This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Charmed Ωc\Omega_{c} weak decays into Ω\Omega in the light-front quark model

Yu-Kuo Hsiao [email protected] School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China    Ling Yang [email protected] School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China    Chong-Chung Lih [email protected] Department of Optometry, Central Taiwan University of Science and Technology, Taichung 40601    Shang-Yuu Tsai [email protected] School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China
Abstract

More than ten Ωc0\Omega_{c}^{0} weak decay modes have been measured with the branching fractions relative to that of Ωc0Ωπ+\Omega^{0}_{c}\to\Omega^{-}\pi^{+}. In order to extract the absolute branching fractions, the study of Ωc0Ωπ+\Omega^{0}_{c}\to\Omega^{-}\pi^{+} is needed. In this work, we predict π(Ωc0Ωπ+)=(5.1±0.7)×103{\cal B}_{\pi}\equiv{\cal B}(\Omega_{c}^{0}\to\Omega^{-}\pi^{+})=(5.1\pm 0.7)\times 10^{-3} with the Ωc0Ω\Omega_{c}^{0}\to\Omega^{-} transition form factors calculated in the light-front quark model. We also predict ρ(Ωc0Ωρ+)=(14.4±0.4)×103{\cal B}_{\rho}\equiv{\cal B}(\Omega_{c}^{0}\to\Omega^{-}\rho^{+})=(14.4\pm 0.4)\times 10^{-3} and e(Ωc0Ωe+νe)=(5.4±0.2)×103{\cal B}_{e}\equiv{\cal B}(\Omega_{c}^{0}\to\Omega^{-}e^{+}\nu_{e})=(5.4\pm 0.2)\times 10^{-3}. The previous values for ρ/π{\cal B}_{\rho}/{\cal B}_{\pi} have been found to deviate from the most recent observation. Nonetheless, our ρ/π=2.8±0.4{\cal B}_{\rho}/{\cal B}_{\pi}=2.8\pm 0.4 is able to alleviate the deviation. Moreover, we obtain e/π=1.1±0.2{\cal B}_{e}/{\cal B}_{\pi}=1.1\pm 0.2, which is consistent with the current data.

I Introduction

The lowest-lying singly charmed baryons include the anti-triplet and sextet states 𝐁c=(Λc+,Ξc0,Ξc+){\bf B}_{c}=(\Lambda_{c}^{+},\Xi_{c}^{0},\Xi_{c}^{+}) and 𝐁c=(Σc(0,+,++),Ξc(0,+),Ωc0){\bf B}^{\prime}_{c}=(\Sigma_{c}^{(0,+,++)},\Xi_{c}^{{}^{\prime}(0,+)},\Omega_{c}^{0}), respectively. The 𝐁c{\bf B}_{c} and Ωc0\Omega_{c}^{0} baryons predominantly decay weakly CroninHennessy:2000bz ; Ammar:2002pf ; Aubert:2007bt ; Yelton:2017uzv ; pdg , whereas the Σc\Sigma_{c} (Ξc\Xi^{\prime}_{c}) decays are strong (electromagnetic) processes. There have been more accurate observations for the 𝐁c{\bf B}_{c} weak decays in the recent years, which have helped to improve the theoretical understanding of the decay processes Lu:2016ogy ; Geng:2017esc ; Geng:2018plk ; Geng:2018upx ; Hsiao:2019yur ; Zhao:2018mov ; Zou:2019kzq ; Hsiao:2020iwc ; Niu:2020gjw . With the lower production cross section of σ(e+eΩc0X)\sigma(e^{+}e^{-}\to\Omega_{c}^{0}X) Yelton:2017uzv , it is an uneasy task to measure Ωc0\Omega_{c}^{0} decays. Consequently, most of the Ωc0\Omega_{c}^{0} decays have not been reanalysized since 1990s AvilaAoki:1989yi ; PerezMarcial:1989yh ; Singleton:1990ye ; Hussain:1990ai ; Korner:1992wi ; Xu:1992sw ; Cheng:1993gf ; Cheng:1996cs ; Ivanov:1997ra , except for those in Pervin:2006ie ; Dhir:2015tja ; Zhao:2018zcb ; Gutsche:2018utw ; Hu:2020nkg ; Geng:2017mxn .

One still manages to measure more than ten Ωc0\Omega_{c}^{0} decays, such as Ωc0Ωρ+\Omega_{c}^{0}\to\Omega^{-}\rho^{+}, Ξ0K¯()0\Xi^{0}\bar{K}^{(*)0} and Ω+ν\Omega^{-}\ell^{+}\nu_{\ell}, but with the branching fractions relative to (Ωc0Ωπ+){\cal B}(\Omega_{c}^{0}\to\Omega^{-}\pi^{+}) pdg . To extract the absolute branching fractions, the study of Ωc0Ωπ+\Omega_{c}^{0}\to\Omega^{-}\pi^{+} is crucial. Fortunately, the Ωc0Ωπ+\Omega_{c}^{0}\to\Omega^{-}\pi^{+} decay involves a simple topology, which benefits its theoretical exploration. In Fig. 1a, Ωc0Ωπ+\Omega_{c}^{0}\to\Omega^{-}\pi^{+} is depicted to proceed through the Ωc0Ω\Omega_{c}^{0}\to\Omega^{-} transition, while π+\pi^{+} is produced from the external WW-boson emission. Since it is a Cabibbo-allowed process with VcsVud1V_{cs}^{*}V_{ud}\simeq 1, a larger branching fraction is promising for measurements. Furthermore, it can be seen that Ωc0Ωπ+\Omega_{c}^{0}\to\Omega^{-}\pi^{+} has a similar configuration to those of Ωc0Ωρ+\Omega_{c}^{0}\to\Omega^{-}\rho^{+} and Ωc0Ω+ν\Omega_{c}^{0}\to\Omega^{-}\ell^{+}\nu_{\ell}, as drawn in Fig. 1, indicating that the three Ωc0\Omega_{c}^{0} decays are all associated with the Ωc0Ω\Omega_{c}^{0}\to\Omega^{-} transition. While Ω\Omega is a decuplet baryon that consists of the totally symmetric identical quarks ssssss, behaving as a spin-3/2 particle, the form factors of the Ωc0Ω\Omega_{c}^{0}\to\Omega^{-} transition can be more complicated, which hinders the calculation for the decays. As a result, a careful investigation that relates Ωc0Ωπ+,Ωρ+\Omega_{c}^{0}\to\Omega^{-}\pi^{+},\Omega^{-}\rho^{+} and Ωc0Ω+ν\Omega_{c}^{0}\to\Omega^{-}\ell^{+}\nu_{\ell} has not been given yet, despite the fact that the topology associates them together.

Based on the quark models, it is possible to study the Ωc0\Omega_{c}^{0} decays into Ω\Omega^{-} with the Ωc0Ω\Omega_{c}^{0}\to\Omega^{-} transition form factors. However, the validity of theoretical approach needs to be tested, which depends on if the observations, given by

(Ωc0Ωρ+)(Ωc0Ωπ+)\displaystyle\frac{{\cal B}(\Omega_{c}^{0}\to\Omega^{-}\rho^{+})}{{\cal B}(\Omega_{c}^{0}\to\Omega^{-}\pi^{+})} =\displaystyle= 1.7±0.3Yelton:2017uzv (>1.3pdg ),\displaystyle 1.7\pm 0.3\,\text{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{Yelton:2017uzv}{\@@citephrase{(}}{\@@citephrase{)}}}}\,(>1.3\,\text{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{pdg}{\@@citephrase{(}}{\@@citephrase{)}}}})\,,
(Ωc0Ωe+νe)(Ωc0Ωπ+)\displaystyle\frac{{\cal B}(\Omega_{c}^{0}\to\Omega^{-}e^{+}\nu_{e})}{{\cal B}(\Omega_{c}^{0}\to\Omega^{-}\pi^{+})} =\displaystyle= 2.4±1.2pdg ,\displaystyle 2.4\pm 1.2\,\text{\cite[cite]{\@@bibref{Authors Phrase1YearPhrase2}{pdg}{\@@citephrase{(}}{\@@citephrase{)}}}}\,, (1)

can be interpreted. Since the light-front quark model has been successfully applied to the heavy hadron decays Zhao:2018zcb ; Bakker:2003up ; Ji:2000rd ; Bakker:2002aw ; Choi:2013ira ; Cheng:2003sm ; Schlumpf:1992vq ; Hsiao:2019wyd ; Jaus:1991cy ; Melosh:1974cu ; Dosch:1988hu ; Zhao:2018mrg ; Geng:2013yfa ; Geng:2000if ; Ke:2012wa ; Ke:2017eqo ; Ke:2019smy ; Hu:2020mxk , in this report we will use it to study the Ωc0Ω\Omega_{c}^{0}\to\Omega^{-} transition form factors. Accordingly, we will be enabled to calculate the absolute branching fractions of Ωc0Ωπ+(ρ+)\Omega_{c}^{0}\to\Omega^{-}\pi^{+}(\rho^{+}) and Ωc0Ω+ν\Omega_{c}^{0}\to\Omega^{-}\ell^{+}\nu_{\ell}, and check if the two ratios in Eq. (I) can be well explained.

Refer to caption
Refer to caption
Figure 1: Feynman diagrams for (a) Ωc0Ωπ+(ρ+)\Omega_{c}^{0}\to\Omega^{-}\pi^{+}(\rho^{+}) and (b) Ωc0Ω+ν\Omega_{c}^{0}\to\Omega^{-}\ell^{+}\nu_{\ell} with +=e+\ell^{+}=e^{+} or μ+\mu^{+}.

II Theoretical Framework

II.1 General Formalism

To start with, we present the effective weak Hamiltonians H,L{\cal H}_{H,L} for the hadronic and semileptonic charmed baryon decays, respectively Buchalla:1995vs :

H\displaystyle{\cal H}_{H} =\displaystyle= GF2VcsVud[c1(u¯d)(s¯c)+c2(s¯d)(u¯c)],\displaystyle\frac{G_{F}}{\sqrt{2}}V_{cs}^{*}V_{ud}[c_{1}(\bar{u}d)(\bar{s}c)+c_{2}(\bar{s}d)(\bar{u}c)]\,,
L\displaystyle{\cal H}_{L} =\displaystyle= GF2Vcs(s¯c)(u¯νv),\displaystyle\frac{G_{F}}{\sqrt{2}}V_{cs}^{*}(\bar{s}c)(\bar{u}_{\nu}v_{\ell})\,, (2)

where GFG_{F} is the Fermi constant, VijV_{ij} the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements, c1,2c_{1,2} the effective Wilson coefficients, (q¯1q2)q¯1γμ(1γ5)q2(\bar{q}_{1}q_{2})\equiv\bar{q}_{1}\gamma_{\mu}(1-\gamma_{5})q_{2} and (u¯νv)u¯νγμ(1γ5)v(\bar{u}_{\nu}v_{\ell})\equiv\bar{u}_{\nu}\gamma^{\mu}(1-\gamma_{5})v_{\ell}. In terms of H,L{\cal H}_{H,L}, we derive the amplitudes of Ωc0Ωπ+(ρ+)\Omega_{c}^{0}\to\Omega^{-}\pi^{+}(\rho^{+}) and Ωc0Ω+ν\Omega_{c}^{0}\to\Omega^{-}\ell^{+}\nu_{\ell} as Hsiao:2017umx ; Hsiao:2018zqd

h(Ωc0Ωh+)\displaystyle{\cal M}_{h}\equiv{\cal M}(\Omega_{c}^{0}\to\Omega^{-}h^{+}) =\displaystyle= GF2VcsVuda1Ω|(s¯c)|Ωc0h+|(u¯d)|0,\displaystyle\frac{G_{F}}{\sqrt{2}}V^{*}_{cs}V_{ud}\,a_{1}\langle\Omega^{-}|(\bar{s}c)|\Omega_{c}^{0}\rangle\langle h^{+}|(\bar{u}d)|0\rangle\,,
(Ωc0Ω+ν)\displaystyle{\cal M}_{\ell}\equiv{\cal M}(\Omega_{c}^{0}\to\Omega^{-}\ell^{+}\nu_{\ell}) =\displaystyle= GF2VcsΩ|(s¯c)|Ωc0(u¯νv),\displaystyle\frac{G_{F}}{\sqrt{2}}V^{*}_{cs}\langle\Omega^{-}|(\bar{s}c)|\Omega_{c}^{0}\rangle(\bar{u}_{\nu_{\ell}}v_{\ell})\,, (3)

where h=(π,ρ)h=(\pi,\rho), =(e,μ)\ell=(e,\mu), and a1=c1+c2/Nca_{1}=c_{1}+c_{2}/N_{c} results from the factorization Hsiao:2019ann , with NcN_{c} the color number.

With 𝐁c(𝐁){\bf B}^{\prime}_{c}\,({\bf B}^{\prime}) denoting the charmed sextet (decuplet) baryon, the matrix elements of the 𝐁c𝐁{\bf B}_{c}^{\prime}\to{\bf B}^{\prime} transition can be parameterized as Zhao:2018mrg ; Gutsche:2018utw

Tμ𝐁(P,S,Sz)|q¯γμ(1γ5)c|𝐁c(P,S,Sz)\displaystyle\langle T^{\mu}\rangle\equiv\langle{\bf B}^{\prime}(P^{\,\prime},S^{\prime},S_{z}^{\prime})|\bar{q}\gamma^{\mu}(1-\gamma_{5})c|{\bf B}^{\prime}_{c}(P,S,S_{z})\rangle
=u¯α(P,Sz)[PαM(γμF1V+PμMF2V+PμMF3V)+gαμF4V]γ5u(P,Sz)\displaystyle=\bar{u}_{\alpha}(P^{\,\prime},S_{z}^{\,\prime})\left[\frac{P^{\alpha}}{M}\left(\gamma^{\mu}F^{V}_{1}+\frac{P^{\mu}}{M}F^{V}_{2}+\frac{P^{\,\prime\mu}}{M^{\prime}}F^{V}_{3}\right)+g^{\alpha\mu}F^{V}_{4}\right]\gamma_{5}u(P,S_{z})
u¯α(P,Sz)[PαM(γμF1A+PμMF2A+PμMF3A)+gαμF4A]u(P,Sz),\displaystyle\quad-\bar{u}_{\alpha}(P^{\,\prime},S_{z}^{\,\prime})\left[\frac{P^{\alpha}}{M}\left(\gamma^{\mu}F^{A}_{1}+\frac{P^{\mu}}{M}F^{A}_{2}+\frac{P^{\,\prime\mu}}{M^{\prime}}F^{A}_{3}\right)+g^{\alpha\mu}F^{A}_{4}\right]u(P,S_{z})\,, (4)

where (M,M)(M,M^{\prime}) and (S,S)=(1/2,3/2)(S,S^{\prime})=(1/2,3/2) represent the masses and spins of (𝐁c,𝐁)({\bf B}^{\prime}_{c},{\bf B}^{\prime}), respectively, and FiV,AF^{V,A}_{i} (i=1,2,..,4i=1,2,..,4) the form factors to be extracted in the light-front quark model. The matrix elements of the meson productions are defined as pdg

π(p)|(u¯d)|0=ifπqμ,\displaystyle\langle\pi(p)|(\bar{u}d)|0\rangle=if_{\pi}q^{\mu}\,,
ρ(λ)|(u¯d)|0=mρfρϵλμ,\displaystyle\langle\rho(\lambda)|(\bar{u}d)|0\rangle=m_{\rho}f_{\rho}\epsilon_{\lambda}^{\mu*}\,, (5)

where fπ(ρ)f_{\pi(\rho)} is the decay constant, and ϵλμ\epsilon_{\lambda}^{\mu} is the polarization four-vector with λ\lambda denoting the helicity state.

II.2 The light-front quark model

The baryon bound state 𝐁(c){\bf B}^{\prime}_{(c)} contains three quarks q1q_{1}, q2q_{2} and q3q_{3}, with the subscript cc for q1=cq_{1}=c. Moreover, q2q_{2} and q3q_{3} are combined as a diquark state q[2,3]q_{[2,3]}, behaving as a scalar or axial-vector. Subsequently, the baryon bound state |𝐁(c)(P,S,Sz)|{\bf B}^{\prime}_{(c)}(P,S,S_{z})\rangle in the light-front quark model can be written as Dosch:1988hu

|𝐁(c)(P,S,Sz)\displaystyle|{\bf B}^{\prime}_{(c)}(P,S,S_{z})\rangle =\displaystyle= {d3p1}{d3p2}2(2π)3δ3(P~p~1p~2)\displaystyle\int\{d^{3}p_{1}\}\{d^{3}p_{2}\}2(2\pi)^{3}\delta^{3}(\tilde{P}-\tilde{p}_{1}-\tilde{p}_{2}) (6)
×λ1,λ2ΨSSz(p~1,p~2,λ1,λ2)|q1(p1,λ1)q[2,3](p2,λ2),\displaystyle\times\sum_{\lambda_{1},\lambda_{2}}\Psi^{SS_{z}}(\tilde{p}_{1},\tilde{p}_{2},\lambda_{1},\lambda_{2})|q_{1}(p_{1},\lambda_{1})q_{[2,3]}(p_{2},\lambda_{2})\rangle\,,

where ΨSSz\Psi^{SS_{z}} is the momentum-space wave function, and (pi,λi)(p_{i},\lambda_{i}) stand for momentum and helicity of the constituent (di)quark, with i=1,2i=1,2 for q1q_{1} and q[2,3]q_{[2,3]}, respectively. The tilde notations represent that the quantities are in the light-front frame, and one defines P=(P,P+,P)P=(P^{-},P^{+},P_{\bot}) and P~=(P+,P)\tilde{P}=(P^{+},P_{\bot}), with P±=P0±P3P^{\pm}=P^{0}\pm P^{3} and P=(P1,P2)P_{\bot}=(P^{1},P^{2}). Besides, p~i\tilde{p}_{i} are given by

p~i=(pi+,pi),pi=(pi1,pi2),pi=mi2+pi2pi+,\displaystyle\tilde{p}_{i}=(p_{i}^{+},p_{i\bot})~{},\quad p_{i\bot}=(p_{i}^{1},p_{i}^{2})~{},\quad p_{i}^{-}={m_{i}^{2}+p_{i\bot}^{2}\over p_{i}^{+}}, (7)

with

m1=mq1,m2=mq1+mq2,\displaystyle m_{1}=m_{q_{1}},\quad m_{2}=m_{q_{1}}+m_{q_{2}},
p1+=(1x)P+,p2+=xP+,\displaystyle p^{+}_{1}=(1-x)P^{+},\quad p^{+}_{2}=xP^{+},
p1=(1x)Pk,p2=xP+k,\displaystyle p_{1\bot}=(1-x)P_{\bot}-k_{\bot},\quad p_{2\bot}=xP_{\bot}+k_{\bot}\,, (8)

where xx and kk_{\perp} are the light-front relative momentum variables with kk_{\perp} from k=(k,kz)\vec{k}=(k_{\perp},k_{z}), ensuring that P+=p1++p2+P^{+}=p^{+}_{1}+p^{+}_{2} and P=p1+p2P_{\bot}=p_{1\bot}+p_{2\bot}. According to eimi2+k2e_{i}\equiv\sqrt{m^{2}_{i}+\vec{k}^{2}} and M0e1+e2M_{0}\equiv e_{1}+e_{2} in the Melosh transformation Melosh:1974cu , we obtain

x=e2kze1+e2,1x=e1+kze1+e2,kz=xM02m22+k22xM0,\displaystyle x=\frac{e_{2}-k_{z}}{e_{1}+e_{2}}\,,\quad 1-x=\frac{e_{1}+k_{z}}{e_{1}+e_{2}}\,,\quad k_{z}=\frac{xM_{0}}{2}-\frac{m^{2}_{2}+k^{2}_{\perp}}{2xM_{0}}\,,
M02=m12+k21x+m22+k2x.\displaystyle M_{0}^{2}={m_{1}^{2}+k_{\bot}^{2}\over 1-x}+{m_{2}^{2}+k_{\bot}^{2}\over x}\,. (9)

Consequently, ΨSSz\Psi^{SS_{z}} can be given in the following representation Ke:2012wa ; Ke:2017eqo ; Zhao:2018mrg ; Hu:2020mxk :

ΨSSz(p~1,p~2,λ1,λ2)=A()2(p1P¯+m1M0)u¯(p1,λ1)ΓS,A(α)u(P¯,Sz)ϕ(x,k),\displaystyle\Psi^{SS_{z}}(\tilde{p}_{1},\tilde{p}_{2},\lambda_{1},\lambda_{2})=\frac{A^{(\prime)}}{\sqrt{2(p_{1}\cdot\bar{P}+m_{1}M_{0})}}\bar{u}(p_{1},\lambda_{1})\Gamma_{S,A}^{(\alpha)}u(\bar{P},S_{z})\phi(x,k_{\perp})\,, (10)

with

A=3(m1M0+p1P¯)3m1M0+p1P¯+2(p1p2)(p2P¯)/m22,\displaystyle A=\sqrt{\frac{3(m_{1}M_{0}+p_{1}\cdot\bar{P})}{3m_{1}M_{0}+p_{1}\cdot\bar{P}+2(p_{1}\cdot p_{2})(p_{2}\cdot\bar{P})/m_{2}^{2}}}\,,
ΓS=1,ΓA=13γ5ϵ/(p2,λ2),\displaystyle\Gamma_{S}=1,\;\;\Gamma_{A}=-\frac{1}{\sqrt{3}}\gamma_{5}\epsilon\!\!/^{*}(p_{2},\lambda_{2})\,,

and

A=3m22M022m22M02+(p2P¯)2,ΓAα=ϵα(p2,λ2),\displaystyle A^{\prime}=\sqrt{\frac{3m_{2}^{2}M_{0}^{2}}{2m_{2}^{2}M_{0}^{2}+(p_{2}\cdot\bar{P})^{2}}}\,,\;\;\Gamma_{A}^{\alpha}=\epsilon^{*\alpha}(p_{2},\lambda_{2})\,, (11)

where the vertex function ΓS(A)\Gamma_{S(A)} is for the scalar (axial-vector) diquark in 𝐁c{\bf B}^{\prime}_{c}, and ΓAα\Gamma_{A}^{\alpha} for the axial-vector diquark in 𝐁{\bf B}^{\prime}. We have used the variable P¯p1+p2\bar{P}\equiv p_{1}+p_{2} to describe the internal motions of the constituent quarks in the baryon Jaus:1991cy , which leads to (P¯μγμM0)u(P¯,Sz)=0(\bar{P}_{\mu}\gamma^{\mu}-M_{0})u(\bar{P},S_{z})=0, different from (PμγμM)u(P,Sz)=0(P_{\mu}\gamma^{\mu}-M)u(P,S_{z})=0. For the momentum distribution, ϕ(x,k)\phi(x,k_{\perp}) is presented as the Gaussian-type wave function, given by

ϕ(x,k)=4(πβ2)3/4e1e2x(1x)M0exp(k22β2),\displaystyle\phi(x,k_{\perp})=4\left(\frac{\pi}{\beta^{2}}\right)^{3/4}\sqrt{\frac{e_{1}e_{2}}{x(1-x)M_{0}}}\exp\left(\frac{-\vec{k}^{2}}{2\beta^{2}}\right)\,, (12)

where β\beta shapes the distribution.

Using |𝐁c(P,S,Sz)|{\bf B}^{\prime}_{c}(P,S,S_{z})\rangle and |𝐁(P,S,Sz)|{\bf B}^{\prime}(P,^{\prime}S^{\prime},S^{\prime}_{z})\rangle from Eq. (6) and their components in Eqs. (10), (11) and (12), we derive the matrix elements of the 𝐁c𝐁{\bf B}^{\prime}_{c}\to{\bf B}^{\prime} transition in Eq. (4) as

T¯μ𝐁(P,S,Sz)|q¯γμ(1γ5)c|𝐁c(P,S,Sz)\displaystyle\langle\bar{T}^{\mu}\rangle\equiv\langle{\bf B}^{\prime}(P^{\,\prime},S^{\prime},S_{z}^{\prime})|\bar{q}\gamma^{\mu}(1-\gamma_{5})c|{\bf B}^{\prime}_{c}(P,S,S_{z})\rangle
={d3p2}ϕ(x,k)ϕ(x,k)2p1+p1+(p1P¯+m1M0)(p1P¯+m1M0)\displaystyle~{}\,=\int\{d^{3}p_{2}\}\frac{\phi^{\prime}(x^{\prime},k_{\perp}^{\prime})\phi(x,k_{\perp})}{2\sqrt{p_{1}^{+}p_{1}^{\prime+}(p_{1}\cdot\bar{P}+m_{1}M_{0})(p_{1}^{\prime}\cdot\bar{P}^{\,\prime}+m_{1}^{\prime}M_{0}^{\prime})}}
×λ2u¯α(P¯,Sz)[Γ¯Aα(p/1+m1)γμ(1γ5)(p/1+m1)ΓA]u(P¯,Sz),\displaystyle\times\sum_{\lambda_{2}}\bar{u}_{\alpha}(\bar{P}^{\,\prime},S_{z}^{\,\prime})\left[\bar{\Gamma}^{\,\prime\alpha}_{A}(p\!\!/_{1}^{\prime}+m_{1}^{\prime})\gamma^{\mu}(1-\gamma_{5})(p\!\!/_{1}+m_{1})\Gamma_{A}\right]u(\bar{P},S_{z})\,, (13)

with m1=mcm_{1}=m_{c}, m1=mqm^{\prime}_{1}=m_{q} and Γ¯=γ0Γγ0\bar{\Gamma}=\gamma^{0}\Gamma^{\dagger}\gamma^{0}. We define J5jμ=u¯(Γ5μβ)juβJ_{5\,j}^{\mu}=\bar{u}(\Gamma_{5}^{\mu\beta})_{j}u_{\beta} and J¯5jμ=u¯(Γ¯5μβ)juβ\bar{J}_{5\,j}^{\mu}=\bar{u}(\bar{\Gamma}_{5}^{\mu\beta})_{j}u_{\beta} with j=1,2,,4j=1,2,...,4, where

(Γ5μβ)j={γμPβ,PμPβ,PμPβ,gμβ}γ5,\displaystyle(\Gamma_{5}^{\mu\beta})_{j}=\{\gamma^{\mu}P^{\beta},P^{\,\prime\mu}P^{\beta},P^{\mu}P^{\beta},g^{\mu\beta}\}\gamma_{5}\,,
(Γ¯5μβ)j={γμP¯β,P¯μP¯β,P¯μP¯β,gμβ}γ5.\displaystyle(\bar{\Gamma}_{5}^{\mu\beta})_{j}=\{\gamma^{\mu}\bar{P}^{\beta},\bar{P}^{\,\prime\mu}\bar{P}^{\beta},\bar{P}^{\mu}\bar{P}^{\beta},g^{\mu\beta}\}\gamma_{5}\,. (14)

Then, we multiply J5jJ_{5\,j} (J¯5j\bar{J}_{5\,j}) by T\langle T\rangle (T¯\langle\bar{T}\rangle) as F5jJ5jTF_{5\,j}\equiv J_{5\,j}\cdot\langle T\rangle and F¯5jJ¯5jT¯\bar{F}_{5\,j}\equiv\bar{J}_{5\,j}\cdot\langle\bar{T}\rangle with T\langle T\rangle and T¯\langle\bar{T}\rangle in Eqs. (4) and (13), respectively, resulting in Zhao:2018mrg

F5j=Tr{uβu¯α[PαM(γμF1V+PμMF2V+PμMF3V)+gαμF4V]γ5u¯(Γ5μβ)j},\displaystyle F_{5\,j}=Tr\bigg{\{}u_{\beta}\bar{u}_{\alpha}\left[\frac{P^{\alpha}}{M}\left(\gamma^{\mu}F^{V}_{1}+\frac{P^{\mu}}{M}F^{V}_{2}+\frac{P^{\,\prime\mu}}{M^{\prime}}F^{V}_{3}\right)+g^{\alpha\mu}F^{V}_{4}\right]\gamma_{5}\bar{u}({\Gamma}_{5\mu}^{\beta})_{j}\bigg{\}}\,,
F¯5j={d3p2}ϕ(x,k)ϕ(x,k)2p1+p1+(p1P¯+m1M0)(p1P¯+m1M0)\displaystyle\bar{F}_{5\,j}=\int\{d^{3}p_{2}\}\frac{\phi^{\prime}(x^{\prime},k_{\perp}^{\prime})\phi(x,k_{\perp})}{2\sqrt{p_{1}^{+}p_{1}^{\prime+}(p_{1}\cdot\bar{P}+m_{1}M_{0})(p_{1}^{\prime}\cdot\bar{P}^{\,\prime}+m_{1}^{\prime}M_{0}^{\prime})}}
×λ2Tr{uβu¯α[Γ¯Aα(p/1+m1)γμ(p/1+m1)ΓA]u(Γ¯5μβ)j}.\displaystyle\times\sum_{\lambda_{2}}Tr\bigg{\{}u_{\beta}\bar{u}_{\alpha}\left[\bar{\Gamma}^{\,\prime\alpha}_{A}(p\!\!/_{1}^{\prime}+m_{1}^{\prime})\gamma^{\mu}(p\!\!/_{1}+m_{1})\Gamma_{A}\right]u(\bar{\Gamma}_{5\mu}^{\beta})_{j}\bigg{\}}\,. (15)

In the connection of F5j=F¯5jF_{5\,j}=\bar{F}_{5\,j}, we construct four equations. By solving the four equations, the four form factors F1VF^{V}_{1}, F2VF^{V}_{2}, F3VF^{V}_{3} and F4VF^{V}_{4} can be extracted. The form factors FiAF^{A}_{i} can be obtained in the same way.

II.3 Branching fractions in the helicity basis

One can present the amplitude of Ωc0Ωh+(Ω+ν)\Omega_{c}^{0}\to\Omega^{-}h^{+}(\Omega^{-}\ell^{+}\nu_{\ell}) in the helicity basis of HλΩλh()H_{\lambda_{\Omega}\lambda_{h(\ell)}} Gutsche:2018utw ; Zhao:2018mrg , where λΩ=±3/2,±1/2\lambda_{\Omega}=\pm 3/2,\pm 1/2 represent the helicity states of the Ω\Omega^{-} baryon, and λh,\lambda_{h,\ell} those of h+h^{+} and +ν\ell^{+}\nu_{\ell}. Substituting the matrix elements in Eqs. (II.1) with those in Eqs. (4) and (II.1), the amplitudes in the helicity basis now read 2h=(i)λΩ,λhGFVcsVuda1mhfhHλΩλh\sqrt{2}{\cal M}_{h}=(i)\sum_{\lambda_{\Omega},\lambda_{h}}G_{F}V^{*}_{cs}V_{ud}\,a_{1}m_{h}f_{h}H_{\lambda_{\Omega}\lambda_{h}} and 2=λΩ,λGFVcsHλΩλ\sqrt{2}{\cal M}_{\ell}=\sum_{\lambda_{\Omega},\lambda_{\ell}}G_{F}V^{*}_{cs}H_{\lambda_{\Omega}\lambda_{\ell}}, where HλΩλf=HλΩλfVHλΩλfAH_{\lambda_{\Omega}\lambda_{f}}=H^{V}_{\lambda_{\Omega}\lambda_{f}}-H^{A}_{\lambda_{\Omega}\lambda_{f}} with f=(h,)f=(h,\ell). Explicitly, HλΩλfV(A)H^{V(A)}_{\lambda_{\Omega}\lambda_{f}} is written as Gutsche:2018utw

HλΩλfV(A)Ω|s¯γμ(γ5)c|Ωc0εfμ,\displaystyle H^{V(A)}_{\lambda_{\Omega}\lambda_{f}}\equiv\langle\Omega^{-}|\bar{s}\gamma_{\mu}(\gamma_{5})c|\Omega_{c}^{0}\rangle\varepsilon^{\mu}_{f}\,, (16)

with εhμ=(qμ/q2,ϵλμ)\varepsilon^{\mu}_{h}=(q^{\mu}/\sqrt{q^{2}},\epsilon_{\lambda}^{\mu*}) for h=(π,ρ)h=(\pi,\rho). For the semi-leptonic decay, since the +ν\ell^{+}\nu_{\ell} system behaves as a scalar or vector, εμ=qμ/q2\varepsilon^{\mu}_{\ell}=q^{\mu}/\sqrt{q^{2}} or ϵλμ\epsilon_{\lambda}^{\mu\,*}. The π\pi meson only has a zero helicity state, denoted by λπ=0¯\lambda_{\pi}=\bar{0}. On the other hand, the three helicity states of ρ\rho are denoted by λρ=(1,0,1)\lambda_{\rho}=(1,0,-1). For the lepton pair, we assign λ=λπ\lambda_{\ell}=\lambda_{\pi} or λρ\lambda_{\rho}. Subsequently, we expand HλΩλfV(A)H^{V(A)}_{\lambda_{\Omega}\lambda_{f}} as

H120¯V(A)\displaystyle H_{\frac{1}{2}{\bar{0}}}^{V(A)} =\displaystyle= 23Q±2q2(Q22MM)(F1V(A)M±F2V(A)M¯+F3V(A)M¯F4V(A)M),\displaystyle\sqrt{\frac{2}{3}\frac{Q^{2}_{\pm}}{q^{2}}}\left(\frac{Q^{2}_{\mp}}{2MM^{\prime}}\right)(F_{1}^{V(A)}M_{\pm}\mp F_{2}^{V(A)}\bar{M}_{+}\mp F_{3}^{V(A)}\bar{M}^{\prime}_{-}\mp F_{4}^{V(A)}M)\,, (17)

for εfμ=qμ/q2\varepsilon^{\mu}_{f}=q^{\mu}/\sqrt{q^{2}}, where M±=M±MM_{\pm}=M\pm M^{\prime}, Q±2=M±2q2Q^{2}_{\pm}=M_{\pm}^{2}-q^{2}, and M¯±()=(M+M±q2)/(2M())\bar{M}_{\pm}^{(\prime)}=(M_{+}M_{-}\pm q^{2})/(2M^{(\prime)}). We also obtain

H321V(A)=Q2F4V(A),\displaystyle H_{\frac{3}{2}1}^{V(A)}=\mp\sqrt{Q^{2}_{\mp}}\,F_{4}^{V(A)}\,,
H121V(A)=Q23[F1V(A)(Q±2MM)F4V(A)],\displaystyle H_{\frac{1}{2}1}^{V(A)}=-\sqrt{\frac{Q^{2}_{\mp}}{3}}\left[F_{1}^{V(A)}\left(\frac{Q^{2}_{\pm}}{MM^{\prime}}\right)-F_{4}^{V(A)}\right]\,,
H120V(A)=23Q2q2[F1V(A)(Q±2M2MM)(F2V(A)+F3V(A)MM)(|P|2M)F4V(A)M¯],\displaystyle H_{\frac{1}{2}0}^{V(A)}=\sqrt{\frac{2}{3}\frac{Q^{2}_{\mp}}{q^{2}}}\left[F_{1}^{V(A)}\left(\frac{Q^{2}_{\pm}M_{\mp}}{2MM^{\prime}}\right)\mp\left(F_{2}^{V(A)}+F_{3}^{V(A)}\frac{M}{M^{\prime}}\right)\left(\frac{|\vec{P}^{\prime}|^{2}}{M^{\prime}}\right)\mp F_{4}^{V(A)}\bar{M}^{\prime}_{-}\right]\,, (18)

for εfμ=ϵλμ\varepsilon^{\mu}_{f}=\epsilon_{\lambda}^{\mu*}, with |P|=Q+2Q2/(2M)|\vec{P}^{\prime}|=\sqrt{Q^{2}_{+}Q^{2}_{-}}/(2M). Note that the expansions in Eqs. (17) and (II.3) have satisfied λΩc=λΩλf\lambda_{\Omega_{c}}=\lambda_{\Omega}-\lambda_{f} for the helicity conservation, with λΩc=±1/2\lambda_{\Omega_{c}}=\pm 1/2. The branching fractions then read

h(Ωc0Ωh+)\displaystyle{\cal B}_{h}\equiv{\cal B}(\Omega^{0}_{c}\to\Omega^{-}h^{+}) =\displaystyle= τΩcGF2|P|32πmΩc2|VcsVud|2a12mh2fh2Hh2,\displaystyle\frac{\tau_{\Omega_{c}}G_{F}^{2}|\vec{P}^{\prime}|}{32\pi m_{\Omega_{c}}^{2}}|V_{cs}V_{ud}^{*}|^{2}\,a_{1}^{2}m_{h}^{2}f_{h}^{2}H_{h}^{2}\,,
(Ωc0Ω+ν)\displaystyle{\cal B}_{\ell}\equiv{\cal B}(\Omega_{c}^{0}\to\Omega^{-}\ell^{+}\nu_{\ell}) =\displaystyle= τΩcGF2|Vcs|2192π3mΩc2m2(mΩcmΩ)2𝑑q2(|P|(q2m2)2q2)H2,\displaystyle\frac{\tau_{\Omega_{c}}G_{F}^{2}|V_{cs}|^{2}}{192\pi^{3}m_{\Omega_{c}}^{2}}\int^{(m_{\Omega_{c}}-m_{\Omega})^{2}}_{m_{\ell}^{2}}dq^{2}\left(\frac{|\vec{P}^{\prime}|(q^{2}-m_{\ell}^{2})^{2}}{q^{2}}\right)H_{\ell}^{2}\,, (19)

where

Hπ2\displaystyle H_{\pi}^{2} =\displaystyle= |H120¯|2+|H120¯|2,\displaystyle\left|H_{\frac{1}{2}{\bar{0}}}\right|^{2}+\left|H_{{-\frac{1}{2}}{\bar{0}}}\right|^{2}\,,
Hρ2\displaystyle H_{\rho}^{2} =\displaystyle= |H321|2+|H121|2+|H120|2+|H120|2+|H121|2+|H321|2,\displaystyle\left|H_{\frac{3}{2}1}\right|^{2}+\left|H_{\frac{1}{2}1}\right|^{2}+\left|H_{\frac{1}{2}0}\right|^{2}+\left|H_{-\frac{1}{2}0}\right|^{2}+\left|H_{-\frac{1}{2}-1}\right|^{2}+\left|H_{-\frac{3}{2}-1}\right|^{2}\,,
H2\displaystyle H_{\ell}^{2} =\displaystyle= (1+m22q2)Hρ2+3m22q2Hπ2,\displaystyle\left(1+\frac{m_{\ell}^{2}}{2q^{2}}\right)H_{\rho}^{2}+\frac{3m_{\ell}^{2}}{2q^{2}}H_{\pi}^{2}\,, (20)

with τΩc\tau_{\Omega_{c}} the Ωc0\Omega_{c}^{0} lifetime.

III Numerical analysis

In the Wolfenstein parameterization, the CKM matrix elements are adopted as Vcs=Vud=1λ2/2V_{cs}=V_{ud}=1-\lambda^{2}/2 with λ=0.22453±0.00044\lambda=0.22453\pm 0.00044 pdg . We take the lifetime and mass of the Ωc0\Omega_{c}^{0} baryon and the decay constants (fπ,fρ)=(132,216)(f_{\pi},f_{\rho})=(132,216) MeV from the PDG pdg . With (c1,c2)=(1.26,0.51)(c_{1},c_{2})=(1.26,-0.51) at the mcm_{c} scale Buchalla:1995vs , we determine a1a_{1}. In the generalized factorization, NcN_{c} is taken as an effective color number with Nc=(2,3,)N_{c}=(2,3,\infty) Hu:2020nkg ; Gutsche:2018utw ; Hsiao:2019wyd ; Hsiao:2019ann , in order to estimate the non-factorizable effects. For the Ωc+(css)Ω(sss)\Omega_{c}^{+}(css)\to\Omega^{-}(sss) transition form factors, the theoretical inputs of the quark masses and parameter β\beta in Eq. (II.2) are given by Geng:2013yfa ; Geng:2000if

m1=mc=(1.35±0.05)GeV,m1=ms=0.38GeV,m2=2ms=0.76GeV,\displaystyle m_{1}=m_{c}=(1.35\pm 0.05)~{}\mathrm{GeV}\,,\quad m_{1}^{\prime}=m_{s}=0.38~{}\mathrm{GeV}\,,\quad m_{2}=2m_{s}=0.76~{}\mathrm{GeV}\,,
βc=0.60GeV,βs=0.46GeV,\displaystyle\beta_{c}=0.60~{}\mathrm{GeV}\,,\quad\beta_{s}=0.46~{}\mathrm{GeV}\,, (21)

where βc(s)\beta_{c(s)} is to determine ϕ()(x(),k())\phi^{(\prime)}(x^{(\prime)},k_{\perp}^{(\prime)}) for Ωc0\Omega_{c}^{0} (Ω)(\Omega^{-}). We hence extract FiVF^{V}_{i} and FiAF^{A}_{i} in Table 1. For the momentum dependence, we have used the double-pole parameterization:

F(q2)=F(0)1a(q2/mF2)+b(q4/mF4),F(q^{2})=\frac{F(0)}{1-a\left(q^{2}/m_{F}^{2}\right)+b\left(q^{4}/m_{F}^{4}\right)}\,, (22)

with mF=1.86m_{F}=1.86 GeV.

Table 1: The Ωc0Ω\Omega^{0}_{c}\to\Omega^{-} transition form factors with F(0)F(0) at q2=0q^{2}=0, where δδmc/mc=±0.04\delta\equiv\delta m_{c}/m_{c}=\pm 0.04 from Eq. (III).
F(0)F(0) aa\;\;\; bb\;\;\;
F1VF^{V}_{1} 0.54+0.13δ0.54+0.13\delta 0.27-0.27 1.651.65
F2VF^{V}_{2} 0.350.36δ0.35-0.36\delta 30.00-30.00 96.8296.82
F3VF^{V}_{3} 0.33+0.59δ0.33+0.59\delta 0.960.96 9.259.25
F4VF^{V}_{4} 0.97+0.22δ0.97+0.22\delta 0.53-0.53 1.411.41
F(0)F(0) aa\;\;\; bb\;\;\;
F1AF^{A}_{1}    2.05+1.38δ\;\;\;2.05+1.38\delta 3.66-3.66 1.411.41
F2AF^{A}_{2} 0.06+0.33δ-0.06+0.33\delta 1.15-1.15 71.6671.66
F3AF^{A}_{3} 1.320.32δ-1.32-0.32\delta 4.01-4.01 5.685.68
F4AF^{A}_{4} 0.44+0.11δ-0.44+0.11\delta 1.29-1.29 0.58-0.58

Using the theoretical inputs, we calculate the branching fractions, whose results are given in Table 2.

IV Discussions and Conclusions

Table 2: Branching fractions of (non-)leptonic Ωc0\Omega_{c}^{0} decays and their ratios, where ρ(e)/πρ(e)/π{\cal R}_{\rho(e)/\pi}\equiv{\cal B}_{\rho(e)}/{\cal B}_{\pi}. The three numbers in the parenthesis correspond to Nc=(2,3,)N_{c}=(2,3,\infty), and the errors come from the uncertainties of the form factors in Table 1.
(){\cal B}({\cal R}) our work Ref. Xu:1992sw Ref. Cheng:1996cs Ref. Gutsche:2018utw Ref. Pervin:2006ie data pdg ; Yelton:2017uzv
103π10^{3}{\cal B}_{\pi} (5.1±0.7,6.0±0.8,8.0±1.0)(5.1\pm 0.7,6.0\pm 0.8,8.0\pm 1.0) (56.6,66.5,88.9)(56.6,66.5,88.9) (36.0,42.3,56.6)(36.0,42.3,56.6) (,,2)(-,-,2)
103ρ10^{3}{\cal B}_{\rho} (14.4±0.4,17.0±0.5,22.1±0.6)(14.4\pm 0.4,17.0\pm 0.5,22.1\pm 0.6) (307.0,361.1,482.5)(307.0,361.1,482.5) (126.7,149.0,199.1)(126.7,149.0,199.1) (,,19)(-,-,19)
103e10^{3}{\cal B}_{e} 5.4±0.25.4\pm 0.2 127
103μ10^{3}{\cal B}_{\mu} 5.0±0.25.0\pm 0.2
ρ/π{\cal R}_{\rho/\pi} 2.8±0.42.8\pm 0.4 5.4 3.5 9.5 1.7±0.31.7\pm 0.3 (>1.3>1.3)
e/π{\cal R}_{e/\pi} (1.1±0.2,0.9±0.1,0.7±0.1)(1.1\pm 0.2,0.9\pm 0.1,0.7\pm 0.1) 2.4±1.22.4\pm 1.2

In Table 2, we present π{\cal B}_{\pi} and ρ{\cal B}_{\rho} with Nc=(2,3,)N_{c}=(2,3,\infty). The errors come from the form factors in Table 1, of which the uncertainties are correlated with the charm quark mass. By comparison, π{\cal B}_{\pi} and ρ{\cal B}_{\rho} are compatible with the values in Ref. Gutsche:2018utw ; however, an order of magnitude smaller than those in Refs. Xu:1992sw ; Cheng:1996cs , whose values are obtained with the total decay widths Γπ(ρ)=2.09a12(11.34a12)×1011\Gamma_{\pi(\rho)}=2.09a_{1}^{2}(11.34a_{1}^{2})\times 10^{11} s-1 and Γπ(ρ)=1.33a12(4.68a12)×1011\Gamma_{\pi(\rho)}=1.33a_{1}^{2}(4.68a_{1}^{2})\times 10^{11} s-1, respectively. We also predict e=(5.4±0.2)×103{\cal B}_{e}=(5.4\pm 0.2)\times 10^{-3} as well as μe{\cal B}_{\mu}\simeq{\cal B}_{e}, which is much smaller than the value of 127×103127\times 10^{-3} in Pervin:2006ie . Only the ratios ρ/π{\cal R}_{\rho/\pi} and e/π{\cal R}_{e/\pi} have been actually observed so far. In our work, ρ/π=2.8±0.4{\cal R}_{\rho/\pi}=2.8\pm 0.4 is able to alleviate the inconsistency between the previous value and the most recent observation. We obtain e/π=1.1±0.2{\cal R}_{e/\pi}=1.1\pm 0.2 with Nc=2N_{c}=2 to be consistent with the data, which indicates that (π,ρ)=(5.1±0.7,14.4±0.4)×103({\cal B}_{\pi},{\cal B}_{\rho})=(5.1\pm 0.7,14.4\pm 0.4)\times 10^{-3} with Nc=2N_{c}=2 are more favorable.

The helicity amplitudes can be used to better understand how the form factors contribute to the branching fractions. With the identity HλΩλfV(A)=HλΩλfV(A)H^{V(A)}_{-\lambda_{\Omega}-\lambda_{f}}=\mp H^{V(A)}_{\lambda_{\Omega}\lambda_{f}} for the 𝐁c(JP=1/2+){\bf B}^{\prime}_{c}(J^{P}=1/2^{+}) to 𝐁(JP=3/2+){\bf B}^{\prime}(J^{P}=3/2^{+}) transition Gutsche:2018utw , Hπ2H_{\pi}^{2} in Eq. (II.3) can be rewritten as Hπ2=2(|H120¯V|2+|H120¯A|2)H_{\pi}^{2}=2(|H_{\frac{1}{2}{\bar{0}}}^{V}|^{2}+|H_{\frac{1}{2}{\bar{0}}}^{A}|^{2}). From the pre-factors in Eq. (17), we estimate the ratio of |H120¯V|2/|H120¯A|20.05|H_{\frac{1}{2}{\bar{0}}}^{V}|^{2}/|H_{\frac{1}{2}{\bar{0}}}^{A}|^{2}\simeq 0.05, which shows that H120¯AH_{\frac{1}{2}{\bar{0}}}^{A} dominates π{\cal B}_{\pi}, instead of H120¯VH_{\frac{1}{2}{\bar{0}}}^{V}. More specifically, it is the F4AF_{4}^{A} term in H120¯AH_{\frac{1}{2}{\bar{0}}}^{A} that gives the main contribution to the branching fraction. By contrast, the F1,3AF_{1,3}^{A} terms in H120¯AH_{\frac{1}{2}{\bar{0}}}^{A} largely cancel each other, which is caused by F1AMF3AM¯F_{1}^{A}M_{-}\simeq F_{3}^{A}\bar{M}^{\prime}_{-} and a minus sign between F1AF_{1}^{A} and F3AF_{3}^{A} (see Table 1); besides, the F2AF_{2}^{A} term with a small F2A(0)F_{2}^{A}(0) is ignorable.

Likewise, we obtain Hρ2=2(|HρV|2+|HρA|2)H_{\rho}^{2}=2(|H_{\rho}^{V}|^{2}+|H_{\rho}^{A}|^{2}) for ρ{\cal B}_{\rho}, where |HρV(A)|2=|H321V(A)|2+|H121V(A)|2+|H120V(A)|2|H_{\rho}^{V(A)}|^{2}=|H_{\frac{3}{2}1}^{V(A)}|^{2}+|H_{\frac{1}{2}1}^{V(A)}|^{2}+|H_{\frac{1}{2}0}^{V(A)}|^{2}. We find that |HρA|2|H_{\rho}^{A}|^{2} is ten times larger than |HρV|2|H_{\rho}^{V}|^{2}. Moreover, H120AH_{\frac{1}{2}0}^{A} is similar to H120¯AH_{\frac{1}{2}\bar{0}}^{A}, where the F1,3AF_{1,3}^{A} terms largely cancel each other, F2AF_{2}^{A} is ignorable, and F4AF_{4}^{A} gives the main contribution. While F1AF_{1}^{A} and F4AF_{4}^{A} in H121AH_{\frac{1}{2}1}^{A} have a positive interference, giving 20% of ρ{\cal B}_{\rho}, F4AF_{4}^{A} in H321AH_{\frac{3}{2}1}^{A} singly contributes 35%. In Eq. (II.3), the factor of m2/q2m_{\ell}^{2}/q^{2} with m0m_{\ell}\simeq 0 should be much suppressed, such that H2Hρ2H_{\ell}^{2}\simeq H_{\rho}^{2}. Therefore, {\cal B}_{\ell} receives the main contributions from the F4AF_{4}^{A} terms in H120AH_{\frac{1}{2}0}^{A}, H121AH_{\frac{1}{2}1}^{A} and H321AH_{\frac{3}{2}1}^{A}, which is similar to the analysis for ρ{\cal B}_{\rho}.

In summary, we have studied the Ωc0Ωπ+,Ωρ+\Omega^{0}_{c}\to\Omega^{-}\pi^{+},\Omega^{-}\rho^{+} and Ωc0Ω+ν\Omega^{0}_{c}\to\Omega^{-}\ell^{+}\nu_{\ell} decays, which proceed through the Ωc0Ω\Omega_{c}^{0}\to\Omega^{-} transition and the formation of the meson π+(ρ+)\pi^{+}(\rho^{+}) or lepton pair from the external WW-boson emission. With the form factors of the Ωc0Ω\Omega_{c}^{0}\to\Omega^{-} transition, calculated in the light-front quark model, we have predicted (Ωc0Ωπ+,Ωρ+)=(5.1±0.7,14.4±0.4)×103{\cal B}(\Omega_{c}^{0}\to\Omega^{-}\pi^{+},\Omega^{-}\rho^{+})=(5.1\pm 0.7,14.4\pm 0.4)\times 10^{-3} and (Ωc0Ωe+νe)=(5.4±0.2)×103{\cal B}(\Omega_{c}^{0}\to\Omega^{-}e^{+}\nu_{e})=(5.4\pm 0.2)\times 10^{-3}. While the previous studies have given the ρ/π{\cal R}_{\rho/\pi} values deviating from the most recent observation, we have presented ρ/π=2.8±0.4{\cal R}_{\rho/\pi}=2.8\pm 0.4 to alleviate the deviation. Moreover, we have obtained e/π=1.1±0.2{\cal R}_{e/\pi}=1.1\pm 0.2, consistent with the current data.

ACKNOWLEDGMENTS

YKH was supported in part by National Science Foundation of China (No. 11675030). CCL was supported in part by CTUST (No. CTU109-P-108).

References

  • (1) D. Cronin-Hennessy et al. (CLEO Collaboration), Phys. Rev. Lett. 86, 3730 (2001).
  • (2) R. Ammar et al. (CLEO Collaboration), Phys. Rev. Lett. 89, 171803 (2002).
  • (3) B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 99, 062001 (2007).
  • (4) J. Yelton et al. (Belle Collaboration), Phys. Rev. D 97, 032001 (2018).
  • (5) M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, 030001 (2018).
  • (6) C.D. Lu, W. Wang and F.S. Yu, Phys. Rev. D 93, 056008 (2016).
  • (7) C.Q. Geng, Y.K. Hsiao, Y.H. Lin and L.L. Liu, Phys. Lett. B 776, 265 (2017).
  • (8) C.Q. Geng, Y.K. Hsiao, C.W. Liu and T.H. Tsai, Phys. Rev. D 97, 073006 (2018).
  • (9) C.Q. Geng, Y.K. Hsiao, C.W. Liu and T.H. Tsai, Phys. Rev. D 99, 073003 (2019).
  • (10) Y.K. Hsiao, Y. Yu and H.J. Zhao, Phys. Lett. B 792, 35 (2019).
  • (11) H.J. Zhao, Y.L. Wang, Y.K. Hsiao and Y. Yu, JHEP 2002, 165 (2020).
  • (12) J. Zou, F. Xu, G. Meng and H.Y. Cheng, Phys. Rev. D 101, 014011 (2020).
  • (13) Y.K. Hsiao, Q. Yi, S.T. Cai and H.J. Zhao, arXiv:2006.15291 [hep-ph].
  • (14) P.Y. Niu, J.M. Richard, Q. Wang and Q. Zhao, arXiv:2003.09323 [hep-ph].
  • (15) M. Avila-Aoki, A. Garcia, R. Huerta and R. Perez-Marcial, Phys. Rev. D 40, 2944 (1989).
  • (16) R. Perez-Marcial, R. Huerta, A. Garcia and M. Avila-Aoki, Phys. Rev. D 40, 2955 (1989).
  • (17) R.L. Singleton, Phys. Rev. D 43, 2939 (1991).
  • (18) F. Hussain and J. Korner, Z. Phys. C 51, 607 (1991).
  • (19) J. Korner and M. Kramer, Z. Phys. C 55, 659 (1992).
  • (20) Q. Xu and A. Kamal, Phys. Rev. D 46, 3836 (1992).
  • (21) H.Y. Cheng and B. Tseng, Phys. Rev. D 48, 4188 (1993).
  • (22) H.Y. Cheng, Phys. Rev. D 56, 2799 (1997).
  • (23) M.A. Ivanov, J. Korner, V.E. Lyubovitskij and A. Rusetsky, Phys. Rev. D 57, 5632 (1998).
  • (24) M. Pervin, W. Roberts and S. Capstick, Phys. Rev. C 74, 025205 (2006).
  • (25) R. Dhir and C. Kim, Phys. Rev. D 91, 114008 (2015).
  • (26) C.Q. Geng, Y.K. Hsiao, C.W. Liu and T.H. Tsai, JHEP 1711, 147 (2017).
  • (27) Z.X. Zhao, Chin. Phys. C 42, 093101 (2018).
  • (28) T. Gutsche, M.A. Ivanov, J.G. Korner and V.E. Lyubovitskij, Phys. Rev. D 98, 074011 (2018).
  • (29) S. Hu, G. Meng and F. Xu, Phys. Rev. D 101, 094033 (2020).
  • (30) H.J. Melosh, Phys. Rev. D 9, 1095 (1974).
  • (31) H.G. Dosch, M. Jamin and B. Stech, Z. Phys. C 42, 167 (1989).
  • (32) W. Jaus, Phys. Rev. D 44, 2851 (1991).
  • (33) F. Schlumpf, Phys. Rev. D 47, 4114 (1993); Erratum: [Phys. Rev. D 49, 6246 (1994)].
  • (34) C.Q. Geng, C.C. Lih and W.M. Zhang, Mod. Phys. Lett. A 15, 2087 (2000).
  • (35) C.R. Ji and C. Mitchell, Phys. Rev. D 62, 085020 (2000).
  • (36) B.L.G. Bakker and C.R. Ji, Phys. Rev. D 65, 073002 (2002).
  • (37) B.L.G. Bakker, H.M. Choi and C.R. Ji, Phys. Rev. D 67, 113007 (2003).
  • (38) H.Y. Cheng, C.K. Chua and C.W. Hwang, Phys. Rev. D 69, 074025 (2004).
  • (39) H.M. Choi and C.R. Ji, Few Body Syst.  55, 435 (2014).
  • (40) C.Q. Geng and C.C. Lih, Eur. Phys. J. C 73, 2505 (2013).
  • (41) H.W. Ke, X.H. Yuan, X.Q. Li, Z.T. Wei and Y.X. Zhang, Phys. Rev. D 86, 114005 (2012).
  • (42) H.W. Ke, N. Hao and X.Q. Li, J. Phys. G 46, 115003 (2019).
  • (43) Z.X. Zhao, Eur. Phys. J. C 78, 756 (2018).
  • (44) X.H. Hu, R.H. Li and Z.P. Xing, Eur. Phys. J. C 80, 320 (2020).
  • (45) H.W. Ke, N. Hao and X.Q. Li, Eur. Phys. J. C 79, 540 (2019).
  • (46) Y.K. Hsiao, S.Y. Tsai, C.C. Lih and E. Rodrigues, JHEP 2004, 035 (2020).
  • (47) G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
  • (48) Y.K. Hsiao and C.Q. Geng, Eur. Phys. J. C 77, 714 (2017).
  • (49) Y.K. Hsiao and C.Q. Geng, Phys. Lett. B 782, 728 (2018).
  • (50) Y.K. Hsiao, S.Y. Tsai and E. Rodrigues, Eur. Phys. J. C 80, 565 (2020).