This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Charm meson couplings in hard-wall Holographic QCD

S. Momeni1 111e-mail: [email protected] and M. Saghebfar2 222e-mail: [email protected] 1Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
2Optics-Laser Science and Technology Research Center, Malek Ashtar University of Technology, Isfahan , Iran
Abstract

The four- flavor hard- wall holographic QCD is studied to evaluate the couplings of (D(),D¯0,a1)(D^{{}_{-(*-)}},\bar{D}^{{}_{0}},a_{1}^{{}_{-}}), (D(),D¯0,b1)(D^{{}_{-(*-)}},\bar{D}^{{}_{0}},b_{1}^{{}_{-}}), (Ds(),D¯0,K1A)(D_{s}^{{}_{-(*-)}},\bar{D}^{{}_{0}},K_{1A}^{{}_{-}}), (Ds(),D¯0,K1B())(D_{s}^{{}_{-(*-)}},\bar{D}^{{}_{0}},K_{1B}^{{}_{-(*-)}}), (Ds+(+),D+,K1A0)(D_{s}^{{}_{+(*+)}},{D}^{{}_{+}},K_{1A}^{{}_{0}}), (Ds+(+),D+,K1B0)(D_{s}^{{}_{+(*+)}},{D}^{{}_{+}},K_{1B}^{{}_{0}}), (D(),D¯0(0),ρ)(D^{{}_{-(*-)}},\bar{D}^{{}_{0(*0)}},\rho^{{}_{-}}), (Ds(),D¯0(0),K)(D_{s}^{{}_{-(*-)}},\bar{D}^{{}_{0(*0)}},K^{{}_{*-}}), (D0(0),D¯0(0),ψ)({D}^{{}_{0(*0)}},\bar{D}^{{}_{0(*0)}},\psi), (D1,D¯10,π)(D_{1}^{{}_{-}},\bar{D}_{1}^{{}_{0}},\pi^{{}_{-}}), (Ds1,D¯10,K)(D_{s1}^{{}_{-}},\bar{D}_{1}^{{}_{0}},K^{{}_{-}}), (D10,D¯10,ηc)({D}_{1}^{{}_{0}},\bar{D}_{1}^{{}_{0}},\eta_{c}), (ψ,D0(0),D+,π)(\psi,D^{{}_{0(*0)}},D^{{}_{+}},\pi^{{}_{-}}), (ψ,D0(0),D¯0,π0)(\psi,D^{{}_{0(*0)}},\bar{D}^{{}_{0}},\pi^{{}_{0}}), (ψ,Ds+(+),D,K0)(\psi,D_{s}^{{}_{+(*+)}},D^{{}_{-}},K^{{}_{0}}), (ψ,D0(0),D+,a1)(\psi,D^{{}_{0(*0)}},D^{{}_{+}},a_{1}^{{}_{-}}), (ψ,D0(0),D+,b1)(\psi,D^{{}_{0(*0)}},D^{{}_{+}},b_{1}^{{}_{-}}), (ψ,Ds+(+),D,K1B0)(\psi,D_{s}^{{}_{+(*+)}},D^{{}_{-}},K_{1B}^{{}_{0}}) and (ψ,Ds+(+),D,K1B0)(\psi,D_{s}^{{}_{+(*+)}},D^{{}_{-}},K_{1B}^{{}_{0}}) vertices. Moreover, the values of the masses of D0(0)D^{{}_{0(*0)}}, Ds()D_{s}^{{}_{-(*-)}}, ω\omega, ψ\psi, D10D_{1}^{{}_{0}}, D1D_{1}^{{}_{-}}, K0K^{0}, ηc\eta_{c}, Ds1D_{s1}^{{}_{-}} and χc1\chi_{{}_{c1}} as well as the decay constant of π\pi^{-}, D()D^{{}_{-(*-)}}, KK^{-}, ρ\rho^{-}, D1D_{1}^{{}_{-}} , a1a_{1}^{-} and Ds()D_{s}^{{}_{-(*-)}} are estimated in this study. A comparison is also made between our results and the experimental values of the masses and decay constants. Our results for strong couplings are also compared with the 3PSR and LCSR predictions.

pacs:
12.40.-y, 14.40.Lb, 14.40.-n

I Introduction

In recent investigations, the strong interaction of charmed hadrons among themselves and with other particles have received remarkable attention. In phenomenology of the high energy physics, charm meson vertices play a perfect role in meson interactions.

The charmed meson vertices help us to investigate the final-state interactions in hadronic B decays. In these studies, charm mesons are considered as the intermediate states which lead the long distance effect on the values of the branching ratios for non-leptonic BB meson decays, are studied in Isola1 ; Isola2 ; Khosravi2018 ; Janbazi2018 ; Colangelo2004 ; Colangelo20042 ; Ladisa2004 ; Cheng2005 ; Deandrea2006 . On the other hand, the strong couplings between charm mesons and other hadrons, can help us to study the production of J/ψ,ψ(2s),J/\psi,\psi(2s),\cdots, in heavy ion collisions and absorption of these states in hadronic matter such as nucleons and light mesons Bracco2005 ; Holanda2007 . Now a days, different theoretical methods are used to consider vertices involving charmed mesons. DDπD^{*}\,D\,\pi, DDγD^{*}\,D\,\gamma, DDρD\,D\,\rho, DDρD^{*}\,D^{*}\,\rho vertices are analyzed via lattice QCD approach in Can2013 ; Abada2002 ; Becirevic2011 ; Becirevic2013 . Moreover, DDρD^{*}D^{*}\rho MEBracco , DDπD^{*}D\pi FSNavarra ; MNielsen , DDρDD\rho MChiapparini , DDρD^{*}D\rho Rodrigues3 , DDJ/ψDDJ/\psi RDMatheus , DDJ/ψD^{*}DJ/\psi RRdaSilva , DDsKD^{*}D_{s}K, DsDKD^{*}_{s}DK, D0DsKD^{*}_{0}D_{s}K, Ds0DKD^{*}_{s0}DK SLWang , DDPD^{*}D^{*}P, DDVD^{*}DV, DDVDDV ZGWang , DDπD^{*}D^{*}\pi FCarvalho , DsDKD_{s}D^{*}K, DsDKD_{s}^{*}DK ALozea , DDωDD\omega LBHolanda , DsDsVD_{s}D_{s}V, DsDsVD^{*}_{s}D^{*}_{s}V KJ ; KJ2 , D1Dπ,D1D0π,D1D1πD_{1}D^{*}\pi,D_{1}D_{0}\pi,D_{1}D_{1}\pi Janbazi and DDA,DDADDA,D^{*}DA momeni2020 , vertices are often studied via the three point sum rule (3PSR) and the light cone QCD sum rule (LCSR) methods.

In recent years, a relatively new approach named the anti-de Sitter space/quantum chromodynamics (AdS/QCD) correspondence has been utilized to predict the form factors and couplings for the hadronic systems. This method is inspired from correspondence between a type IIB string theory and super Yang-Mills theory in the large NcN_{c} limit with 𝒩=4\mathcal{N}=4 Maldacena1998 ; Witten1998 ; Gubser1998 . In this approach, corresponding to every field in the AdS5\rm{AdS}_{5} space, an operator is defined in 4 dimensional gauge theory, and the correlation functions involving nn currents are related to the 55D action by functional differentiation with respect to their nn sources Witten1998 ; Gubser1998 ; Grigoryan2007 ; Abidin2008 . Utilizing (AdS/QCD) correspondence approach interesting results are reported as the masses, couplings, electromagnetic and gravitational form factors of mesons Polchinski2002 ; Polchinski20022 ; Brodsky2004 ; Teramond2005 ; Brodsky2006 ; Brodsky2008 ; Grigoryan20072 ; Grigoryan20073 ; Grigoryan2008 ; Kwee2008 ; Kwee20082 ; Boschi-Filho2006 ; Abidin20082 ; Abidin20091 . This method is also utilized to predict K3K_{\ell 3} transition form factors in Abidin2009 . In addition, the strong couplings gρnρρg_{\rho^{n}\rho\rho}, gρnKKg_{\rho^{n}KK}, gρnKKg_{\rho^{n}K^{*}K^{*}}, gρnDDg_{\rho^{n}DD} and gρnDDg_{\rho^{n}D^{*}D^{*}} are analyzed in a hard wall holographic QCD in Bayona2017 .

Our goal in this paper is to extract the couplings of (D,D,A)(D,D,A), (D,D,A)(D^{*},D,A), (D,D,V)(D,D,V), (D,D,V)(D^{*},D,V) (D,D,V)(D^{*},D^{*},V), (D1,D1,P)(D_{1},D_{1},P), (ψ,D,D,A)(\psi,D,D,A), (ψ,D,D,A)(\psi,D^{*},D,A), (ψ,D,D,P)(\psi,D,D,P) and (ψ,D,D,P)(\psi,D^{*},D,P) in hard wall holographic QCD with four flavors. The paper is organized as follows: In Sec. II, our model including pseudoscalar, vector and axial vector mesons is introduced. In Sec. III, the wavefunctions and the decay constant of studied mesons are extracted from our model. The strong couplings for three and four- meson vertices derived in Sec. IV and Sec. V is reserved for numerical analysis. Our prediction for masses, decay constants, wavefunctions and the strong couplings are presented in this section. For a better analysis, a comparison is made between our estimations and the results of other methods.

II The AdS/QCD model involving pseudoscalar, vector and axial vector mesons

In this section we introduced our model in 55 dimensions involving pseudoscalar, vector and axial vector mesons. In this paper, the metric of 5 dimensional Anti-de Sitter space is chosen in Poincare coordinates as:

ds2=1z2(dz2+ημνdxμdxν),\displaystyle ds^{2}=\frac{1}{z^{2}}\left(-dz^{2}+\eta_{\mu\nu}dx^{\mu}\,dx^{\nu}\right), (1)

where μ,ν=0,1,2,3\mu,\nu=0,1,2,3. Moreover, ημν=diag(1,1,1,1)\eta_{\mu\nu}=\rm{diag}(1,-1,-1,-1) is the usual Minkowski metric in 4 dimensions. In hard-wall model, the radial coordinate zz varies in the range (ε,z0)(\varepsilon,z_{0}), where the lower bound z=εz=\varepsilon (with ε0\varepsilon\to 0) gives the asymptotic feature of QCD and the IR cut-off z01/ΛQCDz_{0}\approx 1/\Lambda_{\rm{QCD}} is used to simulate QCD confinement.

We will consider the 5D action proposed in Ref Erlich2005 . In this action the NfN_{f} gauge fields Lμ,aL^{\mu,a}, Rμ,aR^{\mu,a} and a scalar field XX correspond to 5D fields for current operators JL/Rμ,a=q¯L/RγμtaqL/RJ^{\mu,a}_{L/R}=\bar{q}_{L/R}\,\gamma^{\mu}\,t^{a}\,q_{L/R} and q¯LqR\bar{q}_{L}\,q_{R} from 4D theory, respectively. In JL/Rμ,aJ^{\mu,a}_{L/R} definition, qq is quark field and qL/R=(1±γ5)qq_{L/R}=(1\pm\gamma_{5})q are the left handed (L) and the right handed (R) quarks. Moreover, tat^{a} (with a=1,Nf21a=1,\cdots N_{f}^{2}-1) are the generators of the SU(Nf)(N_{f}) group which are related to the Gell-Mann matrices λa\lambda^{a} by λa=2ta\lambda^{a}=2\,t^{a}. In this paper, we take Nf=4N_{f}=4 and the 5D action with SU(4)L{}_{L}\otimes SU(4)R symmetry can be written as

S=d5xgTr{(DMX)(DMX)+3|X|214g52(LMNLMN+RMNRMN)}.\displaystyle S=\int d^{5}x\,\sqrt{g}\,{\rm Tr}\Big{\{}(D_{M}X)\,(D^{M}X)^{{\dagger}}+3\left|X\right|^{2}-\frac{1}{4g_{5}^{2}}\left(L^{MN}\,L_{MN}+R^{MN}\,R_{MN}\right)\Big{\}}. (2)

where DMX=MXiLMX+iXRMD_{M}X=\partial_{M}X-iL_{M}X+iXR_{M} is the covariant derivative of the scalar field XX. In addition, the strength of the non-Abelian LL and RR fields are defined as

LMN\displaystyle L_{MN} =\displaystyle= MLNNLMi[LM,LN],\displaystyle\partial_{M}L_{N}-\partial_{N}L_{M}-i\left[L_{M},L_{N}\right],
RMN\displaystyle R_{MN} =\displaystyle= MRNNRMi[RM,RN],\displaystyle\partial_{M}R_{N}-\partial_{N}R_{M}-i\left[R_{M},R_{N}\right], (3)

with LM=LMataL_{M}=L_{M}^{a}\,t^{a} and RM=RMataR_{M}=R_{M}^{a}\,t^{a}. The left and right hand gauge fields can also be written in terms of the vector (V) and the axial vector field AA , in the form L=V+AL=V+A and R=VAR=V-A. The scalar field X can be expanded as

X=eiπataX0eiπata\displaystyle X=e^{i\pi^{a}t^{a}}\,X_{0}\,e^{i\pi^{a}t^{a}} (4)

where X0X_{0} is the classical part and π\pi contains the fluctuations. With flavor symmetry, X0X_{0} is a multiple of the unit matrix and X=e2iπataX0X=e^{2i\pi^{a}t^{a}}X_{0} can be obtained. This choice for the scalar field is used in Shock2006 with Nf=2N_{f}=2, and flavor symmetry is assumed to estimate masses and decay constants for the light and strange mesons. Their model predicts good results for the more excited strange mesons observables. In Katz2007 the part of the action that mixes the axial vectors with the pseudoscalars is just considered and the U(1)(1) problem is studied. All parameters in the mentioned model can be determined by the experimental masses of the π0\pi^{0}, K0K^{0} and ρ\rho mesons, and the pion decay constant fπf_{\pi}.

In general , using equation of motions and turning off all fields except X0(z)X_{0}(z), one obtains

2X0(z)=ζMz+Σζz3,\displaystyle 2X_{0}(z)=\zeta M\,z+\frac{\Sigma}{\zeta}\,z^{3}, (5)

where MM and Σ\Sigma are the quark-mass and the quark condensates q¯q\left<\bar{q}q\right> matrices, respectively. For Nf=4N_{f}=4 we take M=diag(mu,md,ms,mc)M={\rm diag}(m_{u},m_{d},m_{s},m_{c}) and Σ=diag(σu,σd,σs,σc)\Sigma={\rm diag}(\sigma_{u},\sigma_{d},\sigma_{s},\sigma_{c}). Moreover in Eq. (5), ζ=Nc/2π\zeta=\sqrt{N_{c}}/2\pi is the normalization parameter introduced in Ref. Cherman2009 . Note that for the light-quark sectors in the SU(2)(2) isospin symmetry, md=mum_{d}=m_{u} and σu=σd\sigma_{u}=\sigma_{d} are assumed in Abidin2009 ; Bayona2017 . Eq. (5) is used in Refs. Colangelo2008 ; Abidin2009 ; Maru2009 ; Huseynova2019 and in this paper we shall use it.

III Wave functions, masses and the decay constants for the pseudoscalar, vector and axial vector mesons

Expanding the action in Eq. (2) up to second order in vector (V), axial vector (A) and pseudoscalar field (π)(\pi), we obtain

S\displaystyle S =\displaystyle= d5x{a=11514g52z(MVNaNVMa)(MVaNNVaM)+MVa22z3VMaVaM\displaystyle\int\,d^{5}x\bigg{\{}\sum_{a=1}^{15}\frac{-1}{4g_{5}^{2}z}(\partial_{M}V^{a}_{N}-\partial_{N}V^{a}_{M})\,(\partial^{M}V^{N}_{a}-\partial^{N}V^{M}_{a})+\frac{{M_{V}^{a}}^{2}}{2z^{3}}{V^{a}_{M}}\,{V^{M}_{a}} (6)
14g52z(MANaNAMa)(MAaNNAaM)+MAa22z3(MπaAMa)(MπbAbM)},\displaystyle\frac{-1}{4g_{5}^{2}z}(\partial_{M}A^{a}_{N}-\partial_{N}A^{a}_{M})\,(\partial^{M}A^{N}_{a}-\partial^{N}A^{M}_{a})+\frac{{M_{A}^{a}}^{2}}{2z^{3}}(\partial_{M}\pi^{a}-A^{a}_{M})\,(\partial^{M}\pi_{b}-A^{M}_{b})\bigg{\}},

where we have defined:

MVa2δab\displaystyle{M_{V}^{a}}^{2}\delta^{ab} =\displaystyle= 2Tr([ta,X0][tb,X0]),\displaystyle-2\,{\rm Tr}\left.([t^{a},X_{0}][t^{b},X_{0}]\right.),
MAa2δab\displaystyle{M_{A}^{a}}^{2}\delta^{ab} =\displaystyle= 2Tr({ta,X0}{tb,X0}).\displaystyle 2\,{\rm Tr}\left.(\{t^{a},X_{0}\}\{t^{b},X_{0}\}\right.). (7)

Using

vq(z)=ζmqz+1ζσqz3,q=(u,d,s,c),\displaystyle v_{q}(z)=\zeta m_{q}z+\frac{1}{\zeta}\sigma_{q}z^{3}\,\,,\,\,q=(u,d,s,c), (8)

the values reported in Table. 1, are obtained for MVa2{M_{V}^{a}}^{2} and MAa2{M_{A}^{a}}^{2}.

Table 1: The values of MVa2{M_{V}^{a}}^{2} and MAa2{M_{A}^{a}}^{2} with vq(z)=ζmqz+1ζσqz3v_{q}(z)=\zeta m_{q}z+\frac{1}{\zeta}\sigma_{q}z^{3} for q=(u,d,s,c)q=(u,d,s,c)
aa MVa2{M_{V}^{a}}^{2} MAa2{M_{A}^{a}}^{2} aa MVa2{M_{V}^{a}}^{2} MAa2{M_{A}^{a}}^{2} aa MVa2{M_{V}^{a}}^{2} MAa2{M_{A}^{a}}^{2}
(1,2)(1,2) 14(vuvd)2\frac{1}{4}(v_{u}-v_{d})^{2} 14(vu+vd)2\frac{1}{4}(v_{u}+v_{d})^{2} (6,7)(6,7) 14(vdvs)2\frac{1}{4}(v_{d}-v_{s})^{2} 14(vd+vs)2\frac{1}{4}(v_{d}+v_{s})^{2} (11,12)(11,12) 14(vdvc)2\frac{1}{4}(v_{d}-v_{c})^{2} 14(vd+vc)2\frac{1}{4}(v_{d}+v_{c})^{2}
33 0 12(vu2+vd2)\frac{1}{2}(v_{u}^{2}+v_{d}^{2}) 88 0 16(vu2+vd2+4vs)2\frac{1}{6}(v_{u}^{2}+v_{d}^{2}+4v_{s})^{2} (13,14)(13,14) 14(vcvs)2\frac{1}{4}(v_{c}-v_{s})^{2} 14(vc+vs)2\frac{1}{4}(v_{c}+v_{s})^{2}
(4,5)(4,5) 14(vuvs)2\frac{1}{4}(v_{u}-v_{s})^{2} 14(vu+vs)2\frac{1}{4}(v_{u}+v_{s})^{2} (9,10)(9,10) 14(vuvc)2\frac{1}{4}(v_{u}-v_{c})^{2} 14(vu+vc)2\frac{1}{4}(v_{u}+v_{c})^{2} 1515 0 112(vu2+vd2+vs2+9vc2)\frac{1}{12}(v_{u}^{2}+v_{d}^{2}+v_{s}^{2}+9v_{c}^{2})

Now we are ready to derive equation of the motion for the vector, axial vector and pseudoscalar fields.

III.1 Wave functions

In this subsection we study wave functions of vector, axial vector and pseudoscalar mesons. We start with the vector field, which satisfies the following equation of motion

ηMLM(1z(LVNaNVLa))+αa(z)zVNa=0.\displaystyle\eta^{ML}\partial_{M}\left(\frac{1}{z}\left(\partial_{L}V^{a}_{N}-\partial_{N}V^{a}_{L}\right)\right)+\frac{\alpha^{a}(z)}{z}V^{a}_{N}=0. (9)

Where z2αa(z)=g52MVa2z^{2}\alpha^{a}(z)=g_{5}^{2}{M_{V}^{a}}^{2}. For the transverse part, choosing μVμa(x,z)=0\partial^{\mu}V^{a}_{\mu\perp}(x,z)=0, the following result is obtained:

(z1zz+q2αaz)Vμa(q,z)=0,\displaystyle\left(\partial_{z}\frac{1}{z}\partial_{z}+\frac{q^{2}-\alpha^{a}}{z}\right)V^{a}_{\mu\perp}(q,z)=0, (10)

Here, qq is the Fourier variable conjugate to the 4 dimensional coordinates, xx. The transverse part of the vector field can be written as Vμa(q,z)=Vμ0a(q)𝒱a(q2,z)V^{a}_{\mu\perp}(q,z)=V^{0a}_{\mu\perp}(q){\cal V}^{a}(q^{2},z) where Vμ0aV^{0a}_{\mu\perp} and 𝒱a{\cal V}^{a} are boundary values at UV and bulk-to- boundary propagator, respectively. 𝒱a(q2,z){\cal V}^{a}(q^{2},z) satisfies the same equation as Vμa(q,z)V^{a}_{\mu\perp}(q,z) with the boundary conditions 𝒱a(q2,ε)=1{\cal V}^{a}(q^{2},\varepsilon)=1 and z𝒱a(q2,z0)=0\partial_{z}{\cal V}^{a}(q^{2},z_{0})=0.

The longitudinal parts of the vector field, defined as Vμa=μξaV^{a}_{\mu\parallel}=\partial_{\mu}\xi^{a}, and Vza=zπ~aV^{a}_{z}=-\partial_{z}\tilde{\pi}^{a}, are coupled as follows:

q2zϕ~a(q2,z)+αazπ~a(q2,z)=0,\displaystyle-q^{2}\partial_{z}\tilde{\phi}^{a}(q^{2},z)+\alpha^{a}\partial_{z}\tilde{\pi}^{a}(q^{2},z)=0\,, (11)
z(1zzϕ~a(q2,z))αaz(ϕ~a(q2,z)π~a(q2,z))=0,\displaystyle\partial_{z}\bigg{(}\frac{1}{z}\partial_{z}\tilde{\phi}^{a}(q^{2},z)\bigg{)}-\frac{\alpha^{a}}{z}\big{(}\tilde{\phi}^{a}(q^{2},z)-\tilde{\pi}^{a}(q^{2},z)\big{)}=0, (12)

where the boundary conditions are ϕ~a(q,ε)=0\tilde{\phi}^{a}(q,\varepsilon)=0, π~a(q,ε)=1\tilde{\pi}^{a}(q,\varepsilon)=-1 and zϕ~a(q2,z0)=zπ~a(q2,z0)=0\partial_{z}\tilde{\phi}^{a}(q^{2},z_{0})=\partial_{z}\tilde{\pi}^{a}(q^{2},z_{0})=0.

In general form of differential equations Eqs. (10, 11), 𝒱a(q2,z)\mathcal{V}^{a}(q^{2},z), ϕ~a(q2,z)\tilde{\phi}^{a}(q^{2},z) and π~a(q2,z)\tilde{\pi}^{a}(q^{2},z) can be solved numerically. We expect that, normalizable modes of Eq. (10) describe the vector mesons while, Eqs. (11) and (12) are utilized to study the scalar ones. In this, paper the scalar mesons are not considered.

To obtain the wave functions of the axial vector and pseudoscalar mesons, the variation over the axial vector field (AMaA_{M}^{a}) of Eq. (6), is taken. The transverse part of the axial vector field satisfies the following equation of motion:

(z1zz+q2βaz)Aμa(q,z)=0,\displaystyle\left(\partial_{z}\frac{1}{z}\partial_{z}+\frac{q^{2}-\beta^{a}}{z}\right)A^{a}_{\mu\perp}(q,z)=0, (13)

where z2βa(z)=g52MAa2z^{2}\beta^{a}(z)=g_{5}^{2}\,{M_{A}^{a}}^{2}. Moreover, the gauge choices μAμa(x,z)=0\partial^{\mu}A^{a}_{\mu\perp}(x,z)=0 and Aza=0A_{z}^{a}=0 are imposed in the Fourier transform. Note that Aμa=Aμa+μϕaA_{\mu}^{a}=A_{\mu\perp}^{a}+\partial_{\mu}\phi^{a} is used to separate the transverse and longitudinal parts of the axial vector field.

The transverse part AμaA_{\mu\perp}^{a}, can be written as Aμa(q,z)=Aμa0(q)𝒜a(q2,z)A^{a}_{\mu\perp}(q,z)={{A}_{\mu\perp}^{a0}(q)}\mathcal{A}^{a}(q^{2},z). To obtain 𝒜(q2,z)\mathcal{A}(q^{2},z), we set 𝒜a(q2,ε)=1\mathcal{A}^{a}(q^{2},\varepsilon)=1 for the UV boundary and for the IR boundary we choose Neumann boundary condition 𝒜a(q2,z0)=0\mathcal{A}^{a}(q^{2},z_{0})=0. This part describes the axial vector states.

The longitudinal part of the axial-vector field ϕa\phi^{a} and the πa\pi^{a} describe the pseudoscalar fields and satisfy the following equations

q2zϕa(q2,z)+βa(z)zπa(q2,z)=0,\displaystyle-q^{2}\partial_{z}\phi^{a}(q^{2},z)+\beta^{a}(z)\partial_{z}\pi^{a}(q^{2},z)=0\,, (14)
z(1zzϕa(q2,z))βa(z)z(ϕa(q2,z)πa(q2,z))=0,\displaystyle\partial_{z}\left(\frac{1}{z}\partial_{z}\phi^{a}(q^{2},z)\right)-\frac{\beta^{a}(z)}{z}\left(\phi^{a}(q^{2},z)-\pi^{a}(q^{2},z)\right)=0\,, (15)

where the boundary conditions are ϕa(q2,ε)=0\phi^{a}(q^{2},\varepsilon)=0, πa(q2,ε)=1\pi^{a}(q^{2},\varepsilon)=-1, and zϕa(q2,z0)=zπa(q2,z0)=0\partial_{z}\phi^{a}(q^{2},z_{0})=\partial_{z}\pi^{a}(q^{2},z_{0})=0.

We finish this subsection by writing the SU(4) vector VV, axial vector AA and pseudoscalar π\pi meson matrices terms of the charged states as:

V\displaystyle V =\displaystyle= Vata=12(ρ02+ω6+ψ12ρ+K+D¯0ρρ02+ω6+ψ12K0DKK¯023ω+ψ12DsD0D+Ds+312ψ),\displaystyle V^{a}t^{a}=\frac{1}{\sqrt{2}}\left(\begin{matrix}\frac{\rho^{0}}{\sqrt{2}}+\frac{\omega^{\prime}}{\sqrt{6}}+\frac{\psi}{\sqrt{12}}&\rho^{{}_{+}}&K^{{}_{*+}}&\bar{D}^{{}_{*0}}\\ \rho^{{}_{-}}&-\frac{\rho^{0}}{\sqrt{2}}+\frac{\omega^{\prime}}{\sqrt{6}}+\frac{\psi}{\sqrt{12}}&K^{{}_{*0}}&D^{{}_{*-}}\\ K^{{}_{*-}}&\bar{K}^{{}_{*0}}&-\sqrt{\frac{2}{3}}\omega^{\prime}+\frac{\psi}{\sqrt{12}}&D_{s}^{{}_{*-}}\\ D^{{}_{*0}}&D^{{}_{*+}}&D_{s}^{{}_{*+}}&-\frac{3}{\sqrt{12}}\psi\end{matrix}\right),
A\displaystyle A =\displaystyle= Aata=12(a10+b102+f1+f16+χc112a1++b1+K1A++K1B+D¯10a1+b1a10+b102+f1+f16+χc112K1A0+K1B0D1K1A+K1BK¯1A0+K¯1B023(f1+f1)+χc112Ds1D10D1+Ds1+312χc1),\displaystyle A^{a}t^{a}=\frac{1}{\sqrt{2}}\left(\begin{array}[]{cccc}\frac{a^{0}_{1}+b^{0}_{1}}{\sqrt{2}}+\frac{f_{1}+f_{1}^{\prime}}{\sqrt{6}}+\frac{\chi_{c1}}{\sqrt{12}}&a^{{}_{+}}_{1}+b^{{}_{+}}_{1}&K_{1A}^{{}_{+}}+K_{1B}^{{}_{+}}&\bar{D}_{1}^{{}_{0}}\\ a_{1}^{{}_{-}}+b_{1}^{{}_{-}}&-\frac{a^{{}_{0}}_{1}+b^{{}_{0}}_{1}}{\sqrt{2}}+\frac{f_{1}+f_{1}^{\prime}}{\sqrt{6}}+\frac{\chi_{c1}}{\sqrt{12}}&K_{1A}^{{}_{0}}+K_{1B}^{{}_{0}}&D_{1}^{{}_{-}}\\ K_{1A}^{{}_{-}}+K_{1B}^{{}_{-}}&\bar{K}_{1A}^{{}_{0}}+\bar{K}_{1B}^{{}_{0}}&-\sqrt{\frac{2}{3}}(f_{1}+f_{1}^{\prime})+\frac{\chi_{c1}}{\sqrt{12}}&D_{s1}^{{}_{-}}\\ {D}_{1}^{{}_{0}}&D_{1}^{{}_{+}}&D_{s1}^{{}_{+}}&-\frac{3}{\sqrt{12}}\chi_{c1}\end{array}\right),
π\displaystyle\pi =\displaystyle= πaTa=12(π02+η6+ηc12π+K+D¯0ππ02+η6+ηc12K0DKK¯023η+ηc12DsD0D+Ds+312ηc).\displaystyle\pi^{a}T^{a}=\frac{1}{\sqrt{2}}\left(\begin{matrix}\frac{\pi^{{}_{0}}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}}+\frac{\eta_{c}}{\sqrt{12}}&\pi^{{}_{+}}&K^{{}_{+}}&\bar{D}^{{}_{0}}\\ \pi^{{}_{-}}&-\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}}+\frac{\eta_{c}}{\sqrt{12}}&K^{{}_{0}}&D^{{}_{-}}\\ K^{{}_{-}}&\bar{K}^{{}_{0}}&-\sqrt{\frac{2}{3}}\eta+\frac{\eta_{c}}{\sqrt{12}}&D_{s}^{{}_{-}}\\ D^{{}_{0}}&D^{{}_{+}}&D_{s}^{{}_{+}}&-\frac{3}{\sqrt{12}}\eta_{c}\end{matrix}\right).

It should be noted that K1AK_{1A} and K1BK_{1B} are not physical states. The physical states of K1(1270)K_{1}(1270) and K1(1400)K_{1}(1400) mesons are related to these states in terms of a mixing angle θK\theta_{K} as follows:

K1(1270)\displaystyle K_{1}(1270) =\displaystyle= sinθKK1A+cosθKK1B,\displaystyle\sin\theta_{K}\,K_{1A}+\cos\theta_{K}\,K_{1B},
K1(1400)\displaystyle K_{1}(1400) =\displaystyle= cosθKK1AsinθKK1B.\displaystyle\cos\theta_{K}\,K_{1A}-\sin\theta_{K}\,K_{1B}. (17)

The mixing angle θK\theta_{K} can be determined by the experimental data. There are various approaches to estimate the mixing angle. The result 35<|θK|<5535^{\circ}<|\theta_{K}|<55^{\circ} was found in Ref. Burakovsky , while two possible solutions with |θK|33|\theta_{K}|\approx 33^{\circ} and 5757^{\circ} were obtained in Ref. Suzuki .

III.2 Decay constants

To evaluate the decay constant of the vector mesons in the above mentioned model, the two- point functions are needed. According to AdS/QCD correspondence, two-point functions can be calculated by evaluating the action, Eq. (6) with the classical solution and taking the functional derivative over Vμ0V^{0}_{\mu} twice as:

0|𝒯{JVaμ(x)JVbν(y)}|0=iδ2S(VV)δVμa0(x)δVνb0(y),\displaystyle\langle 0|{\mathcal{T}}\{J^{a\mu}_{V\perp}(x)\,J^{b\nu}_{V\perp}(y)\}|0\rangle=-i\frac{\delta^{2}\rm{S}(VV)}{\delta V^{a0}_{\mu\perp}(x)\delta V^{b0}_{\nu\perp}(y)}, (18)

In the LHS of Eq. (18), we insert one complete set intermediate states with the same quantum numbers as the meson currents, and use the vector mesons decay constants definition as:

0|JVνa|Va(p,ε)\displaystyle\langle 0|J_{V\perp}^{\nu a}|V^{a^{\prime}}(p,\varepsilon)\rangle =\displaystyle= fVενδaa,\displaystyle f_{V}\,\varepsilon^{\nu}\,\delta^{aa^{\prime}}, (19)

where fVf_{V} and ε\varepsilon are the decay constant and the polarization vector for vector meson V(p,ε)V(p,\varepsilon), respectively. After performing the Fourier transformation

id4xeipx0|𝒯{JVaμ(x)JVbν(0)}|0=nfVn2δabp2mVn2Πμν\displaystyle i\,\int d^{4}x\,e^{ipx}\,{\langle 0|{\mathcal{T}}\{J^{a\mu}_{V\perp}(x)\,J^{b\nu}_{V\perp}(0)\}|0\rangle}=\sum_{n}\frac{f_{V^{n}}^{2}\,\delta^{ab}}{p^{2}-m_{V^{n}}^{2}}\Pi^{\mu\nu} (20)

is obtained. Where Πμν=(ημνpμpν/p2)\Pi^{\mu\nu}=\left(\eta^{\mu\nu}-p^{\mu}p^{\nu}/p^{2}\right) is transverse projector. In the RHS of Eq. (18), S(VV)\rm{S}(VV) contains two vector mesons and can be obtained by inserting the solution for VMaV^{a}_{M} back into the action. After applying Fourier transformation, in the final result, only the contribution of the surface term at z=ϵz=\epsilon remains as:

S(VV)=d4p(2π)4Vλc0(p)Vc0λ(p)(zV(p,z)2g52z)z=ϵ.\displaystyle S(VV)=\int\frac{d^{4}p}{(2\pi)^{4}}V^{c0}_{\lambda\perp}(p)V^{c0\lambda}_{\perp}(p)\left(-\frac{\partial_{z}V(p,z)}{2g_{5}^{2}z}\right)_{z=\epsilon}. (21)

On the other hand, using Green’s function formalism to solve Eq. (10), the bulk-to-boundary propagator can be written as a sum over vector mesons poles:

𝒱a(q2,z)=ng5fVnψVna(z)q2mVn2,\displaystyle{\cal V}^{a}(q^{2},z)=\sum_{n}\frac{-g_{5}f_{{}_{V^{n}}}\psi^{a}_{{}_{V^{n}}}(z)}{q^{2}-m_{{}_{V^{n}}}^{2}}\,, (22)

where boundary conditions for the nthn^{{th}} vector meson’s wave function are ψVn(ϵ)=0\psi_{{}_{V^{n}}}(\epsilon)=0 and zψVn(z0)=0\partial_{z}\psi_{{}_{V^{n}}}(z_{0})=0. Moreover the normalization condition is (dz/z)ψVna2=1\int(dz/z){\psi^{a}_{{}_{V^{n}}}}^{2}=1. Using Eqs. (18-22), the decay constant of the nthn^{{th}} mode of the vector meson is obtained as:

fVn=zψVng5z|z=ϵ.\displaystyle f_{V^{n}}=\frac{\partial_{z}\psi_{{}_{V^{n}}}}{g_{5}\,z}\bigg{|}_{z=\epsilon}. (23)

For the axial vector and the pseudoscalar states, the decay constants are defined as:

0|JVνb|Ab(p,ε)\displaystyle\langle 0|J_{V\perp}^{\nu b}|A^{b^{\prime}}(p,\varepsilon^{\prime})\rangle =\displaystyle= fAενδbb,\displaystyle f_{A}\,\varepsilon^{\prime\nu}\,\delta^{bb^{\prime}}, (24)
0|JAνd|ϕd(p)\displaystyle\langle 0|J_{A\parallel}^{\nu d}|\phi^{d^{\prime}}(p)\rangle =\displaystyle= ifdpνδdd.\displaystyle if^{d}\,p_{\nu}\delta^{dd^{\prime}}. (25)

To evaluate the decay constants of the vector mesons and the pseudoscalar ones, the following Green’s functions are used:

𝒜a(q2,z)\displaystyle{\cal A}^{a}(q^{2},z) =\displaystyle= ng5fAnψAna(z)q2mAn2,\displaystyle\sum_{n}\frac{-g_{5}f_{{}_{A^{n}}}\psi^{a}_{{}_{A^{n}}}(z)}{q^{2}-m_{{}_{A^{n}}}^{2}}\,,
ϕa(q2,z)\displaystyle\phi^{a}(q^{2},z) =\displaystyle= ng5mna2fnaϕna(z)q2mna2,\displaystyle\sum_{n}\frac{-g_{5}{m^{a}_{n}}^{2}f^{a}_{n}\phi^{a}_{n}(z)}{q^{2}-{m^{a}_{n}}^{2}}\,,
πa(q2,z)\displaystyle\pi^{a}(q^{2},z) =\displaystyle= ng5mna2fnaπna(z)q2mna2,\displaystyle\sum_{n}\frac{-g_{5}{m^{a}_{n}}^{2}f^{a}_{n}\pi^{a}_{n}(z)}{q^{2}-{m^{a}_{n}}^{2}}\,, (26)

where for the ψAna(z)\psi^{a}_{{}_{A^{n}}}(z) the boundary conditions are similar to ψVna(z)\psi^{a}_{{}_{V^{n}}}(z). For the pseudoscalar meson’s wave functions, ϕna(ε)=πna(ε)=0\phi^{a}_{n}(\varepsilon)=\pi^{a}_{n}(\varepsilon)=0 and zϕna(z0)=zπna(z0)=0\partial_{z}\phi^{a}_{n}(z_{0})=\partial_{z}\pi^{a}_{n}(z_{0})=0 are the boundary conditions. The similar method is used to calculate the vector mesons decay constants, the following results can be obtained for the axial vector mesons and the pseudoscalar states decay constant, respectively:

fAn\displaystyle f_{A^{n}} =\displaystyle= zψAng5z|z=ϵ,\displaystyle\frac{\partial_{z}\psi_{{}_{A^{n}}}}{g_{5}\,z}\bigg{|}_{z=\epsilon}, (27)
fna\displaystyle f^{a}_{n} =\displaystyle= zϕnag5z|z=ϵ,\displaystyle-\frac{\partial_{z}\phi^{a}_{n}}{g_{5}\,z}\bigg{|}_{z=\epsilon}, (28)

IV Strong coupling constants from three and four point functions

In this section, we study the triplet and quadratic vertices including charm, vector, axial vector and pseudoscalar mesons. The corresponding diagrams for triplet vertices are given in Fig. 1. The vertices (D,D¯0,a1)(D^{{}_{-}},\bar{D}^{{}_{0}},a_{1}^{{}_{-}}), (D,D¯0,b1)(D^{{}_{-}},\bar{D}^{{}_{0}},b_{1}^{{}_{-}}), (D,D¯0,a1)(D^{{}_{*-}},\bar{D}^{{}_{0}},a_{1}^{{}_{-}}), (D,D¯0,b1)(D^{{}_{*-}},\bar{D}^{{}_{0}},b_{1}^{{}_{-}}), (D,D¯0ρ)(D^{{}_{-}},\bar{D}^{{}_{0}}\,\rho^{{}_{-}}), (D,D¯0ρ)(D^{{}_{*-}},\bar{D}^{{}_{0}}\,\rho^{{}_{-}}), (D,D¯0,ρ)(D^{{}_{*-}},\bar{D}^{{}_{*0}},\rho^{{}_{-}}) and (D1,D¯10,π)(D_{1}^{{}_{-}},\bar{D}_{1}^{{}_{0}},\pi^{{}_{-}}) can be describe with diagram (a) while diagram (b) is used to explain (Ds,D¯0,K1A)(D_{s}^{{}_{-}},\bar{D}^{{}_{0}},K_{1A}^{{}_{-}}), (Ds,D¯0,K1B)(D_{s}^{{}_{-}},\bar{D}^{{}_{0}},K_{1B}^{{}_{-}}), (Ds,D¯0,K)(D_{s}^{{}_{-}},\bar{D}^{{}_{0}},K^{{}_{*-}}), (Ds,D¯0,K1A)(D_{s}^{{}_{*-}},\bar{D}^{{}_{0}},K_{1A}^{{}_{-}}), (Ds,D¯0,K1B)(D_{s}^{{}_{*-}},\bar{D}^{{}_{0}},K_{1B}^{{}_{-}}), (Ds,D¯0,K)(D_{s}^{{}_{*-}},\bar{D}^{{}_{0}},K^{{}_{*-}}), (Ds,D¯0,K)(D_{s}^{{}_{*-}},\bar{D}^{{}_{*0}},K^{{}_{*-}}), (Ds,D¯0,K)(D_{s}^{{}_{*-}},\bar{D}^{{}_{0}},K^{{}_{*-}}) and (Ds,D¯0,K)(D_{s}^{{}_{*-}},\bar{D}^{{}_{*0}},K^{{}_{*-}}) vertices. Finally, diagram (c) shows (Ds+,D+,K1A0)(D_{s}^{{}_{+}},{D}^{{}_{+}},K_{1A}^{{}_{0}}), (Ds+,D+,K1B0)(D_{s}^{{}_{+}},{D}^{{}_{+}},K_{1B}^{{}_{0}}), (Ds+,D+,K1A0)(D_{s}^{{}_{*+}},{D}^{{}_{+}},K_{1A}^{{}_{0}}) and (Ds+,D+,K1B0)(D_{s}^{{}_{*+}},{D}^{{}_{+}},K_{1B}^{{}_{0}}) vertices.

Refer to caption
Refer to caption
Refer to caption
Figure 1: 3-particle diagrams show (D(),D,A)(D^{(*)},D,A), (D(),D(),V)(D^{(*)},D^{(*)},V) and (D1,D1,P)(D_{1},D_{1},P) vertices.

Moreover, diagrams including 4 particles which are considered in this paper are displaced in Fig (2). (ψ,D0,D+,π)(\psi,D^{{}_{0}},D^{{}_{+}},\pi^{{}_{-}}), (ψ,D0,D+,π)(\psi,D^{{}_{*0}},D^{{}_{+}},\pi^{{}_{-}}), (ψ,D0,D+,a1)(\psi,D^{{}_{0}},D^{{}_{+}},a_{1}^{{}_{-}}), (ψ,D0,D+,b1)(\psi,D^{{}_{0}},D^{{}_{+}},b_{1}^{-}), (ψ,D0,D+,a1)(\psi,D^{{}_{*0}},D^{{}_{+}},a_{1}^{-}) and (ψ,D0,D+,b1)(\psi,D^{{}_{*0}},D^{{}_{+}},b_{1}^{{}_{-}}) vertices can be explained via diagram (a). Diagram (b) describes (ψ,D0,D¯0,π0)(\psi,D^{{}_{0}},\bar{D}^{{}_{0}},\pi^{{}_{0}}) and (ψ,D0,D¯0,π0)(\psi,D^{{}_{*0}},\bar{D}^{{}_{0}},\pi^{{}_{0}}) vertices while, (ψ,Ds+,D,K0)(\psi,D_{s}^{{}_{+}},D^{{}_{-}},K^{{}_{0}}), (ψ,Ds+,D,K0)(\psi,D_{s}^{{}_{*+}},D^{{}_{-}},K^{{}_{0}}), (ψ,Ds+,D,K1A0)(\psi,D_{s}^{{}_{+}},D^{{}_{-}},K_{1A}^{{}_{0}}), (ψ,Ds+,D,K1B0)(\psi,D_{s}^{{}_{+}},D^{{}_{-}},K_{1B}^{{}_{0}}), (ψ,Ds+,D,K1A0)(\psi,D_{s}^{{}_{*+}},D^{{}_{-}},K_{1A}^{{}_{0}}) and (ψ,Ds+,D,K1B0)(\psi,D_{s}^{{}_{*+}},D^{{}_{-}},K_{1B}^{{}_{0}}) vertices are explained via diagram (c).

Refer to caption
Refer to caption
Refer to caption
Figure 2: 4-particle diagrams show (ψ,D(),D,P)(\psi,D^{(*)},D,P) and (ψ,D()D,A)(\psi,D^{(*)}D,A) vertices.

In the following two subsections the strong couplings of (D(),D(),A)(D^{(*)},D^{(*)},A), (D(),D(),V)(D^{(*)},D^{(*)},V), (D1,D1,π)(D_{1},D_{1},\pi) (ψ,D(),D,P)(\psi,D^{(*)},D,P) and (ψ,D(),D,A)(\psi,D^{(*)},D,A) vertices are derived.

IV.1 3-point functions and charm meson couplings

In this section the (D,D,A)(D,D,A), (D,D,A)(D^{*},D,A), (D,D,V)(D,D,V), (D,D,V)(D^{*},D,V), (D,D,V)(D^{*},D^{*},V) and (D1,D1,P)(D_{1},D_{1},P) vertices couplings are derived. In our notation we use D()=D0(0),D±(±),Ds±(±)D^{(*)}=D^{{}_{0(0*)}},D^{{}_{\pm(\pm*)}},D_{s}^{{}_{\pm(\pm*)}}, A=a1,b1,K1A,K1B,K1A0,K1B0A=a_{1}^{{}_{-}},b_{1}^{{}_{-}},K_{1A}^{{}_{-}},K_{1B}^{{}_{-}},K_{1A}^{{}_{0}},K_{1B}^{{}_{0}}, V=(ρ,K)V=(\rho^{{}_{-}},K^{*}) and P=(π,π0,K0)P=(\pi^{{}_{-}},\pi^{{}_{0}},K^{0}) for charm, axial vector, vector and pseudoscalar mesons, respectively. In this paper, the following definitions:

D(p1)|A(p2,ε)D(p3)\displaystyle\langle D(p_{1})|A(p_{2},\varepsilon^{\prime})\,D(p_{3})\rangle =\displaystyle= 2(ε.p3)gDDA,\displaystyle 2\,(\varepsilon^{\prime}.p_{3})\,g_{{}_{DDA}},
D(p1,ε)|A(p2,ε)D(p3)\displaystyle\langle D^{*}(p_{1},\varepsilon)|A(p_{2},\varepsilon^{\prime})\,D(p_{3})\rangle =\displaystyle= [(ε.ε)(p3.p1)(ε.p3)(ε.p1).]gDDA,\displaystyle\big{[}(\varepsilon^{*}.\varepsilon^{\prime})\,(p_{3}.p_{1})-(\varepsilon^{*}.p_{3})\,(\varepsilon^{\prime}.p_{1})\big{.}]\,g_{{}_{D^{*}\,D\,A}},
D(p1)|V(p2,ε)D(p3)\displaystyle\langle D(p_{1})|V(p_{2},\varepsilon)\,D(p_{3})\rangle =\displaystyle= 2(ε.p3)gDDV,\displaystyle 2\,(\varepsilon.p_{3})g_{{}_{DDV}},
D(p1,ε1)|V(p2,ε2)D(p3)\displaystyle\langle D^{*}(p_{1},\varepsilon_{1})|V(p_{2},\varepsilon_{2})\,D(p_{3})\rangle =\displaystyle= [(ε1.ε2)(p3.p1)(ε1.p3)(ε2.p1)]gDDV,\displaystyle\big{[}(\varepsilon_{1}^{*}.\varepsilon_{2})\,(p_{3}.p_{1})-(\varepsilon_{1}^{*}.p_{3})\,(\varepsilon_{2}.p_{1})\big{]}\,g_{{}_{D^{*}\,D\,V}},
D(p1,ε1)|V(p2,ε2)D(p3,ε3)\displaystyle\langle D^{*}(p_{1},\varepsilon_{1})|V(p_{2},\varepsilon_{2})\,D^{*}(p_{3},\varepsilon_{3})\rangle =\displaystyle= (ε1.ε2)(ε3.p3)gDDV,\displaystyle(\varepsilon^{*}_{1}.\varepsilon_{2})\,(\varepsilon_{3}.p_{3})\,g_{{}_{D^{*}\,D^{*}\,V}},
D1(p1,ε1)|P(p2)D1(p3,ε2)\displaystyle\langle D_{1}(p_{1},\varepsilon^{\prime}_{1})|P(p_{2})\,D_{1}(p_{3},\varepsilon^{\prime}_{2})\rangle =\displaystyle= [(ε1.ε2)(p3.p1)(ε1.p3)(ε2.p1)]gD1D1P,\displaystyle\big{[}(\varepsilon_{1}^{{}^{\prime}*}.\varepsilon_{2}^{{}^{\prime}})\,(p_{3}.p_{1})-(\varepsilon_{1}^{{}^{\prime}*}.p_{3})\,(\varepsilon^{\prime}_{2}.p_{1})\big{]}\,g_{{}_{D_{1}\,D_{1}\,P}}, (29)

with p1=p2+p3p_{1}=p_{2}+p_{3}, are used for the (D,D,A)(D,D,A), (D,D,A)(D^{*},D,A), (D,D,V)(D,D,V), (D,D,V)(D^{*},D,V), (D,D,V)(D^{*},D^{*},V) and (D1,D1,P)(D_{1},D_{1},P) couplings Aliev1997 ; Belyaev1995 ; Bracco2012 . Where as emphasized in Eqs. (19) and (24), ε\varepsilon denotes the polarization vector of the vector meson VV and DD^{*} while ε\varepsilon^{\prime} is used for axial vector mesons AA and D1D_{1}.

To obtain these strong coupling constants, we start with the correlation function including the currents of 3 considered particles. In AdS/QCD approach these 3-point functions can be obtained by functionally differentiating the 55-D action with respect to their sources, which are taken to be boundary values of the 55-D fields that have the correct quantum numbers as Witten1998 ; Gubser1998 ; Grigoryan2007 ; Abidin2008

0|𝒯{JAαa(x)JAμb(y)JAβc(w)}|0\displaystyle\langle 0|\mathcal{T}\left.\{J_{A\parallel}^{\alpha a}(x)J_{A\perp}^{\mu b}(y)J_{A\parallel}^{\beta c}(w)\right.\}|0\rangle =\displaystyle= δ3S(DDA)δAα0a(x)δAμ0b(y)δAβ0c(w)(forDDAvertex),\displaystyle-\frac{\ \delta^{3}\rm{S}(DDA)\qquad}{\delta A_{\parallel\alpha}^{0a}(x)\,\delta A_{\perp\mu}^{0b}(y)\,\delta A_{\parallel\beta}^{0c}(w)}~{}~{}~{}~{}~{}~{}\rm({for~{}~{}DDA~{}~{}vertex}), (30)
0|𝒯{JVμa(x)JAνb(y)JAαc(w)}|0\displaystyle\langle 0|\mathcal{T}\left.\{J_{V\perp}^{\mu a}(x)J_{A\perp}^{\nu b}(y)J_{A\parallel}^{\alpha c}(w)\right.\}|0\rangle =\displaystyle= δ3S(DDA)δVμ0a(x)δAν0b(y)δAα0c(w)(forDDAvertex),\displaystyle-\frac{\ \delta^{3}\rm{S}(D^{*}DA)\qquad}{\delta V_{\perp\mu}^{0a}(x)\,\delta A_{\perp\nu}^{0b}(y)\,\delta A_{\parallel\alpha}^{0c}(w)}~{}~{}~{}~{}~{}~{}\rm({for~{}~{}D^{*}DA~{}~{}vertex}), (31)
0|𝒯{JAαa(x)JVμb(y)JAβc(w)}|0\displaystyle\langle 0|\mathcal{T}\left.\{J_{A\parallel}^{\alpha a}(x)J_{V\perp}^{\mu b}(y)J_{A\parallel}^{\beta c}(w)\right.\}|0\rangle =\displaystyle= δ3S(DDV)δAα0a(x)δVμ0b(y)δAβ0c(w)(forDDVvertex),\displaystyle-\frac{\ \delta^{3}\rm{S}(DDV)\qquad}{\delta A_{\parallel\alpha}^{0a}(x)\,\delta V_{\perp\mu}^{0b}(y)\,\delta A_{\parallel\beta}^{0c}(w)}~{}~{}~{}~{}~{}~{}\rm({for~{}~{}DDV~{}~{}vertex}), (32)
0|𝒯{JVμa(x)JVνb(y)JAαc(w)}|0\displaystyle\langle 0|\mathcal{T}\left.\{J_{V\perp}^{\mu a}(x)J_{V\perp}^{\nu b}(y)J_{A\parallel}^{\alpha c}(w)\right.\}|0\rangle =\displaystyle= δ3S(DDV)δVμ0a(x)δVν0b(y)δAα0c(w)(forDDVvertex),\displaystyle-\frac{\ \delta^{3}\rm{S}(D^{*}DV)\qquad}{\delta V_{\perp\mu}^{0a}(x)\,\delta V_{\perp\nu}^{0b}(y)\,\delta A_{\parallel\alpha}^{0c}(w)}~{}~{}~{}~{}~{}~{}\rm({for~{}~{}D^{*}DV~{}~{}vertex}), (33)
0|𝒯{JVμa(x)JVνb(y)JVσc(w)}|0\displaystyle\langle 0|\mathcal{T}\left.\{J_{V\perp}^{\mu a}(x)J_{V\perp}^{\nu b}(y)J_{V\perp}^{\sigma c}(w)\right.\}|0\rangle =\displaystyle= δ3S(DDV)δVμ0a(x)δVν0b(y)δVσ0c(w)(forDDVvertex),\displaystyle-\frac{\ \delta^{3}\rm{S}(D^{*}D^{*}V)\qquad}{\delta V_{\perp\mu}^{0a}(x)\,\delta V_{\perp\nu}^{0b}(y)\,\delta V_{\perp\sigma}^{0c}(w)}~{}~{}~{}~{}~{}~{}\rm({for~{}~{}D^{*}D^{*}V~{}~{}vertex}), (34)
0|𝒯{JAμa(x)JAνb(y)JAαc(w)}|0\displaystyle\langle 0|\mathcal{T}\left.\{J_{A\perp}^{\mu a}(x)J_{A\perp}^{\nu b}(y)J_{A\parallel}^{\alpha c}(w)\right.\}|0\rangle =\displaystyle= δ3S(D1D1P)δAμ0a(x)δAν0b(y)δAα0c(w)(forD1D1Pvertex),\displaystyle-\frac{\ \delta^{3}\rm{S}(D_{1}D_{1}P)\qquad}{\delta A_{\perp\mu}^{0a}(x)\,\delta A_{\perp\nu}^{0b}(y)\,\delta A_{\parallel\alpha}^{0c}(w)}~{}~{}~{}~{}~{}~{}\rm({for~{}~{}D_{1}D_{1}P~{}~{}vertex}), (35)

where S(123)\rm{S}(123) is the relevant part of the 55-D action for (1,2,3)(1,2,3) vertex. To make a relation between the correlation functions and their corresponding vertexes, we insert three complete sets of intermediate states with the same quantum numbers as the meson currents into the correlation function. In the next step, the matrix elements are defined in Eqs. (19), (24) and (25) are used and the results can be obtained as:

D(p1)|A(p2,ε)D(p3)=Ωαβ(1,3)Λ(DAD)εμ^(0|𝒯{JAαa(x)JAμb(0)JAβc(w)}|0),\displaystyle\langle D(p_{1})|A(p_{2},\varepsilon^{\prime})\,D(p_{3})\rangle=\Omega_{\alpha\beta}(1,3)\,\Lambda(D\,A\,D)\,\varepsilon^{\prime}_{\mu}\,\hat{\mathcal{L}}\Bigg{(}\langle 0|\mathcal{T}\left.\{J_{A\parallel}^{\alpha a}(x)J_{A\perp}^{\mu b}(0)J_{A\parallel}^{\beta c}(w)\right.\}|0\rangle\Bigg{)},
D(p1,ε)|A(p2,ε)D(p3)=Ωα(3)Λ(DAD)εμεν^(0|𝒯{JVμa(x)JAνb(0)JAαc(w)}|0),\displaystyle\langle D^{*}(p_{1},\varepsilon)|A(p_{2},\varepsilon^{\prime})\,D(p_{3})\rangle=\Omega_{\alpha}(3)\,\Lambda(D^{*}\,A\,D)\,\,\varepsilon^{*}_{\mu}\,\varepsilon^{\prime}_{\nu}\,\hat{\mathcal{L}}\Bigg{(}\langle 0|\mathcal{T}\left.\{J_{V\perp}^{\mu a}(x)J_{A\perp}^{\nu b}(0)J_{A\parallel}^{\alpha c}(w)\right.\}|0\rangle\Bigg{)},
D(p1)|V(p2,ε)D(p3)=Ωαβ(1,3)Λ(DVD)εμ^(0|𝒯{JAαa(x)JVμb(0)JAβc(w)}|0),\displaystyle\langle D(p_{1})|V(p_{2},\varepsilon)\,D(p_{3})\rangle=\Omega_{\alpha\beta}(1,3)\,\Lambda(D\,V\,D)\,\varepsilon_{\mu}\,\hat{\mathcal{L}}\Bigg{(}\langle 0|\mathcal{T}\left.\{J_{A\parallel}^{\alpha a}(x)J_{V\perp}^{\mu b}(0)J_{A\parallel}^{\beta c}(w)\right.\}|0\rangle\Bigg{)},\,
D(p1,ε1)|V(p2,ε2)D(p3)=Ωα(3)Λ(DVD)ε1με2ν^(0|𝒯{JVμa(x)JVνb(0)JAαc(w)}|0),\displaystyle\langle D^{*}(p_{1},\varepsilon_{1})|V(p_{2},\varepsilon_{2})\,D(p_{3})\rangle=\Omega_{\alpha}(3)\,\Lambda(D^{*}\,V\,D)\,\varepsilon^{*}_{1\mu}\,\varepsilon_{2\nu}\,\hat{\mathcal{L}}\Bigg{(}\langle 0|\mathcal{T}\left.\{J_{V\perp}^{\mu a}(x)J_{V\perp}^{\nu b}(0)J_{A\parallel}^{\alpha c}(w)\right.\}|0\rangle\Bigg{)},
D(p1,ε1)|V(p2,ε2)D(p3,ε3)=Λ(DVD)ε1με2νε3σ^(0|𝒯{JVμa(x)JVνb(0)JVσc(w)}|0),\displaystyle\langle D^{*}(p_{1},\varepsilon_{1})|V(p_{2},\varepsilon_{2})\,D^{*}(p_{3},\varepsilon_{3})\rangle=\Lambda(D^{*}\,V\,D^{*})\,\varepsilon^{*}_{1\mu}\,\varepsilon_{2\nu}\,\varepsilon_{3\sigma}\hat{\mathcal{L}}\Bigg{(}\langle 0|\mathcal{T}\left.\{J_{V\perp}^{\mu a}(x)J_{V\perp}^{\nu b}(0)J_{V\perp}^{\sigma c}(w)\right.\}|0\rangle\Bigg{)},
D1(p1,ε1)|P(p2)D1(p3,ε2)=Ωα(2)Λ(D1PD1)ε1με2ν^(0|𝒯{JAμa(x)JAνb(0)JAαc(w)}|0),\displaystyle\langle D_{1}(p_{1},\varepsilon^{\prime}_{1})|P(p_{2})\,D_{1}(p_{3},\varepsilon^{\prime}_{2})\rangle=\Omega_{\alpha}(2)\,\Lambda(D_{1}\,P\,D_{1})\,\,\varepsilon^{{}^{\prime}*}_{1\mu}\,\varepsilon^{\prime}_{2\nu}\,\hat{\mathcal{L}}\Bigg{(}\langle 0|\mathcal{T}\left.\{J_{A\perp}^{\mu a}(x)J_{A\perp}^{\nu b}(0)J_{A\parallel}^{\alpha c}(w)\right.\}|0\rangle\Bigg{)},

where,

^=d4xd4weip1xip3w,Ωα(i)=piαpi2,Ωαβ(i,j)=Ωα(i)Ωβ(j).\displaystyle\hat{\mathcal{L}}=\int d^{4}x\,d^{4}w\,e^{ip_{1}x-ip_{3}w},\,~{}~{}~{}~{}~{}\Omega_{\alpha}(i)=\frac{p_{i\alpha}}{p_{i}^{2}},\,~{}~{}~{}~{}~{}\Omega_{\alpha\,\beta}(i,j)=\Omega_{\alpha}(i)\,\Omega_{\beta}(j). (36)

Moreover,

Λ(𝒪1𝒪2𝒪3)=(p12m2𝒪1)f𝒪1(p22m2𝒪2)f𝒪2(p32m2𝒪3)f𝒪3,\displaystyle\Lambda(\mathcal{O}_{1}\,\mathcal{O}_{2}\,\mathcal{O}_{3})=\frac{(p_{1}^{2}-m^{2}_{\mathcal{O}_{1}})}{f_{\mathcal{O}_{1}}}\,\frac{(p_{2}^{2}-m^{2}_{\mathcal{O}_{2}})}{f_{\mathcal{O}_{2}}}\,\frac{(p_{3}^{2}-m^{2}_{\mathcal{O}_{3}})}{f_{\mathcal{O}_{3}}}, (37)

is defined for the 𝒪1|𝒪2𝒪3\langle\mathcal{O}_{1}|\mathcal{O}_{2}\,\mathcal{O}_{3}\rangle matrix element. Moreover, in the final result, the limit (p12,p22,p32)(m2𝒪1,m2𝒪2,m2𝒪3)(p_{1}^{2},p_{2}^{2},p_{3}^{2})\to(m^{2}_{\mathcal{O}_{1}},m^{2}_{\mathcal{O}_{2}},m^{2}_{\mathcal{O}_{3}}) is taken for considered vertex.

Now the relevant actions for every 3-point function are needed. For example, to obtain S(DDA)\rm{S}(DDA), we need to separate two pseudoscalar fields (for DD mesons), and one axial vector field (for AA meson) from three point action or for S(DDA)\rm{S}(D^{*}DA), we need a vector field, a pseudoscalar field and one axial vector one. The results are calculated as

S(DDA)\displaystyle\rm{S}(DDA) =\displaystyle= d5x(labcz3[12Aaμμ(πbπc)μ(πaϕa)Abμπc]),\displaystyle\int d^{5}x\bigg{(}\frac{l^{abc}}{z^{3}}\left.[\frac{1}{2}A^{a}_{\mu}\,\partial^{\mu}(\pi^{b}\,\pi^{c})-\partial_{\mu}(\pi^{a}-\phi^{a})A^{b}_{\mu}\,\pi^{c}\right.]\bigg{)}, (38)
S(DDA)\displaystyle S(D^{*}DA) =\displaystyle= d5x(fabc2g52z[μϕbVμνAνc]+habcz3[VaμAμbπc]+gabcz3[AμaVbμπc])\displaystyle\int d^{5}x\bigg{(}\frac{f^{abc}}{2\,g_{5}^{2}\,z}\left.[\partial^{\mu}\phi^{b}\,V_{\mu\nu}\,A^{\nu c}\right.]+\frac{h^{abc}}{z^{3}}\left.[V^{a\mu}\,A_{\mu}^{b}\pi^{c}\right.]+\frac{g^{abc}}{z^{3}}\left.[A_{\mu}^{a}\,V^{b\mu}\,\pi^{c}\right.]\bigg{)} (39)
S(DDV)\displaystyle\rm{S}(DDV) =\displaystyle= d5x(fabc2g52z[μϕaVμνbνϕc+2zνϕaVzbνϕc]+gabcz3[(μπaμϕa)VμbπczπaVzbπc])\displaystyle\int d^{5}x\bigg{(}\frac{f^{abc}}{2g_{5}^{2}z}\left.[\partial^{\mu}\phi^{a}V_{\mu\nu}^{b}\partial^{\nu}\phi^{c}+2\partial_{z}\partial_{\nu}\phi^{a}V_{z}^{b}\partial^{\nu}\phi^{c}\right.]+\frac{g^{abc}}{z^{3}}\left.[(\partial^{\mu}\pi^{a}-\partial^{\mu}\phi^{a})V_{\mu}^{b}\pi^{c}-\partial_{z}\pi^{a}V_{z}^{b}\pi^{c}\right.]\bigg{)} (40)
\displaystyle- d5x(habc2z3[(μ(πaπc)2μϕaπc)Vμbz(πaπc)Vzb]),\displaystyle\int d^{5}x\bigg{(}\frac{h^{abc}}{2z^{3}}\left.[(\partial^{\mu}\left(\pi^{a}\pi^{c}\right)-2\partial^{\mu}\phi^{a}\pi^{c})V_{\mu}^{b}-\partial_{z}\left(\pi^{a}\pi^{c}\right)V_{z}^{b}\right.]\bigg{)},
S(DDV)\displaystyle\rm{S}(D^{*}DV) =\displaystyle= d5x(kabcz3[VμaVμbπc+VzaVzbπc]),\displaystyle\int d^{5}x\bigg{(}\frac{k^{abc}}{z^{3}}\left.[V_{\mu}^{a}\,V^{\mu b}\,\pi^{c}+V_{z}^{a}\,V^{zb}\,\pi^{c}\right.]\bigg{)}, (41)
S(DDV)\displaystyle\rm{S}(D^{*}D^{*}V) =\displaystyle= d5x(fabcg52z[VμνaVμbVνc]),\displaystyle\int d^{5}x\bigg{(}\frac{f^{abc}}{g_{5}^{2}\,z}\left.[V_{\mu\nu}^{a}\,V^{\mu b}\,V^{\nu c}\right.]\bigg{)}, (42)
S(D1D1P)\displaystyle\rm{S}(D_{1}D_{1}P) =\displaystyle= d5x(labcz3[AμaAμbπc]),\displaystyle\int d^{5}x\bigg{(}\frac{l^{abc}}{z^{3}}\left.[A_{\mu}^{a}\,A^{\mu b}\,\pi^{c}\right.]\bigg{)}, (43)

where

labc=2iTr.({ta,X0}{tb,{tc,X0}}.),gabc=2iTr.({ta,X0}[tb,{tc,X0}].),\displaystyle l^{abc}=-2\,i{\rm\,Tr\,}\Bigg{.}(\left\{t^{a},X_{0}\right\}\left\{t^{b},\left\{t^{c},X_{0}\right\}\right\}\Bigg{.}),\,~{}~{}~{}g^{abc}=-2i{\rm\,Tr\,}\Bigg{.}(\left\{t^{a},X_{0}\right\}\left[t^{b},\left\{t^{c},X_{0}\right\}\right]\Bigg{.}), (44)
habc=2iTr.([ta,X0]{tb,{tc,X0}}.),kabc=2iTr.([ta,X0][tb,{tc,X0}].).\displaystyle h^{abc}=-2i{\rm\,Tr\,}\Bigg{.}(\left[t^{a},X_{0}\right]\left\{t^{b},\left\{t^{c},X_{0}\right\}\right\}\Bigg{.}),\,~{}~{}~{}k^{abc}=-2i{\rm\,Tr\,}\Bigg{.}(\left[t^{a},X_{0}\right]\left[t^{b},\left\{t^{c},X_{0}\right\}\right]\Bigg{.}). (45)

In all of the actions obtained here, the fabcf^{abc} terms come from the gauge part and the terms containing labcl^{abc}, gabcg^{abc}, habch^{abc} and kabck^{abc} are from the chiral part of the original action. The values of fabcf^{abc} are given in Mahmoud2013 and for labcl^{abc}, habch^{abc} and kabck^{abc} the values which are used in numerical part of this paper, are collected in Appendix.

It should be noted that in S(DDA)\rm{S}(DDA), S(DDV)\rm{S}(D^{*}DV) and S(D1D1P)\rm{S}(D_{1}D_{1}P), the left hand gauge field term; (LMNLMNL^{MN}\,L_{MN}) cancels the contribution of the right hand ones; (RMNRMNR^{MN}\,R_{MN}); and in the final result, the gauge part has no contribution. Going to Fourier transform space and using the relations Grigoryan20072 ; Abidin20083 :

ϕa(p,z)\displaystyle\phi^{a}(p,z) =ϕa(p2,z)ipαp2Aα0a(p),πa(p,z)=πa(p2,z)ipαp2Aα0a(p),\displaystyle=\phi^{a}(p^{2},z)\frac{ip^{\alpha}}{p^{2}}A_{\parallel\alpha}^{0a}(p)\,,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\pi^{a}(p,z)=\pi^{a}(p^{2},z)\frac{ip^{\alpha}}{p^{2}}A_{\parallel\alpha}^{0a}(p)\,, (46)
Aμa(q,z)\displaystyle A_{\perp\mu}^{a}(q,z) =𝒜a(q2,z)Aμ0a(q),Vμb(q,z)=𝒱b(q2,z)Vμ0b(q),\displaystyle={\mathcal{A}}^{a}(q^{2},z)\ A_{\perp\mu}^{0a}(q),\,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}V_{\perp\mu}^{b}(q,z)={\cal V}^{b}(q^{2},z)\ V_{\perp\mu}^{0b}(q)\,, (47)
Vzb(q,z)\displaystyle V_{z}^{b}(q,z) =zπ~b(q2,z)iqαq2Vα0b(q),μi(relevantmomentum)μ,\displaystyle=-\partial_{z}\tilde{\pi}^{b}(q^{2},z)\ \frac{iq^{\alpha}}{q^{2}}V_{\parallel\alpha}^{0b}(q)\,,~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\partial^{\mu}\to-i\left({\rm relevant\ momentum}\right)^{\mu}\,, (48)

the strong couplings are obtained as:

gDDA\displaystyle g_{{}_{DDA}} =\displaystyle= g530z0dz(labcz3[ψAa(z)πb(z)πc(z)(πa(z)ϕa(z))ψAb(z)πc(z)]),\displaystyle g_{5}^{3}\,\int_{0}^{z_{0}}dz\,\bigg{(}\frac{\,l^{abc}}{z^{3}}\left.[\psi_{{}_{A}}^{a}(z)\,\pi^{b}(z)\,\pi^{c}(z)-\,(\pi^{a}(z)-\phi^{a}(z))\psi_{{}_{A}}^{b}(z)\,\pi^{c}(z)\right.]\bigg{)}, (49)
gDDA\displaystyle g_{{}_{D^{*}DA}} =\displaystyle= g50z0dz(fabc2z[ψVa(z)ϕb(z)ψAc(z)]+g52gabcΔ1z3[ψAa(z)ψVb(z)πc(z)])\displaystyle g_{5}\,\int_{0}^{z_{0}}dz\,\bigg{(}\frac{f^{abc}}{2\,z}\,\left.[\psi_{{}_{V}}^{a}(z)\,\phi^{b}(z)\,\psi_{{}_{A}}^{c}(z)\right.]+\frac{g_{5}^{2}\,g^{abc}}{\Delta_{1}\,z^{3}}\,\left.[\psi_{{}_{A}}^{a}(z)\,\psi_{{}_{V}}^{b}(z)\pi^{c}(z)\right]\bigg{)} (50)
+\displaystyle+ g530z0dz(habcΔ1z3[ψVa(z)ψAb(z)πc(z)]),\displaystyle g_{5}^{3}\,\int_{0}^{z_{0}}dz\,\bigg{(}\frac{h^{abc}}{\Delta_{1}\,z^{3}}\,\left[\psi_{{}_{V}}^{a}(z)\,\psi_{{}_{A}}^{b}(z)\pi^{c}(z)\right]\bigg{)},
gDDV\displaystyle g_{{}_{DDV}} =\displaystyle= g50z0dz(fabc2z[ϕa(z)ψVb(z)ϕc(z)]Δ2+g52gabcz3[(ϕa(z)πa(z))ψVb(z)ϕc(z)])\displaystyle g_{5}\,\int_{0}^{z_{0}}dz\,\bigg{(}\frac{f^{abc}}{2\,z}\,\left.[\phi^{a}(z)\,\psi_{{}_{V}}^{b}(z)\,\phi^{c}(z)\right.]\,\Delta_{2}+\frac{g_{5}^{2}\,g^{abc}}{z^{3}}\,\left.[(\phi^{a}(z)-\pi^{a}(z))\,\psi_{{}_{V}}^{b}(z)\,\phi^{c}(z)\right]\bigg{)} (51)
+\displaystyle+ g530z0dz(habcz3[ϕa(z)ψVb(z)πc(z)]),\displaystyle g_{5}^{3}\,\int_{0}^{z_{0}}dz\,\bigg{(}\frac{h^{abc}}{z^{3}}\,\left.[\phi^{a}(z)\,\psi_{{}_{V}}^{b}(z)\,\pi^{c}(z)\right.]\bigg{)},
gDDV\displaystyle g_{{}_{D^{*}DV}} =\displaystyle= g530z0dz(kabcΔ1z3[ψVa(z)ψVb(z)πc(z)]),\displaystyle g_{5}^{3}\,\int_{0}^{z_{0}}dz\,\bigg{(}\frac{k^{abc}}{\Delta_{1}\,z^{3}}\left.[\psi_{{}_{V}}^{a}(z)\,\psi_{{}_{V}}^{b}(z)\,\pi^{c}(z)\right]\bigg{)}, (52)
gDDV\displaystyle g_{{}_{D^{*}D^{*}V}} =\displaystyle= g50z0dz(fabcz[ψVa(z)ψVb(z)ψVc(z)]),\displaystyle g_{5}\,\int_{0}^{z_{0}}dz\,\bigg{(}\frac{f^{abc}}{\,z}\left.[\psi_{{}_{V}}^{a}(z)\,\psi_{{}_{V}}^{b}(z)\,\psi_{{}_{V}}^{c}(z)\right]\bigg{)}, (53)
gD1D1P\displaystyle g_{{}_{D_{1}D_{1}P}} =\displaystyle= g530z0dz(labcΔ1z3[ψAa(z)ψAb(z)πc(z)]),\displaystyle g_{5}^{3}\,\int_{0}^{z_{0}}dz\,\bigg{(}\frac{l^{abc}}{\Delta_{1}\,z^{3}}\left.[\psi_{{}_{A}}^{a}(z)\,\psi_{{}_{A}}^{b}(z)\,\pi^{c}(z)\right]\bigg{)}, (54)

where the parameters Δ1\Delta_{1} and Δ2\Delta_{2} are defined as

Δ1=p12+p32p22,Δ2=p12p32.\displaystyle\Delta_{1}=p_{1}^{2}+p_{3}^{2}-p_{2}^{2},~{}~{}~{}~{}~{}~{}~{}~{}~{}\Delta_{2}=p_{1}^{2}-p_{3}^{2}. (55)

Note that ψAa(z)\psi_{A}^{a}(z) and ψaV\psi^{a}_{V} are dimensionless but the units of ϕa(z)\phi^{a}(z) and πa(z)\pi^{a}(z) are GeV1\rm{GeV}^{-1} ( or in the units of zz). So, gDDAg_{{}_{D^{*}\,D\,A}}, and gDDVg_{{}_{D^{*}\,D\,V}} and gD1D1Pg_{{}_{D_{1}D_{1}P}} are in units GeV1\rm{GeV}^{-1} and other couplings are dimensionless.

IV.2 4-point functions and charm meson couplings

In this subsection we consider (ψ,D,D,P)(\psi,D,D,P), (ψ,D,D,P)(\psi,D^{*},D,P), (ψ,D,D,A)(\psi,D,D,A) and (ψ,D,D,A)(\psi,D^{*},D,A) vertices. To obtain these vertexes couplings, we start with the following 4-point functions:

0|𝒯{JVμa(x)JAαb(y)JAβc(w)JAγd(u)}|0\displaystyle\langle 0|\mathcal{T}\left.\{J_{V\perp}^{\mu a}(x)J_{A\parallel}^{\alpha b}(y)\,J_{A\parallel}^{\beta c}(w)J_{A\parallel}^{\gamma d}(u)\right.\}|0\rangle =\displaystyle= iδ4S(ψDDP)δVμ0a(x)δAα0b(y)δAβ0c(w)δAγ0d(u)(forψDDPvertex),\displaystyle\frac{i\,\delta^{4}\rm{S}(\psi DDP)\qquad}{\delta V_{\perp\mu}^{0a}(x)\,\delta A_{\parallel\alpha}^{0b}(y)\,\delta A_{\parallel\beta}^{0c}(w)\,\delta A_{\parallel\gamma}^{0d}(u)}~{}~{}~{}~{}~{}~{}\rm({for~{}~{}\psi DDP~{}~{}vertex}), (56)
0|𝒯{JVμa(x)JVνb(y)JAαc(w)JAβd(u)}|0\displaystyle\langle 0|\mathcal{T}\left.\{J_{V\perp}^{\mu a}(x)J_{V\perp}^{\nu b}(y)\,J_{A\parallel}^{\alpha c}(w)J_{A\parallel}^{\beta d}(u)\right.\}|0\rangle =\displaystyle= iδ4S(ψDDP)δVμ0a(x)δVν0b(y)δAα0c(w)δAβ0d(u)(forψDDPvertex),\displaystyle\frac{i\,\delta^{4}\rm{S}(\psi D^{*}DP)\qquad}{\delta V_{\perp\mu}^{0a}(x)\,\delta V_{\perp\nu}^{0b}(y)\,\delta A_{\parallel\alpha}^{0c}(w)\,\delta A_{\parallel\beta}^{0d}(u)}~{}~{}~{}~{}~{}~{}\rm({for~{}~{}\psi D^{*}DP~{}~{}vertex}), (57)
0|𝒯{JVμa(x)JAαb(y)JAβc(w)JAνd(u)}|0\displaystyle\langle 0|\mathcal{T}\left.\{J_{V\perp}^{\mu a}(x)J_{A\parallel}^{\alpha b}(y)\,J_{A\parallel}^{\beta c}(w)J_{A\perp}^{\nu d}(u)\right.\}|0\rangle =\displaystyle= iδ4S(ψDDA)δVμ0a(x)δAα0b(y)δAβ0c(w)δAν0d(u)(forψDDAvertex),\displaystyle\frac{i\,\delta^{4}\rm{S}(\psi DDA)\qquad}{\delta V_{\perp\mu}^{0a}(x)\,\delta A_{\parallel\alpha}^{0b}(y)\,\delta A_{\parallel\beta}^{0c}(w)\,\delta A_{\perp\nu}^{0d}(u)}~{}~{}~{}~{}~{}~{}\rm({for~{}~{}\psi DDA~{}~{}vertex}), (58)
0|𝒯{JVμa(x)JVνb(y)JAαc(w)JAσd(u)}|0\displaystyle\langle 0|\mathcal{T}\left.\{J_{V\perp}^{\mu a}(x)J_{V\perp}^{\nu b}(y)\,J_{A\parallel}^{\alpha c}(w)J_{A\perp}^{\sigma d}(u)\right.\}|0\rangle =\displaystyle= iδ4S(ψDDA)δVμ0a(x)δVν0b(y)δAα0c(w)δAσ0d(u)(forψDDAvertex),\displaystyle\frac{i\,\delta^{4}\rm{S}(\psi D^{*}DA)\qquad}{\delta V_{\perp\mu}^{0a}(x)\,\delta V_{\perp\nu}^{0b}(y)\,\delta A_{\parallel\alpha}^{0c}(w)\,\delta A_{\perp\sigma}^{0d}(u)}~{}~{}~{}~{}~{}~{}\rm({for~{}~{}\psi D^{*}DA~{}~{}vertex}), (59)

where (1,2,3,4)(1,2,3,4) vertex is described by the S(1234)\rm{S}(1234) part of the total action. In this paper, the couplings gψDDPg_{{}_{\psi\,D\,D\,P}}, gψDDPg_{{}_{\psi\,D^{*}\,D\,P}}, gψDDAg_{{}_{\psi\,D\,D\,A}} and gψDDAg_{{}_{\psi\,D^{*}\,D\,A}} couplings are defined as:

ψ(p1,ε)|D(p2)D(p3)P(p4)\displaystyle\langle\psi(p_{1},\varepsilon)|D(p_{2})D(p_{3})\,P(p_{4})\rangle =\displaystyle= (ε.q)gψDDP,\displaystyle(\varepsilon^{*}.q)\,g_{{}_{\psi\,D\,D\,P}}, (60)
ψ(p1,ε)|D(p2)D(p3)A(p4,ε)\displaystyle\langle\psi(p_{1},\varepsilon)|D(p_{2})D(p_{3})\,A(p_{4},\varepsilon^{\prime})\rangle =\displaystyle= (ε.ε)gψDDA,\displaystyle(\varepsilon^{*}.\varepsilon^{\prime})\,g_{{}_{\psi\,D\,D\,A}}, (61)
ψ(p1,ε1)|D(p2,ε2)D(p3)P(p4)\displaystyle\langle\psi(p_{1},\varepsilon_{1})|D^{*}(p_{2},\varepsilon_{2})D(p_{3})\,P(p_{4})\rangle =\displaystyle= (ε1.ε2)gψDDP,\displaystyle(\varepsilon_{1}^{*}.\varepsilon_{2})\,g_{{}_{\psi\,D^{*}\,D\,P}}, (62)
ψ(p1,ε1)|D(p2,ε2)D(p3)A(p4,ε)\displaystyle\langle\psi(p_{1},\varepsilon_{1})|D^{*}(p_{2},\varepsilon_{2})D(p_{3})\,A(p_{4},\varepsilon^{\prime})\rangle =\displaystyle= (ε1.ε)(ε2.p3)gψDDA,\displaystyle(\varepsilon_{1}^{*}.\varepsilon^{\prime})\,(\varepsilon_{2}.p_{3})\,g_{{}_{\psi\,D^{*}\,D\,A}}, (63)

with q=p3+p4=p1p2q=p_{3}+p_{4}=p_{1}-p_{2}.

To obtain considered quartic vertices we insert four intermediate states in to the correlation functions given in Eqs. (56-59), and then using the definitions given in Eqs. (19), (24) and (25), we obtain:

ψ(p1,ε)|D(p2)D(p3)P(p4)=Ωαβδ(2,3,4)Λ(ψDDP)εμ^^(0|𝒯{JVμa(x)JAαb(y)JAβc(0)JAδd(u)}|0),\displaystyle\langle\psi(p_{1},\varepsilon)|D(p_{2})D(p_{3})\,P(p_{4})\rangle=\Omega_{\alpha\beta\delta}(2,3,4)\,\Lambda(\psi\,D\,D\,P)\,\varepsilon^{*}_{\mu}\,\hat{\hat{\mathcal{L}}}\Bigg{(}\langle 0|\mathcal{T}\left.\{J_{V\perp}^{\mu a}(x)J_{A\parallel}^{\alpha b}(y)\,J_{A\parallel}^{\beta c}(0)J_{A\parallel}^{\delta d}(u)\right.\}|0\rangle\Bigg{)},
ψ(p1,ε)|D(p2)D(p3)A(p4,ε)=Ωαβ(2,3)Λ(ψDDA)εμεν^^(0|𝒯{JVμa(x)JAαb(y)JAβc(0)JAνd(u)}|0),\displaystyle\langle\psi(p_{1},\varepsilon)|D(p_{2})D(p_{3})\,A(p_{4},\varepsilon^{\prime})\rangle=\Omega_{\alpha\beta}(2,3)\Lambda(\psi\,D\,D\,A)\,\varepsilon^{*}_{\mu}\,\varepsilon^{\prime}_{\nu}\hat{\hat{\mathcal{L}}}\Bigg{(}\langle 0|\mathcal{T}\left.\{J_{V\perp}^{\mu a}(x)J_{A\parallel}^{\alpha b}(y)\,J_{A\parallel}^{\beta c}(0)J_{A\perp}^{\nu d}(u)\right.\}|0\rangle\Bigg{)},
ψ(p1,ε1)|D(p2,ε2)D(p3)P(p4)=Ωαβ(3,4)Λ(ψDDP)ε1με2ν^^(0|𝒯{JVμa(x)JVνb(y)JAαc(0)JAβd(u)}|0),\displaystyle\langle\psi(p_{1},\varepsilon_{1})|D^{*}(p_{2},\varepsilon_{2})D(p_{3})\,P(p_{4})\rangle=\Omega_{\alpha\beta}(3,4)\,\Lambda(\psi\,D^{*}\,D\,P)\,\varepsilon^{*}_{1\mu}\,\varepsilon_{2\nu}\hat{\hat{\mathcal{L}}}\Bigg{(}\langle 0|\mathcal{T}\left.\{J_{V\perp}^{\mu a}(x)J_{V\perp}^{\nu b}(y)\,J_{A\parallel}^{\alpha c}(0)J_{A\parallel}^{\beta d}(u)\right.\}|0\rangle\Bigg{)},
ψ(p1,ε1)|D(p2,ε2)D(p3)A(p4,ε)=Ωα(3)Λ(ψDDA)ε1με2νεσ^^(0|𝒯{JVμa(x)JVνb(y)JAαc(0)JAσd(u)}|0),\displaystyle\langle\psi(p_{1},\varepsilon_{1})|D^{*}(p_{2},\varepsilon_{2})D(p_{3})\,A(p_{4},\varepsilon^{\prime})\rangle=\Omega_{\alpha}(3)\,\Lambda(\psi\,D^{*}\,D\,A)\,\varepsilon^{*}_{1\mu}\,\varepsilon_{2\nu}\,\varepsilon^{\prime}_{\sigma}\hat{\hat{\mathcal{L}}}\Bigg{(}\langle 0|\mathcal{T}\left.\{J_{V\perp}^{\mu a}(x)J_{V\perp}^{\nu b}(y)\,J_{A\parallel}^{\alpha c}(0)J_{A\perp}^{\sigma d}(u)\right.\}|0\rangle\Bigg{)},

where

^^=d4xd4yd4ueip1x+ip2yip4u,Ωαβδ(i,j,k)=Ωα(i)Ωβ(j)Ωδ(k).\displaystyle\hat{\hat{\mathcal{L}}}=\int d^{4}x\,d^{4}y\,d^{4}u\,e^{ip_{1}x+ip_{2}y-ip_{4}u},\,~{}~{}~{}\Omega_{\alpha\beta\delta}(i,j,k)=\Omega_{\alpha}(i)\,\Omega_{\beta}(j)\,\Omega_{\delta}(k). (64)

For 𝒪1|𝒪2𝒪3𝒪4\langle\mathcal{O}_{1}|\mathcal{O}_{2}\,\mathcal{O}_{3}\,\mathcal{O}_{4}\rangle matrix element the following definition is used:

Λ(𝒪1𝒪2𝒪3𝒪4)=(p12m2𝒪1)f𝒪1(p22m2𝒪2)f𝒪2(p32m2𝒪3)f𝒪3(p42m2𝒪4)f𝒪4,\displaystyle\Lambda(\mathcal{O}_{1}\,\mathcal{O}_{2}\,\mathcal{O}_{3}\,\mathcal{O}_{4})=\frac{(p_{1}^{2}-m^{2}_{\mathcal{O}_{1}})}{f_{\mathcal{O}_{1}}}\,\frac{(p_{2}^{2}-m^{2}_{\mathcal{O}_{2}})}{f_{\mathcal{O}_{2}}}\,\frac{(p_{3}^{2}-m^{2}_{\mathcal{O}_{3}})}{f_{\mathcal{O}_{3}}}\,\frac{(p_{4}^{2}-m^{2}_{\mathcal{O}_{4}})}{f_{\mathcal{O}_{4}}}, (65)

and the limit (p12,p22,p32,p42)(m2𝒪1,m2𝒪2,m2𝒪3,m2𝒪4)(p_{1}^{2},p_{2}^{2},p_{3}^{2},p_{4}^{2})\to(m^{2}_{\mathcal{O}_{1}},m^{2}_{\mathcal{O}_{2}},m^{2}_{\mathcal{O}_{3}},m^{2}_{\mathcal{O}_{4}}) is applied in the final result.

Now we need to obtain the relevant action for every correlation function. The results are obtained as:

S(ψDDP)\displaystyle\rm{S}(\psi DDP) =\displaystyle= d5x(gabcd2z3[μ(πaϕa)Vμbπcπd+zπaVbzπcπd]+kabcdz3[μϕaπbVcμπd])\displaystyle\int d^{5}x\,\bigg{(}\frac{g^{abcd}}{2\,z^{3}}\left.[\partial_{\mu}(\pi^{a}-\phi^{a})\,V^{\mu b}\,\pi^{c}\,\pi^{d}+\partial_{z}\pi^{a}\,V^{bz}\,\pi^{c}\,\pi^{d}\right.]+\frac{k^{abcd}}{z^{3}}\left.[\partial_{\mu}\phi^{a}\pi^{b}V^{c\mu}\pi^{d}\right]\bigg{)} (66)
d5x(labcd2z3[Vaμπbμ(πcπd)+Vazπbz(πcπd)]habcd2z3[Vaμμϕbπcπd])\displaystyle-\int d^{5}x\,\bigg{(}\frac{l^{abcd}}{2\,z^{3}}\left.[V^{a\mu}\,\pi^{b}\,\partial_{\mu}(\pi^{c}\pi^{d})+V^{az}\,\pi^{b}\,\partial_{z}(\pi^{c}\pi^{d})\right]-\frac{h^{abcd}}{2\,z^{3}}\left.[V^{a\mu}\partial_{\mu}\phi^{b}\pi^{c}\pi^{d}\right.]\bigg{)}
+d5x(habcd6z3[Vaμμ(πbπcπd)+Vazz(πbπcπd)]),\displaystyle+\int d^{5}x\,\bigg{(}\frac{h^{abcd}}{6\,z^{3}}\left.[V^{a\mu}\partial_{\mu}(\pi^{b}\pi^{c}\pi^{d})+V^{az}\partial_{z}(\pi^{b}\pi^{c}\pi^{d})\right.]\bigg{)},
S(ψDDA)\displaystyle\rm{S}(\psi DDA) =\displaystyle= d5x(gabcd2z3[AaμVbμπcπd]+habcd2z3[VaμAbμπcπd]+kabcdz3[VaμπbAcμπd]),\displaystyle\int d^{5}x\,\bigg{(}-\frac{g^{abcd}}{2\,z^{3}}\left.[A^{a}_{\mu}\,V^{b\mu}\,\pi^{c}\pi^{d}\right.]+\frac{h^{abcd}}{2\,z^{3}}\left.[V^{a}_{\mu}\,A^{b\mu}\,\pi^{c}\pi^{d}\right.]+\frac{k^{abcd}}{z^{3}}\left.[V^{a}_{\mu}\,\pi^{b}\,A^{c\mu}\,\pi^{d}\right.]\bigg{)}, (67)
S(ψDDP)\displaystyle\rm{S}(\psi D^{*}DP) =\displaystyle= d5x(fabcd2g52z[VaμVbνμϕcνϕd+VaμνϕbVcμνϕd]habcd2z3[VaμVbμπcπd])\displaystyle\int d^{5}x\,\bigg{(}\frac{f^{abcd}}{2\,g_{5}^{2}\,z}\left.[V^{a\mu}V^{b\nu}\partial_{\mu}\phi^{c}\partial_{\nu}\phi^{d}+V^{a\mu}\partial_{\nu}\phi^{b}V^{c}_{\mu}\partial^{\nu}\phi^{d}\right.]-\frac{h^{abcd}}{2\,z^{3}}\left.[V^{a}_{\mu}\,V^{b\mu}\pi^{c}\pi^{d}\right.]\bigg{)} (68)
d5x(habcd2z3[VazVbzπcπd]),\displaystyle-\int d^{5}x\,\bigg{(}\frac{h^{abcd}}{2\,z^{3}}\left.[V^{a}_{z}\,V^{bz}\pi^{c}\pi^{d}\right.]\bigg{)},
S(ψDDA)\displaystyle\rm{S}(\psi D^{*}DA) =\displaystyle= d5x(fabcd2g52z[VaμAbνVcμνϕd+VaμAbνμϕcVdν]),\displaystyle\int d^{5}x\,\bigg{(}\frac{f^{abcd}}{2\,g_{5}^{2}\,z}\left.[V^{a}_{\mu}\,A^{b}_{\nu}V^{c\mu}\,\partial^{\nu}\phi^{d}+V^{a}_{\mu}\,\,A^{b}_{\nu}\,\partial^{\mu}\phi^{c}\,V^{d\nu}\,\right]\bigg{)}, (69)

with

fabcd\displaystyle f^{abcd} =\displaystyle= 2Tr.([ta,tb][tc,td].),\displaystyle 2{\rm\,Tr\,}\Bigg{.}(\left[t^{a},t^{b}\right]\left[t^{c},t^{d}\right]\Bigg{.}),
gabcd\displaystyle g^{abcd} =\displaystyle= 2Tr.({ta,X0}[tb,{tc,{td,X0}}].),\displaystyle 2{\rm\,Tr\,}\Bigg{.}(\left\{t^{a},X_{0}\right\}\left[t^{b},\left\{t^{c},\left\{t^{d},X_{0}\right\}\right\}\right]\Bigg{.}),
habcd\displaystyle h^{abcd} =\displaystyle= 2Tr.([ta,X0]{tb,{tc,{td,X0}}}.),\displaystyle 2{\rm\,Tr\,}\Bigg{.}(\left[t^{a},X_{0}\right]\left\{t^{b},\left\{t^{c},\left\{t^{d},X_{0}\right\}\right\}\right\}\Bigg{.}),
kabcd\displaystyle k^{abcd} =\displaystyle= 2Tr.({ta,{tb,X0}}[tc,{td,X0}].),\displaystyle 2{\rm\,Tr\,}\Bigg{.}(\left\{t^{a},\left\{t^{b},X_{0}\right\}\right\}\left[t^{c},\left\{t^{d},X_{0}\right\}\right]\Bigg{.}),
labcd\displaystyle l^{abcd} =\displaystyle= 2Tr.([ta,{tb,X0}]{tc,{td,X0}}.),\displaystyle 2{\rm\,Tr\,}\Bigg{.}(\left[t^{a},\left\{t^{b},X_{0}\right\}\right]\left\{t^{c},\left\{t^{d},X_{0}\right\}\right\}\Bigg{.}), (70)

where fabcdf^{abcd} can be written in terms of structure constant as fabcd=fabmfcdmf^{abcd}=-f^{abm}\,f^{cdm}. The values of gabcdg^{abcd}, habcdh^{abcd}, kabcdk^{abcd} and labcdl^{abcd} used in this paper are presented in Appendix. Using Eqs. (46, 47) and (48), and then by functional derivation according to Eqs. (56- 59), the final results for gψDDPg_{{}_{\psi\,D\,D\,P}}, gψDDPg_{{}_{\psi\,D^{*}\,D\,P}}, gψDDAg_{{}_{\psi\,D\,D\,A}} and gψDDAg_{{}_{\psi\,D^{*}\,D\,A}} couplings are obtained as:

gψDDP=g540z0dz(gabcd2z3[(πa(z)ϕa(z))ψVb(z)πc(z)πd(z)]labcd2z3[ψVa(z)πb(z)πc(z)πd(z)])\displaystyle g_{{}_{\psi\,D\,D\,P}}=g_{5}^{4}\,\int_{0}^{z_{0}}dz\,\bigg{(}\frac{g^{abcd}}{2\,z^{3}}\left.[(\pi^{a}(z)-\phi^{a}(z))\psi_{{}_{V}}^{b}(z)\,\pi^{c}(z)\,\pi^{d}(z)\right.]-\frac{l^{abcd}}{2\,z^{3}}\left.[\psi_{{}_{V}}^{a}(z)\,\pi^{b}(z)\,\pi^{c}(z)\,\pi^{d}(z)\right.]\bigg{)}
+g540z0dz(habcd6z3[ψVa(z)(3ϕb(z)+πb(z))πc(z)πd(z)]+kabcdz3[ϕa(z)πb(z)ψVc(z)πd(z)]),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}+g_{5}^{4}\,\int_{0}^{z_{0}}dz\,\bigg{(}\frac{h^{abcd}}{6\,z^{3}}\left.[\psi_{{}_{V}}^{a}(z)\,(3\,\phi^{b}(z)+\pi^{b}(z))\,\pi^{c}(z)\,\pi^{d}(z)\right.]+\frac{k^{abcd}}{z^{3}}\left.[\phi^{a}(z)\,\pi^{b}(z)\,\psi_{{}_{V}}^{c}(z)\,\pi^{d}(z)\right.]\bigg{)}, (71)
gψDDA=g540z0dz(gabcd2z3[ψAa(z)ψVb(z)πc(z)πd(z)]+habcd2z3[ψVa(z)ψAb(z)ϕc(z)ϕd(z)])\displaystyle g_{{}_{\psi\,D\,D\,A}}=g_{5}^{4}\,\int_{0}^{z_{0}}dz\,\bigg{(}-\frac{g^{abcd}}{2\,z^{3}}\left.[\psi_{{}_{A}}^{a}(z)\,\psi_{{}_{V}}^{b}(z)\,\pi^{c}(z)\,\pi^{d}(z)\right.]+\frac{h^{abcd}}{2\,z^{3}}\left.[\psi_{{}_{V}}^{a}(z)\,\psi_{{}_{A}}^{b}(z)\,\phi^{c}(z)\,\phi^{d}(z)\right.]\bigg{)}
g540z0dz(kabcdz3[ψVa(z)ϕb(z)ψAc(z)πd(z)]),\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}-g_{5}^{4}\,\int_{0}^{z_{0}}dz\,\bigg{(}\frac{k^{abcd}}{z^{3}}\left.[\psi_{{}_{V}}^{a}(z)\,\phi^{b}(z)\,\psi_{{}_{A}}^{c}(z)\,\pi^{d}(z)\right.]\bigg{)}, (72)
gψDDP=g520z0dz(fabcd4z[ψVa(z)ϕb(z)ψVc(z)ϕd(z)]Δ3g52habcd2z3[ψVa(z)ψVb(z)πc(z)πd(z)]),\displaystyle g_{{}_{\psi\,D^{*}\,D\,P}}=g_{5}^{2}\,\int_{0}^{z_{0}}dz\,\bigg{(}\frac{f^{abcd}}{4\,z}\,\left.[\psi_{{}_{V}}^{a}(z)\,\phi^{b}(z)\,\psi_{{}_{V}}^{c}(z)\,\phi^{d}(z)\right.]\,\Delta_{3}-\frac{g_{5}^{2}\,h^{abcd}}{2\,z^{3}}\left.[\psi_{{}_{V}}^{a}(z)\,\psi_{{}_{V}}^{b}(z)\,\pi^{c}(z)\,\pi^{d}(z)\right.]\bigg{)}, (73)
gψDDA=g520z0dz(fabcd2z[ψVa(z)ψAb(z)ψVc(z)ϕd(z)]),\displaystyle g_{{}_{\psi\,D^{*}\,D\,A}}=g_{5}^{2}\,\int_{0}^{z_{0}}dz\,\bigg{(}\frac{f^{abcd}}{2\,z}\left.[\psi_{{}_{V}}^{a}(z)\,\psi_{{}_{A}}^{b}(z)\,\psi_{{}_{V}}^{c}(z)\,\phi^{d}(z)\right.]\bigg{)}, (74)

where

Δ3=q2p32p42.\displaystyle\Delta_{3}=q^{2}-p_{3}^{2}-p_{4}^{2}. (75)

Here, the strong couplings of ψDDP\psi\,D\,D\,P and ψDDA\psi\,D^{*}\,D\,A vertices are in the units of GeV1\rm{GeV}^{-1} while gψDDAg_{{}_{\psi\,D\,D\,A}} and gψDDPg_{{}_{\psi\,D^{*}\,D\,P}} are dimensionless.

V Numerical analysis

In this section, our numerical analysis is presented for the strong coupling constants gDDAg_{{}_{DDA}} and gDDAg_{{}_{D^{*}DA}}, gDDVg_{{}_{D\,D\,V}}, gDDVg_{{}_{D^{*}\,D\,V}}, gDDVg_{{}_{D^{*}\,D^{*}\,V}}, gD1D1Pg_{{}_{D_{1}\,D_{1}\,P}}, gψDDPg_{{}_{\psi\,D\,D\,P}}, gψDDPg_{{}_{\psi\,D^{*}\,D\,P}}, gψDDAg_{{}_{\psi\,D\,D\,A}} and gψDDAg_{{}_{\psi\,D^{*}\,D\,A}}. In the first step of numerical analysis we must determine the values of z0z_{0}, mqm_{q} and σq\sigma_{q} for q=(u,d,s,c)q=(u,d,s,c) using experimental values of the masses.

The values of the experimental masses are utilized to fit z0z_{0}, quark masses and quark condensates are presented in Table 2.

Table 2: The experimental values of mass are used to fit z0z_{0}, mu,d,s,cm_{u,d,s,c} and σu,d,s,c\sigma_{u,d,s,c}. These values are taken from pdg .
Meson Mass  (MeV) Meson Mass  (MeV) Meson Mass  (MeV)
ρ0\rho^{0} 775.49±0.34775.49\pm 0.34 π0\pi^{0} 134.97±0.00134.97\pm 0.00 KK^{{}_{*-}} 891.66±0.26891.66\pm 0.26
ρ\rho^{-} 775.40±0.34775.40\pm 0.34 π\pi^{-} 139.75±0.00139.75\pm 0.00 DD^{-} 1869.65±0.051869.65\pm 0.05
a1a_{1}^{-} 1230±401230\pm 40 KK^{-} 493.67±0.01493.67\pm 0.01 DD^{{}_{*-}} 2010.26±0.052010.26\pm 0.05

To evaluate z0z_{0}, the observable which does not depend on any other parameter is used. For this purpose, we can use the vector mesons with MVa2=0{M_{V}^{a}}^{2}=0. Our choice in this part is the mass of the ρ0\rho^{0} meson which gives us z01=(323±1)MeVz_{0}^{-1}=(323\pm 1)\,\rm{MeV}.

After estimating z0z_{0}, we use the masses of the light mesons ρ\rho^{-}, a1a_{1}^{-}, π0\pi^{0} and π\pi^{-} to fit (mu,md,σu,σd(m_{u},m_{d},\sigma_{u},\sigma_{d}). In addition, (ms,σs)(m_{s},\sigma_{s}) are determined using the experimental masses of the strange states KK^{-} and KK^{{}_{*-}}. Finally, the experimental values of mDm_{D^{-}} and mDm_{D^{{}_{*-}}} are utilized to find fitted values of (mc,σc)(m_{c},\sigma_{c}). Numerically, the best global fit for the parameters mqm_{q} in MeV\rm{MeV} are obtained as: mu=(8.5±2.5)m_{u}=(8.5\pm 2.5), md=(12.36±2.45)m_{d}=(12.36\pm 2.45), ms=(195.31±5.89)m_{s}=(195.31\pm 5.89) and mc=(1590.56±8.42)m_{c}=(1590.56\pm 8.42). Moreover, for the quark condensates σq\sigma_{q} in MeV3\rm{MeV}^{3} the best global fit values are σu=(173.65±2.21)3\sigma_{u}=(173.65\pm 2.21)^{3}, σd=(177.42±3.15)3\sigma_{d}=(177.42\pm 3.15)^{3}, σs=(226.20±3.72)3\sigma_{s}=(226.20\pm 3.72)^{3} and σc=(310.35±5.65)3\sigma_{c}=(310.35\pm 5.65)^{3}.

Having all of these parameters in hand, we can estimate the pseudoscalar, vector and axial vector meson masses. Table 3 includes our predictions and the experimental values of the mesons which are given taken from pdg ; pdg2 . As it can be seen from the masses reported in Table 3, the uncertainty for ψ\psi and ω\omega meson masses are lower than the those for the others. For these two vector mesons, the uncertainties comes from z0z_{0} parameter, while for the other mesons, the quark masses and quark condensates are also included in the lower and higher bounds of the masses. The mass of the K1AK_{1A}^{-} state is estimated using sum rules in Kwei as mK1A=(1310±60)MeVm_{K_{1A}^{-}}=(1310\pm 60)~{}\rm{MeV} while, our analysis predicts mK1A=(1316.52±7.50)MeVm_{K_{1A}^{-}}=(1316.52\pm 7.50)~{}\rm{MeV}.

Table 3: Global fit to meson’s masses as well as the experimental values are reported in pdg ; pdg2 .
Meson Mass  (MeV) This work (MeV) Meson Mass  (MeV) This work  (MeV)
D0D^{{}_{*0}} 2006.85±0.052006.85\pm 0.05 2005.53±6.652005.53\pm 6.65 D0D^{{}_{0}} 1864.83±0.051864.83\pm 0.05 1861.50±3.581861.50\pm 3.58
DsD_{s}^{{}_{*-}} 2112.20±0.402112.20\pm 0.40 2122.90±9.422122.90\pm 9.42 K0K^{0} 497.61±0.01497.61\pm 0.01 499.21±1.82499.21\pm 1.82
ω\omega 782.65±0.12782.65\pm 0.12 779.45±0.12779.45\pm 0.12 DsD_{s}^{{}_{-}} 1968.34±0.071968.34\pm 0.07 1972.63±2.371972.63\pm 2.37
ψ\psi 3096.90±0.003096.90\pm 0.00 3095.20±0.153095.20\pm 0.15 ηc\eta_{c} 2983.90±0.502983.90\pm 0.50 2979.62±2.432979.62\pm 2.43
D10D_{1}^{{}_{0}} 2420.80±0.502420.80\pm 0.50 2423.62±4.522423.62\pm 4.52 Ds1D_{s1}^{{}_{-}} 2459.50±0.602459.50\pm 0.60 2461.50±5.422461.50\pm 5.42
D1D_{1}^{{}_{-}} 2423.40±3.102423.40\pm 3.10 2427.25±3.282427.25\pm 3.28 χc1\chi_{{}_{c1}} 3510.67±0.053510.67\pm 0.05 3507.28±5.253507.28\pm 5.25

Our prediction for the decay constants of some mesons are presented in Table 4. The experimental measurements of the considered decay constants are also given in this table. The measured values for fDf_{D^{-}} and fDsf_{D_{s}^{-}} are averages from lattice QCD results, taken from Ref. pdg . The decay constants of ρ\rho^{-} and a1a_{1}^{-} mesons are taken from Donoghue2014 and Isgur1989 , respectively. The other measured values are taken from experimental data.

Table 4: Our predictions for the decay constants of nine selected mesons. The measured value are taken from pdg ; Donoghue2014 ; Isgur1989
Observable Measured (MeV) This work (MeV) Observable Measured (MeV) This work (MeV) Observable This work (MeV)
fπf_{\pi^{-}} 92.07±1.2092.07\pm 1.20 97.16±2.6397.16\pm 2.63 fa11/2f_{a_{1}^{-}}^{1/2} 420±40420\pm 40 415.21±4.62415.21\pm 4.62 fDf_{D^{{}_{*-}}} 573.05±3.42573.05\pm 3.42
fKf_{K^{-}} 110±0.30110\pm 0.30 103.17±4.91103.17\pm 4.91 fDf_{D^{-}} 149.80±0.80149.80\pm 0.80 158.35±4.16158.35\pm 4.16 fDsf_{D_{s}^{{}_{*-}}} 534.92±5.82534.92\pm 5.82
fρ1/2f_{\rho^{-}}^{1/2} 345±8345\pm 8 336.89±2.13336.89\pm 2.13 fDsf_{D_{s}^{{}_{-}}} 176.10±0.80176.10\pm 0.80 167.66±4.85167.66\pm 4.85 fD1f_{D_{1}^{{}_{-}}} 712.06±9.81712.06\pm 9.81

It should be noted that in our model, there are no differences between the mass and decay constants of a1a_{1}^{-} and b1b_{1}^{-}. In addition, the mass and the decay constants of K1AK_{1A}^{-} and K1A0K_{1A}^{0} are similar to the values obtained for K1BK_{1B}^{-} and K1B0K_{1B}^{0}, respectively.

Now the wave functions for the studied mesons can be evaluated. The wave functions ψ1V\psi^{1}_{V}, ψ1A\psi^{1}_{A}, ϕ1P\phi^{1}_{P} and π1P\pi^{1}_{P} as functions of zz are plotted in Fig. 3 for εzz0\varepsilon\leq z\leq z_{0}. Here, ρ,a1\rho^{-},a_{1}^{-} and π\pi^{-} are selected from the light mesons while, from the strange mesons we plot the wave functions for K,K1AK^{*-},K_{1A}^{-} and KK^{-}. Moreover, from the charm mesons group the plots are drawn for D,D1D^{*-},D_{1}^{-} and DD^{-} states and the mesons (Ds,Ds1,Ds)(D_{s}^{*-},D_{s1}^{-},D_{s}^{-}) and (ψ,χc1,ηc\psi,\chi_{{}_{c1}},\eta_{c}) are chosen from the charmed-strange and qq¯q\bar{q} states, respectively.

In this figure for the light, strange, charm, charm-strange and qq¯q\bar{q} mesons, the plots are displaced with short-dot, short- dash, dot, dash and dash- dotted lines, respectively. For (π,ρ,a1,K,K,D,D)(\pi^{-},\rho^{-},a_{1}^{-},K^{-},K^{*-},D^{-},D^{*-}) the valuse of the masses, taken from the experimental data are reported in Table 2 while, for the other ground state mesons, the masses are taken form our predictions given in Table 3.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: Plots of the wave functions ψ1V(z)\psi^{1}_{V}(z), ψ1A(z)\psi^{1}_{A}(z), ϕ1P(z)\phi^{1}_{P}(z) and π1P(z)\pi^{1}_{P}(z) for V=(ρ,K,D,Ds,ψ)V=(\rho^{-},K^{{}_{*-}},D^{{}_{*-}},D_{s}^{{}_{*-}},\psi), A=(a1,K1A,D1,Ds1,χc1)A=(a_{1}^{{}_{-}},K_{1A}^{{}_{-}},D_{1}^{{}_{-}},D_{s1}^{{}_{-}},\chi_{{}_{c1}}) and P=(π,K,D,Ds,ηc)P=(\pi^{{}_{-}},K^{{}_{-}},D^{{}_{-}},D_{s}^{{}_{-}},\eta_{c}) as functions of the radial coordinate zz in the interval (ε,z0)(\varepsilon,z_{0}) .

It should be noted that, since the values of (mu,σu)(m_{u},\sigma_{u}) are close to those of (md,σd)(m_{d},\sigma_{d}), and the masses of D0D^{*0} and DD^{*-} have almost no differences, the plot of ψD0\psi_{D^{*0}} is similar to the ψD\psi_{D^{*-}}. Similarities of plots of ρ0\rho^{0}, π0\pi^{0}, D10D_{1}^{0}, D0D^{0} and K1A0K_{1A}^{0} are similar to those obtained for ρ\rho^{-}, π\pi^{-}, D1D_{1}^{-}, DD^{-} and K1AK_{1A}^{-}, respectively. For this reason, in Fig. 3 just one of these two choices are displaced.

Now we move to 3-particle states couplings defined in Eqs. (49- 54). In this paper, to evaluate charm meson couplings to the axial vector mesons, the mass of b1b_{1}^{-} is taken from PDG as mb1=(1229.50±3.20)MeVm_{b_{1}^{-}}=(1229.50\pm 3.20)~{}\rm{MeV} pdg . Moreover, for K1BK_{1B}^{-}, the mass is taken from 3PSR prediction as mK1B=(1340±80)MeVm_{K_{1B}^{-}}=(1340\pm 80)~{}\rm{MeV} Kwei . Our predictions for gDDAg_{{}_{D\,D\,A}}, gDDAg_{{}_{D^{*}\,D\,A}} gDDVg_{{}_{D\,D\,V}}, gDDVg_{{}_{D^{*}\,D\,V}}, gDDVg_{{}_{D^{*}\,D^{*}\,V}} and gD1D1Pg_{{}_{D_{1}\,D_{1}\,P}} are reported in Tables 5 and 6. Notice that the main uncertainty in the values of the couplings comes from σq,(q=u,d,s,c)\sigma_{q},~{}(q=u,d,s,c) and the meson masses.

Table 5: Our predictions for the strong couplings of (D,D,A)(D,D,A) and (D,D,A)(D^{*},D,A) vertices.
(D,D,A)(D,D,A) (D,D¯0,a1)(D^{{}_{-}},\bar{D}^{{}_{0}},a_{1}^{{}_{-}}) (D,D¯0,b1)(D^{{}_{-}},\bar{D}^{{}_{0}},b_{1}^{{}_{-}}) (Ds,D¯0,K1A)(D_{s}^{{}_{-}},\bar{D}^{{}_{0}},K_{1A}^{{}_{-}}) (Ds,D¯0,K1B)(D_{s}^{{}_{-}},\bar{D}^{{}_{0}},K_{1B}^{{}_{-}}) (Ds+,D+,K1A0)(D_{s}^{{}_{+}},{D}^{{}_{+}},K_{1A}^{{}_{0}}) (Ds+,D+,K1B0)(D_{s}^{{}_{+}},{D}^{{}_{+}},K_{1B}^{{}_{0}})
gDDAg_{{}_{D\,D\,A}}\, 0.32±0.040.32\pm 0.04 0.37±0.040.37\pm 0.04 0.89±0.260.89\pm 0.26 0.80±0.210.80\pm 0.21 0.92±0.280.92\pm 0.28 0.86±0.170.86\pm 0.17
(D,D,A)(D^{*},D,A) (D,D¯0,a1)(D^{{}_{*-}},\bar{D}^{{}_{0}},a_{1}^{{}_{-}}) (D,D¯0,b1)(D^{{}_{*}-},\bar{D}^{{}_{0}},b_{1}^{{}_{-}}) (Ds,D¯0,K1A)(D_{s}^{{}_{*}-},\bar{D}^{{}_{0}},K_{1A}^{{}_{-}}) (Ds,D¯0,K1B)(D_{s}^{{}_{*}-},\bar{D}^{{}_{0}},K_{1B}^{{}_{-}}) (Ds+,D+,K1A0)(D_{s}^{{}_{*}+},{D}^{{}_{+}},K_{1A}^{{}_{0}}) (Ds+,D+,K1B0)(D_{s}^{{}_{*}+},{D}^{{}_{+}},K_{1B}^{{}_{0}})
gDDA(GeV1)g_{{}_{D^{*}\,D\,A}}\,(\rm{GeV}^{-1}) 1.94±0.631.94\pm 0.63 2.08±0.522.08\pm 0.52 2.27±0.422.27\pm 0.42 2.06±0.352.06\pm 0.35 2.47±0.642.47\pm 0.64 2.12±0.362.12\pm 0.36
Table 6: Couplings for the (D,D,V)(D,D,V), (D,D,V)(D^{*},D,V), (D,DV)(D^{*},D^{*}\,V) and (D1,D1,P)(D_{1},D_{1},P) vertices.
(D,D,V)(D,D,V) (D,D¯0,ρ)(D^{{}_{-}},\bar{D}^{{}_{0}},\rho^{{}_{-}}) (Ds,D¯0,K)(D_{s}^{{}_{-}},\bar{D}^{{}_{0}},K^{{}_{*-}}) (D0,D¯0,ψ)({D}^{{}_{0}},\bar{D}^{{}_{0}},\psi)
gDDVg_{{}_{D\,D\,V}}\, 1.02±0.161.02\pm 0.16 0.80±0.060.80\pm 0.06 3.03±0.473.03\pm 0.47
(D,D,V)(D^{*},D,V) (D,D¯0,ρ)(D^{{}_{*-}},\bar{D}^{{}_{0}},\rho^{{}_{-}}) (Ds,D¯0,K)(D_{s}^{{}_{*-}},\bar{D}^{{}_{0}},K^{{}_{*-}}) (D0,D¯0,ψ({D}^{{}_{*}0},\bar{D}^{{}_{0}},\psi)
gDDV(GeV1)g_{{}_{D^{*}\,D\,V}}\,(\rm{GeV}^{-1}) 1.29±0.241.29\pm 0.24 1.06±0.101.06\pm 0.10 5.02±0.665.02\pm 0.66
(D,D,V)(D^{*},D^{*},V) (D,D¯0,ρ)(D^{{}_{*-}},\bar{D}^{{}_{*0}},\rho^{{}_{-}}) (Ds,D¯0,K)(D_{s}^{{}_{*-}},\bar{D}^{{}_{*0}},K^{{}_{*-}}) (D0,D¯0,ψ)({D}^{{}_{*0}},\bar{D}^{{}_{*0}},\psi)
gDDVg_{{}_{D^{*}\,D^{*}\,V}} 2.22±0.272.22\pm 0.27 1.78±0.211.78\pm 0.21 5.32±0.705.32\pm 0.70
(D1,D1,P)(D_{1},D_{1},P) (D1,D¯10,π)(D_{1}^{{}_{-}},\bar{D}_{1}^{{}_{0}},\pi^{{}_{-}}) (Ds1,D¯10,K)(D_{s1}^{{}_{-}},\bar{D}_{1}^{{}_{0}},K^{{}_{-}}) (D10,D¯10,ηc)({D}_{1}^{{}_{0}},\bar{D}_{1}^{{}_{0}},\eta_{c})
gD1D1P(GeV1)g_{{}_{D_{1}\,D_{1}\,P}}\,(\rm{GeV}^{-1}) 0.52±0.110.52\pm 0.11 0.83±0.210.83\pm 0.21 1.35±0.291.35\pm 0.29

To evaluate strong couplings for A=K1(1270),K1(1400)A=K_{1}(1270),K_{1}(1400), the following relations are used:

gDsD¯0K1(1270)\displaystyle g_{D_{s}^{{}_{-}}\,\bar{D}^{{}_{0}}\,K_{1}(1270)^{{}_{-}}} =\displaystyle= gDsD¯0K1AsinθK+gDsD¯0K1BcosθK,\displaystyle g_{D_{s}^{{}_{-}}\,\bar{D}^{{}_{0}}\,K_{1A}^{{}_{-}}}\,\sin\theta_{K}+g_{D_{s}^{{}_{-}}\,\bar{D}^{{}_{0}}\,K_{1B}^{{}_{-}}}\,\cos\theta_{K}\,, (76)
gDsD¯0K1(1400)\displaystyle g_{D_{s}^{{}_{-}}\,\bar{D}^{{}_{0}}\,K_{1}(1400)^{{}_{-}}} =\displaystyle= gDsD¯0K1AcosθKgDsD¯0K1BsinθK,\displaystyle g_{D_{s}^{{}_{-}}\,\bar{D}^{{}_{0}}\,K_{1A}^{{}_{-}}}\,\cos\theta_{K}-g_{D_{s}^{{}_{-}}\,\bar{D}^{{}_{0}}\,K_{1B}^{{}_{-}}}\,\sin\theta_{K}\,, (77)
gDsD¯0K1(1270)\displaystyle g_{D_{s}^{{}_{*-}}\,\bar{D}^{{}_{0}}\,K_{1}(1270)^{{}_{-}}} =\displaystyle= r1AgDsD¯0K1AsinθK+r1BgDsD¯0K1BcosθK,\displaystyle r_{1A}\,g_{D_{s}^{{}_{*-}}\,\bar{D}^{{}_{0}}\,K_{1A}^{{}_{-}}}\,\sin\theta_{K}+r_{1B}\,g_{D_{s}^{{}_{*-}}\,\bar{D}^{{}_{0}}\,K_{1B}^{{}_{-}}}\,\cos\theta_{K}\,, (78)
gDsD¯0K1(1400)\displaystyle g_{D_{s}^{{}_{*-}}\,\bar{D}^{{}_{0}}\,K_{1}(1400)^{{}_{-}}} =\displaystyle= r2AgDsD¯0K1AcosθKr2BgDsD¯0K1BsinθK,\displaystyle r_{2A}\,g_{D_{s}^{{}_{*-}}\,\bar{D}^{{}_{0}}\,K_{1A}^{{}_{-}}}\,\cos\theta_{K}-r_{2B}\,g_{D_{s}^{{}_{*-}}\,\bar{D}^{{}_{0}}\,K_{1B}^{{}_{-}}}\,\sin\theta_{K}\,, (79)

where

r1A=m2Ds+m2D0m2K1Am2Ds+m2D0m2K1(1270),r1B=m2Ds+m2D0m2K1Bm2Ds+m2D0m2K1(1270),\displaystyle r_{1A}=\frac{m^{2}_{D_{s}^{{}_{*-}}}+m^{2}_{D_{0}}-m^{2}_{K_{1A}^{{}_{-}}}}{m^{2}_{D_{s}^{{}_{*-}}}+m^{2}_{D_{0}}-m^{2}_{K_{1(1270)}^{{}_{-}}}},\,~{}~{}~{}~{}r_{1B}=\frac{m^{2}_{D_{s}^{{}_{*-}}}+m^{2}_{D_{0}}-m^{2}_{K_{1B}^{{}_{-}}}}{m^{2}_{D_{s}^{{}_{*-}}}+m^{2}_{D_{0}}-m^{2}_{K_{1(1270)}^{{}_{-}}}},\,
r2A=m2Ds+m2D0m2K1Am2Ds+m2D0m2K1(1400),r2B=m2Ds+m2D0m2K1Bm2Ds+m2D0m2K1(1400).\displaystyle r_{2A}=\frac{m^{2}_{D_{s}^{{}_{*-}}}+m^{2}_{D_{0}}-m^{2}_{K_{1A}^{{}_{-}}}}{m^{2}_{D_{s}^{{}_{*-}}}+m^{2}_{D_{0}}-m^{2}_{K_{1(1400)}^{{}_{-}}}},\,~{}~{}~{}~{}r_{2B}=\frac{m^{2}_{D_{s}^{{}_{*-}}}+m^{2}_{D_{0}}-m^{2}_{K_{1B}^{{}_{-}}}}{m^{2}_{D_{s}^{{}_{*-}}}+m^{2}_{D_{0}}-m^{2}_{K_{1(1400)}^{{}_{-}}}}. (80)

The θK\theta_{K} dependence of the strong coupling constants gDsDK1g_{D_{s}^{-}DK_{1}} and gDsDK1g_{D_{s}^{*-}DK_{1}} for K1(1270)K_{1}(1270) and K1(1400)K_{1}(1400) are displaced in Fig. 4 with solid and dash lines, respectively. The uncertainty regions are also displayed in this figure.

Refer to caption
Refer to caption
Figure 4: The strong coupling constants gDsD0K1g_{D_{s}^{-}D^{0}K_{1}^{-}} and gDsD0K1g_{D_{s}^{*-}D^{0}K_{1}^{-}} for K1=K1(1270),K1(1400)K_{1}=K_{1}(1270),K_{1}(1400) as a function of the mixing angle θK\theta_{K} as well as the uncertainty regions.

Charm meson couplings to the vector, axial vector and the pseudoscalar mesons are evaluated via different approaches. Table 7, shows the values of the strong couplings calculated via LCSR momeni2020 ; Wanglscr2007 and 3PSR Bracco2010 ; Kim2001 as well as our predictions.

Table 7: The charm meson strong couplings in various theoretical approaches. Here, gDDAg_{D^{{}_{*}}\,D\,A}, gDDVg_{D^{{}_{*}}\,D\,V} and gD1D1Pg_{D_{1}\,D_{1}\,P} are in the unit GeV1\rm{GeV}^{-1}.
Coupling constant LCSR momeni2020 This work Coupling constant LCSR momeni2020 This work
gDD¯0a1g_{D^{{}_{-}}\,\bar{D}^{{}_{0}}\,a_{1}^{{}_{-}}} 0.38±0.070.38\pm 0.07 0.32±0.040.32\pm 0.04 gDD¯0a1g_{D^{{}_{*-}}\,\bar{D}^{{}_{0}}\,a_{1}^{{}_{-}}} 1.03±0.251.03\pm 0.25 1.94±0.631.94\pm 0.63
gDD¯0b1g_{D^{{}_{-}}\,\bar{D}^{{}_{0}}\,b_{1}^{{}_{-}}} 1.64±0.151.64\pm 0.15 0.37±0.040.37\pm 0.04 gDD¯0b1g_{D^{{}_{*-}}\,\bar{D}^{{}_{0}}\,b_{1}^{{}_{-}}} 1.90±0.721.90\pm 0.72 2.08±0.522.08\pm 0.52
gDsD¯0K1Ag_{D_{s}^{{}_{-}}\,\bar{D}^{{}_{0}}\,K_{1A}^{{}_{-}}} 1.17±0.491.17\pm 0.49 0.89±0.260.89\pm 0.26 gDsD¯0K1Ag_{D_{s}^{{}_{*-}}\,\bar{D}^{{}_{0}}\,K_{1A}^{{}_{-}}} 1.36±0.781.36\pm 0.78 2.27±0.422.27\pm 0.42
gDsD¯0K1Bg_{D_{s}^{{}_{-}}\,\bar{D}^{{}_{0}}\,K_{1B}^{{}_{-}}} 1.51±0.111.51\pm 0.11 0.80±0.210.80\pm 0.21 gDsD¯0K1Bg_{D_{s}^{{}_{*-}}\,\bar{D}^{{}_{0}}\,K_{1B}^{{}_{-}}} 2.48±0.782.48\pm 0.78 2.06±0.352.06\pm 0.35
Coupling constant LCSR Wanglscr2007 This work Coupling constant LCSR Wanglscr2007 This work
gDD¯0ρg_{D^{{}_{-}}\,\bar{D}^{{}_{0}}\,\rho^{{}_{-}}} 1.31±0.291.31\pm 0.29 1.02±0.161.02\pm 0.16 gDD¯0ρg_{D^{{}_{*-}}\,\bar{D}^{{}_{0}}\,\rho^{{}_{-}}} 0.89±0.150.89\pm 0.15 1.29±0.241.29\pm 0.24
gDs,D¯0,Kg_{D_{s}^{{}_{-}},\bar{D}^{{}_{0}},K^{{}_{*-}}} 1.61±0.321.61\pm 0.32 0.80±0.060.80\pm 0.06 gDs,D¯0,Kg_{D_{s}^{{}_{*-}},\bar{D}^{{}_{0}},K^{{}_{*-}}} 1.01±0.201.01\pm 0.20 1.06±0.101.06\pm 0.10
Coupling constant 3PSR Bracco2010 This work Coupling constant 3PSR Bracco2010 ; Kim2001 This work
gD0,D¯0,ψg_{{D}^{{}_{0}},\bar{D}^{{}_{0}},\psi} 5.80±0.905.80\pm 0.90 3.03±0.473.03\pm 0.47 gD0,D¯0,ψg_{{D}^{{}_{*0}},\bar{D}^{{}_{0}},\psi} 4.00±0.604.00\pm 0.60 5.02±0.665.02\pm 0.66
gD0,D¯0,ψg_{{D}^{{}_{*0}},\bar{D}^{{}_{*0}},\psi} 6.20±0.906.20\pm 0.90 5.32±0.705.32\pm 0.70 gD1,D¯10,πg_{D_{1}^{{}_{-}},\bar{D}_{1}^{{}_{0}},\pi^{{}_{-}}} 0.17±0.040.17\pm 0.04 0.52±0.110.52\pm 0.11

Now, we consider the strong couplings for quadratic vertices. The values of gψD()DPg_{\psi\,D^{(*)}\,D\,P} and gψD()DAg_{\psi\,D^{(*)}\,D\,A} are listed in Tables 8 and 9. The reported values of gψDDPg_{{}_{\psi\,D^{*}\,D\,P}} are at q2=0q^{2}=0. The strong couplings gψD0D+πg_{\psi\,D^{{}_{*0}}\,D^{{}_{+}}\,\pi^{{}_{-}}}, gψD0D¯0π0g_{\psi\,D^{{}_{*0}}\,\bar{D}^{{}_{0}}\,\pi^{{}_{0}}} and gψDs+DK0g_{\psi\,D_{s}^{{}_{*+}}\,D^{{}_{-}}\,K^{{}_{0}}} are plotted as functions of q2q^{2} in Fig. 5. The values of q2maxq^{2}_{\rm{max}} are (mD++mπ)2(m_{{D}^{{}_{+}}}+m_{\pi^{{}_{-}}})^{2}, (mD¯0+mπ0)2(m_{\bar{D}^{{}_{0}}}+m_{\pi^{{}_{0}}})^{2} and (mD+mK0)2(m_{D^{{}_{-}}}+m_{K^{{}_{0}}})^{2} for (ψ,D0,D+,π)(\psi,D^{{}_{*0}},D^{{}_{+}},\pi^{{}_{-}}), (ψ,D0,D¯0,π0)(\psi,D^{{}_{*0}},\bar{D}^{{}_{0}},\pi^{{}_{0}}) and (ψ,Ds+,D,K0)(\psi,D_{s}^{{}_{*+}},D^{{}_{-}},K^{{}_{0}}) vertices, respectively.

Table 8: Our predictions for the couplings of (ψ,D0(0),D+,π)(\psi,D^{{}_{0(*0)}},D^{{}_{+}},\pi^{{}_{-}}), (ψ,D0(0),D¯0,π0)(\psi,D^{{}_{0(*0)}},\bar{D}^{{}_{0}},\pi^{{}_{0}}) and (ψ,Ds+(+),D,K0)(\psi,D_{s}^{{}_{+(*+)}},D^{{}_{-}},K^{{}_{0}}) vertices. The values of (ψ,D,D,P)(\psi,D^{*},D,P) couplings are reported at q2=0q^{2}=0.
(D,D,P)(D,D,P) (D0,D+,π)(D^{{}_{0}},D^{{}_{+}},\pi^{{}_{-}}) (D0,D¯0,π0)(D^{{}_{0}},\bar{D}^{{}_{0}},\pi^{{}_{0}}) (Ds+,D,K0)(D_{s}^{{}_{+}},D^{{}_{-}},K^{{}_{0}})
gψDDP(GeV1)g_{{}_{\psi\,D\,D\,P}}\,~{}(\rm{GeV}^{-1}) 1.28±0.501.28\pm 0.50 2.07±0.852.07\pm 0.85 0.49±0.130.49\pm 0.13
(D,D,P)(D^{*},D,P) (D0,D+,π)(D^{{}_{*0}},D^{{}_{+}},\pi^{{}_{-}}) (D0,D¯0,π0)(D^{{}_{*0}},\bar{D}^{{}_{0}},\pi^{{}_{0}}) (Ds+,D,K0)(D_{s}^{{}_{*+}},D^{{}_{-}},K^{{}_{0}})
gψDDP(q2=0)g_{{}_{\psi\,D^{*}\,D\,P}}\,\,(q^{2}=0) 1.14±0.081.14\pm 0.08 1.05±0.101.05\pm 0.10 0.84±0.040.84\pm 0.04
Table 9: Couplings for the (D,D,V)(D,D,V), (D,D,V)(D^{*},D,V), (D,DV)(D^{*},D^{*}\,V) and (D1,D1,P)(D_{1},D_{1},P) vertices.
(D,D,A)(D,D,A) (D0,D+,a1)(D^{{}_{0}},D^{{}_{+}},a_{1}^{{}_{-}}) (D0,D+,b1)(D^{{}_{0}},D^{{}_{+}},b_{1}^{-}) (Ds+,D,K1A0)(D_{s}^{{}_{+}},D^{{}_{-}},K_{1A}^{{}_{0}}) (Ds+,D,K1B0)(D_{s}^{{}_{+}},D^{{}_{-}},K_{1B}^{{}_{0}})
gψDDAg_{{}_{\psi\,D\,D\,A}}\, 1.27±0.031.27\pm 0.03 1.30±0.051.30\pm 0.05 0.36±0.100.36\pm 0.10 0.38±0.080.38\pm 0.08
(D,D,A)(D^{*},D,A) (D0,D+,a1)(D^{{}_{*0}},D^{{}_{+}},a_{1}^{{}_{-}}) (D0,D+,b1)(D^{{}_{*0}},D^{{}_{+}},b_{1}^{-}) (Ds+,D,K1A0)(D_{s}^{{}_{*+}},D^{{}_{-}},K_{1A}^{{}_{0}}) (Ds+,D,K1B0)(D_{s}^{{}_{*+}},D^{{}_{-}},K_{1B}^{{}_{0}})
gψDDA(GeV1)g_{{}_{\psi\,D^{*}\,D\,A}}\,\,~{}(\rm{GeV}^{-1}) 0.12±0.020.12\pm 0.02 0.14±0.020.14\pm 0.02 0.50±0.120.50\pm 0.12 0.58±0.110.58\pm 0.11
Refer to caption
Refer to caption
Refer to caption
Figure 5: The strong couplings of (ψ,D0,D+,π)(\psi,D^{{}_{*0}},D^{{}_{+}},\pi^{{}_{-}}), (ψ,D0,D¯0,π0)(\psi,D^{{}_{*0}},\bar{D}^{{}_{0}},\pi^{{}_{0}}) and (ψ,Ds+,D,K0)(\psi,D_{s}^{{}_{*+}},D^{{}_{-}},K^{{}_{0}}) as well as their uncertainly regions on q2q^{2}.

To evaluate the couplings of (ψ,Ds+,D,K10(1270))(\psi,D_{s}^{{}_{+}},D^{{}_{-}},K_{1}^{{}_{0}}(1270)), (ψ,Ds+,D,K10(1400))(\psi,D_{s}^{{}_{+}},D^{{}_{-}},K_{1}^{{}_{0}}(1400)), (ψ,Ds+,D,K10(1270))(\psi,D_{s}^{{}_{*+}},D^{{}_{-}},K_{1}^{{}_{0}}(1270)) and (ψ,Ds+,D,K10(1400))(\psi,D_{s}^{{}_{*+}},D^{{}_{-}},K_{1}^{{}_{0}}(1400)) vertices, we use the relations similar to those used in Eqs. (76) and (77). These couplings and their uncertainly regions are plotted as functions of the mixing angle θK\theta_{K} in Fig 6. Our numeric analyze show that the main sources of uncertainties in the four particles vertices are mcm_{c} and σc\sigma_{c}.

Refer to caption
Refer to caption
Figure 6: The θK\theta_{K} dependence of the strong coupling constants gψDs+DK10g_{\psi D_{s}^{+}D^{-}K_{1}^{0}} and gψDsDK10g_{\psi D_{s}^{*-}D^{-}K_{1}^{0}} for K1=K1(1270),K1(1400)K_{1}=K_{1}(1270),K_{1}(1400).

In summary in this paper the two flavor hard-wall holographic model introduced in Erlich2005 is extended to four flavors. Our model consists of nine parameters including the hard wall position z0z_{0}, quark masses mqm_{q} and quark condensates σq\sigma_{q} with q=(u,d,s,c)q=(u,d,s,c). These parameters are fitted to the experimental masses of ρ0\rho^{{}_{0}}, ρ\rho^{{}_{-}}, a1a_{1}^{{}_{-}}, π0\pi^{{}_{0}}, π\pi^{{}_{-}} KK^{{}_{-}}, KK^{{}_{*-}}, DD^{{}_{-}} and DD^{{}_{*-}} mesons. The masses and decay constants of some pseudoscalar, vector and axial vector mesons are evaluated using our model and a comparison is made between our predictions and the experimental data for these observables. After analyzing the wave functions, the strong couplings of (D(),D,A)(D^{(*)},D,A), (D(),D(),V)(D^{(*)},D^{(*)},V), (D1,D1,P)(D_{1},D_{1},P), (ψ,D(),D,P)(\psi,D^{(*)},D,P) and (ψ,D(),D,A)(\psi,D^{(*)},D,A) are analyzed. For A=(K1(1270),K1(1400))A=(K_{1}(1270),K_{1}(1400)) the strong couplings are plotted as functions of the mixing angle θK\theta_{K}. Moreover, for three mesons vertices a comparison is also made between our predictions and estimations made by other theoretical approaches.

Appendix A values for gabcg^{abc}, habch^{abc}, labcl^{abc}, kabck^{abc}, habcdh^{abcd}, kabcdk^{abcd} and labcdl^{abcd}

In this appendix, we present the nonzero values for gabcg^{abc}, habch^{abc}, labcl^{abc}, kabcdk^{abcd}, habcdh^{abcd}, kabcdk^{abcd} and labcdl^{abcd}. The values results of the factors appeared in 3-point functions which are used in numerical analyze are given in Table 11.

Table 10: The values of gabcg^{abc}, habch^{abc}, labcl^{abc} and kabck^{abc} which are used in numerical analyze.
(a,b,c)(a,b,c) gabcg^{abc} habch^{abc} labcl^{abc} kabck^{abc}
(2,9,11)(2,9,11) 12(vu+vd)(vu+vc)\frac{1}{2}(v_{u}+v_{d})(v_{u}+v_{c}) 12(vuvd)(vu+vc)\frac{1}{2}(v_{u}-v_{d})(v_{u}+v_{c}) 12(vd+vc)(vu+vc)\frac{1}{2}(v_{d}+v_{c})(v_{u}+v_{c}) 12(vdvu)(vd+vc)\frac{1}{2}(v_{d}-v_{u})(v_{d}+v_{c})
(4,9,14)(4,9,14) 12(vu+vs)(vu+vc)\frac{1}{2}(v_{u}+v_{s})(v_{u}+v_{c}) 12(vuvs)(vu+vc)\frac{1}{2}(v_{u}-v_{s})(v_{u}+v_{c}) 12(vs+vc)(vu+vc)\frac{1}{2}(v_{s}+v_{c})(v_{u}+v_{c}) 12(vuvs)(vu+vc)\frac{1}{2}(v_{u}-v_{s})(v_{u}+v_{c})
(6,11,14)(6,11,14) 12(vd+vs)(vs+vc)-\frac{1}{2}(v_{d}+v_{s})(v_{s}+v_{c}) 12(vsvd)(vd+vc)-\frac{1}{2}(v_{s}-v_{d})(v_{d}+v_{c}) 12(vd+vc)(vs+vc)\frac{1}{2}(v_{d}+v_{c})(v_{s}+v_{c}) -
(9,10,15)(9,10,15) 66(vu+vc)(vu+3vc)\frac{\sqrt{6}}{6}(v_{u}+v_{c})(v_{u}+3\,v_{c}) 66(vuvc)(vu3vc)\frac{\sqrt{6}}{6}(v_{u}-v_{c})(v_{u}-3\,v_{c}) - 66(vdvc)(vd+3vc)\frac{\sqrt{6}}{6}(v_{d}-v_{c})(v_{d}+3\,v_{c})
Table 11: The values of gabcdg^{abcd}, habcdh^{abcd}, labcdl^{abcd} and kabcdk^{abcd} which are used in numerical analyze.
(a,b,c,d)(a,b,c,d) igabcd-i\,g^{abcd} ihabcd-i\,h^{abcd} ilabcd-i\,l^{abcd} ikabcd-i\,k^{abcd}
(9,15,2,11)(9,15,2,11) 66(vu+vc)(vd+vc)\frac{\sqrt{6}}{6}(v_{u}+v_{c})(v_{d}+v_{c}) 612(vuvc)(vd+vc)-\frac{\sqrt{6}}{12}(v_{u}-v_{c})(v_{d}+v_{c}) 612(vd+vc)(vu+3vc)-\frac{\sqrt{6}}{12}(v_{d}+v_{c})(v_{u}+3\,v_{c}) 612(vu+vd)(vu+vc)-\frac{\sqrt{6}}{12}(v_{u}+v_{d})(v_{u}+v_{c})
(9,15,3,10)(9,15,3,10) 66(vu+vc)2\frac{\sqrt{6}}{6}(v_{u}+v_{c})^{2} 612(vu2vc2)-\frac{\sqrt{6}}{12}(v_{u}^{2}-v_{c}^{2}) 612(vu+vc)(vu+3vc)-\frac{\sqrt{6}}{12}(v_{u}+v_{c})(v_{u}+3\,v_{c}) 66vu(vu+vc)-\frac{\sqrt{6}}{6}v_{u}\,(v_{u}+v_{c})
(13,15,7,11)(13,15,7,11) -66(vs+vc)(vd+vc)\frac{\sqrt{6}}{6}(v_{s}+v_{c})(v_{d}+v_{c}) 612(vd+vc)(vsvc)\frac{\sqrt{6}}{12}(v_{d}+v_{c})(v_{s}-v_{c}) 612(vd+vc)(vs+3vc)\frac{\sqrt{6}}{12}(v_{d}+v_{c})(v_{s}+3\,v_{c}) 612(vd+vc)(vs+vc)-\frac{\sqrt{6}}{12}(v_{d}+v_{c})(v_{s}+v_{c})

References

  • (1) M. Janbazi, R. Khosravi, Eur. Phys. J. C 78, 606 (2018).
  • (2) M. Janbazi, R. Khosravi, E. Noori, Advances in High Energy Physics, 2018, 6045932 (2018).
  • (3) C. Isola, M. Ladisa, G. Nardulli, and P. Santorelli, Phys. Rev. D 68, 114001 (2003).
  • (4) C. Isola, M. Ladisa, G. Nardulli, T. N. Pham, and P. Santorelli, Phys. Rev. D 64, 014029 (2001).
  • (5) P. Colangelo, F. De Fazio and T.N. Pham, Phys.Rev. D 69, 054023 (2004).
  • (6) P. Colangelo, F. De Fazio and T.N. Pham, Phys. Lett. B 597, 291 (2004).
  • (7) M. Ladisa, V. Laporta, G. Nardulli and P. Santorelli, Phys.Rev. D70, 114025 (2004).
  • (8) H. Y. Cheng, C. K. Chua and A. Soni, Phys. Rev. D 71, 014030 (2005).
  • (9) A. Deandrea, M. Ladisa, V. Laporta, G. Nardulli and P. Santorelli, Int. J. Mod. Phys. A 21, 4425 (2006).
  • (10) M. E. Bracco, M. Chiapparini, F. S. Navarra and M. Nielson, Phys. Lett. B 605, 326 (2005).
  • (11) L.B. Holanda, R.S. Marques de Carvalho, A. Mihara, Phys. Lett. B 644, 232 (2007).
  • (12) K. U. Can, G. Erkol, M. Oka, A. Ozpineci and T. T. Takahashi, Phys. Lett. B 719, 103 (2013).
  • (13) A. Abada, D. Becirevic, Ph. Boucaud, G. Herdoiza, J.P. Leroy, A. Le Yaouanc, O. Pene and J. Rodr guez-Quintero, Phys. Rev. D 66, 074504 (2002).
  • (14) D. Becirevic and B. Haas, Eur. Phys. J. C 71, 1734 (2011).
  • (15) D. Becirevic and F. Sanfilippo, Phys. Lett. B 721, 94 (2013).
  • (16) M. E. Bracco, M. Chiapparini, F. S. Navarra, and M. Nielsen, Phys. Lett. B 659, 559 (2008).
  • (17) F. S. Navarra, M. Nielsen, M. E. Bracco, M. Chiapparini, and C. L. Schat, Phys. Lett. B 489, 319 (2000).
  • (18) F. S. Navarra, M. Nielsen, and M. E. Bracco, Phys. Rev. D 65, 037502 (2002).
  • (19) M. E. Bracco, M. Chiapparini, A. Lozea, F. S. Navarra, and M. Nielsen, Phys. Lett. B 521, 1 (2001).
  • (20) B. O. Rodrigues, M. E. Bracco, M. Nielsen, and F. S. Navarra, Nucl. Phys. A 852, 127 (2011).
  • (21) R. D. Matheus, F. S. Navarra, M. Nielsen, and R. R. da Silva, Phys. Lett. B 541, 265 (2002).
  • (22) R. R. da Silva, R. D. Matheus, F. S. Navarra, and M. Nielsen, Braz. J. Phys. 34, 236 (2004).
  • (23) Z. G. Wang, and S. L. Wan, Phys. Rev. D 74, 014017 (2006).
  • (24) Z. G. Wang, Nucl. Phys. A 796, 61 (2007).
  • (25) F. Carvalho, F. O. Duraes, F. S. Navarra, and M. Nielsen, Phys. Rev. C 72, 024902 (2005).
  • (26) M. E. Bracco, A. J. Cerqueira, M. Chiapparini, A. Lozea, and M. Nielsen, Phys. Lett. B 641, 286 (2006).
  • (27) L. B. Holanda, R. S. Marques de Carvalho, and A. Mihara, Phys. Lett. B 644, 232 (2007).
  • (28) R. Khosravi, and M. Janbazi, Phys. Rev. D 87, 016003 (2013).
  • (29) R. Khosravi1, and M. Janbazi, Phys. Rev. D 89, 016001 (2014).
  • (30) M. Janbazi, N. Ghahramany, and E. Pourjafarabadi, Eur. Phys. J. C 74, 2718 (2014).
  • (31) S. Momeni and R. Khosravi, arXiv: 2003.04165 [hep-ph].
  • (32) J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
  • (33) E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998), hep-
  • (34) S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105 (1998).
  • (35) H. R. Grigoryan and A. V. Radyushkin, Phys. Lett. B 650, 421 (2007).
  • (36) Z. Abidin and C. E. Carlson, Phys. Rev. D 77, 095007 (2008).
  • (37) J. Polchinski and M. J. Strassler, Phys. Rev. Lett. 88, 031601 (2002).
  • (38) J. Polchinski and M. J. Strassler, JHEP 05, 012 (2003).
  • (39) S. J. Brodsky and G. F. de Teramond, Phys. Lett. B 582, 211 (2004).
  • (40) G. F. de Teramond and S. J. Brodsky, Phys. Rev. Lett. 94, 201601 (2005).
  • (41) S. J. Brodsky and G. F. de Teramond, Phys. Rev. Lett. 96, 201601 (2006).
  • (42) S. J. Brodsky and G. F. de Teramond, Phys. Rev. D 78, 025032 (2008).
  • (43) H. R. Grigoryan and A. V. Radyushkin, Phys. Rev. D 76, 095007 (2007).
  • (44) H. R. Grigoryan and A. V. Radyushkin, Phys. Rev. D 76, 115007 (2007).
  • (45) H. R. Grigoryan and A. V. Radyushkin, Phys. Rev. D 78, 115008 (2008).
  • (46) H. J. Kwee and R. F. Lebed, JHEP 01, 027 (2008).
  • (47) H. J. Kwee and R. F. Lebed, Phys. Rev. D 77, 115007 (2008).
  • (48) H. Boschi-Filho, N. R. F. Braga, and H. L. Carrion, Phys. Rev. D 73, 047901 (2006).
  • (49) Z. Abidin and C. E. Carlson, Phys. Rev. D 78, 071502
  • (50) Z. Abidin and C. E. Carlson, Phys. Rev. D 79, 115003 (2009).
  • (51) Z. Abidin and C. E. Carlson, Phys. Rev. D 80, 115010 (2009).
  • (52) A. B. Bayona, G. Krein and C. Miller, Phys. Rev. D 96, 014017 (2017).
  • (53) J. Erlich, E. Katz, D. T. Son, and M. A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005).
  • (54) J. P. Shock and F. Wu, JHEP 08, 023 (2006).
  • (55) E. Katz and M. D. Schwartz, JHEP 08, 077 (2007).
  • (56) A. Cherman, T. D. Cohen and E. S. Werbos, Phys. Rev. C 79, 045203 (2009).
  • (57) P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau, S. Nicotri, Phys. Rev. D 78, 055009 (2008).
  • (58) N. Maru, M. Tachibana, Eur. Phys. J. C 63, 123-132 (2009).
  • (59) N. Huseynova, S. Mamedov, arXiv: 1907.13477 [hep-ph].
  • (60) L. Burakovsky and T. Goldman, Phys. Rev. D 57, 2879 (1998).
  • (61) M. Suzuki, Phys. Rev. D 47, 1252 (1993).
  • (62) T. M. Aliev and N. K. Pak, M. Savci, Phys. Lett. B 390 335-340 (1997).
  • (63) V. M. Belyaev, V. M. Braun, A. Khodjamirian and R. Ruckl, Phys. Rev. D 51, 6177 (1995).
  • (64) M.E. Bracco, M. Chiapparini, F.S. Navarra, M. Nielsen, Prog. Part. Nucl. Phys. 67, 1019 (2012).
  • (65) M. A. A. Sbaih, M. K. H. Srour, M. S. Hamada and H. M. Fayad, , Electronic Journal of Theoretical Physics. 28, 9 (2013).
  • (66) Z. Abidin and C. E. Carlson, Phys. Rev. D 77, 115021 (2008).
  • (67) M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
  • (68) Particle Data Group, C. Amsler et al., Phys. Lett. B 667, 1 (2008).
  • (69) K. Yang, Nucl. Phys. B 776, 187 (2007).
  • (70) J. F. Donoghue, E. Golowich and B. R. Holstein, Dynamics of the standard model (Cambridge, New York, 2014).
  • (71) N. Isgur, C. Morningstar and C. Reader, Phys. Rev. D 39, 1357 (1989).
  • (72) Z. G. Wang, Nucl. Phys. A 796, 61-82 (2007).
  • (73) M. E. Bracco, M. Chiapparini, F. S. Navarra and M. Nielsen, Prog. Part. Nucl. Phys. 67, 1019 (2012).
  • (74) H. Kim, S. H. Lee, Eur. Phys. J. C 22, 707-713 (2002).