This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Charmonia in an unquenched quark model

Qian Deng1, Ru-Hui Ni1 111Ru-Hui Ni and Qian Deng contributed equally to this work. 222E-mail: [email protected], Qi Li2, and Xian-Hui Zhong1,3 333E-mail: [email protected] 1) Department of Physics, Hunan Normal University, and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha 410081, China 2) School of Science, Tianjin Chengjian University, Tianjin 300000, China 3) Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China
Abstract

In this work, we study the charmonium spectrum within an unquenched quark model including coupled-channel effects. In couple-channel calculations, we include all of the opened charmed meson channels with the once-subtracted method, meanwhile adopt a suppressed factor to soften the hard vertices given by the P03{}^{3}P_{0} model in the high momentum region. We obtain a good description of both the masses and widths for the well-established states in the charmonium spectrum. Furthermore, we give predictions for the higher SS-, PP- and DD-wave charmonium states up to mass region of 5.0\sim 5.0 GeV. The magnitude of mass shifts due to the coupled-channel effects is estimated to be about 10s10s MeV. Although many decay channels are opened for the higher charmonium states, they are relatively narrow states. Their widths scatter in the range of 10s100\sim 10s-100 MeV. Many charmonium-like states, such as χc1(3872)\chi_{c1}(3872), χc1(4274)\chi_{c1}(4274), χc0(3915)\chi_{c0}(3915), χc0(4500)\chi_{c0}(4500), χc0(4700)\chi_{c0}(4700), X(4160)X(4160), X(4350)X(4350), Y(4500)Y(4500), and ψ(4660)\psi(4660)/Y(4710)Y(4710), can be accommodated by the charmonium spectrum when the unquenched coupled-channel effects are carefully considered.

I Introduction

Since the X(3872)X(3872) was first observed at Belle in 2003 Belle:2003nnu , many charmonium-like states have been observed in the past two decades at experiments such as BABAR, Belle, LHCb, and BESIII, etc.. Sixteen states χc1(3872)\chi_{c1}(3872) (known as X(3872)X(3872)), χc0(3860)\chi_{c0}(3860), χc0(3915)\chi_{c0}(3915), X(3940)X(3940), X(3960)X(3960), χc1(4140)\chi_{c1}(4140), X(4160)X(4160), ψ(4230)\psi(4230), χc1(4274)\chi_{c1}(4274), X(4350)X(4350), ψ(4360)\psi(4360), χc0(4500)\chi_{c0}(4500), X(4630)X(4630), ψ(4660)\psi(4660), χc1(4685)\chi_{c1}(4685) and χc0(4700)\chi_{c0}(4700), are listed in the Review of Particle Physics 2023 (RPP 2023) by the Particle Data Group (PDG) ParticleDataGroup:2022pth . Recently, the center-of-mass energies of BESIII experiments have been extended to 4.95 GeV, which bring new opportunities for searching for the higher charmonium states. Lately, in the higher mass region three new vector states Y(4500)Y(4500) BESIII:2022joj ; BESIII:2023cmv , Y(4710)Y(4710) BESIII:2022kcv and Y(4790)Y(4790) BESIII:2023wsc were observed at BESIII. Since these charmonium-like states contain a cc¯c\bar{c} pair, they may be candidates of charmonium states. However, as a cc¯c\bar{c} assignment the observed properties, such as mass, for some of them are out of the conventional quark model expectations. They may be also candidates of exotic states, such as multi-quark state, hadronic molecule, or hybrid. About the nature of the charmonium-like states, there are many debates in the literature. To know about the experimental and theoretical status of the charmonium-like states, one can refer to the review works Dong:2021bvy ; Ali:2017jda ; Esposito:2016noz ; Olsen:2017bmm ; Lebed:2016hpi ; Liu:2019zoy ; Chen:2016qju ; Brambilla:2019esw ; Chen:2022asf ; Guo:2017jvc .

As we know that the exotic states, such as tetraquark states, with normal quantum numbers can hardly be distinguished from the normal ones, in order to search for exotic states, one need have a good knowledge of the normal hadron spectrum. In the charmonium spectrum, the low-lying states can be very well described by various quark models with linear confinement potentials, such as the famous nonrelativistic Cornell model Eichten:1974af ; Eichten:1978tg , relativized Godfrey-Isgur model Godfrey:1985xj ; Barnes:2005pb , relativistic quark model Ebert:2011jc , and so on. However, for the description of higher charmonium states, the conventional quark model will be questionable. The predictions often deviate from the observations. These discrepancies may be caused by the quantum fluctuation, i.e., the creation and annihilation of qq¯q\bar{q} pairs in vacuum, which will bring an important effect. That is the so-called “coupled-channel effect” through virtual charm meson loops. This effect would become essential for some higher excited states.

The unquenched coupled-channel effects for charmonium states were evaluated within various coupled-channel models based on different strategies in the literature, such as Refs. Ferretti:2021xjl ; Ferretti:2020civ ; Duan:2021alw ; Chen:2023wfp ; Heikkila:1983wd ; Pennington:2007xr ; Eichten:1978tg ; Ortega:2019tby ; Fu:2018yxq ; Ferretti:2018tco ; Li:2009ad ; Barnes:2007xu ; Kalashnikova:2005ui ; Anwar:2021dmg ; Kanwal:2022ani ; Zhou:2013ada ; Ferretti:2013faa ; Bruschini:2021cty ; Lu:2017yhl . It is found that the masses of the higher excited states are often lowered by the coupled-channel effects. Thus, some screened potential models, which roughly includes such unquenched effects, were adopted to deal with the mass spectrum in the literature Dong:1996ci ; Ding:1993uy ; Li:2009zu ; Li:2009ad ; Deng:2016stx ; Wang:2019mhs . The screened potential model results show that the mass suppression tends to be strengthened from lower levels to higher ones, compared to the quenched potential model. Both the screened potential model and coupled-channel model seem to have the similar global features in describing the charmonium spectrum Li:2009ad . In theory, to carry out unquenched calculations of charmonium spectrum, the best way is Lattice QCD. There are some attempts in the literature Wilson:2023anv ; Wilson:2023hzu ; Dudek:2007wv ; HadronSpectrum:2012gic ; DeTar:2011nn ; Bali:2011rd ; Lang:2015sba .

For the aspect of phenomenology, one should face several challenges Ni:HL to seriously carry out a study of the charmonium spectrum within the unquenched framework. i) The first challenge is how to select the coupled channels. There are many coupled channels for a charmonium state. However, only the low-lying channels D()D()D^{(*)}D^{(*)} and Ds()Ds()D_{s}^{(*)}D_{s}^{(*)} are included in most of the calculations. Can the contributions of the other higher channels be neglected for the high charmonium states? ii) The second challenge is how to evaluate the coupled channel effects in the high momentum region. Where the nonphysical contributions may be involved due to the hard vertices given by the phenomenological models, such as the P03{}^{3}P_{0} model Micu:1968mk ; LeYaouanc:1972vsx ; LeYaouanc:1973ldf . There may be too large mass correction of the coupled channel effects with a bare vertex. iii) The third challenge is how to obtain a unified description of both the masses and widths for the whole charmonium spectrum within the coupled-channel framework. Usually, most of the works only care about mass corrections due to the coupled-channel effects, a comprehensive description of the strong decays together with the mass spectrum is very scarce.

In this work, we study both the masses and widths for the high charmonium spectrum within a unified framework, where the unquenched coupled-channel effects are included by combining the semirelativistic linear potential model with the P03{}^{3}P_{0} model Micu:1968mk ; LeYaouanc:1972vsx ; LeYaouanc:1973ldf . Two strategies are adopted to overcome the challenges existing in the unquenched framework as mentioned above. (i) First, in the coupled-channel calculations, we include all possible Okubo-Zweig-Iizuka (OZI) allowed charmed meson channels with mass thresholds below the bare cc¯c\bar{c} states together with the nearby virtual channels. The contributions from the other virtual channels (whose mass thresholds are significantly above the bare cc¯c\bar{c} states) are subtracted from the dispersion relation by redefining the bare mass with the once-subtracted method suggested in Ref. Pennington:2007xr . In other words, the mass shift of a bare state is entirely given by the opened and nearby virtual channels. (ii) Second, a factor is adopted to suppress the unphysical contributions of the coupled-channel effects in the high momentum region as done in the literature Morel:2002vk ; Silvestre-Brac:1991qqx ; Zhong:2022cjx ; Ortega:2016mms ; Ortega:2016pgg ; Yang:2022vdb ; Yang:2021tvc . As we know the vertices of the P03{}^{3}P_{0} model are only effective in the non-perturbative region, which reflect the ability of qq¯q\bar{q} creation in the vacuum. This ability will be suppressed in the high momentum region due to the weak interactions between the valence quarks. Thus, one need introduce a suppressed factor when extending the vertices of P03{}^{3}P_{0} model to the high momentum region.

Our main purposes of this work are as follows. (i) To obtain a more comprehensive understanding of the charmonium spectrum within the unquenched quark model. Here, we focus not only the explanation of the masses but also the decay widths. (ii) To systematically explore the magnitude of mass shifts of the higher charmonium states up to the mass region of 5.0\sim 5.0 GeV due to the coupled-channel effects. By this study, we expect to clarify whether the mass shifts have an obvious increasing trend from lower levels to higher ones as that predicted with screened potentials. (iii) To know whether the charmonium-like states could be accommodated by the charmonium spectrum when including the unquenched coupled-channel effects. It is also crucial for seeking out the genuine exotic states from the charmonium-like states. (iv) To predict the masses and decay properties of the missing higher charmonium states within a unquenched quark model. We expect our predictions can provide useful references for the future experimental observations.

The paper is organized as follows. In Sec. II, we give an introduction of the framework of the unquenched quark model including coupled-channel effects. In Sec. III, the masses and strong decay properties of the SS-, PP- and DD-wave charmonium states up to mass region of 5.0\sim 5.0 GeV are given. Then, we further give some discussions based on the results. Finally, a summary is given in Sec. IV.

II Framework

II.1 Quark potential model

The bare cc¯c\bar{c} states are described within a quenched semirelativistic quark potential model. In the model, the effective Hamiltonian is described by

H0=𝐩12+mq2+𝐩22+mq¯2+V0(r)+Vsd(r),H_{0}=\sqrt{\mathbf{p}_{1}^{2}+m_{q}^{2}}+\sqrt{\mathbf{p}_{2}^{2}+m_{\bar{q}}^{2}}+V_{0}(r)+V_{sd}(r), (1)

where the first two terms stand for the kinetic energies for the quark and antiquark, respectively. Their masses are labeled with mqm_{q} and mq¯m_{\bar{q}}, respectively. While their three momenta are labeled with 𝐩1\mathbf{p}_{1} and 𝐩2\mathbf{p}_{2}, respectively. rr is the distance between the quark and antiquark. V0(r)V_{0}(r) is the well-known Cornell potential Eichten:1978tg

V0(r)=43αsr+br+C0,\displaystyle V_{0}(r)=-\frac{4}{3}\frac{\alpha_{s}}{r}+br+C_{0}, (2)

which includes the color Coulomb interaction and linear confinement, and zero point energy C0C_{0}. The parameters bb and αs\alpha_{s} denote the strength of the confinement and strong coupling of the one-gluon-exchange potential, respectively. The spin-dependent potential, Vsd(r)V_{sd}(r), is adopted the widely used form Godfrey:1985xj ; Barnes:2005pb

Vsd(r)=32παsσ3eσ2r29π3mqmq¯𝐒𝐪𝐒𝐪¯+43αsmqmq¯1r3(3𝐒q𝐫𝐒q¯𝐫r2𝐒q𝐒q¯)+HLS.\displaystyle\begin{aligned} V_{sd}(r)&=\frac{32\pi\alpha_{s}\cdot\sigma^{3}e^{-\sigma^{2}r^{2}}}{9\sqrt{\pi^{3}}m_{q}m_{\bar{q}}}\mathbf{S_{q}}\cdot\mathbf{S_{\bar{q}}}\\ &+\frac{4}{3}\frac{\alpha_{s}}{m_{q}m_{\bar{q}}}\frac{1}{r^{3}}\left(\frac{3\mathbf{S}_{q}\cdot\mathbf{r}\mathbf{S}_{{\bar{q}}}\cdot\mathbf{r}}{r^{2}}-\mathbf{S}_{q}\cdot\mathbf{S}_{{\bar{q}}}\right)+H_{LS}.\end{aligned} (3)

In the above equation, the first and second terms are the spin-spin contact hyperfine potential and tensor potential, respectively. The third term is the spin-orbit interaction, which can be further decomposed into symmetric and antisymmetric terms Godfrey:2004ya ; Li:2019tbn , i.e.,

HLS=Hsym+Hanti,\displaystyle H_{LS}=H_{sym}+H_{anti}, (4)

with

Hsym=𝐒+𝐋2[(12mq2+12mq¯2)(4αs3r3br)+8αs3mqmq¯r3],\displaystyle H_{sym}=\frac{\mathbf{S_{+}\cdot L}}{2}\left[\left(\frac{1}{2m_{q}^{2}}+\frac{1}{2m_{\bar{q}}^{2}}\right)\left(\frac{4\alpha_{s}}{3r^{3}}-\frac{b}{r}\right)+\frac{8\alpha_{s}}{3m_{q}m_{\bar{q}}r^{3}}\right], (5)
Hanti=𝐒𝐋2(12mq212mq¯2)(4αs3r3br).\displaystyle H_{anti}=\frac{\mathbf{S_{-}\cdot L}}{2}\left(\frac{1}{2m_{q}^{2}}-\frac{1}{2m_{\bar{q}}^{2}}\right)\left(\frac{4\alpha_{s}}{3r^{3}}-\frac{b}{r}\right). (6)

In these equations, 𝐋\mathbf{L} is the relative orbital angular momentum of the qq¯q\bar{q} system; 𝐒q\mathbf{S}_{q} and 𝐒q¯\mathbf{S}_{\bar{q}} are the spins of the quark qq and antiquark q¯\bar{q}, respectively, and 𝐒±𝐒q±𝐒q¯\mathbf{S}_{\pm}\equiv\mathbf{S}_{q}\pm\mathbf{S}_{\bar{q}}. It should be mentioned that, for a cc¯c\bar{c} state, there are no contributions from the the antisymmetric term HantiH_{anti} due to the equal masses for the quark and antiquark. The parameter set {mq,mq¯,b,αs,σ,C0\{m_{q},m_{\bar{q}},b,\alpha_{s},\sigma,C_{0} in the above potentials is determined by fitting the mass spectrum. To solve the radial Schrodinger equation, the Gaussian expansion method Hiyama:2003cu is adopted in this work.

Figure 1: Coupled-channel effects via the BCBC hadronic loops for a bare meson state |A|A\rangle shown at the hadronic level (a), and the quark level (b), respectively.

II.2 Coupled-channel effects

There are creation and annihilation of qq¯q\bar{q} pairs in vacuum for a physical hadron state. Thus, a bare meson state |A|A\rangle described within the quenched quark model can further couple to two-hadron BCBC continuum via hadronic loops, as shown in Fig. 1. Including such unquenched coupled-channel effects, in the simple coupled-channel model Kalashnikova:2005ui , the physical state is described by

|Ψ=cA|A+BCcBC(𝐩)d3𝐩|BC,𝐩,|\Psi\rangle=c_{A}|A\rangle+\sum_{BC}\int c_{BC}(\mathbf{p})d^{3}\mathbf{p}|BC,\mathbf{p}\rangle, (7)

where 𝐩=𝐩B=𝐩C\mathbf{p}=\mathbf{p}_{B}=-\mathbf{p}_{C} is the final two-hadron relative momentum in the initial hadron static system, cAc_{A} and cBC(𝐩)c_{BC}(\mathbf{p}) denote the probability amplitudes of the bare state |A|A\rangle and |BC,𝐩|BC,\mathbf{p}\rangle continuum, respectively.

The effective Hamiltonian of the physical state |Ψ|\Psi\rangle is given by

H=H0+Hc+HI,H=H_{0}+H_{c}+H_{I}, (8)

where H0H_{0} is the Hamiltonian for describing the bare state |A|A\rangle, which has been given by Eq. (1). HcH_{c} is a Hamiltonian for describing the continuum state |BC,𝐩|BC,\mathbf{p}\rangle. Neglecting the interactions between the BB and CC hadrons, the eigenenergy of |BC,𝐩|BC,\mathbf{p}\rangle is given by

EBC=mB2+𝐩2+mC2+𝐩2.E_{BC}=\sqrt{m_{B}^{2}+\mathbf{p}^{2}}+\sqrt{m_{C}^{2}+\mathbf{p}^{2}}. (9)

While HIH_{I} is an effective Hamiltonian for describing the coupling of the bare state|A|A\rangle with the |BC,𝐩|BC,\mathbf{p}\rangle continuum. In the present work, this coupling is adopted from the widely used P03{}^{3}P_{0} model Micu:1968mk ; LeYaouanc:1972vsx ; LeYaouanc:1973ldf , which is expressed as

HI\displaystyle H_{I} =\displaystyle= 3γ96πm1,m;1,m0,0𝑑𝐩3𝑑𝐩4δ3(𝐩3+𝐩4)\displaystyle-3\gamma\sqrt{96\pi}\sum_{m}\langle 1,m;1,-m\mid 0,0\rangle\int d\mathbf{p}_{3}d\mathbf{p}_{4}\delta^{3}\left(\mathbf{p}_{3}+\mathbf{p}_{4}\right) (10)
×𝒴1m(𝐩3𝐩42)χ1m34ϕ034ω034b3i(𝐩3)d4j(𝐩4),\displaystyle\times\mathcal{Y}_{1}^{m}\left(\frac{\mathbf{p}_{3}-\mathbf{p}_{4}}{2}\right)\chi_{1-m}^{34}\phi_{0}^{34}\omega_{0}^{34}b_{3i}^{\dagger}\left(\mathbf{p}_{3}\right)d_{4j}^{\dagger}\left(\mathbf{p}_{4}\right),

where γ\gamma is a dimensionless constant that denotes the strength of the quark-antiquark pair creation with momentum 𝐩3\mathbf{p}_{3} and 𝐩4\mathbf{p}_{4} from vacuum; b3i(𝐩3)b_{3i}^{\dagger}\left(\mathbf{p}_{3}\right) and d4j(𝐩4)d_{4j}^{\dagger}\left(\mathbf{p}_{4}\right) are the creation operators for the quark and antiquark, respectively; the subscripts, ii and jj, are the SU(3)-color indices of the created quark and antiquark; ϕ034=(uu¯+dd¯+ss¯)/3\phi_{0}^{34}=\left(u\bar{u}+d\bar{d}+s\bar{s}\right)/\sqrt{3} and ω034=δij/3\omega_{0}^{34}=\delta_{ij}/\sqrt{3} correspond to flavor and color singlets, respectively; χ1m34\chi_{1-m}^{34} is a spin triplet state; 𝒴m(𝐤)|𝐤|Ym(θ𝐤,ϕ𝐤)\mathcal{Y}_{\ell m}(\mathbf{k})\equiv|\mathbf{k}|^{\ell}Y_{\ell m}\left(\theta_{\mathbf{k}},\phi_{\mathbf{k}}\right) is the \ell-th solid harmonic polynomial.

The Schrödinger equation including coupled-channel effects can be expressed as

(H0HIHIHc)(cA|ABCcBC(𝐩)d3𝐩|BC,𝐩)\displaystyle\left(\begin{matrix}H_{0}~{}~{}~{}~{}~{}~{}H_{I}\\ H_{I}~{}~{}~{}~{}~{}~{}H_{c}\end{matrix}\right)~{}\left(\begin{matrix}c_{A}|A\rangle\\ \sum_{BC}\int c_{BC}(\mathbf{p})d^{3}\mathbf{p}|BC,\mathbf{p}\rangle\end{matrix}\right)~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{} (11)
=M(cA|ABCcBC(𝐩)d3𝐩|BC,𝐩),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}=M\left(\begin{matrix}c_{A}|A\rangle\\ \sum_{BC}\int c_{BC}(\mathbf{p})d^{3}\mathbf{p}|BC,\mathbf{p}\rangle\end{matrix}\right),

where MM is the mass of the physical state |Ψ|\Psi\rangle. It can be determined by the coupled-channel equation

M=MA+ΔM(M).M=M_{A}+\Delta M(M). (12)

MAM_{A} is the bare mass of |A|A\rangle obtained from the potential model. While ΔM(M)\Delta M(M) is the mass shift due to the coupled-channel effects, which is given by

ΔM(M)\displaystyle\Delta M(M) =\displaystyle= ReBC0|BC,𝐩|HI|A|2(MEBC)p2𝑑p𝑑Ωp\displaystyle\mathrm{Re}\sum_{BC}\int_{0}^{\infty}\frac{|\langle BC,\mathbf{p}|H_{I}|A\rangle|^{2}}{(M-E_{BC})}p^{2}dpd\Omega_{p} (13)
=\displaystyle= ReBC0|ABC(𝐩)|2¯(MEBC)p2𝑑p.\displaystyle\operatorname{Re}\sum_{BC}\int_{0}^{\infty}\frac{\overline{\left|\mathcal{M}_{A\rightarrow BC}(\mathbf{p})\right|^{2}}}{\left(M-E_{BC}\right)}p^{2}dp.

In principle, all |BC|BC\rangle hadronic loops should contribute a mass shift to the bare state |A|A\rangle. However, it is unfeasible to calculate the self-energy function including an unlimited number of loops. In our calculations, we included all OZI-allowed two-body hadronic channels with mass thresholds below the bare |A|A\rangle states. Additionally, we account for channels with thresholds slightly (about 5050 MeV) higher than the bare mass. The contributions from the other far away virtual channels (whose mass thresholds are significant above the bare |A|A\rangle states) are subtracted from the dispersion relation by redefining the bare mass with the once-subtracted method suggested in Ref. Pennington:2007xr . In this approach, the mass shift can be evaluated with

ΔM(M)\displaystyle\Delta M(M) =ReBC0|ABC(𝐩)|2¯(MEBC)p2𝑑p\displaystyle=\operatorname{Re}\sum_{BC}\int_{0}^{\infty}\frac{\overline{\left|\mathcal{M}_{A\rightarrow BC}(\mathbf{p})\right|^{2}}}{\left(M-E_{BC}\right)}p^{2}dp (14)
ReBC0|ABC(𝐩)|2¯(M0EBC)p2𝑑p\displaystyle-\operatorname{Re}\sum_{BC}\int_{0}^{\infty}\frac{\overline{\left|\mathcal{M}_{A\rightarrow BC}(\mathbf{p})\right|^{2}}}{\left(M_{0}-E_{BC}\right)}p^{2}dp
=ReBC0(M0M)|ABC(𝐩)|2¯(MEBC)(M0EBC)p2𝑑p,\displaystyle=\operatorname{Re}\sum_{BC}\int_{0}^{\infty}\frac{\left(M_{0}-M\right)\overline{\left|\mathcal{M}_{A\rightarrow BC}(\mathbf{p})\right|^{2}}}{\left(M-E_{BC}\right)\left(M_{0}-E_{BC}\right)}p^{2}dp,

where M0M_{0} represents the subtracted zero-point for the cc¯c\bar{c} states. It is chosen as M0=3097M_{0}=3097 MeV, which is the mass of J/ψJ/\psi. This method has been successfully applied to study the coupled-channel effects on heavy-light and charmonium states in the literature Ni:HL ; Zhou:2011sp ; Duan:2021alw .

The vertices given by the P03{}^{3}P_{0} model are too hard at high momenta. To suppress the unphysical contributions to the mass shift from the higher momentum region, as done in the literature Silvestre-Brac:1991qqx ; Zhong:2022cjx ; Ortega:2016mms ; Ortega:2016pgg ; Yang:2022vdb ; Yang:2021tvc , a suppressed factor e𝐩2/(2Λ2)e^{-\mathbf{p}^{2}/(2\Lambda^{2})} is introduced in the strong transition amplitudes, i.e.,

ABC(𝐩)ABC(𝐩)e𝐩22Λ2,\displaystyle\mathcal{M}_{A\rightarrow BC}(\mathbf{p})\to\mathcal{M}_{A\rightarrow BC}(\mathbf{p})e^{-\frac{\mathbf{p}^{2}}{2\Lambda^{2}}}, (15)

where, Λ\Lambda is a cut-off parameter. In this study, we adopt Λ=780\Lambda=780 MeV to consist with our recent study of the heavy-light meson spectrum including unquenched coupled-channel effects Ni:HL .

By combining Eq. (12) and Eq. (14), one can determine the physical mass MM together with the mass shift ΔM\Delta M. If the mass of the initial state AA is above the mass threshold of final hadron states BB and CC, a strong decay process ABCA\to BC will happen. The partial decay width for the opened BCBC channel is given by

Γ=2π|𝐩|EBECMA|ABC(𝐩)|2¯,\displaystyle\Gamma=2\pi\frac{|\mathbf{p}|E_{B}E_{C}}{M_{A}}\overline{\left|\mathcal{M}_{A\rightarrow BC}(\mathbf{p})\right|^{2}}, (16)

which is equal to two times of the imaginary part of the self-energy of the BCBC loop as shown in Fig. 1.

Table 1: The measured widths (in MeV) of the four well-established states, ψ(3770)\psi(3770), ψ(4160)\psi(4160), ψ(4040)\psi(4040), and χc2(3930)\chi_{c2}(3930), compared with the fitted theoretical results. The creation quark pair strength γ=0.422\gamma=0.422 is obtained by fitting the data with χ2/d.o.f=5.4/(41)=1.8\chi^{2}/\mathrm{d.o.f}=5.4/(4-1)=1.8. It should be noted that the errors of some data are properly adjusted to obtain an overall successful fitting.
n2S+1LJn^{2S+1}L_{J} Observed State Γexp\Gamma_{\mathrm{exp}} ParticleDataGroup:2022pth ΓError\Gamma_{\mathrm{Error}} Γth\Gamma_{\mathrm{th}}
13D11^{3}D_{1} ψ(3770)\psi(3770) 27.2±1.027.2\pm 1.0 5.05.0 35.135.1
23D12^{3}D_{1} ψ(4160)\psi(4160) 70.0±10.070.0\pm 10.0 10.010.0 61.861.8
33S13^{3}S_{1} ψ(4040)\psi(4040) 80.0±10.080.0\pm 10.0 10.010.0 77.977.9
23P22^{3}P_{2} χc2(3930)\chi_{c2}(3930) 35.2±2.235.2\pm 2.2 10.010.0 21.021.0

II.3 Model parameters

To consist with our previous work for the study of the charmed and charmed-strange mesons in the potential model Ni:2021pce , the constituent masses for charmed, strange, and up/down quarks are taken as mc=1.70m_{c}=1.70 GeV, ms=0.50m_{s}=0.50 GeV, and mu,d=0.40m_{u,d}=0.40 GeV, respectively. The slope parameter bb for the linear confining potential is taken as b=0.18GeV2b=0.18~{}\mathrm{GeV}^{2}. The other three parameters {αs,σ,C0}\{\alpha_{s},\sigma,C_{0}\} are taken as αs=0.445\alpha_{s}=0.445, σ=1.20\sigma=1.20 GeV, and C0=495C_{0}=-495 MeV, which are determined by fitting the masses of the low-lying well established 1S1S, 2S2S, 1P1P and 1D1D states. To overcome the singular behavior of 1/r31/r^{3} in the spin-dependent potentials, following the method of our previous works li:2021hss ; Deng:2016ktl ; Deng:2016stx ; Li:2019tbn ; Li:2020xzs ; Ni:2021pce , we introduce a cutoff distance rcr_{c} in the calculations, i.e., let 1/r3=1/rc31/r^{3}=1/r_{c}^{3} within a small range r(0,rc)r\in(0,r_{c}). The cutoff distance rcr_{c} is taken as rc=0.166r_{c}=0.166 fm, which is determined by fitting the mass of χc0(1P)\chi_{c0}(1P), since its mass is sensitive to the cutoff distance rcr_{c}.

When calculating the strong transition amplitudes, one also need the masses and wave functions of the initial and final hadron states, and the strength parameter for the quark pair creation of the P03{}^{3}P_{0} model. The masses of the well-established hadrons are taken from PDG ParticleDataGroup:2022pth . For the unestablished charmonium states, their masses are taken from our predictions in the present work; while for the unestablished DD- and DsD_{s}-meson states, their masses are taken from our previous predictions in Ref. Ni:2021pce . The wave functions of the charmonium states and D(s)D_{(s)}-meson states are adopted the numerical forms predicted in the present work and our previous work Ni:2021pce , respectively. The strength parameter for the quark pair creation is taken as γ=0.422\gamma=0.422, which is determined by fitting the widths of the well-established charmonium states ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160)\psi(4160) and χc2(2P)\chi_{c2}(2P) with χ2/d.o.f=1.8\chi^{2}/\mathrm{d.o.f}=1.8, as shown in Table 1.

Figure 2: Charmonium mass spectrum compared with the observations. The well established states in the charmonium mass spectrum are labeled with blue color. The results obtained within the unquenched and quenched quark models are labeled by a red cross and a solid green circle, respectively.
Table 2: Charmonium mass spectrum described within both the quenched (Q)(Q) and unquenched (UQ)(UQ) quark models. The mass shifts (ΔM\Delta M) of the bare states due to the coupled-channel effects are given in the fourth column. The unit of mass is MeV. For a comparison, the experimental data and some results from other works are also listed in the table. The notation “✗” stands for the case of no mass shift for a cc¯c\bar{c} state.
n2S+1LJn^{2S+1}L_{J} JPCJ^{PC} QQ ΔM\Delta M UQUQ Exp ParticleDataGroup:2022pth LC Li:2009zu EFG Ebert:2011jc BGS Barnes:2005pb WCLM Wang:2019mhs DLGZ Deng:2016stx GI Godfrey:1985xj
11S01^{1}S_{0} 0+0^{-+} 29842984 29842984 29842984 29792979 29812981 29822982 29812981 29832983 29702970
13S11^{3}S_{1} 11^{--} 30973097 30973097 30973097 30973097 30963096 30903090 30963096 30973097 31003100
21S02^{1}S_{0} 0+0^{-+} 36343634 36343634 36393639 36233623 36353635 36303630 36423642 36353635 36203620
23S12^{3}S_{1} 11^{--} 36853685 9-9 36763676 36863686 36733673 36853685 36723672 36833683 36793679 36803680
31S03^{1}S_{0} 0+0^{-+} 40574057 35-35 40224022 ... 39913991 39893989 40434043 40134013 40484048 40604060
33S13^{3}S_{1} 11^{--} 40944094 50-50 40444044 40394039 40224022 40394039 40724072 40354035 40784078 41004100
41S04^{1}S_{0} 0+0^{-+} 44044404 54-54 43504350 ... 42504250 44014401 43844384 42604260 43884388 ...
43S14^{3}S_{1} 11^{--} 44334433 52-52 43814381 44214421 42734273 44274427 44064406 42744274 44124412 44504450
51S05^{1}S_{0} 0+0^{-+} 47084708 46-46 46624662 ... 44464446 48114811 ... 44334433 46904690 ...
53S15^{3}S_{1} 11^{--} 47334733 51-51 46824682 46524652 Belle:2014wyt 44634463 48374837 ... 44434443 47114711 ...
61S06^{1}S_{0} 0+0^{-+} 49834983 81-81 49024902 ... 45954595 51555155 ... ... ... ...
63S16^{3}S_{1} 11^{--} 50055005 64-64 49414941 ... 46084608 51675167 ... ... ... ...
13P01^{3}P_{0} 0++0^{++} 34153415 34153415 34153415 34333433 34133413 34243424 34643464 34153415 34403440
11P11^{1}P_{1} 1+1^{+-} 35443544 35443544 35253525 35193519 35253525 35163516 35383538 35223522 35203520
13P11^{3}P_{1} 1++1^{++} 35393539 35393539 35113511 35103510 35113511 35053505 35303530 35163516 35103510
13P21^{3}P_{2} 2++2^{++} 35753575 35753575 35563556 35543554 35553555 35563556 35713571 35523552 35503550
23P02^{3}P_{0} 0++0^{++} 38653865 +40+40 39053905 39223922 38423842 38703870 38523852 38963896 38693869 39203920
21P12^{1}P_{1} 1+1^{+-} 39683968 7-7 39613961 ... 39083908 39263926 39343934 39333933 39403940 39603960
23P12^{3}P_{1} 1++1^{++} 39653965 94/+25-94/+25 3871/39903871/3990 3872/3872/... 39013901 39063906 39253925 39293929 39373937 39503950
23P22^{3}P_{2} 2++2^{++} 40024002 55-55 39473947 39233923 39373937 39493949 39723972 39523952 39673967 39803980
33P03^{3}P_{0} 0++0^{++} 42324232 +2+2 42344234 ... 41314131 43014301 42024202 41774177 42304230 ...
31P13^{1}P_{1} 1+1^{+-} 43184318 11-11 43074307 ... 41844184 43374337 42794279 42004200 42854285 ...
33P13^{3}P_{1} 1++1^{++} 43164316 29-29 42874287 42864286 41784178 43194319 42714271 41974197 42844284 ...
33P23^{3}P_{2} 2++2^{++} 43524352 15-15 43374337 43514351 Belle:2009rkh 42084208 43544354 43174317 42134213 43104310 ...
43P04^{3}P_{0} 0++0^{++} 45514551 62-62 44894489 44744474 ... 46984698 ... 43744374 ... ...
41P14^{1}P_{1} 1+1^{+-} 46254625 52-52 45734573 ... ... 47444744 ... 43894389 ... ...
43P14^{3}P_{1} 1++1^{++} 46254625 63-63 45624562 ... ... 47284728 ... 43874387 ... ...
43P24^{3}P_{2} 2++2^{++} 46604660 89-89 45714571 ... ... 47634763 ... 43984398 ... ...
53P05^{3}P_{0} 0++0^{++} 48394839 59-59 47804780 ... ... ... ... ... ... ...
51P15^{1}P_{1} 1+1^{+-} 49054905 30-30 48754875 ... ... ... ... ... ... ...
53P15^{3}P_{1} 1++1^{++} 49054905 49-49 48564856 ... ... ... ... ... ... ...
53P25^{3}P_{2} 2++2^{++} 49394939 57-57 48824882 ... ... ... ... ... ... ...
13D11^{3}D_{1} 11^{--} 38233823 35-35 37883788 37743774 37873787 37833783 37853785 38303830 37873787 38203820
11D21^{1}D_{2} 2+2^{-+} 38423842 28-28 38143814 ... 37963796 38073807 37993799 38483848 38063806 38403840
13D21^{3}D_{2} 22^{--} 38443844 35-35 38093809 38243824 37983798 37953795 38003800 38483848 38073807 38403840
13D31^{3}D_{3} 33^{--} 38473847 4-4 38433843 38433843 37993799 38133813 38063806 38593859 38113811 38503850
23D12^{3}D_{1} 11^{--} 41764176 20-20 41564156 41914191 40894089 41504150 41424142 41254125 41444144 41904190
21D22^{1}D_{2} 2+2^{-+} 42064206 14-14 41924192 41464146 LHCb:2021uow 40994099 41964196 41584158 41374137 41644164 42104210
23D22^{3}D_{2} 22^{--} 42074207 15-15 41924192 ... 41004100 41904190 41584158 41374137 41654165 42104210
23D32^{3}D_{3} 33^{--} 42164216 3-3 42134213 ... 41034103 42204220 41674167 41444144 41724172 42204220
33D13^{3}D_{1} 11^{--} 44864486 23-23 44634463 44854485 BESIII:2022joj 43174317 45074507 ... 43344334 44564456 45204520
31D23^{1}D_{2} 2+2^{-+} 45224522 61-61 44614461 ... 43264326 45494549 ... 43434343 44784478 ...
33D23^{3}D_{2} 22^{--} 45234523 55-55 44684468 ... 43274327 45444544 ... 43434343 44784478 ...
33D33^{3}D_{3} 33^{--} 45354535 74-74 44614461 ... 43314331 45744574 ... 43484348 44864486 ...
43D14^{3}D_{1} 11^{--} 47674767 30-30 47374737 4710\sim 4710 BESIII:2023wqy ; BESIII:2022kcv ... 48574857 ... 44844484 ... ...
41D24^{1}D_{2} 2+2^{-+} 48084808 32-32 47764776 ... ... 48984898 ... 44904490 ... ...
43D24^{3}D_{2} 22^{--} 48084808 31-31 47774777 ... ... 48964896 ... 44904490 ... ...
43D34^{3}D_{3} 33^{--} 48234823 32-32 47914791 ... ... 49204920 ... 44944494 ... ...
53D15^{3}D_{1} 11^{--} 50295029 41-41 49884988 ... ... ... ... ... ... ...
51D25^{1}D_{2} 2+2^{-+} 50735073 29-29 50445044 ... ... ... ... ... ... ...
53D25^{3}D_{2} 22^{--} 50745074 44-44 50305030 ... ... ... ... ... ... ...
53D35^{3}D_{3} 33^{--} 50915091 30-30 50615061 ... ... ... ... ... ... ...
Table 3: The mass shifts and strong decay widths for the 3S3S- and 4S4S-wave charmonium states (in MeV). The “✗” is labeled the strong decay channels which are not open or forbidden. These channels are considered to have no contributions to the mass shifts and decay widths. The “...” stands for the predicted values are negligibly small.
31S03^{1}S_{0} 33S13^{3}S_{1}
ΔM\Delta M Γ\Gamma ΔM\Delta M Γ\Gamma
Channel [4057][4057] [4022][4022] [4094][4094] asψ(4040)as~{}\psi(4040)
DDDD 1.24-1.24 0.960.96
DsDsD_{s}D_{s} +0.07+0.07 2.102.10
DDDD^{*} +17.06+17.06 52.7552.75 +9.26+9.26 17.0017.00
DsDsD_{s}D_{s}^{*} 6.15-6.15 3.89-3.89
DDD^{*}D^{*} 45.56-45.56 9.569.56 54.39-54.39 57.8857.88
DsDsD_{s}^{*}D_{s}^{*}
Total 34.65-34.65 62.3162.31 50.19-50.19 77.9477.94
Mth,ΓthM_{th},\Gamma_{th} 𝟒𝟎𝟐𝟐,62.31\bm{4022,62.31} 𝟒𝟎𝟒𝟒,77.94\bm{4044,77.94}
Mexp,ΓexpM_{exp},\Gamma_{exp} ,\bm{-,-} 𝟒𝟎𝟑𝟗,𝟖𝟎±𝟏𝟎\bm{4039,80\pm 10}
41S04^{1}S_{0} 43S14^{3}S_{1}
ΔM\Delta M Γ\Gamma ΔM\Delta M Γ\Gamma
Channel [4404][4404] [4350][4350] [4433][4433] asψ(4415)as~{}\psi(4415)
DDDD 0.31-0.31 0.700.70
DsDsD_{s}D_{s} 0.05-0.05 ...
DDDD^{*} +1.40+1.40 1.111.11 0.07-0.07 0.130.13
DsDsD_{s}D_{s}^{*} 0.68-0.68 2.262.26 0.12-0.12 1.151.15
DDD^{*}D^{*} +1.08+1.08 11.6911.69 +2.74+2.74 5.775.77
DsDsD_{s}^{*}D_{s}^{*} +0.24+0.24 0.430.43 0.89-0.89 1.271.27
DD0(2550)DD_{0}(2550) 3.50-3.50 7.467.46
DD0(2300)DD_{0}^{*}(2300) +2.62+2.62 34.0534.05
DsDs0(2317)D_{s}D_{s0}^{*}(2317) 6.29-6.29 3.363.36
DD0(2300)D^{*}D_{0}^{*}(2300) 4.41-4.41 20.9920.99
DsDs0(2317)D_{s}^{*}D_{s0}^{*}(2317) 1.33-1.33
DD2(2460)DD_{2}^{*}(2460) 25.00-25.00 7.657.65 9.37-9.37 18.4018.40
DD1(2430)DD_{1}(2430) 9.89-9.89 17.4817.48
DsDs1(2460)D_{s}D_{s1}(2460) 3.86-3.86
DD1(2420)DD_{1}(2420) 2.98-2.98 15.3915.39
DD1(2430)D^{*}D_{1}(2430) 12.14-12.14 7.57-7.57
DD1(2420)D^{*}D_{1}(2420) 15.28-15.28 10.58-10.58
Total 54.05-54.05 60.5560.55 52.19-52.19 88.7488.74
Mth,ΓthM_{th},\Gamma_{th} 𝟒𝟑𝟓𝟎,60.55\bm{4350,60.55} 𝟒𝟑𝟖𝟏,88.74\bm{4381,88.74}
Mexp,ΓexpM_{exp},\Gamma_{exp} ,\bm{-,-} 𝟒𝟒𝟐𝟏±𝟒,𝟔𝟐±𝟐𝟎\bm{4421\pm 4,62\pm 20}

III Result and Discussion

The masses for the SS-, PP- and DD-wave charmonium states up to mass region of 5.0\sim 5.0 GeV obtained within the unquenched quark models are listed in Table 2. For a comparison, the results of the quenched scenario, the experimental data, and some predictions from other works are also presented in the same table. For clarity, our theoretical mass spectra compared with the data are plot Fig. 2 as well. Furthermore, the mass shift and partial strong decay width contributed by each channels for the charmonium states are given in Tables 3-15.

III.1 SS-wave states

The mass spectrum up to 6S6S-wave states is given in Table 2 and also shown in Fig. 2. The strong decay properties for the higher SS-wave states are given in Tables 3-6. The masses for the low-lying SS-wave cc¯c\bar{c} states ηc\eta_{c}, ηc(2S)\eta_{c}(2S), J/ψ(1S)J/\psi(1S) and ψ(2S)\psi(2S) can be well described within the quark model. For the high-lying 3,4,5,6S3,4,5,6S-wave states, from Table 2 one can see that the unquenched coupled-channel effects of intermediate hadron loops have sizeable corrections to the masses of the bare states, the mass shifts are predicted to be in the range of (80,30)\sim(-80,-30) MeV.

III.1.1 ψ(4040)\psi(4040)

The well established vector state ψ(4040)\psi(4040), as the assignment of ψ(3S)\psi(3S), from Table 3, one can see that both its mass and width are consistent with the predictions. The predicted partial width ratio between DDDD and DDDD^{*} channels,

Γ(DD)Γ(DD)0.06,\displaystyle\frac{\Gamma(DD)}{\Gamma(DD^{*})}\simeq 0.06, (17)

is close to the lower limit of the data 0.24±0.05±0.120.24\pm 0.05\pm 0.12 measured by the BABAR collaboration BaBar:2009elc . However, the predicted ratio

Γ(DD)Γ(DD)3.4,\displaystyle\frac{\Gamma(D^{*}D^{*})}{\Gamma(DD^{*})}\simeq 3.4, (18)

is inconsistent with the measured value 0.18±0.14±0.030.18\pm 0.14\pm 0.03 by BABAR. It should be mentioned that the DDD^{*}D^{*} as the dominant channel of ψ(4040)\psi(4040) is supported by the measurements of Belle Belle:2006hvs .

III.1.2 ψ(4415)\psi(4415)

Considering ψ(4415)\psi(4415) as the ψ(4S)\psi(4S) assignment, from Table 3, one can see that both the mass and width are consistent with the quark model expectations. The predicted partial width ratios,

Γ(DD)Γ(DD)0.12,Γ(DD)Γ(DD)0.02,\displaystyle\frac{\Gamma(DD)}{\Gamma(D^{*}D^{*})}\simeq 0.12,\ \ \frac{\Gamma(DD^{*})}{\Gamma(D^{*}D^{*})}\simeq 0.02, (19)

are consistent with the data 0.14±0.12±0.030.14\pm 0.12\pm 0.03 and 0.17±0.25±0.030.17\pm 0.25\pm 0.03 measured by the BABAR collaboration BaBar:2009elc , respectively, within uncertainties. Recently, the ψ(4415)\psi(4415) was observed in the Ds+DsD_{s}^{*+}D_{s}^{*-} final state by the BESIII collaboration BESIII:2023wsc . As the ψ(4S)\psi(4S) assignment, we find that the branching fraction of ψ(4415)\psi(4415) into Ds+DsD_{s}^{*+}D_{s}^{*-} is predicted to be 1.5%\sim 1.5\% (see Table 3), which is similar to that into D¯sDs+c.c.\bar{D}_{s}D_{s}^{*}+c.c.. Thus, ψ(4415)\psi(4415) should be observed in the D¯sDs+c.c.\bar{D}_{s}D_{s}^{*}+c.c. final states as well.

It should be mentioned that the quark model classification for ψ(4415)\psi(4415) still bears some controversies. In the literature Li:2009zu ; Wang:2023zxj ; Wang:2022jxj , ψ(4415)\psi(4415) is suggested to be a 5S5S state or a 5S5S-4D4D mixing state based on the screening potential model. The screening effect is considered to be partly equivalent to the coupled-channel effect. The magnitude of mass shifts due to the coupled-channel effects estimated within the screening potential model reaches up to a fairly large value 200300\sim 200-300 MeV, which is about a factor of 510\sim 5-10 larger than our estimations with a more comprehensive consideration of the coupled-channel effects (see Table 3). In Ref. Gui:2018rvv , the strong decays of ψ(4415)\psi(4415) as the ψ(5S)\psi(5S) assignment based on the screening potential model have been studied by our group, it is found that the decay width Γ8.4\Gamma\simeq 8.4 MeV is notably smaller than the experimental value Γexp62±20\Gamma_{exp}\simeq 62\pm 20 MeV. Thus, ψ(4415)\psi(4415) as the ψ(5S)\psi(5S) assignment should be excluded according to our study within the unquenched quark model.

III.1.3 ψ(5S)\psi(5S) and ψ(6S)\psi(6S)

The center-of-mass energies of BESIII experiments have been extended to 4.95 GeV, which provide good opportunities for establishing high vector charmonium states ψ(5S)\psi(5S) and ψ(6S)\psi(6S). Our predictions about their masses and decay properties have been listed in Tables 5 and 6.

The ψ(5S)\psi(5S) may favor the ψ(4660)\psi(4660) assignment listed in RPP ParticleDataGroup:2022pth . The predicted mass and width of ψ(5S)\psi(5S), M=4682M=4682 MeV and Γ=76\Gamma=76 MeV, are in good agreement with the data Mexp=4652±21M_{exp}=4652\pm 21 MeV and Γexp=68±16\Gamma_{exp}=68\pm 16 MeV measured at Belle Belle:2014wyt . Recently, a new vector resonance Y(4710)Y(4710) was observed in e+eKK¯J/ψe^{+}e^{-}\to K\bar{K}J/\psi at BESIII  BESIII:2023wqy ; BESIII:2022kcv , the measured mass and width are close to those of ψ(4660)\psi(4660). The Y(4710)Y(4710) and ψ(4660)\psi(4660) may correspond to the same state. Further measurements of the main decay channels listed in Table 5, such as DD1(2600)D^{*}D^{*}_{1}(2600) and DD1(2430)DD_{1}(2430), may be useful to establish the ψ(5S)\psi(5S) state.

Finally, it is should be mentioned that ψ(4660)\psi(4660) is also suggested to be assigned as the ψ(5S)\psi(5S) state in Refs. Ding:2007rg ; Gui:2018rvv ; Segovia:2008zz ; Zhao:2023hxc based on some quenched quark model studies.

III.2 PP-wave states

The mass spectrum up to 5P5P-wave states is given in Table 2 and also shown in Fig. 2. The strong decay properties for the PP-wave states are given in Tables 7-10. All of the four low-lying 1P1P-wave states, hc(1P)h_{c}(1P) and χc0,1,2(1P)\chi_{c0,1,2}(1P), have been well established. However, the situation become complicated and confusing when toward establishing the higher PP-wave states. The unquenched coupled-channel effects play crucial roles for understanding the nature of χcJ(2P)\chi_{cJ}(2P) states. The coupled-channel effects on the 3P3P-wave states are small. For the 4P4P- and 5P5P-wave states, the unquenched coupled-channel effects systematically lower the mass spectrum, the mass shifts are predicted to be in the range of (90,30)\sim(-90,-30) MeV.

Figure 3: The mass shift ΔM(M)\Delta M(M) (upper panel) and spectral density function ω(M)\omega(M) (lower panel) for the χc1(2P)\chi_{c1}(2P) including the coupled-channel effect of DDDD^{*}. Three solutions are found by solving the coupled-channel equation (12), i.e., the intersection points of the two lines of ΔM(M)\Delta M(M) and MMAM-M_{A}. The first and third solution with masses of 3871 MeV and 3990 MeV correspond to the narrow and broad structures shown in the spectral density function, respectively. The middle solution with a mass of 3888 MeV is unphysical.
Table 4: The components of the two 1++1^{++} resonances obtained by the χc1(2P)\chi_{c1}(2P) state coupling to the DDDD^{*} channel.
      Physical Mass       cc¯c\bar{c} core       DDDD^{*}
      38713871 MeV       9.68%9.68\%       90.32%90.32\%
      39903990 MeV       61.11%61.11\%       38.89%38.89\%

III.2.1 2P2P-wave states

For the 2P2P-wave states, there are several candidates, χc1(3872)\chi_{c1}(3872), χc0(3860)\chi_{c0}(3860), χc0(3930)\chi_{c0}(3930), X(3915)X(3915), and χc2(3930)\chi_{c2}(3930), from experiments ParticleDataGroup:2022pth . However, about their assignments one will face several problems: (i) Can χc1(3872)\chi_{c1}(3872) be assigned to χc1(2P)\chi_{c1}(2P) indeed? (ii) Is the mass gap between χc0(2P)\chi_{c0}(2P) and χc2(2P)\chi_{c2}(2P) small or large? (iii) Is the width of χc0(2P)\chi_{c0}(2P) broad or narrow? The unquenched quark model including couple-channel effects may shed light on these puzzles.

First, let’s focus on the χc0(2P)\chi_{c0}(2P) state. Within the unquenched quark model, the mass of χc0(2P)\chi_{c0}(2P) is predicted to be M=3905M=3905 MeV. The coupled-channel effects due to the DDDD-loop have a significant correction to bare mass of χc0(2P)\chi_{c0}(2P). By solving the coupled-channel equation, it is interesting to find that there is a positive mass shift ΔM+40\Delta M\simeq+40 MeV. The positive mass shift was also found by the Lanzhou Group Duan:2020tsx . The χc0(2P)\chi_{c0}(2P) should be a narrow state with a width of Γ16.8\Gamma\simeq 16.8 MeV, which is nearly saturated by the DDDD channel. Our prediction is consistent with that in Refs. Duan:2020tsx ; Liu:2009fe . Recently, in the D+DD^{+}D^{-} final state the LHCb collaboration observed a new 0++0^{++} charmonium resonance χc0(3930)\chi_{c0}(3930) with mass Mexp=3923.8±1.9M_{exp}=3923.8\pm 1.9 MeV and width Γexp=17.4±5.9\Gamma_{exp}=17.4\pm 5.9 MeV LHCb:2020pxc . Comparing the observations with our predictions, we find that χc0(3930)\chi_{c0}(3930) perfectly favors the χc0(2P)\chi_{c0}(2P) assignment. The χc0(3930)\chi_{c0}(3930) resonance may correspond to X(3915)X(3915) observed in the ωJ/ψ\omega J/\psi final state by Belle Belle:2004lle ; Belle:2009and and BABAR BaBar:2012nxg ; BaBar:2007vxr .

In Ref. Guo:2012tv , the authors analyzed the Belle and BABAR data of γγDD¯\gamma\gamma\to D\bar{D}. From the data, a broad resonance with mass 3837.6±11.53837.6\pm 11.5 MeV and width 221±19221\pm 19 MeV was extracted. They claimed that this broad resonance should correspond to χc0(2P)\chi_{c0}(2P), rather than the narrow X(3915)X(3915) resonance. Soon after the work was published, the Belle collaboration reported the observation of a χc0(3860)\chi_{c0}(3860) state with a mass of Mexp=386245+66M_{exp}=3862^{+66}_{-45} MeV and a width of Γexp=201149+242\Gamma_{exp}=201^{+242}_{-149} MeV in the process e+eJ/ψDD¯e^{+}e^{-}\to J/\psi D\bar{D} Belle:2017egg . However, based our present study, the χc0(3860)\chi_{c0}(3860) resonance disfavors the χc0(2P)\chi_{c0}(2P) assignment. The broad width is out of theoretical expectation, although the mass seems to be consistent with the unquenched quark model predictions. Our conclusion is consistent with that in Refs. Duan:2020tsx ; Gui:2018rvv . It should be pointed out that the χc0(3860)\chi_{c0}(3860) is not seen in a recent observation of BD+DK+B\to D^{+}D^{-}K^{+} at LHCb LHCb:2020pxc , where such a state might be expected to play a significant role. The broad χc0(3860)\chi_{c0}(3860) resonance may be contributed by several states or nonresonant backgrounds.

Then, we focus on the χc1(2P)\chi_{c1}(2P) state. This state has a strong SS-wave coupling to the DDDD^{*} channel. When solving the coupled-channel Eq. (12), it is seen that there are three solutions with masses 38713871 MeV, 3888 MeV and 3990 MeV, respectively, as shown in the upper panel of Fig. 3. The first solution with a mass of 38713871 MeV lies just below the D0D0D^{0}D^{*0} threshold. The second solution with a mass of 38883888 MeV is just above the D±DD^{\pm}D^{*\mp} threshold. While the third solution with a mass of 3990 MeV is heavier than the bare state. To uncover the nature of the solutions obtained from the coupled-channel model, we further analyze the spectral density function,

ω(M)=12πΓ[M(MA+ΔM(M))]2+Γ2/4,\displaystyle\omega(M)=\frac{1}{2\pi}\frac{\Gamma}{[M-(M_{A}+\Delta M(M))]^{2}+\Gamma^{2}/4}, (20)

as adopted in the literature Baru:2003qq ; Kalashnikova:2005ui ; Kalashnikova:2009gt ; Wang:2023snv . The line shape of the spectral density function is shown in the lower panel of Fig. 3. It is found that the first solution with a mass of 38713871 MeV corresponds to a very narrow state with a width of about several MeV shown in the spectral density function. The third solution with a mass of 39903990 MeV corresponds to a broader resonance with a width of Γ60\Gamma\simeq 60 MeV. However, the second solution with a mass of 38883888 MeV does not exhibit any resonance structures in the spectral density function, thus, this solution is unphysical. Similar line shape of the spectral density function was also found in the previous studies Kalashnikova:2005ui ; Giacosa:2019zxw . Two similar solutions are also found by the other coupled-channel analysis of the χc1(2P)\chi_{c1}(2P) Zhou:2017dwj ; Ortega:2009hj ; Kalashnikova:2005ui ; Giacosa:2019zxw . Considering the integral intervals as shown in the lower panel of Fig. 3, from the spectral density function, one can estimate the cc¯c\bar{c} core components for the resonance structures. Our results are given in Table 4. The narrow state with a mass of 38713871 MeV is dominated by the DDDD^{*} component, while the cc¯c\bar{c} core component is only 10%\sim 10\%. The broad resonance with a mass of 39903990 MeV is a cc¯c\bar{c} dominant state, the cc¯c\bar{c} core component is estimated to be 60%~{}60\%. The narrow state favors the famous χc1(3872)\chi_{c1}(3872) resonance. The nature of χc1(3872)\chi_{c1}(3872) originating from the χc1(2P)\chi_{c1}(2P) is also suggested in the literature Zhou:2017dwj ; Zhou:2017txt ; Duan:2020tsx ; Pennington:2007xr ; Li:2009ad ; Meng:2007cx ; Ferretti:2014xqa ; Ferretti:2013faa ; Meng:2014ota ; Coito:2012vf ; Wang:2023ovj . To confirm the nature of χc1(3872)\chi_{c1}(3872), it is crucial to look for the broad state with a mass of about 39903990 MeV in the DDDD^{*} final state.

Finally, we focus on the χc2(2P)\chi_{c2}(2P) state. The unquenched coupled-channel effects play a significant role as well. The DDD^{*}D^{*} and DDDD^{*}-loops lower the bare mass of the χc2(2P)\chi_{c2}(2P), 4002 MeV, to the physical point 3947\sim 3947 MeV. The mass shift reaches up to a fairly large value ΔM55\Delta M\simeq-55 MeV. Considering the χc2(3930)\chi_{c2}(3930) resonance as χc2(2P)\chi_{c2}(2P), the measured mass is well described within the unquenched framework, which can be clearly seen from Fig. 2. Within the unquenched picture, the mass gap between χc2(2P)\chi_{c2}(2P) and χc0(2P)\chi_{c0}(2P) is predicted to be 40\sim 40 MeV, which is much smaller than 60120\sim 60-120 MeV predicted in the quenched quark model (see Table 2). Our predictions are consistent with that in Ref. Duan:2020tsx . Taking χc2(3930)\chi_{c2}(3930) as the χc2(2P)\chi_{c2}(2P) state, one find the decay width Γ21\Gamma\simeq 21 MeV predicted in theory is also compatible with the data Γexp=35.2±2.2\Gamma_{exp}=35.2\pm 2.2 MeV ParticleDataGroup:2022pth . The χc2(2P)\chi_{c2}(2P) state dominantly decays into both DDDD and DDDD^{*} channels, the partial width ratio between them is predicted to be

Γ(DD)Γ(DD)0.74.\displaystyle\frac{\Gamma(DD^{*})}{\Gamma(DD)}\simeq 0.74. (21)

The DDDD decay mode has been observed by the Belle and BABAR experiments ParticleDataGroup:2022pth .

In summary, the unquenched coupled-channel effects are crucial for uncovering the puzzles in the χcJ(2P)\chi_{cJ}(2P) states. Two resonance structures are found when considering coupled-channel effects for the bare χc1(2P)\chi_{c1}(2P) state. The χc1(3872)\chi_{c1}(3872) may correspond to the low-mass resonance dominated by the DDDD^{*} component. The χc0(3930)\chi_{c0}(3930) and χc2(3930)\chi_{c2}(3930) resonances can be well explained with the assignments χc0(2P)\chi_{c0}(2P) and χc2(2P)\chi_{c2}(2P), respectively, when the unquenched coupled-channel effects are properly included. The broad structure χc0(3860)\chi_{c0}(3860) cannot be explained as χc0(2P)\chi_{c0}(2P), which may be contributed by several states or nonresonant backgrounds.

III.2.2 3P3P-wave states

For the 3P3P-wave states, from Table 2 one can see that the mass corrections due to the coupled-channel effects are not significant. The magnitude of the mass shifts is estimated to be within 30 MeV. Except the χc0(3P)\chi_{c0}(3P) has a relatively low mass 42344234 MeV, the masses for the other three states χc1,2(3P)\chi_{c1,2}(3P) and hc(3P)h_{c}(3P) are predicted to be around 4.3\sim 4.3 GeV. Our results are consistent with the those predicted with linear potentials  Barnes:2005pb ; Deng:2016stx ; Ebert:2011jc , however, are about 100100 MeV larger than those predicted with screened potentials Wang:2019mhs ; Li:2009zu .

The strong decay properties of the 3P3P-wave states are also studied, the results have been given in Table 7. The χc1(3P)\chi_{c1}(3P) and hc(3P)h_{c}(3P) are predicted to be narrow states with a comparable width of 30\sim 30 MeV. While the χc0(3P)\chi_{c0}(3P) and χc2(3P)\chi_{c2}(3P) are predicted to be moderate width states with a comparable width of 60\sim 60 MeV. The decay properties are roughly consistent with the predictions with a linear potential model in previous work of our group Gui:2018rvv . The χc0(3P)\chi_{c0}(3P) may have good potentials to be observed in the DDD^{*}D^{*} and DsDsD_{s}D_{s} channels, the branching fractions for these two channels are predicted to be 68%68\% and 12%12\%, respectively. The χc2(3P)\chi_{c2}(3P) may have a potential to be observed in the DDDD^{*} and DsDsD_{s}^{*}D_{s}^{*} channels, the predicted branching fractions may reach up to 10%\sim 10\%. The χc1(3P)\chi_{c1}(3P) may have a good potential to be observed in the DsDsD_{s}D_{s}^{*} and DsDsD^{*}_{s}D^{*}_{s} channels, the branching fractions may reach up to 20%\sim 20\%. The hc(3P)h_{c}(3P) mainly decays into the DDDD^{*}, DsDsD_{s}D^{*}_{s}, DDD^{*}D^{*}, and DsDsD^{*}_{s}D^{*}_{s} channels with a comparable branching fraction 2030%\sim 20-30\%.

The χc1(4274)\chi_{c1}(4274) (known as X(4274)X(4274)) observed in the J/ψϕJ/\psi\phi channel in the decay B+J/ψϕK+B^{+}\to J/\psi\phi K^{+} at CDF CDF:2011pep and LHCb LHCb:2016axx ; LHCb:2016nsl ; LHCb:2021uow may be a good candidate of χc1(3P)\chi_{c1}(3P). The averaged mass and width of χc1(4274)\chi_{c1}(4274), Mexp=42869+8M_{exp}=4286^{+8}_{-9} MeV and Γexp=51±7\Gamma_{exp}=51\pm 7 MeV ParticleDataGroup:2022pth , are consistent with the our predictions, M=4287M=4287 MeV and Γ34\Gamma\simeq 34 MeV. The χc1(4274)\chi_{c1}(4274) is also suggested to be assigned as χc1(3P)\chi_{c1}(3P) in Refs. Lu:2016cwr ; Duan:2021alw ; Gui:2018rvv ; Wang:2022dfd ; Ferretti:2020civ . The χc1(4274)\chi_{c1}(4274), as the χc1(3P)\chi_{c1}(3P) assignment, should be observed in its main decay channels DsDsD_{s}D_{s}^{*} and DsDsD^{*}_{s}D^{*}_{s} via the B+Ds()Ds()K+B^{+}\to D^{(*)}_{s}D^{(*)}_{s}K^{+} decays.

The X(4350)X(4350) structure observed in the γγJ/ψϕ\gamma\gamma\to J/\psi\phi process at Belle Belle:2009rkh may be a good candidate of χc2(3P)\chi_{c2}(3P). The measured mass and width are Mexp=4350.65.1+4.6±0.8M_{exp}=4350.6^{+4.6}_{-5.1}\pm 0.8 MeV and Γexp=139+18±4\Gamma_{exp}=13^{+18}_{-9}\pm 4 MeV, respectively. Assigning X(4350)X(4350) to χc2(3P)\chi_{c2}(3P), the predicted mass, M4337M\simeq 4337 MeV is in good agreement with the data, while the predicted width Γ56\Gamma\simeq 56 MeV is slightly broader than the data. In Refs. Gui:2018rvv ; Liu:2009fe ; Wang:2022dfd , such a possible assignment was also considered. To confirm this assignment future experimental search for its decays into DDDD^{*} and DsDsD_{s}^{*}D_{s}^{*} are strongly recommended.

Finally, it should be mentioned that recently the LHCb collaboration carried out observations of the B+Ds+DsK+B^{+}\to D^{+}_{s}D^{-}_{s}K^{+} decay LHCb:2022dvn ; LHCb:2022aki , there seems to be a bump structure around 4.34.3 GeV in the Ds+DsD^{+}_{s}D^{-}_{s} invariant-mass spectrum, which may be contributed by the χc0(3P)\chi_{c0}(3P) state. With more statistics, this state is most likely to be established in the DsDsD_{s}D_{s} channel by using the B+Ds+DsK+B^{+}\to D^{+}_{s}D^{-}_{s}K^{+} decay in forthcoming experiments.

As a whole, it’s time to establish the 3P3P-wave states, which have a relatively narrow width of 2060\sim 20-60 MeV. The χc1(4274)\chi_{c1}(4274) and X(4350)X(4350) are good candidates of the χc1(3P)\chi_{c1}(3P) and χc2(3P)\chi_{c2}(3P), respectively. Some weak signals of χc0(3P)\chi_{c0}(3P) may have been found in the recent LHCb experiments. The Ds()Ds()D^{(*)}_{s}D^{(*)}_{s} may be good channel to establish the 3P3P-wave states.

III.2.3 4P4P-wave states

For the 4P4P-wave states, from Table 2 one can see that the mass corrections due to the coupled-channel effects are significant. The magnitude of the mass shifts is estimated to be 5090\sim 50-90 MeV. Except the χc0(4P)\chi_{c0}(4P) has a relatively low mass of 4.5\sim 4.5 GeV, the masses for the other three states χc1,2(4P)\chi_{c1,2}(4P) and hc(4P)h_{c}(4P) are predicted to be around 4.64.6 GeV. There are some studies of the higher 4P4P-wave states within some quenched Gui:2018rvv ; Sultan:2014oua ; Cao:2012du ; Ebert:2011jc ; Soni:2017wvy ; Chaturvedi:2019usm ; Mansour:2021rru ; Fang:2022bft and unquenched Duan:2021alw ; Ferretti:2021xjl quark models. Our results are close to the predictions with a linear potential in Refs. Gui:2018rvv ; Sultan:2014oua ; Cao:2012du , however, is about 100200100-200 MeV smaller than the predictions in Refs. Ebert:2011jc ; Soni:2017wvy ; Chaturvedi:2019usm , and about 200200 MeV higher than the predictions with screened potentials Wang:2019mhs and other modified confinement potentials Mansour:2021rru ; Fang:2022bft .

The strong decay properties of the 4P4P-wave states are also studied, the results have been given in Table 8. The χc0(4P)\chi_{c0}(4P) and χc2(4P)\chi_{c2}(4P) are predicted to be moderate width states with a comparable width of 7090\sim 70-90 MeV. While the χc1(4P)\chi_{c1}(4P) and hc(4P)h_{c}(4P) have a slightly broader width of 100\sim 100 MeV. The decay properties are roughly consistent with the predictions with a linear potential model in the previous work of our group Gui:2018rvv . The 4P4P-wave states mainly decay into the 1P1P-wave and/or 2S2S-wave DD-meson excitations by emitting a DD or DD^{*} meson. The rates decaying into the OZI-allowed D()D()D^{(*)}D^{(*)}, Ds()Ds()D^{(*)}_{s}D^{(*)}_{s} channels are often small.

The charmonium-like resonance χc0(4500)\chi_{c0}(4500) (known as X(4500)X(4500)) listed in RPP is a good candidate of χc0(4P)\chi_{c0}(4P). This resonance is found by LHCb in the J/ψϕJ/\psi\phi final state via the B+J/ψϕK+B^{+}\to J/\psi\phi K^{+} decay LHCb:2016axx ; LHCb:2021uow ; LHCb:2016nsl . The newly measured mass and width of χc0(4500)\chi_{c0}(4500) are Mexp=4474±6M_{exp}=4474\pm 6 MeV and Γexp=77±68+10\Gamma_{exp}=77\pm 6^{+10}_{-8} MeV, respectively LHCb:2021uow , which are consistent with theoretical predictions M4486M\simeq 4486 MeV and Γ106\Gamma\simeq 106 MeV. If χc0(4500)\chi_{c0}(4500) corresponds to χc0(4P)\chi_{c0}(4P) indeed, the decay rate into Ds+DsD_{s}^{+}D_{s}^{-} channel is sizeable, the branching fraction is estimated to be 1%\sim 1\%. Thus, the χc0(4500)\chi_{c0}(4500) resonance should be established in the Ds+DsD_{s}^{+}D_{s}^{-} final state by using the B+Ds+DsK+B^{+}\to D_{s}^{+}D_{s}^{-}K^{+} decay. Recently, this process has been observed by LHCb LHCb:2022dvn ; LHCb:2022aki . There seems to be a vague bump structure around 4.54.5 GeV in the Ds+DsD^{+}_{s}D^{-}_{s} invariant mass spectrum. With more statistics, the χc0(4500)\chi_{c0}(4500) is most likely to be established in B+Ds+DsK+B^{+}\to D_{s}^{+}D_{s}^{-}K^{+}.

III.2.4 5P5P-wave states

For the higher 5P5P-wave states, from Table 2 one can see that the mass corrections due to the coupled-channel effects are significant. The magnitude of the mass shifts is estimated to be 3060\sim 30-60 MeV. Except the χc0(5P)\chi_{c0}(5P) has a relatively low mass 47804780 MeV, the masses for the other three states χc1,2(5P)\chi_{c1,2}(5P) and hc(5P)h_{c}(5P) are predicted to be around 4.94.9 GeV. There are some studies of the higher 5P5P-wave states within some quenched  Gui:2018rvv ; Sultan:2014oua ; Soni:2017wvy ; Mansour:2021rru and unquenched Duan:2021alw ; Ferretti:2021xjl quark models. Strong model dependencies exist in the predictions. Our results are close to those predicted with a linear potential in Refs. Ferretti:2021xjl ; Gui:2018rvv ; Sultan:2014oua , however, is about 100200100-200 MeV smaller than those predicted in Refs. Ebert:2011jc ; Soni:2017wvy , and about 300400300-400 MeV higher than the those predicted with a unquenched quark model Duan:2021alw and other modified confinement potentials Mansour:2021rru .

The strong decay properties of the 5P5P-wave states are also studied, the results have been given in Tables 9 and 10. It is found that the χc0(5P)\chi_{c0}(5P) has a width of Γ70\Gamma\simeq 70 MeV, while the other three states χc1,2(5P)\chi_{c1,2}(5P) and hc(5P)h_{c}(5P) have a slightly broader width of 100\sim 100 MeV. The strong decay properties are roughly consistent with those predicted with a linear potential model in the previous work of our group Gui:2018rvv . The 5P5P-wave states mainly decay into the 1P1P/2P2P-wave and/or 2S2S-wave DD-meson excitations by emitting a light DD or DD^{*} meson. The rates decaying into the OZI-allowed D()D()D^{(*)}D^{(*)}, Ds()Ds()D^{(*)}_{s}D^{(*)}_{s} channels are negligibly small.

The charmonium-like resonance χc0(4700)\chi_{c0}(4700) (known as X(4700)X(4700)) listed in RPP may be a good candidate of χc0(5P)\chi_{c0}(5P). The χc0(4700)\chi_{c0}(4700) was first observed by LHCb in the J/ψϕJ/\psi\phi invariant mass spectrum via the B+J/ψϕK+B^{+}\to J/\psi\phi K^{+} decays in 2016 LHCb:2016nsl ; LHCb:2016axx , and confirmed in the same process with more statistics in 2021 LHCb:2021uow . The lately measured mass and width are Mexp=4694±63+16M_{exp}=4694\pm 6^{+16}_{-3} MeV and Γexp=87±8±6+16\Gamma_{exp}=87\pm 8\pm^{+16}_{-6} MeV, respectively LHCb:2021uow . By using the Bs0J/ψϕπ+πB^{0}_{s}\to J/\psi\phi\pi^{+}\pi^{-} decays, the LHCb collaboration also observed a similar structure in the J/ψϕJ/\psi\phi channel with a mass of Mexp=4741±6±6M_{exp}=4741\pm 6\pm 6 MeV and Γexp=53±15±11\Gamma_{exp}=53\pm 15\pm 11 MeV, respectively LHCb:2020coc . The measured mass and width of χc0(4700)\chi_{c0}(4700) are consistent with our predictions, M4780M\simeq 4780 MeV and Γ71\Gamma\simeq 71 MeV, with the χc0(5P)\chi_{c0}(5P) assignment. The coupled-channel effects are crucial for understanding the mass of χc0(4700)\chi_{c0}(4700). These unquenched effects can lower the bare mass of χc0(5P)\chi_{c0}(5P) with a value of 60\sim 60 MeV. If χc0(4700)\chi_{c0}(4700) corresponds to χc0(5P)\chi_{c0}(5P) indeed, it is most likely to be observed in the DD1(2420)DD_{1}(2420) channel via the B+χc0(4700)K+B^{+}\to\chi_{c0}(4700)K^{+} process. The branching fraction for χc0(4700)DD1(2420)\chi_{c0}(4700)\to DD_{1}(2420) may reach up to 7%\sim 7\%.

III.3 DD-wave states

The mass spectrum up to 5D5D-wave states is given in Table 2 and also shown in Fig. 2. The strong decay properties for the DD-wave states are given in Tables 11-15. The mass shifts due to the unquenched coupled-channel effects on the are predicted to be in the range of (70,20)\sim(-70,-20) MeV. The high DD-wave states have a relatively narrow width of 10s100\sim 10s-100 MeV, although many decay channels are fully opened.

III.3.1 1D1D-wave states

For the low-lying 1D1D states, except the spin singlet ηc2(1D)\eta_{c2}(1D), all the spin triplets, ψ(1D)\psi(1D), ψ2(1D)\psi_{2}(1D), and ψ3(1D)\psi_{3}(1D), have been well established. Assigning the ψ(3770)\psi(3770), ψ2(3823)\psi_{2}(3823) and ψ3(3842)\psi_{3}(3842) as the spin triplets of the 1D1D-wave states, from Fig. 2 it is seen that their masses are consistent with the quark model expectations.

The decays of both ψ(3770)\psi(3770) and ψ3(3842)\psi_{3}(3842) are governed by the DDDD channel, their decay widths are consistent with the quark model expectations as well (see Table 11). For ψ2(3823)\psi_{2}(3823), the OZI-allowed two-body strong decays are kinematic forbidden, thus, its decays is dominated by the electromagnetic transitions. The measured electromagnetic decay properties are also consistent with the theoretical predictions Deng:2016stx ; BESIII:2021qmo .

How to find the missing spin singlet ηc2(1D)\eta_{c2}(1D) is still a challenge in experiments. It may be produced via the Bηc2(1D)KB\to\eta_{c2}(1D)K decay as suggested in Refs. Eichten:2002qv ; Xu:2016kbn ; Fan:2009cj , and established by the the two-photon cascade decay process ηc2(1D)hc(1P)γηcγγ\eta_{c2}(1D)\to h_{c}(1P)\gamma\to\eta_{c}\gamma\gamma Deng:2016stx .

III.3.2 2D2D-wave states

In the 2D2D-wave states, only the ψ(2D)\psi(2D) with JPC=1J^{PC}=1^{--} has been established. The ψ(4160)\psi(4160) resonance is usually assigned as the ψ(2D)\psi(2D) state. With this assignment, the measured width Γexp=70±10\Gamma_{exp}=70\pm 10 MeV are consistent with the theoretical prediction Γ62\Gamma\simeq 62 MeV. However, the mass Mexp=4191±5M_{exp}=4191\pm 5 MeV extracted from experiments is about 4040 MeV higher than most of the predictions in theory (See Table 2). This state dominantly decays into DDD^{*}D^{*} channel with a branching fraction of 70%\sim 70\%, while it also has sizeable decay rates into DDDD and DsDsD_{s}D_{s}^{*} channels with a comparable branching fraction of 10%\sim 10\% (see Table 11). The branching fraction ratios predicted in the present work and other works Gui:2018rvv ; Eichten:2005ga ; Segovia:2013kg are very different from the old observations at BABAR BaBar:2009elc . In these PP-wave decay channels there exist obvious interfering effects between ψ(4040)\psi(4040) and ψ(4160)\psi(4160) Gui:2018rvv . A coherent partial wave analysis combining all these exclusive channels is suggested to be carried out for extracting the resonance parameters and branching fractions for these two states.

The other three states ψ3(2D)\psi_{3}(2D), ηc2(2D)\eta_{c2}(2D) and ψ2(2D)\psi_{2}(2D) have a similar mass of 4.2\sim 4.2 GeV. The corrections to the bare masses due to the coupled-channel effects are not significant, the magnitude of the mass shifts is within 2020 MeV. Our predicted masses for these 2D2D-wave states are in agreement with most of the predictions in the literature, such as Refs. Ebert:2011jc ; Godfrey:1985xj ; Deng:2016stx ; Barnes:2005pb . The theoretical strong decay properties have been given in Table 11. It is found that ψ3(2D)\psi_{3}(2D), as the narrowest state in the 2D2D-wave states, has a width of Γ38\Gamma\simeq 38 MeV, while mainly decays into the DDDD^{*} and DDD^{*}D^{*} channels with branching fractions 34%\sim 34\% and 47%\sim 47\%, respectively. Both the JP=2J^{P}=2^{-} states, ψ2(2D)\psi_{2}(2D) and ηc2(2D)\eta_{c2}(2D), have a comparable width of Γ60\Gamma\simeq 60 MeV. The ψ2(2D)\psi_{2}(2D) (ηc2(2D)\eta_{c2}(2D)) mainly decays into the DDDD^{*}, DsDsD_{s}D^{*}_{s}, and DDD^{*}D^{*} channels with branching fractions 30%\sim 30\% (35%\sim 35\%), 17%\sim 17\% (11%\sim 11\%) and 52%\sim 52\% (43%\sim 43\%), respectively.

Some signals of ηc2(2D)\eta_{c2}(2D) may have been observed in experiments. In 2021, the LHCb collaboration observed a new resonance X(4160)X(4160) with a significance of 4.84.8 σ\sigma in the J/ψϕJ/\psi\phi final state by using an amplitude analysis of the B+J/ψϕK+B^{+}\to J/\psi\phi K^{+} decays LHCb:2021uow . The JPC=2+J^{PC}=2^{-+} assignment is favored over other assignments with a significance of more than 4.84.8 σ\sigma. The observed mass and width are Mexp=4146±18±33M_{exp}=4146\pm 18\pm 33 MeV and Γexp=135±2830+25\Gamma_{exp}=135\pm 28^{+25}_{-30} MeV, respectively, which are consistent with the state observed in e+eJ/ψXe^{+}e^{-}\to J/\psi X with XDDX\to D^{*}D^{*} by Belle Belle:2007woe . Considering X(4160)X(4160) as the JPC=2+J^{PC}=2^{-+} state ηc2(1D)\eta_{c2}(1D), both the observed mass and width are consistent with the theoretical predictions, M4192M\simeq 4192 MeV and Γ60\Gamma\simeq 60 MeV. To confirm the nature of X(4160)X(4160), the other two dominant decay modes, DDDD^{*} and DsDsD_{s}D^{*}_{s}, are expected to be searched for in future experiments.

III.3.3 3D3D-wave states

The 3D3D-wave states, ψ(3D)\psi(3D), ψ3(3D)\psi_{3}(3D), ηc2(3D)\eta_{c2}(3D) and ψ2(3D)\psi_{2}(3D), may highly degenerate with each other in a very narrow mass range of 44604470\sim 4460-4470 MeV. From Table 2, one can see that the coupled-channel effects have a significant correction to the bare masses of the 3D3D-wave states with JP=2J^{P}=2^{-} and 33^{-}. The magnitude of the mass shifts due to these unquenched effects can reach up to about 607060-70 MeV. The masses of the 3D3D-wave states predicted in the present work are consistent with the those predicted with linear potentials  Deng:2016stx ; Sultan:2014oua ; Kher:2018wtv and a Martin-like potential Shah:2012js , however, are about 130130 MeV larger than those predicted with screened potentials Deng:2016stx ; Wang:2019mhs ; Li:2009zu , while about 100100 MeV smaller than those predicted with other potential models Ebert:2011jc ; Soni:2017wvy .

The strong decay properties of the 3D3D-wave states are given in Table 12. From the table, one can see that the widths for the 3D3D-wave states are not broad. In these states, the ψ(3D)\psi(3D) is the broadest state with a width of Γ119\Gamma\simeq 119 MeV. This state dominantly decays into DD0(2550)DD_{0}(2550), DD2(2460)DD_{2}^{*}(2460), DD1(2420)DD_{1}(2420), DD1(2420)D^{*}D_{1}(2420) channels with branching fractions 24%\sim 24\%, 9%\sim 9\%, 27%\sim 27\%, and 18%\sim 18\%, respectively. The ψ3(3D)\psi_{3}(3D) has a narrow width of Γ38\Gamma\simeq 38 MeV, and mainly decays into DD2(2460)DD_{2}^{*}(2460), DD1(2420)DD_{1}(2420), DD1(2430)D^{*}D_{1}(2430) channels with branching fractions 17%\sim 17\%, 15%\sim 15\%, and 24%\sim 24\%, respectively. The ψ2(3D)\psi_{2}(3D) has a moderate width of Γ65\Gamma\simeq 65 MeV, and mainly decays into DD2(2460)DD_{2}^{*}(2460) and DD1(2420)D^{*}D_{1}(2420) channels with a comparable branching fraction of 30%\sim 30\%. The ηc2(3D)\eta_{c2}(3D) is the narrowest state with a width of Γ30\Gamma\simeq 30 MeV. This state has large decay rates into the DD2(2460)DD_{2}^{*}(2460), DD1(2430)D^{*}D_{1}(2430), and DD1(2420)D^{*}D_{1}(2420) channels with branching fractions of 22%\sim 22\%, 33%\sim 33\%, and 13%\sim 13\%, respectively.

Recently, the BESIII collaboration observed a vector resonance Y(4500)Y(4500) in the line shape of the cross sections of the e+eK+KJ/ψe^{+}e^{-}\to K^{+}K^{-}J/\psi process BESIII:2022joj . The mass and width are measured to be Mexp=4484.7±13.3±24.1M_{exp}=4484.7\pm 13.3\pm 24.1 MeV and Γexp=111.1±30.1±15.2\Gamma_{exp}=111.1\pm 30.1\pm 15.2 MeV, respectively. This state is confirmed in e+eD0Dπ+e^{+}e^{-}\to D^{*0}D^{*-}\pi^{+} by BESIII BESIII:2023cmv . The observed mass, width and quantum numbers of Y(4500)Y(4500) can be well understood in theory with the ψ(3D)\psi(3D) assignment. If Y(4500)Y(4500) corresponds to ψ(3D)\psi(3D) indeed, it is most likely to be observed in the dominant decay channels, such as DD2(2460)DD_{2}^{*}(2460), DD1(2420)DD_{1}(2420), DD1(2420)D^{*}D_{1}(2420), in future experiments. The D0Dπ+D^{*0}D^{*-}\pi^{+} decay mode of Y(4500)Y(4500) observed by BESIII BESIII:2023cmv may be mainly contributed by DD1(2420)DDπD^{*}D_{1}(2420)\to D^{*}D^{*}\pi.

III.3.4 4D4D-wave states

The 4D4D-wave states are predicted to lie in the mass range of 47304800\sim 4730-4800 MeV (see Table 2). The mass corrections due to the unquenched coupled-channel effects are not large, the values are about 3030 MeV. The masses of the 4D4D-wave states predicted in the present work are consistent with the those predicted with linear potentials Deng:2016stx ; Sultan:2014oua , however, are about 130130 MeV larger than those predicted with a screened potential Wang:2019mhs and a Martin-like potential Shah:2012js , while about 100100 MeV smaller than those predicted with other potential models Chaturvedi:2019usm ; Ebert:2011jc ; Soni:2017wvy .

The strong decay properties of the 4D4D-wave states are given in Table 13. In these states, the ψ(4D)\psi(4D) and ψ3(4D)\psi_{3}(4D) have a relatively broader width of Γ110\Gamma\sim 110 MeV, while the two JP=2J^{P}=2^{-} states ηc2(4D)\eta_{c2}(4D) and ψ2(4D)\psi_{2}(4D) have a moderate width of Γ80\Gamma\sim 80 MeV. The decay rates of the 4D4D-wave states into the OZI-allowed D()D()D^{(*)}D^{(*)} and Ds()Ds()D_{s}^{(*)}D_{s}^{(*)} channels are tiny. The branching fractions for these channels are predicted to be less than 1%1\%. The 11^{--} state ψ(4D)\psi(4D) has large decay rates into the DD1(2600)D^{*}D_{1}^{*}(2600), DD1(2420)D^{*}D_{1}(2420), and DD(1D2)DD(1D_{2}^{\prime}) channels with branching fractions 37%\sim 37\%, 8%\sim 8\%, and 16%\sim 16\%, respectively. The 33^{--} state ψ3(4D)\psi_{3}(4D) has large decay rates into the DD1(2600)D^{*}D_{1}^{*}(2600), DD2(2460)D^{*}D_{2}^{*}(2460), and DD3(2750)D^{*}D_{3}^{*}(2750) channels with branching fractions 17%\sim 17\%, 12%\sim 12\%, and 37%\sim 37\%, respectively. The 22^{--} state ψ2(4D)\psi_{2}(4D) has large decay rates into the DD1(2600)D^{*}D_{1}^{*}(2600), DD2(2460)D^{*}D_{2}^{*}(2460), DD1(2420)D^{*}D_{1}(2420), and DD3(2750)DD_{3}^{*}(2750) channels with branching fractions 28%\sim 28\%, 8%\sim 8\%, 7%\sim 7\%, and 10%\sim 10\%, respectively. The 2+2^{-+} state ηc2(4D)\eta_{c2}(4D) has large decay rates into the DD1(2600)D^{*}D_{1}^{*}(2600), DD2(2460)D^{*}D_{2}^{*}(2460), and DD3(2750)DD_{3}^{*}(2750) channels with branching fractions 27%\sim 27\%, 11%\sim 11\%, and 16%\sim 16\%, respectively.

Some signals of the 11^{--} state ψ(4D)\psi(4D) may have been seen in experiments. Recently, a new vector resonance Y(4710)Y(4710) was observed in e+eKK¯J/ψe^{+}e^{-}\to K\bar{K}J/\psi at BESIII BESIII:2023wqy ; BESIII:2022kcv , the measured mass and width are 4710\sim 4710 GeV and 100\sim 100 MeV, respectively. The predicted mass and width of ψ(4D)\psi(4D), M4737M\simeq 4737 MeV and Γ107\Gamma\simeq 107 MeV are consistent with those of Y(4710)Y(4710). Lately, in the Born cross sections of e+eDs+Dse^{+}e^{-}\to D_{s}^{*+}D_{s}^{*-}, a structure (Y(4790)Y(4790)) with a mass of 4.74.8\sim 4.7-4.8 GeV and a width of 2760\sim 27-60 MeV was observed by BESIII BESIII:2023wsc . This might be the same state observed in e+eKK¯J/ψe^{+}e^{-}\to K\bar{K}J/\psi. It should be mentioned that the ψ(4D)\psi(4D) may highly overlap with ψ(5S)\psi(5S) in the mass range of 4.7\sim 4.7 GeV. Only a small mass gap (55\sim 55 MeV) between them is predicted in theory. Both ψ(4D)\psi(4D) and ψ(5S)\psi(5S) have a comparable decay rate, 𝒪(103)\mathcal{O}(10^{-3}), into the Ds+DsD_{s}^{*+}D_{s}^{*-} channel. Thus, the structure observed at around 4.74.84.7-4.8 GeV may be contributed by ψ(4D)\psi(4D) and/or ψ(5S)\psi(5S). Further observations with more data samples may be useful to uncover the nature of the Y(4710)Y(4710) structure.

III.3.5 5D5D-wave states

The 5D5D-wave states are predicted to lie in the mass range of 49885060\sim 4988-5060 MeV (see Table 2). The mass corrections due to the unquenched coupled-channel effects are about 304030-40 MeV. The masses of the 5D5D-wave states predicted in the present work are consistent with the those predicted within a linear potential model  Sultan:2014oua .

The strong decay properties of the 5D5D-wave states are given in Tables 14 and 15. It is found that these high 5D5D-wave states have a relatively narrow width of 3060\sim 30-60 MeV. The decay rates of the 5D5D-wave states into the OZI-allowed D()D()D^{(*)}D^{(*)} and Ds()Ds()D_{s}^{(*)}D_{s}^{(*)} channels are tiny. The 11^{--} state ψ(5D)\psi(5D) has relatively large decay rates into the DD1(2600)D^{*}D_{1}^{*}(2600) and D1(2420)D1(2420)D_{1}(2420)D_{1}(2420) channels with branching fractions 6%\sim 6\% and 8%\sim 8\%, respectively. The 33^{--} state ψ3(5D)\psi_{3}(5D) has relatively large decay rates into the DD3(2750)D^{*}D_{3}^{*}(2750) and D2(2460)D2(2460)D_{2}^{*}(2460)D_{2}^{*}(2460) channels with branching fractions 14%\sim 14\% and 9%\sim 9\%, respectively. The 22^{--} state ψ2(5D)\psi_{2}(5D) has relatively large decay rates into the Ds0(2317)Ds1(2460)D_{s0}^{*}(2317)D_{s1}(2460) and D2(2460)D2(2460)D_{2}^{*}(2460)D_{2}^{*}(2460) channels with branching fractions 17%\sim 17\% and 4%\sim 4\%, respectively. The 2+2^{-+} state ηc2(5D)\eta_{c2}(5D) has relatively large decay rates into the D2(2460)D2(2460)D_{2}^{*}(2460)D_{2}^{*}(2460) and D2(2460)D1(2420)D_{2}^{*}(2460)D_{1}(2420) channels with branching fractions 7%\sim 7\% and 5%\sim 5\%, respectively.

IV Summary

In this work, the mass spectrum and strong decay properties of the SS-, PP-, and DD-wave charmonium states up to mass region of 5.0\sim 5.0 GeV are systematically studied within the unquenched quark model including coupled-channel effects from all of the OZI-allowed opened charmed meson channels. We can obtain a good description of both the masses and widths for the well-established states in the charmonium spectrum. Although many decay channels are fully opened for the higher charmonium states, they are relatively narrow states. Their widths scatter in the range of 10s100\sim 10s-100 MeV. We expect our study can provide a useful reference for establishing an abundant charmonium spectrum. Some key results from this study are emphasized as follows.

  • The magnitude of mass shifts of the bare states due to the coupled-channel effects are estimated to be within 10s10s MeV. The mass shifts do not show an obvious increasing trend from lower levels to higher ones as that predicted in the screened potential models.

  • Two resonance structures are found when considering coupled-channel effects for the bare χc1(2P)\chi_{c1}(2P) state. The χc1(3872)\chi_{c1}(3872) favors the low-mass resonance dominated by the DDDD^{*} component.

  • The χc0(3915)\chi_{c0}(3915) resonance can be well understood with the dressed χc0(23P0)\chi_{c0}(2^{3}P_{0}) states in the coupled-channel model.

  • The vector resonances ψ(4415)\psi(4415) and ψ(4660)\psi(4660) favor the ψ(4S)\psi(4S) and ψ(5S)\psi(5S) assignments, respectively.

  • The newly observed vector states Y(4500)Y(4500) and Y(4710)Y(4710) at BESIII may favor the ψ(3D)\psi(3D) and ψ(4D)\psi(4D) assignments, respectively. However, Y(4710)Y(4710) as the ψ(5S)\psi(5S) assignment cannot be excluded.

  • The χc0(4500)\chi_{c0}(4500) and χc0(4700)\chi_{c0}(4700) resonances observed by LHCb favor the χc0(4P)\chi_{c0}(4P) and χc0(5P)\chi_{c0}(5P) assignments, respectively.

  • The χc1(4274)\chi_{c1}(4274) resonance observed at CDF and LHCb and X(4350)X(4350) observed at Belle may be good candidates of χc1(3P)\chi_{c1}(3P) and χc2(3P)\chi_{c2}(3P), respectively.

  • The X(4160)X(4160) resonance observed at LHCb and Belle favor the ηc2(1D)\eta_{c2}(1D) assignment

  • The χc0(3860)\chi_{c0}(3860), ψ(4230)\psi(4230), Y(4360)Y(4360), χc1(4140)\chi_{c1}(4140), and χc1(4685)\chi_{c1}(4685) resonances listed in RPP cannot be accommodated by the charmonium spectrum.

Table 5: The mass shifts and strong decay widths for the 51S05^{1}S_{0} and 61S06^{1}S_{0} charmonium states (in MeV). The “✗” is labeled the strong decay channels which are not open or forbidden. These channels are considered to have no contributions to the mass shifts and decay widths. The “...” stands for the predicted values are negligibly small.
51S05^{1}S_{0} 61S06^{1}S_{0} 51S05^{1}S_{0} 61S06^{1}S_{0}
Channel ΔM\Delta M [4708] Γ\Gamma [4662] ΔM\Delta M [4983] Γ\Gamma [4902] Continue ΔM\Delta M [4708] Γ\Gamma [4662] ΔM\Delta M [4983] Γ\Gamma [4902]
DDDD^{*} 0.06-0.06 ... 0.03-0.03 ... DsDs1(2536)D_{s}^{*}D_{s1}(2536) 2.90-2.90 0.520.52 0.01-0.01 0.290.29
DsDsD_{s}D_{s}^{*} 0.01-0.01 0.270.27 0.01-0.01 0.030.03 D1(2600)D1(2430)D_{1}^{*}(2600)D_{1}(2430) 3.00-3.00
DDD^{*}D^{*} +0.53+0.53 1.121.12 +0.09+0.09 0.200.20 D1(2600)D1(2420)D_{1}^{*}(2600)D_{1}(2420) 3.86-3.86
DsDsD_{s}^{*}D_{s}^{*} 0.23-0.23 0.360.36 0.03-0.03 0.060.06 DD(13D1)DD(1^{3}D_{1}) 0.29-0.29 2.852.85 0.50-0.50 0.480.48
D0(2550)DD_{0}(2550)D^{*} 4.37-4.37 5.125.12 0.09-0.09 2.932.93 DsDs(13D1)D_{s}D_{s}(1^{3}D_{1}) 0.01-0.01 ...
D(31S0)DD(3^{1}S_{0})D^{*} 2.38-2.38 DD(23D1)DD(2^{3}D_{1}) 0.80-0.80
DD1(2600)DD_{1}^{*}(2600) 3.75-3.75 9.799.79 +0.38+0.38 2.522.52 DD(13D3)DD(1^{3}D_{3}) 11.61-11.61 1.691.69 1.68-1.68 3.453.45
DD1(2600)D^{*}D_{1}^{*}(2600) 2.88-2.88 2.332.33 DsDs(13D3)D_{s}D_{s}(1^{3}D_{3}) 0.77-0.77 0.240.24
DD(33S1)DD^{*}(3^{3}S_{1}) 3.37-3.37 DD(13D1)D^{*}D(1^{3}D_{1}) 0.08-0.08 0.190.19
Ds(21S0)DsD_{s}(2^{1}S_{0})D_{s}^{*} 1.58-1.58 0.01-0.01 ... DsDs(13D1)D_{s}^{*}D_{s}(1^{3}D_{1}) 0.05-0.05
DsDs(2700)D_{s}D_{s}^{*}(2700) 1.74-1.74 0.10-0.10 0.050.05 DD(13D3)D^{*}D(1^{3}D_{3}) +2.04+2.04 1.061.06
DsDs(2700)D_{s}^{*}D_{s}^{*}(2700) 0.15-0.15 0.200.20 DsDs(13D3)D_{s}^{*}D_{s}(1^{3}D_{3}) 0.89-0.89
DD(2300)DD^{*}(2300) +3.37+3.37 6.706.70 +1.43+1.43 1.911.91 DD(1D2)D^{*}D(1D_{2}) 0.49-0.49 2.332.33
D0(2550)D(2300)D_{0}(2550)D^{*}(2300) 2.40-2.40 1.181.18 DsDs(1D2)D_{s}^{*}D_{s}(1D_{2}) 1.37-1.37
DD(23P0)DD(2^{3}P_{0}) 2.33-2.33 5.225.22 DD(1D2)D^{*}D(1D^{\prime}_{2}) 4.67-4.67 2.612.61
DsDs0(2317)D_{s}D_{s0}^{*}(2317) +0.36+0.36 5.165.16 +0.49+0.49 1.561.56 DsDs(1D2)D_{s}^{*}D_{s}(1D^{\prime}_{2}) 0.70-0.70
Ds(21S0)Ds0(2317)D_{s}(2^{1}S_{0})D_{s0}^{*}(2317) 1.44-1.44 DD(13F2)DD(1^{3}F_{2}) 0.21-0.21
DsDs(23P0)D_{s}D_{s}(2^{3}P_{0}) 1.02-1.02 DD(13F4)DD(1^{3}F_{4}) 3.07-3.07
DD2(2460)DD_{2}^{*}(2460) +0.65+0.65 7.737.73 +0.36+0.36 1.401.40 D(2300)D1(2430)D^{*}(2300)D_{1}(2430) 0.72-0.72 0.35-0.35 ...
D0(2550)D2(2460)D_{0}(2550)D_{2}^{*}(2460) 3.41-3.41 Ds0(2317)Ds1(2460)D_{s0}^{*}(2317)D_{s1}(2460) 0.07-0.07 0.030.03
DD(23P2)DD(2^{3}P_{2}) +3.10+3.10 ... D(2300)D1(2420)D^{*}(2300)D_{1}(2420) 1.79-1.79 0.12-0.12 0.060.06
DsDs(23P2)D_{s}D_{s}(2^{3}P_{2}) 1.04-1.04 Ds0(2317)Ds1(2536)D_{s0}^{*}(2317)D_{s1}(2536) +0.06+0.06 0.120.12
DsDs2(2573)D_{s}D_{s2}^{*}(2573) +0.29+0.29 0.410.41 0.18-0.18 0.090.09 D2(2460)D1(2430)D_{2}^{*}(2460)D_{1}(2430) 9.89-9.89 0.320.32
DD2(2460)D^{*}D_{2}^{*}(2460) 3.88-3.88 2.342.34 1.50-1.50 2.962.96 D2(2460)D1(2420)D_{2}^{*}(2460)D_{1}(2420) 5.24-5.24 8.538.53
DD(23P2)D^{*}D(2^{3}P_{2}) 7.85-7.85 D1(2430)D1(2430)D_{1}(2430)D_{1}(2430) 0.06-0.06 0.210.21
DsDs2(2573)D_{s}^{*}D_{s2}^{*}(2573) 2.48-2.48 0.23-0.23 0.710.71 Ds1(2460)Ds1(2460)D_{s1}(2460)D_{s1}(2460) 0.08-0.08
DD1(2430)D^{*}D_{1}(2430) 9.60-9.60 7.537.53 1.62-1.62 7.137.13 D1(2430)D1(2420)D_{1}(2430)D_{1}(2420) +0.01+0.01 0.040.04
DD(2P1)D^{*}D(2P_{1}) 11.10-11.10 Ds1(2460)Ds1(2536)D_{s1}(2460)D_{s1}(2536) 0.06-0.06
DsDs1(2460)D_{s}^{*}D_{s1}(2460) 1.01-1.01 0.290.29 0.73-0.73 1.051.05 D1(2420)D1(2420)D_{1}(2420)D_{1}(2420) +0.03+0.03 ...
DD1(2420)D^{*}D_{1}(2420) 4.90-4.90 7.557.55 0.78-0.78 2.892.89 Total 45.72-45.72 59.4359.43 81.24-81.24 54.3854.38
DD(2P1)D^{*}D(2P^{\prime}_{1}) 6.52-6.52 Mth,ΓthM_{th},\Gamma_{th} 𝟒𝟔𝟔𝟐,59.43\bm{4662,59.43} 𝟒𝟗𝟎𝟐,54.38\bm{4902,54.38}
Table 6: The mass shifts and strong decay widths for the 53S15^{3}S_{1} and 63S16^{3}S_{1} charmonium states (in MeV). The “✗” is labeled the strong decay channels which are not open or forbidden. These channels are considered to have no contributions to the mass shifts and decay widths. The “...” stands for the predicted values are negligibly small.
53S15^{3}S_{1} 63S16^{3}S_{1} 53S15^{3}S_{1} 63S16^{3}S_{1}
Channel ΔM\Delta M [4733] Γ\Gamma [4682] ΔM\Delta M [5005] Γ\Gamma [4941] Continue ΔM\Delta M [4733] Γ\Gamma [4682] ΔM\Delta M [5005] Γ\Gamma [4941]
DDDD 0.07-0.07 0.170.17 0.02-0.02 0.060.06 DD(2P1)D^{*}D(2P^{\prime}_{1}) 6.71-6.71 1.371.37
DsDsD_{s}D_{s} 0.03-0.03 0.010.01 0.01-0.01 0.010.01 DD1(2420)D^{*}D_{1}(2420) 2.40-2.40 6.286.28 0.01-0.01 0.990.99
DDDD^{*} 0.20-0.20 0.080.08 0.07-0.07 0.100.10 D(2600)D1(2420)D^{*}(2600)D_{1}(2420) 2.36-2.36
DsDsD_{s}D_{s}^{*} ... 0.100.10 0.01-0.01 ... DD(13D1)DD(1^{3}D_{1}) +0.01+0.01 0.210.21 0.05-0.05 0.220.22
DDD^{*}D^{*} +0.45+0.45 0.560.56 +0.05+0.05 ... DD(23D1)DD(2^{3}D_{1}) 0.15-0.15
DsDsD_{s}^{*}D_{s}^{*} 0.20-0.20 0.500.50 0.02-0.02 0.080.08 DD(13D3)DD(1^{3}D_{3}) 5.19-5.19 1.941.94 0.14-0.14 0.530.53
DD0(2550)DD_{0}(2550) +0.59+0.59 0.320.32 0.02-0.02 0.190.19 DsDs(13D1)D_{s}D_{s}(1^{3}D_{1}) 0.01-0.01 ...
DsDs(21S0)D_{s}D_{s}(2^{1}S_{0}) 0.30-0.30 0.290.29 0.01-0.01 0.080.08 DsDs(13D3)D_{s}D_{s}(1^{3}D_{3}) 0.02-0.02 0.060.06
DD(31S0)DD(3^{1}S_{0}) +0.92+0.92 0.970.97 DD(1D2)DD(1D_{2}) ... 2.212.21 0.46-0.46 1.731.73
D0(2550)DD_{0}(2550)D^{*} 2.54-2.54 5.085.08 +0.46+0.46 0.360.36 DD(2D2)DD(2D_{2}) 1.01-1.01
DD1(2600)DD_{1}^{*}(2600) 0.99-0.99 6.146.14 +0.52+0.52 0.120.12 DsDs(1D2)D_{s}D_{s}(1D_{2}) 0.08-0.08 0.060.06
D(31S0)DD(3^{1}S_{0})D^{*} 1.76-1.76 DD(1D2)DD(1D^{\prime}_{2}) 2.62-2.62 0.71-0.71 1.191.19
DD(33S1)DD^{*}(3^{3}S_{1}) 3.27-3.27 0.480.48 DsDs(1D2)D_{s}D_{s}(1D^{\prime}_{2}) 0.32-0.32 0.020.02
Ds(21S0)DsD_{s}(2^{1}S_{0})D_{s}^{*} 1.13-1.13 0.14-0.14 0.480.48 DD(13D1)D^{*}D(1^{3}D_{1}) 0.76-0.76 0.11-0.11 0.070.07
DsDs(2700)D_{s}D_{s}^{*}(2700) 1.51-1.51 0.19-0.19 0.540.54 DsDs(13D1)D_{s}^{*}D_{s}(1^{3}D_{1}) 0.14-0.14 0.220.22
DD1(2600)D^{*}D_{1}^{*}(2600) +3.94+3.94 14.9514.95 2.91-2.91 7.407.40 DD(13D3)D^{*}D(1^{3}D_{3}) 10.54-10.54 +0.65+0.65 5.705.70
DsDs(2700)D_{s}^{*}D_{s}^{*}(2700) 0.89-0.89 0.120.12 DsDs(13D3)D_{s}^{*}D_{s}(1^{3}D_{3}) 1.35-1.35 0.310.31
DD(2300)D^{*}D^{*}(2300) +1.54+1.54 4.354.35 +0.77+0.77 1.331.33 DD(1D2)D^{*}D(1D_{2}) 3.15-3.15 +0.10+0.10 1.921.92
DD(23P0)D^{*}D^{*}(2^{3}P_{0}) 0.24-0.24 0.570.57 DsDs(1D2)D_{s}^{*}D_{s}(1D_{2}) 0.47-0.47 0.100.10
D(2600)D(2300)D^{*}(2600)D^{*}(2300) 0.48-0.48 0.470.47 DD(1D2)D^{*}D(1D^{\prime}_{2}) 5.88-5.88 +0.76+0.76 0.640.64
DsDs(2317)D_{s}^{*}D_{s}^{*}(2317) 0.75-0.75 1.891.89 +0.33+0.33 1.071.07 DsDs(1D2)D_{s}^{*}D_{s}(1D^{\prime}_{2}) 0.70-0.70
Ds(2700)Ds(2317)D_{s}^{*}(2700)D_{s}^{*}(2317) 0.48-0.48 DD(13F2)DD(1^{3}F_{2}) 0.06-0.06 0.100.10
DsDs(23P0)D_{s}^{*}D_{s}^{*}(2^{3}P_{0}) 0.86-0.86 DD(13F4)DD(1^{3}F_{4}) 1.71-1.71 0.630.63
DD2(2460)DD_{2}^{*}(2460) +0.71+0.71 3.273.27 +0.19+0.19 0.020.02 DD(1F3)DD(1F_{3}) 0.26-0.26 0.040.04
DD(23P2)DD(2^{3}P_{2}) +0.19+0.19 2.832.83 DD(1F3)DD(1F^{\prime}_{3}) 1.01-1.01 ...
D0(2550)D2(2460)D_{0}(2550)D_{2}^{*}(2460) 2.04-2.04 2.792.79 DD(1F3)D^{*}D(1F_{3}) 0.45-0.45
DsDs2(2573)D_{s}D_{s2}^{*}(2573) 0.15-0.15 ... 0.11-0.11 0.260.26 DD((13F4)D^{*}D((1^{3}F_{4}) 4.29-4.29
DsDs(23P2)D_{s}D_{s}(2^{3}P_{2}) 0.55-0.55 D1(2430)D1(2420)D_{1}(2430)D_{1}(2420) +0.04+0.04 0.250.25
DD2(2460)D^{*}D_{2}^{*}(2460) 7.25-7.25 6.706.70 0.90-0.90 4.384.38 D(2300)D(2300)D^{*}(2300)D^{*}(2300) 0.09-0.09 0.290.29 +0.02+0.02 0.120.12
DD(23P2)D^{*}D^{*}(2^{3}P_{2}) 13.17-13.17 4.484.48 Ds(2317)Ds(2317)D_{s}^{*}(2317)D_{s}^{*}(2317) 0.02-0.02 0.080.08 0.02-0.02 0.060.06
DsDs2(2573)D_{s}^{*}D_{s2}^{*}(2573) 2.30-2.30 0.210.21 +0.04+0.04 0.020.02 D(2300)D2(2460)D^{*}(2300)D_{2}^{*}(2460) 1.25-1.25 0.08-0.08 0.410.41
DD1(2430)DD_{1}(2430) +0.49+0.49 8.368.36 +0.78+0.78 1.841.84 D(2300)D1(2430)D^{*}(2300)D_{1}(2430) 0.56-0.56 0.25-0.25 0.500.50
D0(2550)D1(2430)D_{0}(2550)D_{1}(2430) +0.15+0.15 0.230.23 D1(2420)D1(2420)D_{1}(2420)D_{1}(2420) 0.21-0.21 1.211.21
DD(2P1)DD(2P_{1}) 2.09-2.09 6.086.08 D(2300)D1(2420)D^{*}(2300)D_{1}(2420) 0.45-0.45 0.07-0.07 0.210.21
DsDs1(2460)D_{s}D_{s1}(2460) 1.10-1.10 2.302.30 ... 1.191.19 Ds(2317)Ds1(2536)D_{s}^{*}(2317)D_{s1}(2536) 0.01-0.01 0.050.05
Ds(21S0)Ds1(2460)D_{s}(2^{1}S_{0})D_{s1}(2460) 0.30-0.30 Ds1(2460)Ds1(2536)D_{s1}(2460)D_{s1}(2536) 0.52-0.52 0.050.05
DsDs(2P1)D_{s}D_{s}(2P_{1}) 0.62-0.62 ... D2(2460)D2(2460)D_{2}^{*}(2460)D_{2}^{*}(2460) 7.28-7.28 7.437.43
DD1(2420)DD_{1}(2420) +0.48+0.48 0.780.78 +0.04+0.04 0.030.03 D2(2460)D1(2430)D_{2}^{*}(2460)D_{1}(2430) 2.31-2.31 2.212.21
D0(2550)D1(2420)D_{0}(2550)D_{1}(2420) 2.32-2.32 2.072.07 Ds(2317)Ds2(2573)D_{s}^{*}(2317)D_{s2}^{*}(2573) +0.06+0.06 0.360.36
DD(2P1)DD(2P^{\prime}_{1}) 1.14-1.14 3.573.57 Ds(2317)Ds1(2460)D_{s}^{*}(2317)D_{s1}(2460) 0.05-0.05 ...
DsDs1(2536)D_{s}D_{s1}(2536) 0.22-0.22 0.080.08 0.07-0.07 0.160.16 D2(2460)D1(2420)D_{2}^{*}(2460)D_{1}(2420) +0.15+0.15 2.582.58
DsDs(2P1)D_{s}D_{s}(2P^{\prime}_{1}) 0.49-0.49 0.050.05 Ds1(2460)Ds2(2573)D_{s1}(2460)D_{s2}^{*}(2573) 0.65-0.65
DD1(2430)D^{*}D_{1}(2430) 5.37-5.37 6.736.73 0.28-0.28 5.335.33 D1(2430)D1(2430)D_{1}(2430)D_{1}(2430) 0.25-0.25 1.121.12
D(2600)D1(2430)D^{*}(2600)D_{1}(2430) 1.80-1.80 Ds1(2460)Ds1(2460)D_{s1}(2460)D_{s1}(2460) 0.18-0.18 0.060.06
DD(2P1)D^{*}D(2P_{1}) +2.54+2.54 0.460.46
DsDs1(2460)D_{s}^{*}D_{s1}(2460) 0.88-0.88 0.030.03 0.53-0.53 1.531.53 Total 51.43-51.43 75.0575.05 63.50-63.50 84.3884.38
DsDs1(2536)D_{s}^{*}D_{s1}(2536) 1.74-1.74 1.141.14 0.01-0.01 0.110.11 Mth,ΓthM_{th},\Gamma_{th} 𝟒𝟔𝟖𝟐,75.05\bm{4682,75.05} 𝟒𝟗𝟒𝟏,84.38\bm{4941,84.38}
Table 7: The mass shifts and strong decay widths for the 2P2P- and 3P3P-wave charmonium states (in MeV). The “✗” is labeled the strong decay channels which are not open or forbidden. These channels are considered to have no contributions to the mass shifts and decay widths. The “...” stands for the predicted values are negligibly small.
23P02^{3}P_{0} 23P22^{3}P_{2} 21P12^{1}P_{1} 23P12^{3}P_{1}
ΔM\Delta M Γ\Gamma ΔM\Delta M Γ\Gamma ΔM\Delta M Γ\Gamma ΔM\Delta M Γ\Gamma
Channel [3865][3865] asχc0(3915)as~{}\chi_{c0}(3915) [4002][4002] asχc2(3930)as~{}\chi_{c2}(3930) [3968][3968] [3961][3961] [3965][3965] asχc1(3872)/[3990]as~{}\chi_{c1}(3872)/[3990]
DDDD +39.86+39.86 15.8215.82 0.23-0.23 12.1012.10
DsDsD_{s}D_{s} 1.24-1.24
DDDD^{*} 19.57-19.57 8.868.86 6.82-6.82 66.1566.15 93.92/+24.79-93.92/+24.79 /59.56\bm{/59.56}
DsDsD_{s}D_{s}^{*}
DDD^{*}D^{*} 33.60-33.60
Total +39.86+39.86 15.8215.82 54.64-54.64 20.9620.96 6.82-6.82 66.1566.15 93.92/+24.79-93.92/+24.79 /59.56\bm{/59.56}
Mth,ΓthM_{th},\Gamma_{th} 𝟑𝟗𝟎𝟓,15.82\bm{3905,15.82} 𝟑𝟗𝟒𝟕,20.96\bm{3947,20.96} 𝟑𝟗𝟔𝟏,66.15\bm{3961,66.15} 𝟑𝟖𝟕𝟏/𝟑𝟗𝟗𝟎,/59.56\bm{3871/3990,-/59.56}
Mexp,ΓexpM_{exp},\Gamma_{exp} 𝟑𝟗𝟐𝟐,18.8±3.5\bm{3922,18.8\pm 3.5} 𝟑𝟗𝟐𝟑,35.2±2.2\bm{3923,35.2\pm 2.2} ,\bm{-,-} 𝟑𝟖𝟕𝟐,1.19±0.21\bm{3872,1.19\pm 0.21}
33P03^{3}P_{0} 33P23^{3}P_{2} 31P13^{1}P_{1} 33P13^{3}P_{1}
ΔM\Delta M Γ\Gamma ΔM\Delta M Γ\Gamma ΔM\Delta M Γ\Gamma ΔM\Delta M Γ\Gamma
Channel [4232][4232] [4234][4234] [4352][4352] [4337][4337] [4318][4318] [4307][4307] [4316][4316] asχc1(4274)as~{}\chi_{c1}(4274)
DDDD +4.62+4.62 1.161.16 +0.28+0.28 1.691.69
DsDsD_{s}D_{s} +1.82+1.82 7.897.89 0.23-0.23 0.370.37
DDDD^{*} 1.43-1.43 6.066.06 2.03-2.03 4.954.95 +0.97+0.97 2.252.25
DsDsD_{s}D_{s}^{*} 0.11-0.11 0.050.05 +0.59+0.59 3.943.94 +0.10+0.10 7.607.60
DDD^{*}D^{*} +11.31+11.31 48.2748.27 +2.34+2.34 3.323.32 +4.02+4.02 7.197.19 +2.74+2.74 2.002.00
DsDsD_{s}^{*}D_{s}^{*} 8.44-8.44 4.474.47 2.81-2.81 6.096.09 3.38-3.38 4.654.65 4.08-4.08 4.984.98
DD0(2300)DD_{0}^{*}(2300) +2.31+2.31 2.032.03 0.06-0.06 0.030.03
DsDs0(2317)D_{s}D_{s0}^{*}(2317) 2.27-2.27 2.622.62 0.02-0.02
DD0(2300)D^{*}D_{0}^{*}(2300) 6.94-6.94 +0.53+0.53 14.3414.34 0.04-0.04 0.050.05 7.83-7.83 13.3713.37
DD2(2460)DD_{2}^{*}(2460) 4.01-4.01 10.02-10.02 7.59-7.59
DD1(2430)DD_{1}(2430) 1.27-1.27 21.4121.41 0.06-0.06 0.050.05 8.00-8.00 3.953.95
DD1(2420)DD_{1}(2420) 8.18-8.18 2.672.67 0.04-0.04 0.010.01 5.41-5.41
Total +2.37+2.37 61.7961.79 14.89-14.89 56.0056.00 10.92-10.92 25.4925.49 29.18-29.18 34.1834.18
Mth,ΓthM_{th},\Gamma_{th} 𝟒𝟐𝟑𝟒,61.79\bm{4234,61.79} 𝟒𝟑𝟑𝟕,56.00\bm{4337,56.00} 𝟒𝟑𝟎𝟕,25.49\bm{4307,25.49} 𝟒𝟐𝟖𝟕,34.18\bm{4287,34.18}
Mexp,ΓexpM_{exp},\Gamma_{exp} ,\bm{-,-} ,\bm{-,-} ,\bm{-,-} 𝟒𝟐𝟖𝟔𝟗+𝟖,𝟓𝟏±𝟕?\bm{4286^{+8}_{-9},51\pm 7?}
Table 8: The mass shifts and strong decay widths for the 4P4P-wave charmonium states (in MeV). The “✗” is labeled the strong decay channels which are not open or forbidden. These channels are considered to have no contributions to the mass shifts and decay widths. The “...” stands for the predicted values are negligibly small.
43P04^{3}P_{0} 43P24^{3}P_{2} 41P14^{1}P_{1} 43P14^{3}P_{1}
Channel ΔM\Delta M [4551] Γ\Gamma [4489] ΔM\Delta M [4660] Γ\Gamma [4571] ΔM\Delta M [4625] Γ\Gamma [4573] ΔM\Delta M [4625] Γ\Gamma [4562]
DDDD +1.10+1.10 0.340.34 ... 0.400.40
DsDsD_{s}D_{s} +0.46+0.46 1.291.29 0.05-0.05 0.060.06
DDDD^{*} 0.42-0.42 1.021.02 0.54-0.54 1.011.01 0.02-0.02 0.430.43
DsDsD_{s}D_{s}^{*} 0.06-0.06 0.010.01 +0.07+0.07 0.410.41 +0.23+0.23 0.930.93
DDD^{*}D^{*} +1.68+1.68 7.757.75 +0.26+0.26 0.390.39 +0.52+0.52 0.760.76 +0.03+0.03 0.050.05
DsDsD_{s}^{*}D_{s}^{*} 1.06-1.06 0.670.67 0.24-0.24 1.251.25 0.30-0.30 1.381.38 0.22-0.22 1.031.03
DD0(2550)DD_{0}(2550) 15.04-15.04 32.7732.77 0.10-0.10 0.010.01
DsDs(21S0)D_{s}D_{s}(2^{1}S_{0}) 2.75-2.75 0.82-0.82 0.120.12
D0(2550)DD_{0}(2550)D^{*} 5.54-5.54 10.3610.36 7.45-7.45 14.2114.21 0.98-0.98 10.7910.79
DD1(2600)DD_{1}^{*}(2600) 1.25-1.25 12.3112.31 5.50-5.50 21.1521.15 8.32-8.32 12.3012.30
DsDs(2700)D_{s}D_{s}^{*}(2700) 0.63-0.63 1.40-1.40 1.46-1.46
DD1(2600)D^{*}D_{1}^{*}(2600) 12.81-12.81 12.31-12.31 10.60-10.60
DD0(2300)DD_{0}^{*}(2300) +0.59+0.59 0.140.14 0.01-0.01 0.030.03
DsDs0(2317)D_{s}D_{s0}^{*}(2317) +0.18+0.18 1.051.05 0.01-0.01 ...
DD0(2300)D^{*}D_{0}^{*}(2300) 2.10-2.10 7.147.14 +0.58+0.58 1.221.22 0.01-0.01 ... +0.95+0.95 3.933.93
DsDs0(2317)D_{s}^{*}D_{s0}^{*}(2317) 0.25-0.25 1.081.08 0.29-0.29 0.240.24 ... ... 0.60-0.60 0.310.31
DD2(2460)DD_{2}^{*}(2460) +0.58+0.58 1.901.90 3.25-3.25 7.747.74 1.41-1.41 4.204.20
DD2(2460)D^{*}D_{2}^{*}(2460) 27.58-27.58 5.255.25 4.44-4.44 12.8112.81 6.28-6.28 20.1420.14 14.86-14.86 31.9031.90
DsDs2(2573)D_{s}D_{s2}^{*}(2573) 0.34-0.34 1.00-1.00 0.77-0.77
DsDs2(2573)D_{s}^{*}D_{s2}^{*}(2573) 2.87-2.87 2.40-2.40 2.38-2.38
DD1(2430)DD_{1}(2430) 3.35-3.35 5.865.86 +0.70+0.70 1.861.86 0.01-0.01 ... +0.47+0.47 5.115.11
DsDs1(2460)D_{s}D_{s1}(2460) 0.55-0.55 0.830.83 0.35-0.35 0.280.28 ... ... 0.71-0.71 0.320.32
DD1(2420)DD_{1}(2420) 6.93-6.93 15.0115.01 0.26-0.26 0.050.05 0.01-0.01 ... +0.16+0.16 5.285.28
DsDs1(2536)D_{s}D_{s1}(2536) 2.90-2.90 0.69-0.69 0.680.68 ... ... +0.04+0.04 1.051.05
DD1(2430)D^{*}D_{1}(2430) +0.34+0.34 8.428.42 31.28-31.28 49.1749.17 0.01-0.01 0.010.01 3.75-3.75 2.362.36
DsDs1(2460)D_{s}^{*}D_{s1}(2460) 1.25-1.25 14.04-14.04 ... 0.01-0.01 ... 1.40-1.40
DD1(2420)D^{*}D_{1}(2420) +0.66+0.66 22.2922.29 4.24-4.24 2.462.46 ... ... 4.48-4.48 8.778.77
DsDs1(2536)D_{s}^{*}D_{s1}(2536) 3.25-3.25 ... 1.83-1.83
DD(13D1)DD(1^{3}D_{1}) 0.15-0.15 0.420.42 2.08-2.08 2.442.44 0.73-0.73 0.200.20
DD(13D3)DD(1^{3}D_{3}) 2.71-2.71 8.63-8.63 5.78-5.78
DD(1D2)DD(1D_{2}) 1.38-1.38 0.01-0.01 0.36-0.36
DD(1D2)DD(1D^{\prime}_{2}) 2.05-2.05 0.01-0.01 2.81-2.81
D(2300)D(2300)D^{*}(2300)D^{*}(2300) 2.26-2.26 0.07-0.07 0.200.20
Ds(2317)Ds(2317)D_{s}^{*}(2317)D_{s}^{*}(2317) 0.02-0.02
D(2300)D1(2430)D^{*}(2300)D_{1}(2430) 0.17-0.17 0.56-0.56 1.25-1.25
D(2300)D1(2420)D^{*}(2300)D_{1}(2420) 0.11-0.11 1.27-1.27 0.48-0.48
Total 61.78-61.78 108.70108.70 88.51-88.51 97.2297.22 51.68-51.68 70.4470.44 63.34-63.34 88.9988.99
Mth,ΓthM_{th},\Gamma_{th} 𝟒𝟒𝟖𝟗,108.70\bm{4489,108.70} 𝟒𝟓𝟕𝟏,97.22\bm{4571,97.22} 𝟒𝟓𝟕𝟑,70.44\bm{4573,70.44} 𝟒𝟓𝟔𝟐,88.99\bm{4562,88.99}
Mexp,ΓexpM_{exp},\Gamma_{exp} 𝟒𝟒𝟕𝟒±𝟒,𝟕𝟕𝟏𝟎+𝟏𝟐?\bm{4474\pm 4,77^{+12}_{-10}?} ,\bm{-,-} ,\bm{-,-} ,\bm{-,-}
Table 9: The mass shifts and strong decay widths for the 53P05^{3}P_{0} and 53P25^{3}P_{2} charmonium states (in MeV). The “✗” is labeled the strong decay channels which are not open or forbidden. These channels are considered to have no contributions to the mass shifts and decay widths. The “...” stands for the predicted values are negligibly small.
53P05^{3}P_{0} 53P25^{3}P_{2} 53P05^{3}P_{0} 53P25^{3}P_{2}
Channel ΔM\Delta M [4839] Γ\Gamma [4780] ΔM\Delta M [4939] Γ\Gamma [4882] Continue ΔM\Delta M [4839] Γ\Gamma [4780] ΔM\Delta M [4939] Γ\Gamma [4882]
DDDD +0.28+0.28 0.040.04 +0.01+0.01 0.100.10 DD(23P2)D^{*}D(2^{3}P_{2}) 12.12-12.12
DsDsD_{s}D_{s} +0.15+0.15 0.200.20 0.01-0.01 0.020.02 DD1(2430)D^{*}D_{1}(2430) 2.11-2.11 2.792.79 +0.42+0.42 21.3621.36
DDDD^{*} 0.07-0.07 0.320.32 DD(2P1)D^{*}D(2P_{1}) 3.77-3.77
DsDsD_{s}D_{s}^{*} 0.03-0.03 0.010.01 DsDs1(2460)D_{s}^{*}D_{s1}(2460) 0.31-0.31 0.130.13 0.27-0.27 4.634.63
DDD^{*}D^{*} +0.45+0.45 1.211.21 0.11-0.11 0.110.11 DD1(2420)D^{*}D_{1}(2420) 1.13-1.13 1.241.24 +0.29+0.29 9.169.16
DsDsD_{s}^{*}D_{s}^{*} 0.20-0.20 0.430.43 +0.03+0.03 0.170.17 DD(2P1)D^{*}D(2P^{\prime}_{1}) 3.77-3.77
DD0(2550)DD_{0}(2550) +3.32+3.32 8.668.66 0.29-0.29 0.970.97 DsDs1(2536)D_{s}^{*}D_{s1}(2536) 0.23-0.23 0.080.08
DD(31S0)DD(3^{1}S_{0}) 4.12-4.12 1.75-1.75 DD(13D1)DD(1^{3}D_{1}) +0.01+0.01 0.080.08
DsDs(21S0)D_{s}D_{s}(2^{1}S_{0}) 1.71-1.71 2.152.15 +0.01+0.01 0.080.08 DsDs(13D1)D_{s}D_{s}(1^{3}D_{1}) 0.01-0.01 0.040.04
D0(2550)DD_{0}(2550)D^{*} +0.15+0.15 0.070.07 DD(13D3)DD(1^{3}D_{3}) +0.18+0.18 1.271.27
DD1(2600)DD_{1}^{*}(2600) 0.19-0.19 0.020.02 DsDs(13D3)D_{s}D_{s}(1^{3}D_{3}) 0.38-0.38 0.520.52
DD(33S1)DD^{*}(3^{3}S_{1}) 1.84-1.84 DD(13D1)D^{*}D(1^{3}D_{1}) 1.66-1.66 8.238.23 ... ...
Ds(21S0)DsD_{s}(2^{1}S_{0})D_{s}^{*} 0.27-0.27 0.310.31 DD(13D3)D^{*}D(1^{3}D_{3}) 11.69-11.69 0.070.07 ... ...
DsDs(2700)D_{s}D_{s}^{*}(2700) 0.23-0.23 0.430.43 DD(1D2)DD(1D_{2}) 0.41-0.41 ... 0.18-0.18 1.631.63
DD1(2600)D^{*}D_{1}^{*}(2600) +0.44+0.44 0.620.62 1.34-1.34 13.1613.16 DD(1D2)DD(1D^{\prime}_{2}) +0.82+0.82 9.539.53 +0.38+0.38 2.242.24
DsDs(2700)D_{s}^{*}D_{s}^{*}(2700) 1.38-1.38 1.14-1.14 3.113.11 DsDs(1D2)D_{s}D_{s}(1D_{2}) 0.40-0.40 0.10-0.10 0.250.25
DD2(2460)DD_{2}^{*}(2460) 0.23-0.23 0.150.15 DsDs(1D2)D_{s}D_{s}(1D^{\prime}_{2}) 0.32-0.32 0.020.02
DD(23P2)DD(2^{3}P_{2}) 2.97-2.97 6.616.61 DD(1D2)D^{*}D(1D_{2}) 0.89-0.89 0.310.31 +0.11+0.11 1.041.04
D0(2550)D2(2460)D_{0}(2550)D_{2}^{*}(2460) 1.60-1.60 DD(1D2)D^{*}D(1D^{\prime}_{2}) 4.93-4.93 2.75-2.75 3.433.43
D0(2550)D(23P2)D_{0}(2550)D(2^{3}P_{2}) 1.01-1.01 D(2300)D(2300)D^{*}(2300)D^{*}(2300) 0.77-0.77 3.583.58 0.01-0.01 ...
DsDs2(2573)D_{s}D_{s2}^{*}(2573) 0.07-0.07 0.290.29 Ds(2317)Ds(2317)D_{s}^{*}(2317)D_{s}^{*}(2317) 0.54-0.54 0.510.51 ... 0.010.01
DD(2300)D^{*}D^{*}(2300) +0.23+0.23 2.682.68 +0.10+0.10 0.020.02 D(2300)D1(2430)D^{*}(2300)D_{1}(2430) 0.05-0.05 0.240.24
DD(23P0)D^{*}D(2^{3}P_{0}) 1.51-1.51 0.86-0.86 6.446.44 Ds0(2317)Ds1(2460)D_{s0}^{*}(2317)D_{s1}(2460) +0.01+0.01 0.030.03
D1(2600)D(2300)D_{1}^{*}(2600)D^{*}(2300) 1.87-1.87 0.320.32 D(2300)D1(2420)D^{*}(2300)D_{1}(2420) 0.05-0.05 0.120.12
DsDs0(2317)D_{s}^{*}D_{s0}^{*}(2317) 0.38-0.38 0.550.55 +0.03+0.03 0.200.20 Ds0(2317)Ds1(2536)D_{s0}^{*}(2317)D_{s1}(2536) 0.04-0.04 0.050.05
DD1(2430)DD_{1}(2430) 0.24-0.24 3.403.40 +0.13+0.13 0.030.03 D(2300)D2(2460)D^{*}(2300)D_{2}^{*}(2460) 0.45-0.45 4.174.17 ... ...
DD(2P1)DD(2P_{1}) 3.77-3.77 5.235.23 1.07-1.07 4.014.01 Ds(2317)Ds2(2573)D_{s}^{*}(2317)D_{s2}^{*}(2573) ...
D0(2550)D1(2430)D_{0}(2550)D_{1}(2430) 0.94-0.94 D2(2460)D1(2430)D_{2}^{*}(2460)D_{1}(2430) 4.51-4.51 4.444.44
DsDs1(2460)D_{s}D_{s1}(2460) 0.53-0.53 0.670.67 +0.03+0.03 0.230.23 D2(2460)D1(2420)D_{2}^{*}(2460)D_{1}(2420) 4.01-4.01
DsDs(2P1)D_{s}D_{s}(2P_{1}) 0.45-0.45 D2(2460)D2(2460)D_{2}^{*}(2460)D_{2}^{*}(2460) ...
DD1(2420)DD_{1}(2420) +0.38+0.38 4.694.69 0.34-0.34 0.440.44 D1(2430)D1(2430)D_{1}(2430)D_{1}(2430) 1.43-1.43 0.18-0.18 1.811.81
DD(2P1)DD(2P^{\prime}_{1}) 10.37-10.37 2.03-2.03 6.746.74 Ds1(2460)Ds1(2460)D_{s1}(2460)D_{s1}(2460) 0.15-0.15
D0(2550)D1(2420)D_{0}(2550)D_{1}(2420) 1.58-1.58 D1(2420)D1(2420)D_{1}(2420)D_{1}(2420) 1.70-1.70 1.08-1.08 1.281.28
DsDs1(2536)D_{s}D_{s1}(2536) 0.26-0.26 ... ... 0.170.17 D1(2430)D1(2420)D_{1}(2430)D_{1}(2420) 6.85-6.85 3.38-3.38 1.221.22
DD2(2460)D^{*}D_{2}^{*}(2460) 4.88-4.88 10.1410.14 +0.87+0.87 7.617.61 Total 58.55-58.55 71.2371.23 56.97-56.97 107.74107.74
DsDs2(2573)D_{s}^{*}D_{s2}^{*}(2573) 0.08-0.08 0.650.65 Mth,ΓthM_{th},\Gamma_{th} 𝟒𝟕𝟖𝟎,71.23\bm{4780,71.23} 𝟒𝟖𝟖𝟐,107.74\bm{4882,107.74}
Table 10: The mass shifts and strong decay widths for the 51P15^{1}P_{1} and 53P15^{3}P_{1} charmonium states (in MeV). The “✗” is labeled the strong decay channels which are not open or forbidden. These channels are considered to have no contributions to the mass shifts and decay widths. The “...” stands for the predicted values are negligibly small.
51P15^{1}P_{1} 53P15^{3}P_{1} 51P15^{1}P_{1} 53P15^{3}P_{1}
Channel ΔM\Delta M [4905] Γ\Gamma [4875] ΔM\Delta M [4905] Γ\Gamma [4856] Continue ΔM\Delta M [4905] Γ\Gamma [4875] ΔM\Delta M [4905] Γ\Gamma [4856]
DDDD^{*} 0.15-0.15 0.370.37 0.05-0.05 0.160.16 DD(2P1)D^{*}D(2P_{1}) 6.84-6.84 5.60-5.60
DsDsD_{s}D_{s}^{*} 0.01-0.01 0.040.04 +0.05+0.05 0.100.10 DsDs1(2460)D_{s}^{*}D_{s1}(2460) 0.76-0.76 0.630.63 0.54-0.54 0.280.28
DDD^{*}D^{*} 0.01-0.01 0.090.09 0.13-0.13 0.020.02 DD1(2420)D^{*}D_{1}(2420) +0.83+0.83 2.952.95 +0.23+0.23 4.244.24
DsDsD_{s}^{*}D_{s}^{*} +0.02+0.02 0.240.24 ... 0.140.14 DsDs1(2536)D_{s}^{*}D_{s1}(2536) 0.26-0.26 0.170.17 0.05-0.05 0.370.37
D0(2550)DD_{0}(2550)D^{*} +1.28+1.28 2.202.20 +1.42+1.42 4.774.77 DD(13D1)DD(1^{3}D_{1}) +0.41+0.41 1.761.76 +0.10+0.10 0.640.64
DD1(2600)DD_{1}^{*}(2600) +1.01+1.01 1.331.33 +1.73+1.73 3.763.76 DD(13D3)DD(1^{3}D_{3}) +0.57+0.57 6.106.10 0.17-0.17 4.954.95
Ds(21S0)DsD_{s}(2^{1}S_{0})D_{s}^{*} 0.55-0.55 0.280.28 0.38-0.38 0.020.02 DsDs(13D1)D_{s}D_{s}(1^{3}D_{1}) 0.06-0.06 0.270.27 ... 0.160.16
DsDs(2700)D_{s}D_{s}^{*}(2700) 0.69-0.69 0.690.69 0.75-0.75 0.280.28 DsDs(13D3)D_{s}D_{s}(1^{3}D_{3}) 1.31-1.31 1.871.87 1.08-1.08 0.810.81
DD1(2600)D^{*}D_{1}^{*}(2600) 2.38-2.38 13.5513.55 2.70-2.70 11.6311.63 DD(13D1)D^{*}D(1^{3}D_{1}) 0.34-0.34 0.090.09 1.39-1.39 0.430.43
DsDs(2700)D_{s}^{*}D_{s}^{*}(2700) 1.24-1.24 3.783.78 2.78-2.78 3.463.46 DD(13D3)D^{*}D(1^{3}D_{3}) 2.19-2.19 11.6811.68 8.27-8.27 12.3412.34
DD(2300)DD^{*}(2300) +0.19+0.19 0.010.01 ... 0.010.01 DD(1D2)DD(1D_{2}) ... ... 0.20-0.20 0.360.36
DD(23P0)DD(2^{3}P_{0}) 0.49-0.49 3.933.93 0.01-0.01 ... DD(1D2)DD(1D^{\prime}_{2}) ... ... 1.07-1.07 0.500.50
D0(2550)D(2300)D_{0}(2550)D^{*}(2300) 1.13-1.13 0.860.86 ... ... DD(1D2)D^{*}D(1D_{2}) +0.06+0.06 1.801.80 +0.53+0.53 3.023.02
DsDs0(2317)D_{s}D_{s0}^{*}(2317) +0.13+0.13 0.170.17 ... ... DD(1D2)D^{*}D(1D^{\prime}_{2}) 0.26-0.26 3.763.76 3.61-3.61 4.854.85
DsDs(23P0)D_{s}D_{s}(2^{3}P_{0}) 0.39-0.39 ... DsDs(1D2)D_{s}D_{s}(1D_{2}) ... ... 0.09-0.09 0.090.09
Ds(21S0)Ds0(2317)D_{s}(2^{1}S_{0})D_{s0}^{*}(2317) 0.33-0.33 ... DsDs(1D2)D_{s}D_{s}(1D^{\prime}_{2}) ... 0.46-0.46
DD(2300)D^{*}D^{*}(2300) ... 0.010.01 +0.48+0.48 0.630.63 D(2300)D2(2460)D^{*}(2300)D_{2}^{*}(2460) ... ... 0.08-0.08 ...
DD(23P0)D^{*}D(2^{3}P_{0}) 0.01-0.01 0.020.02 3.31-3.31 Ds(2317)Ds2(2573)D_{s}^{*}(2317)D_{s2}^{*}(2573) ... 0.18-0.18
D1(2600)D(2300)D_{1}^{*}(2600)D^{*}(2300) 0.01-0.01 1.22-1.22 D(2300)D1(2430)D^{*}(2300)D_{1}(2430) 0.48-0.48 0.920.92 1.02-1.02 1.151.15
DsDs0(2317)D_{s}^{*}D_{s0}^{*}(2317) ... ... 0.03-0.03 0.630.63 Ds0(2317)Ds1(2460)D_{s0}^{*}(2317)D_{s1}(2460) 0.06-0.06 0.070.07 0.17-0.17 0.300.30
DD2(2460)DD_{2}^{*}(2460) +0.10+0.10 0.420.42 +0.40+0.40 0.770.77 D(2300)D1(2420)D^{*}(2300)D_{1}(2420) 1.03-1.03 1.271.27 0.36-0.36 0.330.33
DD(23P2)DD(2^{3}P_{2}) 4.38-4.38 16.7816.78 4.03-4.03 20.0720.07 Ds0(2317)Ds1(2536)D_{s0}^{*}(2317)D_{s1}(2536) 0.18-0.18 0.730.73 0.27-0.27 0.500.50
DsDs2(2573)D_{s}D_{s2}^{*}(2573) 0.32-0.32 0.750.75 0.31-0.31 0.420.42 D2(2460)D1(2430)D_{2}^{*}(2460)D_{1}(2430) 4.23-4.23 0.870.87 5.65-5.65
DD2(2460)D^{*}D_{2}^{*}(2460) +0.51+0.51 6.516.51 +0.82+0.82 7.007.00 D2(2460)D1(2420)D_{2}^{*}(2460)D_{1}(2420) 4.60-4.60 2.72-2.72
DsDs2(2573)D_{s}^{*}D_{s2}^{*}(2573) 0.03-0.03 0.670.67 +0.10+0.10 0.640.64 D2(2460)D2(2460)D_{2}^{*}(2460)D_{2}^{*}(2460) ... ...
DD1(2430)DD_{1}(2430) 0.01-0.01 0.010.01 +0.52+0.52 1.111.11 D1(2430)D1(2430)D_{1}(2430)D_{1}(2430) 0.20-0.20 1.021.02 +0.22+0.22 1.031.03
DD(2P1)DD(2P_{1}) ... ... 0.30-0.30 0.010.01 Ds1(2460)Ds1(2460)D_{s1}(2460)D_{s1}(2460) 0.17-0.17 0.20-0.20
DsDs1(2460)D_{s}D_{s1}(2460) ... ... 0.08-0.08 0.770.77 D1(2420)D1(2420)D_{1}(2420)D_{1}(2420) 0.06-0.06 0.320.32 2.11-2.11 2.712.71
DD1(2420)DD_{1}(2420) ... ... +0.02+0.02 0.050.05 D1(2430)D1(2420)D_{1}(2430)D_{1}(2420) 0.47-0.47 1.341.34 6.03-6.03 3.993.99
DD(2P1)DD(2P^{\prime}_{1}) ... ... +2.31+2.31 6.436.43
DsDs1(2536)D_{s}D_{s1}(2536) ... ... 0.09-0.09 0.130.13 Total 30.23-30.23 96.4696.46 48.71-48.71 110.37110.37
DD1(2430)D^{*}D_{1}(2430) +0.29+0.29 6.136.13 0.15-0.15 4.314.31 Mth,ΓthM_{th},\Gamma_{th} 𝟒𝟖𝟕𝟓,96.46\bm{4875,96.46} 𝟒𝟖𝟓𝟔,110.37\bm{4856,110.37}
Table 11: The mass shifts and strong decay widths for the 1D1D- and 2D2D-wave charmonium states (in MeV). The “✗” is labeled the strong decay channels which are not open or forbidden. These channels are considered to have no contributions to the mass shifts and decay widths. The “...” stands for the predicted values are negligibly small.
13D11^{3}D_{1} 13D31^{3}D_{3}
ΔM\Delta M Γ\Gamma ΔM\Delta M Γ\Gamma
Channel [3823][3823] asψ(3770)as~{}\psi(3770) [3847][3847] asψ3(3842)as~{}\psi_{3}(3842)
DDDD 35.12-35.12 35.1135.11 4.07-4.07 1.241.24
Total 35.12-35.12 35.1135.11 4.07-4.07 1.241.24
Mth,ΓthM_{th},\Gamma_{th} 𝟑𝟕𝟖𝟖,35.11\bm{3788,35.11} 𝟑𝟖𝟒𝟑,1.24\bm{3843,1.24}
Mexp,ΓexpM_{exp},\Gamma_{exp} 𝟑𝟕𝟕𝟒,27.2±1.0\bm{3774,27.2\pm 1.0} 𝟑𝟖𝟒𝟑,2.8±0.6\bm{3843,2.8\pm 0.6}
11D21^{1}D_{2} 13D21^{3}D_{2}
ΔM\Delta M Γ\Gamma ΔM\Delta M Γ\Gamma
Channel [3842][3842] [3814][3814] [3844][3844] [3809][3809]
DDDD^{*} 27.65-27.65 34.76-34.76
Total 27.65-27.65 34.76-34.76
Mth,ΓthM_{th},\Gamma_{th} 𝟑𝟖𝟏𝟒,\bm{3814,-} 𝟑𝟖𝟎𝟗,\bm{3809,-}
Mexp,ΓexpM_{exp},\Gamma_{exp} ,\bm{-,-} 𝟑𝟖𝟐𝟒,<2.5\bm{3824,<2.5}
23D12^{3}D_{1} 23D32^{3}D_{3}
ΔM\Delta M Γ\Gamma ΔM\Delta M Γ\Gamma
Channel [4176][4176] asψ(4160)as~{}\psi(4160) [4216][4216] [4213][4213]
DDDD 1.65-1.65 7.257.25 +0.96+0.96 1.071.07
DsDsD_{s}D_{s} +0.37+0.37 ... 0.14-0.14 2.702.70
DDDD^{*} +1.30+1.30 0.650.65 +2.49+2.49 13.4413.44
DsDsD_{s}D_{s}^{*} 1.12-1.12 7.657.65 2.22-2.22 2.622.62
DDD^{*}D^{*} 19.03-19.03 46.2746.27 +2.75+2.75 18.2418.24
DsDsD_{s}^{*}D_{s}^{*} 7.09-7.09
Total 20.13-20.13 61.8261.82 3.25-3.25 38.0738.07
Mth,ΓthM_{th},\Gamma_{th} 𝟒𝟏𝟓𝟔,61.82\bm{4156,61.82} 𝟒𝟐𝟏𝟑,38.07\bm{4213,38.07}
Mexp,ΓexpM_{exp},\Gamma_{exp} 𝟒𝟏𝟗𝟏±𝟓,𝟕𝟎±𝟏𝟎\bm{4191\pm 5,70\pm 10} ,\bm{-,-}
21D22^{1}D_{2} 23D22^{3}D_{2}
ΔM\Delta M Γ\Gamma ΔM\Delta M Γ\Gamma
Channel [4206][4206] [4192][4192] [4207][4207] [4192][4192]
DDDD^{*} 1.08-1.08 20.6420.64 2.64-2.64 16.6816.68
DsDsD_{s}D_{s}^{*} 1.75-1.75 7.347.34 0.53-0.53 9.819.81
DDD^{*}D^{*} 1.84-1.84 26.1426.14 7.74-7.74 29.4929.49
DsDsD_{s}^{*}D_{s}^{*} 4.29-4.29 3.71-3.71
DD0(2300)DD_{0}^{*}(2300) 5.04-5.04 5.445.44 0.23-0.23 0.270.27
Total 14.00-14.00 59.5659.56 14.85-14.85 56.2556.25
Mth,ΓthM_{th},\Gamma_{th} 𝟒𝟏𝟗𝟐,59.56\bm{4192,59.56} 𝟒𝟏𝟗𝟐,56.25\bm{4192,56.25}
Table 12: The mass shifts and strong decay widths for the 3D3D-wave charmonium states (in MeV). The “✗” is labeled the strong decay channels which are not open or forbidden. These channels are considered to have no contributions to the mass shifts and decay widths. The “...” stands for the predicted values are negligibly small.
33D13^{3}D_{1} 33D33^{3}D_{3} 31D23^{1}D_{2} 33D23^{3}D_{2}
Channel ΔM\Delta M [4486] Γ\Gamma [4463] ΔM\Delta M [4535] Γ\Gamma [4461] ΔM\Delta M [4522] Γ\Gamma [4461] ΔM\Delta M [4523] Γ\Gamma [4468]
DDDD 0.23-0.23 0.860.86 +0.15+0.15 0.460.46
DsDsD_{s}D_{s} +0.04+0.04 0.010.01 0.11-0.11 0.340.34
DDDD^{*} +0.28+0.28 0.010.01 0.15-0.15 2.462.46 0.81-0.81 3.553.55 0.88-0.88 2.962.96
DsDsD_{s}D_{s}^{*} +0.30+0.30 0.940.94 0.22-0.22 0.070.07 0.12-0.12 0.360.36 +0.04+0.04 0.530.53
DDD^{*}D^{*} 1.64-1.64 2.432.43 0.22-0.22 1.201.20 0.41-0.41 1.791.79 1.18-1.18 2.232.23
DsDsD_{s}^{*}D_{s}^{*} +0.10+0.10 3.213.21 0.38-0.38 2.312.31 0.20-0.20 2.022.02 +0.02+0.02 1.661.66
DD0(2550)DD_{0}(2550) +6.20+6.20 29.0329.03 4.30-4.30 4.334.33
D0(2550)DD_{0}(2550)D^{*} 2.98-2.98 6.70-6.70 7.69-7.69
DD1(2600)DD_{1}^{*}(2600) 4.50-4.50 3.08-3.08 7.71-7.71 9.43-9.43
DD0(2300)DD_{0}^{*}(2300) 0.73-0.73 1.041.04 0.03-0.03 0.070.07
DsDs0(2317)D_{s}D_{s0}^{*}(2317) +0.12+0.12 0.410.41 0.01-0.01 ...
DD0(2300)D^{*}D_{0}^{*}(2300) +2.00+2.00 2.812.81 +0.49+0.49 0.670.67 0.03-0.03 ... +1.03+1.03 1.021.02
DsDs0(2317)D_{s}^{*}D_{s0}^{*}(2317) 1.29-1.29 0.880.88 0.56-0.56 0.330.33 0.02-0.02 0.010.01 0.85-0.85 0.740.74
DD2(2460)DD_{2}^{*}(2460) +1.39+1.39 10.5910.59 1.83-1.83 6.716.71 +0.96+0.96 6.786.78 5.05-5.05 22.2522.25
DD2(2460)D^{*}D_{2}^{*}(2460) 5.59-5.59 41.50-41.50 22.85-22.85 19.35-19.35
DsDs2(2573)D_{s}D_{s2}^{*}(2573) 0.73-0.73 0.40-0.40 1.87-1.87
DD1(2430)DD_{1}(2430) +1.22+1.22 4.194.19 +1.06+1.06 1.661.66 0.02-0.02 ... +1.23+1.23 2.072.07
DsDs1(2460)D_{s}D_{s1}(2460) 0.92-0.92 0.550.55 0.98-0.98 0.610.61 0.02-0.02 0.010.01 0.83-0.83 0.700.70
DD1(2420)DD_{1}(2420) +1.47+1.47 33.2833.28 2.86-2.86 6.006.00 0.01-0.01 ... +1.05+1.05 2.252.25
DsDs1(2536)D_{s}D_{s1}(2536) 3.16-3.16 0.58-0.58 0.01-0.01 0.63-0.63
DD1(2430)D^{*}D_{1}(2430) 7.70-7.70 8.008.00 8.76-8.76 9.409.40 9.38-9.38 10.1110.11 6.38-6.38 8.568.56
DD1(2420)D^{*}D_{1}(2420) 10.63-10.63 22.1422.14 6.86-6.86 1.561.56 12.27-12.27 4.114.11 4.00-4.00 20.0220.02
Total 22.66-22.66 118.93118.93 74.4-74.4 38.1138.11 60.61-60.61 30.1930.19 54.81-54.81 65.0665.06
Mth,ΓthM_{th},\Gamma_{th} 𝟒𝟒𝟔𝟑,118.93\bm{4463,118.93} 𝟒𝟒𝟔𝟏,38.11\bm{4461,38.11} 𝟒𝟒𝟔𝟏,30.19\bm{4461,30.19} 𝟒𝟒𝟔𝟖,65.06\bm{4468,65.06}
Table 13: The mass shifts and strong decay widths for the 4D4D-wave charmonium states (in MeV). The “✗” is labeled the strong decay channels which are not open or forbidden. These channels are considered to have no contributions to the mass shifts and decay widths. The “...” stands for the predicted values are negligibly small.
43D14^{3}D_{1} 43D34^{3}D_{3} 41D24^{1}D_{2} 43D24^{3}D_{2}
Channel ΔM\Delta M [4767] Γ\Gamma [4737] ΔM\Delta M [4823] Γ\Gamma [4791] ΔM\Delta M [4808] Γ\Gamma [4776] ΔM\Delta M [4808] Γ\Gamma [4777]
DDDD 0.03-0.03 0.130.13 +0.04+0.04 ...
DsDsD_{s}D_{s} +0.02+0.02 ... 0.01-0.01 0.070.07
DDDD^{*} +0.11+0.11 ... +0.02+0.02 0.140.14 0.16-0.16 1.001.00 0.19-0.19 0.870.87
DsDsD_{s}D_{s}^{*} +0.08+0.08 0.190.19 0.06-0.06 0.280.28 0.08-0.08 0.070.07 0.04-0.04 0.060.06
DDD^{*}D^{*} 0.39-0.39 0.420.42 0.33-0.33 0.610.61 0.24-0.24 0.550.55 0.35-0.35 0.740.74
DsDsD_{s}^{*}D_{s}^{*} ... 0.520.52 +0.03+0.03 0.210.21 +0.02+0.02 0.250.25 0.01-0.01 0.160.16
DD0(2550)DD_{0}(2550) +0.80+0.80 1.161.16 ... 2.282.28
DsDs(21S0)D_{s}D_{s}(2^{1}S_{0}) 0.48-0.48 0.400.40 0.18-0.18 2.282.28
D0(2550)DD_{0}(2550)D^{*} +0.09+0.09 4.504.50 0.89-0.89 0.020.02 0.15-0.15 3.693.69 +0.46+0.46 5.365.36
DD1(2600)DD_{1}^{*}(2600) +0.74+0.74 4.554.55 0.99-0.99 1.001.00 0.65-0.65 1.471.47 +0.05+0.05 1.941.94
Ds(21S0)DsD_{s}(2^{1}S_{0})D_{s}^{*} 0.21-0.21 0.26-0.26 0.160.16 0.55-0.55 1.271.27 0.52-0.52 2.022.02
DsDs(2700)D_{s}D_{s}^{*}(2700) 0.24-0.24 0.940.94 0.16-0.16 2.102.10 0.64-0.64 1.551.55 0.80-0.80 1.061.06
DsDs(2700)D_{s}^{*}D_{s}^{*}(2700) 0.63-0.63 0.50-0.50 0.47-0.47
DD1(2600)D^{*}D_{1}^{*}(2600) 5.63-5.63 39.7539.75 2.85-2.85 21.3021.30 2.54-2.54 20.4020.40 1.23-1.23 22.7122.71
DD0(2300)DD_{0}^{*}(2300) 0.15-0.15 0.210.21 ... 0.020.02
DsDs0(2317)D_{s}D_{s0}^{*}(2317) 0.03-0.03 ... 0.02-0.02 0.010.01
DD0(2300)D^{*}D_{0}^{*}(2300) +0.53+0.53 1.371.37 0.08-0.08 0.030.03 0.01-0.01 ... ... 0.240.24
DsDs0(2317)D_{s}^{*}D_{s0}^{*}(2317) 0.07-0.07 0.720.72 +0.03+0.03 0.130.13 ... ... +0.06+0.06 0.330.33
DD2(2460)DD_{2}^{*}(2460) +0.38+0.38 0.850.85 0.53-0.53 1.061.06 +0.54+0.54 0.420.42 +0.57+0.57 1.861.86
DD2(2460)D^{*}D_{2}^{*}(2460) 0.68-0.68 2.192.19 +0.25+0.25 14.8614.86 0.60-0.60 8.698.69 0.61-0.61 6.406.40
DsDs2(2573)D_{s}D_{s2}^{*}(2573) 0.24-0.24 0.100.10 0.09-0.09 0.410.41 0.22-0.22 0.420.42 0.23-0.23 0.940.94
DsDs2(2573)D_{s}^{*}D_{s2}^{*}(2573) 0.11-0.11 0.360.36 0.69-0.69 3.693.69 0.82-0.82 2.732.73 0.83-0.83 2.832.83
DD1(2430)DD_{1}(2430) +0.54+0.54 1.271.27 0.14-0.14 0.120.12 0.01-0.01 0.020.02 +0.26+0.26 0.050.05
DD(2P1)DD(2P_{1}) 1.39-1.39 2.12-2.12 3.703.70 ... ... 0.52-0.52 0.030.03
DD(23P2)DD(2^{3}P_{2}) 0.99-0.99 1.13-1.13 1.15-1.15
DD(23P0)DD(2^{3}P_{0}) 1.14-1.14 0.02-0.02
DD(2P1)DD(2P^{\prime}_{1}) 4.14-4.14 0.81-0.81 0.02-0.02 1.82-1.82
DsDs1(2460)D_{s}D_{s1}(2460) 0.21-0.21 0.770.77 +0.05+0.05 0.190.19 0.01-0.01 ... +0.05+0.05 0.400.40
DD1(2420)DD_{1}(2420) +1.52+1.52 3.253.25 0.28-0.28 1.681.68 0.01-0.01 0.010.01 0.38-0.38 0.170.17
DsDs1(2536)D_{s}D_{s1}(2536) 1.00-1.00 0.930.93 0.09-0.09 0.100.10 ... ... 0.07-0.07 0.320.32
DD1(2430)D^{*}D_{1}(2430) 0.60-0.60 5.355.35 +1.08+1.08 2.202.20 +1.07+1.07 4.214.21 +0.71+0.71 2.972.97
DsDs1(2460)D_{s}^{*}D_{s1}(2460) 0.29-0.29 ... 0.54-0.54 0.780.78 0.66-0.66 0.570.57 0.47-0.47 0.410.41
DD1(2420)D^{*}D_{1}(2420) 1.18-1.18 8.668.66 0.65-0.65 0.760.76 0.31-0.31 1.851.85 0.04-0.04 5.885.88
DsDs1(2536)D_{s}^{*}D_{s1}(2536) 0.35-0.35 1.991.99 0.31-0.31 1.041.04 0.46-0.46 1.231.23 0.47-0.47 1.331.33
DD(13D1)DD(1^{3}D_{1}) 0.22-0.22 0.080.08 +0.02+0.02 0.100.10 0.36-0.36 1.201.20 0.16-0.16 0.360.36
DsDs(13D1)D_{s}D_{s}(1^{3}D_{1}) 0.01-0.01 0.15-0.15 0.05-0.05
DD(13D3)DD(1^{3}D_{3}) 0.72-0.72 5.675.67 0.63-0.63 3.953.95 2.79-2.79 12.0512.05 2.67-2.67 7.867.86
DsDs(13D3)D_{s}D_{s}(1^{3}D_{3}) 0.25-0.25 0.79-0.79 0.59-0.59
DD(1D2)DD(1D_{2}) 1.08-1.08 2.692.69 0.62-0.62 2.522.52 0.01-0.01 0.010.01 0.34-0.34 0.590.59
DsDs(1D2)D_{s}D_{s}(1D_{2}) 0.26-0.26 ... 0.12-0.12
DD(1D2)DD(1D^{\prime}_{2}) 1.24-1.24 17.7817.78 0.90-0.90 1.221.22 0.01-0.01 0.020.02 1.23-1.23 4.314.31
DsDs(1D2)D_{s}D_{s}(1D^{\prime}_{2}) 0.17-0.17 ... 0.26-0.26
DD(13D1)D^{*}D(1^{3}D_{1}) 2.11-2.11 0.84-0.84 0.430.43 0.57-0.57 0.490.49 1.71-1.71 1.751.75
DD(13D3)D^{*}D(1^{3}D_{3}) 5.06-5.06 11.92-11.92 45.0145.01 7.73-7.73 4.374.37 6.16-6.16 1.841.84
DD(1D2)D^{*}D(1D_{2}) 1.34-1.34 1.99-1.99 5.315.31 4.78-4.78 4.304.30 3.62-3.62 3.613.61
DD(1D2)D^{*}D(1D^{\prime}_{2}) 3.56-3.56 1.61-1.61 3.85-3.85 3.50-3.50
D(2300)D1(2430)D^{*}(2300)D_{1}(2430) 0.02-0.02 0.06-0.06 0.040.04 0.29-0.29 0.620.62 0.52-0.52 0.940.94
D(2300)D(2300)D^{*}(2300)D^{*}(2300) 0.08-0.08 0.210.21 0.01-0.01 0.070.07
D(2300)D(2460)D^{*}(2300)D^{*}(2460) 2.00-2.00 +0.05+0.05 0.01-0.01 1.14-1.14
Ds(2317)Ds(2317)D_{s}^{*}(2317)D_{s}^{*}(2317) 0.16-0.16 0.060.06 ... 0.020.02
Ds(2317)Ds1(2460)D_{s}^{*}(2317)D_{s1}(2460) 0.14-0.14 0.09-0.09 ... 0.24-0.24 0.50-0.50 ...
Ds(2317)Ds1(2536)D_{s}^{*}(2317)D_{s1}(2536) 0.03-0.03 0.24-0.24 0.12-0.12
D(2300)D1(2420)D^{*}(2300)D_{1}(2420) +0.03+0.03 0.09-0.09 0.010.01 0.54-0.54 0.320.32 0.25-0.25 0.120.12
Total 30.13-30.13 106.86106.86 31.59-31.59 119.88119.88 31.82-31.82 73.9973.99 31.02-31.02 80.4980.49
Mth,ΓthM_{th},\Gamma_{th} 𝟒𝟕𝟑𝟕,106.86\bm{4737,106.86} 𝟒𝟕𝟗𝟏,119.88\bm{4791,119.88} 𝟒𝟕𝟕𝟔,73.99\bm{4776,73.99} 𝟒𝟕𝟕𝟕,80.49\bm{4777,80.49}
Table 14: The mass shifts and strong decay widths for the 53D15^{3}D_{1} and 53D35^{3}D_{3} charmonium states (in MeV). The “✗” is labeled the strong decay channels which are not open or forbidden. These channels are considered to have no contributions to the mass shifts and decay widths. The “...” stands for the predicted values are negligibly small.
53D15^{3}D_{1} 53D35^{3}D_{3} 53D15^{3}D_{1} 53D35^{3}D_{3}
ΔM\Delta M [5029] Γ\Gamma [4988] ΔM\Delta M [5091] Γ\Gamma [5061] Continue ΔM\Delta M [5029] Γ\Gamma [4988] ΔM\Delta M [5091] Γ\Gamma [5061]
DDDD +0.01+0.01 0.020.02 +0.01+0.01 0.020.02 DD(1D2)DD(1D_{2}) +0.08+0.08 1.511.51 +0.16+0.16 0.460.46
DsDsD_{s}D_{s} +0.02+0.02 0.010.01 ... 0.020.02 DsDs(1D2)D_{s}D_{s}(1D_{2}) 0.08-0.08 0.040.04 0.10-0.10 0.070.07
DDDD^{*} +0.04+0.04 ... +0.01+0.01 0.140.14 DD(1D2)DD(1D^{\prime}_{2}) 0.72-0.72 1.611.61 0.30-0.30 0.350.35
DsDsD_{s}D_{s}^{*} +0.03+0.03 0.050.05 0.01-0.01 0.020.02 DsDs(1D2)D_{s}D_{s}(1D^{\prime}_{2}) 0.18-0.18 0.270.27 0.05-0.05 0.040.04
DD0(2550)DD_{0}(2550) +0.20+0.20 ... +0.09+0.09 0.410.41 DD(13D1)D^{*}D(1^{3}D_{1}) 0.99-0.99 0.160.16 0.07-0.07 0.530.53
DD(31S0)DD(3^{1}S_{0}) 1.19-1.19 3.003.00 0.32-0.32 0.240.24 DsDs(13D1)D_{s}^{*}D_{s}(1^{3}D_{1}) 0.28-0.28 0.310.31 0.03-0.03 0.080.08
DsDs(21S0)D_{s}D_{s}(2^{1}S_{0}) +0.14+0.14 0.580.58 0.06-0.06 0.090.09 DD(13D3)D^{*}D(1^{3}D_{3}) 0.81-0.81 3.133.13 1.62-1.62 6.056.05
DsDs(31S0)D_{s}D_{s}(3^{1}S_{0}) 0.05-0.05 DsDs(13D3)D_{s}^{*}D_{s}(1^{3}D_{3}) 0.51-0.51 0.030.03 0.73-0.73 0.720.72
D0(2550)DD_{0}(2550)D^{*} +0.32+0.32 0.640.64 0.21-0.21 0.620.62 DD(1D2)D^{*}D(1D_{2}) 0.50-0.50 0.170.17 0.47-0.47 1.281.28
D(31S0)DD(3^{1}S_{0})D^{*} 0.26-0.26 0.25-0.25 0.040.04 DsDs(1D2)D_{s}^{*}D_{s}(1D_{2}) 0.17-0.17 0.080.08 0.16-0.16 0.200.20
DD1(2600)DD_{1}^{*}(2600) +0.42+0.42 0.600.60 0.15-0.15 0.740.74 DD(1D2)D^{*}D(1D^{\prime}_{2}) 0.58-0.58 1.141.14 0.41-0.41 0.680.68
DD(33S1)DD^{*}(3^{3}S_{1}) 0.74-0.74 0.100.10 0.28-0.28 ... DsDs(1D2)D_{s}^{*}D_{s}(1D^{\prime}_{2}) 0.35-0.35 0.16-0.16 0.030.03
Ds(21S0)DsD_{s}(2^{1}S_{0})D_{s}^{*} 0.16-0.16 0.250.25 0.02-0.02 0.020.02 DD(23D1)DD(2^{3}D_{1}) 0.14-0.14 0.06-0.06 0.030.03
DsDs(2700)D_{s}D_{s}^{*}(2700) 0.16-0.16 0.430.43 0.05-0.05 ... DD(23D3)DD(2^{3}D_{3}) 0.30-0.30 0.40-0.40
DDD^{*}D^{*} 0.08-0.08 0.080.08 0.09-0.09 0.190.19 DD(2D2)DD(2D_{2}) 0.71-0.71 1.35-1.35 0.040.04
DD1(2600)D^{*}D_{1}^{*}(2600) +0.41+0.41 4.064.06 +0.24+0.24 0.930.93 DD(2D2)DD(2D^{\prime}_{2}) 0.99-0.99 0.32-0.32
DD(33S1)D^{*}D^{*}(3^{3}S_{1}) 1.17-1.17 DD(13F2)DD(1^{3}F_{2}) 0.06-0.06 0.030.03 ... ...
DsDsD_{s}^{*}D_{s}^{*} ... 0.100.10 ... 0.020.02 DD(13F4)DD(1^{3}F_{4}) 0.27-0.27 0.250.25 ... ...
DsDs(2700)D_{s}^{*}D_{s}^{*}(2700) 0.27-0.27 0.030.03 0.26-0.26 0.270.27 DsDs(13F4)D_{s}D_{s}(1^{3}F_{4}) ...
DD(2300)D^{*}D^{*}(2300) +0.18+0.18 0.150.15 0.04-0.04 0.040.04 DD(1F3)DD(1F_{3}) 5.28-5.28 1.501.50 0.61-0.61 0.810.81
D1(2600)D(2300)D_{1}^{*}(2600)D^{*}(2300) 0.50-0.50 ... 0.49-0.49 1.401.40 DsDs(1F3)D_{s}D_{s}(1F_{3}) 0.12-0.12
DD(23P0)D^{*}D(2^{3}P_{0}) 0.80-0.80 0.400.40 0.13-0.13 1.001.00 DD(1F3)DD(1F^{\prime}_{3}) 5.54-5.54 0.23-0.23 0.030.03
DsDs0(2317)D_{s}^{*}D_{s0}^{*}(2317) +0.02+0.02 0.210.21 +0.01+0.01 0.010.01 DD(13F2)D^{*}D(1^{3}F_{2}) ...
Ds(2700)Ds0(2317)D_{s}^{*}(2700)D_{s0}^{*}(2317) 0.17-0.17 0.03-0.03 0.140.14 DD(13F4)D^{*}D(1^{3}F_{4}) ... ...
DD2(2460)DD_{2}^{*}(2460) +0.09+0.09 0.100.10 0.13-0.13 0.390.39 DD(1F3)D^{*}D(1F_{3}) 0.72-0.72 0.390.39
D0(2550)D2(2460)D_{0}(2550)D_{2}^{*}(2460) 1.00-1.00 0.200.20 0.58-0.58 0.820.82 DD(1F3)D^{*}D(1F^{\prime}_{3}) 0.45-0.45
DD(23P2)DD(2^{3}P_{2}) 0.59-0.59 1.481.48 0.42-0.42 0.280.28 D(2300)D(2300)D^{*}(2300)D^{*}(2300) +0.12+0.12 0.530.53 0.01-0.01 0.010.01
DsDs2(2573)D_{s}D_{s2}^{*}(2573) 0.05-0.05 0.130.13 0.02-0.02 0.020.02 Ds(2317)Ds(2317)D_{s}^{*}(2317)D_{s}^{*}(2317) 0.05-0.05 0.240.24 ... ...
DsDs(23P2)D_{s}D_{s}(2^{3}P_{2}) 0.11-0.11 0.32-0.32 0.010.01 D(2300)D1(2430)D^{*}(2300)D_{1}(2430) 0.24-0.24 0.470.47 +0.03+0.03 0.070.07
DD2(2460)D^{*}D_{2}^{*}(2460) 0.03-0.03 0.620.62 +0.38+0.38 1.161.16 Ds0(2317)Ds1(2460)D_{s0}^{*}(2317)D_{s1}(2460) 0.07-0.07 ... 0.01-0.01 0.050.05
DD(23P2)D^{*}D(2^{3}P_{2}) 0.43-0.43 0.230.23 2.85-2.85 0.720.72 D(2300)D1(2420)D^{*}(2300)D_{1}(2420) 0.11-0.11 0.210.21 +0.02+0.02 0.050.05
DsDs2(2573)D_{s}^{*}D_{s2}^{*}(2573) 0.01-0.01 ... 0.43-0.43 0.630.63 Ds0(2317)Ds1(2536)D_{s0}^{*}(2317)D_{s1}(2536) 0.02-0.02 0.010.01 0.01-0.01 0.010.01
DD1(2430)DD_{1}(2430) +0.21+0.21 0.600.60 0.06-0.06 0.080.08 D(2300)D2(2460)D^{*}(2300)D_{2}^{*}(2460) 0.47-0.47 1.091.09 0.13-0.13 1.221.22
D0(2550)D1(2430)D_{0}(2550)D_{1}(2430) 0.31-0.31 2.162.16 0.58-0.58 0.290.29 Ds(2317)Ds2(2573)D_{s}^{*}(2317)D_{s2}^{*}(2573) 0.06-0.06 0.310.31 0.03-0.03 0.090.09
DsDs1(2460)D_{s}D_{s1}(2460) 0.03-0.03 0.340.34 ... 0.010.01 D2(2460)D2(2460)D_{2}^{*}(2460)D_{2}^{*}(2460) 2.65-2.65 1.021.02 0.36-0.36 3.913.91
DD1(2420)DD_{1}(2420) +0.39+0.39 0.450.45 0.03-0.03 0.430.43 D2(2460)D1(2430)D_{2}^{*}(2460)D_{1}(2430) 0.50-0.50 3.683.68 0.75-0.75 1.361.36
D0(2550)D1(2420)D_{0}(2550)D_{1}(2420) 1.65-1.65 0.39-0.39 1.221.22 Ds1(2460)Ds2(2573)D_{s}1(2460)D_{s2}^{*}(2573) 0.52-0.52 0.35-0.35 0.230.23
DsDs1(2536)D_{s}D_{s1}(2536) 0.13-0.13 0.580.58 0.04-0.04 0.010.01 D2(2460)D1(2420)D_{2}^{*}(2460)D_{1}(2420) 0.45-0.45 1.961.96 0.23-0.23 0.770.77
DD1(2430)D^{*}D_{1}(2430) +0.07+0.07 1.901.90 +0.25+0.25 0.200.20 Ds1(2536)Ds2(2573)D_{s}1(2536)D_{s2}^{*}(2573) 0.23-0.23
DsDs1(2460)D_{s}^{*}D_{s1}(2460) 0.24-0.24 0.290.29 0.01-0.01 0.370.37 D1(2430)D1(2430)D_{1}(2430)D_{1}(2430) 0.30-0.30 0.600.60 0.26-0.26 0.500.50
DD1(2420)D^{*}D_{1}(2420) +0.14+0.14 1.741.74 0.26-0.26 0.330.33 Ds1(2460)Ds1(2460)D_{s1}(2460)D_{s1}(2460) 0.01-0.01 0.110.11 0.02-0.02 0.030.03
DsDs1(2536)D_{s}^{*}D_{s1}(2536) 0.19-0.19 0.030.03 0.03-0.03 0.170.17 D1(2430)D1(2420)D_{1}(2430)D_{1}(2420) 0.64-0.64 5.265.26 0.23-0.23 0.680.68
DD(2P1)DD(2P_{1}) 0.32-0.32 3.003.00 0.18-0.18 0.030.03 Ds1(2460)Ds1(2536)D_{s1}(2460)D_{s1}(2536) 1.01-1.01 0.22-0.22 0.060.06
DsDs(2P1)D_{s}D_{s}(2P_{1}) 0.20-0.20 0.020.02 0.20-0.20 0.040.04 D1(2420)D1(2420)D_{1}(2420)D_{1}(2420) 0.53-0.53 1.161.16 0.33-0.33 0.330.33
DD(2P1)DD(2P^{\prime}_{1}) 2.77-2.77 7.007.00 0.58-0.58 0.510.51 Ds1(2536)Ds1(2536)D_{s1}(2536)D_{s1}(2536) 0.21-0.21 0.08-0.08
DsDs(2P1)D_{s}D_{s}(2P^{\prime}_{1}) 0.53-0.53 0.11-0.11 0.020.02 Ds(21S0)Ds1(2460)D_{s}(2^{1}S_{0})D_{s1}(2460) 0.17-0.17 0.24-0.24 0.050.05
DD(2P1)D^{*}D(2P_{1}) 0.65-0.65 0.510.51 1.74-1.74 2.912.91 D1(2600)D2(2460)D_{1}^{*}(2600)D_{2}^{*}(2460) 3.94-3.94
DD(2P1)D^{*}D(2P^{\prime}_{1}) 1.42-1.42 1.351.35 0.70-0.70 0.800.80 D1(2600)D1(2430)D_{1}^{*}(2600)D_{1}(2430) 1.20-1.20 2.57-2.57 2.412.41
DD(13D1)DD(1^{3}D_{1}) 0.08-0.08 0.260.26 ... ... D1(2600)D1(2420)D_{1}^{*}(2600)D_{1}(2420) 1.49-1.49 +1.21+1.21 0.960.96
DsDs(13D1)D_{s}D_{s}(1^{3}D_{1}) 0.03-0.03 ... 0.01-0.01 0.010.01
DD(13D3)DD(1^{3}D_{3}) +0.10+0.10 0.490.49 0.24-0.24 0.380.38 Total 41.35-41.35 61.0761.07 29.55-29.55 42.8842.88
DsDs(13D3)D_{s}D_{s}(1^{3}D_{3}) 0.08-0.08 ... 0.08-0.08 0.100.10 Mth,ΓthM_{th},\Gamma_{th} 𝟒𝟗𝟖𝟖,61.07\bm{4988,61.07} 𝟓𝟎𝟔𝟏,42.88\bm{5061,42.88}
Table 15: The mass shifts and strong decay widths for the 51D25^{1}D_{2} and 53D25^{3}D_{2} charmonium states (in MeV). The “✗” is labeled the strong decay channels which are not open or forbidden. These channels are considered to have no contributions to the mass shifts and decay widths. The “...” stands for the predicted values are negligibly small.
51D25^{1}D_{2} 53D25^{3}D_{2} 51D25^{1}D_{2} 53D25^{3}D_{2}
ΔM\Delta M [5073] Γ\Gamma [5044] ΔM\Delta M [5074] Γ\Gamma [5030] Continue ΔM\Delta M [5073] Γ\Gamma [5044] ΔM\Delta M [5074] Γ\Gamma [5030]
DDDD^{*} 0.04-0.04 0.250.25 0.05-0.05 0.200.20 DD(13D1)DD(1^{3}D_{1}) +0.08+0.08 0.320.32 +0.02+0.02 0.140.14
DsDsD_{s}D_{s}^{*} 0.02-0.02 0.020.02 0.01-0.01 0.010.01 DsDs(13D1)D_{s}D_{s}(1^{3}D_{1}) 0.06-0.06 0.030.03 0.02-0.02 ...
DDD^{*}D^{*} 0.07-0.07 0.150.15 0.09-0.09 0.180.18 DD(13D3)DD(1^{3}D_{3}) 0.26-0.26 1.151.15 0.01-0.01 1.201.20
DsDsD_{s}^{*}D_{s}^{*} ... 0.030.03 0.01-0.01 0.020.02 DsDs(13D3)D_{s}D_{s}(1^{3}D_{3}) 0.29-0.29 0.200.20 0.19-0.19 0.050.05
D0(2550)DD_{0}(2550)D^{*} 0.29-0.29 0.490.49 0.12-0.12 0.270.27 DD(1D2)DD(1D_{2}) ... ... +0.01+0.01 0.460.46
D(31S0)DD(3^{1}S_{0})D^{*} 0.61-0.61 0.090.09 0.63-0.63 DsDs(1D2)D_{s}D_{s}(1D_{2}) ... ... 0.06-0.06 0.020.02
DD1(2600)DD_{1}^{*}(2600) 0.31-0.31 0.710.71 0.18-0.18 0.400.40 DD(1D2)DD(1D^{\prime}_{2}) ... ... +0.02+0.02 0.610.61
DD(33S1)DD^{*}(3^{3}S_{1}) 0.81-0.81 0.900.90 1.10-1.10 1.161.16 DsDs(1D2)D_{s}D_{s}(1D^{\prime}_{2}) ... ... 0.10-0.10 0.030.03
Ds(21S0)DsD_{s}(2^{1}S_{0})D_{s}^{*} 0.02-0.02 0.340.34 0.06-0.06 0.480.48 DD(13D1)D^{*}D(1^{3}D_{1}) 0.13-0.13 0.260.26 0.44-0.44 0.590.59
DsDs(2700)D_{s}D_{s}^{*}(2700) 0.01-0.01 0.290.29 0.01-0.01 0.480.48 DsDs(13D1)D_{s}^{*}D_{s}(1^{3}D_{1}) 0.03-0.03 0.020.02 0.07-0.07 0.040.04
DD1(2600)D^{*}D_{1}^{*}(2600) +0.31+0.31 1.361.36 +0.11+0.11 0.940.94 DD(13D3)D^{*}D(1^{3}D_{3}) 1.18-1.18 2.602.60 0.97-0.97 2.312.31
DD(33S1)D^{*}D^{*}(3^{3}S_{1}) 0.85-0.85 0.72-0.72 DsDs(13D3)D_{s}^{*}D_{s}(1^{3}D_{3}) 0.47-0.47 0.240.24 0.46-0.46 0.180.18
DsDs(2700)D_{s}^{*}D_{s}^{*}(2700) 0.24-0.24 0.210.21 0.22-0.22 0.170.17 DD(1D2)D^{*}D(1D_{2}) 1.07-1.07 2.032.03 0.84-0.84 1.421.42
DD(2300)DD^{*}(2300) 0.03-0.03 0.120.12 ... 0.010.01 DsDs(1D2)D_{s}^{*}D_{s}(1D_{2}) 0.25-0.25 0.210.21 0.18-0.18 0.140.14
D0(2550)D(2300)D_{0}(2550)D^{*}(2300) +0.24+0.24 0.800.80 0.01-0.01 ... DD(1D2)D^{*}D(1D^{\prime}_{2}) 1.20-1.20 1.131.13 0.87-0.87 0.580.58
DD(23P0)DD(2^{3}P_{0}) 0.31-0.31 0.010.01 0.01-0.01 0.010.01 DsDs(1D2)D_{s}^{*}D_{s}(1D^{\prime}_{2}) 0.37-0.37 0.140.14 0.35-0.35 0.090.09
DsDs0(2317)D_{s}D_{s0}^{*}(2317) 0.01-0.01 ... ... ... DD(23D1)DD(2^{3}D_{1}) 0.97-0.97 0.080.08 0.27-0.27 0.010.01
Ds(21S0)Ds0(2317)D_{s}(2^{1}S_{0})D_{s0}^{*}(2317) 0.20-0.20 0.100.10 ... ... DD(23D3)DD(2^{3}D_{3}) 1.38-1.38 1.04-1.04
DD(2300)D^{*}D^{*}(2300) ... 0.010.01 +0.03+0.03 ... DD(2D2)DD(2D_{2}) ... ... 0.47-0.47
D1(2600)D(2300)D_{1}^{*}(2600)D^{*}(2300) 0.01-0.01 ... 0.83-0.83 0.960.96 DD(2D2)DD(2D^{\prime}_{2}) ... 0.54-0.54
DD(23P0)D^{*}D(2^{3}P_{0}) 0.01-0.01 ... 0.45-0.45 1.221.22 DD(13F2)DD(1^{3}F_{2}) ... ... ... ...
DsDs0(2317)D_{s}^{*}D_{s0}^{*}(2317) ... ... +0.03+0.03 0.060.06 DD(13F4)DD(1^{3}F_{4}) ... ... ... ...
Ds(2700)Ds0(2317)D_{s}^{*}(2700)D_{s0}^{*}(2317) ... ... 0.17-0.17 DsDs(13F4)D_{s}D_{s}(1^{3}F_{4}) ... ... ...
DD2(2460)DD_{2}^{*}(2460) +0.15+0.15 0.080.08 0.05-0.05 0.310.31 DD(1F3)DD(1F_{3}) ... ... 0.19-0.19 0.160.16
D0(2550)D2(2460)D_{0}(2550)D_{2}^{*}(2460) +0.07+0.07 1.961.96 1.66-1.66 2.012.01 DsDs(1F3)D_{s}D_{s}(1F_{3}) ... ... 0.04-0.04
DD(23P2)DD(2^{3}P_{2}) +0.09+0.09 2.052.05 0.74-0.74 3.653.65 DD(1F3)DD(1F^{\prime}_{3}) ... ... 0.14-0.14 0.040.04
DsDs2(2573)D_{s}D_{s2}^{*}(2573) ... 0.200.20 0.03-0.03 0.290.29 DD(13F2)D^{*}D(1^{3}F_{2}) ... ...
DsDs(23P2)D_{s}D_{s}(2^{3}P_{2}) 0.17-0.17 0.020.02 0.33-0.33 ... DD(13F4)D^{*}D(1^{3}F_{4}) ... ... ...
DD2(2460)D^{*}D_{2}^{*}(2460) +0.12+0.12 1.031.03 0.06-0.06 0.630.63 DD(1F3)D^{*}D(1F_{3}) 0.81-0.81 0.700.70 0.91-0.91 ...
D1(2600)D2(2460)D_{1}^{*}(2600)D_{2}^{*}(2460) 2.39-2.39 2.27-2.27 DD(1F3)D^{*}D(1F^{\prime}_{3}) 1.08-1.08 0.92-0.92
DD(23P2)D^{*}D(2^{3}P_{2}) 1.72-1.72 1.071.07 1.81-1.81 1.061.06 D(2300)D1(2430)D^{*}(2300)D_{1}(2430) +0.01+0.01 0.430.43 0.02-0.02 0.730.73
DsDs2(2573)D_{s}^{*}D_{s2}^{*}(2573) 0.28-0.28 0.410.41 0.27-0.27 0.470.47 Ds0(2317)Ds1(2460)D_{s0}^{*}(2317)D_{s1}(2460) 0.06-0.06 0.060.06 9.16-9.16 8.538.53
DsDs1(2460)D_{s}D_{s1}(2460) ... ... +0.03+0.03 0.100.10 D(2300)D1(2420)D^{*}(2300)D_{1}(2420) 0.04-0.04 0.930.93 0.05-0.05 0.380.38
DD1(2430)DD_{1}(2430) ... 0.010.01 +0.08+0.08 0.020.02 Ds0(2317)Ds1(2536)D_{s0}^{*}(2317)D_{s1}(2536) 0.07-0.07 0.010.01 2.88-2.88 0.680.68
D0(2550)D1(2430)D_{0}(2550)D_{1}(2430) 0.01-0.01 ... 0.10-0.10 0.140.14 D(2300)D2(2460)D^{*}(2300)D_{2}^{*}(2460) ... ... 0.13-0.13 1.041.04
DD(2P1)DD(2P_{1}) 0.01-0.01 0.010.01 +0.26+0.26 0.970.97 Ds(2317)Ds2(2573)D_{s}^{*}(2317)D_{s2}^{*}(2573) ... ... 0.04-0.04 0.060.06
DsDs(2P1)D_{s}D_{s}(2P_{1}) ... ... 0.17-0.17 ... D2(2460)D2(2460)D_{2}^{*}(2460)D_{2}^{*}(2460) 0.90-0.90 2.592.59 1.18-1.18 2.222.22
DD1(2420)DD_{1}(2420) ... 0.010.01 0.12-0.12 0.110.11 D2(2460)D1(2430)D_{2}^{*}(2460)D_{1}(2430) 1.32-1.32 2.742.74 0.55-0.55 2.962.96
D0(2550)D1(2420)D_{0}(2550)D_{1}(2420) ... ... 0.15-0.15 0.160.16 Ds1(2460)Ds2(2573)D_{s1}(2460)D_{s2}^{*}(2573) 0.87-0.87 0.540.54 0.80-0.80 0.030.03
DD(2P1)DD(2P^{\prime}_{1}) 0.01-0.01 ... 0.03-0.03 0.450.45 D2(2460)D1(2420)D_{2}^{*}(2460)D_{1}(2420) 0.33-0.33 2.012.01 0.22-0.22 1.931.93
DsDs1(2536)D_{s}D_{s1}(2536) ... ... 0.01-0.01 0.040.04 Ds1(2536)Ds2(2573)D_{s1}(2536)D_{s2}^{*}(2573) 0.41-0.41 0.28-0.28
DsDs(2P1)D_{s}D_{s}(2P^{\prime}_{1}) ... ... 0.10-0.10 0.020.02 D1(2430)D1(2430)D_{1}(2430)D_{1}(2430) 0.21-0.21 0.120.12 0.18-0.18 0.050.05
DD1(2430)D^{*}D_{1}(2430) +0.49+0.49 0.820.82 +0.32+0.32 0.730.73 Ds1(2460)Ds1(2460)D_{s1}(2460)D_{s1}(2460) 0.03-0.03 0.120.12 0.07-0.07 0.130.13
D1(2600)D1(2430)D_{1}^{*}(2600)D_{1}(2430) 2.49-2.49 0.530.53 1.31-1.31 D1(2430)D1(2420)D_{1}(2430)D_{1}(2420) 0.13-0.13 0.060.06 0.54-0.54 0.330.33
DD(2P1)D^{*}D(2P_{1}) 2.26-2.26 2.282.28 1.42-1.42 0.630.63 Ds1(2460)Ds1(2536)D_{s1}(2460)D_{s1}(2536) 0.04-0.04 0.040.04 0.17-0.17 0.110.11
DsDs1(2460)D_{s}^{*}D_{s1}(2460) 0.09-0.09 0.570.57 0.09-0.09 0.370.37 D1(2420)D1(2420)D_{1}(2420)D_{1}(2420) 0.03-0.03 0.020.02 0.11-0.11 0.160.16
DD1(2420)D^{*}D_{1}(2420) 0.23-0.23 0.230.23 +0.10+0.10 0.710.71 Ds1(2536)Ds1(2536)D_{s1}(2536)D_{s1}(2536) 0.02-0.02 0.07-0.07
D1(2600)D1(2420)D_{1}^{*}(2600)D_{1}(2420) 1.56-1.56 2.02-2.02
DD(2P1)D^{*}D(2P^{\prime}_{1}) 1.24-1.24 0.860.86 1.40-1.40 0.740.74 Total 28.84-28.84 37.0937.09 43.54-43.54 47.9047.90
DsDs1(2536)D_{s}^{*}D_{s1}(2536) 0.09-0.09 0.290.29 0.21-0.21 0.310.31 Mth,ΓthM_{th},\Gamma_{th} 𝟓𝟎𝟒𝟒,37.09\bm{5044,37.09} 𝟓𝟎𝟑𝟎,47.90\bm{5030,47.90}

Acknowledgements

We thank useful discussions from Long-Cheng Gui, Qi-Fang Lü, Xiang Liu, Zhi-Yong Zhou, Ying Chen, and Qiang Zhao. This work is supported by the National Natural Science Foundation of China under Grants Nos. 12235018, 12175065, 12205216.

References

  • [1] S. K. Choi et al. [Belle], Observation of a narrow charmonium-like state in exclusive B±K±π+πJ/ψB^{\pm}\to K^{\pm}\pi^{+}\pi^{-}J/\psi decays, Phys. Rev. Lett. 91, 262001 (2003).
  • [2] R. L. Workman et al. [Particle Data Group], Review of Particle Physics, PTEP 2022, 083C01 (2022).
  • [3] M. Ablikim et al. [(BESIII), and BESIII], Observation of the Y(4230) and a new structure in e+eK+KJ/ψe^{+}e^{-}\to K^{+}K^{-}J/\psi, Chin. Phys. C 46, 111002 (2022).
  • [4] M. Ablikim et al. [BESIII], Observation of Three Charmoniumlike States with JPC=1J^{PC}=1^{--} in e+eD0Dπ+e^{+}e^{-}\to D^{*0}D^{*-}\pi^{+}, Phys. Rev. Lett. 130, 121901 (2023).
  • [5] M. Ablikim et al. [BESIII], Observation of the Y(4230) and evidence for a new vector charmoniumlike state Y(4710) in e+eKS0KS0J/ψe^{+}e^{-}\to K^{0}_{S}K^{0}_{S}J/\psi, Phys. Rev. D 107, no.9, 092005 (2023).
  • [6] M. Ablikim et al. [BESIII], Precise Measurement of the e+eDs+Dse^{+}e^{-}\to D_{s}^{*+}D_{s}^{*-} Cross Sections at Center-of-Mass Energies from Threshold to 4.95 GeV, Phys. Rev. Lett. 131, 151903 (2023).
  • [7] F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao and B. S. Zou, Hadronic molecules, Rev. Mod. Phys. 90, 015004 (2018) [erratum: Rev. Mod. Phys. 94, no.2, 029901 (2022)]
  • [8] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, The XYZXYZ states: experimental and theoretical status and perspectives, Phys. Rept. 873, 1-154 (2020).
  • [9] H. X. Chen, W. Chen, X. Liu, Y. R. Liu and S. L. Zhu, An updated review of the new hadron states, Rept. Prog. Phys. 86, 026201 (2023).
  • [10] H. X. Chen, W. Chen, X. Liu and S. L. Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rept. 639, 1-121 (2016).
  • [11] Y. R. Liu, H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Pentaquark and Tetraquark states, Prog. Part. Nucl. Phys. 107, 237-320 (2019).
  • [12] S. L. Olsen, T. Skwarnicki and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90, 015003 (2018).
  • [13] R. F. Lebed, R. E. Mitchell and E. S. Swanson, Heavy-Quark QCD Exotica, Prog. Part. Nucl. Phys. 93, 143-194 (2017).
  • [14] A. Esposito, A. Pilloni and A. D. Polosa, Multiquark Resonances, Phys. Rept. 668, 1-97 (2017).
  • [15] A. Ali, J. S. Lange and S. Stone, Exotics: Heavy Pentaquarks and Tetraquarks, Prog. Part. Nucl. Phys. 97, 123-198 (2017).
  • [16] X. K. Dong, F. K. Guo and B. S. Zou, A survey of heavy–heavy hadronic molecules, Commun. Theor. Phys. 73, no.12, 125201 (2021).
  • [17] E. Eichten, K. Gottfried, T. Kinoshita, J. B. Kogut, K. D. Lane and T. M. Yan, The Spectrum of Charmonium, Phys. Rev. Lett. 34, 369-372 (1975) [erratum: Phys. Rev. Lett. 36, 1276 (1976)].
  • [18] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane and T. M. Yan, Charmonium: The Model, Phys. Rev. D 17, 3090 (1978) [erratum: Phys. Rev. D 21, 313 (1980)].
  • [19] S. Godfrey and N. Isgur, Mesons in a Relativized Quark Model with Chromodynamics, Phys. Rev. D 32, 189-231 (1985).
  • [20] T. Barnes, S. Godfrey and E. S. Swanson, Higher charmonia, Phys. Rev. D 72, 054026 (2005).
  • [21] D. Ebert, R. N. Faustov and V. O. Galkin, Spectroscopy and Regge trajectories of heavy quarkonia and BcB_{c} mesons, Eur. Phys. J. C 71, 1825 (2011).
  • [22] K. Heikkila, S. Ono and N. A. Tornqvist, Heavy cc¯c\bar{c} and bb¯b\bar{b} quarkonium states and unitarity effects, Phys. Rev. D 29, 110 (1984) [erratum: Phys. Rev. D 29, 2136 (1984)].
  • [23] Y. S. Kalashnikova, Coupled-channel model for charmonium levels and an option for X(3872)X(3872), Phys. Rev. D 72, 034010 (2005).
  • [24] T. Barnes and E. S. Swanson, Hadron loops: General theorems and application to charmonium, Phys. Rev. C 77, 055206 (2008) [arXiv:0711.2080 [hep-ph]].
  • [25] M. R. Pennington and D. J. Wilson, Decay channels and charmonium mass-shifts, Phys. Rev. D 76, 077502 (2007).
  • [26] B. Q. Li, C. Meng and K. T. Chao, Coupled-Channel and Screening Effects in Charmonium Spectrum, Phys. Rev. D 80, 014012 (2009) [arXiv:0904.4068 [hep-ph]].
  • [27] J. Ferretti, G. Galatà and E. Santopinto, Interpretation of the X(3872) as a charmonium state plus an extra component due to the coupling to the meson-meson continuum, Phys. Rev. C 88, 015207 (2013) [arXiv:1302.6857 [hep-ph]].
  • [28] Z. Y. Zhou and Z. Xiao, Comprehending heavy charmonia and their decays by hadron loop effects, Eur. Phys. J. A 50, 165 (2014).
  • [29] Y. Lu, M. N. Anwar and B. S. Zou, X(4260)X(4260) Revisited: A Coupled Channel Perspective, Phys. Rev. D 96, 114022 (2017).
  • [30] J. Ferretti and E. Santopinto, Threshold corrections of χc(2P)\chi_{c}(2P) and χb(3P)\chi_{b}(3P) states and J/ψρJ/\psi\rho and J/ψωJ/\psi\omega transitions of the χ(3872)\chi(3872) in a coupled-channel model, Phys. Lett. B 789, 550-555 (2019).
  • [31] H. F. Fu and L. Jiang, Coupled-channel-induced SDS{-}D mixing of Charmonia and testing possible assignments for YY(4260) and YY(4360), Eur. Phys. J. C 79, 460 (2019).
  • [32] P. G. Ortega, D. R. Entem and F. Fernández, Unquenching the Quark Model in a Nonperturbative Scheme, Adv. High Energy Phys. 2019, 3465159 (2019).
  • [33] J. Ferretti, E. Santopinto, M. N. Anwar and Y. Lu, Quark structure of the χc(3P)\chi_{\mathrm{c}}(3P) and X(4274)X(4274) resonances and their strong and radiative decays, Eur. Phys. J. C 80, 464 (2020).
  • [34] J. Ferretti and E. Santopinto, Quark Structure of the X(4500)X(4500), X(4700)X(4700) and χc(4P,5P)\chi_{c}(4P,5P) States, Front. in Phys. 9, 76 (2021).
  • [35] M. N. Anwar and Y. Lu, Heavy quark spin partners of the Y(4260) in coupled-channel formalism, Phys. Rev. D 104, 094006 (2021).
  • [36] M. X. Duan and X. Liu, Where are 3P and higher P-wave states in the charmonium family?, Phys. Rev. D 104, 074010 (2021).
  • [37] R. Bruschini and P. González, Diabatic description of charmoniumlike mesons II: mass corrections and strong decay widths, Phys. Rev. D 103, 074009 (2021).
  • [38] S. Kanwal, F. Akram, B. Masud and E. S. Swanson, Charmonium spectrum in an unquenched quark model, Eur. Phys. J. A 58, 219 (2022).
  • [39] X. Chen, Y. Tan and Y. Yang, Charmonium mass shifts in an unquenched quark model, Eur. Phys. J. Plus 138, 653 (2023).
  • [40] Y. B. Ding, K. T. Chao and D. H. Qin, Screened QQ¯Q\bar{Q} potential and spectrum of heavy quarkonium, Chin. Phys. Lett. 10, 460-463 (1993).
  • [41] Y. B. Dong, Color screening potential and dissolution of heavy quarkonium, Int. J. Mod. Phys. E 5, 643-648 (1996).
  • [42] B. Q. Li and K. T. Chao, Higher Charmonia and X,Y,Z states with Screened Potential, Phys. Rev. D 79, 094004 (2009).
  • [43] W. J. Deng, H. Liu, L. C. Gui and X. H. Zhong, Charmonium spectrum and their electromagnetic transitions with higher multipole contributions, Phys. Rev. D 95, 034026 (2017).
  • [44] J. Z. Wang, D. Y. Chen, X. Liu and T. Matsuki, Constructing J/ψJ/\psi family with updated data of charmoniumlike YY states, Phys. Rev. D 99, 114003 (2019).
  • [45] J. J. Dudek, R. G. Edwards, N. Mathur and D. G. Richards, Charmonium excited state spectrum in lattice QCD, Phys. Rev. D 77, 034501 (2008).
  • [46] L. Liu et al. [Hadron Spectrum], Excited and exotic charmonium spectroscopy from lattice QCD, JHEP 07, 126 (2012).
  • [47] C. DeTar, Charmonium Spectroscopy from Lattice QCD, Int. J. Mod. Phys. Conf. Ser. 02, 31-35 (2011).
  • [48] G. S. Bali, S. Collins and C. Ehmann, Charmonium spectroscopy and mixing with light quark and open charm states from nFn_{F}=2 lattice QCD, Phys. Rev. D 84, 094506 (2011).
  • [49] C. B. Lang, L. Leskovec, D. Mohler and S. Prelovsek, Vector and scalar charmonium resonances with lattice QCD, JHEP 09, 089 (2015).
  • [50] D. J. Wilson, C. E. Thomas, J. J. Dudek and R. G. Edwards, Scalar and tensor charmonium resonances in coupled-channel scattering from QCD, [arXiv:2309.14070 [hep-lat]].
  • [51] D. J. Wilson, C. E. Thomas, J. J. Dudek and R. G. Edwards, Charmonium χc0\chi_{c0} and χc2\chi_{c2} resonances in coupled-channel scattering from lattice QCD, [arXiv:2309.14071 [hep-lat]].
  • [52] R. H. Ni, J. J. Wu and X. H. Zhong, Unified unquenched quark model for heavy-light mesons with chiral dynamics, [arXiv:2312.04765 [hep-ph]].
  • [53] L. Micu, Decay rates of meson resonances in a quark model, Nucl. Phys. B 10, 521-526 (1969).
  • [54] A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Naive quark pair creation model of strong interaction vertices, Phys. Rev. D 8, 2223-2234 (1973).
  • [55] A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Naive quark pair creation model and baryon decays, Phys. Rev. D 9, 1415-1419 (1974).
  • [56] D. Morel and S. Capstick, Baryon meson loop effects on the spectrum of nonstrange baryons, [arXiv:nucl-th/0204014 [nucl-th]].
  • [57] B. Silvestre- Brac and C. Gignoux, Unitary effects in spin orbit splitting of P wave baryons, Phys. Rev. D 43, 3699-3708 (1991).
  • [58] P. G. Ortega, J. Segovia, D. R. Entem and F. Fernandez, Molecular components in P-wave charmed-strange mesons, Phys. Rev. D 94, no.7, 074037 (2016).
  • [59] P. G. Ortega, J. Segovia, D. R. Entem and F. Fernández, Threshold effects in P-wave bottom-strange mesons, Phys. Rev. D 95, no.3, 034010 (2017).
  • [60] Z. Yang, G. J. Wang, J. J. Wu, M. Oka and S. L. Zhu, Novel Coupled Channel Framework Connecting the Quark Model and Lattice QCD for the Near-threshold Ds States, Phys. Rev. Lett. 128, 112001 (2022).
  • [61] Z. Yang, G. J. Wang, J. J. Wu, M. Oka and S. L. Zhu, The investigations of the P-wave Bs states combining quark model and lattice QCD in the coupled channel framework, JHEP 01, 058 (2023).
  • [62] H. H. Zhong, R. H. Ni, M. Y. Chen, X. H. Zhong and J. J. Xie, Further study of Ω|1P3/2\Omega^{*}|1P_{3/2^{-}}\rangle within a chiral quark model, Chin. Phys. C 47, 063104 (2023).
  • [63] S. Godfrey, Spectroscopy of BcB_{c} mesons in the relativized quark model, Phys. Rev. D 70, 054017 (2004).
  • [64] Q. Li, M. S. Liu, L. S. Lu, Q. F. Lü, L. C. Gui and X. H. Zhong, Excited bottom-charmed mesons in a nonrelativistic quark model, Phys. Rev. D 99, 096020 (2019).
  • [65] E. Hiyama, Y. Kino and M. Kamimura, Gaussian expansion method for few-body systems, Prog. Part. Nucl. Phys. 51, 223-307 (2003).
  • [66] Z. Y. Zhou and Z. Xiao, Hadron loops effect on mass shifts of the charmed and charmed-strange spectra, Phys. Rev. D 84, 034023 (2011).
  • [67] R. H. Ni, Q. Li and X. H. Zhong, Mass spectra and strong decays of charmed and charmed-strange mesons, Phys. Rev. D 105, 056006 (2022).
  • [68] Q. li, R. H. Ni and X. H. Zhong, Towards establishing an abundant BB and BsB_{s} spectrum up to the second orbital excitations, Phys. Rev. D 103, 116010 (2021).
  • [69] W. J. Deng, H. Liu, L. C. Gui and X. H. Zhong, Spectrum and electromagnetic transitions of bottomonium, Phys. Rev. D 95, 074002 (2017).
  • [70] Q. Li, L. C. Gui, M. S. Liu, Q. F. Lü and X. H. Zhong, Mass spectrum and strong decays of strangeonium in a constituent quark model, Chin. Phys. C 45, 023116 (2021).
  • [71] B. Aubert et al. [BaBar], Exclusive Initial-State-Radiation Production of the DD¯D\bar{D}, DD¯D^{*}\bar{D}, and DD¯D^{*}\bar{D}^{*} Systems, Phys. Rev. D 79, 092001 (2009).
  • [72] K. Abe et al. [Belle], Measurement of the near-threshold e+eD()±D()e^{+}e^{-}\to D^{(*)\pm}D^{(*)\mp} cross section using initial-state radiation, Phys. Rev. Lett. 98, 092001 (2007).
  • [73] J. Z. Wang and X. Liu, Identifying a characterized energy level structure of higher charmonium well matched to the peak structures in e+eπ+D0De^{+}e^{-}\to\pi^{+}D^{0}D^{*-}, [arXiv:2306.14695 [hep-ph]].
  • [74] J. Z. Wang and X. Liu, Confirming the existence of a new higher charmonium ψ(4500)\psi(4500) by the newly released data of e+eK+KJ/ψe^{+}e^{-}\to K^{+}K^{-}J/\psi, Phys. Rev. D 107, 054016 (2023).
  • [75] L. C. Gui, L. S. Lu, Q. F. Lü, X. H. Zhong and Q. Zhao, Strong decays of higher charmonium states into open-charm meson pairs, Phys. Rev. D 98, 016010 (2018).
  • [76] X. L. Wang et al. [Belle], Measurement of e+eπ+πψ(2S)e^{+}e^{-}\to\pi^{+}\pi^{-}\psi(2S) via Initial State Radiation at Belle, Phys. Rev. D 91, 112007 (2015).
  • [77] M. Ablikim et al. [BESIII], Observation of a vector charmoniumlike state at 4.7 GeV/c2{\rm GeV}/c^{2} and search for ZcsZ_{cs} in e+eK+KJ/ψe^{+}e^{-}\to K^{+}K^{-}J/\psi, Phys. Rev. Lett. 131, 211902 (2023).
  • [78] G. J. Ding, J. J. Zhu and M. L. Yan, Canonical Charmonium Interpretation for Y(4360) and Y(4660), Phys. Rev. D 77, 014033 (2008).
  • [79] J. Segovia, A. M. Yasser, D. R. Entem and F. Fernandez, JPC=1J^{PC}=1^{--} hidden charm resonances, Phys. Rev. D 78, 114033 (2008).
  • [80] Z. Zhao, K. Xu, A. Limphirat, W. Sreethawong, N. Tagsinsit, A. Kaewsnod, X. Liu, K. Khosonthongkee, S. Cheedket and Y. Yan, Mass spectrum of 11^{--} heavy quarkonium, [arXiv:2304.06243 [hep-ph]].
  • [81] M. X. Duan, S. Q. Luo, X. Liu and T. Matsuki, Possibility of charmoniumlike state X(3915)X(3915) as χc0(2P)\chi_{c0}(2P) state, Phys. Rev. D 101, 054029 (2020).
  • [82] X. Liu, Z. G. Luo and Z. F. Sun, X(3915) and X(4350) as new members in P-wave charmonium family, Phys. Rev. Lett. 104, 122001 (2010).
  • [83] R. Aaij et al. [LHCb], Amplitude analysis of the B+D+DK+B^{+}\to D^{+}D^{-}K^{+} decay, Phys. Rev. D 102, 112003 (2020).
  • [84] S. Uehara et al. [Belle], Observation of a charmonium-like enhancement in the γγtoωJ/ψ\gamma\gamma to\omega J/\psi process, Phys. Rev. Lett. 104, 092001 (2010).
  • [85] K. Abe et al. [Belle], Observation of a near-threshold ωJ/ψ\omega J/\psi mass enhancement in exclusive BKωJ/ψB\to K\omega J/\psi decays, Phys. Rev. Lett. 94, 182002 (2005).
  • [86] J. P. Lees et al. [BaBar], Study of X(3915)J/ψωX(3915)\to J/\psi\omega in two-photon collisions, Phys. Rev. D 86, 072002 (2012).
  • [87] B. Aubert et al. [BaBar], Observation of Y(3940)Y(3940) J/ψω\to J/\psi\omega in BJ/ψωKB\to J/\psi\omega K at BABAR, Phys. Rev. Lett. 101, 082001 (2008).
  • [88] F. K. Guo and U. G. Meissner, Where is the χc0(2P)\chi_{c0}(2P)?, Phys. Rev. D 86, 091501 (2012).
  • [89] K. Chilikin et al. [Belle], Observation of an alternative χc0(2P)\chi_{c0}(2P) candidate in e+eJ/ψDD¯e^{+}e^{-}\rightarrow J/\psi D\bar{D}, Phys. Rev. D 95, 112003 (2017).
  • [90] Y. F. Wang, U. G. Meißner, D. Rönchen and C. W. Shen, On the nature of the NN^{*} and Δ\Delta resonances via coupled-channel dynamics, [arXiv:2307.06799 [nucl-th]].
  • [91] V. Baru, J. Haidenbauer, C. Hanhart, Y. Kalashnikova and A. E. Kudryavtsev, Evidence that the a0(980)a_{0}(980) and f0(980)f_{0}(980) are not elementary particles, Phys. Lett. B 586, 53-61 (2004).
  • [92] Y. S. Kalashnikova and A. V. Nefediev, Nature of X(3872) from data, Phys. Rev. D 80, 074004 (2009).
  • [93] F. Giacosa, M. Piotrowska and S. Coito, X(3872)X(3872) as virtual companion pole of the charm–anticharm state χc1(2P)\chi_{c1}(2P), Int. J. Mod. Phys. A 34, 1950173 (2019).
  • [94] P. G. Ortega, J. Segovia, D. R. Entem and F. Fernandez, Coupled channel approach to the structure of the X(3872), Phys. Rev. D 81, 054023 (2010).
  • [95] Z. Y. Zhou and Z. Xiao, Understanding X(3862)X(3862), X(3872)X(3872), and X(3930)X(3930) in a Friedrichs-model-like scheme, Phys. Rev. D 96, 054031 (2017) [erratum: Phys. Rev. D 96, 099905 (2017)].
  • [96] S. Coito, G. Rupp and E. van Beveren, X(3872)X(3872) is not a true molecule, Eur. Phys. J. C 73, 2351 (2013).
  • [97] C. Meng and K. T. Chao, Decays of the X(3872)X(3872) and χc1(2P)\chi_{c1}(2P) charmonium, Phys. Rev. D 75, 114002 (2007).
  • [98] C. Meng, J. J. Sanz-Cillero, M. Shi, D. L. Yao and H. Q. Zheng, Refined analysis on the X(3872) resonance, Phys. Rev. D 92, no.3, 034020 (2015).
  • [99] J. Ferretti, G. Galatà and E. Santopinto, Quark structure of the X(3872)X(3872) and χb(3P)\chi_{b}(3P) resonances, Phys. Rev. D 90, no.5, 054010 (2014).
  • [100] Z. Y. Zhou and Z. Xiao, Comprehending Isospin breaking effects of X(3872)X(3872) in a Friedrichs-model-like scheme, Phys. Rev. D 97, 034011 (2018).
  • [101] G. J. Wang, Z. Yang, J. J. Wu, M. Oka and S. L. Zhu, New insight into the exotic states strongly coupled with the DD¯D\bar{D}^{*} from the Tcc+T^{+}_{cc}, [arXiv:2306.12406 [hep-ph]].
  • [102] T. Aaltonen et al. [CDF], Observation of the Y(4140)Y(4140) Structure in the J/ψϕJ/\psi\phi Mass Spectrum in B±J/ψϕK±B^{\pm}\to J/\psi\phi K^{\pm} Decays, Mod. Phys. Lett. A 32, 1750139 (2017).
  • [103] R. Aaij et al. [LHCb], Observation of New Resonances Decaying to J/ψK+J/\psi K^{+}+ and J/ψϕJ/\psi\phi, Phys. Rev. Lett. 127, 082001 (2021).
  • [104] R. Aaij et al. [LHCb], Observation of J/ψϕJ/\psi\phi structures consistent with exotic states from amplitude analysis of B+J/ψϕK+B^{+}\to J/\psi\phi K^{+} decays, Phys. Rev. Lett. 118, 022003 (2017).
  • [105] R. Aaij et al. [LHCb], Amplitude analysis of B+J/ψϕK+B^{+}\to J/\psi\phi K^{+} decays, Phys. Rev. D 95, 012002 (2017).
  • [106] Z. H. Wang and G. L. Wang, Two-body strong decays of the 2P and 3P charmonium states, Phys. Rev. D 106, no.5, 054037 (2022).
  • [107] Q. F. Lü and Y. B. Dong, X(4140) , X(4274) , X(4500) , and X(4700) in the relativized quark model, Phys. Rev. D 94, no.7, 074007 (2016).
  • [108] C. P. Shen et al. [Belle], Evidence for a new resonance and search for the Y(4140)Y(4140) in the γγϕJ/ψ\gamma\gamma\to\phi J/\psi process, Phys. Rev. Lett. 104, 112004 (2010).
  • [109] R. Aaij et al. [LHCb], First observation of the B+Ds+DsK+B^{+}\to D_{s}^{+}D_{s}^{-}K^{+} decay, Phys. Rev. D 108, 034012 (2023).
  • [110] R. Aaij et al. [LHCb], Observation of a Resonant Structure near the Ds+Ds- Threshold in the B+Ds+DsK+B^{+}\to D_{s}^{+}D_{s}^{-}K^{+} Decay, Phys. Rev. Lett. 131, 071901 (2023).
  • [111] N. R. Soni, B. R. Joshi, R. P. Shah, H. R. Chauhan and J. N. Pandya, QQ¯Q\bar{Q} ( Q{b,c}Q\in\{b,c\} ) spectroscopy using the Cornell potential, Eur. Phys. J. C 78, 592 (2018).
  • [112] R. Chaturvedi and A. K. Rai, Charmonium spectroscopy motivated by general features of pNRQCD, Int. J. Theor. Phys. 59, 3508-3532 (2020).
  • [113] M. A. Sultan, N. Akbar, B. Masud and F. Akram, Higher Hybrid Charmonia in an Extended Potential Model, Phys. Rev. D 90, 054001 (2014).
  • [114] H. Mansour and A. Gamal, Meson spectra using Nikiforov-Uvarov method, Results Phys. 33, 105203 (2022).
  • [115] Z. Y. Fang, Y. R. Wang and C. Q. Pang, QQ¯(Q{b,c})Q\bar{Q}(Q\in\{b,c\}) Spectroscopy Using the Modified Rovibrational Model, Phys. Part. Nucl. Lett. 20, 589-597 (2023).
  • [116] L. Cao, Y. C. Yang and H. Chen, Charmonium states in QCD-inspired quark potential model using Gaussian expansion method, Few Body Syst. 53, 327-342 (2012).
  • [117] R. Aaij et al. [LHCb], Study of Bs0Jψπ+πK+KB^{0}_{s}\to J\psi\pi^{+}\pi^{-}K^{+}K^{-} decays, JHEP 02, 024 (2021) [erratum: JHEP 04, 170 (2021)].
  • [118] M. Ablikim et al. [BESIII], Search for new decay modes of the ψ2(3823)\psi_{2}(3823) and the process e+eπ0π0ψ2(3823)e^{+}e^{-}\rightarrow\pi^{0}\pi^{0}\psi_{2}(3823), Phys. Rev. D 103, L091102 (2021).
  • [119] E. J. Eichten, K. Lane and C. Quigg, B Meson Gateways to Missing Charmonium Levels, Phys. Rev. Lett. 89, 162002 (2002).
  • [120] H. Xu, X. Liu and T. Matsuki, Understanding BX(3823)KB^{-}\rightarrow X(3823)K^{-} via rescattering mechanism and predicting Bηc2(1D2)/ψ3(3D3)KB^{-}\to\eta_{c2}(^{1}D_{2})/\psi_{3}(^{3}D_{3})K^{-}, Phys. Rev. D 94, no.3, 034005 (2016).
  • [121] Y. Fan, Z. G. He, Y. Q. Ma and K. T. Chao, Predictions of Light Hadronic Decays of Heavy Quarkonium 1D21D_{2} States in NRQCD, Phys. Rev. D 80, 014001 (2009).
  • [122] E. J. Eichten, K. Lane and C. Quigg, New states above charm threshold, Phys. Rev. D 73, 014014 (2006) [erratum: Phys. Rev. D 73, 079903 (2006)].
  • [123] J. Segovia, D. R. Entem and F. Fernandez, Strong charmonium decays in a microscopic model, Nucl. Phys. A 915, 125-141 (2013).
  • [124] P. Pakhlov et al. [Belle], Production of New Charmoniumlike States in e+eJ/ψD()D¯()e^{+}e^{-}\to J/\psi D^{(*)}\bar{D}^{(*)} at s10.6\sqrt{s}\approx 10.6 GeV, Phys. Rev. Lett. 100, 202001 (2008).
  • [125] V. Kher and A. K. Rai, Spectroscopy and decay properties of charmonium, Chin. Phys. C 42, 083101 (2018).
  • [126] M. Shah, A. Parmar and P. C. Vinodkumar, Leptonic and Digamma decay Properties of S-wave quarkonia states, Phys. Rev. D 86, 034015 (2012).