This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Dedicated to Nina Nikolaevna Uraltseva on the occasion of her 85th birthday.

Characterizing compact coincidence sets in the obstacle problem—a short proof

Simon Eberle1 1Faculty of Mathematics, University of Duisburg-Essen, Germany [email protected]  and  Georg S. Weiss2 2Faculty of Mathematics, University of Duisburg-Essen, Germany [email protected]

1. Introduction

The problem of characterizing global solutions of the obstacle problem —while being crucial to the analysis of the behavior of the free boundary close to singularities— originated in characterizing null quadrature domains in potential analysis. The first partial result in dimension n=3n=3 is due to P. Dive ([3]). H. Lewy ([6]), too, arrived at ellipsoids in n=3n=3. In two dimensions a complete characterization of null quadrature domains was proved by Makoto Sakai ([9]) by means of complex analysis: only half planes, ellipsoids and paraboloids are possible. E. DiBenedetto- A. Friedman ([2, Theorem 5.1]) in higher dimensions showed —drawing on the result by P. Dive— that any bounded domain KK with non-empty interior such that the gravity force produced by the homoeoid λKK\lambda K\setminus K is zero in a neighborhood of the origin then KK is an ellipsoid, that is a set of the form \MT@delim@Auto\set@starxn:xTAx1\MT@delim@Auto\set@star{x\in\mathds{R}^{n}:x^{T}Ax\leq 1}, where AA is a positive definite, symmetric matrix An×nA\in\mathds{R}^{n\times n}. E. DiBenedetto- A. Friedman applied this result to classical solutions of the Hele-Shaw flow (which includes classical solutions of the one-phase obstacle problem) where they prove that provided that the coincidence set {u=0}\{u=0\} of the solution uu is bounded with non-empty interior and that {u=0}\{u=0\} is symmetric with respect to each hyperplane {xj=0}\{x_{j}=0\}, {u=0}\{u=0\} is an ellipsoid. Finally M. Sakai-A. Friedman ([4]) removed the unnecessary symmetry assumption in the null quadrature domain setting.

Motivated by the almost completely open problem of characterizing unbounded coincidence sets in higher dimensions (compare the conjectures in [5]), we give in this note a concise and easy-to-extend proof of the fact that if coincidence set \MT@delim@Auto\set@staru=0\MT@delim@Auto\set@star{u=0} is bounded with nonempty interior then it is an ellipsoid. Our proof is based on the idea in [3] of touching the unknown set \MT@delim@Auto\set@staru=0\MT@delim@Auto\set@star{u=0} with a known ellipsoid. However we stick during the whole proof to the obstacle problem setting, that is we work with the solution uu avoiding homoeoids and null quadrature domains which will make our result rather short. We will neither need symmetry of \MT@delim@Auto\set@staru=0\MT@delim@Auto\set@star{u=0} at any stage of the proof nor any regularity assumption of \MT@delim@Auto\set@staru=0\MT@delim@Auto\set@star{u=0}.

Acknowledgments

The authors thank the Hausdorff Research Institute for Mathematics of the university of Bonn for its hospitality, Herbert Koch for discussions and Luis Caffarelli for pointing out reference [6] to the authors.

2. Main Theorem and Proof

Let uu be a nonnegative weak solution of

Δu=χ\MT@delim@Auto\set@staru>0 in n.\Delta u=\chi_{\MT@delim@Auto\set@star{u>0}}\quad\text{ in }\mathds{R}^{n}. (1)

It is a known fact that the second derivatives are globally bounded, i.e.

\MT@delim@Auto\norm@starD2uL(n)<+.\MT@delim@Auto\norm@star{D^{2}u}_{L^{\infty}(\mathds{R}^{n})}<+\infty. (2)

and (see for example [7] or [8]) that

u(rx)r2xTQx in Cloc1,αWloc2,p as r,\frac{u(rx)}{r^{2}}\to x^{T}Qx\quad\text{ in }C^{1,\alpha}_{loc}\cap W^{2,p}_{loc}\text{ as }r\to\infty, (3)

where Qn×nQ\in\mathds{R}^{n\times n} is positive definite, symmetric and tr(Q)=12\operatorname{tr}(Q)=\frac{1}{2}. Without loss of generality we assume that the coordinate system is rotated such that QQ is a diagonal matrix.

Definition 1.

We define an ellipsoid as a set \MT@delim@Auto\set@starxn:xTAx1\MT@delim@Auto\set@star{x\in\mathds{R}^{n}:x^{T}Ax\leq 1}, where AA is a positive definite, symmetric matrix An×nA\in\mathds{R}^{n\times n}.

Theorem 2 (Main Theorem).

Let n3n\geq 3 and uu be as above. If the coincidence set \MT@delim@Auto\set@staru=0\MT@delim@Auto\set@star{u=0} is bounded with nonempty interior then it is an ellipsoid.

The idea underlying the proof is extremely simple. We will touch the coincidence set \MT@delim@Auto\set@staru=0\MT@delim@Auto\set@star{u=0} with a suitable ellipsoid and apply a strong comparison principle to the respective solutions. Of course not any ellipsoid will do. We will need the following Lemma relating ellipsoids to solutions of the obstacle problem.

Lemma 3 (Existence of ellipsoid solutions).

For any polynomial p(x)=xTQxp(x)=x^{T}Qx, where Qn×nQ\in\mathds{R}^{n\times n} is diagonal, positive definite and tr(Q)=12\operatorname{tr}(Q)=\frac{1}{2}, there is an ellipsoid EE (symmetric with respect to \MT@delim@Auto\set@starxj=0\MT@delim@Auto\set@star{x_{j}=0} for all j\MT@delim@Auto\set@star1,Nj\in\MT@delim@Auto\set@star{1,\dots N}) and a nonnegative solution of the obstacle problem uEu^{E} such that

ΔuE=χ\MT@delim@Auto\set@staruE>0 in n,\MT@delim@Auto\set@staruE=0=E and uE(rx)r2p(x) as r.\displaystyle\Delta u^{E}=\chi_{\MT@delim@Auto\set@star{u^{E}>0}}\leavevmode\nobreak\ \text{ in }\mathds{R}^{n}\quad,\quad\MT@delim@Auto\set@star{u^{E}=0}=E\quad\text{ and }\quad\frac{u^{E}(rx)}{r^{2}}\to p(x)\leavevmode\nobreak\ \text{ as }r\to\infty. (4)
Proof of Lemma 3.

From [2, see (5.4) therein] we know that for any polynomial p(x)=xTQxp(x)=x^{T}Qx there is an ellipsoid E:={xn:xTAx1}E:=\{x\in\mathds{R}^{n}:x^{T}Ax\leq 1\} (An×nA\in\mathds{R}^{n\times n} positive definite, diagonal and symmetric, as in the statement of the Lemma.) such that its Newton-Potential

uENP(x):=c(n)E1\MT@delim@Auto\abs@starxyn2dy=uENP(0)p(x) in E\displaystyle u_{E}^{NP}(x):=c(n)\int\limits_{E}\frac{1}{\MT@delim@Auto\abs@star{x-y}^{n-2}}\mathop{}\!\mathup{d}y=u_{E}^{NP}(0)-p(x)\quad\text{ in }E

Here c(n)c(n) is given by c(n):=1n(n2)\MT@delim@Auto\abs@starB1c(n):=\frac{1}{n(n-2)\MT@delim@Auto\abs@star{B_{1}}}. We now define the solution uEu^{E} by

uE(x):=p(x)uENP(0)+uENP(x).\displaystyle u^{E}(x):=p(x)-u_{E}^{NP}(0)+u_{E}^{NP}(x). (5)

A direct computation shows that

ΔuE=1χE=χnE,uE=0 in E and uE(rx)r2p(x) as r,\displaystyle\Delta u^{E}=1-\chi_{E}=\chi_{\mathds{R}^{n}\setminus E}\quad,\quad u^{E}=0\text{ in }E\quad\text{ and }\quad\frac{u^{E}(rx)}{r^{2}}\to p(x)\leavevmode\nobreak\ \text{ as }r\to\infty, (6)

where we have used that uENP(x)0u_{E}^{NP}(x)\to 0 as \MT@delim@Auto\abs@starx\MT@delim@Auto\abs@star{x}\to\infty. So all we need to check is that uE>0u^{E}>0 in nE\mathds{R}^{n}\setminus E. From [1, Theorem II] we infer that uEu^{E} is nonnegative in n\mathds{R}^{n} and that the coincidence set \MT@delim@Auto\set@staruE=0\MT@delim@Auto\set@star{u^{E}=0} is convex. Hence if there was x0Ex_{0}\not\in E such that uE(x0)=0u^{E}(x_{0})=0, then this would imply that conv(\MT@delim@Auto\set@starx0E)\MT@delim@Auto\set@staruE=0\operatorname{conv}(\MT@delim@Auto\set@star{x_{0}}\cup E)\subset\MT@delim@Auto\set@star{u^{E}=0} but this is impossible since ΔuE=1\Delta u^{E}=1 in nE\mathds{R}^{n}\setminus E. ∎

Proof of the Main Theorem: Step 1: The Newton-potential solution In order to get a better understanding of the higher order asymptotics of the solution as \MT@delim@Auto\abs@starx\MT@delim@Auto\abs@star{x}\to\infty, we decompose it into a polynomial and the Newton-potential solution.

First, we modify the solution, such that the Laplacian is supported on a bounded domain. Setting

v(x):=u(x)xTQx in n,\displaystyle v(x):=u(x)-x^{T}Qx\quad\text{ in }\mathds{R}^{n}, (7)

vv solves

Δv=χ\MT@delim@Auto\set@staru=0.\displaystyle\Delta v=-\chi_{\MT@delim@Auto\set@star{u=0}}. (8)

Let us denote K:=\MT@delim@Auto\set@staru=0K:=\MT@delim@Auto\set@star{u=0} which is compact by the assumption in Theorem 2 and convex because of (2) (see e.g. [8, Theorem 5.1]). From here on we assume that the coordinate system is translated in such a way that

Ky\MT@delim@Auto\abs@staryndy=0 and 0intK.\displaystyle\int\limits_{K}\frac{y}{\MT@delim@Auto\abs@star{y}^{n}}\mathop{}\!\mathup{d}y=0\quad\text{ and }0\in\operatorname{int}K. (9)

This is possible because KK is bounded and convex with nonempty interior. For details see Appendix A.

The Newton-potential solution (for n3n\geq 3) given by

vNP(x):=c(n)K1\MT@delim@Auto\abs@starxyn2dy, where c(n):=1n(n2)\MT@delim@Auto\abs@starB1>0\displaystyle v^{NP}(x):=c(n)\int\limits_{K}\frac{1}{\MT@delim@Auto\abs@star{x-y}^{n-2}}\mathop{}\!\mathup{d}y\quad,\text{ where }c(n):=\frac{1}{n(n-2)\MT@delim@Auto\abs@star{B_{1}}}>0 (10)

is a strong solution in Wloc2,pW^{2,p}_{loc} of

ΔvNP=χK.\displaystyle\Delta v^{NP}=-\chi_{K}. (11)

Let us note that Δ(vvNP)0\Delta(v-v^{NP})\equiv 0, i.e the difference is harmonic. Since (vvNP)(rx)r20\frac{(v-v^{NP})(rx)}{r^{2}}\to 0 as rr\to\infty uniformly on B1\partial B_{1} the difference must by a Liouville-type argument be a harmonic polynomial of degree at most one, in the following denoted by pp.

Recall that 0intK0\in\operatorname{int}K. This allows us to deduce that

p(0)\displaystyle\nabla p(0) =v(0)vNP(0)=0c(n)Ky\MT@delim@Auto\abs@staryndy=0,\displaystyle=\nabla v(0)-\nabla v^{NP}(0)=0-c(n)\int\limits_{K}\frac{y}{\MT@delim@Auto\abs@star{y}^{n}}\mathop{}\!\mathup{d}y=0, (12)
p(0)\displaystyle p(0) =v(0)vNP(0)=0vNP(0)<0.\displaystyle=v(0)-v^{NP}(0)=0-v^{NP}(0)<0. (13)

We infer that pp(0)<0p\equiv p(0)<0 and that vvNP+p(0)=vNPvNP(0)v\equiv v^{NP}+p(0)=v^{NP}-v^{NP}(0).

Step 2: The comparison function The idea in the following is to touch KK from the outside with an ellipsoid EE satisfying

Ey\MT@delim@Auto\abs@staryndy=Ky\MT@delim@Auto\abs@staryndy,\int\limits_{E}\frac{y}{\MT@delim@Auto\abs@star{y}^{n}}\mathop{}\!\mathup{d}y=\int\limits_{K}\frac{y}{\MT@delim@Auto\abs@star{y}^{n}}\mathop{}\!\mathup{d}y,

and to compare uu with the respective solution uEu^{E}. To do so, let us choose EnE\subset\mathds{R}^{n} as in Lemma 3 where we set pp in the lemma to be the blow-down of uu as defined in (3). The symmetry of EE yields that

Ey\MT@delim@Auto\abs@staryn=0.\displaystyle\int\limits_{E}\frac{y}{\MT@delim@Auto\abs@star{y}^{n}}=0. (14)

Furthermore we define the family of ellipsoids

(Er)r>0,Er:=1rE\displaystyle(E_{r})_{r>0}\quad,\quad E_{r}:=\frac{1}{r}E (15)

and the respective rescalings

Ur(x):=uE(rx)r2 in n.\displaystyle U_{r}(x):=\frac{u^{E}(rx)}{r^{2}}\quad\text{ in }\mathds{R}^{n}. (16)

Note that for all r>0r>0 we have that UrU_{r} is a nonnegative solution of the obstacle problem (1) with coincidence set \MT@delim@Auto\set@starUr=0=Er\MT@delim@Auto\set@star{U_{r}=0}=E_{r} and blow-down p(x)=xTQxp(x)=x^{T}Qx.

Using the compactness of KK there is r1>0r_{1}>0 such that KintEr1K\subset\operatorname{int}E_{r_{1}}.

As for uu we modify UrU_{r} to

Vr(x):=Ur(x)xTQx for all xn.\displaystyle V_{r}(x):=U_{r}(x)-x^{T}Qx\quad\text{ for all }x\in\mathds{R}^{n}. (17)

It follows that

ΔVr=χ\MT@delim@Auto\set@starUr=0=χEr.\displaystyle\Delta V_{r}=-\chi_{\MT@delim@Auto\set@star{U_{r}=0}}=-\chi_{E_{r}}. (18)

As before we define the Newton-potential solution

VrNP(x):=c(n)Er1\MT@delim@Auto\abs@starxyn2dy.\displaystyle V_{r}^{NP}(x):=c(n)\int\limits_{E_{r}}\frac{1}{\MT@delim@Auto\abs@star{x-y}^{n-2}}\mathop{}\!\mathup{d}y. (19)

Since ErE_{r} is symmetric with respect to all planes \MT@delim@Auto\set@starxi=0\MT@delim@Auto\set@star{x_{i}=0} for i\MT@delim@Auto\set@star1,,ni\in\MT@delim@Auto\set@star{1,\dots,n} it follows that

VrNP(0)=c(n)Ery\MT@delim@Auto\abs@staryndy=0.\displaystyle\nabla V_{r}^{NP}(0)=c(n)\int\limits_{E_{r}}\frac{y}{\MT@delim@Auto\abs@star{y}^{n}}\mathop{}\!\mathup{d}y=0. (20)

Since Δ(VrVrNP)0\Delta(V_{r}-V_{r}^{NP})\equiv 0, the difference VrVrNPV_{r}-V_{r}^{NP} is harmonic in the entire space, and from (VrVrNP)(sx)s20\frac{(V_{r}-V_{r}^{NP})(sx)}{s^{2}}\to 0 as ss\to\infty uniformly in B1\partial B_{1} we infer again from a Liouville-type argument that the difference must be polynomial of degree at most one and we denote it by prp_{r}. Calculations similar to the calculations above show that prp_{r} must be of degree zero:

pr(0)\displaystyle\nabla p_{r}(0) =Vr(0)VrNP(0)=0c(n)Ery\MT@delim@Auto\abs@staryndy=0\displaystyle=\nabla V_{r}(0)-\nabla V_{r}^{NP}(0)=0-c(n)\int\limits_{E_{r}}\frac{y}{\MT@delim@Auto\abs@star{y}^{n}}\mathop{}\!\mathup{d}y=0 (21)
pr(0)\displaystyle p_{r}(0) =Vr(0)VrNP(0)=VrNP(0)<0.\displaystyle=V_{r}(0)-V_{r}^{NP}(0)=-V_{r}^{NP}(0)<0. (22)

It follows that VrVrNPVrNP(0)V_{r}\equiv V_{r}^{NP}-V_{r}^{NP}(0) for all r>0r>0. Now we are able to prove the following comparison Lemma.

Step 3: Comparison principle For all r>0r>0 such that KErK\subset E_{r} and \MT@delim@Auto\abs@starErK0\MT@delim@Auto\abs@star{E_{r}\setminus K}\neq 0,

uUr in n and u>Ur in nEr.\displaystyle u\geq U_{r}\quad\text{ in }\mathds{R}^{n}\quad\text{ and }\quad u>U_{r}\quad\text{ in }\mathds{R}^{n}\setminus E_{r}. (23)

For a proof, first note that for all xnx\in\mathds{R}^{n}

VrNP(x)=c(n)Er1\MT@delim@Auto\abs@starxyn2dy>c(n)K1\MT@delim@Auto\abs@starxyn2dy=vNP(x).\displaystyle V_{r}^{NP}(x)=c(n)\int\limits_{E_{r}}\frac{1}{\MT@delim@Auto\abs@star{x-y}^{n-2}}\mathop{}\!\mathup{d}y>c(n)\int\limits_{K}\frac{1}{\MT@delim@Auto\abs@star{x-y}^{n-2}}\mathop{}\!\mathup{d}y=v^{NP}(x). (24)

Let us now apply (24) to the difference

(uUr)(x)=(vVr)(x)=vNP(x)VrNP(x)+VrNP(0)vNP(0)VrNP(0)vNP(0)>0 uniformly as \MT@delim@Auto\abs@starx.\displaystyle(u-U_{r})(x)=(v-V_{r})(x)=v^{NP}(x)-V_{r}^{NP}(x)+V_{r}^{NP}(0)-v^{NP}(0)\to V_{r}^{NP}(0)-v^{NP}(0)>0\quad\text{ uniformly as }\MT@delim@Auto\abs@star{x}\to\infty. (25)

Hence there is R>0R>0 such that

u>Ur in nBR(0).\displaystyle u>U_{r}\quad\text{ in }\mathds{R}^{n}\setminus B_{R}(0). (26)

As uu and UrU_{r} solve the same PDE (1) and we have a comparison principle for this nonlinear PDE (for details see Appendix B) we infer that

uUr in n,\displaystyle u\geq U_{r}\quad\text{ in }\mathds{R}^{n}, (27)

and furthermore

u>Ur in nEr.\displaystyle u>U_{r}\quad\text{ in }\mathds{R}^{n}\setminus E_{r}. (28)

The strict inequality holds because uUru-U_{r} is harmonic in nEr\mathds{R}^{n}\setminus E_{r}, and in case of the two graphs touching in nEr\mathds{R}^{n}\setminus E_{r} the strong maximum principle would yield that uUr0u-U_{r}\equiv 0 in nEr\mathds{R}^{n}\setminus E_{r}, contradicting (26).

Step 4: Applying Hopf’s principle to finish the proof

KKx0x_{0}Er0E_{r_{0}}

Figure 1. Touching the obstacle from outside.

Let us now increase r>0r>0 from r=r1r=r_{1} to r0>r1r_{0}>r_{1} such that the boundaries of Er0E_{r_{0}} and KK touch for the first time (see Figure 1), i.e.

Er0K and ErK= for all r<r0.\displaystyle\partial E_{r_{0}}\cap\partial K\neq\emptyset\text{ and }\partial E_{r}\cap\partial K=\emptyset\text{ for all }r<r_{0}. (29)

Let x0Er0Kx_{0}\in\partial E_{r_{0}}\cap\partial K be a touching point. Then either K=Er0K=E_{r_{0}} and Theorem 2 is proved, or KEr0K\neq E_{r_{0}}. The latter would imply that \MT@delim@Auto\abs@starEr0K>0\MT@delim@Auto\abs@star{E_{r_{0}}\setminus K}>0. In order to see this assume that A,BNA,B\subset\mathds{R}^{N} are two convex, compact sets with non-empty interior such that ABA\subset B and \MT@delim@Auto\abs@starBA=0\MT@delim@Auto\abs@star{B\setminus A}=0. Then since (intB)A(\operatorname{int}B)\setminus A is open, \MT@delim@Auto\abs@starBA=0\MT@delim@Auto\abs@star{B\setminus A}=0 implies that (intB)A=(\operatorname{int}B)\setminus A=\emptyset. Thus intBA\operatorname{int}B\subset A. If there is x¯BA\bar{x}\in\partial B\setminus A, then since BB is convex, conv(\MT@delim@Auto\set@starx¯A)B\operatorname{conv}(\MT@delim@Auto\set@star{\bar{x}}\cup A)\subset B and conv(\MT@delim@Auto\set@starx¯A)A\operatorname{conv}(\MT@delim@Auto\set@star{\bar{x}}\cup A)\setminus A has non-empty interior, as intB\operatorname{int}B\neq\emptyset, intBA\operatorname{int}B\subset A and dist(x¯,A)>0\operatorname{dist}(\bar{x},A)>0. It follows that \MT@delim@Auto\abs@starBA>0\MT@delim@Auto\abs@star{B\setminus A}>0, a contradiction.

This allows us to apply Step 3 with r=r0r=r_{0} and to obtain that

u>Ur0 in nEr0.\displaystyle u>U_{r_{0}}\quad\text{ in }\mathds{R}^{n}\setminus E_{r_{0}}. (30)

Furthermore

Δ(uUr0)=0 in nEr0.\displaystyle\Delta(u-U_{r_{0}})=0\quad\text{ in }\mathds{R}^{n}\setminus E_{r_{0}}. (31)

Since the boundary of the ellipsoid is smooth, there is an open ball BnEr0B\subset\mathds{R}^{n}\setminus E_{r_{0}} such that

B¯Er0=\MT@delim@Auto\set@starx0.\displaystyle\bar{B}\cap E_{r_{0}}=\MT@delim@Auto\set@star{x_{0}}. (32)

From the classical Hopf principle we infer that

(uUr0)ν(x0)<0,\displaystyle\frac{\partial(u-U_{r_{0}})}{\partial\nu}(x_{0})<0, (33)

where ν\nu is the outer unit normal on B\partial B at x0x_{0}. But this is impossible since x0x_{0} is a free boundary point of both uu and Ur0U_{r_{0}}, implying that

u(x0)=0=Ur0(x0).\displaystyle\nabla u(x_{0})=0=\nabla U_{r_{0}}(x_{0}). (34)

Hence the assumption KEr0K\neq E_{r_{0}} must have been wrong and Theorem 2 is proved.∎

Appendix A The weighted center of gravity of KK can be chosen to be zero by a translation

We will show that there is x0Kx^{0}\in K such that

Kx0y\MT@delim@Auto\abs@staryndy=0.\displaystyle\int\limits_{K-x^{0}}\frac{y}{\MT@delim@Auto\abs@star{y}^{n}}\mathop{}\!\mathup{d}y=0. (35)
  1. 1.

    First we show that there is x0nx^{0}\in\mathds{R}^{n} such that

    Kx0y\MT@delim@Auto\abs@staryndy=0.\displaystyle\int\limits_{K-x^{0}}\frac{y}{\MT@delim@Auto\abs@star{y}^{n}}\mathop{}\!\mathup{d}y=0. (36)

    To do so we choose R>0R>0 such that KB¯RK\subset\bar{B}_{R} and for all ε>0\varepsilon>0 define the continuous operator Tε:B¯RnT^{\varepsilon}:\bar{B}_{R}\to\mathds{R}^{n}

    Tε(x):=Ky\MT@delim@Auto\abs@staryxnεdyK1\MT@delim@Auto\abs@staryxnεdy.\displaystyle T^{\varepsilon}(x):=\frac{\int\limits_{K}\frac{y}{\MT@delim@Auto\abs@star{y-x}^{n-\varepsilon}}\mathop{}\!\mathup{d}y}{\int\limits_{K}\frac{1}{\MT@delim@Auto\abs@star{y-x}^{n-\varepsilon}}\mathop{}\!\mathup{d}y}. (37)

    (Note that we have only employed the regularization with ε\varepsilon in order to ensure integrability of all terms involved.) TεT^{\varepsilon} is a self-map because

    \MT@delim@Auto\abs@starTε(x)RK1\MT@delim@Auto\abs@staryxnεdyK1\MT@delim@Auto\abs@staryxnεdy=R.\displaystyle\MT@delim@Auto\abs@star{T^{\varepsilon}(x)}\leq\frac{R\int\limits_{K}\frac{1}{\MT@delim@Auto\abs@star{y-x}^{n-\varepsilon}}\mathop{}\!\mathup{d}y}{\int\limits_{K}\frac{1}{\MT@delim@Auto\abs@star{y-x}^{n-\varepsilon}}\mathop{}\!\mathup{d}y}=R. (38)

    Now Brouwer’s fixed point theorem yields that for all ε>0\varepsilon>0 the continuous self-map Tε:B¯RB¯RT^{\varepsilon}:\bar{B}_{R}\to\bar{B}_{R} has a fixed point xεB¯Rx^{\varepsilon}\in\bar{B}_{R}. Since for all ε>0\varepsilon>0 we know that xεB¯Rx^{\varepsilon}\in\bar{B}_{R},

    xεmx0B¯R as m.\displaystyle x^{\varepsilon_{m}}\to x^{0}\in\bar{B}_{R}\quad\text{ as }m\to\infty. (39)

    Since

    |yxεm\MT@delim@Auto\abs@staryxεmnεm|χK(\MT@delim@Auto\abs@staryxεm+|yxεm\MT@delim@Auto\abs@staryxεmn|)\left|\frac{y-x^{\varepsilon_{m}}}{\MT@delim@Auto\abs@star{y-x^{\varepsilon_{m}}}^{n-{\varepsilon_{m}}}}\right|\leq\chi_{K}\left(\MT@delim@Auto\abs@star{y-x^{\varepsilon_{m}}}+\left|\frac{y-x^{\varepsilon_{m}}}{\MT@delim@Auto\abs@star{y-x^{\varepsilon_{m}}}^{n}}\right|\right)

    where the right-hand side converges in L1L^{1}, Lebesgue’s (generalized) convergence theorem implies that

    Kyxεm\MT@delim@Auto\abs@staryxεmnεmdyKyx0\MT@delim@Auto\abs@staryx0ndy\int\limits_{K}\frac{y-x^{\varepsilon_{m}}}{\MT@delim@Auto\abs@star{y-x^{\varepsilon_{m}}}^{n-{\varepsilon_{m}}}}\mathop{}\!\mathup{d}y\to\int\limits_{K}\frac{y-x^{0}}{\MT@delim@Auto\abs@star{y-x^{0}}^{n}}\mathop{}\!\mathup{d}y

    as mm\to\infty

(Here we used the boundedness of KK.) 2. It remains to show that x0Kx^{0}\in K. Assume that x0Kx^{0}\not\in K. By the convexity of KK there is a hyperplane separating x0x^{0} and KK. Let ν\nu be a unit normal on that hyperplane. By a translation and rotation we may assume that x0=0x^{0}=0, ν=e1\nu=e_{1} and K\MT@delim@Auto\set@starx1>0K\subset\MT@delim@Auto\set@star{x_{1}>0} or K\MT@delim@Auto\set@starx1<0K\subset\MT@delim@Auto\set@star{x_{1}<0}, implying that Ky1\MT@delim@Auto\abs@staryndy0,\displaystyle\int\limits_{K}\frac{y_{1}}{\MT@delim@Auto\abs@star{y}^{n}}\mathop{}\!\mathup{d}y\neq 0, (40) contradicting (36).

Appendix B Comparison principle for the nonlinear PDE

The following comparison principle for solutions of the obstacle problem is well-known and stated only for the sake of completeness. Let Ωn\Omega\subset\mathds{R}^{n} be a bounded domain with Lipschitz-boundary and let uu and vv be weak solutions of (1), i.e. u,vW1,2(Ω)u,v\in W^{1,2}(\Omega) such that for all φW01,2(Ω)\varphi\in W^{1,2}_{0}(\Omega) it holds that

Ωuφ=Ωχ\MT@delim@Auto\set@staru>0φ and Ωvφ=Ωχ\MT@delim@Auto\set@starv>0φ.\displaystyle-\int\limits_{\Omega}\nabla u\cdot\nabla\varphi=\int\limits_{\Omega}\chi_{\MT@delim@Auto\set@star{u>0}}\varphi\quad\text{ and }\quad-\int\limits_{\Omega}\nabla v\cdot\nabla\varphi=\int\limits_{\Omega}\chi_{\MT@delim@Auto\set@star{v>0}}\varphi. (41)

Assume furthermore

vu on Ω\displaystyle v\leq u\quad\text{ on }\partial\Omega (42)

in the sense of traces. Then, testing the weak formulation (41) with the (admissible) test function (vu)+:=max\MT@delim@Auto\set@starvu,0(v-u)^{+}:=\max\MT@delim@Auto\set@star{v-u,0} and subtracting the equations we obtain

Ω\MT@delim@Auto\abs@star(vu)+2=Ω\MT@delim@Auto\bra@starχ\MT@delim@Auto\set@starv>0χ\MT@delim@Auto\set@staru>0(vu)+0\displaystyle-\int\limits_{\Omega}\MT@delim@Auto\abs@star{\nabla(v-u)^{+}}^{2}=\int\limits_{\Omega}\MT@delim@Auto\bra@star{\chi_{\MT@delim@Auto\set@star{v>0}}-\chi_{\MT@delim@Auto\set@star{u>0}}}(v-u)^{+}\geq 0

Hence

(vu)+0 a.e. in Ω.\displaystyle\nabla(v-u)^{+}\equiv 0\quad\text{ a.e. in }\Omega. (43)

This implies that

(vu)+constant a.e. in Ω,\displaystyle(v-u)^{+}\equiv\operatorname{constant}\quad\text{ a.e. in }\Omega, (44)

and from (42) we infer that

(vu)+0 a.e. in Ω,\displaystyle(v-u)^{+}\equiv 0\quad\text{ a.e. in }\Omega, (45)

which finishes the proof.

References

  • [1] L. A. Caffarelli, L. Karp, and H. Shahgholian. Regularity of a free boundary with application to the Pompeiu problem. Ann. of Math. (2), 151(1):269–292, 2000.
  • [2] E. DiBenedetto and A. Friedman. Bubble growth in porous media. Indiana Univ. Math. J., 35(3):573–606, 1986.
  • [3] P. Dive. Attraction des ellipsoïdes homogènes et réciproques d’un théorème de Newton. Bull. Soc. Math. France, 59:128–140, 1931.
  • [4] A. Friedman and M. Sakai. A characterization of null quadrature domains in 𝐑N{\bf R}^{N}. Indiana Univ. Math. J., 35(3):607–610, 1986.
  • [5] L. Karp and A. S. Margulis. Newtonian potential theory for unbounded sources and applications to free boundary problems. J. Anal. Math., 70:1–63, 1996.
  • [6] H. Lewy. An inversion of the obstacle problem and its explicit solution. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 6(4):561–571, 1979.
  • [7] R. Monneau. On the number of singularities for the obstacle problem in two dimensions. The Journal of Geometric Analysis, 13(2):359, Jun 2003.
  • [8] A. Petrosyan, H. Shahgholian, and N. Uraltseva. Regularity of free boundaries in obstacle-type problems, volume 136 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012.
  • [9] M. Sakai. Null quadrature domains. J. Analyse Math., 40:144–154 (1982), 1981.