron temperature Te=104T_{\rm e}=10^{4} K. k(Hβ)ik\mathrm{{}_{i}(H\beta)}, where i = 1 and 2, represent Ne+/H+\mathrm{Ne^{+}/H^{+}} and Ne2+/H+\mathrm{Ne^{2+}/H^{+}} ionic abundance constants after the emissivity ratio values have been applied to Eqs. 14 and  15, respectively.
jλ/jHβj_{\mathrm{\lambda}}/j_{\mathrm{H\beta}} Value k(Hβ)1k\mathrm{{}_{1}(H\beta)} k(Hβ)2k\mathrm{{}_{2}(H\beta)}
Paschen series
jPα/jHβj_{\mathrm{P\alpha}}/j_{\mathrm{H\beta}} 0.33200 4.389×1054.389\times 10^{-5} 2.099×1052.099\times 10^{-5}
jPβ/jHβj_{\mathrm{P\beta}}/j_{\mathrm{H\beta}} 0.16200 2.141×1052.141\times 10^{-5} 1.024×1051.024\times 10^{-5}
jPγ/jHβj_{\mathrm{P\gamma}}/j_{\mathrm{H\beta}} 0.09010 1.191×1051.191\times 10^{-5} 5.697×1065.697\times 10^{-6}
jPδ/jHβj_{\mathrm{P\delta}}/j_{\mathrm{H\beta}} 0.05540 7.323×1067.323\times 10^{-6} 3.502×1063.502\times 10^{-6}
jP8/jHβj_{\mathrm{P_{8}}}/j_{\mathrm{H\beta}} 0.03740 4.944×1064.944\times 10^{-6} 2.365×1062.365\times 10^{-6}
Bracket series
jBrα/jHβj_{\mathrm{Br\alpha}}/j_{\mathrm{H\beta}} 0.07780 1.028×1051.028\times 10^{-5} 4.919×1064.919\times 10^{-6}
jBrβ/jHβj_{\mathrm{Br\beta}}/j_{\mathrm{H\beta}} 0.04470 5.909×1065.909\times 10^{-6} 2.826×1062.826\times 10^{-6}
jBrγ/jHβj_{\mathrm{Br\gamma}}/j_{\mathrm{H\beta}} 0.02750 3.635×1063.635\times 10^{-6} 1.738×1061.738\times 10^{-6}
jBrδ/jHβj_{\mathrm{Br\delta}}/j_{\mathrm{H\beta}} 0.01810 2.392×1062.392\times 10^{-6} 1.144×1061.144\times 10^{-6}
jBr10/jHβj_{\mathrm{Br_{10}}}/j_{\mathrm{H\beta}} 0.00910 1.203×1061.203\times 10^{-6} 5.753×1075.753\times 10^{-7}
jBr11/jHβj_{\mathrm{Br_{11}}}/j_{\mathrm{H\beta}} 0.00695 9.181×1079.181\times 10^{-7} 4.391×1074.391\times 10^{-7}
jBr13/jHβj_{\mathrm{Br_{13}}}/j_{\mathrm{H\beta}} 0.00425 5.613×1075.613\times 10^{-7} 2.684×1072.684\times 10^{-7}

The Case B was assumed to derive the above equations because, as opposed to the broad-line region gas, much of the narrow-line region is believed to be optically thick to the ionizing radiation, even though studies of the He ii λ4686\lambda 4686 Å/Hβ\beta ratio in AGNs indicates the presence of some optically thin gas (Murdin, 2003). The [Ne iii] λ15.56\lambda 15.56 µm line is always chosen over the [Ne iii] λ36.0\lambda 36.0 µm when both are measured, because the spectrum is noisier at the long wavelength end of the long high-resolution (LH) module in the Infrared Spectrograph (IRS). Therefore, we preferred to use the [Ne iii] λ15.56\lambda 15.56 µm line flux for the abundance determination of this ion, which also has larger transition probability and critical density.

4 Total abundance determinations

4.1 Oxygen

In general, the total abundance of an element relative to hydrogen abundance is difficult to be calculated because not all emission line intensities emitted by the ions of this element are measured in the same spectral range. This fact, in principle, is circumvent by the use of ionization correction factor (ICF) proposed by Peimbert & Costero (1969). The ICF for the unobserved ionization stages of an element X is defined as

ICF(Xi+)=N(X/H)N(Xi+/H+),{}{\mathrm{ICF(X^{i+})}}=\frac{\mathrm{N(X/H})}{\mathrm{N(X^{i+}/H^{+})}}, (20)

being N the abundance and Xi+\rm X^{i+} the ion whose ionic abundance can be calculated from its observed emission lines. For instance, considering optical emission lines of oxygen, it is relatively easy to derive the O+/H+\rm O^{+}/H^{+} and O2+/H+\rm O^{2+}/H^{+} abundances when TeT_{\rm e} and NeN_{\rm e} are derived. However, emission lines of oxygen ions with higher ionization states are observed in other spectral bands as, for instance, in X-rays (e.g. Cardaci et al. 2009; Bianchi et al. 2010; Bogdán et al. 2017). Recent studies (Flury & Moran, 2020; Dors et al., 2020c) indicate that the contribution of ions with ionization stage higher than O2+\rm O^{2+} in AGNs is in order of 20 per cent of the total O/H abundance. A smaller contribution of these ions, at least, in poor metal star-forming regions, is in order of only 1-5 per cent (Skillman & Kennicutt, 1993; Lee & Skillman, 2004).

To calculate the total oxygen abundance N(O/H) for our sample, we assumed

N(OH)=ICF(O)×N(O2+H++O+H+),{\rm N\left(\frac{O}{H}\right)=ICF(O)\>\times\>N\left(\frac{O^{2+}}{H^{+}}+\frac{O^{+}}{H^{+}}\right),} (21)

where ICF(O) is the Ionization Correction Factor for oxygen. We consider the ICF(O) expression proposed by Torres-Peimbert & Peimbert (1977)

ICF(O)=N(He+)+N(He2+)N(He+),\rm ICF(O)=\frac{N(He^{+})+N(He^{2+})}{N(He^{+})}, (22)

(see also Izotov et al. 2006; Flury & Moran 2020). This ICF expression is based on the similarity between the He+\rm He^{+} and O2+\rm O^{2+} ionization potential (about 54 eV).

To calculate the ionic helium abundance for each object taking into account the assumption that t=t3t=t_{3}, we use the relations proposed by Izotov et al. (1994) expressed as,

N(He+)N(H+)=0.738t0.23I(λ5876)I(Hβ){\rm\frac{N(He^{+})}{N(H^{+})}}=0.738\>t^{0.23}\>\frac{I(\lambda 5876)}{I(\rm H\beta)} (23)

and

N(He2+)N(H+)=0.084t0.14I(λ4686)I(Hβ).{\rm\frac{N(He^{2+})}{N(H^{+})}}=0.084\>t^{0.14}\>\frac{I(\lambda 4686)}{I(\rm H\beta)}. (24)

4.2 Neon

The total neon abundance determination in Seyfert 2 nuclei from either TeT_{\rm e} or IR method can be realised by using an ICF taking into account the unobserved ionization stages ions of this element, such as Ne3+, whose emission lines are observed at 12μ\mum and 24μ\mum (e.g. Dudik et al. 2007). Peimbert & Costero (1969) and Peimbert & Peimbert (2009), based on the similarity between the ionization structures of neon and oxygen [(Ne2+/Ne)(O2+/O)\mathrm{(Ne^{2+}/Ne)\approx(O^{2+}/O)}], proposed

ICF(Ne2+)=N(OO2+)N(O++O2+O2+).\mathrm{ICF(Ne^{2+})}={\rm N\left(\frac{O}{O^{2+}}\right)\approx N\left(\frac{O^{+}+O^{2+}}{O^{2+}}\right)}. (25)

However, this approach does not seem to be valid for AGNs. For example, Komossa & Schulz (1997), by using multi-component photoionization models which permitted a successful match of a large set of line intensities from the UV to the NIR for Seyfert 2 nuclei, showed that the Ne2+ ion extends to a larger (where a lower temperature is expected) radius of the AGN than O2+. Similar result was found by Alexander & Balick (1997) for Planetary Nebulae (PNs), which also exhibited gas with high ionization. In fact, it can be seen from Fig. 4 that, generally, t3t_{3} is higher than te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}). Therefore, based on the results shown in Fig. 5, it is necessary to produce a new formalism to replace Eq. 25 for AGNs. We developed a semi-empirical neon ICF following a similar methodology assumed by Dors et al. (2013) for SFs.

The total neon abundance in relation to hydrogen is usually assumed to be

NeHNe+H++Ne2+H+.\rm\frac{Ne}{H}\approx\frac{Ne^{+}}{H^{+}}+\frac{Ne^{2+}}{H^{+}}. (26)

This approximation can be more reliable for SFs than AGNs, because it considers a null abundances of Nei> 2+\rm Ne^{i\>>\>2+}. We use the photoionization model results by Carvalho et al. (2020) to ascertain the validity of Eq. 26 for AGNs. In the bottom panel of Fig. 6, the model results for y=1[(Ne++Ne2+)/H+]\rm y=1-[\rm(Ne^{+}+Ne^{2+})/H^{+}] versus x=[O2+/(O++O2+)]\rm x=[O^{2+}/(O^{+}+O^{2+})] is shown. It can be seen that, for x 0.7\rm x\>\la\>0.7 or for logU2.5\log U\>\la\>-2.5 the abundance sum (Ne++Ne2+)(\rm Ne^{+}+Ne^{2+}) represents more than 80 % of the total Ne abundance. In the top panel of Fig. 6, a distribution of x values for the objects in our sample, calculated by using the TeT_{\rm e}-method (see Sect. 3.1), is shown. It can be seen that most of the objects (\sim90 %) have x 0.6\rm x\>\la\>0.6 within the range 0.02x 0.72\rm 0.02\>\lid\>x\lid\>0.72. Thus, a small correction factor is necessary in Eq. 26. A fit to the points in Fig. 6 produces

y=(0.78±0.06)x2(0.33±0.06)x+(0.07±0.01)\rm y=(0.78\pm 0.06)x^{2}-(0.33\pm 0.06)x+(0.07\pm 0.01) (27)

and Eq. 26 can be rewritten in the form

NeH=f×(Ne+H++Ne2+H+),{\rm\frac{Ne}{H}}=f\times{\rm\left(\frac{Ne^{+}}{H^{+}}+\frac{Ne^{2+}}{H^{+}}\right)}, (28)

where

f=11y.f=\frac{1}{1-y}. (29)
Refer to caption
Figure 6: Bottom panel: Neon ionic abundance ratio y=1[(Ne++Ne2+)/H+]\rm y=1-[\rm(Ne^{+}+Ne^{2+})/H^{+}] versus oxygen ionic abundance ratio x=[O2+/(O++O2+)]\rm x=[O^{2+}/(O^{+}+O^{2+})] predicted by photoionization model built by Carvalho et al. (2020). Results from photoionization models assuming distinct ionization parameter (UU) values are indicated by different colours. The black solid line represents a fit to the points represented by Eq. 27. Top panel: The distribution of oxygen ionic abundance ratios for our sample of objects (see Sect. 3) calculated by using the TeT_{\rm e}-method.

For the infrared abundance determinations, Eq. 28 was applied, where the Ne+\rm Ne^{+} and Ne2+\rm Ne^{2+} estimates were based on Eqs. 16, 17, 18 and 19 and the ff factor was calculated from Eqs. 27 and 29 with x estimates obtained by using the TeT_{\rm e}-method (see Sect. 3.1).

For Ne/H estimates based on optical lines, it is only possible to calculate the Ne2+/H+\rm Ne^{2+}/H^{+} abundance based on the Eq. 12 and assuming t3t_{3} and te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}). For that, the total neon abundance estimates via optical lines must be assumed

NeH=ICF(Ne2+)×Ne2+H+.\rm\frac{Ne}{H}=ICF(Ne^{2+})\times\frac{Ne^{2+}}{H^{+}}. (30)

Using Eqs. 14, 15 and 28, we derive a semi-empirical neon ICF given by

ICF(Ne2+)=2.10f×[I(12.81µm)I(15.56µm)+0.48].{\rm ICF(Ne^{2+})}=2.10\>f\times\left[\frac{I({12.81}~{}{\micron})}{I({15.56}~{}{\micron})}+0.48\right]. (31)

The photoionization models and expressions employed to derive the ionic abundances, previously presented, probably use different set of atomic parameters which could introduce a small systematic uncertainty in the resulting abundances. However, Juan de Dios & Rodríguez (2017) found that atomic data variations introduce differences in the derived abundance ratios as low as \sim0.15 dex at low density (Ne 103cm3N_{\rm e}\>\la\>10^{3}\>\rm cm^{-3}). Since most NLRs of Seyfert 2 present NeN_{\rm e} values lower than 103cm310^{3}\>\rm cm^{-3} (e.g. Vaona et al. 2012; Dors et al. 2014; Dors et al. 2020b; Freitas et al. 2018; Revalski et al. 2018b; Kakkad et al. 2018; Revalski et al. 2021) the consideration of distinct atomic parameters in our calculations is expected to have a small effect in our abundance results.

5 Results

The bottom panel of Fig. 7 shows a comparison between the ionic abundance 12+log(Ne2+/H+\mathrm{Ne^{2+}/H^{+}}) obtained using the infrared lines method (see Sect. 3.2) considering Paschen and Brackett emission lines, i.e. calculated from Eqs. 18 and 19. The average and standard deviation are derived for Ne2+/H+\mathrm{Ne^{2+}/H^{+}} estimation of each object assuming different Paschen and Brackett lines which are in order of 0.02 dex. In the top panel of Fig. 7, the mean differences between the estimations versus the estimations via Paschen lines are shown. The average difference is about 0.1 dex, similar to error derived in ionic abundance estimates by Kennicutt et al. (2003). We notice a slight trend (see Fig. 7 top panel) of Ne2+/H+\mathrm{Ne^{2+}/H^{+}} abundances via Paschen lines to be lower than those via Brackett lines, reaching up to 0.4\sim 0.4 dex for the lowest values of Paschen neon ionic determinations. This discrepancy could suggest either some uncertainties in the physical constants of the H line ratios (probably for high temperature) or in the line measurements (e.g. aperture corrections and/or distinct calibrations in the data compiled from the literature). In any case, this result is marginal because only two objects present 12+log(Ne2+/H+\mathrm{Ne^{2+}/H^{+}}) lower than 7.3\sim 7.3 dex. If this objects are not considered, we derive about a null difference among the estimates. Thus, it is shown that the Ne2+/H+\mathrm{Ne^{2+}/H^{+}} estimates based on any IR hydrogen reference line of a particular series are in agreement with each other taken into account a discrepancy of 0.1\sim 0.1 dex. It was possible to calculate Ne2+/H+\mathrm{Ne^{2+}/H^{+}} by using Paschen lines for 27 objects of our sample and Brackett lines for 34 objects with 26 correspondingly Paschen and Bracket emission line series.

In Table A4, the Ne+/H+\mathrm{Ne^{+}/H^{+}}, Ne2+/H+\mathrm{Ne^{2+}/H^{+}}, ff factor and the total neon abundance [12+log(Ne/H)] values for our sample obtained using IR-method (see Sect. 3.2 and 4.2) are listed. The infrared Ne2+/H+\mathrm{Ne^{2+}/H^{+}} ionic abundance values listed in Table A4 represent the mean values from the estimates based on Paschen and Brackett lines. It was not possible to calculate the Ne+/H+\mathrm{Ne^{+}/H^{+}} abundance, and consequently the Ne/H, for three objects from our sample (i.e. NGC 1320, NGC 3393 and ESO428-G014) due to the absence of the [Ne ii]12.81µm\micron emission lines in the original works where the data were compiled. In Table A5, the 12+(Ne2+/H+) values calculated via TeT_{\rm e}-method assuming t3t_{3} and te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) (see Sect. 3.1), the ICF(Ne2+) obtained from Eq. 31 and the total neon abundance for our sample are listed.

Refer to caption
Figure 7: Comparison between the ionic abundance of 12+log(Ne2+/H+\mathrm{Ne^{2+}/H^{+}}) derived via IR-lines by using Brackett and Paschen (see Sect. 3.2). The points represent estimations for the objects presented in Table A4. The solid line represents the equality of the two estimates. Top panel: difference (D=ordinateabscissa\rm D=ordinate-abscissa) between the estimations. The black line represents the null difference, while the red line represents a linear regression to these differences whose slope is indicated. The average difference (<D>\rm<D>) is also shown. The hatched area indicates the uncertainty of ±0.1\pm 0.1 derived in the abundance estimations.

In the bottom panel of Fig. 8, the Ne2+/H+\mathrm{Ne^{2+}/H^{+}} values estimated using the TeT_{\rm e}-method, assuming te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) and t3t_{3}, versus estimations obtained from IR-method are shown. In the top panel of this figure, the differences between these estimations versus the IR ionic estimates are shown. It can been seen that, for most of the objects, the IR estimations are higher than those obtained via the TeT_{\rm e}-method by using both te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) and t3t_{3} electron temperatures. An average difference value from the comparison between the IR-method and the te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) estimations is \sim-0.20 dex. However, when t3t_{3} is considered, an average difference between the estimates of \sim-0.69 dex is found. The differences between the IR-method and the TeT_{\rm e}-method estimates imply systematic differences in both cases, i.e. they increase with Ne2+/H+\mathrm{Ne^{2+}/H^{+}}, until 1\sim 1 dex and 2\sim 2 dex, for te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) and t3t_{3}, respectively. The difference between Ne2+/H+\mathrm{Ne^{2+}/H^{+}} found in Fig. 8 is due to systematic derivation (from Eq. 11) of lower te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) values in comparison with t3t_{3}, which translate into higher ionic abundances when te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) is assumed. In other words, according to our photoionization model results (see Fig. 4), the [O iii] temperature is likely an overestimation of the [Ne iii] temperature.

Neon ICFs for AGNs are still not available in the literature, however, we can compare the values obtained for our sample with those derived for H ii regions by Dors et al. (2013). These authors derived the ICF(Ne+2\rm Ne^{+2}) directly (from neon IR lines) for 23 H ii regions with oxygen abundance in the range of 7.1 12+log(O/H) 8.5\rm 7.1\>\la\>12+\log(O/H)\>\la\>8.5 and ionization degree 0.4[O2+/(O++O2+)] 1.0\rm 0.4\>\la\>[O^{2+}/(O^{+}+O^{2+})]\>\la\>1.0. Our AGN sample is based on more metallic objects 8.0 12+log(O/H) 9.2\rm 8.0\>\la\>12+\log(O/H)\>\la\>9.2 and similar ionization degree 0.2[O2+/(O++O2+) 0.7\rm 0.2\>\la\>[O^{2+}/(O^{+}+O^{2+})\>\la\>0.7. From Table A5, we notice that the ICF(Ne+2\rm Ne^{+2}) values for the AGN sample range from \sim1.5 to \sim12, where the highest value (11.83) is derived for NGC 5953. Even not considering this high value, we find an ICF(Ne+2\rm Ne^{+2}) range of 1.5-6.5, a wider range of values than those derived for H ii regions by Dors et al. (2013), i.e. from 1\sim 1 to 2\sim 2.

Refer to caption
Figure 8: Same as Fig. 7 but for estimations derived using the TeT_{\rm e}-method versus IR-method (see Sect. 3). In left panel TeT_{\rm e}-method estimates are based on te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) and in the right panel on t3t_{3}, as indicated.

In Table A6, the 12+(logO+/H+)12+(\log\mathrm{O^{+}/H^{+}}), 12+(logO2+/H+)12+(\log\mathrm{O^{2+}/H^{+}}), the ICF(O) (by using Eq. 31), the total oxygen abundance [12+log(O/H)] as well as the log(Ne/O) values, assuming neon abundance derivations via t3t_{3} and te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}), are listed. With regard to the oxygen ICFs for the 35 objects where the values (80%\sim 80\,\% of the sample) could be estimated, we derived values ranging from 1.1\sim 1.1 to 2.22.2, with an average value of 1.30\sim 1.30, which indicates a correction in the total oxygen abundance in order of only \sim0.1 dex (see also Flury & Moran 2020; Dors et al. 2020c).

In Fig. 9, histograms showing the distributions of total oxygen abundance (O/H) and the total neon abundances for our sample, calculated from TeT_{\rm e}-method assuming t3t_{3} and te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}), as well as Ne/H via IR-method, are shown. The solar values 12+log(O/H)=8.69\rm 12+\log(O/H)_{\odot}=8.69 and 12+log(Ne/H)=8.0\rm 12+\log(Ne/H)_{\odot}=8.0, obtained by Allende Prieto et al. (2001) and Holweger (2001), respectively, are indicated in Fig. 9. In Table 2, the minimum, maximum and average values of the distributions of O/H, Ne/H and Ne/O derived using the distinct methods are listed. It can be observed that, in Fig. 9, most (64%\sim 64\,\%) of the objects for the sample have oxygen abundance in the range 8.4 12+log(O/H)8.8\rm 8.4\>\la\>12+\log(O/H)\>\la 8.8 or 0.50(Z/Z)1.30.50\>\la\>(Z/{\rm Z_{\odot}})\>\la 1.3, which implies that only 8%8\,\% of oxygen abundance values are found in the low metallicity regime (i.e. 12+log(O/H) 8.2\rm 12+\log(O/H)\>\la\>8.2). Groves et al. (2006), who considered a photoionization model sequence to reproduce the optical emission line intensities of AGNs, found a similar result, i.e. low metallicity AGNs are rarely found in the local universe. The maximum O/H value derived for our sample (12+log(O/H)9.2)\mathrm{(12+\log(O/H)\approx 9.2)} is about 0.2 dex higher than the maximum value derived for star-forming galaxies by Pilyugin et al. (2007), who adopted the PP-method (Pilyugin, 2000, 2001).

In the case of the Ne/H abundance in Fig. 9, the estimates based on t3t_{3} indicate that most objects (65%\sim 65\,\%) present lower values than the solar value. The abundance estimates via te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) and IR-method indicate that majority (90%\ga 90\,\%) of the objects have higher Ne/H abundances than the solar value. For some few objects (10%\sim 10\,\%), IR estimates indicate values rising up to 10 times the solar value.

In Fig. 10, histograms showing the Ne/O abundance ratios distribution for our sample, whose values were calculated via TeT_{\rm e}-method by assuming t3t_{3} and te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}), are presented. No Ne/H values derived via IR-lines are considered in Fig. 10 because the O/H values are based on a distinct method, i.e. the TeT_{\rm e}-method. The line indicating the Ne/O solar value is also depicted in this figure. We can see that the majority (60%\sim 60\,\%) of the t3t_{3} estimates are higher than the solar ratio and all values based on te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) lead to oversolar Ne/O abundances.

Refer to caption
Figure 9: Histograms containing the total abundance distributions for our sample of objects (see Sect. 2). Panel (a): Distribution of 12+log(O/H) calculated from TeT_{\rm e}-method (see Sects. 3.1 and 4). Panels (b) and (c): Distribution of 12+log(Ne/H) calculated from TeT_{\rm e}-method assuming te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) and t3t_{3}, as indicated. (d) Distribution of 12+log(Ne/H) calculated from IR-method (see Sects. 3.2 and 4). Red lines indicate the 12+log(O/H)=8.69 and the 12+log(Ne/H)=8.0 solar values derived by Allende Prieto et al. (2001) and Holweger (2001), respectively.
Refer to caption
Figure 10: Same as Fig. 9 but for log(Ne/O). Panels (a) and (b) show distributions obtained with Ne abundances calculated from TeT_{\rm e}-method assuming t3t_{3} and te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}), as indicated. Red line indicates log(Ne/O)=0.69-0.69 solar value (Allende Prieto et al., 2001; Holweger, 2001).
Table 2: Minimum, maximum and the mean abundance ratio values for our sample (see Sect. 2) derived by the use of the distinct methods (see Sects. 3 and 4). The values obtained from the abundance distributions are presented in Figs. 9 and 10.
Abundance ratio Min. Max. Mean
12+log(O/H) 8.03±0.058.03\pm 0.05 9.17±0.069.17\pm 0.06 8.55±0.228.55\pm 0.22
12+log(Ne/H)-t3{t_{3}} 7.44±0.127.44\pm 0.12 8.48±0.068.48\pm 0.06 7.90±0.247.90\pm 0.24
12+log(Ne/H)-te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) 7.90±0.057.90\pm 0.05 8.88±0.218.88\pm 0.21 8.39±0.228.39\pm 0.22
12+log(Ne/H)-IR 7.99±0.017.99\pm 0.01 9.47±0.119.47\pm 0.11 8.54±0.368.54\pm 0.36
log(Ne/O)-t3{t_{3}} 1.21±0.01-1.21\pm 0.01 +0.03±0.03+0.03\pm 0.03 0.66±0.27-0.66\pm 0.27
log(Ne/O)-te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) 0.51±0.01-0.51\pm 0.01 +0.58±0.03+0.58\pm 0.03 0.17±0.24-0.17\pm 0.24

6 Discussion

Along decades, several studies have been carried out to address the determination of chemical abundances of AGNs at both low and high redshift, mainly based on comparing photoionization model results with observational data. However, these studies have been primarily focused on the determination of the metallicity and in some few instances on the determination of oxygen and nitrogen abundances. Pertaining to the low redshift objects, where optical emission lines are easily observed, for instance, Storchi-Bergmann & Pastoriza (1990), who compared Seyfert and LINERs observational and photoionization model line predictions in the diagram [N ii](λ6548\lambda 6548 +λ6584\lambda 6584)/Hα\alpha versus [S ii](λ6716\lambda 6716+λ6731\lambda 6731)/Hα\alpha, found sulfur and nitrogen abundances ranging from one-half-solar to five times the solar values. After this pioneering work, Dors et al. (2017) built detailed photoionization models to reproduce narrow optical emission lines for a sample consisting of 44 local (z< 0.1z\><\>0.1) Seyfert 2 nuclei and found nitrogen abundances ranging from \sim0.3 to \sim 7.5 times the solar value.

Direct elemental abundance of AGNs, based on the TeT_{\rm e}-method, are rare in the literature. Probably, the first TeT_{\rm e}-method estimation in AGN was undertaken by Osterbrock & Miller (1975) for Cygnus A, in the derivation of 12+log(O/H)8.60\sim 8.60, 12+log(Ne/H)8.0\sim 8.0 and other elemental abundances. After this pioneering work, other authors also applied the TeT_{\rm e}-method to AGNs (e.g. Alloin et al. 1992; Izotov & Thuan 2008; Dors et al. 2015, 2020b, 2020c) but focused mainly on O/H abundance. Recently, Flury & Moran (2020), by assuming an approach for estimating abundances of heavy elements which involves a reverse-engineering of the TeT_{\rm e}-method, derived the first (N/O)-(O/H) relation for AGNs based on the direct method. On the other hand, for the elemental abundances in high redshift AGNs, oversolar nitrogen abundance have been derived for the most part of the objects (see Dors et al. 2019 and reference therein). In summary, hitherto, the unique neon abundance in AGNs appears to have been the derivation obtained by Osterbrock & Miller (1975), who estimated a value approximately equal to the solar abundance. In subsequent sections, we discuss the neon abundance results derived for our sample.

6.1 Ne2/H+{\rm Ne^{2}/H^{+}} abundance

Vermeij & van der Hulst (2002) obtained optical (by using the Boller & Chivens spectrograph on the ESO 1.52 meter telescope) and infrared (by using Short Wavelength Spectrometer - SWS and Long Wavelength Spectrometer- LWS on board the Infrared Space Observatory - ISO) spectra for 15 H ii regions located in the Magellanic Clouds. From these objects, it was possible to derive the Ne2+ ionic abundances via both IR and TeT_{\mathrm{e}}{-}method for 13 out of the 15 H ii regions. The differences (D) between these estimations ranges from 0.6-0.6 to +0.6 dex, thus, for some objects the TeT_{\mathrm{e}}{-}method resulted in higher abundances. The averaged value of D was about zero. The result obtained by Vermeij & van der Hulst (2002) is in disagreement with the findings by Dors et al. (2013), who found that the abundances obtained via infrared emission lines are higher than those obtained via optical lines in H ii regions, by a factor of 0.60\sim 0.60 dex.

In Fig. 8, 12 + log(Ne2+/H+\mathrm{Ne^{2+}/H^{+}}) abundances via TeT_{\rm e}-method assuming tet_{\rm e}(Ne iii) (left panel) and t3t_{3} (right panel) are compared with the results via IR{-}method for our sample. In the top panels of Fig. 8, the differences between both estimates are plotted versus the IR estimates. As noted earlier in Fig. 8, the difference (D) is systematic in both cases, where D increases with Ne2+/H+\rm Ne^{2+}/H^{+} from IR-method estimations. The average difference (<D>\rm<D>) between ionic abundances values via TeT_{\rm e}-method assuming t3t_{3} and IR estimates is obviously the same value (0.60\sim 0.60 dex) as the average value found for H ii regions by Dors et al. (2013). Therefore, probably, any artificial effects attributed to the use of heterogeneous sample of data sets, aperture effects, different regions in the objects which are considered in optical and IR observations, can have influence on our results.

The origin of D was discussed in details by Dors et al. (2013) for H ii regions and it was attributed to be mainly the presence of abundance and/or electron temperature variations across the nebula rather than extinction effects in the area of the sky covered by the IR and optical observations, as proposed by Vermeij & van der Hulst (2002). An overview of the discrepancy derived from this work will be presented in a subsequent paper, even though we refer to few possible scenarios here. Recently, Dors et al. (2020a) by using the suma code (Viegas-Aldrovandi & Contini, 1989), which assumed that the gas ionization/heating is due to photoionization and shocks, found that Seyfert 2 nuclei have gas shock velocities in the range of 50-300 kms1\mathrm{km\>s^{-1}}. These shocks can produce an extra gas heating source in the NLRs, which translates into underestimation of the elemental abundances via TeT_{\rm e}-method in relation with abundances derived from IR lines (less dependent on temperature). As an addition support to the presence of electron temperature fluctuations in AGNs, Riffel et al. (2021a) presented 2D electron temperature maps, based on Gemini GMOS-IFU observations at spatial resolutions ranging from 110 to 280 pc, in the central region of three luminous Seyfert galaxies, where a large variation of temperatures (from 8000\sim 8000 to 30 000\ga 30\>000 K) were derived. This result indicates a large fluctuation of t3t_{3}.

The Paα\alpha to Paδ\delta and Brα\alpha to Brδ\delta emission lines are not only the strongest emission lines found in the NIR and MIR, they are also relatively free from blending features and dust attenuation. This makes them valuable tools to derive the chemical abundances of AGNs. The optical Balmer emission lines, although stronger, can suffer blending with other lines (i.e. Hα\alpha normally blends with [N ii] λ6548\lambda 6548, λ6584\lambda 6584 Å), and at least to some degree, are expected to be more affected by dust absorption than Paschen and Brackett emission lines. Independent measurements of the narrow component fluxes can yield important constraints on the presence of dust within the line of sight which could also affect the emitter regions of IR lines. In fact, effects of dust on hydrogen emission line measurements are clearly observable only in the Balmer emission line ratios but they can not be detected at a significant level using the Paschen and Brackett emission lines alone (Landt et al., 2008).

For the NIR broad emission line region (BLR) of AGNs, Landt et al. (2008) obtained the dust extinction in the order of AV1A_{V}\sim 1 to 2\sim 2 mag in consonance with other studies (e.g. Cohen 1983; Crenshaw et al. 2001; Crenshaw et al. 2002; Storchi-Bergmann et al. 2009). From these results, the effect of the dust causing the observed extinction of the narrow emission line region depends on the location of the dust, thus, being internal dust if it is mixed with the gas phase or if it is located outside the NLR, for instance, in the host galaxy. Since the covering factor of the narrow emission line clouds is assumed to be only a few per cent, the line of sight towards the BLR will not necessarily intercept the dust. However, dust external to the NLR will act as a screen to affect the smallest scale components such as the BLR and the continuum emitted by the accretion disk. However, reddening in Seyfert galaxies by means of NIR line ratios performed by Riffel et al. (2006), led to the fact that Sy2s tend to lie close to the locus of points of the reddening curve, with E(BV)E(B-V) in the interval 0.251.000.25{-}1.00 mag.

Despite these drawbacks, IR transitions offer the opportunity to examine the metallicity of galaxies almost without being affected by dust extinction, therefore, it is worthwhile to be explored and used whenever possible (Moorwood et al. 1980a, b; Lester et al. 1987; Rubin et al. 1988; Tsamis et al. 2003). For instance, the metallicities of the central and obscured regions of starburst galaxies can only be accessed via far-infrared (FIR) lines, while metallicities derived via optical lines are likely related to only the outer, less dust-extincted part of these galaxies (Puglisi et al., 2017; Calabrò et al., 2018). Considering non-consensus on dust extinction in the NIR coupled with the fact that little is known about the shapes of the NIR extinction curves of the Small and Large Magellanic Cloud (for a review see, for instance, Salim & Narayanan 2020), it will probably take observations from FIR to settle IR dust extinction and its effects on metallicities in AGNs. As a result, we chose the approach to extinction correction problems to be most relevant to optical line fluxes, while we considered extinction to be essentially negligible for our infrared data.

We notice that the comparison between the ionic abundance of 12+log(Ne2+/H+\mathrm{Ne^{2+}/H^{+}}) derived via IR-lines by using Brackett and Paschen series presents a linear correlation with a Pearson correlation coefficient of R=0.70R=0.70 (see Fig. 7). Also, the twice neon ionic abundance estimations derived using the TeT_{\rm e}-method based on te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) and t3t_{3} have a positive linear correlation with a Pearson correlation coefficient of R=0.84R=0.84 (see Figs. 8 and 11). However, we find no correlation between estimations derived using the TeT_{\rm e}- and IR-methods. Separating the Paschen and Brackett series ionic abundance estimations with or without discriminating against the outliers, we do not find any significant change in the disparity of the doubly ionized neon ionic abundance trend. Consequently, we find the use of either only Paschen or only Bracket series or both to be reliable estimations of neon ionic abundance in Seyfert 2 nuclei. Comparison of values estimated from Eqs. 7 and 11 clearly shows a high disparity between t3t_{3} and te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}). This discrepancy translate into underestimations of 12 + log(Ne2+/H+\mathrm{Ne^{2+}/H^{+}}) abundances by t3t_{3} as compared to te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) estimates. Despite this difference and the positive correlation between the TeT_{\rm e}-methods, there is no correlation between the TeT_{\mathrm{e}}- and IR-methods. Therefore, it is worthwhile investigating the non-existence of mutual relation between the TeT_{\mathrm{e}}- and IR-methods.

The temperature problem in AGNs, thus, the cause of higher electron temperature values usually derived from observational RO3R_{\mathrm{O3}} ratio other than predictions by photoionization models is a potential cause of the neon ionic abundance discrepancy. It is important to highlight that the origin of the electron temperature fluctuation is an open problem in nebular astrophysics. A t2t^{2} value of 0.04\sim 0.04 typically results in an underestimation of C/H, O/H and Ne/H by about 0.2 to 0.3 dex (Peimbert 1967; Peimbert & Costero 1969). Therefore, it is extremely important to ascertain whether the fluctuations in temperature exist or whether there are inherent potential errors from the adopted methodology. If temperature variations exist, it is imperative to better understand their nature and possibly derive some methodology to reconcile them in chemical abundance derivations. It is worth noting that, hitherto, the t2t^{2} values available in the literature are, in most part, indirectly based on the comparison of different methods to the estimation of TeT_{\mathrm{e}} and the majority of the studied objects are H ii regions and Planetary Nebulae (PN). Only mapping the AGNs with appropriate sensitivity and spatial resolution in the temperature diagnostic lines could conceivably provide direct evidence of small or large scale fluctuations. Recently, Riffel et al. (2021b), who used the Gemini GMOS-IFU observations of three luminous nearby Seyfert galaxies (Mrk 79, Mrk 348 and Mrk 607), found electron temperature fluctuations in these objects in the same order or larger than the maximum values reported in star-forming regions and Planetary Nebulae. Thus, the discrepancy derived from optical and IR abundance estimates can be due to the presence of electron temperature fluctuations in AGNs. Moreover, another potential source of temperature fluctuations could be the presence of density variations in the gas but we did not observe high-scale of density fluctuations in our selected sample.

Furthermore, as previously stated in this paper, aperture effect is not the primary cause of the neon ionic abundance discrepancy (e.g. Dors et al. 2013, 2020b). Following from the foregoing, we point out here two potential key reasons for the absence of connection between the TeT_{\mathrm{e}}- and IR-methods. It is worth stating from the onset that only IR tracers can explore the gas-phase elemental abundances in the interstellar medium of dusty galaxies because the IR emission lines are insensitive to interstellar reddening. Internal dust extinction could have a significant impact on the comparison of abundances obtained from IR and optical emission lines. The blue optical [Ne iii]λ\lambda3869 emission line suffers more dust absorption than the IR emission lines. Secondly, unlike optical emission lines, the emissivity of IR lines has weak dependence on electron temperature, because the atomic levels involved in the transitions are much closer to the ground state as compaered to the optical.

Refer to caption
Figure 11: Same as Fig. 7 but for the ionic abundance of 12+log(Ne2+/H+\mathrm{Ne^{2+}/H^{+}}) and the total abundance of 12+log(Ne/H) derived using the TeT_{\rm e}-methods. In both panels TeT_{\rm e}-method estimates are based on te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) versus t3t_{3}, as indicated.

6.2 Ne/H abundance

In this work we determine for the first time the neon abundances for a large sample of local AGNs. These abundance determinations have deep implications in the studies of the chemical evolution of galaxies and stellar nucleosynthesys, mainly because, due to their localization in the disk and according to scenario inside-out of galaxy formation (e.g. Mollá & Díaz 2005), it is expected a high metallicity in AGNs in comparison to disk H ii regions.

Table 3: Parameters of the Ne/H abundance gradients in a sample of spiral galaxies. NN represents the number of H ii regions considered in the estimations of the gradients. Y0Y{{}_{0}}, gradYgrad\,Y and W0W_{0} are defined in Eqs. 32 and 33. In the last column, the original works from which the Ne/H abundance values were compiled are listed.
Galaxy NN Y0Y{{}_{0}} gradYgrad\,Y W0W_{0} Reference
M 33 6 4.23±0.25-4.23\pm 0.25 0.057±0.005-0.057\pm 0.005 0.58 1
M 33 16 4.07±0.04-4.07\pm 0.04 0.058±0.014-0.058\pm 0.014 0.85 2
NGC 2403 6 4.40±0.03-4.40\pm 0.03 0.008±0.005-0.008\pm 0.005 0.40 3
NGC 3184 29 3.57±0.21-3.57\pm 0.21 0.080±0.029-0.080\pm 0.029 2.70 4
NGC 628 35 4.23±0.08-4.23\pm 0.08 0.004±0.013-0.004\pm 0.013 0.60 4
NGC 5194 8 4.01±0.20-4.01\pm 0.20 0.028±0.037-0.028\pm 0.037 0.97 4
NGC 5457 70 4.05±0.05-4.05\pm 0.05 0.021±0.003-0.021\pm 0.003 0.89 4
NGC 925 23 3.67±0.18-3.67\pm 0.18 0.059±0.021-0.059\pm 0.021 2.13 5
NGC 2805 8 3.39±0.19-3.39\pm 0.19 0.050±0.015-0.050\pm 0.015 4.07 5
NGC 4395 8 4.13±0.20-4.13\pm 0.20 0.056±0.038-0.056\pm 0.038 0.74 5
NGC 300 27 4.33±0.04-4.33\pm 0.04 0.057±0.016-0.057\pm 0.016 0.46 6

References: (1) Crockett et al. (2006), (2) Rubin et al. (2008) (3) Berg et al. (2013), (4)Berg et al. (2020), (5) van Zee et al. (1998a), (6) Bresolin et al. (2009).

IR spectra of AGNs have been obtained in many studies and certain properties have been extensively derived from them. For example, Genzel et al. (1998), by using ISO observations from the Infrared Astronomical Satellite (IRAS) ultraluminous galaxies, proposed a methodology to separate the relative contribution of AGNs and star-forming regions (see also Farrah et al. 2007; Weaver et al. 2010; Meléndez et al. 2014; Hood et al. 2017, among others). Also, theoretical calibrations between metallicity, ionization parameter and IR emission lines have been proposed in the literature (e.g. Nagao et al. 2011; Pereira-Santaella et al. 2017). However, for the most part, these studies have not derived the elemental abundance of heavy metals (e.g. Ne, Ar, S).

Measurements of emission lines for the most abundant neon lines have been undertaken by several authors (e.g. Dasyra et al. 2011; Fernández-Ontiveros et al. 2016) but no direct determination of the neon abundance has been obtained either in AGNs or star-forming regions, mainly due to difficulty in the observation of the hydrogen reference lines and the metal lines within the same spectral range. However, using the ISO Short Wavelength Spectrometer, where recombination hydrogen and metal lines were measured, Verma et al. (2003) obtained IR data (2.3λ(μm) 45\rm 2.3\>\la\>\lambda(\mu m)\>\la\>45) for 12 starburst galaxies. These authors found that Ne abundances span approximately over one up to three times order of magnitude the solar value (1(Ne/Ne) 3\mathrm{1\>\la\>(Ne/Ne_{\odot})\>\la\>3}). Bernard-Salas et al. (2009) obtained IR observational data (from 10 to 37 μ\mum) for 24 starburst by using the SpitzerSpitzer telescope and derived the Ne/H abundances ranging from \sim0.60 to \sim2 times the solar value. Finally, Wang & Liu (2008) obtained the neon and oxygen abundances for a large sample of Planetary Nebulae and H ii regions, whose the observational data were compiled from the literature. Taking into account the findings of these aforementioned authors, we can assumed for SFs Ne/H values ranging from 0.6\sim 0.6 to 3\sim 3 times the solar value. Our Ne/H results based on TeT_{\rm e}-method indicate a wider range of Ne/H abundances than those derived for star-forming objects, with the maximum values (see Table 2) ranging from 7\sim 7 to 30\sim 30 times the solar value when t3t_{3} and te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) are considered, respectively. Similarly, we find a very high maximum value considering the Ne/H estimates based on IR lines, i.e. 30\sim 30 times the solar value. Thus, it appears the Ne/H abundances in AGNs reach higher values than Ne/H estimations in star-forming regions.

As an additional test, in order to verify the higher Ne/H abundance in AGNs in comparison with values derived in star-forming regions, we estimate the total neon abundance (Ne/H) in the central parts of galaxies based on the extrapolation of the radial abundance gradients of this element, which is generally found in spiral galaxies (e.g. Willner & Nelson-Patel 2002; Crockett et al. 2006; Rosolowsky & Simon 2008; Magrini et al. 2009; Stanghellini et al. 2010). This procedure helps us to infer indirect and independent values of abundances in the nuclei of spiral galaxies (e.g. Vila-Costas & Edmunds 1992; van Zee et al. 1998b; Pilyugin et al. 2004; Zinchenko et al. 2019). As usual, we assume that the Ne/H abundance gradient is represented by

Y=Y+0gradY×R(kpc),Y=Y{{}_{0}}+grad\,Y\times R(\rm kpc), (32)

where Y=log(Ne/H)Y=\rm\log(Ne/H), Y0Y_{0} is the extrapolated value from the Ne/H abundance to the galactic center, i.e. at radial distance R=0R=0, and gradYgrad\,Y is the slope of the distribution expressed in YY units of dexkpc1\rm dex\>kpc^{-1}. As pointed out by Pilyugin et al. (2004), the reliability of radial abundance gradient determinations is defined not only by the large number of objects considered but also by the distribution of these objects along the galactic radius. Under this supposition, we take into consideration published data from the literature for Ne/H abundance values of H ii regions derived by using the TeT_{\rm e}-method and located at galactocentric distances in spiral galaxies within the range 0.2(R/R25) 10.2\>\>\la\>(R/R_{25})\>\la\>1, where RR is the galactocentric distance and R25R_{25} is the BB-band isophote at a surface brightness of 25 mag arcsec-2. In addition, Ne/H estimations in the M 33 galaxy obtained through IR lines by Rubin et al. (2008) using SpitzerSpitzer Space Telescope are considered. It was possible to obtain the Ne/H abundance gradients in 10 spiral galaxies. In Table 3, the identification of each galaxy, the number (NN) of H ii regions considered in deriving the Ne/H gradient, the Y0Y{{}_{0}} and gradYgrad\,Y values as well as references to the original works from which the data were obtained are listed. Also in Table 3, the extrapolation to the central part of each galaxy of the Ne/H abundance in relation with the solar value, defined as

W0=(Ne/H)0/(Ne/H)W_{0}=\rm(Ne/H)_{0}/(Ne/H)_{\odot} (33)

is listed. It can be seen that the extrapolated values of W0W_{0} range from 0.400.40 to 4.0\sim 4.0 in Table 3, while our results indicate that AGNs have abundances of Ne/H in the range 0.30-3.00, 0.80-7.60 and 0.90-30 times the solar value, depending on the method considered (see Table 2). Also, the average value of W0W_{0} obtained in Table 3 indicates that Ne/H abundance of \sim1.30 times the solar value in the central parts of spiral galaxies, while our results indicate twice the average value of W0W_{0} for AGNs (\sim2.24 times the solar value). Therefore, we certainly find that the total neon abundances from both optical and IR-lines determinations in AGNs are higher in comparison with estimations from H ii regions.

6.3 Neon ICF

The total neon abundances based on IR lines combined with the ionic oxygen abundance estimates present a good opportunity to obtain an expression for the neon ICF to be applied in AGN abundance studies (Kennicutt et al., 2003; Dors et al., 2013). In most part of cases, in the optical spectra of AGN and SFs only the [Ne iii]λ\lambda3869 Å line is measured, which makes the use of ICFs necessary to calculate the total neon abundance, as suggested by Peimbert & Costero (1969).

Neon ICFs for SFs have been proposed by several authors and, in most part, based on photoionization models (e.g. Izotov et al. 2006; Pérez-Montero et al. 2007; Amayo et al. 2021). Dors et al. (2013) proposed an empirical ICF for the neon based on only infrared neon lines measurements, i.e. free from the photoionization uncertainties. Unfortunately, no neon ICF expression has been proposed for AGN studies. In view of this, and following the method proposed by Dors et al. (2013), in Fig. 12, the neon ICF values for our sample obtained from Eq. 31 versus the O2+/(O++O2+)\rm O^{2+}/(O^{+}+O^{2+}) abundance ratio are shown. Inspection of ICF(Ne2+) values from Table A5 reveals a very discrepant and suspicious high ICF value for NGC 5953 in comparison with other objects, therefore, it was excluded from our analysis. Despite the scattering, a clear relation between the estimates can be noted. A linear fit to the points in Fig. 12 produces

ICF(Ne2+)IR=2.95(±1.17)×x+4.13(±0.41),\rm ICF(Ne^{2+})_{IR}=-2.95(\pm 1.17)\times x+4.13(\pm 0.41), (34)

where x=[O2+/(O++O2+)\rm O^{2+}/(O^{+}+O^{2+})]. This expression is valid for 0<x< 0.8\rm 0\><\>x\><\>0.8, i.e. the range of values covered by our sample of objects.

Also in Fig. 12, the ICF derived for SFs by Dors et al. (2013) given by

ICF(Ne2+)IR=2.3821.301x+0.05x\rm ICF(Ne^{2+})_{IR}=2.382-1.301x+\frac{0.05}{x} (35)

is shown. It can be noted in Fig. 12 that AGNs present higher neon ICF values than those of SFs for a fixed value of x, which is expected given their higher ionization degree.

We investigate the scattering in the points observed in Fig. 12, taking into account the dependent of the ICF(Ne2+)-x relation on some nebular parameters. Izotov et al. (2006) found, for some elements, a dependence between ICF-x relations and the metallicity, moreover, other authors have been investigated the ICF-x dependence with other nebular parameters (e.g. Amayo et al. 2021, 2020; Delgado-Inglada et al. 2014). In order to ascertain if the dispersion in our estimations is due to a reliance on metallicity (measured by O/H), as found by Izotov et al. (2006), the points in Fig. 12 (bottom panel) are indicated in accordance with their oxygen abundances. Also in Fig. 12 (top panel), the scattering of the ICF-x relation due to the electron density is considered. Since infrared emission-line intensities are involved in the ICF determinations and these present some dependence on the electron density, some effects from this parameter on the ICF could be derived. It can be observed from Fig. 12 that, the point positions are independent from O/H abundance and NeN_{\rm e} values. Probably, a larger sample of objects from both infrared and optical emission lines measured with high signal-to-noise ratio, which makes it possible to derive reliable physical properties could help to improve our understanding of the source of this scattering.

Refer to caption
Refer to caption
Figure 12: Relation between ICF(Ne2+)\rm ICF(Ne^{2+}) and and x=[O2+/(O++O2+)\rm O^{2+}/(O^{+}+O^{2+})] ionic abundance ratio. Points represent direct estimates for our sample (see Sect. 2) whose ICF(Ne2+)\rm ICF(Ne^{2+}) and x are calculated by using Eq. 31 and the TeT_{\rm e}-method (see Sect. 3.1). Bottom panel: Red line represents a fitting to the points obtained by using Eq. 34. Black line represent the relation for SFs derived by Dors et al. (2013) assuming the same methodology and given by Eq. 35. Colour bars indicate the 12+log(O/H) value for each object. Top panel. As bottom panel but the colour bars indicate the electron density (Ne)N_{\rm e}) for each object calculated through the [S ii]λ\lambda6716/λ\lambda6731 (see Sect.3.1).

6.4 Ne/O versus O/H

The primary origin of neon is derived from the stellar nucleosynthesis theory, which predicts that neon and oxygen are formed by stars of similar masses (e.g. Woosley & Weaver 1995). Thus, if stars are formed following an universal Initial Mass Function 222For a discussion on the universality of the IMF see, for example, Bastian et al. (2010). (IMF, Salpeter 1955), the Ne/O abundance ratio must not be dependent on O/H abundance (or on metallicity). However, several studies on this subject have yielded conflicting results. On the one hand, Wang & Liu (2008) used direct abundance values from PN and H ii regions, leading to the findings which suggested that the Ne/O ratio increases with O/H in both types of nebulae. Additionally, Guseva et al. (2011) also used a large sample of SFs and found a slight increase in Ne/O with O/H, which was interpreted by these authors as if this small increment would be likely due to a stronger depletion of oxygen onto dust grains in higher metallicity objects. On the other hand, several authors have derived a constant relation between Ne/O and O/H based on independent sample of data and ICFs (e.g. Kennicutt et al. 2003; Dors et al. 2013; Croxall et al. 2016; Arellano-Córdova et al. 2020).

In the advent of the CHemical Abundances of Spirals (CHAOS) project, thousands of direct abundances for the heavy elements have been possible in H ii regions located in spiral disks (Berg et al., 2015; Croxall et al., 2015, 2016; Berg et al., 2020; Skillman et al., 2020). These H ii regions present a wide range of metallicities [7.8 12+log(O/H) 9.0\rm 7.8\>\la\>12+\log(O/H)\>\la\>9.0 or 0.10(Z/Z) 20.10\>\la\>(Z/{\rm Z_{\odot}})\>\la\>2] and play an important role in the chemical abundance studies. This homogeneous sample combined with star-forming data from the literature and our abundance results expand direct abundance determination in the emitting line objects at (Z/Z) 3(Z/{\rm Z_{\odot}})\>\ga\>3, providing a unique opportunity to analyse the neon nucleosynthesis in the widest range of metallicity than previous studies. In Fig. 13, we show the Ne/O versus O/H results for our AGN sample, considering neon estimations based on TeT_{\mathrm{e}}{-} method assuming t3t_{3} (left panel) and tet_{\rm e}(Ne iii) (right panel). Estimates from the CHAOS project and abundance results of star-forming regions (H ii regions and H ii galaxies) taken from the literature, as well as polynomial fits to these estimations, are also shown in Fig. 13. Considering all the estimates (SFs and AGNs) we found

log(Ne/O)t3=a1x4+b1x3+c1x2+d1x+e1{\rm\log(Ne/O)}_{t_{3}}=~{}{a_{1}}x^{4}+{b_{1}}x^{3}+{c_{1}}x^{2}+{d_{1}}x+{e_{1}} (36)

and

log(Ne/O)te(Ne iii)=a2x4+b2x3+c2x2+d2x+e2{\rm\log(Ne/O)}_{t_{\rm e}(\text{Ne\,{iii}})}=~{}{a_{2}}x^{4}+{b_{2}}x^{3}+{c_{2}}x^{2}+{d_{2}}x+{e_{2}} (37)

where a1=0.153a_{1}=0.153, b1=4.825b_{1}=-4.825, c1=5.689×10+1c_{1}=5.689\times 10^{+1}, d1=2.975×10+2d_{1}=-2.975\times 10^{+2}, e1=5.816×10+2e_{1}=5.816\times 10^{+2}, a2=1.084×101a_{2}=1.084\times 10^{-1}, b2=3.279b_{2}=-3.279, c2=3.713×10+1c_{2}=3.713\times 10^{+1}, d2=1.865×10+2d_{2}=-1.865\times 10^{+2}, e2=3.500×10+2e_{2}=3.500\times 10^{+2} and xx = 12 + log(O/H).

In Fig. 13, we observe a better agreement between SF estimates and those for AGNs when t3t_{3} is assumed (left panel) instead of tet_{\rm e}(Ne iii) (rigth panel). For the very high metallicity regime [12+log(O/H) 8.80\rm 12+\log(O/H)\>\ga\>8.80 or (Z/Z) 1.3(Z/\rm Z_{\odot})\>\ga\>1.3] an oversolar Ne/O abundance is derived, which is more conspicuous in the estimations via tet_{\rm e}(Ne iii). Dors et al. (2020c), by using photoionization model results, found that theoretical relations between temperatures derived for AGNs differ considerably from those for H ii regions. This is due to the fact that AGNs present a very different ionization structure caused by, for instance, gas outflows (e.g. Riffel et al. 2018) and gas shocks in the ionized-neutral region transition (Dors et al., 2020a). In fact, recently, Riffel et al. (2021a) obtained from Gemini Multi-Object Spectrograph-integral field unit observations at spatial resolutions of 110–280 pc of three luminous Seyfert galaxies: Mrk 79, Mrk 348, and Mrk 607. These authors found shocks due to gas outflows play an important role in the observed temperature distributions, which can produce very different electron temperature distribution than those in H ii regions (see, for instance, Riffel et al. 2021b). Based on these results, we suggest that Te(Ne iii)T_{\rm e}(\text{Ne\,{iii}}) must be used in the derivation of Ne2+\rm Ne^{2+} ionic abundance, instead of t3t_{3}.

The observed increase in Ne/O can be attributed to two factors. First, it can be explained by the fact that higher dust depletion of oxygen occurs in the NLRs than in SFs. Some fraction of the oxygen, in order of 0.1-0.2 dex, is expected to be trapped in dust grains in SFs (Esteban et al., 1998) and in the Interstellar Medium (ISM) along the Galactic disk (Cartledge et al., 2006; Jenkins, 2009). While AGNs may have a higher rate of oxygen depletion onto dust in molecular clouds, it is unlikely that their abundance values vary significantly from SFs abundance estimations (e.g. Sternberg et al. 1994). Moreover, Ferguson et al. (1997) and Nagao et al. (2003) concluded that refractory elements are not depleted in the coronal line region of NLRs, indicating a low dust abundance in AGNs, probably due to the destruction of grains by the hard radiation from the supermassive black hole accretion disk. Therefore, in principle, we can exclude the oxygen depletion as the origin for high Ne/O values in AGNs.

In Fig. 13, we also notice that a value of 0.5 dex oxygen depletion in NLRs is necessary to conciliate the high Ne/O abundance values with those derived for the majority of the objects. However, such level of depletion is not observed in SFs and in the ISM. Additionally, the Ne/O increase with O/H is noted in both AGNs and SFs. Furthermore, the Ne/O deviation from applying te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) is not due to the ICF, because the ICF was applied to both t3t_{3} and te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) estimates, and the Ne/O from t3t_{3} still agrees with SFs estimations. The total neon abundance estimations derived using the TeT_{\rm e}-method based on te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) and t3t_{3} have a positive linear correlation with a Pearson correlation coefficient of R=0.83R=0.83 (see Fig. 11). Therefore, it is unlikely that the offset in Fig. 13 is due to oxygen depletion. Another plausible explanation for the Ne/O increase with O/H at high metallicity is that neon, in a similar way as nitrogen and carbon, may have a secondary origin in stellar nucleosynthesis, but at an oversolar metallicity. The stellar nucleosynthesis studies by Woosley & Weaver (1995) and even more recent studies (e.g. Iwamoto et al. 1999; Kobayashi et al. 2006, 2011; Ritter et al. 2018) did not investigate star formation in environments with metallicities higher than the solar value, despite the fact that ZZ appears to have an impact on the stellar product (e.g. Gronow et al. 2021).

Refer to caption
Figure 13: Relation between log(Ne/O) and 12+log(O/H). Blue points represent estimations for our sample of Seyfert 2 obtained by using TeT_{\rm e}-method where Ne abundances are calculated assuming t3t_{3} (left panel) and te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) (right panel). Grey points represent estimations obtained by using TeT_{\rm e}-method for star-forming regions (H ii regions and H ii galaxies) taken from CHAOS project (Berg et al., 2015; Croxall et al., 2015, 2016; Berg et al., 2020; Skillman et al., 2020), Hägele et al. (2006, 2008) and Pérez-Montero et al. (2007) . The red solid lines represent the polynomial fits to the points (Eqs. 36 and 37, respectively). Dashed black line represents log(Ne/O) = 0.67-0.67 (Nieva & Przybilla, 2012).

7 Conclusions

We compiled infrared and optical emission line fluxes from the literature for 35 Seyfert 2 galaxies in the local universe (0z 0.060\>\la z\>\la\>0.06) and these emission lines were used to derive the ionic Ne2+/H+\mathrm{Ne^{2+}/H^{+}} and elemental Ne/H abundances through the TeT_{\mathrm{e}}-method and the IR-method. Also, O/H abundances were derived by using the TeT_{\mathrm{e}}-method for our sample. We obtained the following conclusions:

  1. 1.

    We derived Ne2+/H+\mathrm{Ne^{2+}/H^{+}} ionic abundances using optical and IR emission lines. We found that the ionic abundance ratio derived via IR emission lines are higher than those calculated from optical lines by the factors of 0.69±0.03dex\mathrm{0.69\pm 0.03~{}dex} and 0.20±0.02dex\mathrm{0.20\pm 0.02~{}dex} when t3t_{3} and te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) are assumed in the determinations relying on the TeT_{\rm e}-method, respectively.

  2. 2.

    The Ne2+/H+\mathrm{Ne^{2+}/H^{+}} abundance differences derived from the comparison between the TeT_{\mathrm{e}}{-}method (assuming t3t_{3} to derive Ne2+/H+\mathrm{Ne^{2+}/H^{+}}) and the IR-method estimations are similar to those derived in nearby H ii regions.

  3. 3.

    We found no correlation between estimations derived using the TeT_{\mathrm{e}}{-} and IR-methods.

  4. 4.

    We have demonstrated from photoionization model results that, the assumption Te(iii)Te(Ne iii)T_{\rm e}(\text{O\,{iii}})\approx T_{\rm e}(\text{Ne\,{iii}}) which is valid in H ii regions, is not applicable to AGNs. As a result, we proposed a new relation between electron temperature Te(Ne iii)T_{\rm e}({\rm\text{Ne\,{iii}}}) and Te(iii)T_{\rm e}({\rm\text{O\,{iii}}}), i.e. the temperatures in the gas phase where the Ne2+\rm Ne^{2+} and O2+\rm O^{2+} are located, respectively.

  5. 5.

    We proposed a semi-empirical Ionization Correction Factor (ICF) for neon based on [Ne ii]12.81µm\micron, [Ne iii]15.56µm\micron which is derived from oxygen ionic abundance ratio x=[O2+/(O++O2+)\rm O^{2+}/(O^{+}+O^{2+})]. The scattering in the ICF(Ne2)-x relation does not correlate with the O/H abundance as well as the electron density.

  6. 6.

    We found that the average Ne/H value in AGNs is a factor of 2 times higher than estimations for star-forming regions (SFs). The maximum Ne/H abundance derived for our sample spans from 8 to 30 times the solar value, a factor of 4\sim 4-1010 times the maximum Ne/H value derived in SFs.

  7. 7.

    An increase in Ne/O with O/H was observed for the very high metallicity regime [12+log(O/H) 8.80\rm 12+log(O/H)\>\ga\>8.80] when estimates for SFs are combined with the ones for AGNs. We suggest that this phenomenon is due to secondary stellar production of the neon at very high metallicity regime rather than oxygen depletion onto dust.

Acknowledgements

We appreciate the detailed revision by the referee, Dr. Brent Groves, which has considerably improved this work. MA gratefully acknowledges support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). OLD and ACK are grateful to to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). CPA is grateful for the financial support from FAPESP. AF acknowledges support from grant PRIN MIUR 2017-20173ML3WW4-001. RF and RAR acknowledge financial support from CNPq (202582/2018-3, 304927/2017-1, 400352/2016-8 and 312036/2019-1) and FAPERGS (17/2551-0001144-9 and 16/2551-0000251-7).

8 DATA AVAILABILITY

The data underlying this article will be shared on reasonable request with the corresponding author.

References

  • Agostino et al. (2021) Agostino C. J., et al., 2021, arXiv e-prints, p. arXiv:2108.07812
  • Alexander & Balick (1997) Alexander J., Balick B., 1997, AJ, 114, 713
  • Allende Prieto et al. (2001) Allende Prieto C., Lambert D. L., Asplund M., 2001, ApJ, 556, L63
  • Alloin et al. (1992) Alloin D., Bica E., Bonatto C., Prugniel P., 1992, A&A, 266, 117
  • Álvarez-Álvarez et al. (2015) Álvarez-Álvarez M., Díaz A. I., Terlevich E., Terlevich R., 2015, MNRAS, 451, 3173
  • Amayo et al. (2020) Amayo A., Delgado-Inglada G., García-Rojas J., 2020, MNRAS, 492, 950
  • Amayo et al. (2021) Amayo A., Delgado-Inglada G., Stasińska G., 2021, MNRAS, 505, 2361
  • Arellano-Córdova & Rodríguez (2020) Arellano-Córdova K. Z., Rodríguez M., 2020, MNRAS, 497, 672
  • Arellano-Córdova et al. (2020) Arellano-Córdova K. Z., Esteban C., García-Rojas J., Méndez-Delgado J. E., 2020, MNRAS, 496, 1051
  • Badnell et al. (2006) Badnell N. R., et al., 2006, in Barlow M. J., Méndez R. H., eds, IAU Symposium Vol. 234, Planetary Nebulae in our Galaxy and Beyond. pp 211–218, doi:10.1017/S1743921306002997
  • Baldwin et al. (1981) Baldwin J. A., Phillips M. M., Terlevich R., 1981, PASP, 93, 5
  • Bastian et al. (2010) Bastian N., Covey K. R., Meyer M. R., 2010, ARA&A, 48, 339
  • Bennert et al. (2006) Bennert N., Jungwiert B., Komossa S., Haas M., Chini R., 2006, A&A, 446, 919
  • Berg et al. (2013) Berg D. A., Skillman E. D., Garnett D. R., Croxall K. V., Marble A. R., Smith J. D., Gordon K., Kennicutt Robert C. J., 2013, ApJ, 775, 128
  • Berg et al. (2015) Berg D. A., Skillman E. D., Croxall K. V., Pogge R. W., Moustakas J., Johnson-Groh M., 2015, ApJ, 806, 16
  • Berg et al. (2020) Berg D. A., Pogge R. W., Skillman E. D., Croxall K. V., Moustakas J., Rogers N. S. J., Sun J., 2020, ApJ, 893, 96
  • Bergvall et al. (1986) Bergvall N., Johansson L., Olofsson K., 1986, A&A, 166, 92
  • Bernard-Salas et al. (2009) Bernard-Salas J., et al., 2009, ApJS, 184, 230
  • Bianchi et al. (2010) Bianchi S., Chiaberge M., Evans D. A., Guainazzi M., Baldi R. D., Matt G., Piconcelli E., 2010, MNRAS, 405, 553
  • Boer & Schulz (1993) Boer B., Schulz H., 1993, A&A, 277, 397
  • Bogdán et al. (2017) Bogdán Á., Kraft R. P., Evans D. A., Andrade-Santos F., Forman W. R., 2017, ApJ, 848, 61
  • Böker et al. (2008) Böker T., Falcón-Barroso J., Schinnerer E., Knapen J. H., Ryder S., 2008, AJ, 135, 479
  • Bresolin et al. (2009) Bresolin F., Gieren W., Kudritzki R.-P., Pietrzyński G., Urbaneja M. A., Carraro G., 2009, ApJ, 700, 309
  • Brinchmann et al. (2013) Brinchmann J., Charlot S., Kauffmann G., Heckman T., White S. D. M., Tremonti C., 2013, MNRAS, 432, 2112
  • Bryant & Hunstead (1999) Bryant J. J., Hunstead R. W., 1999, MNRAS, 308, 431
  • Butler & Zeippen (1994) Butler K., Zeippen C. J., 1994, A&AS, 108, 1
  • Calabrò et al. (2018) Calabrò A., et al., 2018, ApJ, 862, L22
  • Cardaci et al. (2009) Cardaci M. V., Santos-Lleó M., Krongold Y., Hägele G. F., Díaz A. I., Rodríguez-Pascual P., 2009, A&A, 505, 541
  • Cardelli et al. (1989) Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245
  • Cartledge et al. (2006) Cartledge S. I. B., Lauroesch J. T., Meyer D. M., Sofia U. J., 2006, ApJ, 641, 327
  • Carvalho et al. (2020) Carvalho S. P., et al., 2020, MNRAS, 492, 5675
  • Castro et al. (2017) Castro C. S., Dors O. L., Cardaci M. V., Hägele G. F., 2017, MNRAS, 467, 1507
  • Cohen (1983) Cohen R. D., 1983, ApJ, 273, 489
  • Congiu et al. (2017) Congiu E., et al., 2017, MNRAS, 471, 562
  • Contini (2017) Contini M., 2017, MNRAS, 469, 3125
  • Cooke et al. (2000) Cooke A. J., Baldwin J. A., Ferland G. J., Netzer H., Wilson A. S., 2000, ApJS, 129, 517
  • Copetti et al. (2000) Copetti M. V. F., Mallmann J. A. H., Schmidt A. A., Castañeda H. O., 2000, A&A, 357, 621
  • Crenshaw et al. (2001) Crenshaw D. M., Kraemer S. B., Bruhweiler F. C., Ruiz J. R., 2001, ApJ, 555, 633
  • Crenshaw et al. (2002) Crenshaw D. M., et al., 2002, ApJ, 566, 187
  • Crockett et al. (2006) Crockett N. R., Garnett D. R., Massey P., Jacoby G., 2006, ApJ, 637, 741
  • Croxall et al. (2015) Croxall K. V., Pogge R. W., Berg D. A., Skillman E. D., Moustakas J., 2015, ApJ, 808, 42
  • Croxall et al. (2016) Croxall K. V., Pogge R. W., Berg D. A., Skillman E. D., Moustakas J., 2016, ApJ, 830, 4
  • Curti et al. (2017) Curti M., Cresci G., Mannucci F., Marconi A., Maiolino R., Esposito S., 2017, MNRAS, 465, 1384
  • D’Agostino et al. (2018) D’Agostino J. J., Poetrodjojo H., Ho I. T., Groves B., Kewley L., Madore B. F., Rich J., Seibert M., 2018, MNRAS, 479, 4907
  • D’Agostino et al. (2019) D’Agostino J. J., et al., 2019, MNRAS, 487, 4153
  • Dametto et al. (2019) Dametto N. Z., et al., 2019, MNRAS, 482, 4437
  • Dasyra et al. (2011) Dasyra K. M., Ho L. C., Netzer H., Combes F., Trakhtenbrot B., Sturm E., Armus L., Elbaz D., 2011, ApJ, 740, 94
  • Davies et al. (2014a) Davies R. L., Rich J. A., Kewley L. J., Dopita M. A., 2014a, MNRAS, 439, 3835
  • Davies et al. (2014b) Davies R. L., Kewley L. J., Ho I. T., Dopita M. A., 2014b, MNRAS, 444, 3961
  • Davies et al. (2020) Davies R., et al., 2020, MNRAS, 498, 4150
  • De Robertis & Osterbrock (1986) De Robertis M. M., Osterbrock D. E., 1986, ApJ, 301, 98
  • De Robertis et al. (1987) De Robertis M. M., Dufour R. J., Hunt R. W., 1987, J. R. Astron. Soc. Canada, 81, 195
  • Delgado-Inglada et al. (2014) Delgado-Inglada G., Morisset C., Stasińska G., 2014, MNRAS, 440, 536
  • Deo et al. (2007) Deo R. P., Crenshaw D. M., Kraemer S. B., Dietrich M., Elitzur M., Teplitz H., Turner T. J., 2007, ApJ, 671, 124
  • Díaz et al. (2007) Díaz Á. I., Terlevich E., Castellanos M., Hägele G. F., 2007, MNRAS, 382, 251
  • Dopita et al. (2015) Dopita M. A., et al., 2015, ApJS, 217, 12
  • Dors (2021) Dors O. L., 2021, MNRAS, 507, 466
  • Dors et al. (2008) Dors O. L. J., Storchi-Bergmann T., Riffel R. A., Schimdt A. A., 2008, A&A, 482, 59
  • Dors et al. (2013) Dors O. L., et al., 2013, MNRAS, 432, 2512
  • Dors et al. (2014) Dors O. L., Cardaci M. V., Hägele G. F., Krabbe Â. C., 2014, MNRAS, 443, 1291
  • Dors et al. (2015) Dors O. L., Cardaci M. V., Hägele G. F., Rodrigues I., Grebel E. K., Pilyugin L. S., Freitas-Lemes P., Krabbe A. C., 2015, MNRAS, 453, 4102
  • Dors et al. (2017) Dors O. L. J., Arellano-Córdova K. Z., Cardaci M. V., Hägele G. F., 2017, MNRAS, 468, L113
  • Dors et al. (2018) Dors O. L., Agarwal B., Hägele G. F., Cardaci M. V., Rydberg C.-E., Riffel R. A., Oliveira A. S., Krabbe A. C., 2018, MNRAS, 479, 2294
  • Dors et al. (2019) Dors O. L., Monteiro A. F., Cardaci M. V., Hägele G. F., Krabbe A. C., 2019, MNRAS, 486, 5853
  • Dors et al. (2020a) Dors O. L., Contini M., Riffel R. A., Pérez-Montero E., Krabbe A. C., Cardaci M. V., Hägele G. F., 2020a, MNRAS,
  • Dors et al. (2020b) Dors O. L., et al., 2020b, MNRAS, 492, 468
  • Dors et al. (2020c) Dors O. L., Maiolino R., Cardaci M. V., Hägele G. F., Krabbe A. C., Pérez-Montero E., Armah M., 2020c, MNRAS, 496, 3209
  • Dudik et al. (2007) Dudik R. P., Weingartner J. C., Satyapal S., Fischer J., Dudley C. C., O’Halloran B., 2007, ApJ, 664, 71
  • Durret (1994) Durret F., 1994, A&AS, 105, 57
  • Elmegreen et al. (2002) Elmegreen D. M., Chromey F. R., McGrath E. J., Ostenson J. M., 2002, AJ, 123, 1381
  • Esteban et al. (1998) Esteban C., Peimbert M., Torres-Peimbert S., Escalante V., 1998, MNRAS, 295, 401
  • Farrah et al. (2007) Farrah D., et al., 2007, ApJ, 667, 149
  • Feltre et al. (2016) Feltre A., Charlot S., Gutkin J., 2016, MNRAS, 456, 3354
  • Ferguson et al. (1997) Ferguson J. W., Korista K. T., Ferland G. J., 1997, ApJS, 110, 287
  • Ferland & Netzer (1983) Ferland G. J., Netzer H., 1983, ApJ, 264, 105
  • Ferland & Osterbrock (1986) Ferland G. J., Osterbrock D. E., 1986, ApJ, 300, 658
  • Ferland & Truran (1980) Ferland G. J., Truran J. W., 1980, ApJ, 240, 608
  • Ferland et al. (2013) Ferland G. J., et al., 2013, Rev. Mex. Astron. Astrofis., 49, 137
  • Fernández-Ontiveros et al. (2016) Fernández-Ontiveros J. A., Spinoglio L., Pereira-Santaella M., Malkan M. A., Andreani P., Dasyra K. M., 2016, ApJS, 226, 19
  • Fernández-Ontiveros et al. (2017) Fernández-Ontiveros J. A., et al., 2017, Publ. Astron. Soc. Australia, 34, e053
  • Ferruit et al. (1999) Ferruit P., Wilson A. S., Whittle M., Simpson C., Mulchaey J. S., Ferland G. J., 1999, ApJ, 523, 147
  • Finkelman et al. (2008) Finkelman I., et al., 2008, MNRAS, 390, 969
  • Fitzpatrick (1999) Fitzpatrick E. L., 1999, PASP, 111, 63
  • Flury & Moran (2020) Flury S. R., Moran E. C., 2020, MNRAS, 496, 2191
  • Förster Schreiber et al. (2001) Förster Schreiber N. M., Genzel R., Lutz D., Kunze D., Sternberg A., 2001, ApJ, 552, 544
  • Freitas et al. (2018) Freitas I. C., et al., 2018, MNRAS, 476, 2760
  • Galavis et al. (1997) Galavis M. E., Mendoza C., Zeippen C. J., 1997, A&AS, 123, 159
  • Garnett et al. (1995) Garnett D. R., Dufour R. J., Peimbert M., Torres-Peimbert S., Shields G. A., Skillman E. D., Terlevich E., Terlevich R. J., 1995, ApJ, 449, L77
  • Gaskell (1982) Gaskell C. M., 1982, PASP, 94, 891
  • Gaskell (1984) Gaskell C. M., 1984, Astrophys. Lett., 24, 43
  • Gaskell & Ferland (1984) Gaskell C. M., Ferland G. J., 1984, PASP, 96, 393
  • Genzel et al. (1998) Genzel R., et al., 1998, ApJ, 498, 579
  • Gilli et al. (2000) Gilli R., Maiolino R., Marconi A., Risaliti G., Dadina M., Weaver K. A., Colbert E. J. M., 2000, A&A, 355, 485
  • Goldader et al. (1995) Goldader J. D., Joseph R. D., Doyon R., Sand ers D. B., 1995, ApJ, 444, 97
  • Goldader et al. (1997) Goldader J. D., Joseph R. D., Doyon R., Sand ers D. B., 1997, ApJS, 108, 449
  • Gonzalez Delgado & Perez (1996) Gonzalez Delgado R. M., Perez E., 1996, MNRAS, 281, 781
  • Goodrich & Osterbrock (1983) Goodrich R. W., Osterbrock D. E., 1983, ApJ, 269, 416
  • Goulding & Alexander (2009) Goulding A. D., Alexander D. M., 2009, MNRAS, 398, 1165
  • Griffin et al. (2001) Griffin D. C., Mitnik D. M., Badnell N. R., 2001, Journal of Physics B Atomic Molecular Physics, 34, 4401
  • Gronow et al. (2021) Gronow S., Cote B., Lach F., Seitenzahl I. R., Collins C. E., Sim S. A., Roepke F. K., 2021, arXiv e-prints, p. arXiv:2103.14050
  • Groves et al. (2006) Groves B. A., Heckman T. M., Kauffmann G., 2006, MNRAS, 371, 1559
  • Guo et al. (2020) Guo Y., et al., 2020, ApJ, 898, 26
  • Guseva et al. (2011) Guseva N. G., Izotov Y. I., Stasińska G., Fricke K. J., Henkel C., Papaderos P., 2011, A&A, 529, A149
  • Hägele et al. (2006) Hägele G. F., Pérez-Montero E., Díaz Á. I., Terlevich E., Terlevich R., 2006, MNRAS, 372, 293
  • Hägele et al. (2008) Hägele G. F., Díaz Á. I., Terlevich E., Terlevich R., Pérez-Montero E., Cardaci M. V., 2008, MNRAS, 383, 209
  • Hägele et al. (2013) Hägele G. F., Díaz Á. I., Terlevich R., Terlevich E., Bosch G. L., Cardaci M. V., 2013, MNRAS, 432, 810
  • Halpern (1982) Halpern J. P., 1982, PhD thesis, Harvard University, Cambridge, MA.
  • Halpern & Steiner (1983) Halpern J. P., Steiner J. E., 1983, ApJ, 269, L37
  • Hamann & Ferland (1993) Hamann F., Ferland G., 1993, ApJ, 418, 11
  • Heckman (1980) Heckman T. M., 1980, A&A, 500, 187
  • Henry (1993) Henry R. B. C., 1993, MNRAS, 261, 306
  • Ho et al. (1993) Ho L. C., Filippenko A. V., Sargent W. L. W., 1993, ApJ, 417, 63
  • Holweger (2001) Holweger H., 2001, in Wimmer-Schweingruber R. F., ed., American Institute of Physics Conference Series Vol. 598, Joint SOHO/ACE workshop “Solar and Galactic Composition”. pp 23–30 (arXiv:astro-ph/0107426), doi:10.1063/1.1433974
  • Hood et al. (2017) Hood C. E., Barth A. J., Ho L. C., Greene J. E., 2017, ApJ, 838, 26
  • Hummer & Storey (1987) Hummer D. G., Storey P. J., 1987, MNRAS, 224, 801
  • Imanishi et al. (2010) Imanishi M., Nakagawa T., Shirahata M., Ohyama Y., Onaka T., 2010, ApJ, 721, 1233
  • Iwamoto et al. (1999) Iwamoto K., Brachwitz F., Nomoto K., Kishimoto N., Umeda H., Hix W. R., Thielemann F.-K., 1999, ApJS, 125, 439
  • Izotov & Thuan (2008) Izotov Y. I., Thuan T. X., 2008, ApJ, 687, 133
  • Izotov et al. (1994) Izotov Y. I., Thuan T. X., Lipovetsky V. A., 1994, ApJ, 435, 647
  • Izotov et al. (2006) Izotov Y. I., Stasińska G., Meynet G., Guseva N. G., Thuan T. X., 2006, A&A, 448, 955
  • Jenkins (1987) Jenkins E. B., 1987, Element Abundances in the Interstellar Atomic Material. Springer, p. 533, doi:10.1007/978-94-009-3861-8_20
  • Jenkins (2009) Jenkins E. B., 2009, ApJ, 700, 1299
  • Ji & Yan (2020) Ji X., Yan R., 2020, MNRAS,
  • Juan de Dios & Rodríguez (2017) Juan de Dios L., Rodríguez M., 2017, MNRAS, 469, 1036
  • Kakkad et al. (2018) Kakkad D., et al., 2018, A&A, 618, A6
  • Kaler (1976) Kaler J. B., 1976, ApJS, 31, 517
  • Kauffmann et al. (2003) Kauffmann G., et al., 2003, MNRAS, 341, 33
  • Kaufman & Sugar (1986) Kaufman V., Sugar J., 1986, Journal of Physical and Chemical Reference Data, 15, 321
  • Kawara et al. (1989) Kawara K., Nishida M., Phillips M. M., 1989, ApJ, 337, 230
  • Kennicutt et al. (2003) Kennicutt Robert C. J., Bresolin F., Garnett D. R., 2003, ApJ, 591, 801
  • Kewley et al. (2001) Kewley L. J., Dopita M. A., Sutherland R. S., Heisler C. A., Trevena J., 2001, ApJ, 556, 121
  • Kewley et al. (2005) Kewley L. J., Jansen R. A., Geller M. J., 2005, PASP, 117, 227
  • Kewley et al. (2013) Kewley L. J., Maier C., Yabe K., Ohta K., Akiyama M., Dopita M. A., Yuan T., 2013, ApJ, 774, L10
  • Kewley et al. (2019) Kewley L. J., Nicholls D. C., Sutherland R. S., 2019, Annual Review of Astronomy and Astrophysics, 57, 511
  • Kobayashi et al. (2006) Kobayashi C., Umeda H., Nomoto K., Tominaga N., Ohkubo T., 2006, ApJ, 653, 1145
  • Kobayashi et al. (2011) Kobayashi C., Karakas A. I., Umeda H., 2011, MNRAS, 414, 3231
  • Komossa & Schulz (1997) Komossa S., Schulz H., 1997, A&A, 323, 31
  • Koski (1978) Koski A. T., 1978, ApJ, 223, 56
  • Krabbe et al. (2021) Krabbe A. C., Oliveira C. B., Zinchenko I. A., Hernández-Jiménez J. A., Dors O. L., Hägele G. F., Cardaci M. V., Telles N. R., 2021, MNRAS, 505, 2087
  • Kraemer et al. (1994) Kraemer S. B., Wu C.-C., Crenshaw D. M., Harrington J. P., 1994, ApJ, 435, 171
  • Landt et al. (2008) Landt H., Bentz M. C., Ward M. J., Elvis M., Peterson B. M., Korista K. T., Karovska M., 2008, ApJS, 174, 282
  • Lee & Skillman (2004) Lee H., Skillman E. D., 2004, ApJ, 614, 698
  • Leitherer et al. (1999) Leitherer C., et al., 1999, ApJS, 123, 3
  • Lester et al. (1987) Lester D. F., Dinerstein H. L., Werner M. W., Watson D. M., Genzel R., Storey J. W. V., 1987, ApJ, 320, 573
  • Lutz et al. (2002) Lutz D., Maiolino R., Moorwood A. F. M., Netzer H., Wagner S. J., Sturm E., Genzel R., 2002, A&A, 396, 439
  • Magrini et al. (2009) Magrini L., Stanghellini L., Villaver E., 2009, ApJ, 696, 729
  • Malkan et al. (2017) Malkan M. A., Jensen L. D., Rodriguez D. R., Spinoglio L., Rush B., 2017, ApJ, 846, 102
  • Matsuoka et al. (2009) Matsuoka K., Nagao T., Maiolino R., Marconi A., Taniguchi Y., 2009, A&A, 503, 721
  • Matsuoka et al. (2018) Matsuoka K., Nagao T., Marconi A., Maiolino R., Mannucci F., Cresci G., Terao K., Ikeda H., 2018, A&A, 616, L4
  • McCall (2004) McCall M. L., 2004, AJ, 128, 2144
  • McLaughlin & Bell (2000) McLaughlin B. M., Bell K. L., 2000, Journal of Physics B Atomic Molecular Physics, 33, 597
  • Meléndez et al. (2014) Meléndez M., Heckman T. M., Martínez-Paredes M., Kraemer S. B., Mendoza C., 2014, MNRAS, 443, 1358
  • Mendoza (1983) Mendoza C., 1983, in Aller L. H., ed., IAU Symposium Vol. 103, Planetary Nebulae. pp 143–172
  • Mignoli et al. (2019) Mignoli M., et al., 2019, A&A, 626, A9
  • Miller & Mathews (1972) Miller J. S., Mathews W. G., 1972, ApJ, 172, 593
  • Mingozzi et al. (2019) Mingozzi M., et al., 2019, A&A, 622, A146
  • Mollá & Díaz (2005) Mollá M., Díaz A. I., 2005, MNRAS, 358, 521
  • Moorwood & Oliva (1988) Moorwood A. F. M., Oliva E., 1988, A&A, 203, 278
  • Moorwood et al. (1980a) Moorwood A. F. M., Salinari P., Furniss I., Jennings R. E., King K. J., 1980a, A&A, 90, 304
  • Moorwood et al. (1980b) Moorwood A. F. M., Baluteau J. P., Anderegg M., Coron N., Biraud Y., Fitton B., 1980b, ApJ, 238, 565
  • Murdin (2003) Murdin P., 2003, Encyclopedia of Astronomy and Astrophysics. CRC Press
  • Nagao et al. (2003) Nagao T., Murayama T., Shioya Y., Taniguchi Y., 2003, AJ, 125, 1729
  • Nagao et al. (2006) Nagao T., Maiolino R., Marconi A., 2006, A&A, 459, 85
  • Nagao et al. (2011) Nagao T., Maiolino R., Marconi A., Matsuhara H., 2011, A&A, 526, A149
  • Nakajima et al. (2018) Nakajima K., et al., 2018, A&A, 612, A94
  • Nieva & Przybilla (2012) Nieva M. F., Przybilla N., 2012, A&A, 539, A143
  • Nussbaumer & Osterbrock (1970) Nussbaumer H., Osterbrock D. E., 1970, ApJ, 161, 811
  • O’Donnell (1994) O’Donnell J. E., 1994, ApJ, 422, 158
  • Oliva et al. (1994) Oliva E., Salvati M., Moorwood A. F. M., Marconi A., 1994, A&A, 288, 457
  • Onori et al. (2017) Onori F., et al., 2017, MNRAS, 464, 1783
  • Osterbrock (1989) Osterbrock D. E., 1989, Astrophysics of gaseous nebulae and active galactic nuclei. UNIVERSITY SCIENCE BOOKS
  • Osterbrock & Dahari (1983) Osterbrock D. E., Dahari O., 1983, ApJ, 273, 478
  • Osterbrock & Ferland (2006) Osterbrock D. E., Ferland G. J., 2006, Astrophysics of gaseous nebulae and active galactic nuclei. UNIVERSITY SCIENCE BOOKS
  • Osterbrock & Miller (1975) Osterbrock D. E., Miller J. S., 1975, ApJ, 197, 535
  • Osterbrock et al. (1992) Osterbrock D. E., Tran H. D., Veilleux S., 1992, ApJ, 389, 305
  • Pagel et al. (1992) Pagel B. E. J., Simonson E. A., Terlevich R. J., Edmunds M. G., 1992, MNRAS, 255, 325
  • Peimbert (1967) Peimbert M., 1967, ApJ, 150, 825
  • Peimbert & Costero (1969) Peimbert M., Costero R., 1969, Boletin de los Observatorios Tonantzintla y Tacubaya, 5, 3
  • Peimbert & Peimbert (2009) Peimbert M., Peimbert A., 2009, arXiv e-prints, p. arXiv:0912.3781
  • Peimbert & Peimbert (2010) Peimbert A., Peimbert M., 2010, ApJ, 724, 791
  • Peimbert et al. (1992) Peimbert M., Torres-Peimbert S., Ruiz M. T., 1992, Rev. Mex. Astron. Astrofis., 24, 155
  • Peimbert et al. (1993) Peimbert M., Torres-Peimbert S., Dufour R. J., 1993, ApJ, 418, 760
  • Peimbert et al. (2017) Peimbert M., Peimbert A., Delgado-Inglada G., 2017, PASP, 129, 082001
  • Pereira-Santaella et al. (2010) Pereira-Santaella M., Diamond-Stanic A. M., Alonso-Herrero A., Rieke G. H., 2010, ApJ, 725, 2270
  • Pereira-Santaella et al. (2017) Pereira-Santaella M., Rigopoulou D., Farrah D., Lebouteiller V., Li J., 2017, MNRAS, 470, 1218
  • Pérez-Montero (2017) Pérez-Montero E., 2017, PASP, 129, 043001
  • Pérez-Montero et al. (2007) Pérez-Montero E., Hägele G. F., Contini T., Díaz Á. I., 2007, MNRAS, 381, 125
  • Pérez-Montero et al. (2013) Pérez-Montero E., et al., 2013, A&A, 549, A25
  • Pérez-Montero et al. (2019) Pérez-Montero E., Dors O. L., Vílchez J. M., García-Benito R., Cardaci M. V., Hägele G. F., 2019, MNRAS, 489, 2652
  • Petrosian (1970) Petrosian V., 1970, ApJ, 159, 833
  • Phillips (1981) Phillips M. M., 1981, MNRAS, 197, 659
  • Phillips et al. (1983) Phillips M. M., Charles P. A., Baldwin J. A., 1983, ApJ, 266, 485
  • Pilyugin (2000) Pilyugin L. S., 2000, A&A, 362, 325
  • Pilyugin (2001) Pilyugin L. S., 2001, A&A, 369, 594
  • Pilyugin et al. (2004) Pilyugin L. S., Vílchez J. M., Contini T., 2004, A&A, 425, 849
  • Pilyugin et al. (2007) Pilyugin L. S., Thuan T. X., Vílchez J. M., 2007, MNRAS, 376, 353
  • Privon et al. (2012) Privon G. C., Baum S. A., O’Dea C. P., Gallimore J., Noel-Storr J., Axon D. J., Robinson A., 2012, ApJ, 747, 46
  • Puglisi et al. (2017) Puglisi A., et al., 2017, ApJ, 838, L18
  • Radovich & Rafanelli (1996) Radovich M., Rafanelli P., 1996, A&A, 306, 97
  • Ramos Almeida et al. (2009) Ramos Almeida C., Pérez García A. M., Acosta-Pulido J. A., 2009, ApJ, 694, 1379
  • Reunanen et al. (2002) Reunanen J., Kotilainen J. K., Prieto M. A., 2002, MNRAS, 331, 154
  • Revalski et al. (2018a) Revalski M., Crenshaw D. M., Kraemer S. B., Fischer T. C., Schmitt H. R., Machuca C., 2018a, ApJ, 856, 46
  • Revalski et al. (2018b) Revalski M., et al., 2018b, ApJ, 867, 88
  • Revalski et al. (2021) Revalski M., et al., 2021, ApJ, 910, 139
  • Riffel et al. (2006) Riffel R., Rodríguez-Ardila A., Pastoriza M. G., 2006, A&A, 457, 61
  • Riffel et al. (2009) Riffel R. A., Storchi-Bergmann T., Dors O. L., Winge C., 2009, MNRAS, 393, 783
  • Riffel et al. (2016) Riffel R. A., et al., 2016, MNRAS, 461, 4192
  • Riffel et al. (2018) Riffel R. A., Hekatelyne C., Freitas I. C., 2018, Publ. Astron. Soc. Australia, 35, 40
  • Riffel et al. (2021a) Riffel R. A., et al., 2021a, MNRAS, 501, L54
  • Riffel et al. (2021b) Riffel R. A., Dors O. L., Krabbe A. C., Esteban C., 2021b, MNRAS, 506, L11
  • Ritter et al. (2018) Ritter C., Herwig F., Jones S., Pignatari M., Fryer C., Hirschi R., 2018, MNRAS, 480, 538
  • Rodríguez-Ardila et al. (2005) Rodríguez-Ardila A., Riffel R., Pastoriza M. G., 2005, MNRAS, 364, 1041
  • Rosolowsky & Simon (2008) Rosolowsky E., Simon J. D., 2008, ApJ, 675, 1213
  • Rubin et al. (1988) Rubin R. H., Simpson J. P., Erickson E. F., Haas M. R., 1988, ApJ, 327, 377
  • Rubin et al. (2008) Rubin R. H., et al., 2008, MNRAS, 387, 45
  • Salim & Narayanan (2020) Salim S., Narayanan D., 2020, ARA&A, 58, 529
  • Salpeter (1955) Salpeter E. E., 1955, ApJ, 121, 161
  • Saraph & Tully (1994) Saraph H. E., Tully J. A., 1994, A&AS, 107, 29
  • Shaw & Dufour (1995) Shaw R. A., Dufour R. J., 1995, PASP, 107, 896
  • Shields & Oke (1975) Shields G. A., Oke J. B., 1975, PASP, 87, 879
  • Shields et al. (2010) Shields G. A., Ludwig R. R., Salviander S., 2010, ApJ, 721, 1835
  • Shuder (1980) Shuder J. M., 1980, ApJ, 240, 32
  • Shuder & Osterbrock (1981) Shuder J. M., Osterbrock D. E., 1981, ApJ, 250, 55
  • Simpson (1975) Simpson J. P., 1975, A&A, 39, 43
  • Skillman & Kennicutt (1993) Skillman E. D., Kennicutt Robert C. J., 1993, ApJ, 411, 655
  • Skillman et al. (2020) Skillman E. D., Berg D. A., Pogge R. W., Moustakas J., Rogers N. S. J., Croxall K. V., 2020, ApJ, 894, 138
  • Sofia (2004) Sofia U. J., 2004, in Witt A. N., Clayton G. C., Draine B. T., eds, Astronomical Society of the Pacific Conference Series Vol. 309, Astrophysics of Dust. p. 393
  • Sofia et al. (1994) Sofia U. J., Cardelli J. A., Savage B. D., 1994, ApJ, 430, 650
  • Sosa-Brito et al. (2001) Sosa-Brito R. M., Tacconi-Garman L. E., Lehnert M. D., Gallimore J. F., 2001, ApJS, 136, 61
  • Stanghellini et al. (2010) Stanghellini L., Magrini L., Villaver E., Galli D., 2010, A&A, 521, A3
  • Stasińska (1984) Stasińska G., 1984, A&A, 135, 341
  • Sternberg et al. (1994) Sternberg A., Genzel R., Tacconi L., 1994, ApJ, 436, L131
  • Storchi-Bergmann & Pastoriza (1990) Storchi-Bergmann T., Pastoriza M. G., 1990, PASP, 102, 1359
  • Storchi-Bergmann et al. (1998) Storchi-Bergmann T., Schmitt H. R., Calzetti D., Kinney A. L., 1998, AJ, 115, 909
  • Storchi-Bergmann et al. (2009) Storchi-Bergmann T., McGregor P. J., Riffel R. A., Simões Lopes R., Beck T., Dopita M., 2009, MNRAS, 394, 1148
  • Storey & Hummer (1995) Storey P. J., Hummer D. G., 1995, MNRAS, 272, 41
  • Storey & Zeippen (2000) Storey P. J., Zeippen C. J., 2000, MNRAS, 312, 813
  • Sturm et al. (2002) Sturm E., Lutz D., Verma A., Netzer H., Sternberg A., Moorwood A. F. M., Oliva E., Genzel R., 2002, A&A, 393, 821
  • Thomas et al. (2017) Thomas A. D., et al., 2017, ApJS, 232, 11
  • Thomas et al. (2018a) Thomas A. D., Kewley L. J., Dopita M. A., Groves B. A., Hopkins A. M., Sutherland R. S., 2018a, ApJ, 861, L2
  • Thomas et al. (2018b) Thomas A. D., Kewley L. J., Dopita M. A., Groves B. A., Hopkins A. M., Sutherland R. S., 2018b, ApJ, 861, L2
  • Thomas et al. (2019) Thomas A. D., Kewley L. J., Dopita M. A., Groves B. A., Hopkins A. M., Sutherland R. S., 2019, ApJ, 874, 100
  • Tody (1986) Tody D., 1986, in Crawford D. L., ed., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 627, Instrumentation in astronomy VI. p. 733, doi:10.1117/12.968154
  • Tommasin et al. (2010) Tommasin S., Spinoglio L., Malkan M. A., Fazio G., 2010, ApJ, 709, 1257
  • Torres-Peimbert & Peimbert (1977) Torres-Peimbert S., Peimbert M., 1977, Rev. Mex. Astron. Astrofis., 2, 181
  • Tsamis et al. (2003) Tsamis Y. G., Barlow M. J., Liu X. W., Danziger I. J., Storey P. J., 2003, MNRAS, 338, 687
  • Ulrich et al. (1999) Ulrich M. H., Comastri A., Komossa S., Crane P., 1999, A&A, 350, 816
  • Vaona et al. (2012) Vaona L., Ciroi S., Di Mille F., Cracco V., La Mura G., Rafanelli P., 2012, MNRAS, 427, 1266
  • Veilleux & Osterbrock (1987) Veilleux S., Osterbrock D. E., 1987, ApJS, 63, 295
  • Veilleux et al. (1997) Veilleux S., Goodrich R. W., Hill G. J., 1997, ApJ, 477, 631
  • Veilleux et al. (1999) Veilleux S., Sanders D. B., Kim D. C., 1999, ApJ, 522, 139
  • Verma et al. (2003) Verma A., Lutz D., Sturm E., Sternberg A., Genzel R., Vacca W., 2003, A&A, 403, 829
  • Vermeij & van der Hulst (2002) Vermeij R., van der Hulst J. M., 2002, A&A, 391, 1081
  • Viegas-Aldrovandi & Contini (1989) Viegas-Aldrovandi S. M., Contini M., 1989, ApJ, 339, 689
  • Vila-Costas & Edmunds (1992) Vila-Costas M. B., Edmunds M. G., 1992, MNRAS, 259, 121
  • Wang & Liu (2008) Wang W., Liu X. W., 2008, MNRAS, 389, L33
  • Ward et al. (1991) Ward M. J., Blanco P. R., Wilson A. S., Nishida M., 1991, ApJ, 382, 115
  • Weaver et al. (2010) Weaver K. A., et al., 2010, ApJ, 716, 1151
  • Whitford (1958) Whitford A. E., 1958, AJ, 63, 201
  • Willner & Nelson-Patel (2002) Willner S. P., Nelson-Patel K., 2002, ApJ, 568, 679
  • Winge et al. (2000) Winge C., Storchi-Bergmann T., Ward M. J., Wilson A. S., 2000, MNRAS, 316, 1
  • Woosley & Weaver (1995) Woosley S. E., Weaver T. A., 1995, ApJS, 101, 181
  • Wright (2006) Wright E. L., 2006, PASP, 118, 1711
  • Wu et al. (2011) Wu Y.-Z., Zhao Y.-H., Meng X.-M., 2011, ApJS, 195, 17
  • Wysota & Gaskell (1988) Wysota A., Gaskell C. M., 1988, Reddening of Narrow Line Regions. pp 79–82, doi:10.1007/3-540-19492-4_171
  • York et al. (2000) York D. G., et al., 2000, AJ, 120, 1579
  • Zinchenko et al. (2019) Zinchenko I. A., Dors O. L., Hägele G. F., Cardaci M. V., Krabbe A. C., 2019, MNRAS, 483, 1901
  • van Loon et al. (2010) van Loon J. T., Oliveira J. M., Gordon K. D., Sloan G. C., Engelbracht C. W., 2010, AJ, 139, 1553
  • van Zee et al. (1998a) van Zee L., Salzer J. J., Haynes M. P., O’Donoghue A. A., Balonek T. J., 1998a, AJ, 116, 2805
  • van Zee et al. (1998b) van Zee L., Salzer J. J., Haynes M. P., O’Donoghue A. A., Balonek T. J., 1998b, AJ, 116, 2805
  • van der Laan et al. (2013) van der Laan T. P. R., Schinnerer E., Böker T., Armus L., 2013, A&A, 560, A99
Table A1: Flux (in units of 10-14 erg cm-2 s-1) of [Ne iii]λ\lambda12.81µm\micron, [Ne iii]λ\lambda15.56µm\micron, Paschen and Brackett series for selected Seyfert 2 nuclei. In last but one and last columns, the redshift (zz) and the original works where the data were compiled are listed, respectively.
Object [Ne iii]λ\lambda12.81µm\micron [Ne iii]λ\lambda15.56µm\micron Paδ\mathrm{Pa\delta} λ10052\lambda 10052 Å Paγ\mathrm{Pa\gamma} λ10941\lambda 10941 Å Paβ\mathrm{Pa\beta} λ12822\lambda 12822 Å Paα\mathrm{Pa\alpha} λ18756\lambda 18756 Å Br11\mathrm{Br11} λ16811\lambda 16811 Å Brδ\mathrm{Br\delta} λ19451\lambda 19451 Å Brγ\mathrm{Br\gamma} λ21661\lambda 21661 Å Brβ\mathrm{Br\beta} λ26259\lambda 26259 Å Brα\mathrm{Br\alpha} λ40523\lambda 40523 Å Redshift (zz) Ref.
NGC 3081 12.62±1.1612.62\pm 1.16 36.46±1.2536.46\pm 1.25 5.46 1.12 0.00798 [1, 5, 6]
NGC 4388 79.74±4.7679.74\pm 4.76 108.18±1.56108.18\pm 1.56 8.09 1.13 3.22 0.00842 [1, 5, 7]
NGC 4507 33.73±2.6333.73\pm 2.63 28.78±0.6328.78\pm 0.63 3.65 0.01180 [1, 6]
NGC 5135 112.00±0.00112.00\pm 0.00 58.00±0.0058.00\pm 0.00 1.65±0.51.65\pm 0.5 7.9 0.01369 [4, 9, 28]
NGC 5643 38.00±0.0038.00\pm 0.00 56.00±0.0056.00\pm 0.00 3.5 4.0 2.92 0.00400 [2, 4, 6, 7, 10]
NGC 5728 30.44±1.8130.44\pm 1.81 54.76±0.5154.76\pm 0.51 0.545±0.1420.545\pm 0.142 0.380±0.1050.380\pm 0.105 0.737±0.1160.737\pm 0.116 2.063±0.1922.063\pm 0.192 0.211±0.0190.211\pm 0.019 0.00935 [1, 11]
IC 5063 28.22±3.3428.22\pm 3.34 73.67±4.6173.67\pm 4.61 1.00±0.031.00\pm 0.03 <5.0<5.0 0.01135 [1, 6, 17]
IC 5135 71.00±5.0071.00\pm 5.00 37.00±2.0037.00\pm 2.00 1.02±0.081.02\pm 0.08 8.3 0.01615 [5, 9, 16, 28]
MRK 3 86.00±12.0086.00\pm 12.00 207.00±29.00207.00\pm 29.00 11.5 6.20±0.406.20\pm 0.40 0.01351 [5, 16, 25]
MRK 273 44.49±0.7944.49\pm 0.79 33.81±0.2533.81\pm 0.25 8.84 0.70 0.73±0.040.73\pm 0.04 4.2 4.4 0.03778 [8, 9, 12, 29]
MRK 348 15.34±0.7415.34\pm 0.74 20.60±0.7920.60\pm 0.79 0.27±0.040.27\pm 0.04 0.71±0.120.71\pm 0.12 1.21±0.061.21\pm 0.06 3.55±0.153.55\pm 0.15 0.33±0.130.33\pm 0.13 0.301±0.0420.301\pm 0.042 0.01503 [1, 14]
MRK 573 13.00±0.0013.00\pm 0.00 24.0±0.0024.0\pm 0.00 0.327±0.0160.327\pm 0.016 0.611±0.040.611\pm 0.04 0.958±0.0170.958\pm 0.017 4.557±0.0284.557\pm 0.028 0.137±0.0060.137\pm 0.006 0.277±0.0090.277\pm 0.009 0.01718 [10, 11]
NGC 1068 538.34±37.3538.34\pm 37.3 1432.20±76.871432.20\pm 76.87 12.7 41.0 69.0 0.00379 [5, 10, 12, 15]
NGC 2992 53.65±3.6653.65\pm 3.66 61.06±1.9861.06\pm 1.98 2.65 3.7 5.1 8.8 0.56 1.16 6.65 0.00771 [1, 6, 19]
NGC 5506 91.75±3.3191.75\pm 3.31 152.13±9.13152.13\pm 9.13 85.1 11.8 7.0 12.0 0.00618 [1, 5, 10]
NGC 7674 18.00±1.0018.00\pm 1.00 46.00±2.0046.00\pm 2.00 0.838±0.0670.838\pm 0.067 1.387±0.1311.387\pm 0.131 1.036±0.0581.036\pm 0.058 3.206±1.0093.206\pm 1.009 2.566±0.4522.566\pm 0.452 0.338±0.0510.338\pm 0.051 0.313±0.0250.313\pm 0.025 0.02892 [11, 16]
IZw 92\mathrm{I\>Zw\>92} 24.00±0.0024.00\pm 0.00 16.00±0.0016.00\pm 0.00 10.4 0.953 0.03780 [5, 10]
NGC 2110 60.19±5.3460.19\pm 5.34 47.40±0.7147.40\pm 0.71 0.300±0.0270.300\pm 0.027 1.266±0.1031.266\pm 0.103 1.491±0.0861.491\pm 0.086 3.295±0.4503.295\pm 0.450 0.250±0.0220.250\pm 0.022 2.11 0.00779 [1, 6, 11]
NGC 5929 13.20±0.3413.20\pm 0.34 9.83±0.319.83\pm 0.31 0.379±0.0270.379\pm 0.027 0.768±0.0200.768\pm 0.020 0.135±0.0250.135\pm 0.025 0.00831 [11, 13]
MRK 463E 10.82±0.3510.82\pm 0.35 40.46±0.7340.46\pm 0.73 3.01 0.272 4.0 0.05035 [5, 8]
MRK 622 6.00±2.006.00\pm 2.00 8.00±2.008.00\pm 2.00 1.02 0.02323 [5, 16]
NGC 1386 17.8±1.0217.8\pm 1.02 36.6±0.7236.6\pm 0.72 3.50 0.176±0.0140.176\pm 0.014 0.00290 [2, 3, 13]
NGC 7582 250.94±3.53250.94\pm 3.53 105.00±2.05105.00\pm 2.05 7.8 4.4±0.44.4\pm 0.4 9.0 20.6±7.020.6\pm 7.0 0.00525 [2, 10, 13, 18]
NGC 1275 46.15±0.8046.15\pm 0.80 22.37±0.5622.37\pm 0.56 1.332±0.1081.332\pm 0.108 8.353±0.4258.353\pm 0.425 6.066±0.3156.066\pm 0.315 14.514±0.25214.514\pm 0.252 1.398±0.2061.398\pm 0.206 0.977±0.0410.977\pm 0.041 2 22 0.01756 [8, 10, 11]
Circinus 453.6±14.5453.6\pm 14.5 400.00±9.00400.00\pm 9.00 10.4 3.8 32 15.0 0.00145 [8, 10, 20]
Centaurus A 221.00±4.50221.00\pm 4.50 140.00±1.20140.00\pm 1.20 19 16 2.7 9.0 8.0 0.00183 [3, 8, 10, 26]
Cygnus A 26.7±0.326.7\pm 0.3 41.30±0.4041.30\pm 0.40 2.6±0.22.6\pm 0.2 0.26±0.080.26\pm 0.08 0.05607 [21, 22]
MRK 266SW 57.00±0.0057.00\pm 0.00 28.00±0.0028.00\pm 0.00 5.51 0.367 4.5 0.02760 [4, 5, 9]
MRK 1066 10.94±0.2110.94\pm 0.21 46.91±0.7646.91\pm 0.76 0.974±0.0300.974\pm 0.030 2.553±0.1202.553\pm 0.120 5.407±0.0245.407\pm 0.024 14.574±1.06014.574\pm 1.060 0.398±0.0550.398\pm 0.055 0.867±0.0040.867\pm 0.004 1.416±0.0221.416\pm 0.022 0.01202 [8, 11]
NGC 1320 9.00±1.009.00\pm 1.00 0.094±0.010.094\pm 0.01 0.00888 [16, 25]
NGC 1667 10.1±3.0010.1\pm 3.00 7.23±3.007.23\pm 3.00 0.018±0.0040.018\pm 0.004 0.01517 [16, 25]
NGC 3393 95.00±0.0095.00\pm 0.00 0.46±0.0050.46\pm 0.005 0.01251 [24, 27]
NGC 5953 105.00±2.00105.00\pm 2.00 21.00±1.0021.00\pm 1.00 0.544 1.982±0.0831.982\pm 0.083 0.277 0.00656 [11, 16, 23]
NGC 7682 5.46±0.255.46\pm 0.25 8.07±0.158.07\pm 0.15 0.118±0.0180.118\pm 0.018 0.498±0.1120.498\pm 0.112 0.992±0.0650.992\pm 0.065 3.182±0.0813.182\pm 0.081 0.194±0.0110.194\pm 0.011 0.01714 [1, 11]
ESO428G014\mathrm{ESO428\>-\>G014} 168.01±0.00168.01\pm 0.00 0.919±0.0630.919\pm 0.063 3.104±0.1153.104\pm 0.115 4.526±0.0574.526\pm 0.057 10.205±0.07810.205\pm 0.078 0.822±0.0290.822\pm 0.029 0.300±0.0490.300\pm 0.049 0.898±0.0140.898\pm 0.014 0.00566 [11, 24]

References: (1) Weaver et al. (2010), (2) Winge et al. (2000), (3) Reunanen et al. (2002), (4) Pereira-Santaella et al. (2010), (5) Veilleux et al. (1997), (6) Lutz et al. (2002), (7) Onori et al. (2017), (8) Dasyra et al. (2011), (9) Imanishi et al. (2010), (10) Sturm et al. (2002), (11) Riffel et al. (2006), (12) Goldader et al. (1995), (13) Tommasin et al. (2010), (14) Ramos Almeida et al. (2009), (15) Goulding & Alexander (2009), (16) Deo et al. (2007), (17) Moorwood & Oliva (1988), (18) Kawara et al. (1989), (19) Gilli et al. (2000), (20) Oliva et al. (1994), (21) Privon et al. (2012), (22) Ward et al. (1991), (23) Rodríguez-Ardila et al. (2005), (24) Wu et al. (2011), (25) van der Laan et al. (2013), (26) Bryant & Hunstead (1999), (27) Sosa-Brito et al. (2001), (28) Goldader et al. (1997) and (29) Veilleux et al. (1999).

Table A2: Observed reddening-uncorrected optical emission-line intensities of Seyfert 2 nuclei compiled from the literature. The last column is the list of references for the original works where the data were obtained.
Object [O ii] λ3727\lambda 3727 Å [Ne iii] λ3869\lambda 3869 Å [O iii] λ4363\lambda 4363 Å [O iii] λ4959\lambda 4959 Å [O iii] λ5007\lambda 5007 Å [O i] λ6300\lambda 6300 Å Hαλ6563\alpha~{}\lambda 6563 Å Hβλ4861\beta~{}\lambda 4861 Å [N ii] λ6584\lambda 6584 Å [S ii] λ6717\lambda 6717 Å [S ii] λ6731\lambda 6731 Å Ref.
NGC 3081 1.47 0.88 0.20 4.53 13.30 0.37 4.53 1.00 3.87 0.99 1.07 1
NGC 4388 1.72 0.48 0.13 3.83 11.20 0.78 4.86 1.00 2.59 1.27 1.12 1
NGC 4507 1.64 0.71 0.27 3.17 9.53 0.86 5.16 1.00 2.80 1.10 1.23 1
NGC 5135 1.06 0.42 0.08 1.49 4.82 0.31 6.12 1.00 5.45 0.92 0.87 1
NGC 5643 2.68 0.89 0.32 4.85 16.60 1.16 6.17 1.00 7.17 2.40 2.21 1
NGC 5728 1.84 0.75 0.34 3.92 11.80 1.00 5.97 1.00 8.36 0.99 0.97 1
IC 5063 2.90 0.75 0.22 3.55 11.00 0.68 5.55 1.00 3.44 1.50 1.31 1
IC 5135 2.15 1.04 0.19 2.20 7.41 0.60 6.07 1.00 7.56 1.19 1.11 1
MRK 3 2.21 0.94 0.19 4.16 13.46 1.14 5.31 1.00 5.48 1.30 1.46 2
MRK 273 3.05 0.71 0.13 5.39 17.96 1.22 28.20 3.06 29.30 17.50 5.15 2, 3
MRK 348 3.05 1.23 0.21 3.96 12.33 1.58 4.27 1.00 3.54 1.74 2.01 2
MRK 573 2.11 1.01 0.15 4.01 12.64 0.43 4.30 1.00 3.62 1.12 1.21 2
NGC 1068 0.76 0.94 0.17 4.28 13.22 0.62 4.47 1.00 7.94 0.48 0.99 2
NGC 2992 0.19 0.04 0.01 0.32 1.00 0.15 1.73 0.13 1.00 0.46 0.41 4
NGC 5506 0.14 0.04 0.01 0.31 1.00 0.11 0.87 0.12 0.80 0.32 0.34 4
NGC 7674 1.08 0.98 0.11 3.99 12.82 0.38 4.62 1.00 4.62 0.69 0.81 5
IZw 92\mathrm{I\>Zw\>92} 1.95 0.94 0.28 3.60 10.50 0.55 3.54 1.00 1.43 0.55 0.60 5
NGC 2110a 21.10 4.20 0.73 11.17 33.50 8.20 18.00 4.30 34.00 7.90 9.80 6
NGC 5929a 14.80 2.21 0.40 4.23 12.70 8.20 20.60 4.40 12.10 7.60 6.70 6
MRK 463E 0.21 0.07 0.013 0.33 1.00 0.055 0.48 0.13 0.23 0.10 0.09 7
MRK 622 0.49 0.06 0.004 0.33 1.00 0.041 1.88 0.16 1.77 0.32 0.35 7
NGC 1386a 1.81 0.77 0.19 3.78 11.34 0.46 4.70 1.00 5.60 1.04 1.29 8
NGC 7582 124.10 32.80 2.90 71.60 214.70 8.70 286.00 100.00 186.90 41.80 38.80 9
NGC 1275 2.90 1.43 0.33 4.33 12.99 1.48 5.44 1.00 5.44 1.33 4.52 10
Circinus 78.00 41.00 16.00 317.00 1048.00 46.00 565.00 100.00 154.00 128.00 113.00 11
Centaurus A 2.49 0.48 0.10 2.38 6.28 2.05 7.27 1.00 10.83 5.24 4.17 12
Cygnus A 2.44 0.66 0.16 4.08 13.11 2.10 6.61 1.00 13.07 3.65 3.29 13
MRK 266SW 5.20 0.90 0.08 1.50 4.50 0.38 3.30 1.00 3.68 0.54 0.46 14
MRK 1066 0.32 0.08 0.01 0.31 1.00 0.15 1.80 0.23 1.58 0.36 0.39 15
NGC 1320 0.38 0.49 0.29 3.57 9.86 0.38 4.86 1.00 3.36 0.93 1.07 16, 17
NGC 1667 12.08 1.98 0.42 3.99 11.10 0.94 3.03 1.00 6.59 2.86 9.72 18, 19
NGC 3393 155.00 77.00 10.00 341.00 1030.00 34.00 359.00 100.00 492.00 202.00 686.80 20
NGC 5953 2.60 0.90 0.12 1.70 4.30 0.32 2.90 1.00 4.00 0.80 0.84 21
NGC 7682a 575.00 158.00 77.40 1310.00 3930.00 167.00 470.00 100.00 515.00 134.00 141.00 22
ESO428G014\mathrm{ESO428\>-\>G014} 2.49 1.13 0.28 4.20 13.60 0.49 3.55 1.00 4.03 1.07 1.14 23

References: (1) Phillips et al. (1983), (2) Koski (1978), (3) Malkan et al. (2017), (4) Shuder (1980), (5) Kraemer et al. (1994), (6) Ferruit et al. (1999), (7) Shuder & Osterbrock (1981), (8) Bennert et al. (2006), (9) Dopita et al. (2015), (10) Shields & Oke (1975), (11) Oliva et al. (1994), (12) Phillips (1981), (13) Osterbrock & Miller (1975), (14) Osterbrock & Dahari (1983), (15) Goodrich & Osterbrock (1983), (16) De Robertis & Osterbrock (1986), (17) Thomas et al. (2017), (18) Ho et al. (1993), (19) Radovich & Rafanelli (1996), (20) Cooke et al. (2000), (21) Gonzalez Delgado & Perez (1996), (22) Durret (1994) and (23) Bergvall et al. (1986).

Note: aValue of II([O iii]λ4959\lambda 4959) estimated from the theoretical relation II[O iii]λ4959\lambda 4959 = II[O iii]λ5007/3.0\lambda 5007/3.0 (Storey & Zeippen, 2000).

Table A3: Reddening-corrected optical emission-line intensities (relative to Hβ\beta=1.0) of Seyfert 2 nuclei compiled from the literature. Original works which the data were obtained are presented in Table A2.
Object [O ii] λ3727\lambda 3727 Å [Ne iii] λ3869\lambda 3869 Å [O iii] λ4363\lambda 4363 Å [O iii] λ4959\lambda 4959 Å [O iii] λ5007\lambda 5007 Å [O i] λ6300\lambda 6300 Å Hαλ6563\alpha~{}\lambda 6563 Å [N ii] λ6584\lambda 6584 Å [S ii] λ6717\lambda 6717 Å [S ii] λ6731\lambda 6731 Å c(Hβ\beta)
f(λ\lambda) 0.302 0.260 0.125  0.022-\>0.022  0.033-\>0.033  0.285-\>0.285  0.326-\>0.326  0.329-\>0.329  0.349-\>0.349  0.350-\>0.350
NGC 3081 2.26 1.28 0.24 4.39 12.69 0.25 2.85 2.42 0.60 0.65 0.6192
NGC 4388 2.82 0.74 0.16 3.70 10.61 0.49 2.84 1.51 0.72 0.63 0.7139
NGC 4507 2.85 1.14 0.34 3.05 8.97 0.51 2.84 1.53 0.58 0.65 0.7946
NGC 5135 2.16 0.78 0.11 1.42 4.46 0.16 2.84 2.51 0.40 0.38 1.0243
NGC 5643 5.50 1.66 0.43 4.60 15.35 0.59 2.83 3.27 1.05 0.96 1.0352
NGC 5728 3.66 1.36 0.45 3.73 10.95 0.52 2.84 3.94 0.45 0.44 0.9909
IC 5063 5.39 1.28 0.28 3.39 10.28 0.38 2.84 1.75 0.73 0.64 0.8927
IC 5135 4.35 1.91 0.25 2.09 6.86 0.31 2.84 3.51 0.53 0.49 1.0132
MRK 3 3.94 1.55 0.24 3.99 12.64 0.66 2.84 2.91 0.67 0.75 0.8331
MRK 273 2.98 0.60 0.07 1.63 5.21 0.14 2.82 2.90 1.62 0.47 1.5755
MRK 348 4.44 1.70 0.25 3.85 11.84 1.11 2.85 2.35 1.13 1.30 0.5396
MRK 573 3.09 1.40 0.18 3.90 12.13 0.30 2.85 2.39 0.72 0.78 0.5491
NGC 1068 1.15 1.35 0.20 4.15 12.63 0.42 2.85 5.03 0.30 0.61 0.6013
NGC 2992 6.16 1.17 0.18 2.22 6.58 0.30 2.81 1.60 0.67 0.59 2.0702
NGC 5506 2.78 0.69 0.13 2.43 7.58 0.40 2.83 2.58 0.98 1.03 1.2524
NGC 7674 1.69 1.44 0.13 3.86 12.21 0.25 2.84 2.83 0.41 0.48 0.6457
IZw 92\mathrm{I\>Zw\>92} 2.38 1.12 0.30 3.55 10.27 0.46 2.85 1.15 0.44 0.48 0.2872
NGC 2110 7.01 1.33 0.20 2.53 7.49 1.36 2.85 5.36 1.22 1.51 0.5129
NGC 5929 5.33 0.75 0.11 0.93 2.75 1.21 2.84 1.66 1.01 0.89 0.6636
MRK 463E 2.05 0.61 0.11 2.50 7.49 0.34 2.85 2.30 0.57 0.52 0.3439
MRK 622 11.48 1.25 0.04 1.87 5.41 0.07 2.81 2.61 0.43 0.47 1.9026
NGC 1386 2.88 1.15 0.23 3.66 10.78 0.30 2.84 3.37 0.61 0.75 0.6688
NGC 7582 1.24 0.33 0.03 0.72 2.15 0.09 2.86 1.87 0.42 0.39 0.0000
NGC 1275 5.29 2.40 0.42 4.15 12.17 0.84 2.84 2.82 0.66 2.25 0.8657
Circinus 1.47 0.71 0.21 3.03 9.78 0.25 2.84 0.77 0.61 0.54 0.9167
Centaurus A 5.96 1.02 0.14 2.23 5.71 0.90 2.83 4.18 1.91 1.51 1.2561
Cygnus A 5.34 1.30 0.22 3.86 12.04 1.00 2.83 5.56 1.48 1.32 1.1280
MRK 266SW 5.94 1.01 0.08 1.49 4.43 0.33 2.86 3.18 0.46 0.39 0.1927
MRK 1066 3.57 0.74 0.08 1.26 3.92 0.27 2.83 2.46 0.53 0.57 1.3554
NGC 1320 0.62 0.74 0.36 3.44 9.34 0.24 2.84 1.96 0.52 0.60 0.7139
NGC 1667 12.75 2.07 0.43 3.97 11.03 0.89 2.86 6.21 2.69 9.13 0.0777
NGC 3393 1.92 0.93 0.11 3.36 10.06 0.28 2.85 3.90 1.58 5.36 0.3061
NGC 5953 2.63 0.91 0.12 1.70 4.29 0.32 2.86 3.94 0.79 0.83 0.0187
NGC 7682 9.15 2.36 0.94 12.67 37.36 1.08 2.84 3.10 0.78 0.82 0.6688
ESO428G014\mathrm{ESO428\>-\>G014} 3.05 1.13 0.30 4.14 13.30 0.40 2.85 3.23 0.85 0.90 0.2910
Table A4: Ionic and total neon abundances for the Seyfert 2 sample obtained through IR-method using the methodology described in Sect. 4.2. The abundances 12+log(Ne+/H+)\rm 12+\log(Ne^{+}/H^{+}) and 12+log(Ne2+/H2+)\rm 12+\log(Ne^{2+}/H^{2+}) are calculated by using the Eqs. 17 to 20. The term ff represents the correction for the total neon abundance 12+log(Ne/H)\rm 12+\log(Ne/H) due to the presence of ions with ionization stages higher than Ne2+ (see Eq. 31) which is derived from photoionization models by Carvalho et al. (2020).
Object 12+log(Ne+/H+)IR\rm 12+\log(Ne^{+}/H^{+})_{\rm IR} 12+log(Ne2+/H+)IR\rm 12+\log(Ne^{2+}/H^{+})_{\rm IR} ff 12+log(Ne/H)IR\rm 12+\log(Ne/H)_{\rm IR}
NGC 3081 8.05±0.078.05\pm 0.07 8.19±0.078.19\pm 0.07 1.13 8.48±0.078.48\pm 0.07
NGC 4388 8.40±0.068.40\pm 0.06 8.21±0.068.21\pm 0.06 1.11 8.64±0.068.64\pm 0.06
NGC 4507 7.99±0.097.99\pm 0.09 7.60±0.097.60\pm 0.09 1.03 8.15±0.098.15\pm 0.09
NGC 5135 8.29±0.108.29\pm 0.10 7.68±0.107.68\pm 0.10 1.03 8.40±0.088.40\pm 0.08
NGC 5643 8.35±0.118.35\pm 0.11 8.20±0.128.20\pm 0.12 1.03 8.60±0.098.60\pm 0.09
NGC 5728 8.84±0.038.84\pm 0.03 8.88±0.018.88\pm 0.01 1.04 9.18±0.019.18\pm 0.01
IC 5063 7.84±0.037.84\pm 0.03 7.93±0.037.93\pm 0.03 1.03 8.25±0.038.25\pm 0.03
IC 5135 8.24±0.038.24\pm 0.03 7.63±0.037.63\pm 0.03 1.04 8.35±0.038.35\pm 0.03
MRK 3 8.03±0.078.03\pm 0.07 8.09±0.078.09\pm 0.07 1.06 8.39±0.078.39\pm 0.07
MRK 273 8.19±0.048.19\pm 0.04 7.75±0.047.75\pm 0.04 1.04 8.35±0.048.35\pm 0.04
MRK 348 8.38±0.038.38\pm 0.03 8.19±0.038.19\pm 0.03 1.04 8.62±0.038.62\pm 0.03
MRK 573 8.35±0.098.35\pm 0.09 8.29±0.098.29\pm 0.09 1.11 8.67±0.068.67\pm 0.06
NGC 1068 8.03±0.068.03\pm 0.06 8.14±0.068.14\pm 0.06 1.32 8.51±0.068.51\pm 0.06
NGC 2992 8.18±0.038.18\pm 0.03 7.92±0.037.92\pm 0.03 1.04 8.39±0.038.39\pm 0.03
NGC 5506 7.73±0.057.73\pm 0.05 7.63±0.057.63\pm 0.05 1.06 8.01±0.058.01\pm 0.05
NGC 7674 8.33±0.038.33\pm 0.03 8.41±0.028.41\pm 0.02 1.27 8.78±0.028.78\pm 0.02
IZw 92 7.85±0.127.85\pm 0.12 7.36±0.127.36\pm 0.12 1.04 7.99±0.107.99\pm 0.10
NGC 2110 8.91±0.018.91\pm 0.01 8.49±0.018.49\pm 0.01 1.04 9.07±0.019.07\pm 0.01
NGC 5929 8.58±0.038.58\pm 0.03 8.14±0.038.14\pm 0.03 1.06 8.74±0.038.74\pm 0.03
MRK 463E 7.91±0.077.91\pm 0.07 8.16±0.078.16\pm 0.07 1.10 8.40±0.078.40\pm 0.07
MRK 622 8.11±0.108.11\pm 0.10 7.91±0.097.91\pm 0.09 1.03 8.33±0.098.33\pm 0.09
NGC 1386 8.38±0.028.38\pm 0.02 8.37±0.028.37\pm 0.02 1.06 8.70±0.028.70\pm 0.02
NGC 7582 8.48±0.068.48\pm 0.06 7.78±0.067.78\pm 0.06 1.04 8.58±0.068.58\pm 0.06
NGC 1275 8.19±0.028.19\pm 0.02 7.56±0.027.56\pm 0.02 1.03 8.29±0.028.29\pm 0.02
Circinus 8.54±0.058.54\pm 0.05 8.17±0.058.17\pm 0.05 1.13 8.75±0.058.75\pm 0.05
Centaurus A 8.38±0.058.38\pm 0.05 7.87±0.057.87\pm 0.05 1.04 8.52±0.058.52\pm 0.05
Cygnus A 8.62±0.028.62\pm 0.02 8.49±0.028.49\pm 0.02 1.04 8.87±0.028.87\pm 0.02
MRK 266SW 8.49±0.118.49\pm 0.11 7.86±0.117.86\pm 0.11 1.04 8.60±0.108.60\pm 0.10
MRK 1066 7.62±0.017.62\pm 0.01 8.00±0.018.00\pm 0.01 1.03 8.16±0.018.16\pm 0.01
NGC 1320 8.22±0.078.22\pm 0.07 1.09
NGC 1667 9.32±0.119.32\pm 0.11 8.86±0.118.86\pm 0.11 1.05 9.47±0.119.47\pm 0.11
NGC 3393 8.55±0.098.55\pm 0.09 1.20
NGC 5953 9.43±0.059.43\pm 0.05 8.41±0.058.41\pm 0.05 1.03 9.48±0.059.48\pm 0.05
NGC 7682 8.19±0.048.19\pm 0.04 8.04±0.038.04\pm 0.03 1.05 8.44±0.038.44\pm 0.03
ESO428-G014 8.58±0.098.58\pm 0.09 1.07
Table A5: Estimates of Ne ionic and total abundances based on the electron temperatures t3t_{3} and te(Ne iii)t_{\rm e}({\rm\text{Ne\,{iii}}}) for the Seyfert 2 sample.
Object 12+log(Ne2+/H+)t3{\rm 12+\log(Ne^{2+}/H^{+})}_{t_{3}} 12+log(Ne2+/H+)te(Ne iii)12+{\rm\log(Ne^{2+}/H^{+})}_{t_{\rm e}({\rm\text{Ne\,{iii}}})} ICF(Ne2+) 12+log(Ne/H)t3{\rm 12+\log(Ne/H)}_{t_{3}} 12+log(Ne/H)te(Ne iii)12+{\rm\log(Ne/H)}_{t_{\rm e}({\rm\text{Ne\,{iii}}})}
NGC 3081 7.57±0.147.57\pm 0.14 7.99±0.077.99\pm 0.07 1.93 7.85±0.147.85\pm 0.14 8.28±0.078.28\pm 0.07
NGC 4388 7.46±0.147.46\pm 0.14 7.81±0.087.81\pm 0.08 2.81 7.91±0.147.91\pm 0.14 8.26±0.088.26\pm 0.08
NGC 4507 7.10±0.147.10\pm 0.14 7.80±0.087.80\pm 0.08 3.55 7.65±0.147.65\pm 0.14 8.34±0.088.34\pm 0.08
NGC 5135 7.18±0.147.18\pm 0.14 7.71±0.067.71\pm 0.06 5.19 7.90±0.147.90\pm 0.14 8.43±0.068.43\pm 0.06
NGC 5643 7.43±0.147.43\pm 0.14 8.02±0.068.02\pm 0.06 2.48 7.82±0.147.82\pm 0.14 8.41±0.068.41\pm 0.06
NGC 5728 7.13±0.147.13\pm 0.14 7.84±0.107.84\pm 0.10 2.24 7.48±0.147.48\pm 0.14 8.19±0.108.19\pm 0.10
IC 5063 7.34±0.137.34\pm 0.13 7.91±0.067.91\pm 0.06 1.84 7.61±0.137.61\pm 0.13 8.18±0.068.18\pm 0.06
IC 5135 7.34±0.147.34\pm 0.14 8.02±0.088.02\pm 0.08 5.21 8.05±0.148.05\pm 0.14 8.74±0.088.74\pm 0.08
MRK 3 7.63±0.147.63\pm 0.14 8.07±0.078.07\pm 0.07 1.97 7.93±0.147.93\pm 0.14 8.36±0.078.36\pm 0.07
MRK 273 7.42±0.137.42\pm 0.13 7.75±0.087.75\pm 0.08 3.90 8.01±0.138.01\pm 0.13 8.34±0.088.34\pm 0.08
MRK 348 7.61±0.147.61\pm 0.14 8.09±0.078.09\pm 0.07 2.65 8.04±0.148.04\pm 0.14 8.51±0.078.51\pm 0.07
MRK 573 7.73±0.137.73\pm 0.13 8.09±0.088.09\pm 0.08 2.35 8.11±0.138.11\pm 0.13 8.46±0.088.46\pm 0.08
NGC 1068 7.69±0.147.69\pm 0.14 8.06±0.088.06\pm 0.08 2.34 8.06±0.148.06\pm 0.14 8.43±0.088.43\pm 0.08
NGC 2992 7.30±0.147.30\pm 0.14 7.87±0.067.87\pm 0.06 2.94 7.77±0.147.77\pm 0.14 8.34±0.068.34\pm 0.06
NGC 5506 7.35±0.147.35\pm 0.14 7.74±0.077.74\pm 0.07 2.38 7.72±0.147.72\pm 0.14 8.12±0.078.12\pm 0.07
NGC 7674 7.93±0.137.93\pm 0.13 8.20±0.098.20\pm 0.09 2.29 8.29±0.138.29\pm 0.13 8.56±0.098.56\pm 0.09
IZw 92 7.25±0.147.25\pm 0.14 7.84±0.067.84\pm 0.06 4.30 7.88±0.147.88\pm 0.14 8.48±0.068.48\pm 0.06
NGC 2110 7.37±0.147.37\pm 0.14 7.93±0.067.93\pm 0.06 3.79 7.96±0.147.96\pm 0.14 8.51±0.068.51\pm 0.06
NGC 5929 6.89±0.146.89\pm 0.14 7.60±0.097.60\pm 0.09 4.03 7.49±0.147.49\pm 0.14 8.20±0.098.20\pm 0.09
Mrk 463E 7.39±0.147.39\pm 0.14 7.73±0.087.73\pm 0.08 1.70 7.62±0.147.62\pm 0.14 7.96±0.087.96\pm 0.08
Mrk 622 8.07±0.128.07\pm 0.12 8.28±0.108.28\pm 0.10 2.63 8.49±0.128.49\pm 0.12 8.70±0.108.70\pm 0.10
NGC 1386 7.45±0.147.45\pm 0.14 7.92±0.077.92\pm 0.07 2.12 7.78±0.147.78\pm 0.14 8.24±0.078.24\pm 0.07
NGC 7582 7.15±0.137.15\pm 0.13 7.48±0.087.48\pm 0.08 6.24 7.94±0.137.94\pm 0.13 8.27±0.088.27\pm 0.08
NGC 1275 7.48±0.147.48\pm 0.14 8.14±0.078.14\pm 0.07 5.47 8.22±0.148.22\pm 0.14 8.88±0.078.88\pm 0.07
Circinus 7.22±0.147.22\pm 0.14 7.70±0.077.70\pm 0.07 3.80 7.80±0.147.80\pm 0.14 8.28±0.078.28\pm 0.07
Centaurus A 7.33±0.147.33\pm 0.14 7.84±0.067.84\pm 0.06 4.47 7.98±0.147.98\pm 0.14 8.49±0.068.49\pm 0.06
Cygnus A 7.59±0.147.59\pm 0.14 8.00±0.078.00\pm 0.07 2.43 7.97±0.147.97\pm 0.14 8.39±0.078.39\pm 0.07
Mrk 266SW 7.48±0.127.48\pm 0.12 7.90±0.077.90\pm 0.07 5.47 8.22±0.128.22\pm 0.12 8.63±0.078.63\pm 0.07
Mrk 1066 7.27±0.147.27\pm 0.14 7.73±0.077.73\pm 0.07 1.52 7.46±0.147.46\pm 0.14 7.91±0.077.91\pm 0.07
NGC 1320 6.92±0.146.92\pm 0.14 7.61±0.087.61\pm 0.08
NGC 1667 7.35±0.147.35\pm 0.14 8.05±0.088.05\pm 0.08 4.11 7.97±0.147.97\pm 0.14 8.66±0.088.66\pm 0.08
NGC 3393 7.73±0.137.73\pm 0.13 8.01±0.098.01\pm 0.09
NGC 5953 7.21±0.147.21\pm 0.14 7.77±0.067.77\pm 0.06 11.83 8.28±0.148.28\pm 0.14 8.84±0.068.84\pm 0.06
NGC 7682 7.66±0.147.66\pm 0.14 8.19±0.068.19\pm 0.06 2.52 8.06±0.148.06\pm 0.14 8.60±0.068.60\pm 0.06
ESO428-G014 7.39±0.147.39\pm 0.14 7.89±0.077.89\pm 0.07
Table A6: Estimates for the Seyfert 2 sample of electron temperature t3t_{3} (in units of 10410^{4} K), ionic and total oxygen abundances, ionization correction factor (ICF) for the oxygen, and the logarithm of Ne/O assuming t3t_{3} and t3(Ne iii)t_{3}(\text{Ne\,{iii}}) in the Ne derivations.
Object t3t_{3} 12+log(O+/H+)\rm 12+\log(O^{+}/H^{+}) 12+log(O2+/H+)\rm 12+\log(O^{2+}/H^{+}) ICF(O) 12+log(O/H)\rm 12+\log(O/H) log(Ne/O)t3{}_{t_{3}} log(Ne/O)t3(Ne iii){}_{t_{3}(\text{Ne\,{iii}})}
NGC 3081 1.48±0.151.48\pm 0.15 8.06±0.058.06\pm 0.05 8.14±0.138.14\pm 0.13 1.45±0.071.45\pm 0.07 8.57±0.088.57\pm 0.08 0.71±0.08-0.71\pm 0.08 0.29±0.06-0.29\pm 0.06
NGC 4388 1.34±0.121.34\pm 0.12 8.17±0.068.17\pm 0.06 8.17±0.128.17\pm 0.12 1.21±0.031.21\pm 0.03 8.56±0.088.56\pm 0.08 0.65±0.07-0.65\pm 0.07 0.30±0.05-0.30\pm 0.05
NGC 4507 2.18±0.292.18\pm 0.29 8.33±0.118.33\pm 0.11 7.62±0.137.62\pm 0.13 1.00 8.41±0.078.41\pm 0.07 0.76±0.19-0.76\pm 0.19 0.07±0.13-0.07\pm 0.13
NGC 5135 1.71±0.201.71\pm 0.20 8.06±0.068.06\pm 0.06 7.53±0.137.53\pm 0.13 1.22±0.031.22\pm 0.03 8.27±0.058.27\pm 0.05 0.28±0.15-0.28\pm 0.15 +0.25±0.07+0.25\pm 0.07
NGC 5643 1.85±0.231.85\pm 0.23 8.51±0.088.51\pm 0.08 7.98±0.137.98\pm 0.13 1.00 8.63±0.058.63\pm 0.05 0.81±0.16-0.81\pm 0.16 0.22±0.09-0.22\pm 0.09
NGC 5728 2.29±0.322.29\pm 0.32 8.46±0.118.46\pm 0.11 7.67±0.137.67\pm 0.13 1.22±0.031.22\pm 0.03 8.63±0.088.63\pm 0.08 1.06±0.19-1.06\pm 0.19 0.34±0.14-0.34\pm 0.14
IC 5063 1.80±0.201.80\pm 0.20 8.48±0.078.48\pm 0.07 7.85±0.137.85\pm 0.13 1.15±0.021.15\pm 0.02 8.64±0.058.64\pm 0.05 0.97±0.15-0.97\pm 0.15 0.40±0.08-0.40\pm 0.08
IC 5135 2.16±0.292.16\pm 0.29 8.50±0.118.50\pm 0.11 7.50±0.137.50\pm 0.13 1.41±0.061.41\pm 0.06 8.70±0.098.70\pm 0.09 0.50±0.21-0.50\pm 0.21 +0.19±0.14+0.19\pm 0.14
MRK 3 1.50±0.151.50\pm 0.15 8.31±0.058.31\pm 0.05 8.11±0.138.11\pm 0.13 1.25±0.041.25\pm 0.04 8.62±0.068.62\pm 0.06 0.59±0.10-0.59\pm 0.10 0.16±0.05-0.16\pm 0.05
MRK 273 1.29±0.111.29\pm 0.11 8.21±0.068.21\pm 0.06 7.89±0.127.89\pm 0.12 2.24±0.182.24\pm 0.18 8.73±0.088.73\pm 0.08 0.37±0.08-0.37\pm 0.08 0.05±0.05-0.05\pm 0.05
MRK 348 1.58±0.171.58\pm 0.17 8.35±0.058.35\pm 0.05 8.03±0.138.03\pm 0.13 1.19±0.031.19\pm 0.03 8.61±0.068.61\pm 0.06 0.49±0.11-0.49\pm 0.11 0.02±0.06-0.02\pm 0.06
MRK 573 1.34±0.121.34\pm 0.12 8.21±0.068.21\pm 0.06 8.22±0.128.22\pm 0.12 1.40±0.061.40\pm 0.06 8.67±0.098.67\pm 0.09 0.41±0.07-0.41\pm 0.07 0.06±0.05-0.06\pm 0.05
NGC 1068 1.38±0.131.38\pm 0.13 7.78±0.067.78\pm 0.06 8.21±0.138.21\pm 0.13 1.28±0.041.28\pm 0.04 8.43±0.088.43\pm 0.08 0.29±0.06-0.29\pm 0.06 +0.08±0.06+0.08\pm 0.06
NGC 2992 1.80±0.221.80\pm 0.22 8.54±0.078.54\pm 0.07 7.65±0.137.65\pm 0.13 1.20±0.031.20\pm 0.03 8.68±0.068.68\pm 0.06 0.82±0.18-0.82\pm 0.18 0.25±0.10-0.25\pm 0.10
NGC 5506 1.43±0.141.43\pm 0.14 8.15±0.058.15\pm 0.05 7.94±0.137.94\pm 0.13 1.19±0.031.19\pm 0.03 8.44±0.078.44\pm 0.07 0.64±0.09-0.64\pm 0.09 0.25±0.05-0.25\pm 0.05
NGC 7674 1.18±0.091.18\pm 0.09 8.01±0.078.01\pm 0.07 8.37±0.128.37\pm 0.12 1.24±0.041.24\pm 0.04 8.63±0.108.63\pm 0.10 0.24±0.06-0.24\pm 0.06 +0.03±0.05+0.03\pm 0.05
IZw 92 1.86±0.231.86\pm 0.23 8.14±0.088.14\pm 0.08 7.82±0.137.82\pm 0.13 1.19±0.031.19\pm 0.03 8.40±0.058.40\pm 0.05 0.44±0.15-0.44\pm 0.15 +0.16±0.07+0.16\pm 0.07
NGC 2110 1.77±0.211.77\pm 0.21 8.59±0.078.59\pm 0.07 7.72±0.137.72\pm 0.13 1.00 8.65±0.068.65\pm 0.06 0.69±0.17-0.69\pm 0.17 0.13±0.09-0.13\pm 0.09
NGC 5929 2.25±0.312.25\pm 0.31 8.62±0.118.62\pm 0.11 7.08±0.137.08\pm 0.13 1.08±0.011.08\pm 0.01 8.67±0.108.67\pm 0.10 1.14±0.22-1.14\pm 0.22 0.43±0.16-0.43\pm 0.16
Mrk 463E 1.33±0.121.33\pm 0.12 8.04±0.068.04\pm 0.06 8.02±0.128.02\pm 0.12 1.13±0.021.13\pm 0.02 8.39±0.088.39\pm 0.08 0.71±0.07-0.71\pm 0.07 0.37±0.05-0.37\pm 0.05
Mrk 622 1.04±0.071.04\pm 0.07 8.95±0.088.95\pm 0.08 8.20±0.118.20\pm 0.11 1.46±0.071.46\pm 0.07 9.18±0.099.18\pm 0.09 0.53±0.07-0.53\pm 0.07 0.32±0.06-0.32\pm 0.06
NGC 1386 1.57±0.171.57\pm 0.17 8.17±0.058.17\pm 0.05 8.00±0.138.00\pm 0.13 1.00 8.40±0.068.40\pm 0.06 0.62±0.10-0.62\pm 0.10 0.16±0.05-0.16\pm 0.05
NGC 7582 1.31±0.121.31\pm 0.12 7.83±0.067.83\pm 0.06 7.50±0.127.50\pm 0.12 1.11±0.021.11\pm 0.02 8.04±0.078.04\pm 0.07 0.05±0.08-0.05\pm 0.08 +0.28±0.06+0.28\pm 0.06
NGC 1275 2.05±0.272.05\pm 0.27 8.55±0.108.55\pm 0.10 7.81±0.137.81\pm 0.13 1.27±0.041.27\pm 0.04 8.74±0.078.74\pm 0.07 0.41±0.20-0.41\pm 0.20 +0.25±0.12+0.25\pm 0.12
Circinus 1.60±0.171.60\pm 0.17 7.88±0.057.88\pm 0.05 7.93±0.137.93\pm 0.13 1.65±0.091.65\pm 0.09 8.43±0.078.43\pm 0.07 0.41±0.09-0.41\pm 0.09 +0.07±0.05+0.07\pm 0.05
Centaurus A 1.66±0.191.66\pm 0.19 8.49±0.068.49\pm 0.06 7.69±0.137.69\pm 0.13 1.11±0.021.11\pm 0.02 8.61±0.058.61\pm 0.05 0.58±0.15-0.58\pm 0.15 0.07±0.08-0.07\pm 0.08
Cygnus A 1.47±0.151.47\pm 0.15 8.43±0.058.43\pm 0.05 8.11±0.138.11\pm 0.13 1.45±0.061.45\pm 0.06 8.77±0.068.77\pm 0.06 0.64±0.10-0.64\pm 0.10 0.22±0.06-0.22\pm 0.06
Mrk 266SW 1.46±0.131.46\pm 0.13 8.48±0.058.48\pm 0.05 7.69±0.137.69\pm 0.13 1.23±0.031.23\pm 0.03 8.64±0.058.64\pm 0.05 0.32±0.11-0.32\pm 0.11 +0.08±0.07+0.08\pm 0.07
Mrk 1066 1.55±0.171.55\pm 0.17 8.26±0.058.26\pm 0.05 7.57±0.137.57\pm 0.13 1.22±0.031.22\pm 0.03 8.43±0.058.43\pm 0.05 0.89±0.13-0.89\pm 0.13 0.43±0.07-0.43\pm 0.07
NGC 1320 2.17±0.292.17\pm 0.29 7.66±0.117.66\pm 0.11 7.65±0.137.65\pm 0.13 1.41±0.061.41\pm 0.06 8.12±0.058.12\pm 0.05
NGC 1667 2.19±0.302.19\pm 0.30 8.98±0.118.98\pm 0.11 7.72±0.137.72\pm 0.13 1.00 9.01±0.099.01\pm 0.09 1.04±0.22-1.04\pm 0.22 0.34±0.15-0.34\pm 0.15
NGC 3393 1.19±0.091.19\pm 0.09 8.06±0.078.06\pm 0.07 8.29±0.128.29\pm 0.12 1.00 8.49±0.108.49\pm 0.10
NGC 5953 1.78±0.211.78\pm 0.21 8.16±0.078.16\pm 0.07 7.50±0.137.50\pm 0.13 1.00 8.25±0.058.25\pm 0.05 +0.03±0.16+0.03\pm 0.16 +0.59±0.08+0.59\pm 0.08
NGC 7682 1.72±0.201.72\pm 0.20 8.69±0.068.69\pm 0.06 8.45±0.138.45\pm 0.13 1.00 8.90±0.058.90\pm 0.05 0.84±0.12-0.84\pm 0.12 0.30±0.06-0.30\pm 0.06
ESO428-G014 1.64±0.181.64\pm 0.18 8.20±0.068.20\pm 0.06 8.04±0.138.04\pm 0.13 1.16±0.021.16\pm 0.02 8.50±0.068.50\pm 0.06

Note: ICF(O) is assumed to be equal to 1.00 where the He i λ5846\lambda 5846 Å emission line was not presented in the original work.