This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Characterization of complementing pairs of (0)n({\mathbb{Z}}_{\geq 0})^{n}

Hui Rao School of Mathematics and Statistic, Huazhong University of Science and Technology, Wuhan, 430074, China [email protected] Ya-min Yang Institute of applied mathematics, College of Science, Huazhong Agriculture University, Wuhan,430070, China. [email protected]  and  Yuan Zhang School of Mathematics and Statistic, Huazhong University of Science and Technology, Wuhan, 430074, China [email protected]
Abstract.

Let A,B,CA,B,C be subsets of an abelian group GG. A pair (A,B)(A,B) is called a CC-pair if A,BCA,B\subset C and CC is the direct sum of AA and BB. The (0)(\mathbb{Z}_{\geq 0})-pairs are characterized by de Bruijn in 1950 and the (0)2(\mathbb{Z}_{\geq 0})^{2}-pairs are characterized by Niven in 1971. In this paper, we characterize the (0)n(\mathbb{Z}_{\geq 0})^{n}-pairs for all n1n\geq 1. We show that every (0)n(\mathbb{Z}_{\geq 0})^{n}-pair is characterized by a weighted tree if it is primitive, that is, it is not a Cartesian product of a (0)p(\mathbb{Z}_{\geq 0})^{p}-pair and a (0)q(\mathbb{Z}_{\geq 0})^{q}-pair of lower dimensions.

The work is supported by NSFS Nos. 11971195 and 11601172.
2000 Mathematics Subject Classification: 11P83, 52C22
Key words and phrases: complementing pair, power series, weighted tree.
* The correspondence author.

1. Introduction

Let \mathbb{Z} be the set of integers. Let A,B,CnA,B,C\subset\mathbb{Z}^{n}. We define A+B={a+b;aA,bB}.A+B=\{a+b;~{}a\in A,b\in B\}. We call A+BA+B the direct sum of AA and BB and denoted by ABA\oplus B, if every element cA+Bc\in A+B has a unique decomposition as c=a+bc=a+b with aA,bBa\in A,b\in B. We say (A,B)(A,B) is a complementing pair of CC, or a CC-pair, if C=ABC=A\oplus B and A,BCA,B\subset C.

We are interested in n\mathbb{Z}^{n}-pairs and n\mathbb{N}^{n}-pairs, where we denote =0\mathbb{N}=\mathbb{Z}_{\geq 0} for simplicity. Furthermore, a n\mathbb{Z}^{n}-pair (A,B)(A,B) is called a n\mathbb{Z}^{n}-tiling if #A<\#A<\infty, where #A\#A denotes the cardinality of AA; in this case, we call AA a n\mathbb{Z}^{n}-tile. Similarly, we define n\mathbb{N}^{n}-tiling and n\mathbb{N}^{n}-tile.

The characterization of \mathbb{Z}-pairs is an important problem in additive number theory. This problem is first considered by de Bruijn [2] in 1950. In 1974, Swenson [13] showed that this problem is an NP-hard problem. There are very few results on this problem.

To determine when a finite set AA\subset\mathbb{Z} is a \mathbb{Z}-tile is somehow easier. This was done by Newman [9] when #A\#A is a power of a prime number, see also Tijdeman [15]. Coven and Meyerowitz [1] solved the problem when #A\#A contains at most two prime factors, see also Sands [11]. If #A\#A contains more than two prime factors, the problem is still widely open [14, 1]. There are almost no results on n\mathbb{Z}^{n}-pairs with n2n\geq 2, except that Szegedy [12] characterized the d\mathbb{Z}^{d}-tile TT in case that #T\#T is a prime number or #T=4\#T=4.

The characterization of \mathbb{N}-pairs is much easier and it was settled by de Bruijn [3], and was rediscovered by Vaidya [16]. Let (nk)k1(n_{k})_{k\geq 1} be a sequence of integers with nk2n_{k}\geq 2. Any tt\in\mathbb{N} can be written uniquely in the form

(1.1) t=d1+n1d2+(n1n2)d3++(n1nL1)dL,t=d_{1}+n_{1}d_{2}+(n_{1}n_{2})d_{3}+\cdots+(n_{1}\cdots n_{L-1})d_{L},

where dj{0,1,,nj1}d_{j}\in\{0,1,\dots,n_{j}-1\} for each 1jL1\leq j\leq L and dL>0d_{L}>0. We denote the right hand side of (1.1) by d1dL¯\overline{d_{1}\dots d_{L}}.

Proposition 1.1.

(de Bruijn [3], Vaidya [16]) (i) A pair (T,𝒥)(T,{\mathcal{J}}) is an \mathbb{N}-pair with #T=#𝒥=\#T=\#{\mathcal{J}}=\infty if and only if there exists a sequence of integers (nk)k1(n_{k})_{k\geq 1} with nk2n_{k}\geq 2 such that

(1.2) T=L=1{d1dL¯;dj=0 if j is odd},𝒥=L=1{d1dL¯;dj=0 if j is even},T=\bigcup_{L=1}^{\infty}\{\overline{d_{1}\dots d_{L}};~{}d_{j}=0\text{ if $j$ is odd}\},\ {\mathcal{J}}=\bigcup_{L=1}^{\infty}\{\overline{d_{1}\dots d_{L}};~{}d_{j}=0\text{ if $j$ is even}\},

or the other round.

(ii) TT is an \mathbb{N}-tile if and only if there exist L2L\geq 2 and (nk)k=1L(n_{k})_{k=1}^{L} with nk2n_{k}\geq 2 such that

T={d1dL¯;dj=0 if j is odd} or T={d1dL¯;dj=0 if j is even}.T=\{\overline{d_{1}\dots d_{L}};~{}d_{j}=0\text{ if $j$ is odd}\}\text{ or }T=\{\overline{d_{1}\dots d_{L}};~{}d_{j}=0\text{ if $j$ is even}\}.
Remark 1.2.

Let (T,𝒥)(T,{\mathcal{J}}) be an \mathbb{N}-pair with #T=#𝒥=\#T=\#{\mathcal{J}}=\infty. Long [7] made the interesting observation that (T,𝒥)(T,-{\mathcal{J}}) is a \mathbb{Z}-pair; Eigen and Hajian [4] showed that there exists a continuum number of sets 𝒥~\widetilde{\mathcal{J}} such that (T,𝒥~)(T,\widetilde{\mathcal{J}}) is a \mathbb{Z}-pair.

After a partial result was obtained by Hansen [5], Niven [10] characterized the 2\mathbb{N}^{2}-pairs (See Example 1.1 in the end of this section).

The goal of the present paper is to characterize the n\mathbb{N}^{n}-pairs for all n1n\geq 1. For simplicity, we call (T,𝒥)(T,{\mathcal{J}}) an \mathbb{N}^{*}-pair if (T,𝒥)(T,{\mathcal{J}}) is an n\mathbb{N}^{n}-pair for some n1n\geq 1.

It is easy to show that if (I1,J1)(I_{1},J_{1}) is an n\mathbb{N}^{n}-pair and (I2,J2)(I_{2},J_{2}) is an m\mathbb{N}^{m}-pair, then (T,𝒥)=(I1×I2,J1×J2)(T,{\mathcal{J}})=(I_{1}\times I_{2},J_{1}\times J_{2}) is an n+m\mathbb{N}^{n+m}-pair, and we call (T,𝒥)(T,{\mathcal{J}}) the Cartesian product of the two pairs. (See Lemma 2.1.)

An n\mathbb{N}^{n}-pair (T,𝒥)(T,{\mathcal{J}}) is called primitive, if it is not a Cartesian product of two \mathbb{N}^{*}-pairs with lower dimensions. All \mathbb{N}-pairs are primitive. Clearly, to characterize \mathbb{N}^{*}-pairs, we only need understand primitive \mathbb{N}^{*}-pairs.

In literature, polynomials have been used to study direct sum decomposition of abelian groups ([6, 11, 1]) or finite sets ([8]). The first idea in this paper is to use power series to handle \mathbb{N}^{*}-pairs. A power series with finite many variables is called a binary power series if its coefficients belong to {0,1}\{0,1\}. Let x=(x1,,xn)x=(x_{1},\dots,x_{n}) be an nn-tuple variable. For 𝒂=(a1,,an)n{\boldsymbol{a}}=(a_{1},\dots,a_{n})\in\mathbb{N}^{n}, we denote x𝒂=x1a1xnanx^{\boldsymbol{a}}=x_{1}^{a_{1}}\cdots x_{n}^{a_{n}}. For AnA\subset\mathbb{N}^{n}, we define

(1.3) A(x)=𝒂Ax𝒂.A(x)=\sum_{{\boldsymbol{a}}\in A}x^{\boldsymbol{a}}.

For example (x)=k0xk\mathbb{N}(x)=\sum_{k\geq 0}x^{k} and 2(x,y)=(x)(y)\mathbb{N}^{2}(x,y)=\mathbb{N}(x)\mathbb{N}(y). Clearly, (T,𝒥)(T,{\mathcal{J}}) is a n\mathbb{N}^{n}-pair if and only if T(x)𝒥(x)=n(x).T(x){\mathcal{J}}(x)=\mathbb{N}^{n}(x).

We call (C,D)(C,D) an interval pair if it is a {0,1,,N1}\{0,1,\dots,N-1\}-pair for some integer N2N\geq 2, and we call NN the size of the pair (C,D)(C,D).

Remark 1.3.

Nathanson [8] proved that if TS=j=1n{0,1,,aj}T\oplus S=\prod_{j=1}^{n}\{0,1,\dots,a_{j}\} is a higher dimensional interval pair, then (T,S)(T,S) is a cartesian product of one-dimensional interval pairs.

1.1. Extension process

Now, we introduce two ways to produce \mathbb{N}^{*}-pairs from a known n\mathbb{N}^{n}-pair (T,𝒥)(T,{\mathcal{J}}). Let j{1,,n}j\in\{1,\dots,n\}. Denote x=(x¯,xj,x¯¯)x=(\bar{x},x_{j},\bar{\bar{x}}), where x¯=(x1,,xj1)\bar{x}=(x_{1},\dots,x_{j-1}) and x¯¯=(xj+1,,xn).\bar{\bar{x}}=(x_{j+1},\dots,x_{n}).

(1) Extension of the first type. Let N2N\geq 2 and (C,D)(C,D) be a {0,1,,N1}\{0,1,\dots,N-1\}-pair. Set

(1.4) T(x)=C(xj)T(x¯,xjN,x¯¯),𝒥(x)=D(xj)𝒥(x¯,xjN,x¯¯).T^{*}(x)=C(x_{j})T(\bar{x},x_{j}^{N},\bar{\bar{x}}),\quad{\mathcal{J}}^{*}(x)=D(x_{j}){\mathcal{J}}(\bar{x},x_{j}^{N},\bar{\bar{x}}).

Then (T,𝒥)(T^{*},{\mathcal{J}}^{*}) is an n\mathbb{N}^{n}-pair, and we call it a first type extension of (T,𝒥)(T,{\mathcal{J}}). (See Lemma 3.1.)

(2) Extension of the second type. Let δ{0,1}\delta\in\{0,1\}, m2m\geq 2, and 𝒂({0})m{\boldsymbol{a}}\in(\mathbb{N}\setminus\{0\})^{m}. Set

L𝒂=m(m+𝒂).L_{\boldsymbol{a}}=\mathbb{N}^{m}\setminus(\mathbb{N}^{m}+{\boldsymbol{a}}).

Denote y=(y1,,ym)y=(y_{1},\dots,y_{m}), and define L𝒂(y)L_{\boldsymbol{a}}(y) as we did in (1.3). (For example, if 𝒂=(1,1){\boldsymbol{a}}=(1,1), then L𝒂(y1,y2)=1+k1y1k+k1y2kL_{\boldsymbol{a}}(y_{1},y_{2})=1+\sum_{k\geq 1}y_{1}^{k}+\sum_{k\geq 1}y_{2}^{k}.) Set

(1.5) T(x¯,y,x¯¯)=L𝒂δ(y)T(x¯,y𝒂,x¯¯),𝒥(x¯,y,x¯¯)=L𝒂1δ(y)𝒥(x¯,y𝒂,x¯¯).T^{*}(\bar{x},y,\bar{\bar{x}})=L^{\delta}_{{\boldsymbol{a}}}(y)T(\bar{x},y^{\boldsymbol{a}},\bar{\bar{x}}),\quad{\mathcal{J}}^{*}(\bar{x},y,\bar{\bar{x}})=L^{1-\delta}_{{\boldsymbol{a}}}(y){\mathcal{J}}(\bar{x},y^{\boldsymbol{a}},\bar{\bar{x}}).

Then (T,𝒥)(T^{*},{\mathcal{J}}^{*}) is an n+m1{\mathbb{N}}^{n+m-1}-pair, and we call it a second type extension of (T,𝒥)(T,{\mathcal{J}}). (See Lemma 3.2.)

Let (Tj,𝒥j)j=0k(T_{j},{\mathcal{J}}_{j})_{j=0}^{k} be a sequence of \mathbb{N}^{*}-pairs. If (Tj,𝒥j)(T_{j},{\mathcal{J}}_{j}) is a first type or second type extension of (Tj1,𝒥j1)(T_{j-1},{\mathcal{J}}_{j-1}) for j=1,,kj=1,\dots,k, then we say (Tk,𝒥k)(T_{k},{\mathcal{J}}_{k}) is a finite extension of (T0,𝒥0)(T_{0},{\mathcal{J}}_{0}).

An extension of an \mathbb{N}^{*}-pair (T,𝒥)(T,{\mathcal{J}}) is called an illegal extension, if it is a second type extension in (1.5) satisfying (T,𝒥)=({0},)(T,{\mathcal{J}})=(\{0\},\mathbb{N}) and δ=0\delta=0, or (T,𝒥)=(,{0})(T,{\mathcal{J}})=(\mathbb{N},\{0\}) and δ=1\delta=1. An extension changes the primitivity if and only if it is illegal (Theorem 3.1). Our first main result is the following.

Theorem 1.1.

An \mathbb{N}^{*}-pair (T,𝒥)(T,{\mathcal{J}}) is primitive if and only if it is a finite extension of an \mathbb{N}-pair, and the extension process contains no illegal extension.

A finite extension of an \mathbb{N}-pair is primitive is proved in Section 3. The other direction of Theorem 1.1 is proved in Section 4-8, where Lemma 5.1 and Theorem 6.1 contain new techniques and new phenomena which are different from dimension one and two.

1.2. Weighted tree of an \mathbb{N}^{*}-pair.

For a primitive \mathbb{N}^{*}-pair, we introduce a weighted tree to record the information of the extension process in Theorem 1.1. Indeed, a weighted tree provides a visualization of the structure of the associated \mathbb{N}^{*}-pair.

Let (V,Γ)(V,\Gamma) be a finite tree with a root ϕ\phi, where VV is the node set and Γ\Gamma is the edge set. A node is called a top if it has no offspring. Let V0V_{0} denote the set of tops of (V,Γ)(V,\Gamma). In Section 9, we define a weight of (V,Γ)(V,\Gamma) to be a quadruple

(1.6) ((T0,𝒥0),{𝜹v}vVV0,{𝜶v}vV{ϕ},{(Cv,Dv)}vV{ϕ}),\left((T_{0},{\mathcal{J}}_{0}),\{{\boldsymbol{\delta}}_{v}\}_{v\in V\setminus V_{0}},\{{\boldsymbol{\alpha}}_{v}\}_{v\in V\setminus\{\phi\}},\{(C_{v},D_{v})\}_{v\in V\setminus\{\phi\}}\right),

where (T0,𝒥0)(T_{0},{\mathcal{J}}_{0}) is an \mathbb{N}-pair and we call it the initial pair. We associate an \mathbb{N}^{*}-pair to a weighted tree, and we call it the \mathbb{N}^{*}-pair generated by the weighted tree. We show that

Theorem 1.2.

An \mathbb{N}^{*}-pair (T,𝒥)(T,{\mathcal{J}}) is a primitive n\mathbb{N}^{n}-pair if and only if (T,𝒥)(T,{\mathcal{J}}) is generated by a weighted tree with nn tops.

Remark 1.4.

We show that (T,𝒥)(T,{\mathcal{J}}) is an \mathbb{N}^{*}-tiling if and only if in the associated weighted tree, the initial pair is an \mathbb{N}-tiling with #T0<\#T_{0}<\infty and the map 𝜹{\boldsymbol{\delta}} is constantly zero, or the other round (see Remark 9.2). It is folklore that an n\mathbb{N}^{n}-tile is also a n\mathbb{Z}^{n}-tile, so our construction may shed some light to the study of n\mathbb{Z}^{n}-tiles with n2n\geq 2, an area is almost untouched.

In Theorem 9.1 we give an explicit formula for \mathbb{N}^{*}-pairs generated by weighted trees. (In two dimensional case, the formula is given by (1.7).) Actually, for each vVv\in V, we define two sets Pv,QvnP_{v},Q_{v}\subset\mathbb{N}^{n}, and we show that T=vVPvT=\oplus_{v\in V}P_{v} and 𝒥=vVQv{\mathcal{J}}=\oplus_{v\in V}Q_{v}, which give further factorizations of TT and 𝒥{\mathcal{J}}.

Example 1.1.

Niven’s characterization of the 2\mathbb{N}^{2}-pairs is the case n=2n=2 of Theorem 1.1. In the following we describe an extension process to generate primitive 2\mathbb{N}^{2}-pairs.

Let (T0,𝒥0)(T_{0},{\mathcal{J}}_{0}) be a non-trivial \mathbb{N}-pair, δ{0,1}\delta\in\{0,1\}, 𝒂=(a1,a2)({0})2{\boldsymbol{a}}=(a_{1},a_{2})\in({\mathbb{N}}\setminus\{0\})^{2}, and let Φx=(C1,D1)\Phi_{x}=(C_{1},D_{1}) and Φy=(C2,D2)\Phi_{y}=(C_{2},D_{2}) be two interval pairs with size N1N_{1} and N2N_{2}, respectively. Moreover, δ=1\delta=1 if T0={0}T_{0}=\{0\} and δ=0\delta=0 if 𝒥0={0}{\mathcal{J}}_{0}=\{0\}.

Regarding ϕ\phi as a variable, we have T0(ϕ)𝒥0(ϕ)=(ϕ).T_{0}(\phi){\mathcal{J}}_{0}(\phi)=\mathbb{N}(\phi). Applying a second type extension by setting ϕ=xa1ya2\phi=x^{a_{1}}y^{a_{2}}, we obtain an 2\mathbb{N}^{2}-pair

T1(x,y)=L𝒂δ(x,y)T0(xa1ya2),𝒥1(x,y)=L𝒂1δ(x,y)𝒥0(xa1ya2).T_{1}(x,y)=L^{\delta}_{\boldsymbol{a}}(x,y)T_{0}(x^{a_{1}}y^{a_{2}}),\quad{\mathcal{J}}_{1}(x,y)=L^{1-\delta}_{\boldsymbol{a}}(x,y){\mathcal{J}}_{0}(x^{a_{1}}y^{a_{2}}).

Applying two first type extensions to (T1,𝒥1)(T_{1},{\mathcal{J}}_{1}), we obtain

(1.7) T(x,y)=C1(x)C2(y)L𝒂δ(xN1,yN2)T0(xa1N1ya2N2),𝒥(x,y)=D1(x)D2(y)L𝒂1δ(xN1,yN2)𝒥0(xa1N1ya2N2).\begin{array}[]{rl}T(x,y)&=C_{1}(x)C_{2}(y)L_{\boldsymbol{a}}^{\delta}(x^{N_{1}},y^{N_{2}})T_{0}(x^{a_{1}N_{1}}y^{a_{2}N_{2}}),\\ {\mathcal{J}}(x,y)&=D_{1}(x)D_{2}(y)L_{\boldsymbol{a}}^{1-\delta}(x^{N_{1}},y^{N_{2}}){\mathcal{J}}_{0}(x^{a_{1}N_{1}}y^{a_{2}N_{2}}).\end{array}

As a corollary of Theorem 1.2, a pair (T,𝒥)(T,{\mathcal{J}}) is a primitive 2\mathbb{N}^{2}-pair if and only if it is given by (1.7).

The paper is organized as follows. In Section 2, we prove several simple lemmas. Section 3 is devoted to extensions of \mathbb{N}^{*}-pairs. Section 4–Section 8 investigate the reductions of primitive \mathbb{N}^{*}-pairs; Theorem 1.1 is proved in Section 8. In section 9 , we introduce weighted trees. Theorem 1.2 is proved in Section 10.

2. Uniqueness and primitivity

We denote 𝟎m=(0,,0)m{\boldsymbol{0}}_{m}=(0,\dots,0)\in\mathbb{Z}^{m}; if the dimension is implicit, then we just write 𝟎{\boldsymbol{0}}. Let g\prec_{g} be the lexicographical order on n\mathbb{Z}^{n}.

Lemma 2.1.

(i) (Uniqueness) If (T,𝒥)(T,{\mathcal{J}}) and (T,𝒥)(T,{\mathcal{J}}^{\prime}) are two n\mathbb{N}^{n}-pairs, then 𝒥=𝒥{\mathcal{J}}={\mathcal{J}}^{\prime}.

(ii) If T=I1×I2T=I_{1}\times I_{2} and 𝒥=J1×J2{\mathcal{J}}=J_{1}\times J_{2} where (I1,J1)(I_{1},J_{1}) is an n\mathbb{N}^{n}-pair and (I2,J2)(I_{2},J_{2}) is an m\mathbb{N}^{m}-pair, then (T,𝒥)(T,{\mathcal{J}}) is an n+m\mathbb{N}^{n+m}-pair.

Proof.

(i) Let us list 𝒥{\mathcal{J}} as (tk)k1(t_{k})_{k\geq 1} by the following rule: for s,t𝒥s,t\in{\mathcal{J}}, we list ss before tt if |s|<|t||s|<|t|; if |s|=|t||s|=|t|, we list ss before tt if sgts\prec_{g}t. We list 𝒥{\mathcal{J}}^{\prime} as (tk)k1(t_{k}^{\prime})_{k\geq 1} by the same rule.

Clearly t1=t1=𝟎t_{1}=t_{1}^{\prime}={\boldsymbol{0}}. Since T(𝒥{t1})=T(𝒥{t1})T\oplus({\mathcal{J}}\setminus\{t_{1}\})=T\oplus({\mathcal{J}}^{\prime}\setminus\{t_{1}\}), the minimum elements (according to the above rule) of 𝒥{t1}{\mathcal{J}}\setminus\{t_{1}\} and 𝒥{t1}{\mathcal{J}}^{\prime}\setminus\{t_{1}^{\prime}\} coincide, so t2=t2t_{2}=t_{2}^{\prime}. Continue this procedure, we obtain 𝒥=𝒥{\mathcal{J}}={\mathcal{J}}^{\prime}.

(ii) Denote x=(x1,,xn)x=(x_{1},\dots,x_{n}), y=(y1,,ym)y=(y_{1},\dots,y_{m}). We have (I1×I2)(x,y)(J1×J2)(x,y)=I1(x)J1(x)I2(y)J2(y)=n(x)m(y)=n+m(x,y),(I_{1}\times I_{2})(x,y)\cdot(J_{1}\times J_{2})(x,y)=I_{1}(x)J_{1}(x)I_{2}(y)J_{2}(y)=\mathbb{N}^{n}(x)\mathbb{N}^{m}(y)=\mathbb{N}^{n+m}(x,y), which proves the second assertion. ∎

Actually (T,𝒥)(T,{\mathcal{J}}) is non-primitive if one of TT and 𝒥{\mathcal{J}} is a Cartesian product.

Lemma 2.2.

If (T,𝒥)(T,{\mathcal{J}}) is an n+m\mathbb{N}^{n+m}-pair such that T=I1×I2n×mT=I_{1}\times I_{2}\subset\mathbb{N}^{n}\times\mathbb{N}^{m}, then 𝒥{\mathcal{J}} can be written as J1×J2n×mJ_{1}\times J_{2}\subset\mathbb{N}^{n}\times\mathbb{N}^{m}.

Proof.

Denote x=(x1,,xn)x=(x_{1},\dots,x_{n}), y=(y1,,ym)y=(y_{1},\dots,y_{m}). The assumptions imply that

I1(x)I2(y)𝒥(x,y)=n+m(x,y).I_{1}(x)I_{2}(y){\mathcal{J}}(x,y)=\mathbb{N}^{n+m}(x,y).

Setting y=𝟎my={\boldsymbol{0}}_{m}, we obtain I1(x)𝒥(x,𝟎m)=n(x).I_{1}(x){\mathcal{J}}(x,{\boldsymbol{0}}_{m})=\mathbb{N}^{n}(x). Let J1(x)=𝒥(x,𝟎m)J_{1}(x)={\mathcal{J}}(x,{\boldsymbol{0}}_{m}), then (I1,J1)(I_{1},J_{1}) is an n\mathbb{N}^{n}-pair. Similarly, let J2(y)=𝒥(𝟎n,y)J_{2}(y)={\mathcal{J}}({\boldsymbol{0}}_{n},y), then (I2,J2)(I_{2},J_{2}) is an m\mathbb{N}^{m}-pair. By Lemma 2.1(ii), (I1×I2,J1×J2)(I_{1}\times I_{2},J_{1}\times J_{2}) is an n+m\mathbb{N}^{n+m}-pair. Therefore 𝒥=J1×J2{\mathcal{J}}=J_{1}\times J_{2} by Lemma 2.1(i). ∎

We close this section with several results about \mathbb{N}-pairs which will be needed later.

Lemma 2.3.

([3, 11]) If (T,𝒥)(T,{\mathcal{J}}) is an \mathbb{N}-pair, then there exists an integer p2p\geq 2, and an \mathbb{N}-pair (A,B)(A,B) such that T=pAT=pA, 𝒥={0,1,,p1}pB{\mathcal{J}}=\{0,1,\dots,p-1\}\oplus pB or the other round.

Lemma 2.4.

([3, 11, 15]) If (C,D)(C,D) is a {0,1,,N1}\{0,1,\dots,N-1\}-pair with N2N\geq 2, then there exists p2p\geq 2 and a {0,1,,Np1}\{0,1,\dots,\frac{N}{p}-1\}-pair (C~,D~)(\widetilde{C},\widetilde{D}) such that C=pC~,D=pD~+{0,1,,p1}C=p\widetilde{C},D=p\widetilde{D}+\{0,1,\dots,p-1\} or the other round.

We denote CkTC_{k}\uparrow T if CkCk+1C_{k}\subset C_{k+1} and T=k1CkT=\bigcup_{k\geq 1}C_{k}. The following lemma is a easy consequence of Proposition 1.1. We leave the simple proof to the reader.

Lemma 2.5.

Let (T,𝒥)(T,{\mathcal{J}}) be an \mathbb{N}-pair. If #T=#𝒥=\#T=\#{\mathcal{J}}=\infty, then there exists a sequence of interval pairs {(Ck,Dk)}k1\{(C_{k},D_{k})\}_{k\geq 1} such that CkTC_{k}\uparrow T and Dk𝒥D_{k}\uparrow{\mathcal{J}}, and

T=CkNkAk,𝒥=DkNkBkT=C_{k}\oplus N_{k}A_{k},\quad{\mathcal{J}}=D_{k}\oplus N_{k}B_{k}

for some Ak,BkA_{k},B_{k}\subset\mathbb{N}, where NkN_{k} is the size of (Ck,Dk)(C_{k},D_{k}). If #T<\#T<\infty, then there exist an integer N1N\geq 1 and DD\subset\mathbb{N} such that TD={0,1,,N1}T\oplus D=\{0,1,\dots,N-1\} and 𝒥=DN.{\mathcal{J}}=D\oplus N\mathbb{N}.

3. Extensions of n\mathbb{N}^{n}-pairs

In this section, we prove that a finite extension of an \mathbb{N}-pair is a primitive \mathbb{N}^{*}-pair.

Let 𝒂m{\boldsymbol{a}}\in\mathbb{N}^{m} with 𝒂>0{\boldsymbol{a}}>0, recall that L𝒂=m(m+𝒂).L_{\boldsymbol{a}}=\mathbb{N}^{m}\setminus(\mathbb{N}^{m}+{\boldsymbol{a}}). Take zmz\in\mathbb{N}^{m}, and let kk be the largest integer such that zk𝒂mz-k{\boldsymbol{a}}\in\mathbb{N}^{m}, then zk𝒂L𝒂z-k{\boldsymbol{a}}\in L_{\boldsymbol{a}}. Hence

(3.1) L𝒂𝒂=m.L_{\boldsymbol{a}}\oplus\mathbb{N}{\boldsymbol{a}}=\mathbb{N}^{m}.

Especially, Lp={0,1,,p1}.L_{p}=\{0,1,\dots,p-1\}. Denote x=(x1,,xn)x=(x_{1},\dots,x_{n}) and x¯=(x2,,xn)\bar{x}=(x_{2},\dots,x_{n}).

Lemma 3.1.

The pair (T,𝒥)(T^{*},{\mathcal{J}}^{*}) defined in (1.4) is an n\mathbb{N}^{n}-pair.

Proof.

Without loss of generality, we assume j=1j=1 in (1.4). We have

T(x)𝒥(x)=C(x1)D(x1)T(x1N,x¯)𝒥(x1N,x¯)=(1+x1++x1N1)(x1N)n1(x¯)=n(x).\begin{array}[]{rl}T^{*}(x){\mathcal{J}}^{*}(x)&=C(x_{1})D(x_{1})T(x_{1}^{N},\bar{x}){\mathcal{J}}(x_{1}^{N},\bar{x})\\ &=(1+x_{1}+\cdots+x_{1}^{N-1})\mathbb{N}(x_{1}^{N})\mathbb{N}^{n-1}(\bar{x})=\mathbb{N}^{n}(x).\end{array}

The lemma is proved. ∎

Lemma 3.2.

The pair (T,𝒥)(T^{*},{\mathcal{J}}^{*}) defined in (1.5) is an n+m1\mathbb{N}^{n+m-1}-pair.

Proof.

Without loss of generality, we assume j=1j=1 in (1.5). We have

T(y,x¯)𝒥(y,x¯)=L𝒂(y)T(y𝒂,x¯)𝒥(y𝒂,x¯)=L𝒂(y)k0yk𝒂n1(x¯)=m(y)n1(x¯)=n+m1(y,x¯).\begin{array}[]{rl}T^{*}(y,\bar{x}){\mathcal{J}}^{*}(y,\bar{x})&=L_{\boldsymbol{a}}(y)T(y^{{\boldsymbol{a}}},\bar{x}){\mathcal{J}}(y^{{\boldsymbol{a}}},\bar{x})=L_{\boldsymbol{a}}(y)\sum_{k\geq 0}y^{k{\boldsymbol{a}}}\mathbb{N}^{n-1}(\bar{x})\\ &=\mathbb{N}^{m}(y)\mathbb{N}^{n-1}(\bar{x})=\mathbb{N}^{n+m-1}(y,\bar{x}).\end{array}

(The third equality is due to (3.1).) The lemma is proved. ∎

In the rest of this section, we investigate the primitivity property. We say a binary power series T(x1,,xn)T(x_{1},\dots,x_{n}) with n2n\geq 2 is variable separable, if there exist an integer m<nm<n, a permutation τ\tau on {2,,n}\{2,\dots,n\}, and two sets FmF\in\mathbb{N}^{m}, GnmG\in\mathbb{N}^{n-m} such that

(3.2) T(x1,,xn)=F(x1,xτ(2),,xτ(m))G(xτ(m+1),,xτ(n)).T(x_{1},\dots,x_{n})=F(x_{1},x_{\tau(2)},\dots,x_{\tau(m)})G(x_{\tau(m+1)},\dots,x_{\tau(n)}).

The following lemma is a direct consequence of Lemma 2.2.

Lemma 3.3.

An n\mathbb{N}^{n}-pair (T,𝒥)(T,{\mathcal{J}}) with n2n\geq 2 is primitive if and only if T(x)T(x) is not variable separable.

By convention, for TT\subset\mathbb{N}, we say T(x)T(x) is variable separable if and only if #T=1\#T=1.

Lemma 3.4.

Let TnT\subset\mathbb{N}^{n}. The following three statements are equivalent to each other:

(i) T(x1,x2,,xn)T(x_{1},x_{2},\dots,x_{n}) is variable separable.

(ii) T(yz,x2,,xn)T(yz,x_{2},\dots,x_{n}) is variable separable.

(iii) T(x1m,x2,,xn)T(x_{1}^{m},x_{2},\dots,x_{n}) is variable separable for some m2m\geq 2.

Proof.

(i) implies (ii) and (i) implies (iii) are trivial. In the following, we prove the other direction implications.

(ii)\Rightarrow(i). Let us first consider that case n=1n=1. If T(yz)T(yz) is variable separable, then T(yz)=F(y)G(z)T(yz)=F(y)G(z). Set z=1z=1, we obtain T(y)=F(y)G(1)T(y)=F(y)G(1). Since both T(y)T(y) and F(y)F(y) are binary, we obtain that G(1)=1G(1)=1. Similarly, we have F(1)=1F(1)=1. Hence T(1)=1T(1)=1, which means #T=1\#T=1 and T(x)T(x) is variable separable.

Now we assume n2n\geq 2. Suppose T(yz,x2,,xn)T(yz,x_{2},\dots,x_{n}) is variable separable, then there is a permutation τ\tau on {2,,n}\{2,\dots,n\}, and two binary power serieses FF and GG such that either

T(yz,x2,,xn)=F(y,xτ(2),,xτ(k))G(z,xτ(k+1),,xτ(n)) with kn, or T(yz,x_{2},\dots,x_{n})=F(y,x_{\tau(2)},\dots,x_{\tau(k)})G(z,x_{\tau(k+1)},\dots,x_{\tau(n)})\text{ with $k\leq n$, or }
T(yz,x2,,xn)=F(y,z,xτ(2),,xτ(k))G(xτ(k+1),,xτ(n)) with k<nT(yz,x_{2},\dots,x_{n})=F(y,z,x_{\tau(2)},\dots,x_{\tau(k)})G(x_{\tau(k+1)},\dots,x_{\tau(n)})\text{ with $k<n$. }

Set y=1y=1, z=x1z=x_{1}, we obtain a variable separable factorization of T(x1,,xn)T(x_{1},\dots,x_{n}).

(iii)\Rightarrow(i). If n=1n=1, the implication is trivial. Now we assume that n2n\geq 2. Suppose T(x1m,x2,,xn)T(x_{1}^{m},x_{2},\dots,x_{n}) is variable separable, then we have

(3.3) T(x1m,x2,,xn)=F(x1,xτ(2),xτ(k))G(xτ(k+1),,xτ(n))T(x_{1}^{m},x_{2},\dots,x_{n})=F(x_{1},x_{\tau(2)}\dots,x_{\tau(k)})G(x_{\tau(k+1)},\dots,x_{\tau(n)})

where k<nk<n. Since the power of x1x_{1} of any term in FF must be a multiple of mm, we infer that there exists FnF^{*}\in\mathbb{N}^{n} such that

(3.4) F(x1,xτ(2),,xτ(k))=F(x1m,xτ(2),,xτ(k)).F(x_{1},x_{\tau(2)},\dots,x_{\tau(k)})=F^{*}(x_{1}^{m},x_{\tau(2)},\dots,x_{\tau(k)}).

Substituting (3.4) into (3.3), and then replacing x1mx_{1}^{m} by x1x_{1}, we obtain a variable separable factorization of T(x1,,xn)T(x_{1},\dots,x_{n}). ∎

Theorem 3.1.

Let (T,𝒥)(T^{*},{\mathcal{J}}^{*}) be an extension of (T,𝒥)(T,{\mathcal{J}}). If the extension is not illegal, then (T,𝒥)(T^{*},{\mathcal{J}}^{*}) is primitive if and only if (T,𝒥)(T,{\mathcal{J}}) is primitive.

Proof.

(i) Let (T,𝒥)(T^{*},{\mathcal{J}}^{*}) be a first type extension of (T,𝒥)(T,{\mathcal{J}}) satisfying T(x)=C(x1)T(x1N,x¯)T^{*}(x)=C(x_{1})T(x_{1}^{N},{\bar{x}}). If n=1n=1, then both (T,𝒥)(T,{\mathcal{J}}) and (T,𝒥)(T^{*},{\mathcal{J}}^{*}) are primitive. Now we assume n2n\geq 2. By Lemma 3.4, we have

(T,𝒥) is non-primitiveT(x) is variable separableT(x1N,x¯)=T(x)/C(x1) is variable separable T(x) is variable separable  (T,𝒥) is non-primitive.\begin{array}[]{rl}\text{$(T^{*},{\mathcal{J}}^{*})$ is non-primitive}&\Leftrightarrow\text{$T^{*}(x)$ is variable separable}\\ &\Leftrightarrow\text{$T(x_{1}^{N},\bar{x})=T^{*}(x)/C(x_{1})$ is variable separable}\\ &\Leftrightarrow\text{ $T(x)$ is variable separable $\Leftrightarrow$ $(T,{\mathcal{J}})$ is non-primitive.}\end{array}

The theorem holds in this case.

(ii) Let (T,𝒥)(T^{*},{\mathcal{J}}^{*}) be a second type extension of (T,𝒥)(T,{\mathcal{J}}) with parameters δ\delta and 𝒂{\boldsymbol{a}}. Let us assume δ=0\delta=0, then T(y,x¯)=T(y𝒂,x¯),T^{*}(y,\bar{x})=T(y^{{\boldsymbol{a}}},\bar{x}), where y=(y1,,ym)y=(y_{1},\dots,y_{m}). Similar as above, (T,𝒥)(T^{*},{\mathcal{J}}^{*}) is non-primitive is equivalent to T(x)T(x) is variable separable. If n>1n>1, it is equivalent to (T,𝒥)(T,{\mathcal{J}}) is non-primitive; if n=1n=1, it is equivalent to (T,𝒥)=({0},)(T,{\mathcal{J}})=(\{0\},\mathbb{N}), which means the extension is illegal. The theorem is proved. ∎

4. \mathbb{N}^{*}-pairs of pure type

Let 𝐞1,,𝐞n{\mathbf{e}}_{1},\dots,{\mathbf{e}}_{n} be the canonical basis of n\mathbb{Z}^{n}. Let n2n\geq 2, set

(4.1) L0={(a1,,an)n;at least one aj is 0}L_{0}=\{(a_{1},\dots,a_{n})\in\mathbb{N}^{n};\ \text{at least one $a_{j}$ is $0$}\}

to be the union of (n1)(n-1)-faces of n\mathbb{N}^{n}. An n\mathbb{N}^{n}-pair (T,𝒥)(T,{\mathcal{J}}) with n2n\geq 2 is said to be of pure type, if either L0TL_{0}\subset T or L0𝒥L_{0}\subset{\mathcal{J}}. In this section, we characterize \mathbb{N}^{*}-pairs of pure type.

Let 𝒂{\boldsymbol{a}}, 𝐛n{\mathbf{b}}\in\mathbb{N}^{n}. We say 𝒂𝐛{\boldsymbol{a}}\leq{\mathbf{b}} if 𝐛𝒂n{\mathbf{b}}-{\boldsymbol{a}}\in\mathbb{N}^{n}, and 𝒂<𝐛{\boldsymbol{a}}<{\mathbf{b}} if 𝐛𝒂({0})n{\mathbf{b}}-{\boldsymbol{a}}\in(\mathbb{N}\setminus\{0\})^{n}.

Lemma 4.1.

If (T,𝒥)(T,{\mathcal{J}}) is an n\mathbb{N}^{n}-pair such that L0𝒥L_{0}\subset{\mathcal{J}}, then << induces a linear order on TT. We call 𝐚{\boldsymbol{a}} the germ of TT, where 𝐚{\boldsymbol{a}} is the minimum of T{𝟎}T\setminus\{{\boldsymbol{0}}\} with respect to <<.

Proof.

Denote ab=max{a,b}a\vee b=\max\{a,b\}, and (a1,,an)(b1,,bn)=(a1b1,,anbn)(a_{1},\dots,a_{n})\vee(b_{1},\dots,b_{n})=(a_{1}\vee b_{1},\dots,a_{n}\vee b_{n}).

Let 𝒂,𝐛T{\boldsymbol{a}},{\mathbf{b}}\in T. Since L0𝒥,L_{0}\subset{\mathcal{J}}, 𝒂+L0{\boldsymbol{a}}+L_{0} and 𝐛+L0{\mathbf{b}}+L_{0} do not overlap. If neither 𝒂𝐛>0{\boldsymbol{a}}-{\mathbf{b}}>0 nor 𝐛𝒂>0{\mathbf{b}}-{\boldsymbol{a}}>0, then 𝐜:=(𝒂𝐛)𝟎L0{\mathbf{c}}:=({\boldsymbol{a}}-{\mathbf{b}})\vee{\boldsymbol{0}}\in L_{0} and 𝐜:=(𝐛𝒂)𝟎L0{\mathbf{c}}^{\prime}:=({\mathbf{b}}-{\boldsymbol{a}})\vee{\boldsymbol{0}}\in L_{0}. It follows that 𝐛+𝐜=𝒂+𝐜{\mathbf{b}}+{\mathbf{c}}={\boldsymbol{a}}+{\mathbf{c}}^{\prime}, a contradiction. ∎

Lemma 4.2.

Let (T,𝒥)(T,{\mathcal{J}}) be an n\mathbb{N}^{n}-pair with L0𝒥L_{0}\subset{\mathcal{J}}, and let 𝐚{\boldsymbol{a}} be the germ of TT. Then

(i) L𝐚𝒥L_{\boldsymbol{a}}\subset{\mathcal{J}};

(ii) for every integer k0k\geq 0, (k𝐚+L𝐚)T(k{\boldsymbol{a}}+L_{{\boldsymbol{a}}})\cap T contains at most one element.

Proof.

(i) is obvious. Now we prove (ii). Suppose on the contrary u,u(k𝒂+L𝒂)Tu,u^{\prime}\in(k{\boldsymbol{a}}+L_{{\boldsymbol{a}}})\cap T. We assume that u<uu^{\prime}<u (Lemma 4.1). Then uuL𝒂u-u^{\prime}\in L_{\boldsymbol{a}} since 𝟎uuuk𝒂{\boldsymbol{0}}\leq u-u^{\prime}\leq u-k{\boldsymbol{a}}. So u=(u)+𝟎u=(u)+{\boldsymbol{0}} and u=(u)+(uu)u=(u^{\prime})+(u-u^{\prime}) are two different (T,𝒥)(T,{\mathcal{J}})-decompositions of uu, which is a contradiction. ∎

The following result is an extension of Lemma 2.3 (the case n=1n=1) and Niven [10, Lemma 5] ( the case n=2n=2) to higher dimensions.

Theorem 4.1.

Let n2n\geq 2, let (T,𝒥)(T,{\mathcal{J}}) be an n\mathbb{N}^{n}-pair of pure type with L0𝒥L_{0}\subset{\mathcal{J}}, and let 𝐚{\boldsymbol{a}} be the germ of TT. Then there exists an \mathbb{N}-pair (A,B)(A,B) such that

T=A𝒂,𝒥=B𝒂L𝒂.T=A{\boldsymbol{a}},\quad{\mathcal{J}}=B{\boldsymbol{a}}\oplus L_{\boldsymbol{a}}.
Proof.

For k0k\geq 0, denote Ωk=k𝒂+L𝒂\Omega_{k}=k{\boldsymbol{a}}+L_{\boldsymbol{a}}, and we call it the kk-th section of n\mathbb{N}^{n}. For every integer k0k\geq 0, we claim that

(i)(i) TΩk={k𝒂} or ;T\cap\Omega_{k}=\{k{\boldsymbol{a}}\}\text{ or }\emptyset;  (ii)(ii) 𝒥Ωk=Ωk or .{\mathcal{J}}\cap\Omega_{k}=\Omega_{k}\text{ or }\emptyset.

By Lemma 4.2, 𝟎,𝒂T{\boldsymbol{0}},{\boldsymbol{a}}\in T and L𝒂𝒥L_{\boldsymbol{a}}\subset{\mathcal{J}}, so the claim holds for k=0k=0 . Suppose the claim is false and let k1k\geq 1 be the smallest integer such that (i) or (ii) fails.

First, by the minimality of kk, we have

Tj=0k1Ωj=U𝒂,𝒥j=0k1Ωj=V𝒂L𝒂T\cap\bigcup_{j=0}^{k-1}\Omega_{j}=U{\boldsymbol{a}},\quad{\mathcal{J}}\cap\bigcup_{j=0}^{k-1}\Omega_{j}=V{\boldsymbol{a}}\oplus L_{\boldsymbol{a}}

where U,V{0,1,,k1}U,V\subset\{0,1,\dots,k-1\}. Secondly, we assert that

k𝒂T and kU+V.k{\boldsymbol{a}}\not\in T\text{ and }k\not\in U+V.

Suppose k𝒂Tk{\boldsymbol{a}}\in T, then (k𝒂)+(𝐛)(k{\boldsymbol{a}})+({\mathbf{b}}), 𝐛L𝒂{\mathbf{b}}\in L_{\boldsymbol{a}}, are the (T,𝒥)(T,{\mathcal{J}})-decomposition of elements in k𝒂+L𝒂k{\boldsymbol{a}}+L_{\boldsymbol{a}}, and this forces that (i) and (ii) hold for kk, a contradiction. By the same reason, we have that kU+Vk\not\in U+V.

Let C=TΩkC=T\cap\Omega_{k} and D=𝒥ΩkD={\mathcal{J}}\cap\Omega_{k}. Then CC contains at most one element. The set Ωk\Omega_{k} is covered by

(Tj=0kΩj))(𝒥j=0kΩj)=(U𝒂C)((V𝒂+L𝒂)D).(T\cap\bigcup_{j=0}^{k}\Omega_{j}))\oplus({\mathcal{J}}\cap\bigcup_{j=0}^{k}\Omega_{j})=(U{\boldsymbol{a}}\cup C)\oplus((V{\boldsymbol{a}}+L_{\boldsymbol{a}})\cup D).

Eliminating the elements apparently outside of Ωk\Omega_{k}, we have that Ωk\Omega_{k} is covered by D(CL𝒂)((U+V)𝒂+L𝒂)D\cup(C\oplus L_{\boldsymbol{a}})\cup((U+V){\boldsymbol{a}}+L_{\boldsymbol{a}}). Since kU+Vk\not\in U+V, we finally obtain

(4.2) Ωk(CL𝒂)D,\Omega_{k}\subset(C\oplus L_{\boldsymbol{a}})\cup D,

which implies that both CC and DD are not empty.

Let us denote C={𝐜}C=\{{\mathbf{c}}\}. Since 𝐜k𝒂{\mathbf{c}}\neq k{\boldsymbol{a}}, there exists ii such that 𝐜𝐞iΩk{\mathbf{c}}-{\mathbf{e}}_{i}\in\Omega_{k}, so 𝐜𝐞iD{\mathbf{c}}-{\mathbf{e}}_{i}\in D by (4.2). Since 𝒂T{\boldsymbol{a}}\in T and 𝒂𝐞i𝒥{\boldsymbol{a}}-{\mathbf{e}}_{i}\in{\mathcal{J}},

𝒂+(𝐜𝐞i)=𝐜+(𝒂𝐞i){\boldsymbol{a}}+({\mathbf{c}}-{\mathbf{e}}_{i})={\mathbf{c}}+({\boldsymbol{a}}-{\mathbf{e}}_{i})

provides two (T,𝒥)(T,{\mathcal{J}})-decompositions of a same point. This contradiction proves our claim.

Our claim implies that T=A𝒂T=A{\boldsymbol{a}} and 𝒥=B𝒂+L𝒂{\mathcal{J}}=B{\boldsymbol{a}}+L_{\boldsymbol{a}} for some A,BA,B\subset\mathbb{N}. From A𝒂B𝒂L𝒂=T𝒥=𝒂L𝒂,A{\boldsymbol{a}}\oplus B{\boldsymbol{a}}\oplus L_{\boldsymbol{a}}=T\oplus{\mathcal{J}}=\mathbb{N}{\boldsymbol{a}}\oplus L_{\boldsymbol{a}}, we deduce that (A,B)(A,B) is an \mathbb{N}-pair. The theorem is proved. ∎

5. A key Lemma

In this section we prove a crucial lemma which will be used in Section 6.

Let n1n\geq 1 and write z=(z1,,zn)z=(z_{1},\dots,z_{n}).

Lemma 5.1.

Let 𝐚>0{\boldsymbol{a}}>0 be a point in n\mathbb{N}^{n}. Let A0,B0A_{0},B_{0}\subset\mathbb{N} with 0,1A00,1\in A_{0} and 0B00\in B_{0}, and denote F0=A0𝐚F_{0}=A_{0}{\boldsymbol{a}}, G0=B0𝐚L𝐚.G_{0}=B_{0}{\boldsymbol{a}}\oplus L_{\boldsymbol{a}}. Let Ω𝐚\Omega\subset\mathbb{N}{\boldsymbol{a}}. If F1,G1F_{1},G_{1} are two subsets of n\mathbb{N}^{n} such that

(5.1) F0(z)G1(z)+F1(z)G0(z)=L𝒂(z)Ω(z),F_{0}(z)G_{1}(z)+F_{1}(z)G_{0}(z)=L_{\boldsymbol{a}}(z)\Omega(z),

then F1=A1𝐚F_{1}=A_{1}{\boldsymbol{a}} and G1=B1𝐚L𝐚G_{1}=B_{1}{\boldsymbol{a}}\oplus L_{\boldsymbol{a}} for some A1,B1A_{1},B_{1}\subset\mathbb{N}.

Proof.

The assumption (5.1) implies that

(F0G1)(F1G0)=ΩL𝒂 and (F0G1)(F1G0)=.(F_{0}\oplus G_{1})\cup(F_{1}\oplus G_{0})=\Omega\oplus L_{\boldsymbol{a}}\text{ and }(F_{0}\oplus G_{1})\cap(F_{1}\oplus G_{0})=\emptyset.

Denote Ω=(dk𝒂)k1,\Omega=(d_{k}{\boldsymbol{a}})_{k\geq 1}, where (dk)k1(d_{k})_{k\geq 1} is an increasing sequence in \mathbb{N}. We denote Ωk:=dk𝒂+L𝒂\Omega_{k}:=d_{k}{\boldsymbol{a}}+L_{\boldsymbol{a}} and call it the kk-th section of Ω+L𝒂\Omega+L_{\boldsymbol{a}}. We claim that:

Claim 1. For all k0k\geq 0, G1Ωk=G_{1}\cap\Omega_{k}=\emptyset or Ωk\Omega_{k}.

We prove the claim by induction. Clearly the claim holds for k=1k=1. Let k2k\geq 2 and assume that G1Ωj=G_{1}\cap\Omega_{j}=\emptyset or Ωj\Omega_{j} holds for j<kj<k. Then

(5.2) G1(Ω1Ωk1)=V𝒂+L𝒂,G_{1}\cap(\Omega_{1}\cup\cdots\cup\Omega_{k-1})=V{\boldsymbol{a}}+L_{\boldsymbol{a}},

where V{d1,d2,,dk1}V\subset\{d_{1},d_{2},\dots,d_{k-1}\}. Hence, for j<kj<k,

(5.3) (F0G1)Ωj=(F0({g0,,gh}𝒂+L𝒂))Ωj= or Ωj.(F_{0}\oplus G_{1})\cap\Omega_{j}=(F_{0}\oplus(\{g_{0},\dots,g_{h}\}{\boldsymbol{a}}+L_{\boldsymbol{a}}))\cap\Omega_{j}=\emptyset\text{ or }\Omega_{j}.

Consequently, for j<kj<k, as the complement of the right hand side of (5.3),

(5.4) (F1G0)Ωj= or Ωj.(F_{1}\oplus G_{0})\cap\Omega_{j}=\emptyset\text{ or }\Omega_{j}.

Let ff^{*} be the smallest element in F1F_{1} such that f𝒂f^{*}\not\in\mathbb{N}{\boldsymbol{a}}. By (5.3) and (5.4),

(5.5) fΩ1Ωk1(if f exists).f^{*}\not\in\Omega_{1}\cup\cdots\cup\Omega_{k-1}\ (\text{if $f^{*}$ exists}).

Suppose that Claim 1 is false for kk. Denote C:=G1ΩkC:=G_{1}\cap\Omega_{k}. We assert that

(5.6) (F0G1)Ωk=C.(F_{0}\oplus G_{1})\cap\Omega_{k}=C.

Notice that

(F0G1)Ωk=[(F0({g0,,gh}𝒂+L𝒂))Ωk][(F0C)Ωk].(F_{0}\oplus G_{1})\cap\Omega_{k}=[(F_{0}\oplus(\{g_{0},\dots,g_{h}\}{\boldsymbol{a}}+L_{\boldsymbol{a}}))\cap\Omega_{k}]\cup[(F_{0}\oplus C)\cap\Omega_{k}].

The second term on the right hand side is CC, so the first term must be the empty set, which implies (5.6).

By (5.6) and (5.4), we have that (F1G0)Ωk(F_{1}\oplus G_{0})\cap\Omega_{k}\neq\emptyset, so there exists fF1f\in F_{1} such that (f+G0)Ωk(f+G_{0})\cap\Omega_{k}\neq\emptyset. The intersection is not Ωk\Omega_{k} implies that f𝒂f\not\in\mathbb{N}{\boldsymbol{a}}, so we have fΩkf\in\Omega_{k} since fff\geq f^{*}. Since F1ΩkF_{1}\cap\Omega_{k} contains at most one element, we conclude that f=ff=f^{*}.

Let ii be the index in {1,,n}\{1,\dots,n\} such that f𝐞iΩkf-{\mathbf{e}}_{i}\in\Omega_{k}. Then f𝐞if-{\mathbf{e}}_{i} is not covered by f+G0f+G_{0}, and hence it is not covered by F1+G0F_{1}+G_{0}. It follows that f𝐞iCf-{\mathbf{e}}_{i}\in C. Therefore, on one hand, we have

𝒂+(f𝐞i)F0+CF0+G1;{\boldsymbol{a}}+(f-{\mathbf{e}}_{i})\in F_{0}+C\subset F_{0}+G_{1};

on the other hand, f+(𝒂𝐞i)F1+L𝒂F1+G0.f+({\boldsymbol{a}}-{\mathbf{e}}_{i})\in F_{1}+L_{\boldsymbol{a}}\subset F_{1}+G_{0}. This is a contradiction, and Claim 1 is proved. Therefore, (5.2) and (5.5) holds for all kk, which imply that G1=B1𝒂L𝒂G_{1}=B_{1}{\boldsymbol{a}}\oplus L_{\boldsymbol{a}}, F1=A1𝒂F_{1}=A_{1}{\boldsymbol{a}} for some A1,B1A_{1},B_{1}\subset\mathbb{N}. The lemma is proved. ∎

6. Marginal pairs of \mathbb{N}^{*}-pairs

Let j1,,jm(1m<n)j_{1},\dots,j_{m}(1\leq m<n) be a subsequence of 1,,n1,\dots,n. We call Q=𝐞j1𝐞jmQ=\mathbb{N}{\mathbf{e}}_{j_{1}}\oplus\cdots\oplus\mathbb{N}{\mathbf{e}}_{j_{m}} an mm-face of n\mathbb{N}^{n}. Define ρ:Qm\rho:Q\to\mathbb{N}^{m} as ρ(=1mc𝐞j)=(c1,,cm).\rho\left(\sum_{\ell=1}^{m}c_{\ell}{\mathbf{e}}_{j_{\ell}}\right)=(c_{1},\dots,c_{m}). We denote

(6.1) TQ=TQ,𝒥Q=𝒥Q,T_{Q}=T\cap Q,\quad{\mathcal{J}}_{Q}={\mathcal{J}}\cap Q,

and call (ρ(TQ),ρ(𝒥Q))(\rho(T_{Q}),\rho({\mathcal{J}}_{Q})) the marginal pair induced by QQ.

Lemma 6.1.

Let (T,𝒥)(T,{\mathcal{J}}) be an n\mathbb{N}^{n}-pair and QQ be an mm-face of n\mathbb{N}^{n}. Then (TQ,𝒥Q)(T_{Q},{\mathcal{J}}_{Q}) is a QQ-pair. Consequently, the marginal pair (ρ(TQ),ρ(𝒥Q))(\rho(T_{Q}),\rho({\mathcal{J}}_{Q})) is an m\mathbb{N}^{m}-pair.

Proof.

In T(x)𝒥(x)=n(x)T(x){\mathcal{J}}(x)=\mathbb{N}^{n}(x), setting xk=0x_{k}=0 if k{j1,,jm}k\not\in\{j_{1},\dots,j_{m}\}, we obtain TQ(x)𝒥Q(x)=Q(x)T_{Q}(x){\mathcal{J}}_{Q}(x)=Q(x), which implies that TQ𝒥Q=QT_{Q}\oplus{\mathcal{J}}_{Q}=Q. The second assertion is obvious. ∎

If (T,𝒥)(T,{\mathcal{J}}) is an \mathbb{N}-pair with {0,1,,p1}𝒥\{0,1,\dots,p-1\}\subset{\mathcal{J}} and pTp\in T, we call pp the germ of TT.

Theorem 6.1.

Let (T,𝒥)(T,{\mathcal{J}}) be an n\mathbb{N}^{n}-pair and Q=𝐞1𝐞mQ=\mathbb{N}{\mathbf{e}}_{1}\oplus\cdots\oplus\mathbb{N}{\mathbf{e}}_{m} with 1mn1\leq m\leq n. If the marginal pair (ρ(TQ),ρ(𝒥Q)(\rho(T_{Q}),\rho({\mathcal{J}}_{Q}) is of pure type in case of m>1m>1, then there exists an nm+1\mathbb{N}^{n-m+1}-pair (T~,𝒥~)(\widetilde{T},\widetilde{\mathcal{J}}) such that

(6.2) T(x)=T~(x1a1xmam,xm+1,,xn),𝒥(x)=L𝒂(x1,,xm)𝒥~(x1a1xmam,xm+1,,xn),\begin{array}[]{ll}T(x)=\widetilde{T}(x_{1}^{a_{1}}\cdots x_{m}^{a_{m}},x_{m+1},\dots,x_{n}),\\ {\mathcal{J}}(x)=L_{\boldsymbol{a}}(x_{1},\dots,x_{m})\widetilde{\mathcal{J}}(x_{1}^{a_{1}}\cdots x_{m}^{a_{m}},x_{m+1},\dots,x_{n}),\end{array}

where 𝐚=(a1,,am){\boldsymbol{a}}=(a_{1},\dots,a_{m}) is the germ of ρ(TQ)\rho(T_{Q}).

We note that (6.2) is a second type extension if m>1m>1, and is of first type if m=1m=1. Moreover, if m=nm=n, then Theorem 6.1 becomes Theorem 4.1 or Lemma 2.3.

Proof.

By Theorem 4.1 or Lemma 2.3, there exists an \mathbb{N}-pair (A,B)(A,B) with 1A1\in A such that

(6.3) ρ(TQ)=A𝒂,ρ(𝒥Q)=B𝒂L𝒂,\rho(T_{Q})=A{\boldsymbol{a}},\quad\rho({\mathcal{J}}_{Q})=B{\boldsymbol{a}}\oplus L_{\boldsymbol{a}},

(Remember that in case of m=1m=1, L𝒂={0,1,,𝒂1}L_{\boldsymbol{a}}=\{0,1,\dots,{\boldsymbol{a}}-1\}.) Let 𝐦nm{\mathbf{m}}\in\mathbb{N}^{n-m}. Define

T𝐦={um;(u,𝐦)T},𝒥𝐦={vm;(v,𝐦)𝒥}.T_{\mathbf{m}}=\{u\in\mathbb{N}^{m};~{}(u,{\mathbf{m}})\in T\},\quad{\mathcal{J}}_{\mathbf{m}}=\{v\in\mathbb{N}^{m};~{}(v,{\mathbf{m}})\in{\mathcal{J}}\}.

Denote x¯¯=(xm+1,,xn)\bar{\bar{x}}=(x_{m+1},\dots,x_{n}), then

(6.4) T(x)=𝐩nmT𝐩(x1,,xm)x¯¯𝐩,𝒥(x)=𝐪nm𝒥𝐪(x1,,xm)x¯¯𝐪.T(x)=\sum_{{\mathbf{p}}\in\mathbb{N}^{n-m}}T_{\mathbf{p}}(x_{1},\dots,x_{m})\bar{\bar{x}}^{\mathbf{p}},\quad{\mathcal{J}}(x)=\sum_{{\mathbf{q}}\in\mathbb{N}^{n-m}}{\mathcal{J}}_{\mathbf{q}}(x_{1},\dots,x_{m})\bar{\bar{x}}^{\mathbf{q}}.

We claim that for all 𝐦nm{\mathbf{m}}\in\mathbb{N}^{n-m}, it holds that

(6.5) m(x1,,xm)=𝐩+𝐪=𝐦T𝐩(x1,,xm)𝒥𝐪(x1,,xm).\mathbb{N}^{m}(x_{1},\dots,x_{m})=\sum_{{\mathbf{p}}+{\mathbf{q}}={\mathbf{m}}}T_{\mathbf{p}}(x_{1},\dots,x_{m}){\mathcal{J}}_{{\mathbf{q}}}(x_{1},\dots,x_{m}).

Clearly n(x)=m(x1,,xm)𝒅nmx¯¯𝒅.\mathbb{N}^{n}(x)=\mathbb{N}^{m}(x_{1},\dots,x_{m})\sum_{{\boldsymbol{d}}\in\mathbb{N}^{n-m}}\bar{\bar{x}}^{\boldsymbol{d}}. On the other hand, by (6.4),

n(x)=T(x)𝒥(x)=𝒅nm𝐩+𝐪=𝒅T𝐩(x1,,xm)𝒥𝐪(x1,,xm)x¯¯𝒅.\mathbb{N}^{n}(x)=T(x){\mathcal{J}}(x)=\sum_{{\boldsymbol{d}}\in\mathbb{N}^{n-m}}\sum_{{\mathbf{p}}+{\mathbf{q}}={\boldsymbol{d}}}T_{\mathbf{p}}(x_{1},\dots,x_{m}){\mathcal{J}}_{{\mathbf{q}}}(x_{1},\dots,x_{m})\bar{\bar{x}}^{\boldsymbol{d}}.

Comparing the terms in the above two equations with the factor x¯¯𝐦\bar{\bar{x}}^{{\mathbf{m}}}, we obtain (6.5).

Denote x¯=(x1,,xm)\bar{x}=(x_{1},\dots,x_{m}). We shall prove by induction that

(6.6) T𝐦(x¯)=f𝐦(x¯𝒂),𝒥𝐦(x¯)=L𝒂(x¯)G𝐦(x¯𝒂),T_{\mathbf{m}}(\bar{x})=f_{\mathbf{m}}(\bar{x}^{\boldsymbol{a}}),\quad{\mathcal{J}}_{\mathbf{m}}(\bar{x})=L_{\boldsymbol{a}}(\bar{x})G_{\mathbf{m}}(\bar{x}^{\boldsymbol{a}}),

for some f𝐦,G𝐦f_{\mathbf{m}},G_{\mathbf{m}}\subset\mathbb{N}.

For 𝐦=𝟎{\mathbf{m}}={\boldsymbol{0}}, (T𝟎,𝒥𝟎)=(ρ(TQ),ρ(𝒥Q))(T_{\boldsymbol{0}},{\mathcal{J}}_{\boldsymbol{0}})=(\rho(T_{Q}),\rho({\mathcal{J}}_{Q})). In this case (6.6) holds by (6.3).

Suppose (6.6) holds if we replace 𝐦{\mathbf{m}} by any point 𝐦𝐦{\mathbf{m}}^{\prime}\leq{\mathbf{m}} and 𝐦𝐦{\mathbf{m}}^{\prime}\neq{\mathbf{m}}. We are going to show that (6.6) holds for 𝐦{\mathbf{m}}.

If 𝐩+𝐪=𝐦{\mathbf{p}}+{\mathbf{q}}={\mathbf{m}} and 𝐩𝟎{\mathbf{p}}\neq{\boldsymbol{0}}, 𝐪𝟎{\mathbf{q}}\neq{\boldsymbol{0}}, then (6.6) holds for 𝐩{\mathbf{p}} and 𝐪{\mathbf{q}}, so

(6.7) T𝐩(x¯)𝒥𝐪(x¯)=L𝒂(x¯)f𝐩(x¯𝒂)G𝐪(x¯𝒂).T_{\mathbf{p}}(\bar{x}){\mathcal{J}}_{{\mathbf{q}}}(\bar{x})=L_{\boldsymbol{a}}(\bar{x})f_{{\mathbf{p}}}(\bar{x}^{\boldsymbol{a}})G_{{\mathbf{q}}}(\bar{x}^{{\boldsymbol{a}}}).

By (6.5), we have

(6.8) 𝐩+𝐪=𝐦T𝐩(x¯)𝒥𝐪(x¯)=L𝒂(x¯)(x¯𝒂),\sum_{{\mathbf{p}}+{\mathbf{q}}={\mathbf{m}}}T_{\mathbf{p}}(\bar{x}){\mathcal{J}}_{{\mathbf{q}}}(\bar{x})=L_{\boldsymbol{a}}(\bar{x})\mathbb{N}(\bar{x}^{{\boldsymbol{a}}}),

Subtracting (6.7) from (6.8), we obtain that there exists Ω\Omega\subset\mathbb{N} such that

T𝟎(x¯)𝒥𝐦(x¯)+T𝐦(x¯)𝒥𝟎(x¯)=L𝒂(x¯)Ω(x¯𝒂).T_{{\boldsymbol{0}}}(\bar{x}){\mathcal{J}}_{\mathbf{m}}(\bar{x})+T_{\mathbf{m}}(\bar{x}){\mathcal{J}}_{\boldsymbol{0}}(\bar{x})=L_{\boldsymbol{a}}(\bar{x})\Omega(\bar{x}^{\boldsymbol{a}}).

Hence, by Lemma 5.1, we obtain (6.6).

Finally, substituting (6.6) into (6.4), we obtain that (6.2) holds for some T~,𝒥~nm+1\widetilde{T},\widetilde{\mathcal{J}}\in\mathbb{N}^{n-m+1}. It is an easy matter to show that (T~,𝒥~)(\widetilde{T},\widetilde{\mathcal{J}}) is an nm+1\mathbb{N}^{n-m+1}-pair. The theorem is proved. ∎

7. 11-face reduction of \mathbb{N}^{*}-pair

Let (T,𝒥)(T,{\mathcal{J}}) be a primitive n\mathbb{N}^{n}-pair. We say (T,𝒥)(T,{\mathcal{J}}) is of class 0{\mathcal{F}}_{0}, if

T𝐞j={𝟎} or 𝐞j,for all j{1,,n}.T\cap\mathbb{N}{\mathbf{e}}_{j}=\{{\boldsymbol{0}}\}\text{ or }\mathbb{N}{\mathbf{e}}_{j},\quad\text{for all }j\in\{1,\dots,n\}.

In this section we show that any primitive n\mathbb{N}^{n}-pair is a finite extension of a pair of class 0{\mathcal{F}}_{0}.

Denote x¯=(x2,,xn)\bar{x}=(x_{2},\dots,x_{n}). Set Q=𝐞1Q=\mathbb{N}{\mathbf{e}}_{1} and 𝒂=p{\boldsymbol{a}}=p in Theorem 6.1, we obtain

Lemma 7.1.

Let (T,𝒥)(T,{\mathcal{J}}) be an n\mathbb{N}^{n}-pair. If p𝐞1Tp{\mathbf{e}}_{1}\in T and {0,1,,p1}𝐞1𝒥\{0,1,\dots,p-1\}{\mathbf{e}}_{1}\subset{\mathcal{J}}, then there exists an n\mathbb{N}^{n}-pair (T~,𝒥~)(\widetilde{T},\widetilde{\mathcal{J}}) such that

T(x)=T~(x1p,x¯),𝒥(x)=(1+x1++x1p1)𝒥~(x1p,x¯).T(x)=\widetilde{T}(x_{1}^{p},\bar{x}),\quad{\mathcal{J}}(x)=(1+x_{1}+\cdots+x_{1}^{p-1})\widetilde{\mathcal{J}}(x_{1}^{p},\bar{x}).

Using the above lemma repeatedly, we get ‘bigger’ factors of T(x)T(x) and 𝒥(x){\mathcal{J}}(x).

Proposition 7.2.

Let (T,𝒥)(T,{\mathcal{J}}) be an n\mathbb{N}^{n}-pair. Denote T𝐞1=A𝐞1,T\cap\mathbb{N}{\mathbf{e}}_{1}=A{\mathbf{e}}_{1}, 𝒥𝐞1=B𝐞1{\mathcal{J}}\cap\mathbb{N}{\mathbf{e}}_{1}=B{\mathbf{e}}_{1}. Let (C,D)(C,D) be a {0,1,,N1}\{0,1,\dots,N-1\}-pair such that

A=CNA1,B=DNB1A=C\oplus NA_{1},\quad B=D\oplus NB_{1}

for an \mathbb{N}-pair (A1,B1)(A_{1},B_{1}). Then there exists an n\mathbb{N}^{n}-pair (T~,𝒥~)(\widetilde{T},\widetilde{\mathcal{J}}) such that

(7.1) T(x)=C(x1)T~(x1N,x¯),𝒥(x)=D(x1)𝒥~(x1N,x¯).T(x)=C(x_{1})\widetilde{T}(x_{1}^{N},\bar{x}),\quad{\mathcal{J}}(x)=D(x_{1})\widetilde{\mathcal{J}}(x_{1}^{N},\bar{x}).
Proof.

We prove the result by induction on NN. If N=1N=1, the proposition holds trivially. Assume N2N\geq 2 and that the proposition holds for any pair and any positive integer less than NN.

Assume 1D1\in D without loss of generality.

If C={0}C=\{0\}, let hh be the smallest integer such that hBh\not\in B. Then by Lemma 7.1,

T(x)=T(x1h,x¯),𝒥(x)=(1+x1++x1h1)𝒥(x1h,x¯).T(x)=T^{*}(x_{1}^{h},\bar{x}),\quad{\mathcal{J}}(x)=(1+x_{1}+\dots+x_{1}^{h-1}){\mathcal{J}}^{*}(x_{1}^{h},\bar{x}).

Since C(x1)=1C(x_{1})=1, D(x1)=1+x1++x1N1D(x_{1})=1+x_{1}+\cdots+x_{1}^{N-1} and N|hN|h, set

T~(x)=T(x1h/N,x¯),𝒥~(x)=j=0h/N1x1j𝒥(x1h/N,x¯),\widetilde{T}(x)=T^{*}(x_{1}^{h/N},\bar{x}),\quad\widetilde{\mathcal{J}}(x)=\sum_{j=0}^{h/N-1}x_{1}^{j}{\mathcal{J}}^{*}(x_{1}^{h/N},\bar{x}),

we obtain (7.1).

Now suppose #C2\#C\geq 2. Let pp be the smallest element of CC other then 0. Then p2p\geq 2. On one hand, by Lemma 2.4, there exists a {0,1,,N/p1}\{0,1,\dots,{N}/{p}-1\}-pair (C~,D~)(\widetilde{C},\widetilde{D}) such that

(7.2) C(x1)=C~(x1p),D(x1)=(1+x1++x1p1)D~(x1p).C(x_{1})=\widetilde{C}(x_{1}^{p}),\quad D(x_{1})=(1+x_{1}+\dots+x_{1}^{p-1})\widetilde{D}(x_{1}^{p}).

On the other hand, by Lemma 7.1, there exists an n\mathbb{N}^{n}-pair (T,𝒥)(T^{*},{\mathcal{J}}^{*}) such that

(7.3) T(x)=T(x1p,x¯),𝒥(x)=(1+x1++x1p1)𝒥(x1p,x¯).T(x)=T^{*}(x_{1}^{p},\bar{x}),\quad{\mathcal{J}}(x)=(1+x_{1}+\cdots+x_{1}^{p-1}){\mathcal{J}}^{*}(x_{1}^{p},\bar{x}).

Denote T𝐞1=A𝐞1,T^{*}\cap\mathbb{N}{\mathbf{e}}_{1}=A^{*}{\mathbf{e}}_{1}, 𝒥𝐞1=B𝐞1{\mathcal{J}}^{*}\cap\mathbb{N}{\mathbf{e}}_{1}=B^{*}{\mathbf{e}}_{1}. By (7.3), we have A=pAA=pA^{*} and B={0,1,,p1}+pBB=\{0,1,\dots,p-1\}+pB^{*}, which together with (7.2) imply that

A=C~(N/p)A1,B=D~(N/p)B1.A^{*}=\widetilde{C}\oplus(N/p)A_{1},\quad B^{*}=\widetilde{D}\oplus(N/p)B_{1}.

So by induction hypothesis, there exists an n\mathbb{N}^{n}-pair (T~,𝒥~)(\widetilde{T},\widetilde{\mathcal{J}}) such that

T(x)=C~(x1)T~(x1N/p,x¯),𝒥(x)=D~(x1)𝒥~(x1N/p,x¯).T^{*}(x)=\widetilde{C}(x_{1})\widetilde{T}(x_{1}^{N/p},\bar{x}),\quad{\mathcal{J}}^{*}(x)=\widetilde{D}(x_{1})\widetilde{\mathcal{J}}(x_{1}^{N/p},\bar{x}).

This together with (7.2) and (7.3) imply (7.1). The lemma is proved. ∎

The following theorem is proved by Niven ([10, Lemma 4]) in the two dimensional case.

Theorem 7.1.

If (T,𝒥)(T,{\mathcal{J}}) be a primitive n\mathbb{N}^{n}-pair with n2n\geq 2, then either T𝐞1T\cap\mathbb{N}{\mathbf{e}}_{1} or 𝒥𝐞1{\mathcal{J}}\cap\mathbb{N}{\mathbf{e}}_{1} is finite.

Proof.

Let Q=𝐞2𝐞nQ=\mathbb{N}{\mathbf{e}}_{2}\oplus\cdots\oplus\mathbb{N}{\mathbf{e}}_{n}. Recall that TQ=TQT_{Q}=T\cap Q, 𝒥Q=𝒥Q.{\mathcal{J}}_{Q}={\mathcal{J}}\cap Q. Write T𝐞1=A𝐞1T\cap\mathbb{N}{\mathbf{e}}_{1}=A{\mathbf{e}}_{1}, 𝒥𝐞1=B𝐞1.{\mathcal{J}}\cap\mathbb{N}{\mathbf{e}}_{1}=B{\mathbf{e}}_{1}. Then AB=A\oplus B=\mathbb{N} and TQ𝒥Q=QT_{Q}\oplus{\mathcal{J}}_{Q}=Q (Lemma 6.1). Define ρ(a1,,an)=(a2,,an).\rho(a_{1},\dots,a_{n})=(a_{2},\dots,a_{n}).

Let (C,D)(C,D) be a {0,1,,N1}\{0,1,\dots,N-1\}-pair satisfying the assumptions of Proposition 7.2. Then there exists HnH\subset\mathbb{N}^{n} such that

(7.4) T(x)=C(x1)H(x).T(x)=C(x_{1})H(x).

Setting x1=0x_{1}=0, we obtain T(0,x2,,xn)=H(0,x2,,xn)T(0,x_{2},\dots,x_{n})=H(0,x_{2},\dots,x_{n}), which implies that HQ=TQ=TQ.H\cap Q=T\cap Q=T_{Q}. So TQHT_{Q}\subset H, and by (7.4), we have

(7.5) C×ρ(TQ)T.C\times\rho(T_{Q})\subset T.

Suppose on the contrary that both AA and BB are infinite sets. By Lemma 2.5, there exists a sequence of interval pairs {Ck,Dk)}k=1\{C_{k},D_{k})\}_{k=1}^{\infty} such that CkAC_{k}\uparrow A and DkBD_{k}\uparrow B and (Ck,Dk)(C_{k},D_{k}) satisfies the assumptions of Proposition 7.2. This together with (7.5) imply that A×ρ(TQ)TA\times\rho(T_{Q})\subset T. Similarly, we have B×ρ(𝒥Q)𝒥B\times\rho({\mathcal{J}}_{Q})\subset{\mathcal{J}}.

Since (A×ρ(TQ),B×ρ(𝒥Q))(A\times\rho(T_{Q}),B\times\rho({\mathcal{J}}_{Q})) is an n\mathbb{N}^{n}-pair (Lemma 2.1), the above two inclusion relations imply that T=A×ρ(TQ)T=A\times\rho(T_{Q}) and 𝒥=B×ρ(𝒥Q),{\mathcal{J}}=B\times\rho({\mathcal{J}}_{Q}), which imply (T,𝒥)(T,{\mathcal{J}}) is not primitive. This contradiction proves the theorem. ∎

Theorem 7.2.

Let (T,𝒥)(T,{\mathcal{J}}) be a primitive n\mathbb{N}^{n}-pair. Then there exists a primitive n\mathbb{N}^{n}-pair (T~,𝒥~)(\widetilde{T},\widetilde{\mathcal{J}}) in 0{\mathcal{F}}_{0} such that (T,𝒥)(T,{\mathcal{J}}) is a finite (first type) extension of (T~,𝒥~)(\widetilde{T},\widetilde{\mathcal{J}}).

Proof.

We first reduce (T,𝒥)(T,{\mathcal{J}}) along the variable x1x_{1}. Denote T𝐞1=A𝐞1,𝒥𝐞1=B𝐞1.T\cap\mathbb{N}{\mathbf{e}}_{1}=A{\mathbf{e}}_{1},{\mathcal{J}}\cap\mathbb{N}{\mathbf{e}}_{1}=B{\mathbf{e}}_{1}. Then either AA or BB is finite (Theorem 7.1). Assume AA is finite. By Lemma 2.5, there exist DBD\subset B such that AD={0,1,,N1}A\oplus D=\{0,1,\dots,N-1\} and B=D+NB=D+N\mathbb{N}. Hence, by Proposition 7.2, there exists an n\mathbb{N}^{n}-pair (T1,𝒥1)(T_{1},{\mathcal{J}}_{1}) such that

(7.6) T(x)=A(x1)T1(x1N,x¯),𝒥(x)=D(x1)𝒥1(x1N,x¯).T(x)=A(x_{1})T_{1}(x_{1}^{N},\bar{x}),\quad{\mathcal{J}}(x)=D(x_{1}){\mathcal{J}}_{1}(x_{1}^{N},\bar{x}).

We claim that: (i)(i) T1𝐞1={𝟎}T_{1}\cap\mathbb{N}{\mathbf{e}}_{1}=\{{\boldsymbol{0}}\}; (ii)(ii) T1𝐞j=T𝐞jT_{1}\cap\mathbb{N}{\mathbf{e}}_{j}=T\cap\mathbb{N}{\mathbf{e}}_{j} for j1j\neq 1.

From T𝐞1=A𝐞1T\cap\mathbb{N}{\mathbf{e}}_{1}=A{\mathbf{e}}_{1} we infer that T(x1,𝟎)=A(x1)T(x_{1},{\boldsymbol{0}})=A(x_{1}), which together with (7.6) imply that T1(x1N,𝟎)=1T_{1}(x_{1}^{N},{\boldsymbol{0}})=1. So (i) holds. Pick j>1j>1, by (7.6), we have T(𝟎,xj,𝟎)=T1(𝟎,xj,𝟎),T({\boldsymbol{0}},x_{j},{\boldsymbol{0}})=T_{1}({\boldsymbol{0}},x_{j},{\boldsymbol{0}}), which means that T𝐞j=T1𝐞jT\cap\mathbb{N}{\mathbf{e}}_{j}=T_{1}\cap\mathbb{N}{\mathbf{e}}_{j}. This proves (ii).

Next, we reduce (T1,𝒥1)(T_{1},{\mathcal{J}}_{1}) along the variables x2,,xnx_{2},\dots,x_{n} one by one, and finally we obtain an n\mathbb{N}^{n}-pair (T~,𝒥~)(\widetilde{T},\widetilde{\mathcal{J}}) of class 0{\mathcal{F}}_{0}. The theorem is proved. ∎

8. Proof of Theorem 1.1

The following lemma provides the last ingredient for proving Theorem 1.1.

Lemma 8.1.

Let n2n\geq 2 and (T,𝒥)(T,{\mathcal{J}}) be a primitive n\mathbb{N}^{n}-pair of class 0{\mathcal{F}}_{0}. Then there exists an mm-face Q0Q_{0} with 2mn2\leq m\leq n such that the marginal pair induced by Q0Q_{0} is of pure type.

Proof.

Without loss of generality, we assume that T𝐞j={𝟎}T\cap\mathbb{N}{\mathbf{e}}_{j}=\{{\boldsymbol{0}}\} holds for at least one jj. By rearranging the order of variables, we may assume that

T𝐞j={𝟎} for j=1,,M, and T𝐞j=𝐞j otherwise,T\cap\mathbb{N}{\mathbf{e}}_{j}=\{{\boldsymbol{0}}\}\text{ for }j=1,\dots,M,\text{ and }T\cap\mathbb{N}{\mathbf{e}}_{j}=\mathbb{N}{\mathbf{e}}_{j}\text{ otherwise},

where 1Mn1\leq M\leq n. Denote Q=j=1M𝐞jQ=\oplus_{j=1}^{M}\mathbb{N}{\mathbf{e}}_{j} and Q=j=M+1n𝐞jQ^{\prime}=\oplus_{j=M+1}^{n}\mathbb{N}{\mathbf{e}}_{j}. (If M=nM=n, we set Q={𝟎}Q^{\prime}=\{{\boldsymbol{0}}\}.) Then (TQ,𝒥Q)(T_{Q},{\mathcal{J}}_{Q}) is a QQ-pair and (TQ,𝒥Q)(T_{Q^{\prime}},{\mathcal{J}}_{Q^{\prime}}) is a QQ^{\prime}-pair.

We claim that either #TQ2\#T_{Q}\geq 2 or #𝒥Q2\#{\mathcal{J}}_{Q^{\prime}}\geq 2. Suppose on the contrary that #TQ=1\#T_{Q}=1 and #𝒥Q=1\#{\mathcal{J}}_{Q^{\prime}}=1. Then TQ=𝒥Q={𝟎},T_{Q}={\mathcal{J}}_{Q^{\prime}}=\{{\boldsymbol{0}}\}, which implies that 𝒥Q=Q𝒥{\mathcal{J}}_{Q}=Q\subset{\mathcal{J}} and TQ=QT.T_{Q^{\prime}}=Q^{\prime}\subset T. It follows that (T,𝒥)=(Q,Q)(T,{\mathcal{J}})=(Q^{\prime},Q) and it is not primitive, which contradicts our assumption.

Without loss of generality, let us assume that #TQ2\#T_{Q}\geq 2. Let x𝒂x^{{\boldsymbol{a}}^{\prime}} be a term of TQ(x)1T_{Q}(x)-1 such that the number of non-zero entries of 𝒂{\boldsymbol{a}}^{\prime} attains the minimum. Write x𝒂x^{{\boldsymbol{a}}^{\prime}} as

x𝒂=xj1r1xjmrm, where j1,,jm{1,,M}.x^{{\boldsymbol{a}}^{\prime}}=x_{j_{1}}^{r_{1}}\cdots x_{j_{m}}^{r_{m}},\quad\text{ where }j_{1},\dots,j_{m}\in\{1,\dots,M\}.

Then m2m\geq 2 since T𝐞j={𝟎}T\cap\mathbb{N}{\mathbf{e}}_{j}=\{{\boldsymbol{0}}\} for 1jM1\leq j\leq M. Let Q0=𝐞j1𝐞jmQ_{0}=\mathbb{N}{\mathbf{e}}_{j_{1}}\oplus\cdots\oplus\mathbb{N}{\mathbf{e}}_{j_{m}}, which is the smallest face containing 𝒂{{\boldsymbol{a}}^{\prime}}. Let (f,g)(f,g) be the marginal pair induced by Q0Q_{0}, then (f,g)(f,g) is an m\mathbb{N}^{m}-pair of pure type by the minimality of mm. The lemma is proved. ∎

Proof of Theorem 1.1..

By Theorem 3.1, we only need show that any primitive \mathbb{N}^{*}-pair is a finite extension of an \mathbb{N}-pair. Let (T,𝒥)(T,{\mathcal{J}}) be a primitive n\mathbb{N}^{n}-pair. We prove by induction on the dimension of (T,𝒥)(T,{\mathcal{J}}). If n=1n=1, the theorem is trivially true.

Assume n2n\geq 2. By Theorem 7.2, there exists a primitive n\mathbb{N}^{n}-pair (T1,𝒥1)(T_{1},{\mathcal{J}}_{1}) of class 0{\mathcal{F}}_{0} such that (T,𝒥)(T,{\mathcal{J}}) is a finite extension of it. By Lemma 8.1, (T1,𝒥1)(T_{1},{\mathcal{J}}_{1}) has an mm-face Q0Q_{0} with m2m\geq 2 such that the marginal pair induced by Q0Q_{0} is of pure type. So by Theorem 6.1, there exists a primitive nm+1\mathbb{N}^{n-m+1}-pair (T~,𝒥~)(\widetilde{T},\widetilde{\mathcal{J}}) such that (T1,𝒥1)(T_{1},{\mathcal{J}}_{1}) is a second type extension of (T~,𝒥~)(\widetilde{T},\widetilde{\mathcal{J}}). Finally, by induction hypothesis, (T~,𝒥~)(\widetilde{T},\widetilde{\mathcal{J}}) is a finite extension of an \mathbb{N}-pair, say (T0,𝒥0)(T_{0},{\mathcal{J}}_{0}). Then (T0,𝒥0)(T~,𝒥~)(T1,𝒥1)(T,𝒥)(T_{0},{\mathcal{J}}_{0})\to(\widetilde{T},\widetilde{\mathcal{J}})\to(T_{1},{\mathcal{J}}_{1})\to(T,{\mathcal{J}}) indicates the extension process from (T0,𝒥0)(T_{0},{\mathcal{J}}_{0}) to (T,𝒥)(T,{\mathcal{J}}). ∎

9. Weighted tree of \mathbb{N}^{*}-pair

In this section, we study weighted trees and the associated \mathbb{N}^{*}-pairs.

9.1. Weighted tree

A graph (V,Γ)(V,\Gamma) with node set VV and edge set Γ\Gamma is a tree if it is connected and has no cycle. A rooted tree is a triple (V,Γ,ϕ)(V,\Gamma,\phi) where (V,Γ)(V,\Gamma) is a tree and ϕV\phi\in V; we call ϕ\phi the root of the tree.

Let (V,Γ)(V,\Gamma) be a finite tree with root ϕ\phi. The level of vv, denoted by |v||v|, is the length of the (unique) path joining vv and ϕ\phi. A node vv is called an offspring of uu, if there is an edge joining uu and vv, and |v|=|u|+1|v|=|u|+1; meanwhile we call uu the parent of vv. For u,vVu,v\in V, we use [u,v][u,v] to denote the edge joining uu and its offspring vv. We call uu an ancestor of vv if there is a path joining uu and vv, and |u|<|v||u|<|v|. A node vv is called a top if it has no offspring. We denote by V0V_{0} the set of tops. We shall use the nodes as variables of power series.

Definition 9.1.

We call the quadruple

(9.1) ((T0,𝒥0),𝜹,𝜶,Φ)\left((T_{0},{\mathcal{J}}_{0}),{\boldsymbol{\delta}},{\boldsymbol{\alpha}},\Phi\right)

a weight of the tree (V,Γ)(V,\Gamma), where (T0,𝒥0)(T_{0},{\mathcal{J}}_{0}) is an \mathbb{N}-pair, called the initial pair,

𝜹:VV0{0,1},𝜶:V{ϕ}{0},Φ:V{ϕ}{interval pairs}{\boldsymbol{\delta}}:V\setminus V_{0}\to\{0,1\},\ {\boldsymbol{\alpha}}:V\setminus\{\phi\}\to\mathbb{N}\setminus\{0\},\ \Phi:V\setminus\{\phi\}\to\{\text{interval pairs}\}

are three maps, and in addition, 𝜹ϕ=1{\boldsymbol{\delta}}_{\phi}=1 if T0={0}T_{0}=\{0\} and 𝜹ϕ=0{\boldsymbol{\delta}}_{\phi}=0 if 𝒥0={0}{\mathcal{J}}_{0}=\{0\}.

We call #V#V0\#V-\#V_{0} the norm of the tree. Two tops are said to be equivalent, if they share the same parents. An equivalent class of V0V_{0} is called a branch of V0V_{0}.

9.2. Constructing \mathbb{N}^{*}-pairs from weighted trees

Now we define the pair generated by a weighted tree inductively on the norm of the tree.

Notice that Λ0=({ϕ},)\Lambda_{0}=(\{\phi\},\emptyset) is the only tree with norm 0. The weight of Λ0\Lambda_{0} only consists of the initial pair, which we denote by (T0,𝒥0)(T_{0},{\mathcal{J}}_{0}). We define the \mathbb{N}^{*}-pair associate with the weighted tree Λ0\Lambda_{0} to be (T0,𝒥0)(T_{0},{\mathcal{J}}_{0}).

Let q1q\geq 1. Suppose for any weighted tree with norm less than qq, we have associated an m\mathbb{N}^{m}-pair with it, where mm is the number of tops of the tree.

Let (V,Γ)(V,\Gamma) be a weighted tree with norm qq. Let V0={x1,,xn}V_{0}=\{x_{1},\dots,x_{n}\}. Choose a branch {x1,,xp}\{x_{1},\dots,x_{p}\} of V0V_{0} and denote their parents by z1z_{1}. Let (V~,Γ~)(\widetilde{V},\widetilde{\Gamma}) be the subtree of (V,Γ)(V,\Gamma) obtained by deleting the nodes x1,,xpx_{1},\dots,x_{p} and the edges [z1,x1],,[z1,xp][z_{1},x_{1}],\dots,[z_{1},x_{p}]. Then

(9.2) V~=V{x1,,xp},V~0={z1,xp+1,,xn}.\widetilde{V}=V\setminus\{x_{1},\cdots,x_{p}\},\quad\widetilde{V}_{0}=\{z_{1},x_{p+1},\dots,x_{n}\}.

We define the weight of (V~,Γ~)(\widetilde{V},\widetilde{\Gamma}) to be the restriction of the weight ((T0,𝒥0),𝜹,𝜶,Φ)((T_{0},{\mathcal{J}}_{0}),{\boldsymbol{\delta}},{\boldsymbol{\alpha}},\Phi) on it. (Now z1z_{1} is a top of the subtree, so 𝜹z1{\boldsymbol{\delta}}_{z_{1}} is not needed in the restricted weight.)

Since #V~#V~0=q1\#\widetilde{V}-\#\widetilde{V}_{0}=q-1, by the induction hypothesis, there is an np+1\mathbb{N}^{n-p+1}-pair (T~,𝒥~)(\widetilde{T},\widetilde{\mathcal{J}}) associated with the weighted tree of (V~,Γ~)(\widetilde{V},\widetilde{\Gamma}).

Denote δ=𝜹z1\delta={\boldsymbol{\delta}}_{z_{1}}. For j=1,,pj=1,\dots,p, let aj=𝜶xja_{j}={\boldsymbol{\alpha}}_{x_{j}}, (Cj,Dj)=Φxj(C_{j},D_{j})=\Phi_{x_{j}}, and let NjN_{j} be the size of (Cj,Dj)(C_{j},D_{j}). Denote x¯=(xp+1,,xn)\bar{x}=(x_{p+1},\dots,x_{n}) and 𝒂=(a1,,ap){\boldsymbol{a}}=(a_{1},\dots,a_{p}).

First, applying an second type extension with parameters δ\delta and 𝒂{\boldsymbol{a}} to (T~,𝒥~)(\widetilde{T},\widetilde{\mathcal{J}}), we obtain

F(x)=L𝒂δ(x1,,xp)T~(j=1pxjaj,x¯),G(x)=L𝒂1δ(x1,,xp)𝒥~(j=1pxjaj,x¯).F(x)=L^{\delta}_{\boldsymbol{a}}(x_{1},\dots,x_{p})\widetilde{T}(\prod_{j=1}^{p}x_{j}^{a_{j}},\bar{x}),\quad G(x)=L^{1-\delta}_{\boldsymbol{a}}(x_{1},\dots,x_{p})\widetilde{\mathcal{J}}(\prod_{j=1}^{p}x_{j}^{a_{j}},\bar{x}).

Secondly, applying pp extensions of the first type consecutively to the pair (F,G)(F,G), along the variables x1,,xpx_{1},\dots,x_{p}, we obtain

(9.3) T(x)=(j=1pCj(xj))L𝒂δ(x1N1,,xpNp)T~(j=1pxjajNj,x¯),𝒥(x)=(j=1pDj(xj))L𝒂1δ(x1N1,,xpNp)𝒥~(j=1pxjajNj,x¯).\begin{array}[]{l}T(x)=\left(\prod_{j=1}^{p}C_{j}(x_{j})\right)L^{\delta}_{\boldsymbol{a}}(x_{1}^{N_{1}},\dots,x_{p}^{N_{p}})\widetilde{T}(\prod_{j=1}^{p}x_{j}^{a_{j}N_{j}},\bar{x}),\\ {\mathcal{J}}(x)=\left(\prod_{j=1}^{p}D_{j}(x_{j})\right)L^{1-\delta}_{\boldsymbol{a}}(x_{1}^{N_{1}},\dots,x_{p}^{N_{p}})\widetilde{\mathcal{J}}(\prod_{j=1}^{p}x_{j}^{a_{j}N_{j}},\bar{x}).\end{array}

We call (T,𝒥)(T,{\mathcal{J}}) the \mathbb{N}^{*}-pair generated by the weighted tree (9.1).

To show the generated pair is well-defined, we need to show that (T,𝒥)(T,{\mathcal{J}}) is independent of the choice of the branch {x1,,xp}\{x_{1},\dots,x_{p}\}. We will do this in Theorem 9.1.

Remark 9.2.

Clearly, #T<\#T<\infty if and only if #T0<\#T_{0}<\infty and 𝜹{\boldsymbol{\delta}} is constantly 0; a similar result holds for #𝒥\#{\mathcal{J}}. Also, (T,𝒥)(T,{\mathcal{J}}) is of class 0{\mathcal{F}}_{0} if and only if Φv=({𝟎},{𝟎})\Phi_{v}=(\{{\boldsymbol{0}}\},\{{\boldsymbol{0}}\}) for all tops.

9.3. A closed formula of (T,𝒥)(T,{\mathcal{J}})

Let (T,𝒥)(T,{\mathcal{J}}) be the pair defined by (9.3). We define a map μ:V×V0\mu:V\times V_{0}\to\mathbb{N} as follows. Pick vVv\in V and xV0x^{*}\in V_{0}.

If vv is an ancestor of xx^{*}, let v,v1,,vk1,vk=xv,v_{1},\dots,v_{k-1},v_{k}=x^{*} be the path from vv to xx^{*}; for j=1,,k,j=1,\dots,k, let cj=𝜶vjc_{j}={\boldsymbol{\alpha}}_{v_{j}} and MjM_{j} be the size of Φvj\Phi_{v_{j}}. We define

(9.4) μ(v,x)={j=1kcjMj, if v is an ancestor of x;1, if v=x;0, otherwise.\mu(v,x^{*})=\left\{\begin{array}[]{cl}\prod_{j=1}^{k}c_{j}M_{j},&\text{ if $v$ is an ancestor of $x^{*}$;}\\ 1,&\text{ if $v=x^{*}$;}\\ 0,&\text{ otherwise}.\end{array}\right.

Moreover, we define μ(v)=(μ(v,x1),,μ(v,xn)).\mu(v)=(\mu(v,x_{1}),\dots,\mu(v,x_{n})).

For each vVv\in V, we define two power series PvP_{v} and QvQ_{v} as follows. Denote Φv=(Cv,Dv)\Phi_{v}=(C_{v},D_{v}).

If vv is a top, we set

(9.5) Pv(x)=Cv(v),Qv(x)=Dv(v).P_{v}(x)=C_{v}(v),\quad Q_{v}(x)=D_{v}(v).

(If V={ϕ}V=\{\phi\}, we make the convention Pϕ(ϕ)=T0(ϕ)P_{\phi}(\phi)=T_{0}(\phi) and Qϕ(ϕ)=𝒥0(ϕ)Q_{\phi}(\phi)={\mathcal{J}}_{0}(\phi).)

If vv is not a top, let z1,,zmz_{1},\dots,z_{m} be the offsprings of vv. Denote 𝐛=(𝜶z1,,𝜶zm){\mathbf{b}}=({\boldsymbol{\alpha}}_{z_{1}},\dots,{\boldsymbol{\alpha}}_{z_{m}}) and MjM_{j} be the size of Φzj\Phi_{z_{j}}. (If v=ϕv=\phi, we set Cϕ=T0C_{\phi}=T_{0} and Dϕ=𝒥0D_{\phi}={\mathcal{J}}_{0}.) We define

(9.6) Pv(x)=Cv(xμ(v))L𝐛𝜹v(xM1μ(z1),,xMmμ(zm)),Qv(x)=Dv(xμ(v))L𝐛1𝜹v(xM1μ(z1),,xMmμ(zm)).\begin{array}[]{l}P_{v}(x)=C_{v}(x^{\mu(v)})L^{{\boldsymbol{\delta}}_{v}}_{{\mathbf{b}}}(x^{M_{1}\mu(z_{1})},\dots,x^{M_{m}\mu(z_{m})}),\\ Q_{v}(x)=D_{v}(x^{\mu(v)})L^{1-{\boldsymbol{\delta}}_{v}}_{{\mathbf{b}}}(x^{M_{1}\mu(z_{1})},\dots,x^{M_{m}\mu(z_{m})}).\end{array}
Theorem 9.1.

Let (T,𝒥)(T,{\mathcal{J}}) be an n\mathbb{N}^{n}-pair generated by the tree (V,Γ)(V,\Gamma) with weight (9.1). Then Pv(x)P_{v}(x) and Qv(x)Q_{v}(x) defined by (9.5) and (9.6) are binary power series, and

(9.7) T(x)=vVPv(x),𝒥(x)=vVQv(x)T(x)=\prod_{v\in V}P_{v}(x),\quad{\mathcal{J}}(x)=\prod_{v\in V}Q_{v}(x)
Proof.

Denote q=#V#V0q=\#V-\#V_{0}. We prove the result by induction on qq. If q=0q=0, then V={ϕ}V=\{\phi\}, and (9.7) holds by our convention. Now we assume that q1q\geq 1.

Let (V~,Γ~)(\widetilde{V},\widetilde{\Gamma}) be the subtree of (V,Γ)(V,\Gamma) given by (9.2), and the weight is the restricted weight. According to this restricted weight, for any vV~v\in\widetilde{V} and zV~0={z1,xp+1,,xn}z\in\widetilde{V}_{0}=\{z_{1},x_{p+1},\dots,x_{n}\}, we can define a map μ~(v,z)\widetilde{\mu}(v,z) as (9.4), and power series P~v,Q~v\widetilde{P}_{v},\widetilde{Q}_{v} as (9.5) and (9.6).

Let (T~,𝒥~)(\widetilde{T},\widetilde{\mathcal{J}}) be the pair generated by the weighted tree (V~,Γ~)(\widetilde{V},\widetilde{\Gamma}). Denote x¯=(xp+1,,xn)\bar{x}=(x_{p+1},\dots,x_{n}). By induction hypothesis, we have

(9.8) T~(z1,x¯)=vV~P~v(z1,x¯).\widetilde{T}(z_{1},\bar{x})=\prod_{v\in\widetilde{V}}\widetilde{P}_{v}(z_{1},\bar{x}).

For j=1,,pj=1,\dots,p, denote aj=𝜶xja_{j}={\boldsymbol{\alpha}}_{x_{j}}, and let NjN_{j} be the size of Φxj=(Cxj,Dxj)\Phi_{x_{j}}=(C_{x_{j}},D_{x_{j}}). We assert that

(9.9) xμ(v)=(z1,x¯)μ~(v)(z1j=1pxjajNj), for vV~.x^{\mu(v)}=(z_{1},\bar{x})^{\widetilde{\mu}(v)}\circ\left(z_{1}\mapsto\prod_{j=1}^{p}x_{j}^{a_{j}N_{j}}\right),~{}~{}\text{ for }v\in\widetilde{V}.

Notice that (9.9) holds if the following holds:

(9.10) μ(v,xj)={μ~(v,z1)ajNj, if 1jp;μ~(v,xj) if p+1jn.\mu(v,x_{j})=\left\{\begin{array}[]{ll}\widetilde{\mu}(v,z_{1})a_{j}N_{j},&\text{ if }1\leq j\leq p;\\ \widetilde{\mu}(v,x_{j})&\text{ if }p+1\leq j\leq n.\end{array}\right.

If vv is an ancestor of z1z_{1} or v=z1v=z_{1}, we have μ(v,xj)=μ~(v,z1)μ(z1,xj)=μ~(v,z1)ajNj,\mu(v,x_{j})=\widetilde{\mu}(v,z_{1})\mu(z_{1},x_{j})=\widetilde{\mu}(v,z_{1})a_{j}N_{j}, 1jp;1\leq j\leq p; if vv is not an ancestor of z1z_{1}, we have μ(v,x1)==μ(v,xp)=μ~(v,z1)=0.\mu(v,x_{1})=\cdots=\mu(v,x_{p})=\widetilde{\mu}(v,z_{1})=0. So the first assertion of (9.10) holds. The second assertion holds since the path from vv to xjx_{j} in Γ\Gamma is also a path in Γ~\widetilde{\Gamma}. This proves (9.10) and (9.9) follows.

Now, we consider the relations between PvP_{v} and P~v\widetilde{P}_{v} for vV~v\in\widetilde{V}.

If v=z1v=z_{1}, since z1z_{1} is a top of V~\widetilde{V}, we have P~z1(z1,x¯)=Cz1(z1)\widetilde{P}_{z_{1}}(z_{1},\bar{x})=C_{z_{1}}(z_{1}); moreover, μ(z1)=(a1N1,,apNp,0,,0)\mu(z_{1})=(a_{1}N_{1},\dots,a_{p}N_{p},0,\cdots,0) and μ(xj)=𝐞j\mu(x_{j})={\mathbf{e}}_{j}, 1jn1\leq j\leq n. Denote 𝒂=(a1,,ap){\boldsymbol{a}}=(a_{1},\dots,a_{p}), we have

(9.11) Pz1(x)=Cz1(j=1pxjajNj)L𝒂𝜹z1(x1N1,,xpNp)=(P~z1(z1,x¯)(z1j=1pxjajNj))L𝒂𝜹z1(x1N1,,xpNp).\begin{array}[]{rl}P_{z_{1}}(x)&=C_{z_{1}}\left(\prod_{j=1}^{p}x_{j}^{a_{j}N_{j}}\right)L^{{\boldsymbol{\delta}}_{z_{1}}}_{\boldsymbol{a}}(x_{1}^{N_{1}},\dots,x_{p}^{N_{p}})\\ &=\left(\widetilde{P}_{z_{1}}(z_{1},\bar{x})\circ(z_{1}\mapsto\prod_{j=1}^{p}x_{j}^{a_{j}N_{j}})\right)L^{{\boldsymbol{\delta}}_{z_{1}}}_{\boldsymbol{a}}(x_{1}^{N_{1}},\cdots,x_{p}^{N_{p}}).\end{array}

We claim that

(9.12) Pv(x)=P~v(z1,x¯)(z1j=1pxjajNj), if vV~{z1}.P_{v}(x)=\widetilde{P}_{v}(z_{1},\bar{x})\circ\left(z_{1}\mapsto\prod_{j=1}^{p}x_{j}^{a_{j}N_{j}}\right),\quad\text{ if }v\in\widetilde{V}\setminus\{z_{1}\}.

If v{xp+1,,xn}v\in\{x_{p+1},\dots,x_{n}\}, we have Pv(x)=P~v(z1,x¯)=Cv(v)P_{v}(x)=\widetilde{P}_{v}(z_{1},\bar{x})=C_{v}(v), clearly (9.12) holds.

If vV~{z1,xp+1,,xn}v\in\widetilde{V}\setminus\{z_{1},x_{p+1},\dots,x_{n}\}, denote the offsprings of vv by y1,,ymy_{1},\cdots,y_{m}. Set 𝐛=(𝜶y1,,𝜶ym){\mathbf{b}}=({\boldsymbol{\alpha}}_{y_{1}},\cdots,{\boldsymbol{\alpha}}_{y_{m}}), and let MiM_{i} be the size of Φyi\Phi_{y_{i}} for 1im1\leq i\leq m. Since Cv=C~vC_{v}=\widetilde{C}_{v} and δv=δ~v\delta_{v}=\widetilde{\delta}_{v}, we have

Pv(x)=Cv(xμ(v))L𝐛𝜹v(xM1μ(y1),,xMmμ(ym)),P~v(z1,x¯)=Cv((z1,x¯)μ~(v))L𝐛𝜹v((z1,x¯)M1μ~(y1),,(z1,x¯)Mmμ~(ym)).\begin{array}[]{l}P_{v}(x)=C_{v}(x^{\mu(v)})L^{{\boldsymbol{\delta}}_{v}}_{{\mathbf{b}}}(x^{M_{1}\mu(y_{1})},\dots,x^{M_{m}\mu(y_{m})}),\\ \widetilde{P}_{v}(z_{1},\bar{x})=C_{v}((z_{1},\bar{x})^{\widetilde{\mu}(v)})L^{{\boldsymbol{\delta}}_{v}}_{\mathbf{b}}((z_{1},\bar{x})^{M_{1}\widetilde{\mu}(y_{1})},\dots,(z_{1},\bar{x})^{M_{m}\widetilde{\mu}(y_{m})}).\end{array}

Notice that (9.9) holds for all v,y1,,ymV~{z1}v,y_{1},\dots,y_{m}\in\widetilde{V}\setminus\{z_{1}\}, so (9.12) follows. The claim is proved. Therefore, we have

T(x)=(j=1pCxj(xj))L𝒂𝜹z1(x1N1,,xpNp)T~(j=1pxjajNj,x¯)(By (9.3))=(j=1pPxj(x))L𝒂𝜹z1(x1N1,,xpNp)vV~P~v(z1,x¯)(z1j=1pxjajNj)(By (9.8))=(j=1pPxj(x))(L𝒂𝜹z1(x1N1,,xpNp)P~z1(j=1pxjajNj,x¯))(vV~{z1}Pv(x))(By (9.12))=vVPv(x).(By (9.11).)\begin{array}[]{rll}&T(x)=\displaystyle\left(\prod_{j=1}^{p}C_{x_{j}}(x_{j})\right)L^{{\boldsymbol{\delta}}_{z_{1}}}_{\boldsymbol{a}}(x_{1}^{N_{1}},\dots,x_{p}^{N_{p}})\cdot\widetilde{T}\left(\prod_{j=1}^{p}x_{j}^{a_{j}N_{j}},\bar{x}\right)&\text{(By \eqref{eq:treee})}\\ =&\displaystyle\left(\prod_{j=1}^{p}P_{x_{j}}(x)\right)L^{{\boldsymbol{\delta}}_{z_{1}}}_{\boldsymbol{a}}(x_{1}^{N_{1}},\dots,x_{p}^{N_{p}})\cdot\prod_{v\in\widetilde{V}}\widetilde{P}_{v}(z_{1},\bar{x})\circ(z_{1}\mapsto\prod_{j=1}^{p}x_{j}^{a_{j}N_{j}})&\text{(By \eqref{eq:Tq})}\\ =&\displaystyle\left(\prod_{j=1}^{p}P_{x_{j}}(x)\right)\left(L^{{\boldsymbol{\delta}}_{z_{1}}}_{\boldsymbol{a}}(x_{1}^{N_{1}},\dots,x_{p}^{N_{p}})\widetilde{P}_{z_{1}}(\prod_{j=1}^{p}x_{j}^{a_{j}N_{j}},\bar{x})\right)\left(\prod_{v\in\widetilde{V}\setminus\{z_{1}\}}P_{v}(x)\right)&\text{(By \eqref{eq:PV})}\\ =&\displaystyle\prod_{v\in V}P_{v}(x).&\text{(By \eqref{eq:9.10}.)}\end{array}

By symmetry, we have 𝒥(x)=vVQv(x){\mathcal{J}}(x)=\prod_{v\in V}Q_{v}(x). The theorem is proved. ∎

10. Proof of Theorem 1.2 and an example

Proof of Theorem 1.2.

Thanks to Theorem 3.1, we only need show that any primitive \mathbb{N}^{*}-pair (T,𝒥)(T,{\mathcal{J}}) can be generated by a weighted tree. If (T,𝒥)(T,{\mathcal{J}}) is an \mathbb{N}-pair, then it is generated by the tree Λ0=({ϕ},)\Lambda_{0}=(\{\phi\},\emptyset) with initial pair (T0,𝒥0)=(T,𝒥)(T_{0},{\mathcal{J}}_{0})=(T,{\mathcal{J}}).

Suppose (T,𝒥)(T,{\mathcal{J}}) is generated by a tree (V,Γ)(V,\Gamma) with weight ((T0,𝒥0),𝜹,𝜶,Φ)((T_{0},{\mathcal{J}}_{0}),{\boldsymbol{\delta}},{\boldsymbol{\alpha}},\Phi). In the following, we show that any one step extension (T,𝒥)(T^{*},{\mathcal{J}}^{*}) of it can also be generated by a weighted tree. Denote the tops of (V,Γ)(V,\Gamma) by x1,,xnx_{1},\dots,x_{n}, and assume the extension is along the variable x1x_{1}. Denote x¯=(x2,,xn)\bar{x}=(x_{2},\dots,x_{n}).

Case 1. Suppose (T,𝒥)(T^{*},{\mathcal{J}}^{*}) is a first type extension of (T,𝒥)(T,{\mathcal{J}}) given by

T(x)=C(x1)T(x1N,x¯),𝒥(x)=D(x1)𝒥(x1N,x¯),T^{*}(x)=C(x_{1})T(x_{1}^{N},\bar{x}),\quad{\mathcal{J}}^{*}(x)=D(x_{1}){\mathcal{J}}(x_{1}^{N},\bar{x}),

where (C,D)(C,D) is a {0,,N1}\{0,\dots,N-1\}-pair. Denote Φx1=(Cx1,Dx1).\Phi_{x_{1}}=(C_{x_{1}},D_{x_{1}}). We define a new weight of (V,Γ)(V,\Gamma) by only modifying Φx1\Phi_{x_{1}} to the interval pair (C+NCx1,D+NDx1)(C+NC_{x_{1}},D+ND_{x_{1}}). Then (T,𝒥)(T^{*},{\mathcal{J}}^{*}) is generated by the tree (V,Γ)(V,\Gamma) with this new weight.

Case 2. Suppose (T,𝒥)(T^{*},{\mathcal{J}}^{*}) is a second type extension of (T,𝒥)(T,{\mathcal{J}}) given by

T(y,x¯)=L𝐛s(y)T(y𝐛,x¯),𝒥(y,x¯)=L𝐛1s(y)𝒥(y𝐛,x¯),T^{*}(y,\bar{x})=L^{s}_{\mathbf{b}}(y)T(y^{{\mathbf{b}}},\bar{x}),\quad{\mathcal{J}}^{*}(y,\bar{x})=L^{1-s}_{\mathbf{b}}(y){\mathcal{J}}(y^{{\mathbf{b}}},\bar{x}),

where y=(y1,,ym)y=(y_{1},\dots,y_{m}), 𝐛=(b1,,bm)>0{\mathbf{b}}=(b_{1},\dots,b_{m})>0 and s{0,1}s\in\{0,1\}. We set V=V{y1,,ym}V^{\prime}=V\cup\{y_{1},\dots,y_{m}\}, and let Γ=Γ{[x1,yj];j=1,,m}\Gamma^{\prime}=\Gamma\cup\{[x_{1},y_{j}];~{}j=1,\dots,m\} be the edge set. We define a weight ((T0,𝒥0),𝜹,𝜶,Φ)((T_{0},{\mathcal{J}}_{0}),{\boldsymbol{\delta}}^{\prime},{\boldsymbol{\alpha}}^{\prime},\Phi^{\prime}) of (V,Γ)(V^{\prime},\Gamma^{\prime}), which is the extension of the original weight by adding the following parameters: (i)(i) Set 𝜹x1=s{\boldsymbol{\delta}}^{\prime}_{x_{1}}=s;  (ii)(ii) For j{1,,m}j\in\{1,\dots,m\}, set 𝜶yj=bj{\boldsymbol{\alpha}}^{\prime}_{y_{j}}=b_{j} and Φyj=({𝟎},{𝟎})\Phi^{\prime}_{y_{j}}=(\{{\boldsymbol{0}}\},\{{\boldsymbol{0}}\}). Then (T,𝒥)(T^{*},{\mathcal{J}}^{*}) is generated by (V,Γ)(V^{\prime},\Gamma^{\prime}) with the above weight. ∎

Refer to caption
Figure 1. A rooted tree

The function 𝜶{\boldsymbol{\alpha}} and Φ\Phi:
node y1y_{1} x4x_{4} x1x_{1} x2x_{2} x3x_{3} 𝜶{\boldsymbol{\alpha}} 2 3 1 1 1 CC {0,2}\{0,2\} {0,2}\{0,2\} {0} {0} {0} DD {0,1}\{0,1\} {0,1}\{0,1\} {0} {0} {0} NN 4 4 1 1 1

Table 1. We set 𝜹{\boldsymbol{\delta}} defined on {ϕ,y1}\{\phi,y_{1}\} to be constantly zero.
Example 10.1.

Let (Γ,V)(\Gamma,V) be a rooted tree indicated by Figure 1. The node set V={ϕ,y1,x1,x2,x3,x4}V=\{\phi,y_{1},x_{1},x_{2},x_{3},x_{4}\}. We set the initial \mathbb{N}-pair to be

T0(ϕ)=1+ϕ2,𝒥0(ϕ)=(1+ϕ)k=0ϕ4k;T_{0}(\phi)=1+\phi^{2},\quad{\mathcal{J}}_{0}(\phi)=(1+\phi)\sum_{k=0}^{\infty}\phi^{4k};

the other parameters of the weight is given by Table 1. Set

V0={ϕ},V1={ϕ;y1,x4},V2={ϕ;y1,x4;x1,x2,x3}.V_{0}=\{\phi\},\ V_{1}=\{\phi;y_{1},x_{4}\},V_{2}=\{\phi;y_{1},x_{4};x_{1},x_{2},x_{3}\}.

Let (Vj,Γj),j=0,1,2,(V_{j},\Gamma_{j}),j=0,1,2, be subtrees of (V,Γ)(V,\Gamma). The \mathbb{N}^{*}-tile T1T_{1} corresponding to the subtree (V1,Γ1)(V_{1},\Gamma_{1}) is T1(y1,x4)=(1+y12)(1+x42)(1+y116x424).T_{1}(y_{1},x_{4})=(1+y_{1}^{2})(1+x_{4}^{2})(1+y_{1}^{16}x_{4}^{24}). The \mathbb{N}^{*}-tile T2T_{2} corresponding to the tree (V2,Γ2)=(V,Γ)(V_{2},\Gamma_{2})=(V,\Gamma) is

T2(x1,x2,x3,x4)=111(1+(x1x2x3)2)(1+x42)(1+(x1x2x3)16x424).=Px1(x)Px2(x)Px3(x)Py1(x)Px4(x)Pϕ(x).\begin{array}[]{rl}T_{2}(x_{1},x_{2},x_{3},x_{4})=&1\cdot 1\cdot 1\cdot(1+(x_{1}x_{2}x_{3})^{2})\cdot(1+x_{4}^{2})\cdot\left(1+(x_{1}x_{2}x_{3})^{16}x_{4}^{24}\right).\\ =&P_{x_{1}}(x)\cdot P_{x_{2}}(x)\cdot P_{x_{3}}(x)\cdot P_{y_{1}}(x)\cdot P_{x_{4}}(x)\cdot P_{\phi}(x).\end{array}

References

  • [1] E. M. Coven and A. Meyercovitz, Tiling the integers with translates of one finite set, J. Algebra, 212 (1999), 161–174.
  • [2] N. G. de Bruijn, On bases for the set of integers, Publ. Math., 1(3)(1956), 583–590.
  • [3] N. G. de Bruijn, On number systems, Nieuw Arch. Wisk., 4(3)(1956), 15–17.
  • [4] S. Eigen and A. Hajian, Sequences of integers and ergodic transformations, Adv. Math., 73 (1989), 256–262.
  • [5] R. T. Hansen, Complementing pairs of subsets in the plane, Duke Math. J. 36(1969), 441–449.
  • [6] G. Hajós, Sur la factorisation des groupes abélians, C̃asopis Pẽst. math. Fys. (3) 4 (1950), 157–162.
  • [7] C. T. Long, Addition theorems for sets of integers, Pacific J. Math. 23(1967), 107–112.
  • [8] M. B. Nathanson, Complementing sets of nn-tuples of integers. Proc. Amer. Math. Soc. 34 (1972), 71-72.
  • [9] D. J. Newman, Tesselation of integers. J. Number Theory 9 (1977), 107-111.
  • [10] I. Niven, A characterization of complementing sets of pairs of integers. Duke Math. J. 38 (1971), 193–203.
  • [11] A. D. Sands, On Keller’s conjecture for certain cyclic groups, Proc. Edinburg Math. Soc. (1), 22 (1979), 17–21.
  • [12] Szegedy, M. Algorithms to tile the infinite grid with finite clusters. Proceedings of the 39th Annual Symposium on the Foundations of Computer Science, FOCS 98. November8 C111998, Palo Alto, CA. pp.137 C145. IEEE Computer Society.
  • [13] C. Swenson, Direct sum subset decompositions of \mathbb{Z}. Pacific J. Math. 53 (1974), 629–633.
  • [14] S. Szabó, A type of factorization of finite Abelian groups, Discrete Math. 54(1985), 121–124.
  • [15] R. Tijdeman, Decomposition of the integer as a direc sum of two subsets, in ”Number Theory(Paris, 1992-1993),” London Math. Soc. Lecture Note Ser.,Vol.215, 261–276. Cambridge Univ. Press, 1995.
  • [16] A. M. Vaidya, On complementing sets of nonnegative integers, Math. Mag. 39(1966), 43–44.