This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\equalcont

These authors contributed equally to this work.

[2]\fnmMark Allien D. \surRoble

1,2]\orgdivInstitute of Mathematical Sciences, \orgnameUniversity of the Philippines Los Baños, \postcode4300, \stateLaguna, \countryPhilippines

Chain rule formula and generalized mean value theorem for nabla fractional differentiation on time scale

\fnmGaddiel L. \surDorado [email protected]    [email protected] [
Abstract

The nabla fractional derivative, which was introduced by Gogoi et.al., generalized the ordinary derivative with non-integer order, and unifies the continuous and discrete analysis using backward operator. In this study, we proposed a modification of their definition. The main focus of this work is to introduce a chain rule formula and a generalized mean value theorem for nabla fractional differentiation on time scale. Results of this study will be applied in finding the sum of a finite series.

keywords:
mean value theorem, chain rule, nabla fractional derivative, backward jump operator, time scale
pacs:
[

MSC Classification]26A24, 26A33, 26E70, 39A12

1 Introduction

Fractional differentiation is the generalization of the ordinary differentiation of an arbitrary non-integer order. This theory can be traced back to the work of G. W. Leibniz (1646-1716) and M. de LHospital (1661-1704) who first proposed the theory of semi-derivative [4], a theory that is a result of an inquisitive conversation and exchange of letters where G. W. Leibniz asked M. de LHospital, "Can the meaning of derivatives with integer order be generalized to derivatives with non-integer order?" Then, M. de LHospital curiously answered, "What if the order will be 1/2?" Then, G. W. Leibniz replied through a letter dated September 30, 1695, "It will lead to a paradox, from which one-day useful consequences will be drawn."[16] This gave birth to the new theory called fractional calculus. Multiple references and studies arose from various mathematicians [12] who, together with their works, continuously developed fractional calculus–Lagrange in 1772, Laplace in 1812, Lacroix in 1819, Fourier in 1822, Riemann in 1847, Green in 1859, Holmgren in 1865, Grunwald in 1867, Letnikov in 1868, Sonini in 1869, Laurent in 1884, Nekrassov in 1888, Krug in 1890, and Weyl in 1919 [11]. However, it is only in the past century that the most significant development in fractional calculus alongside its applications in different fields of science and engineering was discovered [17, 18, 20]. One of the most famous definitions was the Riemann-Liouville and Grunwald-Letnikov definition. Other works were able to utilize fractional differentiation and integration in various fields, such as temperature field problems in oil strata [5], diffusion problems [11], signal processing and waves in liquids and gases [19].

On the other hand, a time scale is an arbitrary non-empty closed subset of \mathbb{R}. It can be viewed as a model of time [6]. Some classical examples are: [0,1][0,1], \mathbb{N}, \mathbb{Z}, and \mathbb{R}. In 1988, Aulbach and Hilger initiated the calculus of time scale [9]. To unify the continuous and discrete analysis, Hilger introduced the calculus of measure chains in 1988 [9]. In fact, from [9, Theorem 2.1], it shows that each measure chain is isomorphic to a time scale. On the same year of discovering time scale, it was them [9] who initiated the calculus part of it. Agarwal and Bohner in 1999 [2], were able to develop some of the basic tools of calculus on time scales. This includes the versions of Taylor’s formula, L’Hospital’s rule, and Kneser’s theorem.

In 2012, N. R. O. Bastos, in his PhD Thesis, spearheaded the idea of merging fractional calculus with the calculus of time scale. This topic’s inception paved the way with the publication of numerous papers related to this idea. T. J. Auch [3] in his work in 2013, was able to illustrate the analogues of calculus and fractional calculus on discrete time scales. Benkhettou et.al. [4] formally introduced a fractional differentiation and fractional integration using the forward jump operator. In 2021, Gogoi et. al [8] define fractional differentiation and fractional integration using the notion of backward jump operator.

One might think that there is a little to nothing in the differences between the concepts of [4] and [8]. However, there are some instances that one prefers a backward perspective due its natural applicability (see [7, 10, 13, 14]). Moreover, it has advantages for numerical analyst, who often use the backward differences rather than forward differences, since it has better stability properties of implicit discretizations.

This paper is organized as follows. Section 2 presents some important and necessary concepts from fractional calculus and calculus of time scales. We also propose a modification of nabla fractional differentiation introduced by Gogoi et. al. and introduce some of their important results (see Section 2.1). Section 3 presents the Rolle’s Theorem, Extreme Value Theorem, Mean Value Theorem, and Generalized Mean Value Theorem in the setting of nabla fractional derivative of functions defined on a time scale. Whereas, in Section 4, we provide a chain rule formula for nabla fractional derivative and a formula of taking the nabla fractional derivative of an inverse function. Finally, Section 5 will discuss some of the interesting application of this study in understanding sequences and series.

2 Nabla Fractional Differentiation on Time Scales

A time scale 𝕋\mathbb{T} is an arbitrary nonempty closed subset of \mathbb{R}. Examples of a time scale which we will frequently use in this study are: [a,b][a,b] (where a,ba,b\in\mathbb{R} with a<ba<b), \mathbb{N}, hh\mathbb{Z} (where h>0h>0), n\mathbb{Z}_{n} (where nn\in\mathbb{N}), and \mathbb{R}. Here, 𝕋\mathbb{T} has the relative topology inherited from \mathbb{R}. In this regard, we define the following terminologies with respect to the relative topology. Let t𝕋t\in\mathbb{T}. For δ>0\delta>0, the δ\delta-neighborhood (resp. left δ\delta-neighborhood) of tt is defined as Uδ(t):=(tδ,t+δ)𝕋U_{\delta}(t):=(t-\delta,t+\delta)\cap\mathbb{T} (resp. Uδ(t):=(tδ,t)𝕋U^{-}_{\delta}(t):=(t-\delta,t)\cap\mathbb{T}). A function f:𝕋f:\mathbb{T}\rightarrow\mathbb{R} is said to be continuous at t𝕋t\in\mathbb{T} (resp. left-continuous at t𝕋t\in\mathbb{T}) if for each ε>0\varepsilon>0, there exists δ>0\delta>0 such that

for any sUδ(t)s\in U_{\delta}(t) (resp. sUδ(t)s\in U^{-}_{\delta}(t)), |f(t)f(s)|<ε|f(t)-f(s)|<\varepsilon.

The following operators are useful in modeling a time. These are fundamental tools in the study of calculus of time scales. For tt\in 𝕋\mathbb{T}, the forward jump operator at tt is defined as σ(t):=inf{s𝕋:s>t}\sigma(t):=\inf\{s\in\mathbb{T}:s>t\} while the backward jump operator at tt is ρ(t):=sup{s𝕋:s<t}\rho(t):=\sup\{s\in\mathbb{T}:s<t\}. As a remark, one can easily show that σ(t)t\sigma(t)\geq t and ρ(t)t\rho(t)\leq t. A point tt is said to be left-dense if ρ(t)=t\rho(t)=t; otherwise, we say that tt is left-scattered. In this study, we will mainly focus on the backward jump operator.

2.1 A Modification of Nabla Fractional Derivative

We first made a remark, if α{1q|qisanoddnumber}\alpha\notin\{\frac{1}{q}\ |\ q\ \mathrm{is\ an\ odd\ number}\}, then for any real number λ<0\lambda<0, λα\lambda^{\alpha}\notin\mathbb{R}. Now, let us look at the nabla fractional derivative on time scale introduced by Gogoi et.al. [8, Definition 9]. Fix t𝕋t\in\mathbb{T}. Then ρ(t)t\rho(t)\leq t. For any sUδ(t)s\in U_{\delta}(t), either ρ(t)s0\rho(t)-s\geq 0 or ρ(t)s0\rho(t)-s\leq 0. By the earlier remark, for a given α{1q|qisanoddnumber}\alpha\notin\{\frac{1}{q}\ |\ q\ \mathrm{is\ an\ odd\ number}\}, we can find some sUδ(t)s\in U_{\delta}(t) such that [ρ(t)s]α[\rho(t)-s]^{\alpha}\notin\mathbb{R}. This means that limstf(ρ(t))f(s)(ρ(t)s)α\displaystyle\lim_{s\rightarrow t}\dfrac{f(\rho(t))-f(s)}{(\rho(t)-s)^{\alpha}} does not exist whenever α{1q|qisanoddnumber}\alpha\notin\{\frac{1}{q}\ |\ q\ \mathrm{is\ an\ odd\ number}\}. In line with this, the nabla fractional derivative coined by Gogoi et.al. must be modified.

If 𝕋\mathbb{T} has a minimum mm which is a right-scattered point (that is, σ(m)>m\sigma(m)>m) then 𝕋k:=𝕋{m}\mathbb{T}^{k}:=\mathbb{T}\setminus\{m\}; otherwise, 𝕋k:=𝕋\mathbb{T}^{k}:=\mathbb{T}. We are now ready to redefine the fractional derivative on arbitrary time scales introduced in the paper [8, Definition 9]. For a given α(0,1]\alpha\in(0,1], the definition below make sense by choosing an appropriate δ\delta-neighborhood depending on whether we can express α\alpha as 1q\frac{1}{q} or not, for some odd number qq.

Definition 1.

Let f:𝕋f:\mathbb{T}\rightarrow\mathbb{R} be a given function and let t𝕋kt\in\mathbb{T}^{k}. For α(0,1]{1q|qisanoddnumber}\alpha\in(0,1]\cap\{\frac{1}{q}\ |\ q\ \mathrm{is\ an\ odd\ number}\} (resp. α(0,1]{1q|qisanoddnumber}\alpha\in(0,1]\setminus\{\frac{1}{q}\ |\ q\ \mathrm{is\ an\ odd\ number}\}), we say that ff is nabla fractional differentiable of order α\alpha at tt provided there exists a real number LL with the property that given ε>0\varepsilon>0, there is a δ>0\delta>0 such that for any sUδ(t)s\in U_{\delta}(t) (resp. sUδ(t)s\in U^{-}_{\delta}(t)),

|[f(ρ(t))f(s)]L[ρ(t)s]α|ε|ρ(t)s|α\big{\lvert}\left[f(\rho(t))-f(s)\right]-L\left[\rho(t)-s\right]^{\alpha}\big{\rvert}\leq\varepsilon|\rho(t)-s|^{\alpha}.

We call the notation (α)\nabla^{(\alpha)} as the nabla fractional derivative operator. If such LL exists, we use the notation (α)f(t)=L\nabla^{(\alpha)}f(t)=L.

Throughout in this paper, we assume α(0,1]\alpha\in(0,1], unless otherwise stated. We denote ν(t):=tρ(t)\nu(t):=t-\rho(t) and for each t𝕋t\in\mathbb{T}, ν(t)0\nu(t)\geq 0. For the remaining part of this section, we will be presenting some of the useful results obtained from the work of Gogoi et. al. [8]. The first theorem establishes the relationship between the nabla fractional differentiability and the continuity of a function. Moreover, it provides explicit formula for taking the nabla fractional derivative on a time scale.

Theorem 1.

Let t𝕋kt\in\mathbb{T}^{k} and let f:𝕋f:\mathbb{T}\rightarrow\mathbb{R} be a function. Then the following statements hold:

  1. (i)

    Let α(0,1]{1q|qisanoddnumber}\alpha\in(0,1]\cap\{\frac{1}{q}\ |\ q\ \mathrm{is\ an\ odd\ number}\} (resp. α(0,1]{1q|qisanoddnumber}\alpha\in(0,1]\setminus\{\frac{1}{q}\ |\ q\ \mathrm{is\ an\ odd\ number}\}). If tt is left-dense and ff is nabla fractional differentiable of order α\alpha at tt, then ff is continuous (resp. left-continuous) at tt.

  2. (ii)

    If ff is continuous at tt and tt is left-scattered, then ff is nabla fractional differentiable of order α\alpha at tt with

    (α)f(t)=f(t)f(ρ(t))(ν(t))α.\nabla^{(\alpha)}f(t)=\frac{f(t)-f(\rho(t))}{(\nu(t))^{\alpha}}.
  3. (iii)

    Let α(0,1]{1q|qisanoddnumber}\alpha\in(0,1]\setminus\{\frac{1}{q}\ |\ q\ \mathrm{is\ an\ odd\ number}\}. If tt is left-dense, then the following are equivalent:

    1. (a)

      ff is nabla fractional differentiable of order α\alpha at tt.

    2. (b)

      limstf(t)f(s)(ts)α\displaystyle\lim_{s\to t^{-}}\frac{f(t)-f(s)}{(t-s)^{\alpha}} exist.

    In this case, (α)f(t)=limstf(t)f(s)(ts)α.\nabla^{(\alpha)}f(t)=\displaystyle\lim_{s\to t^{-}}\frac{f(t)-f(s)}{(t-s)^{\alpha}}.

  4. (iv)

    Let α(0,1]{1q|qisanoddnumber}\alpha\in(0,1]\cap\{\frac{1}{q}\ |\ q\ \mathrm{is\ an\ odd\ number}\}. If tt is left-dense, then the following are equivalent:

    1. (a)

      ff is nabla fractional differentiable of order α\alpha at tt.

    2. (b)

      limstf(t)f(s)(ts)α\displaystyle\lim_{s\to t}\frac{f(t)-f(s)}{(t-s)^{\alpha}} exist.

    In this case, (α)f(t)=limstf(t)f(s)(ts)α.\nabla^{(\alpha)}f(t)=\displaystyle\lim_{s\to t}\frac{f(t)-f(s)}{(t-s)^{\alpha}}.

  5. (v)

    If ff is nabla fractional differentiable of order α\alpha at tt, then

    f(ρ(t))=f(t)(ν(t))α(α)f(t).f(\rho(t))=f(t)-(\nu(t))^{\alpha}\cdot\nabla^{(\alpha)}f(t).

A proof of Theorem 1 can be seen from [8, Theorem 3]. The authors showed that Theorem 1 (iv) holds for any α(0,1]\alpha\in(0,1]. But here, we look at the case when α\alpha can be written as 1q\frac{1}{q} or not, for some odd number qq.

Remark 1.

If 𝕋=\mathbb{T}=\mathbb{R}, then each point t𝕋t\in\mathbb{T} is left-dense. In addition, in view of Theorem 1 (iv), if α=1\alpha=1, one can show that (1)f(t)=f(t)\nabla^{(1)}f(t)=f^{\prime}(t), where ff^{\prime} is the ordinary derivative of ff. This was already mentioned in the paper [8, Corollary 1 (i)].

From the ordinary calculus, we know that differentiability implies continuity, but the converse may fails. This means that there are non-differentiabe functions which, in fact, are continuous at a given point. For instance, the function f:f:\mathbb{R}\rightarrow\mathbb{R} defined by f(t)=t3f(t)=\sqrt[3]{t}, is not differentiable at t=0t=0 but, it is continuous at t=0t=0. The nabla fractional derivative provides a way of recovering this missing information by means of Theorem 1 (i). If we take α=13\alpha=\frac{1}{3}, and since t=0t=0 is left-dense, then

(13)f(0)=lims003s3(0s)13=lims0s3s13=lims01=1.\nabla^{(\frac{1}{3})}f(0)=\displaystyle\lim_{s\to 0}\frac{\sqrt[3]{0}-\sqrt[3]{s}}{(0-s)^{\frac{1}{3}}}=\displaystyle\lim_{s\to 0}\frac{\sqrt[3]{s}}{s^{\frac{1}{3}}}=\displaystyle\lim_{s\to 0}1=1.

It is further implied that ff is continuous at t=0t=0 as we have demonstrated that it is a nabla fractional derivative of order 13\frac{1}{3} at t=0t=0.

We conclude this part by showcasing a few findings from Gogoi et al. These fundamental characteristics of a nabla fractional derivative are helpful in demonstrating our primary findings in the following two sections. The paper [8, Proposition 1, Proposition 2, Theorem 4] has the proof of these three claims.

Proposition 2 (Constant Rule for Nabla Fractional Differentiation).

Let cc\in\mathbb{R}. If f:𝕋f:\mathbb{T}\rightarrow\mathbb{R} is defined by f(t)=cf(t)=c, for all t𝕋t\in\mathbb{T}, then (α)f(t)=0.\nabla^{(\alpha)}f(t)=0.


Proposition 3 (Identity Rule for Nabla Fractional Differentiation).

If f:𝕋f:\mathbb{T}\rightarrow\mathbb{R} is defined by f(t)=tf(t)=t, for all t𝕋t\in\mathbb{T}, then

(α)f(t)={(ν(t))1αifα11ifα=1.\displaystyle\nabla^{(\alpha)}f(t)=\begin{cases}(\nu(t))^{1-\alpha}&if\alpha\neq 1\\ 1&if\alpha=1.\end{cases}
Proposition 4 (Linearity of Nabla Fractional Differentiation).

Let f,g:𝕋f,g:\mathbb{T}\rightarrow\mathbb{R} be both nabla fractional differentiable of order α\alpha at t𝕋kt\in\mathbb{T}^{k}. Let λ,ω\lambda,\omega\in\mathbb{R}. Then λf+ωg:𝕋\lambda f+\omega g:\mathbb{T}\rightarrow\mathbb{R} is nabla fractional differentiable of order α\alpha at tt with

(α)[λf(t)+ωg(t)]=λ(α)f(t)+ω(α)g(t).\nabla^{(\alpha)}[\lambda f(t)+\omega g(t)]=\lambda\cdot\nabla^{(\alpha)}f(t)+\omega\cdot\nabla^{(\alpha)}g(t).

For readers who are interested of the product rule and quotient rule for nabla fractional derivative, we refer them to [8, Theorem 4 (ii) and (iv)].

3 Generalized Mean Value Theorem for Nabla Fractional Derivative

In this section, we try to formalize a more general mean value theorem for nabla fractional derivative using the method of Nwaeze [15, Section 3]. We shall see that, if we choose α=1\alpha=1 and 𝕋=\mathbb{T}=\mathbb{R}, we obtain the mean value theorem from the ordinary calculus. We first define local extrema in terms of backward jump operator.

Definition 2.

A function f:𝕋f:\mathbb{T}\rightarrow\mathbb{R} has a local left-maximum (resp. a local left-minimum) at t0𝕋kt_{0}\in\mathbb{T}^{k} provided that the following holds:

  1. (i)

    if t0t_{0} is left-scattered then f(ρ(t0))f(t0)f(\rho(t_{0}))\leq f(t_{0}) (resp. f(ρ(t0)f(t0)f(\rho(t_{0})\geq f(t_{0}) ); and

  2. (ii)

    if t0t_{0} is left-dense then there exists δ>0\delta>0 such that for any sUδ(t0)s\in U^{-}_{\delta}(t_{0}), f(s)f(t0)f(s)\leq f(t_{0}) (resp. f(s)f(t0)f(s)\geq f(t_{0})).

The next two lemmas provide necessary and sufficient conditions on the existence of a local extrema of a given function. These two lemmas are useful in our proof for the extreme value theorem for functions defined on a time scale.

Lemma 1.

Let f:𝕋f:\mathbb{T}\rightarrow\mathbb{R} be nabla fractional differentiable of order α\alpha at t0𝕋kt_{0}\in\mathbb{T}^{k}. Then the following holds:

  1. (i)

    If ff attains a local left-maximum at t0t_{0} then (α)f(t0)0\nabla^{(\alpha)}f(t_{0})\geq 0.

  2. (ii)

    If ff attains a local left-minimum at t0t_{0} then (α)f(t0)0\nabla^{(\alpha)}f(t_{0})\leq 0.

Proof.

(i):{\rm(i)}: Assume ff has a local left-maximum at t0t_{0} and suppose t0t_{0} is a left-scattered point. In view of Theorem 1 (ii), (α)f(t0)=f(t0)f(ρ(t0))(ν(t0))α\nabla^{(\alpha)}f(t_{0})=\dfrac{f(t_{0})-f(\rho(t_{0}))}{(\nu(t_{0}))^{\alpha}}. Since f(t0)f(ρ(t0))f(t_{0})\geq f(\rho(t_{0})) and (ν(t0))α>0(\nu(t_{0}))^{\alpha}>0,

(α)f(t0)=f(t0)f(ρ(t0))(ν(t0))α0.\displaystyle\nabla^{(\alpha)}f(t_{0})=\dfrac{f(t_{0})-f(\rho(t_{0}))}{(\nu(t_{0}))^{\alpha}}\geq 0.

Let us look at the case when tt is left-dense and α(0,1]{1q|qisanoddnumber}\alpha\in(0,1]\setminus\{\frac{1}{q}\ |\ q\ \mathrm{is\ an\ odd\ number}\}. By Theorem 1 (iii), (α)f(t0)=limst0f(t0)f(s)(t0s)α.\nabla^{(\alpha)}f(t_{0})=\displaystyle\lim_{s\to t_{0}}\frac{f(t_{0})-f(s)}{(t_{0}-s)^{\alpha}}.

Since ff has a local left-maximum at t0t_{0}, there exist a δ>0\delta>0 such that for any sUδ(t0)s\in U^{-}_{\delta}(t_{0}), f(t0)f(s)f(t_{0})\geq f(s). Then, f(t0)f(s)(t0s)α0\dfrac{f(t_{0})-f(s)}{(t_{0}-s)^{\alpha}}\geq 0, sUδ(t0)\forall s\in U^{-}_{\delta}(t_{0}). Then, we get

(α)f(t0)=limst0f(t0)f(s)(t0s)α0.\displaystyle\nabla^{(\alpha)}f(t_{0})=\displaystyle\lim_{s\to t_{0}^{-}}\frac{f(t_{0})-f(s)}{(t_{0}-s)^{\alpha}}\geq 0.

On the other hand, for α(0,1]{1q|qisanoddnumber}\alpha\in(0,1]\cap\{\frac{1}{q}\ |\ q\ \mathrm{is\ an\ odd\ number}\}, since ff is nabla fractional differentiable of order α\alpha at t0t_{0},

(α)f(t0)=limst0f(t0)f(s)(t0s)α=limst0f(t0)f(s)(t0s)α0.\nabla^{(\alpha)}f(t_{0})=\lim_{s\to t_{0}}\frac{f(t_{0})-f(s)}{(t_{0}-s)^{\alpha}}=\displaystyle\lim_{s\to t_{0}^{-}}\frac{f(t_{0})-f(s)}{(t_{0}-s)^{\alpha}}\geq 0.

(ii):{\rm(ii)}: Suppose ff has a local left-minimum at t0t_{0}. We proceed the proof in the same manner as in part (i). If t0t_{0} is left-scattered, f(t0)f(ρ(t0))f(t_{0})\leq f(\rho(t_{0})) and (α)f(t0)=f(t0)f(ρ(t0))(ν(t0))α\nabla^{(\alpha)}f(t_{0})=\dfrac{f(t_{0})-f(\rho(t_{0}))}{(\nu(t_{0}))^{\alpha}}. Consequently,

(α)f(t0)=f(t0)f(ρ(t0))(ν(t0))α0.\displaystyle\nabla^{(\alpha)}f(t_{0})=\dfrac{f(t_{0})-f(\rho(t_{0}))}{(\nu(t_{0}))^{\alpha}}\leq 0.

If tt is left-dense, we can find a δ>0\delta>0 such that f(t0)f(s)(t0s)α0\dfrac{f(t_{0})-f(s)}{(t_{0}-s)^{\alpha}}\leq 0, for all sUδ(t0)s\in U^{-}_{\delta}(t_{0}). Then, we get

(α)f(t0)=limst0f(t0)f(s)(t0s)α=limst0f(t0)f(s)(t0s)α0.\displaystyle\nabla^{(\alpha)}f(t_{0})=\lim_{s\to t_{0}}\frac{f(t_{0})-f(s)}{(t_{0}-s)^{\alpha}}=\displaystyle\lim_{s\to t_{0}^{-}}\frac{f(t_{0})-f(s)}{(t_{0}-s)^{\alpha}}\leq 0.

The converse statements of Lemma 1 does not necessarily follow. As a counterexample, consider the function f:[0,2]f:[0,2]\rightarrow\mathbb{R} defined by f(t)=2tf(t)=2-t. Observe that (13)f(1)=lims1f(1)f(s)(1s)13=lims11(2s)(1s)13=0\nabla^{(\frac{1}{3})}f(1)=\displaystyle\lim_{s\rightarrow 1}\dfrac{f(1)-f(s)}{(1-s)^{\frac{1}{3}}}=\displaystyle\lim_{s\rightarrow 1}\dfrac{1-(2-s)}{(1-s)^{\frac{1}{3}}}=0. We now show that ff does not attain a local left-maximum at 1. Let δ>0\delta>0 and consider the left δ\delta-neighborhood Uδ(1)U^{-}_{\delta}(1). Take s0=1δ2Uδ(1)s_{0}=1-\dfrac{\delta}{2}\in U^{-}_{\delta}(1). We then have

f(s0)=2(1δ2)=1+δ2>1=f(1).f(s_{0})=2-\left(1-\dfrac{\delta}{2}\right)=1+\dfrac{\delta}{2}>1=f(1).

This shows that ff has no local left-maximum at 1.

Lemma 2.

Let f:𝕋f:\mathbb{T}\rightarrow\mathbb{R} be nabla fractional differentiable of order α\alpha at t0𝕋kt_{0}\in\mathbb{T}^{k}. Then the following holds:

  1. (i)

    If (α)f(t0)>0\nabla^{(\alpha)}f(t_{0})>0 then ff attains a local left-maximum at t0t_{0}.

  2. (ii)

    If (α)f(t0)<0\nabla^{(\alpha)}f(t_{0})<0 then ff attains a local left-minimum at t0t_{0}.

Proof.

(i):{\rm(i)}: Suppose that f:𝕋f:\mathbb{T}\rightarrow\mathbb{R} is nabla fractional differentiable of order α\alpha at t0t_{0} with (α)f(t0)>0\nabla^{(\alpha)}f(t_{0})>0.

If t0t_{0} is left-scattered, then by Theorem 1(ii), f(t0)f(ρ(t0))(ν(t0))α=(α)f(t0)>0\dfrac{f(t_{0})-f(\rho(t_{0}))}{(\nu(t_{0}))^{\alpha}}=\nabla^{(\alpha)}f(t_{0})>0. This leads to the inequality, f(t0)>f(ρ(t0))f(t_{0})>f(\rho(t_{0})). We now consider the case when tt is left-dense. By the Theorem 1 (iii) and (iv), either

(α)f(t0)=limst0f(t0)f(s)(t0s)α\nabla^{(\alpha)}f(t_{0})=\displaystyle\lim_{s\to t_{0}}\frac{f(t_{0})-f(s)}{(t_{0}-s)^{\alpha}} or (α)f(t0)=limst0f(t0)f(s)(t0s)α.\nabla^{(\alpha)}f(t_{0})=\displaystyle\lim_{s\to t_{0}^{-}}\frac{f(t_{0})-f(s)}{(t_{0}-s)^{\alpha}}.

In any of the cases, corresponding to ε=(α)f(t0)>0\varepsilon=\nabla^{(\alpha)}f(t_{0})>0, we can find a δ>0\delta>0 such that for any sUδ(t0)s\in U^{-}_{\delta}(t_{0}),

|f(t0)f(s)(t0s)α(α)f(t0)|<(α)f(t0),thatis, 0<f(t0)f(s)(t0s)α<2(α)f(t0).\displaystyle\left|\frac{f(t_{0})-f(s)}{(t_{0}-s)^{\alpha}}-\nabla^{(\alpha)}f(t_{0})\right|<\nabla^{(\alpha)}f(t_{0}),\ \mathrm{that\ is,}\ 0<\frac{f(t_{0})-f(s)}{(t_{0}-s)^{\alpha}}<2\nabla^{(\alpha)}f(t_{0}).

Consequently, f(s)<f(t0)f(s)<f(t_{0}), for all sUδ(t0).s\in U^{-}_{\delta}(t_{0}). We have shown that ff attains a local left-maximum at t0t_{0}.

(ii):{\rm(ii)}: For the proof of part (ii), we refer the reader to part (i). If t0t_{0} is left-scattered, f(t0)<f(ρ(t0))f(t_{0})<f(\rho(t_{0})). If t0t_{0} is left-dense, choosing ε=(α)f(t0)>0\varepsilon=-\nabla^{(\alpha)}f(t_{0})>0, there exist δ>0\delta>0 such that

2(α)f(t0)<f(t0)f(s)(t0s)α<0,sUδ(t0).\displaystyle 2\nabla^{(\alpha)}f(t_{0})<\frac{f(t_{0})-f(s)}{(t_{0}-s)^{\alpha}}<0,\ \forall s\in U^{-}_{\delta}(t_{0}).

We then obtain the inequality, f(t0)<f(s)f(t_{0})<f(s), for all sUδ(t0).s\in U^{-}_{\delta}(t_{0}). This concludes the proof. ∎

In view of Lemma 1 and Lemma 2, the next corollary characterizes the existence of a local left-maximum and a local left-minimum.

Corollary 1.

Let f:𝕋f:\mathbb{T}\rightarrow\mathbb{R} be nabla fractional differentiable of order α\alpha at t0𝕋kt_{0}\in\mathbb{T}^{k} such that (α)f(t0)0\nabla^{(\alpha)}f(t_{0})\neq 0. Then the following holds:

  1. (i)

    ff attains a local left-maximum at t0t_{0} if and only if (α)f(t0)>0\nabla^{(\alpha)}f(t_{0})>0.

  2. (ii)

    ff attains a local left-minimum at t0t_{0} if and only if (α)f(t0)<0\nabla^{(\alpha)}f(t_{0})<0.

Let a,b𝕋a,b\in\mathbb{T} with a<ba<b. We define [a,b]𝕋={t𝕋:atb}[a,b]_{\mathbb{T}}=\{t\in\mathbb{T}:a\leq t\leq b\} as the closed interval in 𝕋\mathbb{T}. We will define open intervals and open-closed intervals in the same manner.

Remark 2.

Since 𝕋\mathbb{T} is a closed subset of \mathbb{R}, [a,b]𝕋=[a,b]𝕋[a,b]_{\mathbb{T}}=[a,b]\cap\mathbb{T} is a closed subset of \mathbb{R}. Moreover, since [a,b][a,b] is a bounded subset of \mathbb{R} and [a,b]𝕋[a,b][a,b]_{\mathbb{T}}\subseteq[a,b], [a,b]𝕋[a,b]_{\mathbb{T}} must also be a bounded subset of \mathbb{R}. Combining these two ideas imply [a,b]𝕋[a,b]_{\mathbb{T}} is a compact subset of \mathbb{R}.

Proposition 5 (Extreme Value Theorem on Time Scales).

Let a,b𝕋a,b\in\mathbb{T} with a<ba<b. If f:𝕋f:\mathbb{T}\rightarrow\mathbb{R} is continuous on the interval [a,b]𝕋[a,b]_{\mathbb{T}}, then there exist t1,t2[a,b]𝕋t_{1},t_{2}\in[a,b]_{\mathbb{T}} such that f(t1)f(t)f(t2),forallt[a,b]𝕋.f(t_{1})\leq f(t)\leq f(t_{2}),\ \mathrm{for\ all}\ t\in[a,b]_{\mathbb{T}}.

Proof.

Since ff is a continuous function on a compact set [a,b]𝕋[a,b]_{\mathbb{T}}, we make use of [1, Theorem 4.4.3] to conclude that there exist t1,t2[a,b]𝕋t_{1},t_{2}\in[a,b]_{\mathbb{T}} such that

f(t1)f(t)f(t2),forallt[a,b]𝕋.f(t_{1})\leq f(t)\leq f(t_{2}),\ \mathrm{for\ all}\ t\in[a,b]_{\mathbb{T}}.

From the ordinary calculus, Rolle’s Theorem plays a vital role in the proof of the Mean Value Theorem. As such, we will also be needing the next proposition. One can verify that, if 𝕋=\mathbb{T}=\mathbb{R} and α=1\alpha=1, the next result is an extension of the Rolle’s Theorem from the ordinary calculus.

Proposition 6 (A nabla fractional version of Rolle’s Theorem).

Let a,b𝕋a,b\in\mathbb{T} with a<ba<b and (a,b)𝕋(a,b)_{\mathbb{T}}\neq\emptyset. Let f:𝕋f:\mathbb{T}\rightarrow\mathbb{R} be a function satisfying the following:

  1. (i)

    continuous on [a,b]𝕋[a,b]_{\mathbb{T}};

  2. (ii)

    nabla fractional differentiable of order α\alpha on (a,b)𝕋(a,b)_{\mathbb{T}}; and

  3. (iii)

    f(a)=f(b)f(a)=f(b).

Then there exist t1,t2(a,b)𝕋t_{1},t_{2}\in(a,b)_{\mathbb{T}} such that (α)f(t1)0(α)f(t2).\nabla^{(\alpha)}f(t_{1})\leq 0\leq\nabla^{(\alpha)}f(t_{2}).

Proof.

Suppose that f(t)=f(a)f(t)=f(a), for all t[a,b]𝕋t\in[a,b]_{\mathbb{T}}. It follows that for some cc\in\mathbb{R}, f(t)=cf(t)=c for all t[a,b]𝕋t\in[a,b]_{\mathbb{T}}. By the Proposition 2, (α)f(t)=0,t[a,b]𝕋.\nabla^{(\alpha)}f(t)=0,\forall t\in[a,b]_{\mathbb{T}}. Since (a,b)𝕋(a,b)_{\mathbb{T}}\neq\emptyset, we can find a tk(a,b)𝕋t_{k}\in(a,b)_{\mathbb{T}} for which (α)f(tk)=0\nabla^{(\alpha)}f(t_{k})=0. Choose t1=tk=t2t_{1}=t_{k}=t_{2}. In this case, (α)f(t1)=0=(α)f(t2)\nabla^{(\alpha)}f(t_{1})=0=\nabla^{(\alpha)}f(t_{2}).

Suppose that f(t0)f(a)f(t_{0})\neq f(a), for some t0[a,b]𝕋t_{0}\in[a,b]_{\mathbb{T}}. Since ff is continuous on [a,b]𝕋[a,b]_{\mathbb{T}}, the Extreme Value Theorem on time scales implies there exist points t1,t2[a,b]𝕋t_{1},t_{2}\in[a,b]_{\mathbb{T}} such that f(t1)f(t)f(t2)f(t_{1})\leq f(t)\leq f(t_{2}), for all t[a,b]𝕋t\in[a,b]_{\mathbb{T}}. If t1,t2{a,b}t_{1},t_{2}\in\{a,b\}, then we have f(t1)f(t0)f(t2)f(t_{1})\leq f(t_{0})\leq f(t_{2}). This yields to f(t0)=f(t1)=f(a)f(t_{0})=f(t_{1})=f(a), a contradiction. We further show that t1,t2(a,b)𝕋t_{1},t_{2}\in(a,b)_{\mathbb{T}}. Given that ff attains a minimum value at t1t_{1} and a maximum value at t2t_{2}, ff also attains a local left-minimum at t1t_{1} and a local left-maximum at t2t_{2}. Since we know that ff is nabla fractional differentiable of order α\alpha on (a,b)𝕋(a,b)_{\mathbb{T}}, (α)f(t1)\nabla^{(\alpha)}f(t_{1}) and (α)f(t2)\nabla^{(\alpha)}f(t_{2}) both exist. In view from Lemma 1 (i) and (ii), (α)f(t1)0\nabla^{(\alpha)}f(t_{1})\leq 0 and 0(α)f(t2).0\leq\nabla^{(\alpha)}f(t_{2}). Hence, (α)f(t1)0(α)f(t2).\nabla^{(\alpha)}f(t_{1})\leq 0\leq\nabla^{(\alpha)}f(t_{2}).

As a consequence of the Rolle’s Theorem, we have one of our main results which provides a general version of the Mean Value Theorem for nabla fractional differentiation.

Theorem 7 (A nabla fractional version of Generalized Mean Value Theorem).

Let a,b𝕋a,b\in\mathbb{T} with a<ba<b and (a,b)𝕋(a,b)_{\mathbb{T}}\neq\emptyset. Let ff and gg be functions satisfying the following:

  1. (i)

    continuous on [a,b]𝕋[a,b]_{\mathbb{T}}; and

  2. (ii)

    nabla fractional differentiable of order α\alpha on (a,b)𝕋(a,b)_{\mathbb{T}}.

Suppose that (α)g(t)>0\nabla^{(\alpha)}g(t)>0, for all t(a,b)𝕋t\in(a,b)_{\mathbb{T}} with g(a)g(b)g(a)\neq g(b). Then, there exist t1,t2(a,b)𝕋t_{1},t_{2}\in(a,b)_{\mathbb{T}} such that

(α)f(t1)(α)g(t1)f(b)f(a)g(b)g(a)(α)f(t2)(α)g(t2).\dfrac{\nabla^{(\alpha)}f(t_{1})}{\nabla^{(\alpha)}g(t_{1})}\leq\dfrac{f(b)-f(a)}{g(b)-g(a)}\leq\dfrac{\nabla^{(\alpha)}f(t_{2})}{\nabla^{(\alpha)}g(t_{2})}.
Proof.

Consider the function h(t):=f(t)f(a)f(b)f(a)g(b)g(a)(g(t)g(a))h(t):=f(t)-f(a)-\dfrac{f(b)-f(a)}{g(b)-g(a)}(g(t)-g(a)) which is well-defined on [a,b]𝕋[a,b]_{\mathbb{T}}. By the continuity of functions ff and gg, hh is also continuous on [a,b]𝕋[a,b]_{\mathbb{T}}. Furthermore, using the hypothesis (ii) with the Proposition 4, hh is also nabla fractional differentiable on (a,b)𝕋(a,b)_{\mathbb{T}}. Finally, one can check that h(a)=0=h(b)h(a)=0=h(b). By the Proposition 6, there exist t1,t2(a,b)𝕋t_{1},t_{2}\in(a,b)_{\mathbb{T}} such that (α)h(t1)0(α)h(t2)\nabla^{(\alpha)}h(t_{1})\leq 0\leq\nabla^{(\alpha)}h(t_{2}).

By taking the nabla fractional derivative of hh, one gets

(α)h(t)=(α)f(t)f(b)f(a)g(b)g(a)(α)g(t).\nabla^{(\alpha)}h(t)=\nabla^{(\alpha)}f(t)-\dfrac{f(b)-f(a)}{g(b)-g(a)}\nabla^{(\alpha)}g(t).

With this, we obtain the following inequalities

(α)f(t1)f(b)f(a)g(b)g(a)(α)g(t1)0\nabla^{(\alpha)}f(t_{1})-\dfrac{f(b)-f(a)}{g(b)-g(a)}\nabla^{(\alpha)}g(t_{1})\leq 0 and (α)f(t2)f(b)f(a)g(b)g(a)(α)g(t2)0\nabla^{(\alpha)}f(t_{2})-\dfrac{f(b)-f(a)}{g(b)-g(a)}\nabla^{(\alpha)}g(t_{2})\geq 0.

Since we know that (α)g(t)>0\nabla^{(\alpha)}g(t)>0, for all t(a,b)𝕋t\in(a,b)_{\mathbb{T}},

(α)f(t1)(α)g(t1)f(b)f(a)g(b)g(a)0\dfrac{\nabla^{(\alpha)}f(t_{1})}{\nabla^{(\alpha)}g(t_{1})}-\dfrac{f(b)-f(a)}{g(b)-g(a)}\leq 0 and (α)f(t2)(α)g(t2)f(b)f(a)g(b)g(a)0\dfrac{\nabla^{(\alpha)}f(t_{2})}{\nabla^{(\alpha)}g(t_{2})}-\dfrac{f(b)-f(a)}{g(b)-g(a)}\geq 0.

Therefore,

(α)f(t1)(α)g(t1)f(b)f(a)g(b)g(a)(α)f(t2)(α)g(t2)\dfrac{\nabla^{(\alpha)}f(t_{1})}{\nabla^{(\alpha)}g(t_{1})}\leq\dfrac{f(b)-f(a)}{g(b)-g(a)}\leq\dfrac{\nabla^{(\alpha)}f(t_{2})}{\nabla^{(\alpha)}g(t_{2})}.

To illustrate Theorem 7, let us consider the next example.

Example 1.

Set 𝕋:=\mathbb{T}:=\mathbb{N}. Consider the two continuous functions on [1,10]𝕋[1,10]_{\mathbb{T}} defined by f(t)=2t+3f(t)=2t+3 and g(t)=t2g(t)=t^{2}. On (1,10)𝕋(1,10)_{\mathbb{T}}, ff and gg are nabla fractional differentiable functions with (1)f(t)=2\nabla^{(1)}f(t)=2 and (1)g(t)=2t1\nabla^{(1)}g(t)=2t-1. By the Theorem 7, there exist t1,t2(1,10)𝕋t_{1},t_{2}\in(1,10)_{\mathbb{T}} such that

(1)f(t1)(1)g(t1)f(10)f(1)g(10)g(1)(1)f(t2)(1)g(t2).\displaystyle\dfrac{\nabla^{(1)}f(t_{1})}{\nabla^{(1)}g(t_{1})}\leq\dfrac{f(10)-f(1)}{g(10)-g(1)}\leq\dfrac{\nabla^{(1)}f(t_{2})}{\nabla^{(1)}g(t_{2})}.

Equivalently,

22t11189922t21,\displaystyle\dfrac{2}{2t_{1}-1}\leq\dfrac{18}{99}\leq\dfrac{2}{2t_{2}-1},

for some t1,t2(1,10)𝕋t_{1},t_{2}\in(1,10)_{\mathbb{T}}. Solving the inequality yields t1[6,10)t_{1}\in[6,10)\cap\mathbb{N} and t2(1,6]t_{2}\in(1,6]\cap\mathbb{N}.


The next corollary is a direct consequence of Theorem 7, which provides a version of the Mean Value Theorem for nabla fractional differentiation. As a remark, if one takes 𝕋=\mathbb{T}=\mathbb{R} and α=1\alpha=1, then we recover the Mean Value Theorem for the ordinary calculus.

Corollary 2 (A nabla fractional version of Mean Value Theorem).

Let a,b𝕋a,b\in\mathbb{T} with a<ba<b and (a,b)𝕋(a,b)_{\mathbb{T}}\neq\emptyset. Let f:𝕋f:\mathbb{T}\rightarrow\mathbb{R} be a function satisfying the following:

  1. (i)

    continuous on [a,b]𝕋[a,b]_{\mathbb{T}}; and

  2. (ii)

    nabla fractional differentiable of order α\alpha on (a,b)𝕋(a,b)_{\mathbb{T}}.

Then there exist t1,t2(a,b)𝕋t_{1},t_{2}\in(a,b)_{\mathbb{T}} such that one of the following holds:

  1. (a)

    (1)f(t1)f(b)f(a)ba(1)f(t2)\nabla^{(1)}f(t_{1})\leq\dfrac{f(b)-f(a)}{b-a}\leq\nabla^{(1)}f(t_{2})

  2. (b)

    For α(0,1)\alpha\in(0,1),

    (α)f(t1)(ν(t1))1αf(b)f(a)ba(α)f(t2)(ν(t2))1α,\dfrac{\nabla^{(\alpha)}f(t_{1})}{(\nu(t_{1}))^{1-\alpha}}\leq\dfrac{f(b)-f(a)}{b-a}\leq\dfrac{\nabla^{(\alpha)}f(t_{2})}{(\nu(t_{2}))^{1-\alpha}},

    provided ν(t1)0\nu(t_{1})\neq 0 and ν(t2)0\nu(t_{2})\neq 0.

Proof.

The proof uses Theorem 7 with g(t)=tg(t)=t.∎

4 Chain Rule for Nabla Fractional Derivative

Our formula from the ordinary chain rule will not hold in general cases for values of α\alpha. Take for example, the two nabla fractional differentiable functions f:f:\mathbb{R}\rightarrow\mathbb{R} and g:2g:2\mathbb{Z}\rightarrow\mathbb{R} defined by f(t)=t2f(t)=t^{2} and g(t)=2tg(t)=\sqrt{2}\,t, respectively. Then fg:2f\circ g:2\mathbb{Z}\rightarrow\mathbb{R} is given by (fg)(t)=2t2(f\circ g)(t)=2t^{2}. By the Proposition 3, Proposition 4, and [8, Example 1 (i)], we have

(1)f(t)=2t\nabla^{(1)}f(t)=2t, (1)g(t)=2\nabla^{(1)}g(t)=\sqrt{2}, and (1)(fg)(t)=2(2t2)\nabla^{(1)}(f\circ g)(t)=2(2t-2).

Meanwhile, (1)f(g(t))(1)g(t)=2(2t)2=4t\nabla^{(1)}f(g(t))\cdot\nabla^{(1)}g(t)=2(\sqrt{2}\,t)\cdot\sqrt{2}=4t. With this, we have provided an example showing, (α)(fg)(t)(α)f(g(t))(α)g(t)\nabla^{(\alpha)}\left(f\circ g\right)(t)\neq\nabla^{(\alpha)}f(g(t))\cdot\nabla^{(\alpha)}g(t), for some α\alpha.

Now, we define the notation f𝒞α(𝕋k)f\in\mathcal{C}^{\alpha}\left(\mathbb{T}^{k}\right) to denote the collection of continuously nabla fractional differentiable function f:𝕋f:\mathbb{T}\rightarrow\mathbb{R} of order α\alpha at each t𝕋kt\in\mathbb{T}^{k}. On the other hand, we adapt the notation, f𝒞0(𝕋k)f\in\mathcal{C}^{0}\left(\mathbb{T}^{k}\right) to denote the continuous function f:𝕋f:\mathbb{T}\rightarrow\mathbb{R} over 𝕋k\mathbb{T}^{k}. The next proposition provides a method of obtaining a chain rule formula for a composition of two differentiable functions - one function is in 𝒞0(𝕋k)\mathcal{C}^{0}\left(\mathbb{T}^{k}\right) and the other function is in 𝒞1()\mathcal{C}^{1}\left(\mathbb{R}\right).

Proposition 8 (Chain Rule 1).

Let f𝒞1()f\in\mathcal{C}^{1}\left(\mathbb{R}\right) and let g𝒞0(𝕋k)g\in\mathcal{C}^{0}\left(\mathbb{T}^{k}\right). If gg is nabla fractional differentiable at t𝕋kt\in\mathbb{T}^{k}, then there exists a real number c[ρ(t),t]c\in[\rho(t),t] with

(α)(fg)(t)=f(g(c))(α)g(t).\nabla^{(\alpha)}\left(f\circ g\right)(t)=f^{\prime}(g(c))\cdot\nabla^{(\alpha)}g(t). (1)
Proof.

We first consider the case when tt is left-scattered. Then

(α)(fg)(t)=f(g(t))f(g(ρ(t)))(ν(t))α.\nabla^{(\alpha)}\left(f\circ g\right)(t)=\dfrac{f(g(t))-f(g(\rho(t)))}{(\nu(t))^{\alpha}}.

If g(t)=g(ρ(t))g(t)=g(\rho(t)), then (α)g(t)=0\nabla^{(\alpha)}g(t)=0. Consequently, (1) will hold for any value of cc in the interval [ρ(t),t][\rho(t),t]. Now, assume g(t)>g(ρ(t))g(t)>g(\rho(t)) ( resp. g(t)<g(ρ(t))g(t)<g(\rho(t)) ). By the Mean Value Theorem applied to f𝒞1()f\in\mathcal{C}^{1}\left(\mathbb{R}\right), there exists a real number ζ\zeta in the open interval (g(ρ(t)),g(t))(g(\rho(t)),g(t)) ( resp. open interval (g(t),g(ρ(t))(g(t),g(\rho(t)) ) such that

f(ζ)=f(g(t))f(g(ρ(t)))g(t)g(ρ(t)).f^{\prime}(\zeta)=\dfrac{f(g(t))-f(g(\rho(t)))}{g(t)-g(\rho(t))}.

By the continuity of gg, there exists c[ρ(t),t]c\in[\rho(t),t] with g(c)=ζg(c)=\zeta. Consequently,

(α)(fg)(t)=\displaystyle\nabla^{(\alpha)}\left(f\circ g\right)(t)= f(g(t))f(g(ρ(t)))g(t)g(ρ(t))g(t)g(ρ(t))(ν(t))α\displaystyle\dfrac{f(g(t))-f(g(\rho(t)))}{g(t)-g(\rho(t))}\cdot\dfrac{g(t)-g(\rho(t))}{(\nu(t))^{\alpha}}
=\displaystyle= f(g(c))(α)g(t).\displaystyle f^{\prime}(g(c))\cdot\nabla^{(\alpha)}g(t).

For the case when tt is left-dense and α(0,1]{1q|qisanoddnumber}\alpha\in(0,1]\cap\{\frac{1}{q}\ |\ q\ \mathrm{is\ an\ odd\ number}\},

(α)(fg)(t)=\displaystyle\nabla^{(\alpha)}\left(f\circ g\right)(t)= limstf(g(t))f(g(s))(ts)α\displaystyle\lim_{s\rightarrow t}\dfrac{f(g(t))-f(g(s))}{(t-s)^{\alpha}}
=\displaystyle= limstf(g(t))f(g(s))g(t)g(s)limstg(t)g(s)(ts)α.\displaystyle\lim_{s\rightarrow t}\dfrac{f(g(t))-f(g(s))}{g(t)-g(s)}\cdot\lim_{s\rightarrow t}\dfrac{g(t)-g(s)}{(t-s)^{\alpha}}.

By the Mean Value Theorem, for g(t)>g(s)g(t)>g(s) (resp. g(t)<g(s)g(t)<g(s) ), there exists a real number ζs\zeta_{s} in the open interval (g(s),g(t))(g(s),g(t)) (resp. (g(t),g(s))(g(t),g(s)) ) such that

f(ζs)=f(g(t))f(g(s))g(t)g(s).f^{\prime}(\zeta_{s})=\dfrac{f(g(t))-f(g(s))}{g(t)-g(s)}.

Now, the continuity of gg implies limstζs=g(t)\lim_{s\rightarrow t}\zeta_{s}=g(t). Moreover, since ff^{\prime} is continuous,

(α)(fg)(t)=limstf(ζs)(α)g(t)=f(g(t))(α)g(t).\nabla^{(\alpha)}\left(f\circ g\right)(t)=\lim_{s\rightarrow t}f^{\prime}(\zeta_{s})\cdot\nabla^{(\alpha)}g(t)=f^{\prime}(g(t))\cdot\nabla^{(\alpha)}g(t).

Taking c=tc=t, we obtain (1).

As for the case, when tt is left-dense and α(0,1]{1q|qisanoddnumber}\alpha\in(0,1]\setminus\{\frac{1}{q}\ |\ q\ \mathrm{is\ an\ odd\ number}\}, we apply the same approach as we did for α(0,1]{1q|qisanoddnumber}\alpha\in(0,1]\cap\{\frac{1}{q}\ |\ q\ \mathrm{is\ an\ odd\ number}\}.∎

Example 2.

Let us consider again the two nabla fractional differentiable functions f:f:\mathbb{R}\rightarrow\mathbb{R} and g:2g:2\mathbb{Z}\rightarrow\mathbb{R} defined by f(t)=t2f(t)=t^{2} and g(t)=2tg(t)=\sqrt{2}\,t with

(1)f(t)=2t\nabla^{(1)}f(t)=2t, (1)g(t)=2\nabla^{(1)}g(t)=\sqrt{2}, and (1)(fg)(t)=2(2t2)\nabla^{(1)}(f\circ g)(t)=2(2t-2).

The Proposition 8 tells us that we can find a real number cc in the interval [ρ(t),t]=[t2,t][\rho(t),t]=[t-2,t] such that 2(2t2)=f(g(c))22(2t-2)=f^{\prime}(g(c))\sqrt{2}. Meanwhile, since f(t)=2tf^{\prime}(t)=2t, f(g(c))=22cf^{\prime}(g(c))=2\sqrt{2}c. Take c=t1[t2,t]c=t-1\in[t-2,t], we see that

f(g(t))(α)g(t)=22(t1)2=4(t1)=(α)(fg)(t).f^{\prime}(g(t))\cdot\nabla^{(\alpha)}g(t)=2\sqrt{2}(t-1)\cdot\sqrt{2}=4(t-1)=\nabla^{(\alpha)}\left(f\circ g\right)(t).

It is important to note that Proposition 8 guarantees only the existence of a real number cc in the interval [ρ(t),t][\rho(t),t] so that the chain rule formula works. In practicality, finding the value of cc might be rigorous and difficult to express. But in our next theorem, we provide an explicit way of solving the nabla fractional derivative of composition of two functions.

Theorem 9 (Chain Rule 2).

Let f𝒞1()f\in\mathcal{C}^{1}\left(\mathbb{R}\right) and let g𝒞0(𝕋k)g\in\mathcal{C}^{0}\left(\mathbb{T}^{k}\right). If g:𝕋g:\mathbb{T}\rightarrow\mathbb{R} is nabla fractional differentiable of order α\alpha at t𝕋kt\in\mathbb{T}^{k}, then the composition fg:𝕋f\circ g:\mathbb{T}\rightarrow\mathbb{R} is also nabla fractional differentiable of order α\alpha at t𝕋kt\in\mathbb{T}^{k} with the given formula

(α)(fg)(t)=01f(g(ρ(t))+φ(ν(t))α(α)g(t))𝑑φ(α)g(t).\nabla^{(\alpha)}(f\circ g)(t)=\int_{0}^{1}f^{\prime}\left(g(\rho(t))+\varphi\cdot(\nu(t))^{\alpha}\nabla^{(\alpha)}g(t)\right)\,d\varphi\cdot\nabla^{(\alpha)}g(t). (2)
Proof.

To show (2), we will apply the Fundamental Theorem of Calculus. For f𝒞1()f\in\mathcal{C}^{1}\left(\mathbb{R}\right) and g𝒞0(𝕋k)g\in\mathcal{C}^{0}\left(\mathbb{T}^{k}\right), if tt is left-scattered, then

f(g(t))f(g(ρ(t)))=g(ρ(t))g(t)f(λ)𝑑λ.f(g(t))-f(g(\rho(t)))=\int_{g(\rho(t))}^{g(t)}f^{\prime}(\lambda)\ d\lambda. (3)

Observe that, if g(ρ(t))=g(t)g(\rho(t))=g(t) then (α)(fg)(t)=0\nabla^{(\alpha)}(f\circ g)(t)=0 and (α)g(t)=0\nabla^{(\alpha)}g(t)=0. With this, (2) immediately follows. Suppose g(ρ(t))g(t)g(\rho(t))\neq g(t). Let λ=g(ρ(t))+φ[g(t)g(ρ(t))]\lambda=g(\rho(t))+\varphi\left[g(t)-g(\rho(t))\right]. Then dλ=[g(t)g(ρ(t))]dφd\lambda=\left[g(t)-g(\rho(t))\right]d\varphi. With the aid of Theorem 1 (v), equation (3) becomes

f(g(t))f(g(ρ(t)))=\displaystyle f(g(t))-f(g(\rho(t)))= 01f(g(ρ(t))+φ[g(t)g(ρ(t))])[g(t)g(ρ(t))]𝑑φ\displaystyle\int_{0}^{1}f^{\prime}\left(g(\rho(t))+\varphi\left[g(t)-g(\rho(t))\right]\right)\cdot\left[g(t)-g(\rho(t))\right]\,d\varphi
=\displaystyle= [g(t)g(ρ(t))]01f(g(ρ(t))+φ(ν(t))α(α)g(t))𝑑φ.\displaystyle\left[g(t)-g(\rho(t))\right]\cdot\int_{0}^{1}f^{\prime}\left(g(\rho(t))+\varphi\cdot(\nu(t))^{\alpha}\nabla^{(\alpha)}g(t)\right)\,d\varphi.

Consequently, for a left-scattered point tt with g(ρ(t))g(t)g(\rho(t))\neq g(t),

(α)(fg)(t)=\displaystyle\nabla^{(\alpha)}\left(f\circ g\right)(t)= f(g(t))f(g(ρ(t)))g(t)g(ρ(t))g(t)g(ρ(t))(ν(t))α\displaystyle\dfrac{f(g(t))-f(g(\rho(t)))}{g(t)-g(\rho(t))}\cdot\dfrac{g(t)-g(\rho(t))}{(\nu(t))^{\alpha}}
=\displaystyle= 01f(g(ρ(t))+φ(ν(t))α(α)g(t))𝑑φ(α)g(t).\displaystyle\int_{0}^{1}f^{\prime}\left(g(\rho(t))+\varphi\cdot(\nu(t))^{\alpha}\nabla^{(\alpha)}g(t)\right)\,d\varphi\cdot\nabla^{(\alpha)}g(t).

This time, assume that tt is left-dense. By the Fundamental Theorem of Calculus,

f(g(t))f(g(s))=\displaystyle f(g(t))-f(g(s))= g(s)g(t)f(λ)𝑑λ\displaystyle\int_{g(s)}^{g(t)}f^{\prime}(\lambda)\ d\lambda
=\displaystyle= [g(t)g(s)]01f(g(s)+φ(g(t)g(s)))𝑑φ.\displaystyle[g(t)-g(s)]\int_{0}^{1}f^{\prime}(g(s)+\varphi\cdot(g(t)-g(s)))\ d\varphi.

Thus, when tt is left-dense and α(0,1]{1q|qisanoddnumber}\alpha\in(0,1]\cap\{\frac{1}{q}\ |\ q\ \mathrm{is\ an\ odd\ number}\} (resp. α(0,1]{1q|qisanoddnumber}\alpha\in(0,1]\setminus\{\frac{1}{q}\ |\ q\ \mathrm{is\ an\ odd\ number}\}),

(α)(fg)(t)=\displaystyle\nabla^{(\alpha)}\left(f\circ g\right)(t)= limstf(g(t))f(g(s))g(t)g(s)limstg(t)g(s)(ts)α\displaystyle\lim_{s\rightarrow t}\dfrac{f(g(t))-f(g(s))}{g(t)-g(s)}\cdot\lim_{s\rightarrow t}\dfrac{g(t)-g(s)}{(t-s)^{\alpha}}
=\displaystyle= limst01f(g(s)+φ(g(t)g(s)))𝑑φ(α)g(t).\displaystyle\lim_{s\rightarrow t}\int_{0}^{1}f^{\prime}(g(s)+\varphi\cdot(g(t)-g(s)))\ d\varphi\cdot\nabla^{(\alpha)}g(t).

But by Theorem 1 (i), gg is continuous (resp. left-continuous) at tt. By the continuity of ff^{\prime} and gg, we obtain

(α)(fg)(t)=\displaystyle\nabla^{(\alpha)}\left(f\circ g\right)(t)= 01limstf(g(s)+φ(g(t)g(s)))dφ(α)g(t)\displaystyle\int_{0}^{1}\lim_{s\rightarrow t}f^{\prime}(g(s)+\varphi\cdot(g(t)-g(s)))\ d\varphi\cdot\nabla^{(\alpha)}g(t)
=\displaystyle= 01f(g(t))𝑑φ(α)g(t)\displaystyle\int_{0}^{1}f^{\prime}(g(t))\ d\varphi\cdot\nabla^{(\alpha)}g(t)
=\displaystyle= 01f(g(ρ(t))+φ(ν(t))α(α)g(t))𝑑φ(α)g(t),\displaystyle\int_{0}^{1}f^{\prime}\left(g(\rho(t))+\varphi\cdot(\nu(t))^{\alpha}\nabla^{(\alpha)}g(t)\right)d\varphi\cdot\nabla^{(\alpha)}g(t),

since ρ(t)=t\rho(t)=t and ν(t)=0\nu(t)=0. This completes the proof.∎

In addition to the assumptions in Theorem 2, if we choose 𝕋=\mathbb{T}=\mathbb{R} and α=1\alpha=1, then the chain rule formula is consistent in the ordinary calculus. For the next corollary, it illustrates the case when tt is a left-dense point.

Corollary 3.

Let f𝒞1()f\in\mathcal{C}^{1}\left(\mathbb{R}\right) and let g𝒞0(𝕋k)g\in\mathcal{C}^{0}\left(\mathbb{T}^{k}\right). If g:𝕋g:\mathbb{T}\rightarrow\mathbb{R} is nabla fractional differentiable of order α\alpha at a left-dense point t𝕋kt\in\mathbb{T}^{k}, then

(α)(fg)(t)=f(g(t))(α)g(t).\nabla^{(\alpha)}\left(f\circ g\right)(t)=f^{\prime}(g(t))\cdot\nabla^{(\alpha)}g(t).
Proof.

The proof of this follows from Theorem 2 using the fact that ρ(t)=t\rho(t)=t and μ(t)=0\mu(t)=0.∎

Take note that the chain rule formula presented in Theorem 2 relies heavily on the assumption that f𝒞1()f\in\mathcal{C}^{1}\left(\mathbb{R}\right). However, the formula did not consider a scenario for function ff that are defined on arbitrary 𝕋\mathbb{T}. This motivates us to consider f𝒞1(𝕋k)f\in\mathcal{C}^{1}\left(\mathbb{T}^{k}\right) and by relaxing the assumption of Theorem 2 with the continuity of gg. Let g:𝕋g:\mathbb{T}\rightarrow\mathbb{R} be strictly increasing and let 𝕋~:=Ran(g)\tilde{\mathbb{T}}:=\mathrm{Ran}(g) be a time scale. For the function ρ:𝕋~𝕋~\rho:\tilde{\mathbb{T}}\rightarrow\tilde{\mathbb{T}}, it can be observed that

ρ(g(t))=sup{g(s)𝕋~:g(s)<g(t)}=g(sup{s𝕋~:s<t})=g(ρ(t)).\rho(g(t))=\sup\{g(s^{\prime})\in\tilde{\mathbb{T}}:g(s^{\prime})<g(t)\}=g\left(\sup\{s^{\prime}\in\tilde{\mathbb{T}}:s^{\prime}<t\}\right)=g(\rho(t)). (4)

The next proposition shows that we can provide an explicit formula for taking the nabla derivative of the composition of functions -f𝒞1(𝕋~k)f\in\mathcal{C}^{1}\left(\tilde{\mathbb{T}}^{k}\right) and a strictly increasing nabla differentiable function gg.

Proposition 10.

Assume g:𝕋g:\mathbb{T}\rightarrow\mathbb{R} is strictly increasing, let 𝕋~:=Ran(g)\tilde{\mathbb{T}}:=\mathrm{Ran}(g) be a time scale, and let gg be nabla fractional differentiable function of order α\alpha at t𝕋κt\in\mathbb{T}^{\kappa}. If f𝒞1(𝕋~k)f\in\mathcal{C}^{1}\left(\tilde{\mathbb{T}}^{k}\right), then

(α)(fg)(t)=((1)f)(g(t))(α)g(t).\nabla^{(\alpha)}(f\circ g)(t)=\left(\nabla^{(1)}f\right)(g(t))\cdot\nabla^{(\alpha)}g(t).
Proof.

Let t𝕋κt\in\mathbb{T}^{\kappa}. Suppose tt is left-scattered. Since gg is strictly increasing, g(t)g(ρ(t))g(t)\neq g(\rho(t)), and by making use of the observation from (4) and since f𝒞1(𝕋~k)f\in\mathcal{C}^{1}\left(\tilde{\mathbb{T}}^{k}\right), one yields

(α)(fg)(t)=\displaystyle\nabla^{(\alpha)}(f\circ g)(t)= f(g(t))f(g(ρ(t)))g(t)g(ρ(t))g(t)g(ρ(t))(ν(t))α\displaystyle\dfrac{f(g(t))-f(g(\rho(t)))}{g(t)-g(\rho(t))}\cdot\dfrac{g(t)-g(\rho(t))}{(\nu(t))^{\alpha}}
=\displaystyle= f(g(t))f(ρ(g(t)))g(t)ρ(g(t))(α)g(t)\displaystyle\dfrac{f(g(t))-f(\rho(g(t)))}{g(t)-\rho(g(t))}\cdot\nabla^{(\alpha)}g(t)
=\displaystyle= ((1)f)(g(t))(α)g(t).\displaystyle\left(\nabla^{(1)}f\right)(g(t))\cdot\nabla^{(\alpha)}g(t).

For tt that is left-dense, we prove in a similar manner.∎

We end this section by presenting a formula for finding the nabla fractional derivative of an inverse function. The proof uses the Proposition 10. To provide an explicit formula, we cannot simply use the Chain Rule 2. With that, the next result shows that a strictly increasing function is necessary.

Corollary 4 (Nabla Fractional Derivative of an Inverse Function).

Suppose f:𝕋f:\mathbb{T}\rightarrow\mathbb{R} is strictly increasing function. Let 𝕋~:=Ran(f)\tilde{\mathbb{T}}:=\mathrm{Ran}(f) be a time scale and let f𝒞1(𝕋k)f\in\mathcal{C}^{1}\left(\mathbb{T}^{k}\right). If f1:𝕋~𝕋f^{-1}:\tilde{\mathbb{T}}\rightarrow\mathbb{T} exists then

(α)f1(t)={(ν(t))1α((1)f)(f1(t))ifα11((1)f)(f1(t))ifα=1\nabla^{(\alpha)}f^{-1}(t)=\begin{cases}\dfrac{(\nu(t))^{1-\alpha}}{\left(\nabla^{(1)}f\right)\left(f^{-1}(t)\right)}\hskip 14.45377pt\mathrm{if}\ \alpha\neq 1\\ \ \\ \dfrac{1}{\left(\nabla^{(1)}f\right)\left(f^{-1}(t)\right)}\hskip 14.45377pt\mathrm{if}\ \alpha=1\\ \end{cases}

provided that ((1)f)(f1(t))0\left(\nabla^{(1)}f\right)\left(f^{-1}(t)\right)\neq 0, for t𝕋~κt\in\tilde{\mathbb{T}}^{\kappa}.

Proof.

Take g:=f1g:=f^{-1}. Since ff is strictly increasing, gg must also be strictly increasing. In view of Proposition 10,

(α)(t)=(α)(fg)(t)=((1)f)(f1(t))(α)f1(t).\nabla^{(\alpha)}(t)=\nabla^{(\alpha)}(f\circ g)(t)=\left(\nabla^{(1)}f\right)(f^{-1}(t))\cdot\nabla^{(\alpha)}f^{-1}(t).

The proof concludes by using Proposition 3.∎

5 Sum of a Finite Series

In this section, we provide an important application of the Chain Rule formula for nabla fractional differentiation in understanding the sum of a finite series. We first present a needed corollary which extends the product rule [8, Theorem 4 (ii)] for a finite collection of nabla fractional differentiable functions.

Corollary 5.

Let m2m\geq 2 and suppose {fi:𝕋}2im\left\{f_{i}:\mathbb{T}\rightarrow\mathbb{R}\right\}_{2\leq i\leq m} be a finite collection of nabla fractional differentiable function of order α\alpha at t𝕋κt\in\mathbb{T}^{\kappa}. If fi𝒞0(𝕋k)f_{i}\in\mathcal{C}^{0}\left(\mathbb{T}^{k}\right), for each m2m\geq 2, then

(α)(i=1mfi)(t)=i=1m(1ji1(fj(ρ(t))(α)fi(t)i+1jmfj(t))\nabla^{(\alpha)}\left(\prod_{i=1}^{m}f_{i}\right)(t)=\sum_{i=1}^{m}\left(\prod_{1\leq j\leq i-1}(f_{j}(\rho(t))\cdot\nabla^{(\alpha)}f_{i}(t)\cdot\prod_{i+1\leq j\leq m}f_{j}(t)\right) (1)
Proof.

We shall proceed by mathematical induction. For m=2m=2, we will use [8, Theorem 4 (ii)]. Suppose that (1) holds true for m1m-1 functions, that is,

(α)(i=1m1fi)(t)=i=1m1(1ji1(fj(ρ(t))(α)fi(t)i+1jm1fj(t)).\nabla^{(\alpha)}\left(\prod_{i=1}^{m-1}f_{i}\right)(t)=\sum_{i=1}^{m-1}\left(\prod_{1\leq j\leq i-1}(f_{j}(\rho(t))\cdot\nabla^{(\alpha)}f_{i}(t)\cdot\prod_{i+1\leq j\leq m-1}f_{j}(t)\right).

Applying again [8, Theorem 4 (ii)], and using the above assumption,

(α)(i=1mfi)(t)=\displaystyle\nabla^{(\alpha)}\left(\prod_{i=1}^{m}f_{i}\right)(t)= (α)(i=1m1fifm)(t)\displaystyle\nabla^{(\alpha)}\left(\prod_{i=1}^{m-1}f_{i}\cdot f_{m}\right)(t)
=\displaystyle= i=1m1fi(ρ(t))(α)fm(t)+fm(t)(α)(i=1m1fi)(t)\displaystyle\prod_{i=1}^{m-1}f_{i}(\rho(t))\cdot\nabla^{(\alpha)}f_{m}(t)+f_{m}(t)\cdot\nabla^{(\alpha)}\left(\prod_{i=1}^{m-1}f_{i}\right)(t)
=\displaystyle= i=1m1fi(ρ(t))(α)fm(t)\displaystyle\prod_{i=1}^{m-1}f_{i}(\rho(t))\cdot\nabla^{(\alpha)}f_{m}(t)
+\displaystyle+ fm(t)i=1m1(1ji1fj(ρ(t))(α)fi(t)i+1jm1fj(t))\displaystyle f_{m}(t)\cdot\sum_{i=1}^{m-1}\left(\prod_{1\leq j\leq i-1}f_{j}(\rho(t))\cdot\nabla^{(\alpha)}f_{i}(t)\cdot\prod_{i+1\leq j\leq m-1}f_{j}(t)\right)
=\displaystyle= i=1m1fi(ρ(t))(α)fm(t)\displaystyle\prod_{i=1}^{m-1}f_{i}(\rho(t))\cdot\nabla^{(\alpha)}f_{m}(t)
+\displaystyle+ i=1m1(1ji1fj(ρ(t))(α)fi(t)i+1jmfj(t))\displaystyle\sum_{i=1}^{m-1}\left(\prod_{1\leq j\leq i-1}f_{j}(\rho(t))\cdot\nabla^{(\alpha)}f_{i}(t)\cdot\prod_{i+1\leq j\leq m}f_{j}(t)\right)
=\displaystyle= i=1m(1ji1fj(ρ(t))(α)fi(t)i+1jmfj(t)).\displaystyle\sum_{i=1}^{m}\left(\prod_{1\leq j\leq i-1}f_{j}(\rho(t))\cdot\nabla^{(\alpha)}f_{i}(t)\cdot\prod_{i+1\leq j\leq m}f_{j}(t)\right).

Hence by induction, this proves our proposition.∎

We are now ready to present our next proposition which states that the sum of a certain finite series can be computed using nabla fractional derivative.

Proposition 11.

Let mm\in\mathbb{N}. Let f:𝕋f:\mathbb{T}\rightarrow\mathbb{R} be nabla fractional differentiable of order α\alpha at t𝕋κt\in\mathbb{T}^{\kappa} and let f𝒞0(𝕋k)f\in\mathcal{C}^{0}\left(\mathbb{T}^{k}\right). Then

i=0mfi(ρ(t))fmi(t)=[f(ρ(t))+(ν(t))α(α)f(t)]m+1[f(ρ(t))]m+1(ν(t))α(α)f(t)\sum_{i=0}^{m}f^{i}(\rho(t))f^{m-i}(t)=\dfrac{\left[f(\rho(t))+(\nu(t))^{\alpha}\nabla^{(\alpha)}f(t)\right]^{m+1}-\left[f(\rho(t))\right]^{m+1}}{(\nu(t))^{\alpha}\nabla^{(\alpha)}f(t)} (2)

provided (ν(t))α(α)f(t)0(\nu(t))^{\alpha}\nabla^{(\alpha)}f(t)\neq 0.

Proof.

If m=1m=1, the equality follows. For m2m\geq 2, we use Corollary 5 with fi=ff_{i}=f, for each i=1,,mi=1,...,m, to see that

(α)(fm+1)(t)=[i=0mfi(ρ(t))fmi(t)](α)f(t).\nabla^{(\alpha)}\left(f^{m+1}\right)(t)=\left[\sum_{i=0}^{m}f^{i}(\rho(t))\cdot f^{m-i}(t)\right]\cdot\nabla^{(\alpha)}f(t). (3)

Now, define the function g:g:\mathbb{R}\rightarrow\mathbb{R} given by g(t)=tm+1.g(t)=t^{m+1}. By using the Chain Rule 2,

(α)(fm+1)(t)=\displaystyle\nabla^{(\alpha)}\left(f^{m+1}\right)(t)= (α)(gf)(t)\displaystyle\nabla^{(\alpha)}\left(g\circ f\right)(t)
=\displaystyle= 01g(f(ρ(t))+φ(ν(t))α(α)f(t))𝑑φ(α)f(t).\displaystyle\int_{0}^{1}g^{\prime}\left(f(\rho(t))+\varphi(\nu(t))^{\alpha}\nabla^{(\alpha)}f(t)\right)d\varphi\cdot\nabla^{(\alpha)}f(t).

Equivalently,

(α)(fm+1)(t)=(m+1)01[f(ρ(t))+φ(ν(t))α(α)f(t)]m𝑑φ(α)f(t).\nabla^{(\alpha)}\left(f^{m+1}\right)(t)=(m+1)\int_{0}^{1}\left[f(\rho(t))+\varphi(\nu(t))^{\alpha}\nabla^{(\alpha)}f(t)\right]^{m}d\varphi\cdot\nabla^{(\alpha)}f(t). (4)

Comparing (3) and (4) yields

i=0mfi(ρ(t))fmi(t)=\displaystyle\sum_{i=0}^{m}f^{i}(\rho(t))f^{m-i}(t)= (m+1)01[f(ρ(t))+φ(ν(t))α(α)f(t)]m𝑑φ\displaystyle(m+1)\int_{0}^{1}\left[f(\rho(t))+\varphi(\nu(t))^{\alpha}\nabla^{(\alpha)}f(t)\right]^{m}d\varphi
=\displaystyle= m+1(ν(t))α(α)f(t)f(ρ(t))f(ρ(t))+(ν(t))α(α)f(t)wm𝑑w\displaystyle\dfrac{m+1}{(\nu(t))^{\alpha}\nabla^{(\alpha)}f(t)}\int_{f(\rho(t))}^{f(\rho(t))+(\nu(t))^{\alpha}\nabla^{(\alpha)}f(t)}w^{m}dw
=\displaystyle= [f(ρ(t))+(ν(t))α(α)f(t)]m+1[f(ρ(t))]m+1(ν(t))α(α)f(t)\displaystyle\dfrac{\left[f(\rho(t))+(\nu(t))^{\alpha}\nabla^{(\alpha)}f(t)\right]^{m+1}-\left[f(\rho(t))\right]^{m+1}}{(\nu(t))^{\alpha}\nabla^{(\alpha)}f(t)}

as desired. ∎

We now provide a simple example showing how we can use the previous proposition to find the sum of a finite series.

Example 3.

Let mm\in\mathbb{N}. For tt\in\mathbb{Z},

i=0m(t1)2it2m2i=t2m+2(t1)2m+22t1.\sum_{i=0}^{m}(t-1)^{2i}t^{2m-2i}=\dfrac{t^{2m+2}-(t-1)^{2m+2}}{2t-1}.

In this example, we take α=1\alpha=1 and let f:f:\mathbb{Z}\rightarrow\mathbb{R} be defined by f(t)=t2f(t)=t^{2}. Then ρ(t)=t1\rho(t)=t-1, ν(t)=1\nu(t)=1, (1)f(t)=2t1\nabla^{(1)}f(t)=2t-1 and f(ρ(t))=(t1)2f(\rho(t))=(t-1)^{2}. By the Proposition 11, for tt\in\mathbb{Z},

i=0m(t1)2it2m2i=\displaystyle\sum_{i=0}^{m}(t-1)^{2i}t^{2m-2i}= [(t1)2+(2t1)]m+1[(t1)2]m+12t1\displaystyle\dfrac{[(t-1)^{2}+(2t-1)]^{m+1}-[(t-1)^{2}]^{m+1}}{2t-1}
=\displaystyle= t2m+2(t1)2m+22t1.\displaystyle\dfrac{t^{2m+2}-(t-1)^{2m+2}}{2t-1}.

For simplicity, let us adapt the notation: ρ0(t):=t\rho^{0}(t):=t, ρ1(t):=ρ(t)\rho^{1}(t):=\rho(t), ρ2(t):=ρ(ρ(t))\rho^{2}(t):=\rho(\rho(t)), and so on. The next proposition makes use of Theorem 1 (v) to express ff as a finite series expansion. This result plays an important role in the recovery of several well-known finite series expansion.

Proposition 12.

Let r,t𝕋kr,t\in\mathbb{T}^{k} such that trt\geq r with r=ρn(t)r=\rho^{n}(t), for some nn\in\mathbb{N}. Let f:𝕋f:\mathbb{T}\rightarrow\mathbb{R} be nabla fractional differentiable of order α\alpha at each ρj(t)\rho^{j}(t), j=0,1,,n1j=0,1,\dots,n-1. Then

f(t)=f(r)+j=0n1[ν(ρj(t))]α(α)f(ρj(t))f(t)=f(r)+\displaystyle\sum_{j=0}^{n-1}\left[\nu(\rho^{j}(t))\right]^{\alpha}\nabla^{(\alpha)}f(\rho^{j}(t)), for n1n\geq 1.

Proof.

Since trt\geq r with r=ρn(t)r=\rho^{n}(t), we have the following expansion

f(t)=\displaystyle f(t)= f(t)f(ρ(t))+f(ρ(t))f(ρ2(t))++f(ρn1(t))f(ρn(t))+f(ρn(t)).\displaystyle f(t)-f(\rho(t))+f(\rho(t))-f(\rho^{2}(t))+\cdots+f(\rho^{n-1}(t))-f(\rho^{n}(t))+f(\rho^{n}(t)).

With the aid of Theorem 1 (v),

f(t)=\displaystyle f(t)= [ν(t)]α(α)f(t)+[ν(ρ(t))]α(α)f(ρ(t))+\displaystyle\left[\nu(t)\right]^{\alpha}\nabla^{(\alpha)}f(t)+\left[\nu(\rho(t))\right]^{\alpha}\nabla^{(\alpha)}f(\rho(t))+\cdots
+[ν(ρn1(t))]α(α)f(ρn1(t))+f(r).\displaystyle+\left[\nu(\rho^{n-1}(t))\right]^{\alpha}\nabla^{(\alpha)}f(\rho^{n-1}(t))+f(r).

This proves the proposition.∎

In our next example, we will make use of the Proposition 12 to obtain some well-known finite series expansion.

Example 4.

Consider f:f:\mathbb{N}\rightarrow\mathbb{R} defined by f(t)=t3f(t)=t^{3}. Take r=1r=1 and α=1\alpha=1. For tt\in\mathbb{N}, one can check that (1)f(t)=3t23t+1\nabla^{(1)}f(t)=3t^{2}-3t+1 and r=ρt1(t)r=\rho^{t-1}(t). Moreover, ν(ρj(t))=1\nu(\rho^{j}(t))=1 and ρj(t)=tj\rho^{j}(t)=t-j, for all j=0,1,2,,t1j=0,1,2,\dots,t-1. Invoking Proposition 12, we get

t3=1+j=0t2(1)f(tj)t^{3}=1+\displaystyle\sum_{j=0}^{t-2}\nabla^{(1)}f(t-j), for t2t\geq 2.

Equivalently, be reindexing, for t2t\geq 2

t3=\displaystyle t^{3}= 1+j=2t(1)f(j)\displaystyle 1+\displaystyle\sum_{j=2}^{t}\nabla^{(1)}f(j)
=\displaystyle= 1+j=2t(3j23j+1)\displaystyle 1+\displaystyle\sum_{j=2}^{t}(3j^{2}-3j+1)
=\displaystyle= 1+j=2t3j(j1)+(t1)\displaystyle 1+\displaystyle\sum_{j=2}^{t}3j(j-1)+(t-1)

Consequently, we obtain the series expansion

13(t3t)=j=2tj(j1),fort2.\dfrac{1}{3}(t^{3}-t)=\displaystyle\sum_{j=2}^{t}j(j-1),\ \mathrm{for}\ t\geq 2.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  • [1] Abbott, S. (2015). Understanding Analysis (2nd ed.).Springer, New York.
  • [2] Agarwal, R.P., Bohner, M. (1999). Basic calculus on time scales and some of its applications. Results in Mathematics 35, 3–22.
  • [3] Auch, T.J. (2013). Development and application of difference and fractional calculus on discrete time scales. The University of Nebraska-Lincoln.
  • [4] Benkhettou, N., Brito da Cruz, A.M.C., Torres, D.F. (2015). A fractional calculus on arbitrary time scales: fractional differentiation and fractional integration. Signal Processing 107, 230–237.
  • [5] Boyadjiev, L. (2007). Some fractional extensions of the temperature field problem in oil strata. Fractional Calculus and Applied Analysis 10, 75–98.
  • [6] Georgiev, S.G. (2018). Fractional dynamic calculus and fractional dynamic equations on time scales. Springer International Publishing AG, Switzerland.
  • [7] Girejko, E., Malinowska, A. B., Torres, D. F. M. (2011). Delta-nabla optimal control problems. Journal of Vibration and Control 17(11), 1634–1643.
  • [8] Gogoi, B., Saha, U.K., Hazarika, B., Torres, D.F.M., Ahmad, H. (2021). Nabla fractional derivative and fractional integral on time scales. Axioms 10(4), 317. DOI: 10.3390/axioms10040317.
  • [9] Hilger, S. (1990). Analysis on measure chains?a unified approach to continuous and discrete calculus. Results in mathematics 18, 18–56.
  • [10] Jackson, B. (2008). Adaptive control in the nabla setting. Neural Parallel and Scientific Computations 16(2), 253–272.
  • [11] Lazarević, M.P., Rapaić, M.R., Šekara, T.B., Mladenov, V., Mastorakis, N. (2014). Introduction to fractional calculus with brief historical background. Advanced topics on applications of fractional calculus on control problems, system stability and modeling, 3–16.
  • [12] Machado, J.A. T. (2003). A probabilistic interpretation of the fractional-order differentiation. Fractional Calculus and Applied Analysis 6(1), 73–79.
  • [13] Malinowska, A. B., Torres, D. F. M. (2011). Backward variational approach on time scales with an action depending on the free endpoints. Zeitschrift fur Naturforschung A 66(6-7), 401–410.
  • [14] Martins, N., Torres, D. F. M. (2011). Necessary conditions for linear noncooperative N-player delta differential games on time scales. Discussiones Mathematicae, Differential Inclusions, Control and Optimization 31(1), 23–37.
  • [15] Nwaeze, E. (2016). A Mean Value Theorem for the Conformable Fractional Calculus on Arbitrary Time Scales. Discussiones Mathematicae, Porgress in Fractional Differentiation and Applications 2(4), 287–291.
  • [16] Pertz, G.H., Gerhardt, C.J. (1849). Leibnizens gesammelte Werke, Lebinizens mathematische Schriften, Erste Abtheilung, Band II. Dritte Folge Mathematik (Erster Band). A. Asher & Comp., Briefwechsel zwischen Leibniz, Hugens van Zulichem und dem Marquis de l’Hospital, 301–302.
  • [17] Podlubny, I. (1998). Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier.
  • [18] Podlubny, I. (1999). Fractional differential equations, mathematics in science and engineering. Academic Press New York.
  • [19] Schneider, W.R., Wyss, W. (1989). Fractional diffusion and wave equations. Journal of Mathematical Physics 30(1), 134–144.
  • [20] Streipert, S. (2023). Nonlinear Systems-Recent Developments and Advances. IntechOpen.