This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Charge radii of potassium isotopes in the RMF(BCS)* approach

Rong An Key Laboratory of Beam Technology of Ministry of Education, Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China    Shi-Sheng Zhang [email protected] School of Physics, Beihang University, Beijing 100191, China    Li-Sheng Geng [email protected] School of Physics, Beihang University, Beijing 100191, China Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 102206, China School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, China    Feng-Shou Zhang [email protected] Key Laboratory of Beam Technology of Ministry of Education, Beijing Radiation Center, Beijing 100875, China Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China
Abstract

We apply the recently proposed RMF (BCS)* ansatz to study the charge radii of the potassium isotopic chain up to 52K. It is shown that the experimental data can be reproduced rather well, qualitatively similar to the Fayans nuclear density functional theory, but with a slightly better description of the odd-even staggerings (OES). Nonetheless, both methods fail for 50K and to a lesser extent for 48,52K. It is shown that if these nuclei are deformed with a β200.2\beta_{20}\approx-0.2, then one can obtain results consistent with experiments for both charge radii and spin-parities. We argue that beyond-mean-field studies are needed to properly describe the charge radii of these three nuclei, particularly for 50K.

I INTRODUCTION

Charge radii are fundamental quantities that describe atomic nuclei. A rule of thumb is that they scale with either masses as A1/3A^{1/3} Ring and Schuck (1980); Bohr and Mottelson (1998) or charges as Z1/3Z^{1/3} Zhang et al. (2002a, b). With the rapid development of novel detectors and analysis techniques, charge radii of many atomic nuclei far away from the β\beta-stability line have been measured with high precision, such as calcium Garcia Ruiz et al. (2016); Miller et al. (2019a), cadmium Hammen et al. (2018), tin Gorges et al. (2019), mercury Day Goodacre et al. (2021), copper de Groote et al. (2020), and potassium isotopes Koszorús et al. (2019, 2021). However, for certain nuclei, large discrepancies are observed between experimental measurements and theoretical predictions. For instance, a parabolic-like shape and strong odd-even staggering (OES) effects have long been known to exist in the calcium isotopes between 40Ca and 48Ca Angeli and Marinova (2013). Such peculiar features persist toward the neutron-deficient region Miller et al. (2019a). Beyond N=29N=29, the charge radii increase rapidly and the radius of 52Ca is significantly larger than that of 48Ca Garcia Ruiz et al. (2016). This is unexpected because N=32N=32 was believed to be a magic number in the calcium isotopes Wienholtz et al. (2013); Huck et al. (1985).

In comparison with the charge radii of calcium isotopes, the amplitude of the parabolic-like shape between 39K and 47K is smaller due to the last unpaired proton Angeli and Marinova (2013); Touchard et al. (1982); Martensson-Pendrill et al. (1990); Bendali et al. (1981); Falke et al. (2006). Meanwhile, the rapid increase of charge radii is also found across the N=28N=28 shell closure Kreim et al. (2014). The neutron-rich shell closure at N=32N=32 in the potassium isotopic chain was investigated in Refs. Huck et al. (1985); Rosenbusch et al. (2015), and shows relatively enhanced stability. Recently, the collinear resonance ionization spectroscopy (CRIS) technique has been employed to measure the charge radii of potassium isotopes Koszorús et al. (2019), and the precision measurement of charge radii beyond N=32N=32 has been performed for the first time below Z<20Z<20 for potassium isotopes Koszorús et al. (2021). No sudden increase of the charge radius of 52K was observed.

All of these results challenge our understanding of the evolution of nuclear charge radii of exotic isotopes with large neutron or proton excesses. To address these challenges, many novel approaches have been proposed. In Ref. Ma et al. (2020), a statistical method is introduced to study nuclear charge radii by combining sophisticated nuclear models with the naive Bayesian probability (NBP) classifier. This method predicts a rapid increase of charge radii beyond N=28N=28. In Ref. Wu et al. (2020), a feed-forward neural network model which relates charge radii to the symmetry energy is explored. The strong increase in the charge radii beyond N=28N=28 is well reproduced by the Fayans energy density functional (EDF) model Koszorús et al. (2021); Reinhard and Nazarewicz (2017). However, this method overestimates the OES effect of the charge radii of the potassium isotopic chain. In addition, the deviation between experiment and theory becomes larger toward the neutron-deficient region Koszorús et al. (2021). In Ref. An et al. (2020), we proposed an empirical ansatz based on the relativistic mean field (RMF) theory, which adds a correction term induced by the difference of pairing interactions for protons and neutrons calculated self-consistently in the RMF. This modified approach can remarkably reproduce the OES effects of charge radii of calcium isotopes and nine other even-Z isotopic chains, especially the strong increase of charge radii across the N=28N=28 shell closure along the calcium isotopic chain. In this work, we would like to extend the ansatz of Ref. An et al. (2020) to study the root mean square (rms) charge radii of odd-proton potassium isotopes.

This work is organized as follows. In Sec. II, the theoretical framework is briefly introduced. The results and corresponding discussions are presented in Sec. III. In the last section, we present the conclusions.

II Theoretical Framework

In the past three decades, relativistic mean field (RMF) theories have achieved remarkable successes in describing properties of finite nuclei around and far away from the β\beta-stability line Meng and Ring (1996); Meng (1998); Zhou et al. (2003); Vretenar et al. (2005); Zhou et al. (2010); Li et al. (2012); Liang et al. (2015); Meng (2016); Sun et al. (2018, 2020); Zhang et al. (2020, 2021), not only for ground states but also for excited states Paar et al. (2003, 2004); Zhang et al. (2007); Chen and Piekarewicz (2014); Zhang et al. (2012); Xu et al. (2015); Cao and Ma (2004). In this work, we adopt the meson-exchange version of RMF. The nonlinear Lagrangian density, where nucleons are described as Dirac particles and interact via the exchange of σ\sigma, ω\omega and ρ\rho mesons, has the following form:

\displaystyle\mathcal{L} =\displaystyle= ψ¯[iγμμMgσσγμ(gωωμ+gρτρμ+eAμ)]ψ\displaystyle\bar{\psi}[i\gamma^{\mu}\partial_{\mu}-M-g_{\sigma}\sigma-\gamma^{\mu}(g_{\omega}\omega_{\mu}+g_{\rho}\vec{\tau}\cdotp\vec{\rho}_{\mu}+eA_{\mu})]\psi (1)
+12μσμσ12mσ2σ213g2σ314g3σ4\displaystyle+\frac{1}{2}\partial^{\mu}\sigma\partial_{\mu}\sigma-\frac{1}{2}m_{\sigma}^{2}\sigma^{2}-\frac{1}{3}g_{2}\sigma^{3}-\frac{1}{4}g_{3}\sigma^{4}
14ΩμνΩμν+12mω2ωμωμ+14c3(ωμωμ)2\displaystyle-\frac{1}{4}\Omega^{\mu\nu}\Omega_{\mu\nu}+\frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu}+\frac{1}{4}c_{3}(\omega^{\mu}\omega_{\mu})^{2}
14RμνRμν+12mρ2ρμρμ+14d3(ρμρμ)2\displaystyle-\frac{1}{4}\vec{R}_{\mu\nu}\cdotp\vec{R}^{\mu\nu}+\frac{1}{2}m_{\rho}^{2}\vec{\rho}^{\mu}\cdotp\vec{\rho}_{\mu}+\frac{1}{4}d_{3}(\vec{\rho}^{\mu}\vec{\rho}_{\mu})^{2}
14FμνFμν.\displaystyle-\frac{1}{4}F^{\mu\nu}F_{\mu\nu}.

Where MM is the nucleon mass and mσm_{\sigma}, mωm_{\omega}, and mρm_{\rho} are the masses of the σ\sigma, ω\omega, and ρ\rho mesons; AμA_{\mu} is the photon field and FμνF^{\mu\nu} is the electromagnetic tensor; and gσg_{\sigma}, gωg_{\omega}, gρg_{\rho}, and e2/4πe^{2}/4\pi are the coupling constants for the σ\sigma, ω\omega, ρ\rho mesons, and photon, respectively. For the mean-field parameters, we choose the NL3 parameter set Lalazissis et al. (1997). The Dirac equation for the nucleons and the Klein-Gordon-type equations with sources for the mesons and the photon are solved by the expansion method with the axially symmetric harmonic oscillator basis Ring et al. (1997); Geng et al. (2003). We use 1212 shells for expanding the fermion fields and 2020 shells for the meson fields.

In the conventional RMF(BCS) model, the mean square charge radius is calculated in the following way (in units of fm2Ring et al. (1997); Geng et al. (2003):

Rch(2)=r2ρp(r)d3rρp(r)d3r+0.64fm2,\displaystyle\langle{R_{\mathrm{ch}}^{(2)}}\rangle=\frac{\int{r}^{2}\rho_{p}(r)d^{3}r}{\int\rho_{p}(r)d^{3}r}+0.64~{}\mathrm{fm}^{2}, (2)

where the first term represents the charge distribution of point-like protons and the second term is from the finite size of protons Ring et al. (1997). To account for the experimentally-observed odd-even staggerings of charge radii, Ref. An et al. (2020) proposed a modified formula:

Rch(2)=r2ρp(r)d3rρp(r)d3r+0.64fm2+a0AΔ𝒟fm2.\displaystyle\langle{R_{\mathrm{ch}}^{(2)}}\rangle=\frac{\int{r}^{2}\rho_{p}(r)d^{3}r}{\int\rho_{p}(r)d^{3}r}+0.64~{}\mathrm{fm}^{2}+\frac{a_{0}}{\sqrt{A}}\Delta{\mathcal{D}}~{}\mathrm{fm}^{2}. (3)

The last term on the right hand is the correction term that can be associated to Cooper pair condensations Dussel et al. (2007). The quantity AA is the mass number and a0=0.834a_{0}=0.834 is a normalization constant obtained by fitting to the experimental charge radii. The quantity Δ𝒟=|𝒟n𝒟p|\Delta\mathcal{D}=|\mathcal{D}_{n}-\mathcal{D}_{p}| represents the difference of Cooper pair condensations for neutrons and protons. It is calculated self-consistently by solving the state-dependent BCS equations with a δ\delta force Geng et al. (2003); An et al. (2018). One should note that although the correction is introduced as an empirical approximation of neutron-proton pairing correlations, it is calculated using the outputs of the microscopic RMF(BCS) approach. For the convenience of discussion, the results obtained by Eq. (2) are labeled as RMF(BCS), and RMF(BCS)* represents the calculated results though the modified charge radius formula Eq. (3). More discussions can be found in Ref. An et al. (2020).

III RESULTS AND DISCUSSIONS

III.1 Charge radii of potassium isotopes

In the RMF(BCS)* approach, the strength of the pairing interaction is determined by fitting to the odd-even staggerings of binding energies. For this purpose, the following three-point formula is employed Ring and Schuck (1980); Bohr and Mottelson (1998):

ΔE=12[B(N1,Z)2B(N,Z)+B(N+1,Z)],\displaystyle\Delta_{E}=\frac{1}{2}[B(N-1,Z)-2B(N,Z)+B(N+1,Z)], (4)

where B(N,Z)B(N,Z) is the binding energy for a nucleus of neutron number NN and proton number ZZ. In this study, the pairing strength is fixed at 350350 MeV fm3 and the pairing space is chosen to include all the single particle levels within 24 MeV above and below the Fermi surface. To study nuclei with an odd number of nucleons, a blocking approximation is adopted. At each step of the self-consistent iteration in solving the RMF equations, the last single particle level occupied by the odd nucleon is blocked Geng et al. (2004). One should note that in certain cases, e.g., where the single particle levels around the Fermi surface are dense or configuration mixing is particularly relevant, such a procedure may not yield accurate results.

Refer to caption
Figure 1: Charge radii of potassium isotopes obtained in the RMF(BCS) method and RMF(BCS)* ansatz. The experimental data are taken from Refs. Angeli and Marinova (2013); Koszorús et al. (2021) and the yellow band indicates the systematic error. The Fayans EDF results Koszorús et al. (2021) are also shown for comparison.

In Ref. Koszorús et al. (2021), the charge radius of the exotic 52K isotope beyond the N=32N=32 shell closure was measured. Similar to the calcium isotopes, a parabolic-like shape is also found for the potassium isotopes between 39K and 47Angeli and Marinova (2013). However, the OES effects are much reduced. In Fig. 1, we compare the charge radii of potassium isotopes calculated in the RMF(BCS) method with and without the correction term. It is clear that the RMF(BCS) approach cannot describe the charge radii of potassium isotopes, particularly the strong increase of charge radii beyond N=29N=29 and the OES behaviors. On the other hand, the new RMF(BCS)* ansatz can reproduce the parabolic-like shape between 39K and 47K. In addition, the OES effects are also reproduced but slightly overestimated. Compared with the more sophisticated Fayans EDF model, the RMF(BCS)* results are in better agreement with data Koszorús et al. (2021). Furthermore, we calculated quantitatively the standard root mean square (rms) deviation between Rexpt.R_{\mathrm{expt.}} and Rtheo.R_{\mathrm{theo.}} along the potassium isotopic chain. For the Fayans model, the standard rms deviation is 0.02140.0214 fm. By contrast, the rms deviation falls to 0.01500.0150 fm with the RMF(BCS) approach. In particular, toward the neutron-deficient side, a large deviation can be found between experimental data and those of the Fayans EDF model, while the RMF(BCS)* approach yields results in better agreement with experiment. Beyond the N=28N=28 shell closure, both the RMF(BCS)* approach and Fayans EDF model can reproduce the fast increase. However, both underestimate the charge radii of 50K and 52K, particularly the former.

III.2 Double odd-even staggering effects

Similar to binding energies, one can also define a three-point formula to extract OES for charge radii Reinhard and Nazarewicz (2017)

Δr=12[R(N1,Z)2R(N,Z)+R(N+1,Z)],\displaystyle\Delta_{r}=\frac{1}{2}[R(N-1,Z)-2R(N,Z)+R(N+1,Z)], (5)

where R(N,Z)R(N,Z) is the rms charge radius. It should be noted that the OES effects on charge radii, i.e., that nuclear charge radii of odd-neutron isotopes are smaller than the average of their even-neutron neighbours, have been observed throughout the nuclear chart Angeli and Marinova (2013). Various possible explanations have been proposed, such as the blocking of ground state quadrupole vibrations by the odd neutron Reehal and Sorensen (1971), core polarizations by valence neutrons Talmi (1984); Caurier et al. (1980), α\alpha clusters Zawischa (1985), three- or four-body residual interactions Zawischa et al. (1987); Regge and Zawischa (1988), special deformation effects Girod and Reinhard (1982); Ulm et al. (1986), neutron pairing energies Weber et al. (2005), pairing correlation Reinhard and Nazarewicz (2017), etc. Therefore, it is worthwhile checking whether this empirical ansatz can provide a reasonable description of the OES of charge radii of the odd-ZZ(=19) potassium isotopes.

Refer to caption
Figure 2: Odd-even staggerings of binding energies (a) and charge radii (b) of potassium isotopes. The experimental data for binding energies are taken from Ref. Wang et al. (2021), while those of charge radii are from Refs. Angeli and Marinova (2013); Koszorús et al. (2021).

In Fig. 2, the OES of binding energies (upper panel) and charge radii (lower panel) are compared with the experimental data. The RMF(BCS) and RMF(BCS)* methods can reproduce the OES of binding energies rather well. For the potassium isotopic chain, the general trend of the OES of charge radii calculated by Eq. (5) is reproduced as well. However, the RMF(BCS)* method overestimates the OES of charge radii, especially in the neutron-rich region, as can be inferred already from Fig. 1. For 37,38K, the OES behaviors are reversed due to the slightly overestimated charge radii of 36,38K. For 47K, the modified formula cannot reproduce the local variation of the OES in charge radii. Meanwhile the general oscillation trend in experimental OES of charge radii is weakened at the N=28N=28 shell closure, reversing the OES behavior. Actually, this phenomenon is also naturally observed at neutron magic numbers N=50N=50, 8282, 126126 Angeli and Marinova (2013). In this work, the blocking approximation is employed to tackle the simultaneously unpaired proton and neutron. The overestimation of OES in nuclear charge radii may be corrected by tackling the last unpaired nucleons.

As one can see from Fig. 1, the charge radii of 50K and 52K are underestimated, particularly, in both the RMF(BCS)* approach and the Fayans density functional theory. Such a deviation may be due to the blocking effect of unpaired nucleons, as mentioned above. Along the isotopic chain, the added neutrons are mainly located in the outer edge of the nucleus for neutron-rich isotopes. As stressed in Ref. Miller et al. (2019b), the neutron-proton (np) pairing correlation can cause protons to move closer to the added neutrons and increase the nuclear charge radius. Especially for the unpaired neutron and proton, the np-pairs could play a larger role. As a result, in the following, we will study the blocking treatment of the last unpaired proton/neutron.

Refer to caption
Figure 3: Potential energy surfaces of 48K (a), 50K (b) and 52K (c) as functions of the quadrupole deformation parameter β20\beta_{20} for different combinations of single particle orbits occupied by the last unpaired nucleons. π\pi and ν\nu denote the last unpaired proton and neutron, where the combinations of spherical (s,p,d,fs,p,d,f) and Nilsson quantum numbers in the square brackets are employed to denote the occupied orbits.

III.3 Blocking effects on charge radii

In Figs. 3 and 4, the potential energy surfaces and root mean square (rms) charge radii of 48K (a), 50K (b) and 52K (c) as a function of the quadrupole deformation parameter β20\beta_{20} are plotted, with different assignments of single particle orbits occupied by the last unpaired proton (π\pi) and neutron (ν\nu). The occupied orbits are given by the combinations of spherical (s,p,d,fs,p,d,f) and Nilsson quantum numbers [N,nz,ml][N,n_{z},m_{l}] in the square bracket. Where NN is the main quantum number and nzn_{z} is the projection of NN on the z-axis, and mlm_{l} is the component of the orbital angular momentum Ring et al. (1997). Below, for the convenience of discussion, we use an expression such as (1d3/2,2p3/21d_{3/2},2p_{3/2}) to denote the occupied orbitals of the last unpaired proton (the first term in the bracket) and neutron (the last term in the bracket).

In principle, the occupation of singe particle levels is determined self-consistently so that the largest binding energy is obtained. In such a way, the last unpaired proton is found to occupy the 1d3/21d_{3/2} orbital. The last unpaired neutron in 48K and 50K is found to occupy the 2p3/22p_{3/2} orbital, while that in 52K occupies the 1f5/21f_{5/2} orbital. These configurations yield the largest binding energy. On the other hand, the potential energy surfaces are relatively soft. This implies that beyond-mean-field studies, which take into account configuration mixing, might be needed to correctly describe these nuclei.

Refer to caption
Figure 4: Same as Fig. 3 but for root mean square (rms) charge radii.

For 48K, the configuration (1d3/2,1f5/21d_{3/2},1f_{5/2}) indicates a spherical ground state, but the corresponding charge radius is found to be much smaller than the experimental radius. If the (1d3/2,1f7/21d_{3/2},1f_{7/2}) configuration is chosen, the binding energy of 48K is smaller by 2 MeV and the charge radius is increased to 3.4873.487 fm (see Fig. 4). On the other hand, the configuration of (1f7/2,2p3/21f_{7/2},2p_{3/2}) leads to a smaller binding energy (in comparison with the (1d3/2,2p3/2)(1d_{3/2},2p_{3/2}) configuration) and a charge radius of 3.4813.481 fm, which agrees with the experimental result. Therefore, for N=29N=29, we conclude that either the last unpaired nucleons prefer to occupy the (1f7/2,2p3/21f_{7/2},2p_{3/2}) states instead of the self-consistent (1d3/2,2p3/21d_{3/2},2p_{3/2}) configuration, or the nucleus is deformed with β200.2\beta_{20}\approx-0.2. Both scenarios cannot be realized in the present self-consistent calculation. Similar conclusions can be drawn for 50K.

For 52K, from the energy point of view, the most favored configuration is (1d3/2,1f5/21d_{3/2},1f_{5/2}). As one can see from Fig. 3 (c), the differences between the four configurations are relatively small. Both (1d3/2,2p3/21d_{3/2},2p_{3/2}) and (1f7/2,1f5/21f_{7/2},1f_{5/2}) can yield results in reasonable agreement with data.

In Fig. 4, one can find that the quadrupole deformation has an influence on rms charge radii of 48K (a), 50K (b) and 52K (c). Close to spherical shape, the rms charge radii are gradually reduced under various occupations. Toward larger deformation, especially around β200.2\beta_{20}\approx-0.2, comparable values are obtained. Combining the potential energy surfaces and the rms charge radii of 48K, 50K and 52K, the occupations of 1f7/21f_{7/2} levels with the last unpaired proton seem to give plausible values of the charge radii.

Refer to caption
Figure 5: Same as Fig. 1, but with different treatments of the blocking approximation for the last unpaired proton and neutron beyond N=28N=28.

In Fig. 5, the single particle levels occupied by the last unpaired proton and neutron beyond N=28N=28 are assigned by hand as explained above. For 48K and 50K, the (1f7/2,2p3/21f_{7/2},2p_{3/2}) configurations are used. For 52K, the configuration (1f7/2,1f5/21f_{7/2},1f_{5/2}) is used. Now, the theoretical results are in much better agreement with data for both the rapid increase of charge radii and the OES effects. It should be noted that this does not simply imply that the last unpaired proton and neutron really occupy these orbitals. It can also be viewed as a convenient way to choose the deformation of the nuclei studied. Next we check whether further experimental information, such as spin and parity, can help determine which single-particle configurations are preferred.

III.4 Spin and parity of potassium isotopes

For odd-odd nuclei, the spin and parity are determined by the coupling of last unpaired nucleons, but for odd-even nuclei, the spin and parity are determined by the last unpaired nucleon Ring and Schuck (1980); Bohr and Mottelson (1998). In Table 1, we show the last occupied proton and neutron orbitals of potassium isotopes and the resulting possible spin-parity assignments (fifth column). The deformation parameters β20\beta_{20} are also shown (seventh column) in comparison with the FRDM results (last column) Möller et al. (2016). The combinations of jzj_{z}, namely the maximum eigenvalue of the projection of angular momentum jj on the zz-axis, and Nilsson quantum numbers [N,nz,ml][N,n_{z},m_{l}] are employed to label the orbits occupied by the last unpaired nucleons. Compared to the experimental assignments shown in the sixth column, it is clear that the self-consistent theoretical spin-parity assignments are reasonable. On the other hand, if we chose the configurations fixed by hand as explained above, the theoretical spin-parity assignments (denoted by blue) do not seem to agree with data. As a result, only if 48,50,52K are deformed with β200.2\beta_{20}\approx-0.2, one could reconcile the experimental measurements and theoretical results for their charge radii.

Table 1: Spin and parity of 36-52K (the fifth column) in comparison with the experimental values (the sixth column) [12]. The self-consistently determined single particle levels of last unpaired nucleons are listed in the third (proton) and fourth (neutron) columns by the maximum eigenvalue of the projection of angular momentum jj on the zz-axis and the Nilsson quantum numbers [N,nz,ml][N,n_{z},m_{l}]. The manually chosen configurations for 48,50,52K are noted by blue color. The quadrupole deformation parameters β20\beta_{20} are shown in the seventh column, in comparison with the FRDM results [62]. The numbers in red highlight the consistency with the experimental assignments.
A N proton neutron jπj^{\pi}(this work) IπI^{\pi}(Exp.) β20\beta_{20}(this work) β20\beta_{20}(FRDM)
36 17 3/2+[220]{3/2}^{+}[220] 3/2+[202]{3/2}^{+}[202] 0+0^{+}, 1+1^{+}, 2+\color[rgb]{1,0,0}{2^{+}}, 3+3^{+} 2+2^{+} 0.12-0.12 0.03-0.03
37 18 3/2+[220]{3/2}^{+}[220] 3/2+[202]{3/2}^{+}[202] 1/2+1/2^{+}, 3/2+\color[rgb]{1,0,0}{3/2^{+}} 3/2+3/2^{+} 0.14-0.14 0.06-0.06
38 19 3/2+[220]{3/2}^{+}[220] 3/2+[220]{3/2}^{+}[220] 0+0^{+}, 1+1^{+}, 2+2^{+}, 3+\color[rgb]{1,0,0}{3^{+}} 3+3^{+} 0.08-0.08 0.04-0.04
39 20 3/2+[211]{3/2}^{+}[211] 3/2+[211]{3/2}^{+}[211] 1/2+1/2^{+}, 3/2+\color[rgb]{1,0,0}{3/2^{+}} 3/2+3/2^{+} 0.03-0.03 0.03-0.03
40 21 3/2+[220]{3/2}^{+}[220] 7/2[303]{7/2}^{-}[303] 22^{-}, 33^{-}, 4\color[rgb]{1,0,0}{4^{-}}, 55^{-} 44^{-} 0.08-0.08 0.05-0.05
41 22 3/2+[220]{3/2}^{+}[220] 7/2[303]{7/2}^{-}[303] 1/2+1/2^{+}, 3/2+\color[rgb]{1,0,0}{3/2^{+}} 3/2+3/2^{+} 0.07-0.07 0.03-0.03
42 23 3/2+[220]{3/2}^{+}[220] 7/2[312]{7/2}^{-}[312] 2\color[rgb]{1,0,0}{2^{-}}, 33^{-}, 44^{-}, 55^{-} 22^{-} 0.09-0.09 0.05-0.05
43 24 3/2+[220]{3/2}^{+}[220] 7/2[312]{7/2}^{-}[312] 1/2+1/2^{+}, 3/2+\color[rgb]{1,0,0}{3/2^{+}} 3/2+3/2^{+} 0.09-0.09 0.05-0.05
44 25 3/2+[220]{3/2}^{+}[220] 7/2[321]{7/2}^{-}[321] 2\color[rgb]{1,0,0}{2^{-}}, 33^{-}, 44^{-}, 55^{-} 22^{-} 0.10-0.10 0.06-0.06
45 26 3/2+[220]{3/2}^{+}[220] 7/2[321]{7/2}^{-}[321] 1/2+1/2^{+}, 3/2+\color[rgb]{1,0,0}{3/2^{+}} 3/2+3/2^{+} 0.08-0.08 0.05-0.05
46 27 3/2+[220]{3/2}^{+}[220] 7/2[310]{7/2}^{-}[310] 2\color[rgb]{1,0,0}{2^{-}}, 33^{-}, 44^{-}, 55^{-} 22^{-} 0.08-0.08 0.06-0.06
47 28 3/2+[220]{3/2}^{+}[220] 7/2[310]{7/2}^{-}[310] 1/2+\color[rgb]{1,0,0}{1/2^{+}}, 3/2+3/2^{+} 1/2+1/2^{+} 0.00-0.00 0.04-0.04
48 29 3/2+[220]{3/2}^{+}[220] 3/2[301]{3/2}^{-}[301] 00^{-}, 1\color[rgb]{1,0,0}{1^{-}}, 22^{-}, 33^{-} 11^{-} 0.08-0.08 0.05-0.05
48\color[rgb]{0,0,1}{48}^{*} 29\color[rgb]{0,0,1}{29} 7/2[303]\color[rgb]{0,0,1}{{7/2}^{-}[303]} 3/2[301]\color[rgb]{0,0,1}{{3/2}^{-}[301]} 2+,3+,4+,5+\color[rgb]{0,0,1}{2^{+},3^{+},4^{+},5^{+}} 0.20-0.20
49 30 3/2[220]{3/2}^{-}[220] 3/2[301]{3/2}^{-}[301] 1/2+\color[rgb]{1,0,0}{1/2^{+}}, 3/2+3/2^{+} 1/2+1/2^{+} 0.09-0.09 0.05-0.05
50 31 3/2+[220]{3/2}^{+}[220] 3/2[301]{3/2}^{-}[301] 0\color[rgb]{1,0,0}{0^{-}}, 11^{-}, 22^{-}, 33^{-} 00^{-} 0.12-0.12 0.05-0.05
50\color[rgb]{0,0,1}{50}^{*} 31\color[rgb]{0,0,1}{31} 7/2[303]\color[rgb]{0,0,1}{{7/2}^{-}[303]} 3/2[301]\color[rgb]{0,0,1}{{3/2}^{-}[301]} 2+,3+,4+,5+\color[rgb]{0,0,1}{2^{+},3^{+},4^{+},5^{+}} 0.22-0.22
51 32 3/2+[220]{3/2}^{+}[220] 3/2[301]{3/2}^{-}[301] 1/2+1/2^{+}, 3/2+\color[rgb]{1,0,0}{3/2^{+}} 3/2+3/2^{+} 0.11-0.11 0.08-0.08
52 33 3/2+[220]{3/2}^{+}[220] 5/2[310]{5/2}^{-}[310] 11^{-}, 2\color[rgb]{1,0,0}{2^{-}}, 33^{-}, 44^{-} 22^{-} 0.10-0.10 0.14-0.14
52\color[rgb]{0,0,1}{52}^{*} 33\color[rgb]{0,0,1}{33} 7/2[303]\color[rgb]{0,0,1}{{7/2}^{-}[303]} 5/2[303]\color[rgb]{0,0,1}{{5/2}^{-}[303]} 1+,2+,3+,4+,5+,6+\color[rgb]{0,0,1}{1^{+},2^{+},3^{+},4^{+},5^{+},6^{+}} 0.23-0.23

In Fig. 6, we show the evolution of single particle (s.p.) levels of last unpaired proton (left panel) and neutron (right panel) for 48,50,32K. It is clear that around β200.2\beta_{20}\approx-0.2, the manually fixed s.p. levels and the self-consistently determined ones come closer to each other.

Refer to caption
Figure 6: Evolution of single particle levels of last unpaired proton (left panel) and neutron (right panel) plotted for 48,50,52K isotopes. The red-solid lines represent the manually fixed single particle levels and the black-solid lines show the self-consistently determined ones.

For the self-consistent calculation, if the deformation parameter is restricted to around β200.20\beta_{20}\approx-0.20, the charge radii RchR_{ch} of 48,50,52K are 3.4882 fm, 3.5210 fm and 3.5463 fm, respectively, consistent with the data. This suggests that it is quite likely that the mismatch between the self-consistently determined charge radii and the experimental data is due to the deformation effect, which needs to be studied in more detail in the future.

IV SUMMARY AND OUTLOOK

In the present work, we applied the newly proposed RMF(BCS)* ansatz to study the charge radii of the potassium isotopic chain. The parabolic-like shape between N=20N=20 and N=28N=28 can be reproduced very well Angeli and Marinova (2013), with the odd-even staggerings reproduced as well but slightly overestimated. Beyond N=28N=28, the rapid increase of charge radii is also reproduced but now the predicted OES effects are much larger, in contradiction with the experimental data, but in agreement with the Fayans density functional theory.

By carefully studying the impact of different occupation of single particle levels by the unpaired proton and neutron, we found that the overestimated OES effects can be reduced if the last unpaired proton occupies the 1f7/21f_{7/2} orbital, instead of the self-consistently determined 1d3/21d_{3/2} orbit. The resulting quadrupole deformation of 48,50,52K is found to be β200.2\beta_{20}\approx-0.2. A further study of the experimental spin-parity assignments for these nuclei revealed that, however, the occupation of the 1f7/21f_{7/2} is not very likely. On the other hand, if these nuclei are deformed instead of spherical, the experimental charge radii data can be reproduced. Judging from the rather soft potential energy surfaces, such an explanation is reasonable and should be checked by beyond-mean-field studies. As a result, we conclude that the latest state-of-the-art experimental measurements of charge radii indeed could help put more constraints on theoretical models.

Acknowledgements.
This work is partly supported by the National Natural Science Foundation of China under Grant Nos. 11735003, 11975041, 11775014 and 11961141004, and the fundamental Research Funds for the Central Universities. This work is also supported by the National Natural Science Foundation of China under Grants No. 11635003, No. 11025524, No. 11161130520, No. 12047513, the Reform and Development Project of Beijing Academy of Science and Technology under Grant No. 13001-2110.

References

  • Ring and Schuck (1980) P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag,New York, 1980).
  • Bohr and Mottelson (1998) A. Bohr and B. R. Mottelson, Nuclear Structure (World Scientific, Singapore, 1998).
  • Zhang et al. (2002a) S. Q. Zhang, J. Meng, S. G. Zhou,  and J. Y. Zeng, Eur. Phys. J. A 13, 285 (2002a).
  • Zhang et al. (2002b) S.-Q. Zhang, J. Meng, S.-G. Zhou,  and J.-Y. Zeng, Chin. Phys. C 26, 252 (2002b).
  • Garcia Ruiz et al. (2016) R. F. Garcia Ruiz, M. L. Bissell, K. Blaum, A. Ekstro¨\ddot{\mathrm{o}}m, N. Fro¨\ddot{\mathrm{o}}mmgen, G. Hagen, M. Hammen, K. Hebeler, J. D. Holt, G. R. Jansen, M. Kowalska, K. Kreim, W. Nazarewicz, R. Neugart, G. Neyens, W. No¨\ddot{\mathrm{o}}rtersha¨\ddot{\mathrm{a}}user, T. Papenbrock, J. Papuga, A. Schwenk, J. Simonis, K. A. Wendt,  and D. T. Yordanov, Nature Phys. 12, 594 (2016).
  • Miller et al. (2019a) A. J. Miller, K. Minamisono, A. Klose, D. Garand, C. Kujawa, J. D. Lantis, Y. Liu, B. Maaß{\ss}, P. F. Mantica, W. Nazarewicz, W. No¨\mathrm{\ddot{o}}rtersha¨\mathrm{\ddot{a}}user, S. V. Pineda, P.-G. Reinhard, D. M. Rossi, F. Sommer, C. Sumithrarachchi, A. Teigelho¨\mathrm{\ddot{o}}fer,  and J. Watkins, Nature Phys. 15, 432 (2019a).
  • Hammen et al. (2018) M. Hammen, W. Nörtershäuser, D. L. Balabanski, M. L. Bissell, K. Blaum, I. Budinčević, B. Cheal, K. T. Flanagan, N. Frömmgen, G. Georgiev, C. Geppert, M. Kowalska, K. Kreim, A. Krieger, W. Nazarewicz, R. Neugart, G. Neyens, J. Papuga, P.-G. Reinhard, M. M. Rajabali, S. Schmidt,  and D. T. Yordanov, Phys. Rev. Lett. 121, 102501 (2018).
  • Gorges et al. (2019) C. Gorges, L. V. Rodríguez, D. L. Balabanski, M. L. Bissell, K. Blaum, B. Cheal, R. F. Garcia Ruiz, G. Georgiev, W. Gins, H. Heylen, A. Kanellakopoulos, S. Kaufmann, M. Kowalska, V. Lagaki, S. Lechner, B. Maaß, S. Malbrunot-Ettenauer, W. Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, P.-G. Reinhard, S. Sailer, R. Sánchez, S. Schmidt, L. Wehner, C. Wraith, L. Xie, Z. Y. Xu, X. F. Yang,  and D. T. Yordanov, Phys. Rev. Lett. 122, 192502 (2019).
  • Day Goodacre et al. (2021) T. Day Goodacre, A. V. Afanasjev, A. E. Barzakh, B. A. Marsh, S. Sels, P. Ring, H. Nakada, A. N. Andreyev, P. Van Duppen, N. A. Althubiti, B. Andel, D. Atanasov, J. Billowes, K. Blaum, T. E. Cocolios, J. G. Cubiss, G. J. Farooq-Smith, D. V. Fedorov, V. N. Fedosseev, K. T. Flanagan, L. P. Gaffney, L. Ghys, M. Huyse, S. Kreim, D. Lunney, K. M. Lynch, V. Manea, Y. Martinez Palenzuela, P. L. Molkanov, M. Rosenbusch, R. E. Rossel, S. Rothe, L. Schweikhard, M. D. Seliverstov, P. Spagnoletti, C. Van Beveren, M. Veinhard, E. Verstraelen, A. Welker, K. Wendt, F. Wienholtz, R. N. Wolf, A. Zadvornaya,  and K. Zuber, Phys. Rev. Lett. 126, 032502 (2021).
  • de Groote et al. (2020) R. P. de Groote, J. Billowes, C. L. Binnersley, M. L. Bissell, T. E. Cocolios, T. Day Goodacre, G. J. Farooq-Smith, D. V. Fedorov, K. T. Flanagan, S. Franchoo, R. F. Garcia Ruiz, W. Gins, J. D. Holt, Á. Koszorús, K. M. Lynch, T. Miyagi, W. Nazarewicz, G. Neyens, P.-G. Reinhard, S. Rothe, H. H. Stroke, A. R. Vernon, K. D. A. Wendt, S. G. Wilkins, Z. Y. Xu,  and X. F. Yang, Nature Phys. 16, 620 (2020).
  • Koszorús et al. (2019) Á. Koszorús, X. F. Yang, J. Billowes, C. L. Binnersley, M. L. Bissell, T. E. Cocolios, G. J. Farooq-Smith, R. P. de Groote, K. T. Flanagan, S. Franchoo, R. F. Garcia Ruiz, S. Geldhof, W. Gins, A. Kanellakopoulos, K. M. Lynch, G. Neyens, H. H. Stroke, A. R. Vernon, K. D. A. Wendt,  and S. G. Wilkins, Phys. Rev. C 100, 034304 (2019).
  • Koszorús et al. (2021) Á. Koszorús, X. F. Yang, W. G. Jiang, S. J. Novario, S. W. Bai, J. Billowes, C. L. Binnersley, M. L. Bissell, T. E. Cocolios, B. S. Cooper, R. P. de Grootz, A. Ekström, K. T. Flanagan, C. Forssén, S. Franchoo, R. F. G. Ruiz, F. P. Gustafsson, G. Hagen, G. R. Jansen, A. Kanellakopoulos, M. Kortelainen, W. Nazarewicz, G. Neyens, T. Papenbrock, P.-G. Reinhard, B. K. Sahoo, C. M. Ricketts, A. R. Vernon,  and S. G. Wilkins, Nature Phys. 17, 439 (2021), [Erratum: Nature Phys. 17, 539 (2021)], arXiv:2012.01864 [nucl-ex] .
  • Angeli and Marinova (2013) I. Angeli and K. Marinova, At. Data Nucl. Data Tables 99, 69 (2013).
  • Wienholtz et al. (2013) F. Wienholtz, D. Beck, K. Blaum, C. Borgmann, M. Breitenfeldt, R. B. Cakirli, S. George, F. Herfurth, J. D. Holt, M. Kowalska, S. Kreim, D. Lunney, V. Manea, J. Mene´\acute{\mathrm{e}}ndez, D. Neidherr, M. Rosenbusch, L. Schweikhard, A. Schwenk, J. Simonis, J. Stanja, R. N. Wolf,  and K. Zuber, Nature 498, 346 (2013).
  • Huck et al. (1985) A. Huck, G. Klotz, A. Knipper, C. Miehé, C. Richard-Serre, G. Walter, A. Poves, H. L. Ravn,  and G. Marguier, Phys. Rev. C 31, 2226 (1985).
  • Touchard et al. (1982) F. Touchard, P. Guimbal, S. Bu¨\ddot{\mathrm{u}}ttgenbach, R. Klapisch, M. De Saint Simon, J. Serre, C. Thibault, H. Duong, P. Juncar, S. Liberman, J. Pinard,  and J. Vialle, Phys. Lett. B 108, 169 (1982).
  • Martensson-Pendrill et al. (1990) A. M. Martensson-Pendrill, L. Pendrill, A. Salomonson, A. Ynnerman,  and H. Warston, J. Phys. B: At. Mol. Opt. Phys. 23, 1749 (1990).
  • Bendali et al. (1981) N. Bendali, H. T. Duong,  and J. L. Vialle, J. Phys. B: At. Mol. Opt. Phys. 14, 4231 (1981).
  • Falke et al. (2006) S. Falke, E. Tiemann, C. Lisdat, H. Schnatz,  and G. Grosche, Phys. Rev. A 74, 032503 (2006).
  • Kreim et al. (2014) K. Kreim, M. Bissell, J. Papuga, K. Blaum, M. De Rydt, R. Garcia Ruiz, S. Goriely, H. Heylen, M. Kowalska, R. Neugart, G. Neyens, W. No¨\ddot{\mathrm{o}}rtersha¨\ddot{\mathrm{a}}user, M. Rajabali, R. S. Alarcón, H. Stroke,  and D. Yordanov, Phys. Lett. B 731, 97 (2014).
  • Rosenbusch et al. (2015) M. Rosenbusch, P. Ascher, D. Atanasov, C. Barbieri, D. Beck, K. Blaum, C. Borgmann, M. Breitenfeldt, R. B. Cakirli, A. Cipollone, S. George, F. Herfurth, M. Kowalska, S. Kreim, D. Lunney, V. Manea, P. Navrátil, D. Neidherr, L. Schweikhard, V. Somà, J. Stanja, F. Wienholtz, R. N. Wolf,  and K. Zuber, Phys. Rev. Lett. 114, 202501 (2015).
  • Ma et al. (2020) Y. Ma, C. Su, J. Liu, Z. Ren, C. Xu,  and Y. Gao, Phys. Rev. C 101, 014304 (2020).
  • Wu et al. (2020) D. Wu, C. L. Bai, H. Sagawa,  and H. Q. Zhang, Phys. Rev. C 102, 054323 (2020).
  • Reinhard and Nazarewicz (2017) P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 95, 064328 (2017).
  • An et al. (2020) R. An, L.-S. Geng,  and S.-S. Zhang, Phys. Rev. C 102, 024307 (2020).
  • Meng and Ring (1996) J. Meng and P. Ring, Phys. Rev. Lett. 77, 3963 (1996).
  • Meng (1998) J. Meng, Nucl. Phys. A 635, 3 (1998).
  • Zhou et al. (2003) S.-G. Zhou, J. Meng,  and P. Ring, Phys. Rev. C 68, 034323 (2003).
  • Vretenar et al. (2005) D. Vretenar, A. Afanasjev, G. Lalazissis,  and P. Ring, Phys. Rep. 409, 101 (2005).
  • Zhou et al. (2010) S.-G. Zhou, J. Meng, P. Ring,  and E.-G. Zhao, Phys. Rev. C 82, 011301(R) (2010).
  • Li et al. (2012) L. Li, J. Meng, P. Ring, E.-G. Zhao,  and S.-G. Zhou, Phys. Rev. C 85, 024312 (2012).
  • Liang et al. (2015) H. Liang, J. Meng,  and S.-G. Zhou, Phys. Rept. 570, 1 (2015).
  • Meng (2016) J. Meng, Relativistic density functional for nuclear structure, Vol. 10 (World Scientific, 2016).
  • Sun et al. (2018) X.-X. Sun, J. Zhao,  and S.-G. Zhou, Phys. Lett. B 785, 530 (2018).
  • Sun et al. (2020) X.-X. Sun, J. Zhao,  and S.-G. Zhou, Nucl. Phys. A 1003, 122011 (2020).
  • Zhang et al. (2020) K. Zhang, M.-K. Cheoun, Y.-B. Choi, P. S. Chong, J. Dong, L. Geng, E. Ha, X. He, C. Heo, M. C. Ho, E. J. In, S. Kim, Y. Kim, C.-H. Lee, J. Lee, Z. Li, T. Luo, J. Meng, M.-H. Mun, Z. Niu, C. Pan, P. Papakonstantinou, X. Shang, C. Shen, G. Shen, W. Sun, X.-X. Sun, C. K. Tam, Thaivayongnou, C. Wang, S. H. Wong, X. Xia, Y. Yan, R. W.-Y. Yeung, T. C. Yiu, S. Zhang, W. Zhang,  and S.-G. Zhou (DRHBc Mass Table Collaboration), Phys. Rev. C 102, 024314 (2020).
  • Zhang et al. (2021) K. Zhang, X. He, J. Meng, C. Pan, C. Shen, C. Wang,  and S. Zhang, Phys. Rev. C 104, L021301 (2021).
  • Paar et al. (2003) N. Paar, P. Ring, T. Nikšić,  and D. Vretenar, Phys. Rev. C 67, 034312 (2003).
  • Paar et al. (2004) N. Paar, T. Nikšić, D. Vretenar,  and P. Ring, Phys. Rev. C 69, 054303 (2004).
  • Zhang et al. (2007) S. S. Zhang, W. Zhang, S. G. Zhou,  and J. Meng, Eur. Phys. J. A 32, 43 (2007).
  • Chen and Piekarewicz (2014) W.-C. Chen and J. Piekarewicz, Phys. Rev. C 90, 044305 (2014).
  • Zhang et al. (2012) S.-S. Zhang, X.-D. Xu,  and J.-P. Peng, Eur. Phys. J. A 48, 40 (2012).
  • Xu et al. (2015) X.-D. Xu, S.-S. Zhang, A. J. Signoracci, M. S. Smith,  and Z. P. Li, Phys. Rev. C 92, 024324 (2015).
  • Cao and Ma (2004) L.-G. Cao and Z.-Y. Ma, Eur. Phys. J. A 22, 189 (2004)arXiv:nucl-th/0307016 .
  • Lalazissis et al. (1997) G. A. Lalazissis, J. König,  and P. Ring, Phys. Rev. C 55, 540 (1997).
  • Ring et al. (1997) P. Ring, Y. K. Gambhir,  and G. A. Lalazissis, Comput. Phys. Commun. 105, 77 (1997).
  • Geng et al. (2003) L.-S. Geng, H. Toki, S. Sugimoto,  and J. Meng, Prog. Theor. Phys. 110, 921 (2003).
  • Dussel et al. (2007) G. G. Dussel, S. Pittel, J. Dukelsky,  and P. Sarriguren, Phys. Rev. C 76, 011302 (2007).
  • An et al. (2018) R. An, L.-S. Geng, S.-S. Zhang,  and L. Liu, Chin. Phys. C 42, 114101 (2018).
  • Geng et al. (2004) L. S. Geng, H. Toki, A. Ozawa,  and J. Meng, Nucl. Phys. A 730, 80 (2004).
  • Reehal and Sorensen (1971) B. S. Reehal and R. A. Sorensen, Nucl. Phys. A 161, 385 (1971).
  • Talmi (1984) I. Talmi, Nucl. Phys. A 423, 189 (1984).
  • Caurier et al. (1980) E. Caurier, A. Poves,  and A. Zuker, Phys. Lett. B 96, 15 (1980).
  • Zawischa (1985) D. Zawischa, Phys. Lett. B 155, 309 (1985).
  • Zawischa et al. (1987) D. Zawischa, U. Regge,  and R. Stapel, Phys. Lett. B 185, 299 (1987).
  • Regge and Zawischa (1988) U. Regge and D. Zawischa, Phys. Rev. Lett. 61, 149 (1988).
  • Girod and Reinhard (1982) M. Girod and P. Reinhard, Phys. Lett. B 117, 1 (1982).
  • Ulm et al. (1986) G. Ulm, S. K. Bhattacherjee, P. Dabkiewicz, G. Huber, H.-J. Kluge, T. Ku¨\ddot{\mathrm{u}}hl, H. Lochmann, E.-W. Otten,  and K. Wendt (ISOLDE), Z. Phys. A 325, 247 (1986).
  • Weber et al. (2005) C. Weber, G. Audi, D. Beck, K. Blaum, G. Bollen, F. Herfurth, A. Kellerbauer, H.-J. Kluge, D. Lunney,  and S. Schwarz, in The 4th International Conference on Exotic Nuclei and Atomic Masses, Vol. 25 (Springer, 2005) pp. 201–202.
  • Wang et al. (2021) M. Wang, W. J. Huang, F. G. Kondev, G. Audi,  and S. Naimi, Chin. Phys. C 45, 030003 (2021).
  • Miller et al. (2019b) G. A. Miller, A. Beck, S. May-Tal Beck, L. B. Weinstein, E. Piasetzky,  and O. Hen, Phys. Lett. B 793, 360 (2019b).
  • Möller et al. (2016) P. Möller, A. Sierk, T. Ichikawa,  and H. Sagawa, At. Data Nucl. Data Tables 109-110, 1 (2016).