This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Charged spinning fermionic configurations and a mass gap

Vladimir Dzhunushaliev [email protected] Department of Theoretical and Nuclear Physics, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan Institute of Nuclear Physics, Almaty 050032, Kazakhstan Academician J. Jeenbaev Institute of Physics of the NAS of the Kyrgyz Republic, 265 a, Chui Street, Bishkek 720071, Kyrgyzstan Laboratory for Theoretical Cosmology, International Centre of Gravity and Cosmos, Tomsk State University of Control Systems and Radioelectronics (TUSUR), Tomsk 634050, Russia    Vladimir Folomeev [email protected] Institute of Nuclear Physics, Almaty 050032, Kazakhstan Academician J. Jeenbaev Institute of Physics of the NAS of the Kyrgyz Republic, 265 a, Chui Street, Bishkek 720071, Kyrgyzstan Laboratory for Theoretical Cosmology, International Centre of Gravity and Cosmos, Tomsk State University of Control Systems and Radioelectronics (TUSUR), Tomsk 634050, Russia
Abstract

We consider a self-consistent axially symmetric system supported by a classical nonlinear spinor field minimally coupled to electric and magnetic Maxwell fields. The presence of the nonlinearity of the spinor field ensures the existence of a minimum positive energy of the system (a mass gap), of a minimum charge (a charge gap), and of a minimum magnetic moment. In turn, the presence of the electric charge results in qualitative changes in the behavior of physical characteristics of the systems under consideration as compared with the case of an electrically neutral spinor field. It is shown that, with a suitable choice of free system parameters, there exists a regular finite-energy particlelike solution describing a localized spinning object whose physical parameters correspond to the main characteristics of an electron/positron (including the spin equal to 1/21/2), but with the characteristic size comparable to the corresponding Compton wavelength. Also, we show that four local Dirac equations are equivalent to two nonlocal equations.

nonlinear spinor field; spinning particlelike solutions; mass, charge, and magnetic moment gaps; total angular momentum
pacs:
11.90.+t,11.15.-q

I Introduction

Nonlinear equations describing various physical systems have been the object of numerous investigations in different aspects. The bulk of such studies have been mainly focused on a consideration of the nonlinear Shrödinger and Klein-Gordon equations involving different potentials. The first of these equations permits one to describe various phenomena and processes within condensed matter physics, nonlinear optics, atomic and mathematical physics. In turn, the Klein-Gordon equation is widely used in modeling various particlelike objects in condensed matter and mathematical physics, including strongly gravitating systems.

Much less attention was paid to investigations of the nonlinear Dirac equation. Such an equation was initially introduced by D. Ivanenko Ivanenko:1938 . Subsequently, it was analyzed in the works Finkelstein:1951zz ; Finkelstein:1956 , where possible forms of nonlinear terms were suggested. Following these ideas, W. Heisenberg tried to employ this equation as a fundamental equation suitable for describing the properties of an electron Heisenberg . Later, one of forms of the nonlinear Dirac equation was employed for an approximate description of the properties of hadrons (this approach is called the Nambu-Jona-Lasinio model Nambu:1961 ; for a review, see Ref. Volkov:2006 ). In turn, bearing in mind that the systems with a nonlinear spinor field contain a mass gap Finkelstein:1951zz ; Finkelstein:1956 ; Soler:1970xp ; Ranada:1973hna , in Ref. Ranada:1974hx , the authors tried to describe extended particles (hadrons) possessing the smallest possible energy. On the other hand, in the case of fermions with zero bare mass, Ref. Gross:1974jv suggests a toy model of quark confinement in quantum chromodynamics. In addition, the nonlinear Dirac equations may be used as effective theories in various fields of atomic, nuclear, particle, and gravitational physics Alvarez:1981yh ; Ionescu:1987jr ; Esteban:1995 ; Esteban:2002 ; Zecca:2002dq ; Bronnikov:2004uu ; Bronnikov:2009na ; Adanhounme:2012cm ; Saha:2016cbu ; Dzhunushaliev:2018jhj ; Dzhunushaliev:2019kiy ; Dzhunushaliev:2019uft ; Bronnikov:2019nqa .

In quantum chromodynamics, there is a well-known problem to prove the existence of a minimum value of the mass, i.e., of a mass gap, in non-Abelian quantum Yang-Mills theory. This problem is very nontrivial and has not been solved yet. One of possible approaches towards solving this problem might be a consideration of simpler problems when quantum systems are replaced by some approximate classical systems. In this case, if one could show that for such classical configurations a mass gap might occur, this could be treated as a possible indication for the existence of the mass gap in quantum systems. As shown in our previous investigations Dzhunushaliev:2019ham ; Dzhunushaliev:2020qwf ; Dzhunushaliev:2021apa ; Dzhunushaliev:2022pkz , in the systems supported by classical non-Abelian fields coupled to nonlinear spinor fields, there is the possibility of obtaining a mass gap. From this point of view, such classical systems may be thought of as approximately describing realistic quantum systems.

The systems considered by us earlier in Refs. Dzhunushaliev:2019ham ; Dzhunushaliev:2020qwf ; Dzhunushaliev:2021apa ; Dzhunushaliev:2022pkz are spherically symmetric. Obviously, in the more general case the spherical symmetry can already be violated, for example, because of the presence of magnetic Maxwell and/or color fields. Correspondingly, this requires a generalization of the above models. As a first step in this direction, one can consider a simplified situation where the system with a nonlinear spinor field contains only Abelian fields. Consistent with this, the present paper studies a system supported by a classical nonlinear spinor field minimally coupled to Maxwell electric and magnetic (dipole) fields. Due to the presence of the dipole magnetic field, the system is inevitably axisymmetric, and therefore a consideration will be carried out in a general form without any simplifying assumptions as to the smallness of the electromagnetic fields, as was done earlier, for example, in Refs. Ranada:1973hna ; Ranada:1974hx . This will enable us to study the cases where the contribution to the energy-momentum tensor coming from the electromagnetic fields can be comparable to that of the spinor field. It will be shown that such a contribution results in qualitative changes in the physical characteristics of the systems under consideration.

Notice here that in the present paper we consider a system supported by a classical spinor field. Following Ref. ArmendarizPicon:2003qk , such a field is meant to be a set of four complex-valued spacetime functions transforming according to the spinor representation of the Lorentz group. In turn, realistic spin-1/2 particles must evidently be described by quantum spinor fields, and it is furthermore believed that there is no classical limit for quantum spinor fields. However, classical spinors can be thought of as arising from some effective description of more complex quantum systems (for arguments in favor of the possibility of the existence of classical spinors, see Ref. ArmendarizPicon:2003qk ).

II The model

We consider localized configurations consisting of a spinor field ψ\psi minimally coupled to Maxwell fields. The corresponding total Lagrangian for such a system can be represented in the form (we use natural units with c==1c=\hbar=1 throughout)

Ltot=ı2(ψ¯γμψ;μψ¯;μγμψ)mψ¯ψF(S)14FμνFμν,L_{\text{tot}}=\frac{\imath}{2}\left(\bar{\psi}\gamma^{\mu}\psi_{;\mu}-\bar{\psi}_{;\mu}\gamma^{\mu}\psi\right)-m\bar{\psi}\psi-F(S)-\frac{1}{4}F_{\mu\nu}F^{\mu\nu}, (1)

where mm is a bare mass of the fermion, F(S)F(S) is in general an arbitrary nonlinear term with the invariant SS (see below), and the electromagnetic field tensor Fμν=μAννAμF_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}. The semicolon denotes the covariant derivative defined as ψ;μ=[μ+1/8ωabμ(γaγbγbγa)+ıQAμ]ψ\psi_{;\mu}=[\partial_{\mu}+1/8\,\omega_{ab\mu}\left(\gamma^{a}\gamma^{b}-\gamma^{b}\gamma^{a}\right)+\imath\,QA_{\mu}]\psi with γa\gamma^{a} being the Dirac matrices in flat space; the term ıQAμψ\imath\,QA_{\mu}\psi describes the interaction between the spinor and Maxwell fields with the coupling constant QQ. In turn, the Dirac matrices in curvilinear coordinates, γμ=eaμγa\gamma^{\mu}=e_{a}^{\phantom{a}\mu}\gamma^{a}, are obtained using the tetrad eaμe_{a}^{\phantom{a}\mu}, and ωabμ\omega_{ab\mu} is the spin connection [for its definition, see Ref. Lawrie2002 , Eq. (7.135)]. In the above expressions, μ,ν=0,1,2,3\mu,\nu=0,1,2,3 are spacetime indices and a,b=0,1,2,3a,b=0,1,2,3 are tetrad indices. In what follows, we use the Weyl representation of the Dirac matrices,

γ0=(0110),γk=(0σkσk0),\gamma^{0}=\begin{pmatrix}0&1\\ 1&0\end{pmatrix},\quad\gamma^{k}=\begin{pmatrix}0&\sigma^{k}\\ -\sigma^{k}&0\end{pmatrix},

where k=1,2,3k=1,2,3 and σk\sigma^{k} are the Pauli matrices.

Varying the action with the Lagrangian (1) with respect to the spinor field and to the vector potential AμA_{\mu}, we derive the corresponding Dirac and Maxwell field equations

ıγμψ;μmψFψ¯\displaystyle\imath\gamma^{\mu}\psi_{;\mu}-m\psi-\frac{\partial F}{\partial\bar{\psi}} =\displaystyle= 0,\displaystyle 0, (2)
1gxν(gFμν)\displaystyle\frac{1}{\sqrt{-g}}\frac{\partial}{\partial x^{\nu}}\left(\sqrt{-g}F^{\mu\nu}\right) =\displaystyle= Qψ¯γμψ.\displaystyle-Q\bar{\psi}\gamma^{\mu}\psi. (3)

In the present paper, we take the following simplest self-interaction term

F(S)=λ2(ψ¯ψ)2,F(S)=-\frac{\lambda}{2}\left(\bar{\psi}\psi\right)^{2},

where λ\lambda is some free nonlinearity parameter. Classical spinor fields with such a nonlinearity have been considered, for instance, in Refs. Finkelstein:1951zz ; Finkelstein:1956 ; Soler:1970xp ; Ranada:1973hna ; Ranada:1974hx ; Dzhunushaliev:2018jhj ; Dzhunushaliev:2019kiy ; Dzhunushaliev:2019uft .

From the Lagrangian (1), one can also obtain the corresponding energy-momentum tensor of the system under consideration (already in a symmetric form)

Tμν=ı4gνρ[ψ¯γμψ;ρ+ψ¯γρψ;μψ¯;μγρψψ¯;ργμψ]δμνLspFνρFμρ+14δμνFαβFαβ.T_{\mu}^{\nu}=\frac{\imath}{4}g^{\nu\rho}\left[\bar{\psi}\gamma_{\mu}\psi_{;\rho}+\bar{\psi}\gamma_{\rho}\psi_{;\mu}-\bar{\psi}_{;\mu}\gamma_{\rho}\psi-\bar{\psi}_{;\rho}\gamma_{\mu}\psi\right]-\delta_{\mu}^{\nu}L_{\text{sp}}-F^{\nu\rho}F_{\mu\rho}+\frac{1}{4}\delta_{\mu}^{\nu}F_{\alpha\beta}F^{\alpha\beta}. (4)

Taking into account the Dirac equation (2) and the corresponding adjoint equation for ψ¯\bar{\psi}, the Lagrangian for the spinor field appearing in Eq. (4) becomes

Lsp=F(S)+12(ψ¯Fψ¯+Fψψ).L_{\text{sp}}=-F(S)+\frac{1}{2}\left(\bar{\psi}\frac{\partial F}{\partial\bar{\psi}}+\frac{\partial F}{\partial\psi}\psi\right).

In the present paper, we take the stationary Ansatz for the spinor field in the form similar to that of Ref. Herdeiro:2019mbz ,

ψ=eı(MφΩt)(ψ1ψ2ψ2ψ1),\psi=e^{\imath\left(M\varphi-\Omega t\right)}\begin{pmatrix}\psi_{1}\\ \psi_{2}\\ \psi_{2}^{*}\\ \psi_{1}^{*}\end{pmatrix}, (5)

where Ω\Omega is the spinor frequency, MM is a half-integer parameter (the azimuthal number). For our purposes, it is convenient to represent the components of the spinor appearing in (5) in the following form:

ψ1=12[X+Y+ı(V+W)],ψ2=12[XY+ı(VW)],\psi_{1}=\frac{1}{2}\left[X+Y+\imath\left(V+W\right)\right],\quad\psi_{2}=\frac{1}{2}\left[X-Y+\imath\left(V-W\right)\right],

where the functions X,Y,VX,Y,V, and WW depend only on the spherical coordinates rr and θ\theta, and the line element is

ds2=dt2dr2r2(dθ2+sin2θdφ2).ds^{2}=dt^{2}-dr^{2}-r^{2}\left(d\theta^{2}+\sin^{2}\theta d\varphi^{2}\right).

The Ansatz for the Maxwell field is taken to be

Aμ={ϕ(r,θ),0,0,σ(r,θ)},A_{\mu}=\{\phi(r,\theta),0,0,\sigma(r,\theta)\}, (6)

i.e., it contains an electric and a magnetic potentials. This Ansatz implies the presence of the following nonzero components of the electric and magnetic fields:

Er=ϕr,Eθ=ϕθ,Hr=cscθr2σθ,Hθ=cscθσr.E_{r}=-\frac{\partial\phi}{\partial r},\quad E_{\theta}=-\frac{\partial\phi}{\partial\theta},\quad H_{r}=-\frac{\csc\theta}{r^{2}}\frac{\partial\sigma}{\partial\theta},\quad H_{\theta}=\csc\theta\frac{\partial\sigma}{\partial r}. (7)

III Equations and solutions

Substituting the Ansätze (5) and (6) in the field equations (2) and (3), one can obtain the following set of six partial differential equations:

X~,x+X~xW~,θxcotθ22xW~+Q~(cscθxW~σ~+V~ϕ~)(1+Ω~)V~+U2V~\displaystyle\tilde{X}_{,x}+\frac{\tilde{X}}{x}-\frac{\tilde{W}_{,\theta}}{x}-\frac{\cot\frac{\theta}{2}}{2x}\tilde{W}+\tilde{Q}\left(-\frac{\csc\theta}{x}\tilde{W}\tilde{\sigma}+\tilde{V}\tilde{\phi}\right)-\left(1+\tilde{\Omega}\right)\tilde{V}+U_{2}\tilde{V} =0,\displaystyle=0, (8)
Y~,x+Y~xV~,θx+tanθ22xV~+Q~(cscθxV~σ~W~ϕ~)(1Ω~)W~+U2W~\displaystyle\tilde{Y}_{,x}+\frac{\tilde{Y}}{x}-\frac{\tilde{V}_{,\theta}}{x}+\frac{\tan\frac{\theta}{2}}{2x}\tilde{V}+\tilde{Q}\left(\frac{\csc\theta}{x}\tilde{V}\tilde{\sigma}-\tilde{W}\tilde{\phi}\right)-\left(1-\tilde{\Omega}\right)\tilde{W}+U_{2}\tilde{W} =0,\displaystyle=0, (9)
V~,x+V~x+Y~,θx+cotθ22xY~+Q~(cscθxY~σ~X~ϕ~)(1Ω~)X~+U2X~\displaystyle\tilde{V}_{,x}+\frac{\tilde{V}}{x}+\frac{\tilde{Y}_{,\theta}}{x}+\frac{\cot\frac{\theta}{2}}{2x}\tilde{Y}+\tilde{Q}\left(\frac{\csc\theta}{x}\tilde{Y}\tilde{\sigma}-\tilde{X}\tilde{\phi}\right)-\left(1-\tilde{\Omega}\right)\tilde{X}+U_{2}\tilde{X} =0,\displaystyle=0, (10)
W~,x+W~x+X~,θxtanθ22xX~+Q~(cscθxX~σ~+Y~ϕ~)(1+Ω~)Y~+U2Y~\displaystyle\tilde{W}_{,x}+\frac{\tilde{W}}{x}+\frac{\tilde{X}_{,\theta}}{x}-\frac{\tan\frac{\theta}{2}}{2x}\tilde{X}+\tilde{Q}\left(-\frac{\csc\theta}{x}\tilde{X}\tilde{\sigma}+\tilde{Y}\tilde{\phi}\right)-\left(1+\tilde{\Omega}\right)\tilde{Y}+U_{2}\tilde{Y} =0,\displaystyle=0, (11)
ϕ~,xx+2xϕ~,x+1x2ϕ~,θθ+cotθx2ϕ~,θ+Q~U1\displaystyle\tilde{\phi}_{,xx}+\frac{2}{x}\tilde{\phi}_{,x}+\frac{1}{x^{2}}\tilde{\phi}_{,\theta\theta}+\frac{\cot\theta}{x^{2}}\tilde{\phi}_{,\theta}+\tilde{Q}\,U_{1} =0,\displaystyle=0, (12)
σ~,xx+1x2σ~,θθcotθx2σ~,θ+2Q~xsinθU3\displaystyle\tilde{\sigma}_{,xx}+\frac{1}{x^{2}}\tilde{\sigma}_{,\theta\theta}-\frac{\cot\theta}{x^{2}}\tilde{\sigma}_{,\theta}+2\,\tilde{Q}\,x\sin\theta\,U_{3} =0,\displaystyle=0, (13)

where

U1=X~2+Y~2+V~2+W~2,U2=X~2Y~2V~2+W~2,U3=X~Y~+V~W~U_{1}=\tilde{X}^{2}+\tilde{Y}^{2}+\tilde{V}^{2}+\tilde{W}^{2},\quad U_{2}=\tilde{X}^{2}-\tilde{Y}^{2}-\tilde{V}^{2}+\tilde{W}^{2},\quad U_{3}=\tilde{X}\tilde{Y}+\tilde{V}\tilde{W}

and the azimuthal number is taken to be M=1/2M=1/2 throughout the paper. These equations are written in terms of the following dimensionless variables: x=mrx=mr, Ω~=Ω/m\tilde{\Omega}=\Omega/m, Q~=Q/(mλ)\tilde{Q}=Q/\left(m\sqrt{\lambda}\right), X~,Y~,V~,W~=λ/mX,Y,V,W\tilde{X},\tilde{Y},\tilde{V},\tilde{W}=\sqrt{\lambda/m}\,X,Y,V,W, ϕ~=λϕ\tilde{\phi}=\sqrt{\lambda}\,\phi, σ~=mλσ\tilde{\sigma}=m\sqrt{\lambda}\,\sigma. The lower indices denote differentiation with respect to the corresponding coordinate. Notice that these equations do not explicitly contain the nonlinearity parameter λ\lambda and are invariant with respect to multiplying the spinor functions by 1-1. That is, the system contains only two free parameters, Ω~\tilde{\Omega} and Q~\tilde{Q}, whose values will be varied to obtain solutions describing configurations with different physical characteristics.

III.1 Physical quantities

Let us now write down expressions for some physically interesting parameters of the systems under consideration. The total dimensionless mass of the system can be found in the form

M~totmλMtot=2π0𝑑x0π𝑑θT~ttx2sinθ,\tilde{M}_{\text{tot}}\equiv m\lambda M_{\text{tot}}=2\pi\int_{0}^{\infty}dx\int_{0}^{\pi}d\theta\,\tilde{T}_{t}^{t}x^{2}\sin\theta, (14)

where the dimensionless (tt)(^{t}_{t})-component of the energy-momentum tensor (4) is

T~tt=12[ϕ~,x2+csc2θx2σ~,x2+1x2ϕ~,θ2+csc2θx4σ~,θ2+2(Ω~Q~ϕ~)U1+U22].\tilde{T}_{t}^{t}=\frac{1}{2}\left[\tilde{\phi}_{,x}^{2}+\frac{\csc^{2}\theta}{x^{2}}\tilde{\sigma}_{,x}^{2}+\frac{1}{x^{2}}\tilde{\phi}_{,\theta}^{2}+\frac{\csc^{2}\theta}{x^{4}}\tilde{\sigma}_{,\theta}^{2}+2\left(\tilde{\Omega}-\tilde{Q}\tilde{\phi}\right)U_{1}+U_{2}^{2}\right]. (15)

The total dimensionless angular momentum

J~totm2λJtot=2π0𝑑x0π𝑑θT~φtx2sinθ,\tilde{J}_{\text{tot}}\equiv m^{2}\lambda J_{\text{tot}}=-2\pi\int_{0}^{\infty}dx\int_{0}^{\pi}d\theta\,\tilde{T}_{\varphi}^{t}x^{2}\sin\theta, (16)

where the dimensionless (φt)(^{t}_{\varphi})-component of the energy-momentum tensor (4) is

T~φt=ϕ~,xσ~,x+1x2ϕ~,θσ~,θ14(1+2Q~σ~)U1+xsinθ(Ω~Q~ϕ~)U3+12sinθ(W~X~V~Y~)+14cosθ(X~2Y~2+V~2W~2).\begin{split}\tilde{T}_{\varphi}^{t}=&\tilde{\phi}_{,x}\tilde{\sigma}_{,x}+\frac{1}{x^{2}}\tilde{\phi}_{,\theta}\tilde{\sigma}_{,\theta}-\frac{1}{4}\left(1+2\,\tilde{Q}\,\tilde{\sigma}\right)U_{1}+x\sin\theta\left(\tilde{\Omega}-\tilde{Q}\tilde{\phi}\right)U_{3}\\ &+\frac{1}{2}\sin\theta\left(\tilde{W}\tilde{X}-\tilde{V}\tilde{Y}\right)+\frac{1}{4}\cos\theta\left(\tilde{X}^{2}-\tilde{Y}^{2}+\tilde{V}^{2}-\tilde{W}^{2}\right).\end{split} (17)

The occurrence of a nonzero angular momentum is due to the presence in the system of (i) a single fermion possessing an intrinsic angular momentum; and (ii) the crossed electric and magnetic fields. For this reason, in analogy to quantum particles possessing the quantum-mechanical spin, such configurations can be treated as spinning ones.

The total dimensionless Noether charge

Q~totm2λQtot=2π0𝑑x0π𝑑θj~tx2sinθ,\tilde{Q}_{\text{tot}}\equiv m^{2}\lambda\,Q_{\text{tot}}=2\pi\int_{0}^{\infty}dx\int_{0}^{\pi}d\theta\,\tilde{j}^{t}x^{2}\sin\theta, (18)

where the dimensionless temporal component of the current density j~t=U1\tilde{j}^{t}=U_{1}. Note here that the normalization condition Qtot=1Q_{\text{tot}}=1 corresponds to one-particle solutions; in this case the coupling constant QQ will correspond to an electric charge of the system, and below we will be interested mostly in such configurations.

Magnetic moment of the system under investigation can be calculated in a standard way by considering the electric current flowing perpendicular to a meridional plane (see, e.g., the textbook Blokh ). As a result, one can obtain the following expression for the dimensionless magnetic dipole moment:

μ~mm2λμm=2πQ~0𝑑x0π𝑑θU3x3sin2θ.\tilde{\mu}_{m}\equiv m^{2}\sqrt{\lambda}\,\mu_{m}=-2\pi\tilde{Q}\int_{0}^{\infty}dx\int_{0}^{\pi}d\theta\,U_{3}x^{3}\sin^{2}\theta. (19)

Finally, the dimensionless gyromagnetic ratio gg, expressed in units of qe/(2Mtot)q_{e}/\left(2M_{\text{tot}}\right) [where qeq_{e} is the electric charge, see Eq. (22) below], is defined from the relation

μm=gqe2JtotMtotg=2μ~mM~totq~eJ~tot,\mu_{m}=g\frac{q_{e}}{2}\frac{J_{\text{tot}}}{M_{\text{tot}}}\quad\Rightarrow\quad g=2\frac{\tilde{\mu}_{m}\tilde{M}_{\text{tot}}}{\tilde{q}_{e}\tilde{J}_{\text{tot}}}, (20)

where q~emλqe\tilde{q}_{e}\equiv m\sqrt{\lambda}\,q_{e} is the dimensionless electric charge.

III.2 Boundary conditions and a numerical approach

We will seek globally regular finite-energy nodeless solutions of the set of six partial differential equations (8)-(13). To do this, it is necessary to impose appropriate boundary conditions for the spinor and Maxwell fields. The behavior of solutions of Eqs. (8)-(13) in the vicinity of the boundaries of the domain of integration implies the following boundary conditions:

X~x|x=0=W~x|x=0=ϕ~x|x=0=0,Y~|x=0=V~|x=0=σ~|x=0=0;X~|x==Y~|x==V~|x==W~|x==ϕ~|x==σ~|x==0;X~θ|θ=0=V~θ|θ=0=ϕ~θ|θ=0=0,Y~|θ=0=W~|θ=0=σ~|θ=0=0;Y~θ|θ=π=W~θ|θ=π=ϕ~θ|θ=π=0,X~|θ=π=V~|θ=π=σ~|θ=π=0.\begin{split}&\left.\frac{\partial\tilde{X}}{\partial x}\right|_{x=0}=\left.\frac{\partial\tilde{W}}{\partial x}\right|_{x=0}=\left.\frac{\partial\tilde{\phi}}{\partial x}\right|_{x=0}=0,\left.\tilde{Y}\right|_{x=0}=\left.\tilde{V}\right|_{x=0}=\left.\tilde{\sigma}\right|_{x=0}=0;\\ &\left.\tilde{X}\right|_{x=\infty}=\left.\tilde{Y}\right|_{x=\infty}=\left.\tilde{V}\right|_{x=\infty}=\left.\tilde{W}\right|_{x=\infty}=\left.\tilde{\phi}\right|_{x=\infty}=\left.\tilde{\sigma}\right|_{x=\infty}=0;\\ &\left.\frac{\partial\tilde{X}}{\partial\theta}\right|_{\theta=0}=\left.\frac{\partial\tilde{V}}{\partial\theta}\right|_{\theta=0}=\left.\frac{\partial\tilde{\phi}}{\partial\theta}\right|_{\theta=0}=0,\left.\tilde{Y}\right|_{\theta=0}=\left.\tilde{W}\right|_{\theta=0}=\left.\tilde{\sigma}\right|_{\theta=0}=0;\\ &\left.\frac{\partial\tilde{Y}}{\partial\theta}\right|_{\theta=\pi}=\left.\frac{\partial\tilde{W}}{\partial\theta}\right|_{\theta=\pi}=\left.\frac{\partial\tilde{\phi}}{\partial\theta}\right|_{\theta=\pi}=0,\left.\tilde{X}\right|_{\theta=\pi}=\left.\tilde{V}\right|_{\theta=\pi}=\left.\tilde{\sigma}\right|_{\theta=\pi}=0.\end{split}

For numerical computations, it is convenient to introduce the compactified radial coordinate

x¯=x1+x\bar{x}=\frac{x}{1+x} (21)

in order to map the infinite interval [0,)[0,\infty) to the finite region [0,1][0,1]. The results of numerical computations for axisymmetric systems presented below have been obtained using the Intel MKL PARDISO sparse direct solver and the CESDSOL library, and also verified for some particular cases using the package FIDISOL fidisol . These packages provide an iterative procedure for obtaining an exact solution starting from some approximate solution (an initial guess). As the initial guess, it is possible to use the solutions describing configurations in the absence of electric and magnetic fields Soler:1970xp . The equations (8)-(13) have been solved on a grid of 200×100200\times 100 points which covers the integration region 0x¯10\leq\bar{x}\leq 1 [given by the compactified radial coordinate (21)] and 0θπ0\leq\theta\leq\pi.

III.3 Numerical solutions

Refer to caption
Figure 1: The total mass of the system M~tot\tilde{M}_{\text{tot}} as a function of the spinor frequency Ω~\tilde{\Omega} for different values of the coupling constant Q~\tilde{Q}. The inset shows the dependence of the total mass on Q~\tilde{Q} for different values of Ω~\tilde{\Omega} (shown by the numbers near the points) corresponding to the location of the mass gap.

In contrast to the case of a linear spinor field, in the nonlinear case, there is a family of solutions, depending continuously on two parameters – the frequency Ω~\tilde{\Omega} and the coupling constant Q~\tilde{Q}, whose values completely determine all physical characteristics of the configurations under consideration. To illustrate this, Fig. 1 shows the spectrum of the total mass (14) of the systems under investigation as a function of Ω~\tilde{\Omega} for some fixed values of Q~\tilde{Q}. It is seen from these graphs that the behavior of the dependence M~tot(Ω~)\tilde{M}_{\text{tot}}(\tilde{\Omega}) is largely determined by the value of the coupling constant Q~\tilde{Q}. Namely, the numerical calculations indicate that:

  • (i)

    When Q~=0\tilde{Q}=0, the total mass diverges as Ω~1\tilde{\Omega}\to 1. In turn, for small Ω~\tilde{\Omega}, a rapid increase of M~tot\tilde{M}_{\text{tot}} also occurs, and one may expect that in the limit Ω~0\tilde{\Omega}\to 0 the total mass will tend to infinity as well. But in this limit a calculation of the mass using the integral (14) is a difficult technical problem, and we cannot verify this assumption by direct calculation.

  • (ii)

    When Q~0\tilde{Q}\neq 0, the total mass in the limit Ω~1\tilde{\Omega}\to 1 is already finite. In turn, there is some nonzero value Ω~<1\tilde{\Omega}<1 for which one can still perform numerical calculations. In doing so, one can observe that the mass demonstrates a rapid increase (|M~tot/Ω~|1|\partial\tilde{M}_{\text{tot}}/\partial\tilde{\Omega}|\gg 1); this can be regarded as an indication that there is some critical value Ω~crit\tilde{\Omega}_{\text{crit}} for which the mass will eventually tend to infinity.

  • (iii)

    A distinctive feature of the configurations from (i) and (ii) is the presence of a minimum of the mass for all values of Q~\tilde{Q} lying in the interval 0.27Q~0-0.27\lesssim\tilde{Q}\leq 0. This minimum corresponds to the presence in the system of a mass gap where M~tot/Ω~=0\partial\tilde{M}_{\text{tot}}/\partial\tilde{\Omega}=0. In turn, for Q~0.27\tilde{Q}\lesssim-0.27, such a mass gap is already absent: the total mass demonstrates a gradual decrease as Ω~\tilde{\Omega} increases, and eventually M~tot\tilde{M}_{\text{tot}} reaches some minimum value as Ω~1\tilde{\Omega}\to 1.

  • (iv)

    The dependence of the total mass on the coupling constant Q~\tilde{Q} for different values of Ω~\tilde{\Omega} corresponding to the location of the mass gap is shown in the inset of Fig. 1. It is seen from this inset that for the system with Q~=0\tilde{Q}=0 (and correspondingly without the magnetic field), Ω~0.936\tilde{\Omega}\approx 0.936 (cf. Ref. Ranada:1973hna ). On the other hand, there exists a maximum possible value of the coupling constant |Q~|0.27|\tilde{Q}|\approx 0.27 for which the frequency Ω~1\tilde{\Omega}\to 1. For larger (modulus) values of Q~\tilde{Q} the curve M~tot(Ω~)\tilde{M}_{\text{tot}}(\tilde{\Omega}) has no minimum already, that is, the derivative M~tot/Ω~\partial\tilde{M}_{\text{tot}}/\partial\tilde{\Omega} is nowhere equal to zero, and correspondingly the mass gap is absent.

  • (v)

    There is some critical value of the coupling constant Q~crit\tilde{Q}_{\text{crit}} approaching that the interval Ω~critΩ~1\tilde{\Omega}_{\text{crit}}\leq\tilde{\Omega}\leq 1 (where the solutions do exist) becomes narrower, and eventually Ω~crit1\tilde{\Omega}_{\text{crit}}\to 1 and the complete set of solutions with different Ω~\tilde{\Omega} degenerates to the only solution with Ω~=1\tilde{\Omega}=1. Numerical calculations show that Q~crit0.3119\tilde{Q}_{\text{crit}}\approx-0.3119, and in this limit the total mass M~tot97.13\tilde{M}_{\text{tot}}\approx 97.13.

  • (vi)

    For all these spinning systems, a straightforward computation shows that the total angular momentum JtotJ_{\text{tot}} from Eq. (16) and the total Noether charge QtotQ_{\text{tot}} from Eq. (18) are related by Jtot=12QtotJ_{\text{tot}}=\frac{1}{2}Q_{\text{tot}}, although the angular momentum density and the Noether charge density are not proportional.

  • (vii)

    From the form of Eqs. (8)-(13), it is evident that the solutions under consideration are invariant with respect to a change in the sign Q~Q~,ϕ~ϕ~,σ~σ~\tilde{Q}\to-\tilde{Q},\tilde{\phi}\to-\tilde{\phi},\tilde{\sigma}\to-\tilde{\sigma}, that is, they may describe systems with the coupling constant opposite in sign and the same physical characteristics.

Note here that, in order to apply the results obtained above for a description of one particle, it is necessary to normalize the solutions so that the Noether charge QtotQ_{\text{tot}} from Eq. (18) would be equal to 1. In this case the coupling constant QQ will correspond to an electric charge, i.e., Q=qeQ=q_{e}. This one-particle condition can be fulfilled by a suitable choice of the free system parameters λ\lambda and mm. However, in doing so, one should bear in mind that in this case there will be its own particular set of the parameters λ\lambda and mm for every point in the [M~totΩ~]\left[\tilde{M}_{\text{tot}}-\tilde{\Omega}\right]-plane, i.e., different points of the plane will correspond to different models.

We conclude this subsection with the expression for the effective radial pressure prTrrp_{r}\equiv-T_{r}^{r}. Using the energy-momentum tensor (4) and the Dirac equations (8)-(11), it can be shown that the radial pressure contains the terms

prλ2(X2Y2V2+W2)2Qϕ(X2+Y2+V2+W2)p_{r}\sim\frac{\lambda}{2}\left(X^{2}-Y^{2}-V^{2}+W^{2}\right)^{2}-Q\phi\left(X^{2}+Y^{2}+V^{2}+W^{2}\right)\ldots

This implies the following physical meaning of the nonlinearity parameter: the case of λ>0\lambda>0 corresponds to the attraction and the case of λ<0\lambda<0 to the repulsion. Correspondingly, for the configurations considered above, the attraction of the spinor field related to the choice of positive values of the nonlinearity parameter provides a counter-balance to the effective repulsion due to the presence of the electric charge.

III.4 Asymptotic behavior

For completeness of analysis of the numerical solutions obtained above, let us write down analytical expressions for asymptotic solutions. The Maxwell equations (12) and (13) have the following asymptotic (xx\to\infty) behavior of the electric and magnetic fields:

ϕ~14πq~ex,σ~14πμ~mxsin2θ.\tilde{\phi}\approx\frac{1}{4\pi}\frac{\tilde{q}_{e}}{x},\quad\tilde{\sigma}\approx-\frac{1}{4\pi}\frac{\tilde{\mu}_{m}}{x}\sin^{2}\theta. (22)

Using these expressions, the numerical values of the electric charge q~e\tilde{q}_{e} and of the magnetic moment μ~m\tilde{\mu}_{m} can be found in the form

q~e=4πlimxx2ϕ~x=4πlimx¯1x¯2ϕ~x¯,μ~m=4πlimxx2sin2θσ~x=4πlimx¯1x¯2sin2θσ~x¯.\tilde{q}_{e}=-4\pi\lim_{x\to\infty}x^{2}\frac{\partial\tilde{\phi}}{\partial x}=-4\pi\lim_{\bar{x}\to 1}\bar{x}^{2}\frac{\partial\tilde{\phi}}{\partial\bar{x}},\quad\tilde{\mu}_{m}=4\pi\lim_{x\to\infty}\frac{x^{2}}{\sin^{2}\theta}\frac{\partial\tilde{\sigma}}{\partial x}=4\pi\lim_{\bar{x}\to 1}\frac{\bar{x}^{2}}{\sin^{2}\theta}\frac{\partial\tilde{\sigma}}{\partial\bar{x}}. (23)

Note that the value of μ~m\tilde{\mu}_{m} calculated using the above formula coincides with that of obtained using Eq. (19).

In turn, the asymptotic behavior of the spinor fields follows from the Dirac equations  (8)-(11),

X~2cosθ2g(x),Y~2sinθ2f(x),V~2cosθ2f(x),W~2sinθ2g(x).\tilde{X}\approx-2\cos\frac{\theta}{2}\,g(x),\quad\tilde{Y}\approx 2\sin\frac{\theta}{2}\,f(x),\quad\tilde{V}\approx 2\cos\frac{\theta}{2}\,f(x),\quad\tilde{W}\approx-2\sin\frac{\theta}{2}\,g(x).

The form of the functions f(x)f(x) and g(x)g(x) appearing here depends on the value of Ω~\tilde{\Omega}. Namely, for 0<Ω~<10<\tilde{\Omega}<1, we have

f(x)fe1Ω~2xxx11Ω~2Q~q~e4π,g(x)f1+Ω~1Ω~e1Ω~2xxx11Ω~2Q~q~e4π,f(x)\approx f_{\infty}\frac{e^{-\sqrt{1-\tilde{\Omega}^{2}}\,x}}{x}x^{-\frac{1}{\sqrt{1-\tilde{\Omega}^{2}}}\frac{\tilde{Q}\tilde{q}_{e}}{4\pi}},\quad g(x)\approx f_{\infty}\sqrt{\frac{1+\tilde{\Omega}}{1-\tilde{\Omega}}}\,\frac{e^{-\sqrt{1-\tilde{\Omega}^{2}}\,x}}{x}x^{-\frac{1}{\sqrt{1-\tilde{\Omega}^{2}}}\frac{\tilde{Q}\tilde{q}_{e}}{4\pi}}, (24)

where ff_{\infty} is an integration constant. In the case of Ω~=1\tilde{\Omega}=1, we have

f(x)fe2πQ~q~exx5/4,g(x)f8πQ~q~ee2πQ~q~exx3/4.f(x)\approx f_{\infty}\frac{e^{-\sqrt{\frac{2}{\pi}\tilde{Q}\tilde{q}_{e}\,x}}}{x^{5/4}},\quad g(x)\approx f_{\infty}\sqrt{\frac{8\pi}{\tilde{Q}\tilde{q}_{e}}}\,\frac{e^{-\sqrt{\frac{2}{\pi}\tilde{Q}\tilde{q}_{e}\,x}}}{x^{3/4}}.

Notice here that regular solutions with Ω~=1\tilde{\Omega}=1 are only possible in the presence of the charge.

Refer to caption
Figure 2: The dependence of the physical quantities on the spinor frequency Ω\Omega for a fixed Q~=0.04452\tilde{Q}=-0.04452. Left panel: the graphs for the total mass M~tot\tilde{M}_{\text{tot}} from Eq. (14), for the angular momentum J~tot\tilde{J}_{\text{tot}} from Eq. (16), and for the charge q~e\tilde{q}_{e} from Eq. (23). Middle panel: the same quantities, but in the dimensional form and with Qtot=1Q_{\text{tot}}=1 (normalized values). Right panel: the gyromagnetic ratio (20). The vertical dashed lines correspond to the minimum of the mass (the mass gap) located at the point Ω~0.937\tilde{\Omega}\approx 0.937.

III.5 Particular example: an “electron”

Refer to caption
Figure 3: The dimensionless spinor functions P+P_{+} and PP_{-} from (33) and (34), energy density (15), angular momentum density (17), charge density j~t=U1\tilde{j}^{t}=U_{1}, physical component of the current density j~φ=2Q~U3\tilde{j}^{\varphi}=-2\,\tilde{Q}\,U_{3}, electric, E~λ/mE\tilde{\vec{E}}\equiv\sqrt{\lambda}/m\vec{E}, and magnetic, H~λ/mH\tilde{\vec{H}}\equiv\sqrt{\lambda}/m\vec{H}, field strengths for the system with Q~=0.04452\tilde{Q}=-0.04452 located at the mass gap (cf. Fig. 2). The plots are made in a meridional plane φ=const.\varphi=\text{const.} spanned by the coordinates ρ=xsinθ\rho=x\sin\theta and z=xcosθz=x\cos\theta. Since the system is 2\mathbb{Z}_{2}-symmetric with respect to the equatorial plane z=0z=0, the electromagnetic field strength distributions are shown only for z>0z>0.

The freedom in the choice of values of the parameters λ\lambda and mm enables us to model various objects. In doing so, a choice of a specific value of Ω~\tilde{\Omega} can be made on the basis of a physically reasonable assumption that an energetically stable system must possess a minimum energy (or, equivalently, a minimum mass M~tot\tilde{M}_{\text{tot}}). Consistent with this, consider, for example, the case where the coupling constant Q~\tilde{Q} is understood to be so chosen that at a minimum of the curve M~tot(Ω~)\tilde{M}_{\text{tot}}(\tilde{\Omega}) the electric charge of the system qeq_{e} would be equal to the charge of an electron. The corresponding dependencies M~tot(Ω~)\tilde{M}_{\text{tot}}(\tilde{\Omega}) and q~e(Ω~)\tilde{q}_{e}(\tilde{\Omega}) are shown in the left panel of Fig. 2. It is seen that the minimum of the mass curve (the maximum of the charge curve) is located at Ω~0.937\tilde{\Omega}\approx 0.937, and the total mass and Noether charge are

Mtot=47.512mλ,Qtot=46.255m2λ.M_{\text{tot}}=\frac{47.512}{m\lambda},\quad Q_{\text{tot}}=\frac{46.255}{m^{2}\lambda}.

This yields the dimensional mass Mtot=1.027mQtotM_{\text{tot}}=1.027\,m\,Q_{\text{tot}} (see the middle panel of Fig. 2). For a normalized solution, Qtot=1Q_{\text{tot}}=1; correspondingly, there is a mass renormalization of 2.7%2.7\%. Then, in order to make the total mass of the system MtotM_{\text{tot}} equal to the electron mass mem_{e}, it is necessary to take m=me/1.027m=m_{e}/1.027. This in turn leads to the corresponding renormalization of the magnetic moment and change in the value of the gyromagnetic ratio gg, whose graph is shown in the right panel of Fig. 2. For the case under consideration, g2.083g\approx 2.083. Thus we have a configuration with the mass Mtot=0.511MeVM_{\text{tot}}=0.511\,\text{MeV} and charge qe=0.3028q_{e}=-0.3028 equal to the mass and charge of an electron, but with g>2g>2.

Also, for a normalized solution, i.e., when Qtot=1Q_{\text{tot}}=1, the quantum-mechanical angular momentum, which is determined using the operator of the total angular momentum,

M^z=L^z+S^z,\hat{M}_{z}=\hat{L}_{z}+\hat{S}_{z}, (25)

(here L^z=ıφ\hat{L}_{z}=-\imath\partial_{\varphi} is the operator which projects the orbital angular momentum on the zz-axis and S^z\hat{S}_{z} is the operator which projects the spin on the zz-axis), defines the value of the total angular momentum as an eigenvalue MzM_{z},

M^zψ=Mzψ.\hat{M}_{z}\psi=M_{z}\psi.

For the spinor (5), this eigenvalue is Mz=1/2M_{z}=1/2, and it coincides with that calculated using the integral formula (16) (cf. the value of JtotJ_{\text{tot}} from the middle panel of Fig. 2). It is worth noting that for the solutions that are not normalized to unity this coincidence no longer occurs.

The characteristic size of such a charged configuration supported by the spinor field can be estimated from the asymptotic behavior of the field (24) as

rch11Ω~2me.r_{\text{ch}}\sim\frac{1}{\sqrt{1-\tilde{\Omega}^{2}}\,m_{e}}.

For Ω~0.937\tilde{\Omega}\approx 0.937, this yields rch1010cmr_{\text{ch}}\sim 10^{-10}\,\text{cm}, a value that is comparable in order of magnitude to the electron Compton wavelength.

Note that the spinor functions X~,Y~,V~,\tilde{X},\tilde{Y},\tilde{V}, and W~\tilde{W} appearing in the Dirac equations (8)-(11) are neither even nor odd functions with respect to the equatorial plane θ=π/2\theta=\pi/2. Nevertheless, the system possesses a 2\mathbb{Z}_{2} symmetry with respect to this plane; this can be shown by considering the corresponding combinations of the spinor functions (see Appendix A). To demonstrate this fact in a pictorial way, the upper row of Fig. 3 shows the graphs of the functions P+P_{+} and PP_{-} from Eqs. (33) and (34), respectively. Also, this figure shows the corresponding 2\mathbb{Z}_{2}-symmetric distributions of the components of the energy-momentum tensor (4) and current density, as well as the electric and magnetic field strengths defined by the expressions (7). The structure of the magnetic field strength corresponds to an axially symmetric dipole field sourced by the current associated with the spinor field given on the right-hand side of Eq. (3). The radial distribution of the current and the magnitude of the magnetic field are determined by the value of the coupling constant QQ. In turn, the structure of the electric field strength corresponds to a negative charge with force lines directed toward the center of the configuration.

In conclusion, note that by choosing m=mμ/1.027m=m_{\mu}/1.027, where mμm_{\mu} is the muon mass, we get characteristics typical for a muon/antimuon.

IV Conclusions

The main purpose of the present paper is to study self-consistently the influence that an electromagnetic field has on a system supported by a nonlinear spinor field. To this end, we generalized the configurations considered in Refs. Soler:1970xp ; Ranada:1973hna by including nonperturbatively electric and magnetic (dipole) Maxwell fields to take account of their backreaction on the physical characteristics of the system. In such a generalized case, the presence in the system of the dipole magnetic field requires a consideration of an axisymmetric problem.

In the absence of electromagnetic fields, an important distinctive feature of the systems supported by nonlinear spinor fields is the presence of a mass gap. For such systems, all solutions are parameterized by one parameter – the spinor frequency Ω~\tilde{\Omega}, and regular stationary solutions describing configurations with finite values of various physical parameters (for instance, of a total mass) do exist only for the values of Ω~\tilde{\Omega} lying in the range 0<Ω~<10<\tilde{\Omega}<1, whereas for Ω~0\tilde{\Omega}\to 0 and Ω~1\tilde{\Omega}\to 1 the total mass diverges. The inclusion of the Maxwell fields results in the appearance of one more free parameter – the coupling constant Q~\tilde{Q}. For such a two-parametric system, we have considered all permissible values of the parameters Ω~\tilde{\Omega} and Q~\tilde{Q} for which regular spinning solutions do exist. The studies of the present work indicate that there are the following qualitative changes in the characteristics of the configurations as compared with the electrically neutral (Q~=0\tilde{Q}=0) case:

  • Apart from the mass and angular momentum gaps, the system also contains the charge and magnetic moment gaps located at the same values of Ω~\tilde{\Omega} as the mass gap (see Fig. 2 and cf. Ref. Dzhunushaliev:2022pkz ).

  • For a nonzero coupling constant Q~\tilde{Q}, there is some critical value of the spinor frequency Ω~crit>0\tilde{\Omega}_{\text{crit}}>0 that restricts the range of permissible values of Ω~\tilde{\Omega} from the left. As in the case without Maxwell fields, at this boundary, the total masses of the system diverge for all permissible values of Q~\tilde{Q}. As Q~\tilde{Q} increases (modulus), the value of Ω~crit\tilde{\Omega}_{\text{crit}} increases as well, and there is a finite critical value |Q~crit|0.3119|\tilde{Q}_{\text{crit}}|\approx 0.3119 for which Ω~crit1\tilde{\Omega}_{\text{crit}}\to 1, i.e., the set of solutions with different Ω~\tilde{\Omega} degenerates to the only solution with Ω~=1\tilde{\Omega}=1.

  • For 0<|Q~|<|Q~crit|0<|\tilde{Q}|<|\tilde{Q}_{\text{crit}}| and as Ω~1\tilde{\Omega}\to 1, the total mass of the system, in contrast to the case without Maxwell fields, remains always finite. That is, regular solutions exist in the frequency range of Ω~crit<Ω~1\tilde{\Omega}_{\text{crit}}<\tilde{\Omega}\leq 1, and the magnitude of Ω~crit\tilde{\Omega}_{\text{crit}} is completely determined only by the value of the coupling constant Q~\tilde{Q}.

  • There is a maximum possible value of |Q~|0.27|\tilde{Q}|\approx 0.27 above which the aforementioned gaps are already absent in the system.

As a possible application of the above results, we have considered the case where the coupling constant Q~\tilde{Q} is to be so chosen that the electric charge of the system located at the mass/charge gap would be equal to the charge of an electron (or of a positron when Q~-\tilde{Q} is changed into Q~\tilde{Q}) (see Sec. III.5). Then, by choosing an appropriate value of the bare mass mm in the Dirac equation (2), one can also get the total mass of the system, equal to the mass of an electron. In turn, the total angular momentum JtotJ_{\text{tot}} and the total Noether charge QtotQ_{\text{tot}} are related by Jtot=12QtotJ_{\text{tot}}=\frac{1}{2}Q_{\text{tot}} (as it also takes place for all other spinning systems with permissible values of Q~\tilde{Q} and Ω~\tilde{\Omega} considered in the present paper), and when Qtot=1Q_{\text{tot}}=1 (i.e., for a normalized solution), JtotJ_{\text{tot}} coincides with the eigenvalue Mz=1/2M_{z}=1/2 of the operator of the total angular momentum (25). Also, the gyromagnetic ratio for such configuration is g2.083g\approx 2.083 (cf. the electron for which g2g\approx 2) and the characteristic size is rch1010cmr_{\text{ch}}\sim 10^{-10}\,\text{cm}.

Acknowledgments

This research was funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. BR21881941).

Appendix A Symmetry of the field equations

When θ\theta is replaced by πθ\pi-\theta, the equations (8)-(13) take the form

X~,x+X~x+W~,θxtanθ22xW~+Q~(cscθxW~σ~+V~ϕ~)(1+Ω~)V~+U2V~=\displaystyle\tilde{X}_{,x}+\frac{\tilde{X}}{x}+\frac{\tilde{W}_{,\theta}}{x}-\frac{\tan\frac{\theta}{2}}{2x}\tilde{W}+\tilde{Q}\left(-\frac{\csc\theta}{x}\tilde{W}\tilde{\sigma}+\tilde{V}\tilde{\phi}\right)-\left(1+\tilde{\Omega}\right)\tilde{V}+U_{2}\tilde{V}= 0,\displaystyle 0, (26)
Y~,x+Y~x+V~,θx+cotθ22xV~+Q~(cscθxV~σ~W~ϕ~)(1Ω~)W~+U2W~=\displaystyle\tilde{Y}_{,x}+\frac{\tilde{Y}}{x}+\frac{\tilde{V}_{,\theta}}{x}+\frac{\cot\frac{\theta}{2}}{2x}\tilde{V}+\tilde{Q}\left(\frac{\csc\theta}{x}\tilde{V}\tilde{\sigma}-\tilde{W}\tilde{\phi}\right)-\left(1-\tilde{\Omega}\right)\tilde{W}+U_{2}\tilde{W}= 0,\displaystyle 0, (27)
V~,x+V~xY~,θx+tanθ22xY~+Q~(cscθxY~σ~X~ϕ~)(1Ω~)X~+U2X~=\displaystyle\tilde{V}_{,x}+\frac{\tilde{V}}{x}-\frac{\tilde{Y}_{,\theta}}{x}+\frac{\tan\frac{\theta}{2}}{2x}\tilde{Y}+\tilde{Q}\left(\frac{\csc\theta}{x}\tilde{Y}\tilde{\sigma}-\tilde{X}\tilde{\phi}\right)-\left(1-\tilde{\Omega}\right)\tilde{X}+U_{2}\tilde{X}= 0,\displaystyle 0, (28)
W~,x+W~xX~,θxcotθ22xX~+Q~(cscθxX~σ~+Y~ϕ~)(1+Ω~)Y~+U2Y~=\displaystyle\tilde{W}_{,x}+\frac{\tilde{W}}{x}-\frac{\tilde{X}_{,\theta}}{x}-\frac{\cot\frac{\theta}{2}}{2x}\tilde{X}+\tilde{Q}\left(-\frac{\csc\theta}{x}\tilde{X}\tilde{\sigma}+\tilde{Y}\tilde{\phi}\right)-\left(1+\tilde{\Omega}\right)\tilde{Y}+U_{2}\tilde{Y}= 0,\displaystyle 0, (29)
ϕ~,xx+2xϕ~,x+1x2ϕ~,θθ+cotθx2ϕ~,θ+Q~U1=\displaystyle\tilde{\phi}_{,xx}+\frac{2}{x}\tilde{\phi}_{,x}+\frac{1}{x^{2}}\tilde{\phi}_{,\theta\theta}+\frac{\cot\theta}{x^{2}}\tilde{\phi}_{,\theta}+\tilde{Q}\,U_{1}= 0,\displaystyle 0, (30)
σ~,xx+1x2σ~,θθcotθx2σ~,θ+2Q~xsinθU3=\displaystyle\tilde{\sigma}_{,xx}+\frac{1}{x^{2}}\tilde{\sigma}_{,\theta\theta}-\frac{\cot\theta}{x^{2}}\tilde{\sigma}_{,\theta}+2\,\tilde{Q}\,x\sin\theta\,U_{3}= 0.\displaystyle 0. (31)

All the functions appearing here depend on πθ\pi-\theta: X~(x,πθ),Y~(x,πθ),V~(x,πθ),W~(x,πθ),ϕ(x,πθ),σ(x,πθ)\tilde{X}(x,\pi-\theta),\tilde{Y}(x,\pi-\theta),\tilde{V}(x,\pi-\theta),\tilde{W}(x,\pi-\theta),\phi(x,\pi-\theta),\sigma(x,\pi-\theta), while the combinations U1,U2,U_{1},U_{2}, and U3U_{3} remain unchanged. A comparison of the equations (26) and (11) enables one to conclude that W~(x,θ)=X~(x,πθ)\tilde{W}(x,\theta)=\tilde{X}(x,\pi-\theta). Similarly, one can show that such a symmetry is valid for all functions:

X~(x,θ)=W~(x,πθ),Y~(x,θ)=V~(x,πθ),V~(x,θ)=Y~(x,πθ),W~(x,θ)=X~(x,πθ).\tilde{X}(x,\theta)=\tilde{W}(x,\pi-\theta),\quad\tilde{Y}(x,\theta)=\tilde{V}(x,\pi-\theta),\quad\tilde{V}(x,\theta)=\tilde{Y}(x,\pi-\theta),\quad\tilde{W}(x,\theta)=\tilde{X}(x,\pi-\theta). (32)

This enables us to rewrite four local Dirac equations (8)-(11) in the form of two nonlocal equations

X~(x,θ),x+X~(x,θ)xX~(x,πθ),θxcotθ22xX~(x,πθ)+Q~[cscθxX~(x,πθ)σ~+Y~(x,πθ)ϕ~](1+Ω~)Y~(x,πθ)+U2Y~(x,πθ)=0,Y~(x,θ),x+Y~(x,θ)xY~(x,πθ),θx+tanθ22xY~(x,πθ)+Q~[cscθxY~(x,πθ)σ~X~(x,πθ)ϕ~](1Ω~)X~(x,πθ)+U2X~(x,πθ)=0.\begin{split}\tilde{X}(x,\theta)_{,x}+\frac{\tilde{X}(x,\theta)}{x}-\frac{\tilde{X}(x,\pi-\theta)_{,\theta}}{x}-\frac{\cot\frac{\theta}{2}}{2x}\tilde{X}(x,\pi-\theta)+\tilde{Q}\left[-\frac{\csc\theta}{x}\tilde{X}(x,\pi-\theta)\tilde{\sigma}+\tilde{Y}(x,\pi-\theta)\tilde{\phi}\right]&\\ -\left(1+\tilde{\Omega}\right)\tilde{Y}(x,\pi-\theta)+U_{2}\tilde{Y}(x,\pi-\theta)=&0,\\ \tilde{Y}(x,\theta)_{,x}+\frac{\tilde{Y}(x,\theta)}{x}-\frac{\tilde{Y}(x,\pi-\theta)_{,\theta}}{x}+\frac{\tan\frac{\theta}{2}}{2x}\tilde{Y}(x,\pi-\theta)+\tilde{Q}\left[\frac{\csc\theta}{x}\tilde{Y}(x,\pi-\theta)\tilde{\sigma}-\tilde{X}(x,\pi-\theta)\tilde{\phi}\right]&\\ -\left(1-\tilde{\Omega}\right)\tilde{X}(x,\pi-\theta)+U_{2}\tilde{X}(x,\pi-\theta)=&0.\end{split}

In turn, taking into account the properties of the functions X~,Y~,V~\tilde{X},\tilde{Y},\tilde{V}, and W~\tilde{W} given in Eq. (32), one can see that there are the following symmetric and antisymmetric functions:

P+(x,θ)=\displaystyle P_{+}(x,\theta)= X~(x,θ)+W~(x,θ)=X~(x,θ)+X~(x,πθ)=W~(x,θ)+W~(x,πθ)=P+(x,πθ),\displaystyle\tilde{X}(x,\theta)+\tilde{W}(x,\theta)=\tilde{X}(x,\theta)+\tilde{X}(x,\pi-\theta)=\tilde{W}(x,\theta)+\tilde{W}(x,\pi-\theta)=P_{+}(x,\pi-\theta), (33)
P(x,θ)=\displaystyle P_{-}(x,\theta)= X~(x,θ)W~(x,θ)=X~(x,θ)X~(x,πθ)=W~(x,πθ)W~(x,θ)=P(x,πθ),\displaystyle\tilde{X}(x,\theta)-\tilde{W}(x,\theta)=\tilde{X}(x,\theta)-\tilde{X}(x,\pi-\theta)=\tilde{W}(x,\pi-\theta)-\tilde{W}(x,\theta)=-P_{-}(x,\pi-\theta), (34)
Q+(x,θ)=\displaystyle Q_{+}(x,\theta)= Y~(x,θ)+V~(x,θ)=Y~(x,θ)+Y~(x,πθ)=V~(x,θ)+V~(x,πθ)=Q+(x,πθ),\displaystyle\tilde{Y}(x,\theta)+\tilde{V}(x,\theta)=\tilde{Y}(x,\theta)+\tilde{Y}(x,\pi-\theta)=\tilde{V}(x,\theta)+\tilde{V}(x,\pi-\theta)=Q_{+}(x,\pi-\theta), (35)
Q(x,θ)=\displaystyle Q_{-}(x,\theta)= Y~(x,θ)V~(x,θ)=Y~(x,θ)Y~(x,πθ)=V~(x,πθ)V~(x,θ)=Q(x,πθ).\displaystyle\tilde{Y}(x,\theta)-\tilde{V}(x,\theta)=\tilde{Y}(x,\theta)-\tilde{Y}(x,\pi-\theta)=\tilde{V}(x,\pi-\theta)-\tilde{V}(x,\theta)=-Q_{-}(x,\pi-\theta). (36)

References

  • (1) D. D. Ivanenko, Notes to the theory of interaction via particles, Sov. Phys. JETP 13, 141(1938).
  • (2) R. Finkelstein, R. LeLevier, and M. Ruderman, Nonlinear Spinor Fields, Phys. Rev.  83, 326 (1951).
  • (3) R. Finkelstein, C. Fronsdal, and P. Kaus, Nonlinear Spinor Field, Phys. Rev.  103, 1571 (1956).
  • (4) W. Heisenberg, Introduction to the Unified Field Theory of Elementary Particles (Max-Planck-Institut für Physik und Astrophysik, Interscience Publisher, London, 1966).
  • (5) Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. I, Phys. Rev. 122, 345 (1961).
  • (6) M.K. Volkov and A.E. Radzhabov, The Nambu-Jona-Lasinio model and its development. Phys. Usp. 49, 551 (2006).
  • (7) M. Soler, Classical, stable, nonlinear spinor field with positive rest energy, Phys. Rev. D 1, 2766 (1970).
  • (8) A. F. Ranada and M. Soler, Perturbation theory for an exactly soluble spinor model in interaction with its electromagnetic field, Phys. Rev. D 8, 3430-3433 (1973).
  • (9) A. F. Ranada, M. F. Ranada, M. Soler, and L. Vazquez, Classical Electrodynamics of a Nonlinear Dirac Field with Anomalous Magnetic Moment, Phys. Rev. D 10, 517 (1974).
  • (10) D. J. Gross and A. Neveu, Dynamical Symmetry Breaking in Asymptotically Free Field Theories, Phys. Rev. D 10, 3235 (1974).
  • (11) A. Alvarez and B. Carreras, Interaction Dynamics for the Solitary Waves of a Nonlinear Dirac Model, Phys. Lett. A 86, 327-332 (1981).
  • (12) D. C. Ionescu, J. Reinhardt, B. Muller, W. Greiner, and G. Soff, Nonlinear extensions of the Dirac equation and their implications in QED, Phys. Rev. A 38, 616 (1988).
  • (13) M. J. Esteban and E. Sere, Stationary states of the nonlinear Dirac equation: a variational approach, Comm. Math. Phys. 171, 323 (1995).
  • (14) M. J. Esteban and E. Sere, An overview on linear and nonlinear Dirac equations, Discrete Contin. Dyn. Syst. 8, 381 (2002).
  • (15) A. Zecca, Dirac equation in space-time with torsion, Int. J. Theor. Phys. 41, 421-428 (2002).
  • (16) K. A. Bronnikov, E. N. Chudaeva, and G. N. Shikin, Self-gravitating string-like configurations of nonlinear spinor fields, Gen. Relativ. Gravit.  36, 1537 (2004).
  • (17) K. A. Bronnikov and J. P. S. Lemos, Cylindrical wormholes, Phys. Rev. D 79, 104019 (2009).
  • (18) V. Adanhounme, A. Adomou, F. P. Codo, and M. N. Hounkonnou, Nonlinear spinor field equations in gravitational theory: Spherical symmetric soliton-like solutions, J. Mod. Phys.  3, 935 (2012).
  • (19) B. Saha, Nonlinear spinor field in isotropic space-time and dark energy models, Eur. Phys. J. Plus 131, 242 (2016).
  • (20) V. Dzhunushaliev and V. Folomeev, Dirac stars supported by nonlinear spinor fields, Phys. Rev. D 99, 084030 (2019).
  • (21) V. Dzhunushaliev and V. Folomeev, Dirac star in the presence of Maxwell and Proca fields, Phys. Rev. D 99, 104066 (2019).
  • (22) V. Dzhunushaliev and V. Folomeev, Dirac star with SU(2) Yang-Mills and Proca fields, Phys. Rev. D 101, 024023 (2020).
  • (23) K. A. Bronnikov, Y. P. Rybakov, and B. Saha, Spinor fields in spherical symmetry: Einstein-Dirac and other space-times, Eur. Phys. J. Plus 135, 124 (2020).
  • (24) V. Dzhunushaliev, V. Folomeev, and A. Makhmudov, Non-Abelian Proca-Dirac-Higgs theory: Particlelike solutions and their energy spectrum, Phys. Rev. D 99, 076009 (2019).
  • (25) V. Dzhunushaliev, V. Folomeev, and A. Serikbolova, Monopole solutions in SU(2) Yang-Mills-plus-massive-nonlinear-spinor-field theory, Phys. Lett. B 806, 135480 (2020).
  • (26) V. Dzhunushaliev, N. Burtebayev, V. N. Folomeev, J. Kunz, A. Serikbolova, and A. Tlemisov, Mass gap for a monopole interacting with a nonlinear spinor field, Phys. Rev. D 104, 056010 (2021).
  • (27) V. Dzhunushaliev, V. Folomeev, and D. Berkimbayev, Charge gap in SU(3) Yang–Mills-plus-nonlinear-spinor-field theory, Eur. Phys. J. C 83, 546 (2023).
  • (28) C. Armendariz-Picon and P. B. Greene, Spinors, inflation, and nonsingular cyclic cosmologies, Gen. Relativ. Gravit.  35, 1637 (2003).
  • (29) I. Lawrie, A Unified Grand Tour of Theoretical Physics (Institute of Physics Publishing, Bristol, 2002).
  • (30) C. Herdeiro, I. Perapechka, E. Radu, and Y. Shnir, Asymptotically flat spinning scalar, Dirac and Proca stars, Phys. Lett. B 797, 134845 (2019).
  • (31) D. I. Blokhintsev, Quantum mechanics (D. Reidel Publishing Company, Dordrecht, Holland, 1964).
  • (32) W. Schönauer and R. Weiß, Efficient vectorizable PDE solvers, J. Comput. Appl. Math. 27, 279 (1989).