This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Charge sensing of few-electron ZnO double quantum dots probed by radio-frequency reflectometry

Kosuke Noro Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan    Motoya Shinozaki WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan    Yusuke Kozuka Research Center for Materials Nanoarchitechtonics (MANA), National Institute for Material Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan    Kazuma Matsumura Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan    Yoshihiro Fujiwara Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan    Takeshi Kumasaka Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan    Atsushi Tsukazaki Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan    Masashi Kawasaki Department of Applied Physics and Quantum-Phase Electronics Center (QPEC), University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan    Tomohiro Otsuka [email protected] Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan Department of Electronic Engineering, Graduate School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan Center for Science and Innovation in Spintronics, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Abstract

Zinc oxide (ZnO) has garnered much attention as a promising material for quantum devices due to its unique characteristics. To utilize the potential of ZnO for quantum devices, the development of fundamental technological elements such as high-speed readout and charge sensing capabilities has become essential. In this study, we address these challenges by demonstrating radio-frequency (rf) reflectometry and charge sensing in ZnO quantum dots, thus advancing the potential for qubit applications. A device is fabricated on a high-quality ZnO heterostructure, featuring gate-defined target and sensor quantum dots. The sensor dot, integrated into an rf resonator circuit, enables the detection of single-electron charges in the target dots. Using this setup, the formation of few-electron double quantum dots is observed by obtaining their charge stability diagram. Also, a charge stability diagram with a gate pulse sequence is measured. We discuss the strong electron correlation in ZnO, which leads to nearly degenerate spin-singlet and -triplet two-electron states in the (0, 2) charge state, and the perspectives on spin-state readout.

Semiconductor quantum dots, called artificial atoms, are representative systems that allow the control of quantum states [1, 2, 3]. Few-electron quantum dots are used as quantum bits (qubits), which are the fundamental building blocks of quantum computing [4, 5]. Many efforts have been underway to develop qubits with one approach based on a deep understanding of material engineering [6]. Consequently, materials are now being conducted not only on conventional semiconductors such as gallium arsenide (GaAs) [7, 8] but also on isotopically controlled silicon (Si) [9, 10, 11, 12], two-dimensional materials like graphene [13, 14, 15, 16, 17], and so on. These materials have advanced qubit characteristics, particularly with respect to the coherence time of quantum states. Zinc oxide (ZnO) is also considered a promising candidate owing to its low nuclear spin density, high electron mobility [18, 19], and direct bandgap transition [20], which is advantageous to long coherence times [6, 21, 22] and coupling with photons [23]. Quantum transport phenomena such as the quantum Hall effect [24, 25, 26], quantum point contacts [27], and notably quantum dots [28] have been reported, leading to increasing research on quantum devices utilizing high-quality ZnO heterostructures. However, qubit operation in ZnO remains challenging, as it requires the formation of few-electron states in quantum dots [1, 2, 3] and the development of high-speed qubit readout techniques.

One of the challenges to realize few-electron states is to probe the number of electrons in the quantum dot. This is because the source-drain current across the dot cannot always be used to probe the quantum dot states as a gate voltage to tune the energy of the dot often suppresses the tunnel current between the dot and the lead electrodes [29]. Therefore, an alternative measurement method is expected to accurately count the number of electrons in gate-defined quantum dots. To address these issues, a quantum point contact or another quantum dot has been used as a charge sensor to accurately probe the number of electrons in the quantum dot in focus [30, 31, 32]. Additionally, charge sensing using radio-frequency (rf) reflectometry is a powerful tool, capable of detecting a single electron charge with a broad bandwidth [33, 34, 35]. In this method, the sensor’s conductance is reflected in the reflection coefficient of the rf signal applied to the resonator, including the sensor dot, and its reflection coefficient depends on the sensor’s conductance. This technique avoids parasitic capacitance in the circuit line and low-frequency noise, which limits the bandwidth of direct current measurements, enabling fast readout of quantum dynamics.

In this paper, we fabricate a device structure using a ZnO heterostructure to form target and sensor quantum dots defined by gate voltage. The sensor dot is integrated into the resonator circuit to demonstrate rf reflectometry and provides a charge stability diagram of few-electron double quantum dots. We also discuss the effect of strong electron correlation on the spin blockade measurement.

Refer to caption
Figure 1: (a) Schematic of the device structure. (b) Scanning electron microscope image of the fabricated device and the resonance circuit. (c) Gate voltage VP1V_{\mathrm{P1}} dependence of the sensor current IsensorI_{\mathrm{sensor}} and target current ItargetI_{\mathrm{target}}. The inset shows an operation point of the sensor dot.

The layer structure of the device is illustrated in Figure 1(a). The numbers in parentheses represent the layer thicknesses in nanometers. The (Mg,Zn)O/ZnO heterostructure is grown on a Zn-polar ZnO (0001) substrate using molecular beam epitaxy. Ti/Au ohmic and gate electrodes are fabricated through photolithography and electron beam lithography, respectively, followed by a lift-off process. An AlOx gate insulator is deposited using atomic layer deposition. We prepare two types of stack structures: one with a 20-nm AlOx layer and another with a 30-nm layer. The latter structure is used for spin-state readout measurements. As shown in Fig. 1a, the two-dimensional electron gas forms at the interface between the (Mg,Zn)O and ZnO layers. The Mg content in the heterostructure is approximately 2.5 %. The electron density and mobility are measured by the Hall effect as n=4.9×1011n=4.9\times 10^{11} cm-2 and μ=170,000\mu=170,000 cm2 V-1 s-1, respectively, at 1.8 K.

Figure 1(b) shows a scanning electron microscope image of the device and the schematic resonator. The upper dots correspond to the charge sensor, while the bottom to the target quantum dots. The sensor quantum dot is embedded in an rf resonator circuit constructed with a 1.2 μ\upmuH chip inductor and stray capacitance CpC_{\mathrm{p}}. All experimental measurements are performed within a dilution refrigerator maintained at 60 mK.

To demonstrate the charge sensor operation, we measure two types of source-drain current: one through the sensor dot IsensorI_{\mathrm{sensor}} and another through the target dot ItargetI_{\mathrm{target}}. Figure 1(c) shows IsensorI_{\mathrm{sensor}} and ItargetI_{\mathrm{target}} as a function of the gate voltage VP1V_{\mathrm{P1}}, where the sensor’s operating gate voltage VS1PV_{\mathrm{S1P}} is set to the slope of the Coulomb peak as shown in the inset of Fig. 1c. ItargetI_{\mathrm{target}} exhibits a typical Coulomb peak behavior, indicating the formation of a quantum dot. At the peak position of ItargetI_{\mathrm{target}} around VP1=5.0V_{\mathrm{P1}}=-5.0 V, the step-like variation of IsensorI_{\mathrm{sensor}} reflects the increase or decrease of electrons in the target dot because the electron acts as an effective gate voltage on the sensor dot through the electrostatic coupling between the target and sensor dots. Note that VS1PV_{\mathrm{S1P}} is compensated to maintain the operation point, as VP1V_{\mathrm{P1}} affects the sensor dot conductance. Another noticeable change in IsensorI_{\mathrm{sensor}} is observed at VP15.25V_{\mathrm{P1}}\approx-5.25 V (indicated by the arrow) while ItargetI_{\mathrm{target}} remains nearly constant at zero. This is because, in this region, the tunnel couplings between the target dot and the lead electrodes are extremely weak, resulting in nearly zero current, even when an electron is added to the target dot. This behavior is also observed in the previous study in GaAs by using a quantum point contact sensor [34]. These results demonstrate that the charge sensor enables accurate counting of the number of electrons in the target dot, even when the direct current through the target dot is too small to be detected.

Next, we investigate the rf-circuit properties to perform the rf reflectometry. The reflected signal from the resonator is measured using a network analyzer connected through a directional coupler as shown in Fig. 2(a). Figure 2(b) shows the transmission coefficients S21S_{21} as functions of frequency and VS1PV_{\mathrm{S1P}}, while maintaining the gate voltages VS1RV_{\mathrm{S1R}} and VS1LV_{\mathrm{S1L}} at fixed values of 3.84-3.84 V and 4.42-4.42 V, respectively. Note that S21S_{21} is determined by measuring the input signal and the reflected signal from the resonator using a directional coupler, effectively representing the reflection coefficients. The resonance frequency is approximately 174174 MHz, corresponding to CpC_{\mathrm{p}} of 0.690.69 pF. The dip depth is modulated by VS1PV_{\mathrm{S1P}}, reflecting the changes in conductance of the sensor dot, while the resonance frequency remains nearly constant. Figure 2(c) shows typical traces of S21S_{21}. At VS1P=4.32V_{\mathrm{S1P}}=-4.32 V, a pronounced dip is observed where the impedance matching condition is satisfied. In contrast, at VS1P=4.35V_{\mathrm{S1P}}=-4.35 V, a trace without impedance matching shows a small dip depth. This large variation in dip depth enables high-sensitivity charge sensing under matching conditions.

Refer to caption
Figure 2: (a) Measurement setup to evaluate the reflection coefficients. (b) VS1PV_{\mathrm{S1P}} dependence of the resonator’s S21S_{21} parameter. The color scale represents the magnitude of S21S_{21} in dB. (c) S21S_{21} characteristics showing typical traces with (VS1P=4.32V_{\mathrm{S1P}}=-4.32 V) and without (VS1P=4.35V_{\mathrm{S1P}}=-4.35 V) impedance matching.
Refer to caption
Figure 3: (a) Schematic of the demodulation circuit. (b) Frequency and VS1PV_{\mathrm{S1P}} dependence of dVrf/dVS1P\mathrm{d}V_{\mathrm{rf}}/\mathrm{d}V_{\mathrm{S1P}}. (c) IsensorI_{\mathrm{sensor}} and VrfV_{\mathrm{rf}} as a function of VS1PV_{\mathrm{S1P}}. (d) Charge stability diagram of a few electron double quantum dots probed by VrfV_{\mathrm{rf}}. ΔVrf\Delta V_{\mathrm{rf}} is the numerical difference in VrfV_{\mathrm{rf}} along the VP1V_{\mathrm{P1}} axis direction.

Figure 3(a) illustrates a demodulation circuit for performing rf reflectometry. The resonator, which incorporates a charge sensor, receives an rf signal at a frequency of 174174 MHz via a directional coupler. The amplitude of the rf signal is set to 88-88 dBm at the sample end. After reflection, this rf signal undergoes amplification and is then mixed with a local oscillator signal for demodulation. We optimize the phase shifter between the signal generator and the mixer. The resulting down-converted signal voltage, denoted as VrfV_{\mathrm{rf}}, is digitized. The sampling rate is set to 100100 MHz. To find the operation point, we measure the frequency and VS1PV_{\mathrm{S1P}} dependence of a numerical derivative dVrf/dVS1P\mathrm{d}V_{\mathrm{rf}}/\mathrm{d}V_{\mathrm{S1P}}, as illustrated in Figure 3(b). A phase difference between the reflected signal and the local oscillator at the mixer modulates VrfV_{\mathrm{rf}}. A typical additional phase is caused by a phase shift induced by the circuit line, whose effects appear as periodic changes on VrfV_{\mathrm{rf}} along the frequency axis. This color pattern, also observed in previous studies using GaAs and GaN quantum dots [36, 37], shows optimum operation points where the maximum sensitivity is obtained.

Figure 3(c) shows IsensorI_{\mathrm{sensor}} and VrfV_{\mathrm{rf}} with sweeping VS1PV_{\mathrm{S1P}}, where we perform an integration of 252^{5} data points to reduce the noise in VrfV_{\mathrm{rf}}. The changes in VrfV_{\mathrm{rf}} and IsensorI_{\mathrm{sensor}} are synchronized, allowing us to detect the change in IsensorI_{\mathrm{sensor}} by monitoring VrfV_{\mathrm{rf}}. The region where VrfV_{\mathrm{rf}} approaches zero satisfies the impedance matching condition, enabling high sensitivity for rf charge sensing. After establishing the rf charge sensing technique, we apply this technique to probe the formation of double quantum dots in the target region. The charge stability diagram obtained by monitoring VrfV_{\mathrm{rf}} while sweeping VP1V_{\mathrm{P1}} and VP2V_{\mathrm{P2}} is shown in Fig. 3(d). Two distinct slopes in the charge transition lines indicate the formation of double quantum dots. The absence of charge transition lines in the more negative gate voltage region indicates the full depletion of the double quantum dot. By counting the number of electrons using the charge transition lines, we can assign the number of electrons in each region as shown in the figure. This result clearly shows we achieve few-electron states in this double quantum dot system.

Refer to caption
Figure 4: (a) Charge stability diagram with a gate pulse sequence under an in-plane magnetic field of 5050 mT. The inset indicates a three-step gate pulse sequence to observe the spin blockade. (b) Energy levels of the ground and excited orbital states. With strong electron correlation, the formation of the ground singlet is forbidden and the higher orbital is occupied by the second electron. (c) Energy levels of two-electron states considering both orbital and spin configurations with strong electron correlation. The dotted line indicates the ground state in the case of weak electron correlation.

With the few-electron double quantum dots realized, we can proceed to spin-state readout measurements. For reading out the spin states utilizing the spin blockade measurement [38, 39], we measure the stability diagram with a gate voltage pulse sequence under an in-plane magnetic field of 5050 mT [40, 35, 41]. Here, the sampling rate is set to 125 MHz. We perform this measurement near the (0,2) to (1,1) charge transition, where (nP1n_{\mathrm{P1}}, nP2n_{\mathrm{P2}}) indicates the number of electrons in the quantum dots defined by VP1V_{\mathrm{P1}} and VP2V_{\mathrm{P2}}. At the reset pulse step R, the two-electron state is initialized to either a singlet or one of the three triplet states. If initialized to the singlet state, the state is transferred to the (0,2) charge state during the next measure pulse step M. Conversely, if initialized to one of the triplet states, it remains in the (1,1) charge state during this pulse M. After the measurement, one of the electrons is evacuated during the pulse step E to prepare the next reset phase. As a result, the signal from the (1,1) state is expected to appear in the region near the boundary between the (0,2) and (1,1) states, approximately within the dashed region in Fig. 4(a) [40, 35, 41]. However, the absence of signals in these regions indicates that spin blockade does not occur and/or the spin state might be relaxed by not fully optimized tunneling rates. Note that this measurement is performed in a different device with similar structures.

As to a possible mechanism, we will discuss the effect of electron correlation in ZnO. For a two-electron state, considering both orbital and spin degrees of freedom, the spin states almost degenerate in the low magnetic field. These spin states are represented as |T+=|1|2\ket{T^{+}}=\ket{\uparrow}_{1}\ket{\uparrow}_{2}, |T0=12(|1|2+|1|2)\ket{T^{0}}=\frac{1}{\sqrt{2}}\left(\ket{\uparrow}_{1}\ket{\downarrow}_{2}+\ket{\downarrow}_{1}\ket{\uparrow}_{2}\right), |T=|1|2\ket{T^{-}}=\ket{\downarrow}_{1}\ket{\downarrow}_{2}, and |S=12(|1|2|1|2)\ket{S}=\frac{1}{\sqrt{2}}\left(\ket{\uparrow}_{1}\ket{\downarrow}_{2}-\ket{\downarrow}_{1}\ket{\uparrow}_{2}\right). As a result, the energy of the electronic state is determined by the orbital energy. Regarding the (0, 2) state, the orbital states for the ground (excited) spin-singlet |ψSG(|ψSE)\ket{\psi_{S}}_{\mathrm{G}}(\ket{\psi_{S}}_{\mathrm{E}}) and triplet |ψT\ket{\psi_{T}} configurations can be expressed as

|ψSG=|g1|g2,|ψSE=12(|g1|e2+|e1|g2),\begin{split}&\ket{\psi_{S}}_{\mathrm{G}}=\ket{g}_{1}\ket{g}_{2},\\ &\ket{\psi_{S}}_{\mathrm{E}}=\frac{1}{\sqrt{2}}\left(\ket{g}_{1}\ket{e}_{2}+\ket{e}_{1}\ket{g}_{2}\right),\end{split} (1)
|ψT=12(|g1|e2|e1|g2).\ket{\psi_{T}}=\frac{1}{\sqrt{2}}\left(\ket{g}_{1}\ket{e}_{2}-\ket{e}_{1}\ket{g}_{2}\right). (2)

Here, |g\ket{g} and |e\ket{e} are the ground and excited orbital states, as shown in Fig. 4(b). If the Coulomb interaction energy is larger than the difference between the ground and excited orbital levels, a second electron added to the quantum dot occupies the excited level. Under this condition, |ψSE\ket{\psi_{S}}_{\mathrm{E}} becomes the ground state, whereas in devices with weak electron correlation, such as GaAs, |ψSG\ket{\psi_{S}}_{\mathrm{G}} typically assumes this role. Consequently, even in the (0, 2) state, two-electron states with different spin configurations are nearly degenerate in energy, as shown in Fig. 4(c). This is in contrast to the usual scenario where only the singlet state forms the ground state |S|ψSG\ket{S}\ket{\psi_{S}}_{\mathrm{G}}, enabling readout operations by spin-blockade. Indeed, the Kondo effect has been observed even in even-electron states in the ZnO quantum dot as a signature of strong electron correlation [42, 28]. Such behavior based on strong correlation supports the presented physical pictures, and our results suggest that improvements to the current situation or the establishment of new principles for readout methods are necessary. One possible approach to the first solution is fabricating devices with smaller designs, increasing the orbital energy spacing than the electron interaction.

In this study, we demonstrate the charge sensing and rf reflectometry of ZnO quantum dots. The sensor dot detects the charge state of the target dots, which has been difficult to determine when measuring the source-drain current of the target directly. Owing to the charge sensor, we observe the few-electron regime of a double quantum dot system, which is essential for utilizing these systems as qubits. Additionally, we discuss the spin state readout technique and suggest that device design plays a crucial role in creating a large orbital level spacing, which enables spin blockade in systems with strong electron correlation. We have addressed the challenges associated with realizing few-electron states and rf reflectometry in ZnO quantum dots, which are essential for their application as qubits. Moreover, we have provided insights into the prospects for spin-state readout. These results pave the way for quantum information processing applications using ZnO quantum devices.

I Acknowledgements

The authors thank K. Dezaki, M. Takeuchi, A. Kurita, and the RIEC Fundamental Technology Center and the Laboratory for Nanoelectronics and Spintronics for fruitful discussions and technical support. Part of this work was supported by MEXT Leading Initiative for Excellent Young Researchers, Grants-in-Aid for Scientific Research (21K18592, 22H04958, 23H01789, 23H04490), Tanigawa Foundation Research Grant, Maekawa Foundation Research Grant, The Foundation for Technology Promotion of Electronic Circuit Board, Iketani Science and Technology Foundation Research Grant, The Ebara Hatakeyama Memorial Foundation Research Grant, FRiD Tohoku University, and "Advanced Research Infrastructure for Materials and Nanotechnology in Japan (ARIM)" of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (Proposal Number JPMXP1224NM5072). AIMR and MANA are supported by World Premier International Research Center Initiative (WPI), MEXT, Japan.

II Competing interests

The authors declare no competing interests.

References

  • Tarucha et al. [1996] S. Tarucha, D. Austing, T. Honda, R. Van der Hage, and L. P. Kouwenhoven, Shell filling and spin effects in a few electron quantum dot, Phys. Rev. Lett. 77, 3613 (1996).
  • Kouwenhoven et al. [1997] L. P. Kouwenhoven, T. Oosterkamp, M. Danoesastro, M. Eto, D. Austing, T. Honda, and S. Tarucha, Excitation spectra of circular, few-electron quantum dots, Science 278, 1788 (1997).
  • Kouwenhoven et al. [2001] L. P. Kouwenhoven, D. Austing, and S. Tarucha, Few-electron quantum dots, Rep. Prog. Phys. 64, 701 (2001).
  • Maurand et al. [2016] R. Maurand, X. Jehl, D. Kotekar-Patil, A. Corna, H. Bohuslavskyi, R. Laviéville, L. Hutin, S. Barraud, M. Vinet, M. Sanquer, and S. D. Franceschi, A CMOS silicon spin qubit, Nat. Commun. 7, 13575 (2016).
  • Zwerver et al. [2022] A. Zwerver, T. Krähenmann, T. Watson, L. Lampert, H. C. George, R. Pillarisetty, S. Bojarski, P. Amin, S. Amitonov, J. Boter, R. Caudillo, D. Correas-Serrano, J. P. Dehollain, G. Droulers, E. M. Henry, R. Kotlyar, M. Lodari, F. Lüthi, D. J. Michalak, B. K. Mueller, S. Neyens, J. Roberts, N. Samkharadze, G. Zheng, O. K. Zietz, G. Scappucci, M. Veldhorst, L. M. K. Vandersypen, and J. S. Clarke, Qubits made by advanced semiconductor manufacturing, Nat. Electron. 5, 184 (2022).
  • Kanai et al. [2022] S. Kanai, F. J. Heremans, H. Seo, G. Wolfowicz, C. P. Anderson, S. E. Sullivan, M. Onizhuk, G. Galli, D. D. Awschalom, and H. Ohno, Generalized scaling of spin qubit coherence in over 12,000 host materials, Proceedings of the National Academy of Sciences 119, e2121808119 (2022).
  • Koppens et al. [2006] F. H. Koppens, C. Buizert, K.-J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. Kouwenhoven, and L. Vandersypen, Driven coherent oscillations of a single electron spin in a quantum dot, Nature 442, 766 (2006).
  • Yoneda et al. [2014] J. Yoneda, T. Otsuka, T. Nakajima, T. Takakura, T. Obata, M. Pioro-Ladrière, H. Lu, C. Palmstrøm, A. Gossard, and S. Tarucha, Fast electrical control of single electron spins in quantum dots with vanishing influence from nuclear spins, Phys. Rev. Lett. 113, 267601 (2014).
  • Fogarty et al. [2018] M. Fogarty, K. Chan, B. Hensen, W. Huang, T. Tanttu, C. Yang, A. Laucht, M. Veldhorst, F. Hudson, K. M. Itoh, D. Culcer, T. D. Ladd, A. Morello, and A. S. Dzurak, Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet-triplet readout, Nat. Commun. 9, 4370 (2018).
  • Yoneda et al. [2018] J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, M. R. Delbecq, G. Allison, T. Honda, T. Kodera, S. Oda, Y. Hoshi, N. Usami, K. M. Itoh, and S. Tarucha, A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%, Nat. Nanotechnol. 13, 102 (2018).
  • Takeda et al. [2022] K. Takeda, A. Noiri, T. Nakajima, T. Kobayashi, and S. Tarucha, Quantum error correction with silicon spin qubits, Nature 608, 682 (2022).
  • Noiri et al. [2022] A. Noiri, K. Takeda, T. Nakajima, T. Kobayashi, A. Sammak, G. Scappucci, and S. Tarucha, Fast universal quantum gate above the fault-tolerance threshold in silicon, Nature 601, 338 (2022).
  • Banszerus et al. [2021] L. Banszerus, S. Möller, E. Icking, C. Steiner, D. Neumaier, M. Otto, K. Watanabe, T. Taniguchi, C. Volk, and C. Stampfer, Dispersive sensing of charge states in a bilayer graphene quantum dot, Appl. Phys. Lett. 118, 093104 (2021).
  • Johmen et al. [2023] T. Johmen, M. Shinozaki, Y. Fujiwara, T. Aizawa, and T. Otsuka, Radio-Frequency Reflectometry in Bilayer Graphene Devices Utilizing Microscale Graphite Back-Gates, Phys. Rev. Appl. 20, 014035 (2023).
  • Garreis et al. [2024] R. Garreis, C. Tong, J. Terle, M. J. Ruckriegel, J. D. Gerber, L. M. Gächter, K. Watanabe, T. Taniguchi, T. Ihn, K. Ensslin, and W. W. Huang, Long-lived valley states in bilayer graphene quantum dots, Nat. Phys. 20, 428 (2024).
  • Tataka et al. [2024] R. Tataka, A. Sharma, M. Shinozaki, T. Johmen, T. Kumasaka, Y. P. Chen, and T. Otsuka, Surface Gate-Defined Quantum Dots in MoS2 with Bi Contacts, J. Phys. Soc. Jpn. 93, 094601 (2024).
  • Ruckriegel et al. [2024] M. J. Ruckriegel, L. M. Gächter, D. Kealhofer, M. Bahrami Panah, C. Tong, C. Adam, M. Masseroni, H. Duprez, R. Garreis, K. Watanabe, T. Taniguchi, A. Wallraff, T. Ihn, K. Ensslin, and W. W. Huang, Electric Dipole Coupling of a Bilayer Graphene Quantum Dot to a High-Impedance Microwave Resonator, Nano Lett. 24, 7508 (2024).
  • Falson et al. [2015a] J. Falson, Y. Kozuka, J. H. Smet, T. Arima, A. Tsukazaki, and M. Kawasaki, Electron scattering times in ZnO based polar heterostructures, Appl. Phys. Lett. 107, 082102 (2015a).
  • Falson et al. [2016] J. Falson, Y. Kozuka, M. Uchida, J. H. Smet, T.-h. Arima, A. Tsukazaki, and M. Kawasaki, MgZnO/ZnO heterostructures with electron mobility exceeding 1 × 106 cm2/Vs, Sci. Rep. 6, 26598 (2016).
  • Tsukazaki et al. [2005] A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S. F. Chichibu, and M. Kawasaki, Blue light-emitting diode based on ZnO, Jpn. J. Appl. Phys. 44, L643 (2005).
  • Linpeng et al. [2018] X. Linpeng, M. L. Viitaniemi, A. Vishnuradhan, Y. Kozuka, C. Johnson, M. Kawasaki, and K.-M. C. Fu, Coherence properties of shallow donor qubits in ZnO\mathrm{Zn}\mathrm{O}, Phys. Rev. Appl. 10, 064061 (2018).
  • Niaouris et al. [2022] V. Niaouris, M. V. Durnev, X. Linpeng, M. L. K. Viitaniemi, C. Zimmermann, A. Vishnuradhan, Y. Kozuka, M. Kawasaki, and K.-M. C. Fu, Ensemble spin relaxation of shallow donor qubits in zno, Phys. Rev. B 105, 195202 (2022).
  • Yan et al. [2023] J.-Y. Yan, C. Chen, X.-D. Zhang, Y.-T. Wang, H.-G. Babin, A. D. Wieck, A. Ludwig, Y. Meng, X. Hu, H. Duan, W. Chen, W. Fang, M. Cygorek, X. Lin, D.-W. Wang, C.-Y. Jin, and F. Liu, Coherent control of a high-orbital hole in a semiconductor quantum dot, Nat. Nanotechnol. 18, 1139 (2023).
  • Tsukazaki et al. [2007] A. Tsukazaki, A. Ohtomo, T. Kita, Y. Ohno, H. Ohno, and M. Kawasaki, Quantum hall effect in polar oxide heterostructures, Science 315, 1388 (2007).
  • Tsukazaki et al. [2010] A. Tsukazaki, S. Akasaka, K. Nakahara, Y. Ohno, H. Ohno, D. Maryenko, A. Ohtomo, and M. Kawasaki, Observation of the fractional quantum hall effect in an oxide, Nat. Mater. 9, 889 (2010).
  • Falson et al. [2015b] J. Falson, D. Maryenko, B. Friess, D. Zhang, Y. Kozuka, A. Tsukazaki, J. Smet, and M. Kawasaki, Even-denominator fractional quantum Hall physics in ZnO, Nat. Phys. 11, 347 (2015b).
  • Hou et al. [2019] H. Hou, Y. Kozuka, J.-W. Liao, L. Smith, D. Kos, J. Griffiths, J. Falson, A. Tsukazaki, M. Kawasaki, and C. Ford, Quantized conductance of one-dimensional strongly correlated electrons in an oxide heterostructure, Phys. Rev. B 99, 121302 (2019).
  • Noro et al. [2024] K. Noro, Y. Kozuka, K. Matsumura, T. Kumasaka, Y. Fujiwara, A. Tsukazaki, M. Kawasaki, and T. Otsuka, Parity-independent Kondo effect of correlated electrons in electrostatically defined ZnO quantum dots, Nat. Commun. 15, 9556 (2024).
  • Sprinzak et al. [2002] D. Sprinzak, Y. Ji, M. Heiblum, D. Mahalu, and H. Shtrikman, Charge distribution in a kondo-correlated quantum dot, Phys. Rev. Lett. 88, 176805 (2002).
  • Field et al. [1993] M. Field, C. Smith, M. Pepper, D. Ritchie, J. Frost, G. Jones, and D. Hasko, Measurements of coulomb blockade with a noninvasive voltage probe, Phys. Rev. lett. 70, 1311 (1993).
  • Elzerman et al. [2003] J. Elzerman, R. Hanson, J. Greidanus, L. W. Van Beveren, S. De Franceschi, L. Vandersypen, S. Tarucha, and L. Kouwenhoven, Few-electron quantum dot circuit with integrated charge read out, Phys. Rev. B 67, 161308 (2003).
  • Kurzmann et al. [2019] A. Kurzmann, H. Overweg, M. Eich, A. Pally, P. Rickhaus, R. Pisoni, Y. Lee, K. Watanabe, T. Taniguchi, T. Ihn, and K. Ensslin, Charge detection in gate-defined bilayer graphene quantum dots, Nano Lett. 19, 5216 (2019).
  • Qin and Williams [2006] H. Qin and D. A. Williams, Radio-frequency point-contact electrometer, Appl. Phys. Lett. 88, 203506 (2006).
  • Reilly et al. [2007] D. Reilly, C. Marcus, M. Hanson, and A. Gossard, Fast single-charge sensing with a rf quantum point contact, Appl. Phys. Lett. 91, 162101 (2007).
  • Barthel et al. [2009] C. Barthel, D. Reilly, C. M. Marcus, M. Hanson, and A. Gossard, Rapid single-shot measurement of a singlet-triplet qubit, Phys. Rev. Lett. 103, 160503 (2009).
  • Shinozaki et al. [2021] M. Shinozaki, Y. Muto, T. Kitada, T. Nakajima, M. R. Delbecq, J. Yoneda, K. Takeda, A. Noiri, T. Ito, A. Ludwig, A. D. Dieck, S. Tarucha, and T. Otsuka, Gate voltage dependence of noise distribution in radio-frequency reflectometry in gallium arsenide quantum dots, Appl. Phys. Express 14, 035002 (2021).
  • Fujiwara et al. [2023] Y. Fujiwara, M. Shinozaki, K. Matsumura, K. Noro, R. Tataka, S. Sato, T. Kumasaka, and T. Otsuka, Wide dynamic range charge sensor operation by high-speed feedback control of radio-frequency reflectometry, Appl. Phys. Lett. 123, 213502 (2023).
  • Ono et al. [2002] K. Ono, D. Austing, Y. Tokura, and S. Tarucha, Current rectification by pauli exclusion in a weakly coupled double quantum dot system, Science 297, 1313 (2002).
  • Koppens et al. [2005] F. H. Koppens, J. A. Folk, J. M. Elzerman, R. Hanson, L. W. Van Beveren, I. T. Vink, H.-P. Tranitz, W. Wegscheider, L. P. Kouwenhoven, and L. M. Vandersypen, Control and detection of singlet-triplet mixing in a random nuclear field, Science 309, 1346 (2005).
  • Johnson et al. [2005] A. Johnson, J. Petta, J. Taylor, A. Yacoby, M. Lukin, C. Marcus, M. Hanson, and A. Gossard, Triplet–singlet spin relaxation via nuclei in a double quantum dot, Nature 435, 925 (2005).
  • Noiri et al. [2020] A. Noiri, K. Takeda, J. Yoneda, T. Nakajima, T. Kodera, and S. Tarucha, Radio-frequency-detected fast charge sensing in undoped silicon quantum dots, Nano Lett. 20, 947 (2020).
  • Maryenko et al. [2021] D. Maryenko, M. Kawamura, A. Ernst, V. Dugaev, E. Y. Sherman, M. Kriener, M. Bahramy, Y. Kozuka, and M. Kawasaki, Interplay of spin–orbit coupling and Coulomb interaction in ZnO-based electron system, Nat. Commun. 12, 3180 (2021).