This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Charged particle in a flat box with static electromagnetic field and Landau’s levels

Gustavo V. López111[email protected], Jorge A. Lizarraga 222[email protected].

Departamento de Física, Universidad de Guadalajara,
Blvd. Marcelino García Barragan y Calzada Olímpica,
CP 44200, Guadalajara, Jalisco, México,

Resumen

We study the quantization of the motion of a charged particle without spin inside a flat box under a static electromagnetic field. Contrary to Landau’s solution with constant magnetic field transverse to the box, we found a non separable variables solution for the wave function, and this fact remains when static electric field is added. However, the Landau’s Levels appear in all cases.


Key words: Landau’s Levels, quantum Hall effect.

PACS: 03.65.-w, 03.65.Ca, 03.65.Ge

1 Introduction

Landau’ solution [1] of a charged particle in a flat surface with magnetic field has become of great importance in understanding integer hall effect [2, 3, 4, 5, 6], fractional Hall effect [6, 7, 8, 9], and topological insulators [10, 11, 12, 13, 14, 15, 16]. This last elements promise to become essential for future nanotechnology devices [17, 18, 19]. Due to this considerable application of the Landau’s levels, it is worth to re-study this problem and its variations with an static electric field. In this paper, we show that there exists a non separable solution for this type of quantum problems, but having the same Landau’s levels. In our cases, instead of having a flat surface, we consider to have a flat box with lengths LxL_{x}, LyL_{y}, and LzL_{z} such that LzLx,LyL_{z}\ll L_{x},L_{y}

2 Analytical approach for the case 𝐁=(0,0,B){\bf B}=(0,0,B)

Let us consider a charged particle “q”with mass “mïn a flat box with a constant magnetic field orthogonal to the flat surface, 𝐁=(0,0,B){\bf B}=(0,0,B), as shown in the next figure.

Refer to caption
Figura 1: Electric charged in a flat box with magnetic field

For a non relativistic charged particle, the Hamiltonian of the system (units CGS) is

H=(𝐩q𝐀/c)22m,H=\frac{({\bf p}-q{\bf A}/c)^{2}}{2m}, (1)

where 𝐩{\bf p} is the generalized linear momentum, 𝐀{\bf A} is the magnetic potential such that 𝐁=×𝐀{\bf B}=\nabla\times{\bf A}, and “cïs the speed of light. We can choose the Landau’s gauge to have the vector potential of the form 𝐀=(By,0,0){\bf A}=(-By,0,0). Therefore, the Hamiltonian has the following form

H=(px+qBy/c)22m+py22m+pz22m.H=\frac{(p_{x}+qBy/c)^{2}}{2m}+\frac{p_{y}^{2}}{2m}+\frac{p_{z}^{2}}{2m}\mathchar 46\relax (2)

To quantize the system, we need to solve the Schrödinger’s equation [20]

iΨt={(^px+qBy/c)22m+p^y22m+p^z22m}Ψ.i\hbar\frac{\partial\Psi}{\partial t}=\left\{\frac{(\hat{}p_{x}+qBy/c)^{2}}{2m}+\frac{\hat{p}_{y}^{2}}{2m}+\frac{\hat{p}_{z}^{2}}{2m}\right\}\Psi\mathchar 46\relax (3)

where Ψ=Ψ(𝐱,t)\Psi=\Psi({\bf x},t) is the wave function, \hbar is the Plank’s constant divided by 2π2\pi, p^i\hat{p}_{i} are the momentum operators such that [xi,p^j]=iδij[x_{i},\hat{p}_{j}]=i\hbar\delta_{ij}. Now, the argument used by Landau is that due to commutation relation [p^x,H^]=0[\hat{p}_{x},\hat{H}]=0, between the operators p^x\hat{p}_{x} and the Hamiltonian H^\hat{H} (implying that p^x\hat{p}_{x} is a constant of motion), it is possible to replace this component of the momentum by kx\hbar k_{x}, having a solution for the eigenvalue problem of separable variable type, f1(t)f2(x)f3(y)f4(z)f_{1}(t)f_{2}(x)f_{3}(y)f_{4}(z). However, we will see that this type of commutation does not imply necessarily separability of the solution. Since the Hamiltonian H^\hat{H} does not depend explicitly on time, the proposition

Ψ(𝐱,t)=eiEt/Φ(𝐱)\Psi({\bf x},t)=e^{-iEt/\hbar}\Phi({\bf x}) (4)

reduces the equation to an eigenvalue problem

H^Φ=EΦ.\widehat{H}\Phi=E\Phi\mathchar 46\relax (5)

Then, this equation is written as

{12m(p^x2+2qBcyp^x+q2B2c2y2)+p^y22m+p^z22m}Φ=EΦ.\left\{\frac{1}{2m}\left(\hat{p}_{x}^{2}+\frac{2qB}{c}y\hat{p}_{x}+\frac{q^{2}B^{2}}{c^{2}}y^{2}\right)+\frac{\hat{p}_{y}^{2}}{2m}+\frac{\hat{p}_{z}^{2}}{2m}\right\}\Phi=E\Phi\mathchar 46\relax (6)

The variable “zïs separable through the proposition

Φ(𝐱)=ϕ(x,y)eikzz,kz,\Phi({\bf x})=\phi(x,y)e^{-ik_{z}z},\quad\quad k_{z}\in\Re, (7)

resulting the following equation

{12m(p^x2+2qBcyp^x+q2B2c2y2)+p^y22m}ϕ=Eϕ,\left\{\frac{1}{2m}\left(\hat{p}_{x}^{2}+\frac{2qB}{c}y\hat{p}_{x}+\frac{q^{2}B^{2}}{c^{2}}y^{2}\right)+\frac{\hat{p}_{y}^{2}}{2m}\right\}\phi=E^{\prime}\phi, (8)

where EE^{\prime} is

E=E2kx22m.E^{\prime}=E-\frac{\hbar^{2}k_{x}^{2}}{2m}\mathchar 46\relax (9)

That is, the resulting partial differential equation is of the form

12m{22ϕx2i2qBcyϕx+q2B2c2y2ϕ}22m2ϕy2=Eϕ.\frac{1}{2m}\left\{-\hbar^{2}\frac{\partial^{2}\phi}{\partial x^{2}}-i\frac{2qB\hbar}{c}y\frac{\partial\phi}{\partial x}+\frac{q^{2}B2}{c^{2}}y^{2}\phi\right\}-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\phi}{\partial y^{2}}=E^{\prime}\phi\mathchar 46\relax (10)

This equation does not admit a separable variable solution (ϕ(x,y)=f(x)g(y)\phi(x,y)=f(x)g(y)) as Landau’ solution is, but we can use Fourier transformation [21] on the variable “x”,

ϕ^(k,y)=[ϕ]=12πeikxϕ(x,y)𝑑x,\hat{\phi}(k,y)={\cal F}[\phi]=\frac{1}{\sqrt{2\pi}}\int_{\Re}e^{ikx}\phi(x,y)dx, (11)

to solve this equation. Applying Fourier transformation to this equation, knowing its property [ϕ/x]=(ik)ϕ^{\cal F}[\partial\phi/\partial x]=(-ik)\hat{\phi}, we get the ordinary differential equation

22md2ϕ^dy2+m2ωc2(yy0)2ϕ^=Eϕ^,-\frac{\hbar^{2}}{2m}\frac{d^{2}\hat{\phi}}{dy^{2}}+\frac{m}{2}\omega_{c}^{2}(y-y_{0})^{2}\hat{\phi}=E^{\prime}\hat{\phi}, (12)

where ωc\omega_{c} is the cyclotron frequency

ωc=qBmc\omega_{c}=\frac{qB}{mc} (13a)
and y0y_{0} is the displacement parameter
y0=cqBk.y_{0}=\frac{\hbar c}{qB}k\mathchar 46\relax (13b)

This equation is just the quantum harmonic oscillator in the “y”direction displaced by a amount y0y_{0}. So, the solution is

ϕ^n(k,y)=ψn(ξ),ξ=mωc(yy0),ψn(ξ)=Aneξ2Hn(ξ),\hat{\phi}_{n}(k,y)=\psi_{n}(\xi),\quad\xi=\sqrt{\frac{m\omega_{c}}{\hbar}}(y-y_{0}),\quad\psi_{n}(\xi)=A_{n}e^{-\xi^{2}}H_{n}(\xi), (14)

being Hn(ξ)H_{n}(\xi) the Hermit polynomials, and AnA_{n} is a constant of normalization,An=(mωc/π)1/4/2nn!An=(m\omega_{c}/\pi\hbar)^{1/4}/\sqrt{2^{n}n!}. and

En=ωc(n+1/2).E^{\prime}_{n}=\hbar\omega_{c}(n+{1}/{2})\mathchar 46\relax (15)

Now, the solution in the real space ϕn(x,y)\phi_{n}(x,y) is gotten by using the inverse Fourier transformation,

ϕn(x,y)=1[ϕn(k,y)]=12πeikxψn(mωc(yck/qB))𝑑k.\phi_{n}(x,y)={\cal F}^{-1}[\phi_{n}(k,y)]=\frac{1}{\sqrt{2\pi}}\int_{\Re}e^{-ikx}\psi_{n}\biggl{(}\sqrt{\frac{m\omega_{c}}{\hbar}}(y-\hbar ck/qB)\biggr{)}dk\mathchar 46\relax (16)

Making the change of variable σ=mωc/(yck/qB)\sigma=\sqrt{m\omega_{c}/\hbar}(y-\hbar ck/qB), and knowing that the Fourier transformation of the harmonic oscillator solution is another harmonic oscillator solution, we get

ϕn(x,y)=qBmc2ωceiqBcxyψn(qBxmc2ωc).\phi_{n}(x,y)=\frac{-qB}{\sqrt{mc^{2}\hbar\omega_{c}}}e^{-i\frac{qB}{\hbar c}xy}\psi_{n}\biggl{(}\frac{qB~{}x}{\sqrt{mc^{2}\hbar\omega_{c}}}\biggr{)}\mathchar 46\relax (17)

This is indeed the non separable solution of (8). Therefore, the normalized eigenfunctions of the eigenvalue problem (5) are (ignoring the sign)

Φn,kz(𝐱,t)=qB(mc2ωc)1/4ei(qBcxykzz)ψn(qBxmc2ωc).\Phi_{n,k_{z}}({\bf x},t)=\frac{\sqrt{qB}}{\left(mc^{2}\hbar\omega_{c}\right)^{1/4}}e^{-i(\frac{qB}{\hbar c}xy-k_{z}z)}\psi_{n}\biggl{(}\frac{qB~{}x}{\sqrt{mc^{2}\hbar\omega_{c}}}\biggr{)}\mathchar 46\relax (18a)
and
En,kz=ωc(n+12)+2kz22m.E_{n,k_{z}}=\hbar\omega_{c}(n+\frac{1}{2})+\frac{\hbar^{2}k_{z}^{2}}{2m}\mathchar 46\relax (18b)

These eigenvalues represent just the Landau’s levels , but its solution (18a) is totally different to that given by Landau since it is of non separable type. Note that there is not displacement at all in the harmonic oscillation solution. Now, assuming a periodicity in the z-direction, Φn,kz(𝐱,t)=Φn,kz(x,y,z+Lz,t)\Phi_{n,k_{z}}({\bf x},t)=\Phi_{n,k_{z}}(x,y,z+L_{z},t), the usual condition kzLz=2πn,n𝒵k_{z}L_{z}=2\pi n^{\prime},\quad n^{\prime}\in{\cal Z} makes the eigenvalues to be written as and the general solution of Schrödinger’s equation (3) can be written as

En,n=ωc(n+1/2)+22π2mLz2n2.E_{n,n^{\prime}}=\hbar\omega_{c}(n+1/2)+\frac{\hbar^{2}2\pi^{2}}{mL_{z}^{2}}n^{\prime 2}\mathchar 46\relax (19)

We must observed that this quantum numbers correspond to the degree of freedom in the “y (n).and “z(n’)”directions. The quantization conditions of the magnetic flux appears rather naturally since by asking periodicity in the y direction Ψ(𝐱,t)=Ψ(x,y+Ly,z,t)\Psi({\bf x},t)=\Psi(x,y+L_{y},z,t), this one must be satisfied for any x[0,Lx]x\in[0,L_{x}]. So, in particular for x=Lxx=L_{x}. Thus, it follows from the phase term that

qBLxLyc=2πj,j𝒵,\frac{qBL_{x}L_{y}}{\hbar c}=2\pi j,\quad\quad j\in{\cal Z}, (20)

where BLxLyBL_{x}L_{y} is the magnetic flux crossing the surface with area LxLyL_{x}L_{y}, and c/q\hbar c/q is the so called quantum flux [22]. Then, equation (18a) is

Φnnj(𝐱,t)=qB(mc2ωc)1/4ei(2πjLxLyxy2πnLzz)ψn(qBxmc2ωc).\Phi_{nn^{\prime}j}({\bf x},t)=\frac{\sqrt{qB}}{\left(mc^{2}\hbar\omega_{c}\right)^{1/4}}e^{-i(\frac{2\pi j}{L_{x}L_{y}}xy-\frac{2\pi n^{\prime}}{L_{z}}z)}\psi_{n}\biggl{(}\frac{qB~{}x}{\sqrt{mc^{2}\hbar\omega_{c}}}\biggr{)}\mathchar 46\relax (21)

The degeneration of the eigenvalues (19) comes from the degree of freedom in “x.and can be obtained by making use the following quasi-classical argument: given the energy of the harmonic oscillator Eo=ωc(n+1/2)E_{o}=\hbar\omega_{c}(n+1/2), we know the the maximum displacement of the particle (classically) is given by xmax=±2Eo/mωc2x_{max}=\pm\sqrt{2E_{o}/m\omega_{c}^{2}}, and since the periodicity in the variable ‘y”mentioned before is valid for any “x”value, we must have that the maximum value of the quantum number “j”must be

Δj=qBLyπcxmax=qBLyπc2(n+1/2)mωc,\Delta j=\frac{qBL_{y}}{\pi\hbar c}x_{max}=\frac{qBL_{y}}{\pi\hbar c}\sqrt{\frac{2\hbar(n+1/2)}{m\omega_{c}}}, (22)

and this represents the degeneration, D(n)D(n), we have in the system

D(n)=[qBLyπmc2ωc2n+1].D(n)=\biggl{[}\frac{qBL_{y}}{\pi\sqrt{mc^{2}\hbar\omega_{c}}}\sqrt{2n+1}\biggr{]}\mathchar 46\relax (23)

where [ξ][\xi] means the integer part of the number ξ\xi. Therefore, the general solution (absorbing the sign in the constants) is

Ψ(𝐱,t)=n,nj=0D(n)Cnnj2πjLxLy(mωc)1/4ei(2πjLxLyxy2πnLzz)eiEn,ntψn(mωc(2πjLxLy)x),\Psi({\bf x},t)=\sum_{n,^{\prime}n}\sum_{j=0}^{D(n)}C_{nn^{\prime}j}\sqrt{\frac{2\pi j}{L_{x}L_{y}}}\left(\frac{\hbar}{m\omega_{c}}\right)^{1/4}e^{-i(\frac{2\pi j}{L_{x}L_{y}}xy-\frac{2\pi n^{\prime}}{L_{z}}z)}e^{-i\frac{E_{n,n^{\prime}}}{\hbar}t}\psi_{n}\biggl{(}\sqrt{\frac{\hbar}{m\omega_{c}}}\left(\frac{2\pi j}{L_{x}L_{y}}\right)x\biggr{)}, (24)

where the constants CnnjC_{nn^{\prime}j} must satisfy that n,n,j|Cnnj|2=1\sum_{n,n^{\prime},j}|C_{nn^{\prime}j}|^{2}=1. The Landau’s levels En,nE_{n,n^{\prime}} are given by expression (19).

3 Analytical approach for the case 𝐁𝐄{\bf B}\perp{\bf E}.

This case is illustrated on the next figure,

Refer to caption
Figura 2: Electric charged in a flat box with magnetic and electric fields

where the magnetic and electric constant fields are given by 𝐁=(0,0,B){\bf B}=(0,0,B) and 𝐄=(0,,0){\bf E}=(0,{\cal E},0). We select Landau’s gauge for the magnetic field such that the vector and scalar potentials are 𝐀=(By,0,0){\bf A}=(-By,0,0) and ϕ=y\phi=-{\cal E}y. Then, our Hamiltonian is [23, 24, 25]

H^=(𝐩^qc𝐀)22m+qϕ(𝐱,)\hat{H}=\frac{(\hat{\bf p}-\frac{q}{c}{\bf A})^{2}}{2m}+q\phi({\bf x},) (25)

and the Schrödinger’s equation,

iΨt=H^Ψ,i\hbar\frac{\partial\Psi}{\partial t}=\hat{H}\Psi, (26)

is written as

iΨt={12m(p^x+qBcy)2+p^y22m+p^z22m}ΨqyΨ.i\hbar\frac{\partial\Psi}{\partial t}=\left\{\frac{1}{2m}\biggl{(}\hat{p}_{x}+\frac{qB}{c}y\biggr{)}^{2}+\frac{\hat{p}_{y}^{2}}{2m}+\frac{\hat{p}_{z}^{2}}{2m}\right\}\Psi-q{\cal E}y\Psi\mathchar 46\relax (27)

Using the definition p^j=i/xj\hat{p}_{j}=-i\hbar\partial/\partial x_{j} and the commutation relation [xk,p^j]=iδjk[x_{k},\hat{p}_{j}]=i\hbar\delta_{j}k, the above expression is written as the following partial differential equation

iΨt=22m2Ψx2iqBmcΨx+q2B22mc2y2Ψ22m2Ψy222m2Ψz2qyΨ.i\hbar\frac{\partial\Psi}{\partial t}=-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\Psi}{\partial x^{2}}-i\frac{qB\hbar}{mc}\frac{\partial\Psi}{\partial x}+\frac{q^{2}B^{2}}{2mc^{2}}y^{2}\Psi-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\Psi}{\partial y^{2}}-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\Psi}{\partial z^{2}}-q{\cal E}y\Psi\mathchar 46\relax (28)

Taking the Fourier transformation with respect the x-variable, Ψ^(k,y,z,t)=x[Ψ(𝐱,t)]\hat{\Psi}(k,y,z,t)={\cal F}_{x}[\Psi({\bf x},t)], the resulting expression is

iΨ^t=[2k22m(qBkmc+q)y+q2B22mc2y2]Ψ^22m2Ψ^y222m2Ψ^z2.i\hbar\frac{\partial\hat{\Psi}}{\partial t}=\left[\frac{\hbar^{2}k^{2}}{2m}-\biggl{(}\frac{qB\hbar k}{mc}+q{\cal E}\biggr{)}y+\frac{q^{2}B^{2}}{2mc^{2}}y^{2}\right]\hat{\Psi}-\frac{\hbar^{2}}{2m}\frac{\partial^{2}{\hat{\Psi}}}{\partial y^{2}}-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\hat{\Psi}}{\partial z^{2}}\mathchar 46\relax (29)

By proposing a solution of the form

Ψ^(k,yz,t)=eiEt/+ikzzΦ(k,y)\hat{\Psi}(k,yz,t)=e^{-iEt/\hbar+ik_{z}z}\Phi(k,y) (30)

and after some rearrangements, the resulting equation for Φ\Phi is

22md2Φdy2+12mωc2(yy0)2Φ=EΦ,-\frac{\hbar^{2}}{2m}\frac{d^{2}\Phi}{dy^{2}}+\frac{1}{2}m\omega_{c}^{2}(y-y_{0})^{2}\Phi=E^{\prime}\Phi, (31)

where ωc\omega_{c} is the cyclotron frequency (13a), and we have made the definitions

y0=cqBk+mc2qB2y_{0}=\frac{\hbar c}{qB}k+\frac{mc^{2}{\cal E}}{qB^{2}} (32)

and

E=E2k22m2kz22m+12m(k+mcB)2.E^{\prime}=E-\frac{\hbar^{2}k^{2}}{2m}-\frac{\hbar^{2}k_{z}^{2}}{2m}+\frac{1}{2m}(\hbar k+\frac{mc{\cal E}}{B})^{2}\mathchar 46\relax (33)

This equation is again the quantum harmonic oscillator on the variable “y”with a cyclotron frequency ωc\omega_{c} and displaced by a quantity y0y_{0}. Therefore, the solution (14) is

Φ(k,y)=ψn(mωc(yy0))\Phi(k,y)=\psi_{n}\biggl{(}\sqrt{\frac{m\omega_{c}}{\hbar}}(y-y_{0})\biggr{)} (34)

and

En=ωc(n+1/2).E^{\prime}_{n}=\hbar\omega_{c}(n+1/2)\mathchar 46\relax (35)

Thus, the solution in the Fourier space is

Ψ^(k,y,z,t)=eiEn,kzt/+ikzzψn(mωc(yy0))\hat{\Psi}(k,y,z,t)=e^{-iE_{n,k_{z}}t/\hbar+ik_{z}z}\psi_{n}\biggl{(}\sqrt{\frac{m\omega_{c}}{\hbar}}(y-y_{0})\biggr{)} (36)

with the energies En,kzE_{n,k_{z}} given by

En,kz=ωc(n+1/2)+2kz22mmc222B2cBk.E_{n,k_{z}}=\hbar\omega_{c}(n+1/2)+\frac{\hbar^{2}k_{z}^{2}}{2m}-\frac{mc^{2}{\cal E}^{2}}{2B^{2}}-\frac{c{\cal E}\hbar}{B}k\mathchar 46\relax (37)

The solution in the space-time is obtained by applying the inverse Fourier transformation,

Ψn,kz(𝐱,t)=[Ψ^n,kz(k,y,z,t)]=12πeixkΨ^n,kz(k,y,z,t)𝑑k,\Psi_{n,k_{z}}({\bf x},t)={\cal F}[\hat{\Psi}_{n,k_{z}}(k,y,z,t)]=\frac{1}{\sqrt{2\pi}}\int_{\Re}e^{-ixk}\hat{\Psi}_{n,k_{z}}(k,y,z,t)dk, (38)

which after a proper change of variable and rearrangements , we get the normalized function (ignoring the sign)

Ψn,kz(𝐱,t)=qB(mc2ωc)1/4eiϕn,kz(𝐱,t)ψn(qBmc2ωc(xctB)),\Psi_{n,k_{z}}({\bf x},t)=\frac{\sqrt{qB}}{\left(mc^{2}\hbar\omega_{c}\right)^{1/4}}e^{-i\phi_{n,k_{z}}({\bf x},t)}\psi_{n}\biggl{(}\frac{qB}{\sqrt{mc^{2}\hbar\omega_{c}}}\bigl{(}x-\frac{c{\cal E}t}{B}\bigr{)}\biggr{)}, (39)

where the phase ϕn,kz(𝐱,t)\phi_{n,k_{z}}({\bf x},t) has been defined as

ϕn,kz(𝐱,t)=[ωc(n+1/2)+2kz22mmc222B2]tkzz+qBc(xctB)(ymc2qB2).\phi_{n,k_{z}}({\bf x},t)=\left[\hbar\omega_{c}(n+1/2)+\frac{\hbar^{2}k_{z}^{2}}{2m}-\frac{mc^{2}{\cal E}^{2}}{2B^{2}}\right]\frac{t}{\hbar}-k_{z}z+\frac{qB}{\hbar c}\left(x-\frac{c{\cal E}t}{B}\right)\left(y-\frac{mc^{2}{\cal E}}{qB^{2}}\right)\mathchar 46\relax (40)

asking for the periodicity with respect the variable “z”, Ψn,kz(𝐱,t)=Ψn,kz(z,y,z+Lz,t)\Psi_{n,k_{z}}({\bf x},t)=\Psi_{n,k_{z}}(z,y,z+L_{z},t), it follows that kzLz=2πnk_{z}L_{z}=2\pi n^{\prime} where nn^{\prime} is an integer number , and the above phase is now written as

ϕnn(𝐱,t)=[ωc(n+1/2)+22π2n2mLz2mc222B2]t2πnLzz+qBc(xctB)(ymc2qB2).\phi_{nn^{\prime}}({\bf x},t)=\left[\hbar\omega_{c}(n+1/2)+\frac{\hbar^{2}2\pi^{2}n^{\prime 2}}{mL_{z}^{2}}-\frac{mc^{2}{\cal E}^{2}}{2B^{2}}\right]\frac{t}{\hbar}-\frac{2\pi n^{\prime}}{L_{z}}z+\frac{qB}{\hbar c}\left(x-\frac{c{\cal E}t}{B}\right)\left(y-\frac{mc^{2}{\cal E}}{qB^{2}}\right)\mathchar 46\relax (41)

Note from this expression that the term eiϕ(𝐱,t)e^{-i\phi({\bf x},t)} contains the element eiqBcxye^{i\frac{qB}{\hbar c}xy}, and by assuming the periodic condition Ψ(𝐱,t)=Ψ(x,y+Ly,z,t)\Psi({\bf x},t)=\Psi(x,y+L_{y},z,t), will imply that Ψ(𝐱,t)\Psi({\bf x},t) will be periodic with respect the variable “y”, for any “x.at any time “t.Ïn particular, this will be true for x=Lxx=L_{x}. This bring about the quantization of the magnetic flux of the form

qBLxLyc=2πj,J𝒵,\frac{qBL_{x}L_{y}}{\hbar c}=2\pi j,\quad J\in{\cal Z}\ , (42)

obtaining the same expression as (20), and this phase is now depending of the quantum number “j”

ϕnnj(𝐱,t)=ennt/2πnLzz+2πjLxLyxy2πjLxLy[mc2qB2x+cBty].\phi_{nn^{\prime}j}({\bf x},t)=e_{nn^{\prime}}t/\hbar-\frac{2\pi n^{\prime}}{L_{z}}z+\frac{2\pi j}{L_{x}L_{y}}xy-\frac{2\pi j}{L_{x}L_{y}}\left[\frac{mc^{2}{\cal E}}{qB^{2}}x+\frac{c{\cal E}}{B}ty\right]\mathchar 46\relax (43)

where enne_{nn^{\prime}} is the energy associated to the system,

en,n=ωc(n+1/2)+2π22mLz2n2+mc222B2.e_{n,n^{\prime}}=\hbar\omega_{c}(n+1/2)+\frac{2\pi^{2}\hbar^{2}}{mL_{z}^{2}}n^{\prime 2}+\frac{mc^{2}{\cal E}^{2}}{2B^{2}}\mathchar 46\relax (44)

In this way, from these relations and the expression (39) we have a family of solutions {Ψnnj(𝐱,t)}n,n,j𝒵\{\Psi_{nn^{\prime}j}({\bf x},t)\}_{n,n^{\prime},j\in{\cal Z}} of the Schrödinger equation (27),

Ψnnj(𝐱,t)=2πjLxLy(mωc)1/4eiϕnnj(𝐱,t)ψn(mωc(2πjLxLy)(xctB)),\Psi_{nn^{\prime}j}({\bf x},t)=\sqrt{\frac{2\pi j}{L_{x}L_{y}}}\left(\frac{\hbar}{m\omega_{c}}\right)^{1/4}e^{-i\phi_{nn^{\prime}j}({\bf x},t)}\psi_{n}\biggl{(}\sqrt{\frac{\hbar}{m\omega_{c}}}\left(\frac{2\pi j}{L_{x}L_{y}}\right)\bigl{(}x-\frac{c{\cal E}t}{B}\bigr{)}\biggr{)}, (45)

Now, by the same arguments we did in the previous case, the degeneration of the systems would be given by (23), and the general solution would be of the form

Ψ(𝐱,t)=n,nj=0D(n)C~nnjΨnnj(𝐱,t).\Psi({\bf x},t)=\sum_{n,n^{\prime}}\sum_{j=0}^{D(n)}\widetilde{C}_{nn^{\prime}j}\Psi_{nn^{\prime}j}({\bf x},t)\mathchar 46\relax (46)

4 Analytical approach for the case 𝐁𝐄{\bf B}\parallel{\bf E}.

The following figure shows this case.

Refer to caption
Figura 3: Electric charged in a flat box with parallel electric and magnetic fields

The fields are of the form 𝐁=(0,B,0){\bf B}=(0,B,0) and 𝐄=(0,,0){\bf E}=(0,{\cal E},0). The scalar and vector potentials are chosen as 𝐀=(Bz,0,0){\bf A}=(Bz,0,0) and ϕ=y\phi=-{\cal E}y. The Shrödinger equation is for this case as

iΨt={(p^xqBz/c)22m+p^y22m+p^z22mqy}Ψ,i\hbar\frac{\partial\Psi}{\partial t}=\left\{\frac{(\hat{p}_{x}-qBz/c)^{2}}{2m}+\frac{\hat{p}_{y}^{2}}{2m}+\frac{\hat{p}_{z}^{2}}{2m}-q{\cal E}y\right\}\Psi, (47)

which defines the following partial differential equation

iΨt=22m2Ψx2+iqBzmcΨx+q2B22mc2z2Ψ22m2Ψy222m2Ψz2qyΨ.i\hbar\frac{\partial\Psi}{\partial t}=-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\Psi}{\partial x^{2}}+i\frac{qB\hbar z}{mc}\frac{\partial\Psi}{\partial x}+\frac{q^{2}B^{2}}{2mc^{2}}z^{2}\Psi-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\Psi}{\partial y^{2}}-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\Psi}{\partial z^{2}}-q{\cal E}y\Psi\mathchar 46\relax (48)

Proposing a solution of the form Ψ(𝐱,t)=eiEt/Φ(𝐱)\Psi({\bf x},t)=e^{-iEt/\hbar}\Phi({\bf x}), we get the following eigenvalue problem

EΦ=22m2Φx2+iqBzmcΦx+q2B22mc2z2Φ22m2Φy222m2Φz2qyΦ.E\Phi=-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\Phi}{\partial x^{2}}+i\frac{qB\hbar z}{mc}\frac{\partial\Phi}{\partial x}+\frac{q^{2}B^{2}}{2mc^{2}}z^{2}\Phi-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\Phi}{\partial y^{2}}-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\Phi}{\partial z^{2}}-q{\cal E}y\Phi\mathchar 46\relax (49)

Applying the Fourier transformation over the x-variable, Φ^(k,y,z)=x[Φ(𝐱)]\hat{\Phi}(k,y,z)={\cal F}_{x}[\Phi({\bf x})], the following equation arises after some rearrangements

EΦ^=(k+qBz/c)22mΦ^22m2ϕ^z222m2Φ^y2qyΦ^,E\hat{\Phi}=\frac{(\hbar k+qBz/c)^{2}}{2m}\hat{\Phi}-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\hat{\phi}}{\partial z^{2}}-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\hat{\Phi}}{\partial y^{2}}-q{\cal E}y\hat{\Phi}, (50)

which can be written as

22m2Φ^z2+12mωc(z+z0)2Φ^22m2Φ^y2qyΦ^,-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\hat{\Phi}}{\partial z^{2}}+\frac{1}{2}m\omega_{c}(z+z_{0})^{2}\hat{\Phi}-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\hat{\Phi}}{\partial y^{2}}-q{\cal E}y\hat{\Phi}, (51a)
where ωc\omega_{c} is the cyclotron frequency (13a), and z0z_{0} has been defined as
z0=cqBk.z_{0}=\frac{\hbar c}{qB}k\mathchar 46\relax (51b)

This equation admits a variable separable approach since by the proposition Φ^(k,y,z)=f(k,z)g(y)\hat{\Phi}(k,y,z)=f(k,z)g(y), the following equations are bringing about

22md2fdz2+12mωc2(z+z0)2=E(1)f-\frac{\hbar^{2}}{2m}\frac{d^{2}f}{dz^{2}}+\frac{1}{2}m\omega_{c}^{2}(z+z_{0})^{2}=E^{(1)}f (52a)
and
22md2gdy2gyg=E(2)g,-\frac{\hbar^{2}}{2m}\frac{d^{2}g}{dy^{2}}-g{\cal E}yg=E^{(2)}g, (52b)

where E=E(1)+E(2)E=E^{(1)}+E^{(2)}. The solutions of these equations are, of course, the quantum harmonic oscillator and the quantum bouncer, which are given by

fn(k,z)=Aneξ2/2Hn(ξ),ξ=mωc(z+z0),En(1)=ωc(n+1/2).f_{n}(k,z)=A_{n}e^{-\xi^{2}/2}H_{n}(\xi),\quad\quad\xi=\sqrt{\frac{m\omega_{c}}{\hbar}}(z+z_{0}),\quad\quad E_{n}^{(1)}=\hbar\omega_{c}(n+1/2)\mathchar 46\relax (53a)
and
gn(y)=Ai(ξ~ξ~n)|Ai(ξ~n)|,ξ~=y/l,En(2)=qlξ~n,g_{n^{\prime}}(y)=\frac{Ai(\tilde{\xi}-\tilde{\xi}_{n^{\prime}})}{|Ai^{\prime}(-\tilde{\xi}_{n^{\prime}})|},\quad\quad\tilde{\xi}=y/l,\quad\quad E_{n}^{(2)}=-q{\cal E}l\tilde{\xi}_{n^{\prime}}, (53b)

where An=(mωc/π)1/4/2nn!A_{n}=(m\omega_{c}/\pi\hbar)^{1/4}/\sqrt{2^{n}n!}, l=(2/(2mq))1/3l=(\hbar^{2}/(-2mq{\cal E}))^{1/3}, Ai(ξ~n)=0Ai(-\tilde{\xi}_{n^{\prime}})=0, and Ai(ξ)Ai^{\prime}(\xi) is the differentiation of the Airy function. In this way, we have

Φ^n,n(k,y,z)=anψn(mωc(z+z0))Ai(l1(yyn)),En,n=ωc(n+1/2)qyn,\hat{\Phi}_{n,n^{\prime}}(k,y,z)=a_{n^{\prime}}\psi_{n}\biggl{(}\sqrt{\frac{m\omega_{c}}{\hbar}}(z+z_{0})\biggr{)}Ai(l^{-1}(y-y_{n^{\prime}})),\quad\quad E_{n,n^{\prime}}=\hbar\omega_{c}(n+1/2)-q{\cal E}y_{n^{\prime}}, (54)

where we have defined ana_{n^{\prime}} as an=1/|Ai(l1yn)|a_{n^{\prime}}=1/|Ai^{\prime}(-l^{-1}y_{n^{\prime}})|. Now, the inverse Fourier transformation will affect only the quantum harmonic oscillator function ψn\psi_{n} through the k-dependence on the parameter z0z_{0}, and the resulting expression is

Φn,n(𝐱)=anqBmc2ωceiqBcxzψn(qBxmc2ωc)Ai(l1(yyn)).\Phi_{n,n^{\prime}}({\bf x})=\frac{a_{n^{\prime}}qB}{\sqrt{mc^{2}\hbar\omega_{c}}}e^{i\frac{qB}{\hbar c}xz}\psi_{n}\biggl{(}\frac{qBx}{\sqrt{mc^{2}\hbar\omega_{c}}}\biggr{)}Ai\bigl{(}l^{-1}(y-y_{n^{\prime}})\bigr{)}\mathchar 46\relax (55)

Now, asking for the periodicity condition of the above solution with respect the z-variable, Ψ(𝐱,t)=Ψ(x,y,z+Lz,t)\Psi({\bf x},t)=\Psi(x,y,z+L_{z},t), the periodicity must satisfy for any x-values, and in particular for x=Lxx=L_{x}. Thus it follows the quantization expression for the magnetic flux

qBLxLzc=2πj,j𝒵.\frac{qBL_{x}L_{z}}{\hbar c}=2\pi j,\quad\quad j\in{\cal Z}\mathchar 46\relax (56)

Using the same arguments shown above for the degeneration of the system, we have the same expression (23) for the degeneration of the system and the function (55) is given by (normalized)

Φnnj(𝐱)=an2πjLxLy(mωc)1/4ei2πjLxLzxzψn(mωc(2πjLxLy)x)Ai(l1(yyn)).\Phi_{nn^{\prime}j}({\bf x})=a_{n^{\prime}}\sqrt{\frac{2\pi j}{L_{x}L_{y}}}\left(\frac{\hbar}{m\omega_{c}}\right)^{1/4}e^{i\frac{2\pi j}{L_{x}L_{z}}xz}\psi_{n}\biggl{(}\sqrt{\frac{\hbar}{m\omega_{c}}}\left(\frac{2\pi j}{L_{x}L_{y}}\right)x\biggr{)}Ai\bigl{(}l^{-1}(y-y_{n^{\prime}})\bigr{)}\mathchar 46\relax (57)

Then, we have obtained a family of solution of the Schrödinger equation (48),

Ψn,n(𝐱,t)=eiEn,nt/Φnnj(𝐱),\Psi_{n,n^{\prime}}({\bf x},t)=e^{-iE_{n,n^{\prime}}t/\hbar}\Phi_{nn^{\prime}j}({\bf x}), (58)

where the energies En,nE_{n,n^{\prime}} are given by the expression (54). The general solution of (48) can be written as

Ψ(𝐱,t)=n,nj=0D(n)Cn,neiEn,nt/ei2πjLxLzxzu~n,n(x,y),\Psi({\bf x},t)=\sum_{n,n^{\prime}}\sum_{j=0}^{D(n)}C_{n,n^{\prime}}^{*}e^{-iE_{n,n^{\prime}}t/\hbar}e^{i\frac{2\pi j}{L_{x}L_{z}}xz}\tilde{u}_{n,n^{\prime}}(x,y), (59)

with the condition n,n|Cn,n|2=1\sum_{n,n^{\prime}}|C_{n,n^{\prime}}^{*}|^{2}=1, and where it has been defined the functions u~n,n\tilde{u}_{n,n^{\prime}} as

u~n,n(x,y)=an2πjLxLy(mωc)1/4ψn(mωc(2πjLxLy)x)Ai(l1(yyn)).\tilde{u}_{n,n^{\prime}}(x,y)=a_{n^{\prime}}\sqrt{\frac{2\pi j}{L_{x}L_{y}}}\left(\frac{\hbar}{m\omega_{c}}\right)^{1/4}\psi_{n}\biggl{(}\sqrt{\frac{\hbar}{m\omega_{c}}}\left(\frac{2\pi j}{L_{x}L_{y}}\right)x\biggr{)}Ai\bigl{(}l^{-1}(y-y_{n^{\prime}})\bigr{)}\mathchar 46\relax (60)

4.1 Same system but with new magnetic gauge.

Let us consider the magnetic gauge given such that the vector potential is of the form 𝐀=(0,0,Bx){\bf A}=(0,0,-Bx), and the potential is the same ϕ=y\phi=-{\cal E}y. Passing directly to the eigenvalue problem for the Schrödinger equation when we select the wave function of the form Ψ(𝐱,t)=eiEt/Φ(𝐱)\Psi({\bf x},t)=e^{-iEt/\hbar}\Phi({\bf x}), the resulting equation is

22m2Φx222m2Φy222m2Φz2iqBmcxΦz+q2B22mc2x2ΦqyΦ=EΦ.-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\Phi}{\partial x^{2}}-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\Phi}{\partial y^{2}}-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\Phi}{\partial z^{2}}-i\frac{qB\hbar}{mc}x\frac{\partial\Phi}{\partial z}+\frac{q^{2}B^{2}}{2mc^{2}}x^{2}\Phi-q{\cal E}y\Phi=E\Phi\mathchar 46\relax (61)

Taking the Fourier transformation with respect the z-variable, Φ^(x,y,k)=z[Φ(𝐱)]\hat{\Phi}(x,y,k)={\cal F}_{z}[\Phi({\bf x})], and making some rearrangements, it follows that

22m2Φ^x2+12m(kqBcx)2Φ^22m2Φ^y2qyΦ^=EΦ^.-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\hat{\Phi}}{\partial x^{2}}+\frac{1}{2m}\bigl{(}\hbar k-\frac{qB}{c}x\bigr{)}^{2}\hat{\Phi}-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\hat{\Phi}}{\partial y^{2}}-q{\cal E}y\hat{\Phi}=E\hat{\Phi}\mathchar 46\relax (62)

This equation admits a variable separable solution of the form Φ^(x,y,k)=ϕ1(k,x)ϕ2(y)\hat{\Phi}(x,y,k)=\phi_{1}(k,x)\phi_{2}(y), where the functions ϕ1\phi_{1} and ϕ2\phi_{2} satisfy the equations

22md2ϕ1dx2+(kqBcx)22mϕ1=E(1)ϕ1-\frac{\hbar^{2}}{2m}\frac{d^{2}\phi_{1}}{dx^{2}}+\frac{(\hbar k-\frac{qB}{c}x)^{2}}{2m}\phi_{1}=E^{(1)}\phi_{1} (63)

and

22m2ϕ2y2qyϕ2=E(2)ϕ2,-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\phi_{2}}{\partial y^{2}}-q{\cal E}y\phi_{2}=E^{(2)}\phi_{2}, (64)

where E=E(1)+E(2)E=E^{(1)}+E^{(2)}. The solution of these equations are

ϕ1n(k,x)=ψn(ξ)=Aneξ2/2Hn(ξ),ξ=mωc(xx0),En(1)=ωc(n+1/2)\phi_{1n}(k,x)=\psi_{n}(\xi)=A_{n}e^{-\xi^{2}/2}H_{n}(\xi),\quad\xi=\sqrt{\frac{m\omega_{c}}{\hbar}}(x-x_{0}),\quad\quad E_{n}^{(1)}=\hbar\omega_{c}(n+1/2) (65)

and

ϕ2n(y)=anAi(l1(yyn)),l=(22mq)1/3,En(2)=qyn,\phi_{2n^{\prime}}(y)=a_{n^{\prime}}Ai(l^{-1}(y-y_{n^{\prime}})),\quad l=\left(\frac{\hbar^{2}}{-2mq{\cal E}}\right)^{1/3},\quad\quad E_{n^{\prime}}^{(2)}=-q{\cal E}y_{n^{\prime}}, (66)

where ωc\omega_{c} is the cyclotron frequency (13a), x0x_{0} is the displacement x0=ck/qBx_{0}=\hbar ck/qB, an=1/|Ai(l1yn)|a_{n^{\prime}}=1/|Ai^{\prime}(l^{-1}y_{n^{\prime}})| is a constant, and AnA_{n} the constant associated to the quantum harmonic oscillator solution. The inverse Fourier transformation affect only the function ϕ1\phi_{1}, and we have

ϕ1n(z,x)=1[ϕ1n(k,x)]=qBmc2ωceiqBcxzψn(qBzmc2ωc).\phi_{1n}(z,x)={\cal F}^{-1}[\phi_{1n}(k,x)]=\frac{-qB}{\sqrt{mc^{2}\hbar\omega_{c}}}e^{-i\frac{qB}{\hbar c}xz}\psi_{n}\biggl{(}\frac{qBz}{\sqrt{mc^{2}\hbar\omega_{c}}}\biggr{)}\mathchar 46\relax (67)

The periodic condition on the variable “x”, Ψ(𝐱,t)=Ψ(x+Lx,y,z,t)\Psi({\bf x},t)=\Psi(x+L_{x},y,z,t), for any value of the other variables, implies that this will happen in particular for the value of z=Lzz=L_{z}. So, we get the quantization of the magnetic flux (BLxLyBL_{x}L_{y}),

qBLxLzc=2πj,j𝒵.\frac{qBL_{x}L_{z}}{\hbar c}=2\pi j,\quad\quad j\in{\cal Z}\mathchar 46\relax (68)

Thus, we have a family of solutions {Ψnnj(𝐱,t)}\{\Psi_{nn^{\prime}j}({\bf x},t)\} of the Shcrödinger equation of the form

Ψnnj(𝐱,t)=eiEn,nt/Φnnj(𝐱),\Psi_{nn^{\prime}j}({\bf x},t)=e^{-iE_{n,n^{\prime}}t/\hbar}\Phi_{nn^{\prime}j}({\bf x}), (69)

or (normalized and ignoring the sign)

Ψnnj(𝐱,t)=an2πjLxLy(mωc)1/4ei(En,nt+2πjLxLzxz)ψn(mωc(2πjLxLy)z)Ai(l1(yyn)).\Psi_{nn^{\prime}j}({\bf x},t)=a_{n^{\prime}}\sqrt{\frac{2\pi j}{L_{x}L_{y}}}\left(\frac{\hbar}{m\omega_{c}}\right)^{1/4}e^{-i(E_{n,n^{\prime}}\frac{t}{\hbar}+\frac{2\pi j}{L_{x}L_{z}}xz)}\psi_{n}\biggl{(}\sqrt{\frac{\hbar}{m\omega_{c}}}\left(\frac{2\pi j}{L_{x}L_{y}}\right)z\biggr{)}Ai(l^{-1}(y-y_{n^{\prime}}))\mathchar 46\relax (70)

By the same arguments about the degenerationn of the systems, the general solution is just a combination of all of these,

Ψ(𝐱,t)=n,nAnnjei(En,nt+2πjLxLzxz)vnnj(y,z),\Psi({\bf x},t)=\sum_{n,n^{\prime}}A_{nn^{\prime}j}e^{-i(E_{n,n^{\prime}}\frac{t}{\hbar}+\frac{2\pi j}{L_{x}L_{z}}xz)}v_{nn^{\prime}j}(y,z), (71)

where the condition n,n|Annj|2=1\sum_{n,n^{\prime}}|A_{nn^{\prime}j}|^{2}=1 must be satisfied, and the function vnnjv_{nn^{\prime}j} is given by

vnnj(y,z)=an2πjLxLy(mωc)1/4ψn(mωc(2πjLxLy)z)Ai(l1(yyn)).v_{nn^{\prime}j}(y,z)=a_{n^{\prime}}\sqrt{\frac{2\pi j}{L_{x}L_{y}}}\left(\frac{\hbar}{m\omega_{c}}\right)^{1/4}\psi_{n}\left(\sqrt{\frac{\hbar}{m\omega_{c}}}\left(\frac{2\pi j}{L_{x}L_{y}}\right)z\right)Ai\big{(}l^{-1}(y-y_{n^{\prime}})\bigr{)}\mathchar 46\relax (72)

5 Conclusions and comments

We have studied the quantization of a charged particle in a flat box and under constants magnetic and electric fields for several cases and have shown that a full separation of variable solution is not admitted in these cases (contrary to Landau’s solution in one of these cases). This situation arises since the commutation of a component of the generalized linear momentum operator with the Hamiltonian of the system does not imply necessarily that a variable separation of its associated variable must exist in the Schrödinger equation. However, using the Fourier transformation, we were be able to find the full solution of the problems. As expected, Landau’s level appears in all these cases, and a characteristic phase which help us to find the quantization of the magnetic flux in a natural way. We consider that the approach given here maybe very useful to understand quantum Hall effect and related phenomena.

Referencias

  • [1] Lev Davidovich Landau and Evgenii Mikhailovich Lifshitz. Quantum mechanics: non-relativistic theory, volume 3. Elsevier, 2013.
  • [2] Tsuneya Ando, Yukio Matsumoto, and Yasutada Uemura. Theory of hall effect in a two-dimensional electron system. Journal of the Physical Society of Japan, 39(2):279–288, 1975.
  • [3] K v Klitzing, Gerhard Dorda, and Michael Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Physical Review Letters, 45(6):494, 1980.
  • [4] Robert B Laughlin. Quantized hall conductivity in two dimensions. Physical Review B, 23(10):5632, 1981.
  • [5] Bertrand I Halperin. Quantized hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Physical Review B, 25(4):2185, 1982.
  • [6] Robert B Laughlin. Fractional quantization. Uspekhi Fizicheskikh Nauk, 170(3):292–303, 2000.
  • [7] Daniel C Tsui, Horst L Stormer, and Arthur C Gossard. Two-dimensional magnetotransport in the extreme quantum limit. Physical Review Letters, 48(22):1559, 1982.
  • [8] Robert B Laughlin. Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Physical Review Letters, 50(18):1395, 1983.
  • [9] Jainendra K Jain. Composite-fermion approach for the fractional quantum hall effect. Physical Review Letters, 63(2):199, 1989.
  • [10] B Andrei Bernevig, Taylor L Hughes, and Shou-Cheng Zhang. Quantum spin hall effect and topological phase transition in hgte quantum wells. science, 314(5806):1757–1761, 2006.
  • [11] Markus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buhmann, Laurens W Molenkamp, Xiao-Liang Qi, and Shou-Cheng Zhang. Quantum spin hall insulator state in hgte quantum wells. Science, 318(5851):766–770, 2007.
  • [12] Jian Li, Rui-Lin Chu, Jainendra K Jain, and Shun-Qing Shen. Topological anderson insulator. Physical Review Letters, 102(13):136806, 2009.
  • [13] Hua Jiang, Lei Wang, Qing-feng Sun, and XC Xie. Numerical study of the topological anderson insulator in hgte/cdte quantum wells. Physical Review B, 80(16):165316, 2009.
  • [14] CW Groth, M Wimmer, AR Akhmerov, J Tworzydło, and CWJ Beenakker. Theory of the topological anderson insulator. Physical Review Letters, 103(19):196805, 2009.
  • [15] Roger SK Mong, Andrew M Essin, and Joel E Moore. Antiferromagnetic topological insulators. Physical Review B, 81(24):245209, 2010.
  • [16] Dmytro Pesin and Leon Balents. Mott physics and band topology in materials with strong spin–orbit interaction. Nature Physics, 6(5):376–381, 2010.
  • [17] Liang Fu and Charles L Kane. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Physical Review Letters, 100(9):096407, 2008.
  • [18] Michael H Freedman, Michael Larsen, and Zhenghan Wang. A modular functor which is universal¶ for quantum computation. Communications in Mathematical Physics, 227(3):605–622, 2002.
  • [19] Alexei Kitaev. Anyons in an exactly solved model and beyond. Annals of Physics, 321(1):2–111, 2006.
  • [20] Albert Messiah. Quantum Mechanics. Dover, 1999.
  • [21] Walter Rudin. Functional Analysis. TATA McGraw-Hill Publishing Co.,New Delhi, 1974.
  • [22] Bascom S. Jr. Deaver and Faibank M. William. Experimental evidence for quantized flux in superconducting cylinders. Physics Review Letters, pages 43–46, 1961.
  • [23] Daijiro Yoshioka. The quantum Hall effect, volume 133. Springer Science & Business Media, 2013.
  • [24] Supriyo Datta. Electronic transport in mesoscopic systems. Cambridge university press, 1997.
  • [25] Robert B Laughlin. Nobel lecture: Fractional quantization. Reviews of Modern Physics, 71(4):863, 1999.