This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

institutetext: The Racah Institute of Physics, The Hebrew University of Jerusalem,
Jerusalem 91904, Israel

CFT data in the Gross-Neveu model

Mikhail Goykhman    Ritam Sinha [email protected] [email protected]
Abstract

We calculate CFT data for the Gross-Neveu model in 2<d<42<d<4 dimensions at the next-to-leading order in the 1/N1/N expansion. In particular, we make use of the background field method to derive various conformal triangles involving the composite operator s2s^{2}, for the Hubbard-Stratonovich field ss. We then apply these conformal triangles to obtain the corresponding OPE coefficients.

1 Introduction

Some of the most interesting phenomena in nature are associated with the regime of the strong interaction and therefore are not accessible to the standard perturbative treatment. Particularly, strongly-coupled physics occurs in the critical regime and is described by conformal field theories (CFTs) Polyakov:1970xd . From the standpoint of fundamental physics, such a regime is reached at the end of the renormalization group (RG) flow of a quantum field theory (QFT), either in the deep infra-red (IR) or in the asymptotically ultra-violet (UV) regime. Moreover, different systems can have their RG flows terminate at the same CFT, in a manifestation of the renowned phenomenon of critical universality.

The universality principle served as one of the inspirations to classify CFTs based on the algebra of primary operators and their observable properties, such as scaling dimensions and operator product expansion (OPE) coefficients, without necessarily specifying the Lagrangian of the underlying theory. In particular, the microscopic specifics of the underlying theory are ignored while the symmetries of the system and general consistency conditions (such as unitarity) constraining the available space of parameters come forward. The corresponding program is known as the conformal bootstrap, and it has been under active development over recent years Parisi:1972zm ; Polyakov:1974gs ; Ferrara:1973yt ; ElShowk:2012ht ; Simmons-Duffin:2016gjk .

This paper is motivated by the desire to expand our understanding of critical dynamics in d=3d=3 dimensions. The well-known example of a three-dimensional critical system is furnished by the IR fixed point of the O(n)O(n) vector model. This model can be viewed as a continuum limit description of the critical nn-vector model on a lattice Stanley:1968ef ; Guida:1998bx ; ElShowk:2012ht . The latter in turn generalizes the three-dimensional Ising model, describing the second-order phase transition of a ferromagnet. The fermionic counterpart of the O(n)O(n) vector model is given by the U(n)U(n) models with quartic fermion couplings, which we choose as the main focus of this paper.

The fixed point of the O(n)O(n) vector model exists in a perturbative Wilson-Fisher regime when the model is considered in 4ϵ4-\epsilon dimensions for small values of ϵ\epsilon. The three-dimensional physics (after a proper re-summation) is rather well approximated by setting ϵ=1\epsilon=1 Wilson:1971dc . Similarly, the U(n)U(n) fermionic model with the four-fermion Gross-Neveu interaction is asymptotically free in two dimensions111In fact, it possesses a number of remarkable properties in two dimensions, such as the dynamical breaking of chiral symmetry and generation of the IR scale via the dimensional transmutation, making it a 2d toy-model of quantum chromodynamics Gross:1974jv . but possesses the Wilson-Fisher type of fixed point in the UV limit in 2+ϵ2+\epsilon dimensions Gross:1974jv ; ZinnJustin:1991yn .

While the critical vector models are non-perturbative in general dd, a popular approach to study them is given by the 1/N1/N expansion, around an infinitely large number NN\rightarrow\infty of the degrees of freedom of the system (see Parisi:1975im and references therein). The 1/N1/N expansion and conformal bootstrap techniques are well suited to study strongly-coupled critical regime and have proven to be remarkably successful methods for extracting the CFT data such as the scaling dimensions and the OPE coefficients, see Vasiliev:1981yc ; Vasiliev:1981dg ; Vasiliev:1975mq ; Vasiliev:1982dc ; Gracey:1990wi ; ZinnJustin:1991yn ; Lang:1991kp ; Gracey:1992cp ; Vasiliev:1992wr ; Vasiliev:1993pi ; Gracey:1993kb ; Gracey:1993kc ; Lang:1993ct ; Petkou:1995vu ; Petkou:1994ad ; Derkachov:1993uw ; Derkachov:1997ch ; Leonhardt:2003du ; Fei:2014yja ; Fei:2014xta ; Gracey:2015tta ; Manashov:2016uam ; Diab:2016spb ; Giombi:2016fct ; Fei:2016sgs ; Gracey:2016mio ; Manashov:2017rrx ; Gracey:2018ame ; Alday:2019clp ; Giombi:2019upv ; Goykhman:2019kcj ; Goykhman:2020ffn for an incomplete list of related references.222 While the quartic coupling in the O(n)O(n) vector model in 4<d<64<d<6 dimensions, and the Gross-Neveu coupling in 2<d<42<d<4 dimensions are non-renormalizable by power counting, these theories are renormalizable at each order in the 1/N1/N expansion Parisi:1975im ; Rosenstein:1988pt . See also Goykhman:2019kcj where consistency check for the existence of a fixed point in the O(n)O(n) vector model in 2<d<62<d<6 dimensions was carried out by examining the Callan-Symanzik equations.

Recently the power of the background field method was emphasized in the context of large-NN vector models Goykhman:2020ffn . It was shown that formally fixing some of the degrees of freedom to their non-dynamical background values provides a simple short-cut to the calculation of effective vertices at sub-leading orders in the 1/N1/N expansion. In particular, this procedure allows one to easily extract finite parts of the three-point correlation functions (OPE coefficients). This is contrasted with the typical focus of the research in large NN critical vector models on the calculation of the critical exponents. In the literature, the background field method has been used effectively for calculations in cases where the field acquires a vacuum expectation value (v.e.v.) as a result of spontaneous symmetry breaking Goldstone:1962es . However, in the case of Goykhman:2020ffn , as well as in this paper, the considered fields do not necessarily acquire a v.e.v., and therefore the method should be viewed only as a calculation tool.

In this paper, we further establish the power of the background field method for the study of critical vector models. To this end, we will scrutinize the UV critical regime of the U(n)U(n) fermionic model with the Gross-Neveu interaction, and compute the full s2sss^{2}ss and s2ψ¯ψs^{2}\bar{\psi}\psi effective vertices for the fermion ψ\psi, the Hubbard-Stratonovich field ss, and the composite operator s2s^{2} in terms of the corresponding conformal triangles.333See Vasiliev:1993pi for the earlier calculation of the s2sss^{2}ss conformal triangle, which focused on its singular part for the purpose of calculating the anomalous dimension γs2\gamma_{s^{2}}. We extend their result by adding the finite part of this conformal triangle, essential for the calculation of the OPE coefficients. This is the first time that the background field method is used to calculate correlation functions involving a composite operator. In a simple way, this method provides a very powerful technique to calculate the finite part of non-planar diagrams contributing to these conformal triangles. We further use these conformal triangles to calculate the OPE coefficients appearing in the correlation functions involving the operator s2s^{2}, including the two-point function s2s2\langle s^{2}s^{2}\rangle, and the three-point functions s2ψ¯ψ\langle s^{2}\bar{\psi}\psi\rangle and s2ss\langle s^{2}ss\rangle.

It is well known that the UV fixed point of the GN model in 2<d<42<d<4 dimensions is described by the same CFT as the IR fixed point of the Gross-Neveu-Yukawa (GNY) model ZinnJustin:1991yn . Such an example of critical universality can also be interpreted in terms of the GNY model being a UV completion of the GN model. Moreover, the GNY model can be studied perturbatively in d=4ϵd=4-\epsilon dimensions, and the corresponding CFT data should match the CFT data of the GN model ZinnJustin:1991yn . We perform such a consistency check on all of our results obtained in this paper.444In a similar spirit, the O(N)O(N) vector model in 4<d<64<d<6 dimensions has been conjectured to have a UV completion in terms of the vector model coupled to a dynamical scalar field with cubic interaction. This conjecture has received numerous verifications up to the fourth order in perturbation theory Fei:2014yja ; Fei:2014xta ; Gracey:2015tta ; Diab:2016spb ; Giombi:2019upv ; Goykhman:2019kcj .

The rest of this paper is organized as follows. In section 2 we set up our conventions and review the known results in the literature that will be useful for the purposes of this paper. In section 3 we use the background field method to calculate the new conformal triangles up to the next-to-leading order in the 1/N1/N expansion. We derive the s2ψ¯ψs^{2}\bar{\psi}\psi conformal triangle in subsection 3.1, and the s2sss^{2}ss conformal triangle in subsection 3.2. In section 4 we carry out the calculation of the s2ss\langle s^{2}ss\rangle three-point function at the next-to-leading order in the 1/N1/N expansion. In the process, we derive various OPE coefficients. In section 5 we calculate the s2ψ¯ψ\langle s^{2}\bar{\psi}\psi\rangle three-point function at the next-to-leading order in the 1/N1/N expansion. In section 6 we demonstrate how the s2sss^{2}ss conformal triangle can be calculated from the s2s2\langle s^{2}s^{2}\rangle two-point function, which in particular serves as a non-trivial consistency check for our results. We conclude with the discussion in section 7, where we also outline possible future directions.

2 Set-up

Consider the U(n)U(n)-invariant fermionic model in 2d42\leq d\leq 4 dimensions with the quartic Gross-Neveu interaction,

S=ddx(ψ¯γμμψ+gN(ψ¯ψ)2),S=\int d^{d}x\,\left(\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi+\frac{g}{N}\,\left(\bar{\psi}\psi\right)^{2}\right)\,, (1)

where ψ\psi is the nn-component multiplet of Dirac fermions. According to the standard conventions N=ntr𝕀N=n\,\textrm{tr}\mathbb{I}, where 𝕀\mathbb{I} is the unit matrix in the 2[d/2]2^{[d/2]}-dimensional space of Dirac spinors. We will be working in the Euclidean signature, with Hermitian gamma-matrices, (γμ)=γμ(\gamma^{\mu})^{\dagger}=\gamma^{\mu}, such that {γμ,γν}=2δμν𝕀\{\gamma^{\mu},\gamma^{\nu}\}=2\delta^{\mu\nu}\,\mathbb{I}. Below in this paper we will skip keeping explicit track of the U(n)U(n) indices where it does not cause a confusion.555In particular, when writing down the Feynman rules, we will omit the Kronecker delta-symbols for the U(n)U(n) indices.

Using the standard trick, known as the Hubbard-Stratonovich transformation, we can rewrite the action (1) in terms of the original fermions ψ\psi as well as an auxiliary scalar field ss,

S=ddx(ψ¯γμμψ14gs2+1Nsψ¯ψ).S=\int d^{d}x\,\left(\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi-\frac{1}{4g}\,s^{2}+\frac{1}{\sqrt{N}}\,s\bar{\psi}\psi\right)\,. (2)

The Hubbard-Stratonovich field ss becomes dynamical due to the fermion loop diagrams. The model (2) is believed to reach a non-trivial UV fixed point in 2<d<42<d<4 dimensions ZinnJustin:1991yn ,666Such a fixed point can be studied perturbatively in 2+ϵ2+\epsilon dimensions. and we will be studying the corresponding CFT.

We will use the following Feynman rules for the bare propagators of the Dirac fermion and the Hubbard-Stratonovich field ss, and the leading order interaction vertex:

=Cψxμγμ|x|d=\frac{C_{\psi}\,x^{\mu}\gamma_{\mu}}{|x|^{d}}=Cs|x|2=\frac{C_{s}}{|x|^{2}}xx00xx=1N=-\frac{1}{\sqrt{N}}

A fermionic loop generates the factor of ntr(𝕀)=N-n\,\textrm{tr}(\mathbb{I})=-N, where the minus sign appears as a consequence of the Wick contractions due to the anti-commuting nature of the fermion field. We will also use the following notation for the regularized Hubbard-Stratonovich propagator:

0xx2Δs+δ2\Delta_{s}+\delta=Csμδ|x|2Δs+δ=\frac{C_{s}\,\mu^{-\delta}}{|x|^{2\Delta_{s}+\delta}}

where δ\delta is the regularization parameter which is taken to zero at the end of calculation Vasiliev:1975mq , μ\mu is the renormalization mass scale, and Δs=1+γs\Delta_{s}=1+\gamma_{s} is dimension of the Hubbard-Stratonovich field, which acquires the anomalous term γs\gamma_{s}. Our notations for the scalar and fermion lines with a general exponent and a unit amplitude will be as follows:

=xμγμ|x|2a+1=\frac{x^{\mu}\gamma_{\mu}}{|x|^{2a+1}}=1|x|2a=\frac{1}{|x|^{2a}}xx02a2a02a2axx

According to this notation, we will typically skip explicitly labeling exponents of the bare propagators of the fundamental fermion and the Hubbard-Stratonovich field.

The full fermion ψ\psi and Hubbard-Stratonovich ss propagators, including the anomalous dimensions γψ,s\gamma_{\psi,s} as well as corrections to the amplitudes Aψ,sA_{\psi,s}, will be denoted with solid blobs, and are given by

0xx=Cψ(1+Aψ)μ2γψxμγμ|x|d+2γψ=C_{\psi}(1+A_{\psi})\,\mu^{-2\gamma_{\psi}}\,\frac{x^{\mu}\gamma_{\mu}}{|x|^{d+2\gamma_{\psi}}}ψ(0)ψ¯(x)=\langle\psi(0)\bar{\psi}(x)\rangle=0xx=Cs(1+As)μ2γs1|x|2+2γs=C_{s}(1+A_{s})\,\mu^{-2\gamma_{s}}\,\frac{1}{|x|^{2+2\gamma_{s}}}s(x)s(0)=\langle s(x)s(0)\rangle=

The full propagator of the composite field s2s^{2} will be denoted as

0xx=Cs2(1+As2)μ2γs21|x|4+2γs2=C_{s^{2}}(1+A_{s^{2}})\,\mu^{-2\gamma_{s^{2}}}\,\frac{1}{|x|^{4+2\gamma_{s^{2}}}}s(x)2s(0)2=\langle s(x)^{2}s(0)^{2}\rangle=

where we defined

Cs2=2Cs2C_{s^{2}}=2C_{s}^{2} (3)

to be the leading order amplitude of the s2s2\langle s^{2}s^{2}\rangle propagator. The leading order propagator amplitudes are given by ZinnJustin:1991yn

Cψ=Γ(d2)2πd2,Cs=2dsin(πd2)Γ(d12)π32Γ(d21),\displaystyle C_{\psi}=\frac{\Gamma\left(\frac{d}{2}\right)}{2\pi^{\frac{d}{2}}}\,,\qquad C_{s}=-\frac{2^{d}\sin\left(\frac{\pi d}{2}\right)\Gamma\left(\frac{d-1}{2}\right)}{\pi^{\frac{3}{2}}\,\Gamma\left(\frac{d}{2}-1\right)}\,, (4)

The anomalous dimensions at the next-to-leading order are ZinnJustin:1991yn

γψ=1N2d1sin(πd2)Γ(d12)π32dΓ(d21)+𝒪(1/N2),γs=4d1d2γψ+𝒪(1/N2),\gamma_{\psi}=-\frac{1}{N}\,\frac{2^{d-1}\sin\left(\frac{\pi d}{2}\right)\Gamma\left(\frac{d-1}{2}\right)}{\pi^{\frac{3}{2}}\,d\,\Gamma\left(\frac{d}{2}-1\right)}+{\cal O}\left(1/N^{2}\right)\,,\qquad\gamma_{s}=-4\frac{d-1}{d-2}\,\gamma_{\psi}+{\cal O}\left(1/N^{2}\right)\,, (5)

and 1/N1/N corrections to the propagators amplitudes are Manashov:2017rrx

Aψ=2dγψ+𝒪(1/N2),As=(Hd2+2d+πcot(πd2))γs+𝒪(1/N2),A_{\psi}=-\frac{2}{d}\,\gamma_{\psi}+{\cal O}\left(1/N^{2}\right)\,,\quad A_{s}=-\left(H_{d-2}+\frac{2}{d}+\pi\,\cot\left(\frac{\pi d}{2}\right)\right)\,\gamma_{s}+{\cal O}\left(1/N^{2}\right)\,, (6)

where HnH_{n} is nnth harmonic number.

We will also need the sψ¯ψs\bar{\psi}\psi effective vertex, represented by the corresponding conformal triangle Polyakov:1970xd , and denoted with a solid blob

=Zsψ¯ψNμ2γψ+γs×=-\frac{Z_{s\bar{\psi}\psi}}{\sqrt{N}}\,\mu^{2\gamma_{\psi}+\gamma_{s}}\times2α2\alpha2α2\alpha2β2\betas(x1)s(x_{1})ψ¯(x2)\bar{\psi}(x_{2})ψ(x3)\psi(x_{3})=Zsψ¯ψNddx1,2,3x21μγμx13νγνμ2γψ+γss(x1)ψ¯(x2)ψ(x3)(|x12||x13|)2α+1|x12|2β=-\frac{Z_{s\bar{\psi}\psi}}{\sqrt{N}}\int d^{d}x_{1,2,3}\frac{x_{21}^{\mu}\gamma_{\mu}x_{13}^{\nu}\gamma_{\nu}\mu^{2\gamma_{\psi}+\gamma_{s}}s(x_{1})\bar{\psi}(x_{2})\psi(x_{3})}{(|x_{12}||x_{13}|)^{2\alpha+1}|x_{12}|^{2\beta}}

where the exponents

α=d1γs2,β=1γψ+γs2\alpha=\frac{d-1-\gamma_{s}}{2}\,,\qquad\beta=1-\gamma_{\psi}+\frac{\gamma_{s}}{2} (7)

are such that the integration vertices x1,2,3x_{1,2,3} become unique when the propagators are attached to them. The ψ¯ψs\bar{\psi}\psi s conformal triangle diagram is a sum of the leading order tree-level diagram, the sub-leading loop corrections, and the ψ¯ψs\bar{\psi}\psi s vertex counter-term. In particular, the ψ¯ψs\bar{\psi}\psi s vertex counter-term cancels the divergences from the sub-leading order loop diagram, see Goykhman:2020ffn for the detailed explanation.

To the next-to-leading order in 1/N1/N we can expand

Zsψ¯ψ=Zsψ¯ψ(0)(1+δZsψ¯ψ+𝒪(1/N)),Z_{s\bar{\psi}\psi}=Z_{s\bar{\psi}\psi}^{(0)}\left(1+\delta Z_{s\bar{\psi}\psi}+{\cal O}(1/N)\right)\,, (8)

where Manashov:2017rrx 777See also Goykhman:2020ffn for a recent derivation.

Zsψ¯ψ(0)\displaystyle Z_{s\bar{\psi}\psi}^{(0)} =(d2)Γ(d2)24πd(2γψ+γs),\displaystyle=-\frac{(d-2)\Gamma\left(\frac{d}{2}\right)^{2}}{4\pi^{d}}\,(2\gamma_{\psi}+\gamma_{s})\,, (9)
δZsψ¯ψ\displaystyle\delta Z_{s\bar{\psi}\psi} =2d2γs.\displaystyle=-\frac{2}{d-2}\,\gamma_{s}\,. (10)

For the analysis of loop diagrams we we will be using the following propagator merging relations Gracey:1990wi

2Δ12\Delta_{1}2Δ22\Delta_{2}2Δ12\Delta_{1}2Δ22\Delta_{2}2(Δ1+Δ2)d2(\Delta_{1}+\Delta_{2})-d2(Δ1+Δ2)d2(\Delta_{1}+\Delta_{2})-d×πd2A(Δ2)V(Δ1,dΔ1Δ2)\times\pi^{\frac{d}{2}}\,A(\Delta_{2})\,V(\Delta_{1},d-\Delta_{1}-\Delta_{2})×(πd2)A(dΔ1Δ2)V(Δ1,Δ2)×𝕀\times(-\pi^{\frac{d}{2}})\,A(d-\Delta_{1}-\Delta_{2})\,V(\Delta_{1},\Delta_{2})\times\mathbb{I}====2Δ12\Delta_{1}2Δ22\Delta_{2}2(Δ1+Δ2)d2(\Delta_{1}+\Delta_{2})-d==×U(Δ1,Δ2,dΔ1Δ2)\times U(\Delta_{1},\Delta_{2},d-\Delta_{1}-\Delta_{2})

where we defined

A(Δ)\displaystyle A(\Delta) =Γ(d2Δ)Γ(Δ),V(Δ1,Δ2)=Γ(d+12Δ1)Γ(Δ1+12)Γ(d+12Δ2)Γ(Δ2+12),\displaystyle=\frac{\Gamma\left(\frac{d}{2}-\Delta\right)}{\Gamma(\Delta)}\,,\qquad V(\Delta_{1},\Delta_{2})=\frac{\Gamma\left(\frac{d+1}{2}-\Delta_{1}\right)}{\Gamma(\Delta_{1}+\frac{1}{2})}\frac{\Gamma\left(\frac{d+1}{2}-\Delta_{2}\right)}{\Gamma(\Delta_{2}+\frac{1}{2})}\,, (11)
U(Δ1,Δ2,Δ2)\displaystyle U(\Delta_{1},\Delta_{2},\Delta_{2}) =πd2A(Δ1)A(Δ2)A(Δ3),\displaystyle=\pi^{\frac{d}{2}}\,A(\Delta_{1})A(\Delta_{2})A(\Delta_{3})\,, (12)

and the uniqueness relations for Δ1+Δ2+Δ3=d\Delta_{1}+\Delta_{2}+\Delta_{3}=d DEramo:1971hnd ; Symanzik:1972wj ; Gracey:1990wi ,

ddx41|x14|2Δ1|x24|2Δ2|x34|2Δ3\displaystyle\int d^{d}x_{4}\,\frac{1}{|x_{14}|^{2\Delta_{1}}|x_{24}|^{2\Delta_{2}}|x_{34}|^{2\Delta_{3}}} =U(Δ1,Δ2,Δ3)|x12|d2Δ3|x13|d2Δ2|x23|d2Δ1,\displaystyle=\frac{U(\Delta_{1},\Delta_{2},\Delta_{3})}{|x_{12}|^{d-2\Delta_{3}}|x_{13}|^{d-2\Delta_{2}}|x_{23}|^{d-2\Delta_{1}}}\,, (13)
ddx4x24μγμx41νγν|x14|2Δ1+1|x24|2Δ2+1|x34|2Δ3\displaystyle\int d^{d}x_{4}\,\frac{x_{24}^{\mu}\gamma_{\mu}x_{41}^{\nu}\gamma_{\nu}}{|x_{14}|^{2\Delta_{1}+1}|x_{24}|^{2\Delta_{2}+1}|x_{34}|^{2\Delta_{3}}} =πd2A(Δ3)V(Δ1,Δ2)x31μγμx23νγν|x12|d2Δ3|x13|d2Δ2+1|x23|d2Δ1+1.\displaystyle=\frac{\pi^{\frac{d}{2}}A(\Delta_{3})V(\Delta_{1},\Delta_{2})x_{31}^{\mu}\gamma_{\mu}x_{23}^{\nu}\gamma_{\nu}}{|x_{12}|^{d-2\Delta_{3}}|x_{13}|^{d-2\Delta_{2}+1}|x_{23}|^{d-2\Delta_{1}+1}}\,. (14)

Loops in position space are simply additive:888Notice that the minus sign in the r.h.s. of the last loop is independent of the minus sign in the factor of N-N appearing in the Feynman rule for the fermionic loop.

×(𝕀)\times(-\mathbb{I})======2Δ12\Delta_{1}2Δ22\Delta_{2}2(Δ1+Δ2)2(\Delta_{1}+\Delta_{2})2Δ12\Delta_{1}2Δ22\Delta_{2}2(Δ1+Δ2)2(\Delta_{1}+\Delta_{2})2Δ12\Delta_{1}2Δ22\Delta_{2}2(Δ1+Δ2)2(\Delta_{1}+\Delta_{2})

3 Conformal triangles

The structure of three-point functions in CFTs is completely fixed by the conformal symmetry. It is usually convenient to decompose contributions to the three-point functions (and the corresponding OPE coefficients) into the terms originating from the corresponding conformal triangle Polyakov:1970xd , and the terms due to the amplitudes of the propagators attached to the conformal triangle Goykhman:2019kcj . In this section we will make use of the background field method to calculate the s2ψ¯ψs^{2}\bar{\psi}\psi and s2sss^{2}ss conformal triangles.

The results obtained in this section will be used below in section 4 to derive the 1/N1/N correction As2A_{s^{2}} to the amplitude of the s2s2\langle s^{2}s^{2}\rangle propagator, and the 1/N1/N corrections to the three-point function s2ss\langle s^{2}ss\rangle. Finally, in section 5 we will use these results to obtain the next-to-leading order corrections to the three-point function s2ψ¯ψ\langle s^{2}\bar{\psi}\psi\rangle.

3.1 s2ψ¯ψs^{2}\bar{\psi}\psi conformal triangle

The s2ψ¯ψs^{2}\bar{\psi}\psi conformal triangle can be represented diagrammatically as

2b2b2a2a2a2as(x1)2s(x_{1}^{\prime})^{2}ψ¯(x2)\bar{\psi}(x_{2}^{\prime})ψ(x3)\psi(x_{3}^{\prime})1NZs2ψ¯ψμ2γψ+γs2×-\frac{1}{N}\,Z_{s^{2}\bar{\psi}\psi}\,\mu^{2\gamma_{\psi}+\gamma_{s^{2}}}\quad\times

Here we have introduced

a=dγs221,b=3+γs22γψ.a=\frac{d-\gamma_{s^{2}}}{2}-1\,,\qquad b=\frac{3+\gamma_{s^{2}}}{2}-\gamma_{\psi}\,. (15)

The structure of the conformal triangle is such that when the full propagators of the composite operator s2s^{2} and the fermions ψ\psi are attached to it, the vertices x1,2,3x_{1,2,3}^{\prime} of the triangle become unique and can be integrated over, resulting in the conformal three-point function

s2(x1)ψ¯(x2)ψ(x3)=Cs2ψ¯ψμ2γψγs2x23μγμ|x23|d2+2γψγs2(|x12||x13|)2+γs2.\displaystyle\langle s^{2}(x_{1})\bar{\psi}(x_{2})\psi(x_{3})\rangle=C_{s^{2}\bar{\psi}\psi}\,\frac{\mu^{-2\gamma_{\psi}-\gamma_{s^{2}}}\,x_{23}^{\mu}\gamma_{\mu}}{|x_{23}|^{d-2+2\gamma_{\psi}-\gamma_{s^{2}}}(|x_{12}||x_{13}|)^{2+\gamma_{s^{2}}}}\,. (16)

Here we have defined the amplitude coefficient

Cs2ψ¯ψ=1NCs2Cψ2(1+As2)(1+Aψ)2Zs2ψ¯ψ𝒰,C_{s^{2}\bar{\psi}\psi}=-\frac{1}{N}\,C_{s^{2}}C_{\psi}^{2}\,(1+A_{s^{2}})(1+A_{\psi})^{2}\,Z_{s^{2}\bar{\psi}\psi}\,{\cal U}\,, (17)

where Cs2C_{s^{2}} is given by (3), and As2,ψA_{s^{2},\psi} are amplitude corrections to the s2s^{2}, ψ\psi propagators, and the factor of 𝒰{\cal U} originates from application of the uniqueness relations (13), (14)

𝒰\displaystyle{\cal U} =πdU(2+γs2,dγs221,dγs221)A(1+γs22)A(dγs221)\displaystyle=-\pi^{d}\,U\left(2+\gamma_{s^{2}},\frac{d-\gamma_{s^{2}}}{2}-1,\frac{d-\gamma_{s^{2}}}{2}-1\right)\,A\left(1+\frac{\gamma_{s^{2}}}{2}\right)A\left(\frac{d-\gamma_{s^{2}}}{2}-1\right)
×V(d1γs22γψ,d12+γψ)V(d12+γψ,3+γs22γψ)\displaystyle\times V\left(\frac{d-1-\gamma_{s^{2}}}{2}-\gamma_{\psi},\frac{d-1}{2}+\gamma_{\psi}\right)V\left(\frac{d-1}{2}+\gamma_{\psi},\frac{3+\gamma_{s^{2}}}{2}-\gamma_{\psi}\right) (18)
=U0(1+δu+𝒪(1N2)).\displaystyle=U_{0}\left(1+\delta u+{\cal O}\left(\frac{1}{N^{2}}\right)\right)\,.

where

U0\displaystyle U_{0} =2π3d2(d4)Γ(d2)3,\displaystyle=-\frac{2\pi^{\frac{3d}{2}}}{(d-4)\Gamma\left(\frac{d}{2}\right)^{3}}\,, (19)
δu\displaystyle\delta u =2(d4)2γψ(3(d8)d+40)γs22(d4)(d2).\displaystyle=\frac{2(d-4)^{2}\,\gamma_{\psi}-(3(d-8)d+40)\,\gamma_{s^{2}}}{2(d-4)(d-2)}\,. (20)

To separate out the leading and sub-leading contributions to the OPE coefficient, let us expand (17) in 1/N1/N as

Cs2ψ¯ψ=Cs2ψ¯ψ(1/N)(1+δCs2ψ¯ψ),C_{s^{2}\bar{\psi}\psi}=C_{s^{2}\bar{\psi}\psi}^{(1/N)}(1+\delta C_{s^{2}\bar{\psi}\psi})\,, (21)

At the leading order the three-point function s2ψ¯ψ\langle s^{2}\bar{\psi}\psi\rangle is determined by the 𝒪(1/N){\cal O}(1/N) diagram

ψ¯(x2)\bar{\psi}(x_{2})ψ(x3)\psi(x_{3})s(x1)2s(x_{1})^{2}

and was evaluated in Goykhman:2020ffn

Cs2ψ¯ψ(1/N)=1N22d3πd23(cos(πd)1)Γ(d12)2Γ(d21).C_{s^{2}\bar{\psi}\psi}^{(1/N)}=\frac{1}{N}\,\frac{2^{2d-3}\pi^{-\frac{d}{2}-3}(\cos(\pi d)-1)\Gamma\left(\frac{d-1}{2}\right)^{2}}{\Gamma\left(\frac{d}{2}-1\right)}\,. (22)

Using this result we can determine the s2ψ¯ψs^{2}\bar{\psi}\psi conformal triangle amplitude

Zs2ψ¯ψ=Zs2ψ¯ψ(0)(1+δZs2ψ¯ψ)Z_{s^{2}\bar{\psi}\psi}=Z_{s^{2}\bar{\psi}\psi}^{(0)}(1+\delta Z_{s^{2}\bar{\psi}\psi}) (23)

at the leading order in 1/N1/N as

Zs2ψ¯ψ(0)=NCs2ψ¯ψ(1/N)Cs2Cψ2U0=12πd4dd2Γ(d2)2.Z_{s^{2}\bar{\psi}\psi}^{(0)}=-N\,\frac{C_{s^{2}\bar{\psi}\psi}^{(1/N)}}{C_{s^{2}}C_{\psi}^{2}\,U_{0}}=\frac{1}{2\pi^{d}}\,\frac{4-d}{d-2}\,\Gamma\left(\frac{d}{2}\right)^{2}\,. (24)

We proceed to calculating the diagrams contributing to the conformal triangle amplitude correction δZs2ψ¯ψ\delta Z_{s^{2}\bar{\psi}\psi} at the next-to-leading 𝒪(1/N){\cal O}(1/N) order, which we represent as a sum of four terms. Diagrammatically, the conformal triangle up to the next-to-leading order in 1/N1/N is represented by the following equation:

2a2a2a2a2b2bZs2ψ¯ψNμ2γψ+γs2\frac{-Z_{s^{2}\bar{\psi}\psi}}{N\,\mu^{2\gamma_{\psi}+\gamma_{s^{2}}}}\cdot==++++++

The gray blobs stand for the dressed ψ\psi and ss propagators and the dressed sψ¯ψs\bar{\psi}\psi vertex (represented by the corresponding sψ¯ψs\bar{\psi}\psi conformal triangle), according to the conventions introduced in section 2. We have also assigned the exponents of 2a2a and 2b2b to the internal lines of the s2ψ¯ψs^{2}\bar{\psi}\psi conformal triangle, see (15).

A straightforward way to calculate the δZs2ψ¯ψ\delta Z_{s^{2}\bar{\psi}\psi} is furnished by the background field method.999See Goykhman:2020ffn where the background field method was first applied to obtain CFT data in vector models. To this end we split the Hubbard-Stratonovich field into the non-dynamical background component s¯\bar{s} and the fluctuating component ss, and isolate the 𝒪(s¯2){\cal O}(\bar{s}^{2}) terms quadratic in the background s¯\bar{s}. The resulting diagrammatic equation describes the fermionic propagator ψψ¯|s¯\langle\psi\bar{\psi}\rangle|_{\bar{s}} in the s¯\bar{s} background, at the second order in s¯\bar{s}:

s¯2\bar{s}^{2}2a2a2a2a2b2bZs2ψ¯ψNμ2γψγs2\frac{-Z_{s^{2}\bar{\psi}\psi}}{N\,\mu^{2\gamma_{\psi}-\gamma_{s^{2}}}}\cdot==++++++

On the l.h.s. of this equation we obtain

s¯2\bar{s}^{2}2a2a2a2a2b2bψ¯(x2)\bar{\psi}(x_{2})ψ(x3)\psi(x_{3})Zs2ψ¯ψNμ2γψγs2\frac{-Z_{s^{2}\bar{\psi}\psi}}{N\,\mu^{2\gamma_{\psi}-\gamma_{s^{2}}}}\cdot=ψ(x3)ψ¯(x2)|s¯=Cs2ψ¯ψ(1/N)Cs2(1+δu+δZs2ψ¯ψ+2Aψ)μγs22γψx23μγμ|x23|d2+2γψγs2=\langle\psi(x_{3})\bar{\psi}(x_{2})\rangle\Bigg{|}_{\bar{s}}=\frac{C_{s^{2}\bar{\psi}\psi}^{(1/N)}}{C_{s^{2}}}\,(1{+}\delta u{+}\delta Z_{s^{2}\bar{\psi}\psi}{+}2A_{\psi})\frac{\mu^{\gamma_{s^{2}}-2\gamma_{\psi}}\,x_{23}^{\mu}\gamma_{\mu}}{|x_{23}|^{d-2+2\gamma_{\psi}-\gamma_{s^{2}}}}

where we took into account (19), (20), (24), used the uniqueness relation (14), and linearized over the 1/N1/N corrections contributing to the overall amplitude.

We proceed to calculating the diagrams on the r.h.s. of the diagrammatic equation for the ψψ¯s¯\langle\psi\bar{\psi}\rangle_{\bar{s}}. The first contribution is due to the leading order s2ψ¯ψ\langle s^{2}\bar{\psi}\psi\rangle diagram in which all the internal sψ¯ψs\bar{\psi}\psi vertices and ψ\psi, ss propagators have been dressed, and s2s^{2} was set to the background value s¯2\bar{s}^{2}:

ψ¯(x2)\bar{\psi}(x_{2})ψ(x3)\psi(x_{3})=Cs2ψ¯ψ(1/N)Cs2(1+3Aψ+2δZsψ¯ψ+W1)μ2γs2γψx23μγμ|x23|d2+2γψ2γs=\frac{C_{s^{2}\bar{\psi}\psi}^{(1/N)}}{C_{s^{2}}}(1+3A_{\psi}+2\delta Z_{s\bar{\psi}\psi}+W_{1})\,\frac{\mu^{2\gamma_{s}-2\gamma_{\psi}}\,x_{23}^{\mu}\gamma_{\mu}}{|x_{23}|^{d-2+2\gamma_{\psi}-2\gamma_{s}}}

Notice that this diagram contains the entire leading order contribution to the ψψ¯|s¯\langle\psi\bar{\psi}\rangle|_{\bar{s}} two-point function. We linearized over the next-to-leading in 1/N1/N terms, obtaining the sum of 3Aψ3A_{\psi} due to amplitude corrections to three internal dressed fermion propagators and 2δZsψ¯ψ2\delta Z_{s\bar{\psi}\psi} due to two dressed sψ¯ψs\bar{\psi}\psi vertices. Finally, W1W_{1} is obtained from the equation

1+W1=Cs2Cs2ψ¯ψ(1/N)(Zsψ¯ψ(0)N)2Cψ3(π2d)V(d12+γψ,d1γs2)3A(1γψ+γs2)3\displaystyle 1+W_{1}=\frac{C_{s^{2}}}{C_{s^{2}\bar{\psi}\psi}^{(1/N)}}\left(-\frac{Z_{s\bar{\psi}\psi}^{(0)}}{\sqrt{N}}\right)^{2}C_{\psi}^{3}(-\pi^{2d})V\left(\frac{d-1}{2}+\gamma_{\psi},\frac{d-1-\gamma_{s}}{2}\right)^{3}A\left(1{-}\gamma_{\psi}{+}\frac{\gamma_{s}}{2}\right)^{3}
×U(1+γs,dγs2γψ,dγs21+γψ)2A(dγs21+γψ)V(d1γs2,32γψ+γs),\displaystyle\times U\left(1{+}\gamma_{s},\frac{d{-}\gamma_{s}}{2}{-}\gamma_{\psi},\frac{d{-}\gamma_{s}}{2}{-}1{+}\gamma_{\psi}\right)^{2}A\left(\frac{d{-}\gamma_{s}}{2}{-}1{+}\gamma_{\psi}\right)V\left(\frac{d{-}1{-}\gamma_{s}}{2},\frac{3}{2}{-}\gamma_{\psi}{+}\gamma_{s}\right)\,,

resulting from a repeated application of the uniqueness and the propagator merging relations, and expanded to the next-to-leading order in 1/N1/N. Further expanding the r.h.s. in γψ,s=𝒪(1/N)\gamma_{\psi,s}={\cal O}(1/N) we obtain

W1=d4d2γψ+8dd2γs.\displaystyle W_{1}=\frac{d-4}{d-2}\,\gamma_{\psi}+\frac{8-d}{d-2}\,\gamma_{s}\,. (25)

Next, we consider the contribution represented by the diagram

ψ¯(x2)\bar{\psi}(x_{2})ψ(x3)\psi(x_{3})=Cs2ψ¯ψ(1/N)Cs2W2x23μγμ|x23|d2=\frac{C_{s^{2}\bar{\psi}\psi}^{(1/N)}}{C_{s^{2}}}\,W_{2}\,\frac{x_{23}^{\mu}\gamma_{\mu}}{|x_{23}|^{d-2}}

Repeated application of the propagator merging relations gives

W2\displaystyle W_{2} =Cs2Cs2ψ¯ψ(1/N)(1N)4Cψ5Csπ2dA(1)2V(d12,d12)2A(d21)2V(d12,32)2\displaystyle=\frac{C_{s^{2}}}{C_{s^{2}\bar{\psi}\psi}^{(1/N)}}\left({-}\frac{1}{\sqrt{N}}\right)^{4}C_{\psi}^{5}C_{s}\pi^{2d}A(1)^{2}V\left(\frac{d{-}1}{2},\frac{d{-}1}{2}\right)^{2}A\left(\frac{d}{2}{-}1\right)^{2}V\left(\frac{d{-}1}{2},\frac{3}{2}\right)^{2}
=1N2d2sin(πd2)Γ(d12)π3/2Γ(d2).\displaystyle=\frac{1}{N}\,\frac{2^{d-2}\sin\left(\frac{\pi d}{2}\right)\Gamma\left(\frac{d-1}{2}\right)}{\pi^{3/2}\Gamma\left(\frac{d}{2}\right)}\,. (26)

The remaining contributions W3,4W_{3,4} to the conformal triangle amplitude δZs2ψ¯ψ\delta Z_{s^{2}\bar{\psi}\psi} originate from the next-to-leading corrections to the s2ss\langle s^{2}ss\rangle sub-diagram of the leading order s2ψ¯ψ\langle s^{2}\bar{\psi}\psi\rangle diagram. To regularize these divergent diagrams we add a small correction δ/2\delta/2 to the propagators of the internal ss lines, following the technique reviewed in section 2:101010The choice of δ/2\delta/2 instead of δ\delta is a convention to make the total power of the diagram add up to δ\delta.

ψ¯(x2)\bar{\psi}(x_{2})ψ(x3)\psi(x_{3})2+δ/22+\delta/22+δ/22+\delta/2=Cs2ψ¯ψ(1/N)Cs2W3x23μγμμδ|x23|d2+δ=\frac{C_{s^{2}\bar{\psi}\psi}^{(1/N)}}{C_{s^{2}}}\,W_{3}\,\frac{x_{23}^{\mu}\gamma_{\mu}\,\mu^{-\delta}}{|x_{23}|^{d-2+\delta}}ψ¯(x2)\bar{\psi}(x_{2})ψ(x3)\psi(x_{3})2+δ/22+\delta/22+δ/22+\delta/2=Cs2ψ¯ψ(1/N)Cs2W4x23μγμμδ|x23|d2+δ=\frac{C_{s^{2}\bar{\psi}\psi}^{(1/N)}}{C_{s^{2}}}\,W_{4}\,\frac{x_{23}^{\mu}\gamma_{\mu}\,\mu^{-\delta}}{|x_{23}|^{d-2+\delta}}

Here we have111111The overall minus sign is due to the Feynman rule for the fermion loop, see section 2, while 22 is the factor of symmetry.

W3\displaystyle W_{3} =Cs2Cs2ψ¯ψ(1/N) 2N(1N)6Cψ7Cs2(π2d)A(1)V(d12,d12)A(d21)\displaystyle=-\frac{C_{s^{2}}}{C_{s^{2}\bar{\psi}\psi}^{(1/N)}}\,2N\,\left(-\frac{1}{\sqrt{N}}\right)^{6}C_{\psi}^{7}C_{s}^{2}(-\pi^{2d})A(1)V\left(\frac{d-1}{2},\frac{d-1}{2}\right)A\left(\frac{d}{2}-1\right)
×V(d12,32)U(1+δ4,1δ4,d2)U(1+δ4,2d+δ41,dδ2)\displaystyle\times V\left(\frac{d-1}{2},\frac{3}{2}\right)U\left(1+\frac{\delta}{4},1-\frac{\delta}{4},d-2\right)U\left(1+\frac{\delta}{4},\frac{2d+\delta}{4}-1,\frac{d-\delta}{2}\right)
×A(1δ2)V(d1+δ2,d12)A(d+δ21)V(d12,3δ2)\displaystyle\times A\left(1-\frac{\delta}{2}\right)V\left(\frac{d-1+\delta}{2},\frac{d-1}{2}\right)A\left(\frac{d+\delta}{2}-1\right)V\left(\frac{d-1}{2},\frac{3-\delta}{2}\right)
=1N2(d2)sin(πd2)Γ(d1)πΓ(d2)2(2δ+1).\displaystyle=\frac{1}{N}\,\frac{2(d-2)\sin\left(\frac{\pi d}{2}\right)\Gamma(d-1)}{\pi\Gamma\left(\frac{d}{2}\right)^{2}}\,\left(\frac{2}{\delta}+1\right)\,. (27)

and

W4=1d2W3.\displaystyle W_{4}=\frac{1}{d-2}\,W_{3}\,. (28)

Finally, we notice that the divergent terms of the last two diagrams add up to

W3+W42γsγs2δ,W_{3}+W_{4}\supset\frac{2\gamma_{s}-\gamma_{s^{2}}}{\delta}\,, (29)

which is cancelled by the counter-term diagram

γs22γsδ×\frac{\gamma_{s^{2}}-2\gamma_{s}}{\delta}\timesψ¯(x2)\bar{\psi}(x_{2})ψ(x3)\psi(x_{3})

induced by the renormalization of the Hubbard-Stratonovich field ss and the composite operator s2s^{2}

s1+2γsδs,s21+2γs2δs2.s\rightarrow\sqrt{1+\frac{2\gamma_{s}}{\delta}}\,s\,,\qquad s^{2}\rightarrow\sqrt{1+\frac{2\gamma_{s^{2}}}{\delta}}\,s^{2}\,. (30)

To summarize, we arrive at the following expression

δZs2ψ¯ψ=i=14Wi|finite+2δZsψ¯ψ+Aψδu\boxed{\delta Z_{s^{2}\bar{\psi}\psi}=\sum_{i=1}^{4}W_{i}\Bigg{|}_{\textrm{finite}}+2\delta Z_{s\bar{\psi}\psi}+A_{\psi}-\delta u} (31)

In what follows we will skip specifying explicitly that only the finite part of the sum of WiW_{i} is retained, implying that the infinities have been cancelled out by the counter-term.

3.2 s2sss^{2}ss conformal triangle

In section 3.1 we demonstrated how the s2ψ¯ψ\langle s^{2}\bar{\psi}\psi\rangle three-point function can be expressed in terms of the corresponding s2ψ¯ψs^{2}\bar{\psi}\psi conformal triangle (17), and proceeded to calculate the latter, arriving at (31). The results of the previous section can in fact be used to calculate the s2sss^{2}ss conformal triangle at the next-to-leading order in 1/N1/N, which we will use below to derive the s2ss\langle s^{2}ss\rangle and s2s2\langle s^{2}s^{2}\rangle correlation functions.

To this end, consider the dressed s2sss^{2}ss vertex expressed in terms of the corresponding conformal triangle

=Zs2ssμγs2+2γs×=-Z_{s^{2}ss}\,\mu^{\gamma_{s^{2}}+2\gamma_{s}}\times2a2a^{\prime}2a2a^{\prime}2b2b^{\prime}s(x1)2s(x_{1})^{2}s(x2)s(x_{2})s(x3)s(x_{3})

where we denoted

a=dγs221,b=d+γs22γs,a^{\prime}=\frac{d-\gamma_{s^{2}}}{2}-1\,,\qquad b^{\prime}=\frac{d+\gamma_{s^{2}}}{2}-\gamma_{s}\,, (32)

chosen so that when the s2s^{2} and ss legs are attached to the triangle, its three vertices become unique and can be integrated over, resulting in

s(x1)2s(x_{1})^{2}s(x2)s(x_{2})s(x3)s(x_{3})=s(x1)2s(x2)s(x3)=\langle s(x_{1})^{2}s(x_{2})s(x_{3})\rangle

Conformal symmetry constraints the form of the s2ss\langle s^{2}ss\rangle three-point to be

s(x1)2s(x2)s(x3)=μγs22γsCs2ss(0)(1+δCs2ss)(|x12||x13|)2+γs2|x23|2γsγs2,\langle s(x_{1})^{2}s(x_{2})s(x_{3})\rangle=\mu^{-\gamma_{s^{2}}-2\gamma_{s}}\,\frac{C_{s^{2}ss}^{(0)}\left(1+\delta C_{s^{2}ss}\right)}{(|x_{12}||x_{13}|)^{2+\gamma_{s^{2}}}|x_{23}|^{2\gamma_{s}-\gamma_{s^{2}}}}\,, (33)

where

Cs2ss(0)=2Cs2C_{s^{2}ss}^{(0)}=2C_{s}^{2} (34)

is the leading order OPE coefficient, δCs2ss\delta C_{s^{2}ss} stands for the sub-leading corrections. The latter can be decomposed as

δCs2ss=δVs2ss+As2+2As,\delta C_{s^{2}ss}=\delta V_{s^{2}ss}+A_{s^{2}}+2A_{s}\,, (35)

where the vertex amplitude correction δVs2ss\delta V_{s^{2}ss} is defined by the diagram

s(x1)2s(x_{1})^{2}s(x2)s(x_{2})s(x3)s(x_{3})2+2γs2+2\gamma_{s}2+2γs2+2\gamma_{s}4+2γs24+2\gamma_{s^{2}}=Cs2ss(0)(1+δVs2ss)(|x12||x13|)2+γs2|x23|2γsγs2=\frac{C_{s^{2}ss}^{(0)}\,(1+\delta V_{s^{2}ss})}{(|x_{12}||x_{13}|)^{2+\gamma_{s^{2}}}|x_{23}|^{2\gamma_{s}-\gamma_{s^{2}}}}

Using the uniqueness to integrate over three vertices of the conformal triangle we can obtain the relation between Cs2ssC_{s^{2}ss} and Zs2ssZ_{s^{2}ss}:

Cs2ss(0)(1+δVs2ss)=Zs2ssCs2Cs2U(dγs221,dγs221,2+γs2)\displaystyle C_{s^{2}ss}^{(0)}\,(1+\delta V_{s^{2}ss})=-Z_{s^{2}ss}\,C_{s}^{2}C_{s^{2}}U\left(\frac{d-\gamma_{s^{2}}}{2}-1,\frac{d-\gamma_{s^{2}}}{2}-1,2+\gamma_{s^{2}}\right) (36)
×U(1+γs22,1+γs,d2γsγs22)U(1+γs,d+γs22γs,dγs221).\displaystyle\times U\left(1+\frac{\gamma_{s^{2}}}{2},1+\gamma_{s},d-2-\gamma_{s}-\frac{\gamma_{s^{2}}}{2}\right)U\left(1+\gamma_{s},\frac{d+\gamma_{s^{2}}}{2}-\gamma_{s},\frac{d-\gamma_{s^{2}}}{2}-1\right)\,.

Expanding

Zs2ss=Zs2ss(0)(1+δZs2ss)Z_{s^{2}ss}=Z_{s^{2}ss}^{(0)}(1+\delta Z_{s^{2}ss}) (37)

we obtain

Zs2ss(0)\displaystyle Z_{s^{2}ss}^{(0)} =(d4)π33d2Γ(d21)2Γ(d1)22d+3Γ(2d2)Γ(d12)2sin2(πd2)(γs22γs),\displaystyle=\frac{(d-4)\pi^{3-\frac{3d}{2}}\Gamma\left(\frac{d}{2}-1\right)^{2}\Gamma(d-1)}{2^{2d+3}\,\Gamma\left(2-\frac{d}{2}\right)\Gamma\left(\frac{d-1}{2}\right)^{2}\,\sin^{2}\left(\frac{\pi d}{2}\right)}\,(\gamma_{s^{2}}-2\gamma_{s})\,, (38)
δZs2ss\displaystyle\delta Z_{s^{2}ss} =δVs2ssδz,\displaystyle=\delta V_{s^{2}ss}-\delta z\,, (39)

where121212Here γ\gamma is the Euler constant, and we will denote the nnth derivative of the digamma function ψ(0)(x)=Γ(x)/Γ(x)\psi^{(0)}(x)=\Gamma^{\prime}(x)/\Gamma(x) as ψ(n)(x)\psi^{(n)}(x).

δz\displaystyle\delta z =(2d2+πcot(πd2)+ψ(0)(d2)+γ)γs\displaystyle=\left(\frac{2}{d-2}+\pi\cot\left(\frac{\pi d}{2}\right)+\psi^{(0)}(d-2)+\gamma\right)\,\gamma_{s} (40)
+12(4d42d2+πcot(πd2)+ψ(0)(d2)+γ2)γs2.\displaystyle+\frac{1}{2}\left(\frac{4}{d-4}-\frac{2}{d-2}+\pi\cot\left(\frac{\pi d}{2}\right)+\psi^{(0)}(d-2)+\gamma-2\right)\,\gamma_{s^{2}}\,. (41)

We can use the last two diagrams contributing to the ψ¯ψ|s¯\langle\bar{\psi}\psi\rangle|_{\bar{s}} correlation function, obtained in section 3.1, to extract the next-to-leading order correction δZs2ss\delta Z_{s^{2}ss} to the s2sss^{2}ss conformal triangle. The total of these diagrams is given by

ψ¯(x2)\bar{\psi}(x_{2})ψ(x3)\psi(x_{3})2+δ/22+\delta/22+δ/22+\delta/2ψ¯(x2)\bar{\psi}(x_{2})ψ(x3)\psi(x_{3})2+δ/22+\delta/22+δ/22+\delta/2++=Cs2ψ¯ψ(1/N)Cs2(1+W3+W4)x23μγμμ2γsγs2|x23|d2+2γsγs2|1N2=\frac{C_{s^{2}\bar{\psi}\psi}^{(1/N)}}{C_{s^{2}}}\frac{(1+W_{3}+W_{4})x_{23}^{\mu}\gamma_{\mu}}{\mu^{2\gamma_{s}-\gamma_{s^{2}}}\,|x_{23}|^{d-2+2\gamma_{s}-\gamma_{s^{2}}}}\Bigg{|}_{\frac{1}{N^{2}}}

where in the r.h.s. of this equation we only retain the sub-leading terms due to the amplitude W3+W4W_{3}+W_{4} and the anomalous dimensions γs,s2\gamma_{s,s^{2}}. 131313Linearizing over the 1/N1/N corrections, one can explicitly verify that the total of the four diagrams, considered in section 3.1, contributing to the correlation function ψ¯ψ|s¯\langle\bar{\psi}\psi\rangle|_{\bar{s}} at the next-to-leading order has the conformal form. On the other hand, we can rewrite these diagrams using the dressed s2sss^{2}ss vertex defined above:

ψ¯(x2)\bar{\psi}(x_{2})ψ(x3)\psi(x_{3})-ψ¯(x2)\bar{\psi}(x_{2})ψ(x3)\psi(x_{3})=Cs2ψ¯ψ(1/N)Cs2(1+δVs2ss+2As+δw)x23μγμμ2γsγs2|x23|d2+2γsγs2|1N2=\frac{C_{s^{2}\bar{\psi}\psi}^{(1/N)}}{C_{s^{2}}}\frac{(1+\delta V_{s^{2}ss}+2A_{s}+\delta w)x_{23}^{\mu}\gamma_{\mu}}{\mu^{2\gamma_{s}-\gamma_{s^{2}}}\,|x_{23}|^{d-2+2\gamma_{s}-\gamma_{s^{2}}}}\Bigg{|}_{\frac{1}{N^{2}}}

Here the extra term δw\delta w originates as follows. Integrating over the unique vertices of the s2sss^{2}ss conformal triangle in the first diagram on the l.h.s. of the last equation we obtain

d1+2γsγs2d-1+2\gamma_{s}-\gamma_{s^{2}}

Further taking the integrals over the last two vertices using the propagator merging relations, and expanding the result in 1/N1/N we arrive at

Cs2ψ¯ψ(1/N)Cs2(1+δw)\displaystyle\frac{C_{s^{2}\bar{\psi}\psi}^{(1/N)}}{C_{s^{2}}}\,(1+\delta w) =Cψ3N(πd)A(1γs+γs22)V(d12,d1γs22+γs)\displaystyle=\frac{C_{\psi}^{3}}{N}\,(-\pi^{d})A\left(1-\gamma_{s}+\frac{\gamma_{s^{2}}}{2}\right)V\left(\frac{d-1}{2},\frac{d-1-\gamma_{s^{2}}}{2}+\gamma_{s}\right)
A(dγs221+γs)V(d12,3+γs22γs),\displaystyle A\left(\frac{d-\gamma_{s^{2}}}{2}-1+\gamma_{s}\right)V\left(\frac{d-1}{2},\frac{3+\gamma_{s^{2}}}{2}-\gamma_{s}\right)\,, (42)

where we defined

δw=12d4d2(2γsγs2).\delta w=\frac{1}{2}\frac{d-4}{d-2}\,(2\gamma_{s}-\gamma_{s^{2}})\,. (43)

Finally, we obtain

δVs2ss=W3+W4δw2As\delta V_{s^{2}ss}=W_{3}+W_{4}-\delta w-2A_{s} (44)

and therefore due to (39)

δZs2ss=W3+W4δw2Asδz\boxed{\delta Z_{s^{2}ss}=W_{3}+W_{4}-\delta w-2A_{s}-\delta z} (45)

where δz\delta z was calculated in (40).

4 s2ss\langle s^{2}ss\rangle

In this section we are going to calculate the s2ss\langle s^{2}ss\rangle and s2s2\langle s^{2}s^{2}\rangle correlation functions at the next-to-leading order in the 1/N1/N expansion. In particular, we will obtain expression for the 1/N1/N correction As2A_{s^{2}} to the propagator amplitude of the composite operator s2s^{2}. Besides deriving these new results, we will also reproduce the known expression for the anomalous dimension of the composite operator s2s^{2}.

Up to the next-to-leading order in 1/N1/N, the effective s2ss\langle s^{2}ss\rangle three-point function is determined by the the following diagrams

(46)

The diagram (a) of (46) represents contributions due to the leading-order s2ss\langle s^{2}ss\rangle diagram where the ss\langle ss\rangle propagators have been dressed. Recall that we denote the dressed propagators with a solid blob, according to the conventions introduced in section 2. In particular, this diagram includes the entire leading-order expression for the s2ss\langle s^{2}ss\rangle three-point function.

The diagrams (b) and (c) of (46) are purely sub-leading in 1/N1/N. Notice that in these diagrams we incorporated the s2sss^{2}ss conformal triangle Vasiliev:1993pi (denoted with a solid blob, following the conventions of section 3.2), and regularized the inner ss propagators by a small additional exponent δ\delta. The latter will add important contributions to the finite part of the s2ss\langle s^{2}ss\rangle three-point function, when we expand the s2sss^{2}ss conformal triangle sub-diagram to the leading order in 1/N1/N.

Renormalizing the Hubbard-Stratonovich field ss and the composite operator s2s^{2} due to (30) induces the counter-term diagram

2222x1x_{1}x2x_{2}x3x_{3}2γs+γs2δ×\frac{2\gamma_{s}+\gamma_{s^{2}}}{\delta}\times

which will cancel the divergences.

We proceed with the calculation by integrating each term on both sides of (46) w.r.t. x1x_{1}. On the r.h.s. we obtain

ddx1s(x1)2s(x2)s(x3)=2Cs2U(1,1,d2)(1+h0+δCs2ss)μ2γsγs2|x23|4d+2γs+γs2,\int d^{d}x_{1}\,\langle s(x_{1})^{2}s(x_{2})s(x_{3})\rangle=2C_{s}^{2}\,U(1,1,d-2)\,\left(1+h_{0}+\delta C_{s^{2}ss}\right)\,\frac{\mu^{-2\gamma_{s}-\gamma_{s^{2}}}}{|x_{23}|^{4-d+2\gamma_{s}+\gamma_{s^{2}}}}\,, (47)

where expanding in 1/N1/N we get

U(1+γs22,1+γs22,d2γs2)=U(1,1,d2)(1+h0),\displaystyle U\left(1+\frac{\gamma_{s^{2}}}{2},1+\frac{\gamma_{s^{2}}}{2},d-2-\gamma_{s^{2}}\right)=U(1,1,d-2)\,(1+h_{0})\,,
h0=γs2r,\displaystyle h_{0}=\gamma_{s^{2}}\,r\,, (48)

where we defined

r=Hd3+πcot(πd2),r=H_{d-3}+\pi\cot\left(\frac{\pi d}{2}\right)\,, (49)

while on the l.h.s. of (46) we obtain the sum of three terms due to the corresponding contributing diagrams (a), (b), and (c), which we represent as

ddx1s(x1)2s(x2)s(x3)\displaystyle\int d^{d}x_{1}\,\langle s(x_{1})^{2}s(x_{2})s(x_{3})\rangle =2Cs2U(1,1,d2)|x23|4d([1+h1+2As4γslog(μ|x23|)]\displaystyle=\frac{2C_{s}^{2}\,U(1,1,d-2)}{|x_{23}|^{4-d}}\,\left(\left[1+h_{1}+2A_{s}-4\gamma_{s}\log(\mu|x_{23}|)\right]\right.
+[h2ω2log(μ|x23|)]+[h3ω3log(μ|x23|)]).\displaystyle+\left.\left[h_{2}-\omega_{2}\,\log(\mu|x_{23}|)\right]+\left[h_{3}-\omega_{3}\,\log(\mu|x_{23}|)\right]\right)\,. (50)

Here we grouped the terms in square brackets according to their origin from each of the three corresponding diagrams.

Notice that each diagram contributes a finite amplitude, which we denote as hih_{i}, i=2,3i=2,3, for the diagrams (b), (c), and 1+h1+2As1+h_{1}+2A_{s} for the diagram (a). We decomposed the 1/N1/N corrections to the latter into the contribution 2As2A_{s} originating from the 1/N1/N correction to the amplitude of the ss\langle ss\rangle propagators, as well as h1h_{1} due to the 1/N1/N expansion

U(1+γs,1+γs,d22γs)=U(1,1,d2)(1+h1),\displaystyle U\left(1+\gamma_{s},1+\gamma_{s},d-2-2\gamma_{s}\right)=U(1,1,d-2)\,(1+h_{1})\,,
h1=2γsr\displaystyle h_{1}=2\gamma_{s}\,r (51)

of the integral over x1x_{1}.

Besides the finite amplitudes, each term on the l.h.s. of (46) contributes logarithmic terms due to the anomalous dimensions. Specifically, the diagram (a) contributes the coefficient of 4γs-4\gamma_{s}, while we denoted contributions of the diagrams (b) and (c) respectively as ω2-\omega_{2} and ω3-\omega_{3}. We will derive these expressions below in this section.

It is straightforward to calculate the integral over x1x_{1} of the diagram (b) of (46). By repeatedly applying the uniqueness and propagator merging relations we obtain141414The factor of 1-1 is due to the Feynman rule for the fermion loop, and 2 is the symmetry factor.

ddx1s(x1)2s(x2)s(x3)2Cs2U(1,1,d2)\displaystyle\int d^{d}x_{1}\,\frac{\langle s(x_{1})^{2}s(x_{2})s(x_{3})\rangle}{2C_{s}^{2}U(1,1,d-2)} 1N(2)Cs2Cψ4(1+rδ2)πdA(dδ21)\displaystyle\supset\frac{1}{N}\,(-2)\,C_{s}^{2}C_{\psi}^{4}\left(1+\frac{r\,\delta}{2}\right)\,\pi^{d}\,A\left(\frac{d-\delta}{2}-1\right) (52)
×V(3+δ2,d12)A(1+δ2)V(d12,d1δ2)\displaystyle\times V\left(\frac{3+\delta}{2},\frac{d-1}{2}\right)A\left(1+\frac{\delta}{2}\right)V\left(\frac{d-1}{2},\frac{d-1-\delta}{2}\right)
×U(d+δ2,dδ21,1)U(1,1+δ2,d2δ2)μδ|x23|4d+δ.\displaystyle\times U\left(\frac{d+\delta}{2},\frac{d-\delta}{2}-1,1\right)U\left(1,1+\frac{\delta}{2},d-2-\frac{\delta}{2}\right)\,\frac{\mu^{-\delta}}{|x_{23}|^{4-d+\delta}}\,.

The factor of 1+rδ/21+r\,\delta/2, which we have already anticipated above, originates from the expansion to the linear order in δ\delta of the integral over the position x1x_{1} of the s2s^{2} field, as well as the integral over the three vertices of the s2sss^{2}ss conformal triangle, while keeping only contributions at the leading order in 1/N1/N.151515The short-cut to reproduce rr is given by A(1+δ4)A(2dδ41)U(1+δ4,1+δ4,d2δ2)=A(1)A(d21)U(1,1,d2)(1+rδ2),\displaystyle A\left(1{+}\frac{\delta}{4}\right)A\left(\frac{2d{-}\delta}{4}{-}1\right)U\left(1{+}\frac{\delta}{4},1{+}\frac{\delta}{4},d{-}2{-}\frac{\delta}{2}\right){=}A(1)A\left(\frac{d}{2}{-}1\right)U\left(1,1,d{-}2\right)\left(1{+}\frac{r\,\delta}{2}\right)\,, (53) where we retained only the δ\delta-dependent factors of the functions originating from taking the conformal integrals. Taking the limit δ0\delta\rightarrow 0 we obtain

ω2\displaystyle\omega_{2} =1N2d(1cos(πd))Γ(2d2)Γ(d12)π5/2,\displaystyle=\frac{1}{N}\,\frac{2^{d}(1-\cos(\pi d))\Gamma\left(2-\frac{d}{2}\right)\Gamma\left(\frac{d-1}{2}\right)}{\pi^{5/2}}\,, (54)
h2\displaystyle h_{2} =1N 2dπ52sin2(πd2)Γ(2d2)Γ(d12)(2r1).\displaystyle=\frac{1}{N}\,2^{d}\pi^{-\frac{5}{2}}\,\sin^{2}\left(\frac{\pi d}{2}\right)\Gamma\left(2{-}\frac{d}{2}\right)\Gamma\left(\frac{d{-}1}{2}\right)\left(2\,r-1\right)\,. (55)

Finally, we proceed to the calculation of the non-planar diagram, given by the diagram (c) of (46). Integrating over x1x_{1}, the vertices of the conformal triangle, and two of the opposite sψ¯ψs\bar{\psi}\psi vertices we arrive at

ddx1s(x1)2s(x2)s(x3)2Cs2U(1,1,d2)\displaystyle\int d^{d}x_{1}\,\frac{\langle s(x_{1})^{2}s(x_{2})s(x_{3})\rangle}{2C_{s}^{2}U(1,1,d-2)} 1N(1)Cs2Cψ4(1+rδ2)(πd2A(1)V(d12,d12))2vμδ|x|4d+δ,\displaystyle{\supset}\frac{1}{N}\,({-}1)\,C_{s}^{2}C_{\psi}^{4}\left(1{+}\frac{r\,\delta}{2}\right)\left(\pi^{\frac{d}{2}}A(1)V\left(\frac{d{-}1}{2},\frac{d{-}1}{2}\right)\right)^{2}\,\frac{v\,\mu^{-\delta}}{|x|^{4{-}d{+}\delta}}\,, (56)

where we defined vv as an amplitude of the graph

11111111d+δd+\delta0xx=vμδ|x|4d+δtr(𝕀)=\frac{v\,\mu^{-\delta}}{|x|^{4-d+\delta}}\,\textrm{tr}(\mathbb{I})x1x_{1}x2x_{2}

Using the standard expression for the trace of product of four gamma matrices, and manipulating some scalar products, we obtain

v|x|4d+δ\displaystyle\frac{v}{|x|^{4-d+\delta}} =ddx1,21(|x1||x2x|)2|x12|d+δ\displaystyle=\int d^{d}x_{1,2}\,\frac{1}{(|x_{1}||x_{2}-x|)^{2}|x_{12}|^{d+\delta}}
|x|22ddx1,21(|x1||x1x||x2x||x2|)2|x12|d2+δ.\displaystyle-\frac{|x|^{2}}{2}\int d^{d}x_{1,2}\,\frac{1}{(|x_{1}||x_{1}-x||x_{2}-x||x_{2}|)^{2}|x_{12}|^{d-2+\delta}}\,. (57)

The first term in (4) can be evaluated using the propagator merging relations, while the second one can be reduced via inversion transformation around the left-hand external point to the ChT(1,1)\textrm{ChT}(1,1) integral, given by eq. (16) in Vasiliev:1981dg .161616 See also App. B in Goykhman:2019kcj for a review of the derivation of this integral. As a result we obtain

vμδ|x|4d+δ\displaystyle\frac{v\,\mu^{-\delta}}{|x|^{4{-}d{+}\delta}} =[U(d+δ2,dδ21,1)U(1,1+δ2,d2δ2)(μ|x23|)δ12ChT(1,1)]1|x|4d,\displaystyle=\left[\frac{U\left(\frac{d{+}\delta}{2},\frac{d{-}\delta}{2}{-}1,1\right)U\left(1,1{+}\frac{\delta}{2},d{-}2{-}\frac{\delta}{2}\right)}{(\mu|x_{23}|)^{\delta}}-\frac{1}{2}\,\textrm{ChT}(1,1)\right]\frac{1}{|x|^{4{-}d}}\,, (58)

where

ChT(1,1)=πdcos(πd2)Γ(3d)(π26ψ(1)(d21)).\textrm{ChT}(1,1)=\pi^{d}\cos\left(\frac{\pi d}{2}\right)\Gamma(3-d)\left(\pi^{2}-6\psi^{(1)}\left(\frac{d}{2}-1\right)\right)\,. (59)

Interestingly, only the first term in (58) is divergent in the δ0\delta\rightarrow 0 limit. Combining everything together we obtain

ω3\displaystyle\omega_{3} =1d2ω2,\displaystyle=\frac{1}{d-2}\,\omega_{2}\,, (60)
h3\displaystyle h_{3} =1N2d4Γ(d12)sin(πd2)π3/2(d2)Γ(d2)(π2(d2)216γ(d2)16π(d2)cot(πd2)\displaystyle=\frac{1}{N}\,\frac{2^{d-4}\Gamma\left(\frac{d-1}{2}\right)\,\sin\left(\frac{\pi d}{2}\right)}{\pi^{3/2}(d-2)\Gamma\left(\frac{d}{2}\right)}\,\left(\pi^{2}(d-2)^{2}-16\gamma(d-2)-16\pi(d-2)\cot\left(\frac{\pi d}{2}\right)\right.
6(d2)2ψ(1)(d21)16(d2)ψ(0)(d2)+16).\displaystyle-\left.6(d-2)^{2}\psi^{(1)}\left(\frac{d}{2}-1\right)-16(d-2)\psi^{(0)}(d-2)+16\right)\,. (61)

Comparing the logarithmic terms on both sides of (46) we conclude

γs2=2γs+ω2+ω3.\gamma_{s^{2}}=2\gamma_{s}+\omega_{2}+\omega_{3}\,. (62)

Using (5), (54), (60), (62) we therefore arrive at

γs2=(2d)γs.\gamma_{s^{2}}=(2-d)\,\gamma_{s}\,. (63)

in agreement with the known result Gracey:1990wi .

On the other hand, comparing the finite terms on both sides of (46) we get

δCs2ss=h1+2As+h2+h3h0.\delta C_{s^{2}ss}=h_{1}+2A_{s}+h_{2}+h_{3}-h_{0}\,. (64)

Consequently due to (35) we derive

As2=h1+h2+h3h0δVs2ss\boxed{A_{s^{2}}=h_{1}+h_{2}+h_{3}-h_{0}-\delta V_{s^{2}ss}} (65)

Using (44) we can re-write it as

As2=2As+h,A_{s^{2}}=2A_{s}+h\,, (66)

where we introduced

h=h1+h2+h3h0W3W4+δw,h=h_{1}+h_{2}+h_{3}-h_{0}-W_{3}-W_{4}+\delta w\,, (67)

which we can simplify as

h=1N2d4sin(πd2)Γ(d12)(8(d4)+π2(d2)6(d2)ψ(1)(d21))π3/2Γ(d2).\displaystyle h=\frac{1}{N}\,\frac{2^{d-4}\sin\left(\frac{\pi d}{2}\right)\Gamma\left(\frac{d-1}{2}\right)\left(8(d-4)+\pi^{2}(d-2)-6(d-2)\psi^{(1)}\left(\frac{d}{2}-1\right)\right)}{\pi^{3/2}\Gamma\left(\frac{d}{2}\right)}\,. (68)

Above we have derived the next-to-leading order correction (64) to the amplitude of the three-point function s2ss\langle s^{2}ss\rangle given by (33). It is useful to obtain the counterpart of this expression for the three-point function of the normalized fields,

sCs(1+As)s,s2Cs2(1+As2)s2.s\rightarrow\sqrt{C_{s}(1+A_{s})}\,s\,,\qquad s^{2}\rightarrow\sqrt{C_{s^{2}}(1+A_{s^{2}})}\,s^{2}\,. (69)

Using (35) we obtain

δC^s2ss=δVs2ss+As22+As.\delta\hat{C}_{s^{2}ss}=\delta V_{s^{2}ss}+\frac{A_{s^{2}}}{2}+A_{s}\,. (70)

Plugging in expression (44) for δVs2ss\delta V_{s^{2}ss} and (66) for As2A_{s^{2}} we arrive at

δC^s2ss=W3+W4δw+h2\boxed{\delta\hat{C}_{s^{2}ss}=W_{3}+W_{4}-\delta w+\frac{h}{2}} (71)

We can carry out consistency checks of our result (71) by considering its limiting values in d=2,4d=2,4 dimensions:

δC^s2ss|d=2=12N,δC^s2ss|d=4=0.\delta\hat{C}_{s^{2}ss}|_{d=2}=-\frac{1}{2N}\,,\quad\delta\hat{C}_{s^{2}ss}|_{d=4}=0\,. (72)

Notice that in d=2d=2 the theory is UV-free, and therefore we have sψ¯iψis\simeq\bar{\psi}^{i}\psi^{i}. By performing explicit contractions of the constituent fermions we obtain

s(x)s(0)\displaystyle\langle s(x)s(0)\rangle =2NCψ21|x|2,\displaystyle=2\,N\,C_{\psi}^{2}\,\frac{1}{|x|^{2}}\,, (73)
s2(x)s2(0)\displaystyle\langle s^{2}(x)s^{2}(0)\rangle =2N2Cψ4(11N)1|x|4,\displaystyle=2\,N^{2}\,C_{\psi}^{4}\,\left(1-\frac{1}{N}\right)\,\frac{1}{|x|^{4}}\,, (74)
s2(x1)s(x2)s(x3)\displaystyle\langle s^{2}(x_{1})s(x_{2})s(x_{3})\rangle =2N2Cψ4(11N)1(|x12||x13|)2.\displaystyle=2\,N^{2}\,C_{\psi}^{4}\,\left(1-\frac{1}{N}\right)\,\frac{1}{(|x_{12}||x_{13}|)^{2}}\,. (75)

Therefore the next-to-leading in 1/N1/N correction to the normalized three-point function s2ss\langle s^{2}ss\rangle is given by

δC^s2ss=12N,\delta\hat{C}_{s^{2}ss}=-\frac{1}{2N}\,, (76)

in agreement with (72).

At the same time, in d=4ϵd=4-\epsilon dimensions the UV fixed point of the GN model is equivalent to the IR fixed point of the Gross-Neveu-Yukawa (GNY) model ZinnJustin:1991yn . Such an equivalence implies that the CFT data of both critical theories must agree. In fact, for the GNY model, to the leading order in the ϵ\epsilon-expansion we obtain δC^s2ss=0\delta\hat{C}_{s^{2}ss}=0, in agreement with (72).

5 s2ψ¯ψ\langle s^{2}\bar{\psi}\psi\rangle

In this section we are going to calculate the next-to-leading order correction δCs2ψ¯ψ\delta C_{s^{2}\bar{\psi}\psi} to the OPE coefficient Cs2ψ¯ψC_{s^{2}\bar{\psi}\psi}. Due to (17) the total correction is given by the sum of the correction δZs2ψ¯ψ\delta Z_{s^{2}\bar{\psi}\psi} to the amplitude of the s2ψ¯ψs^{2}\bar{\psi}\psi conformal triangle (23), as well as the amplitude corrections to the propagators of the fermion ψ\psi and the composite operator s2s^{2} attached to the conformal triangle,

Cs2ψ¯ψ=Cs2ψ¯ψ(1/N)(1+δZs2ψ¯ψ+2Aψ+As2+δu+𝒪(1N2)),C_{s^{2}\bar{\psi}\psi}=C_{s^{2}\bar{\psi}\psi}^{(1/N)}\,\left(1+\delta Z_{s^{2}\bar{\psi}\psi}+2A_{\psi}+A_{s^{2}}+\delta u+{\cal O}\left(\frac{1}{N^{2}}\right)\right)\,, (77)

where δu\delta u is given by (20), and originates from integrating over the vertices of the conformal triangle. When calculating the OPE coefficients it is conventional to rescale the external fields so that their propagators are normalized to unity. Thus, rescaling s2s^{2} according to (69), and ψ\psi according to

ψCψ(1+Aψ)ψ,\psi\rightarrow\sqrt{C_{\psi}\,(1+A_{\psi})}\,\psi\,, (78)

we obtain the OPE coefficient for the normalized fields

C^s2ψ¯ψ\displaystyle\hat{C}_{s^{2}\bar{\psi}\psi} =C^s2ψ¯ψ(1/N)(1+δC^s2ψ¯ψ)\displaystyle=\hat{C}_{s^{2}\bar{\psi}\psi}^{(1/N)}\,(1+\delta\hat{C}_{s^{2}\bar{\psi}\psi}) (79)
=C^s2ψ¯ψ(1/N)(1+δZs2ψ¯ψ+Aψ+As22+δu+𝒪(1N2)),\displaystyle=\hat{C}_{s^{2}\bar{\psi}\psi}^{(1/N)}\,\left(1+\delta Z_{s^{2}\bar{\psi}\psi}+A_{\psi}+\frac{A_{s^{2}}}{2}+\delta u+{\cal O}\left(\frac{1}{N^{2}}\right)\right)\,,

where the leading order coefficient is given by Goykhman:2020ffn

C^s2ψ¯ψ(1/N)=1N2d32sin(πd2)Γ(d12)π3/2Γ(d2),\hat{C}_{s^{2}\bar{\psi}\psi}^{(1/N)}=\frac{1}{N}\,\frac{2^{d-\frac{3}{2}}\sin\left(\frac{\pi d}{2}\right)\Gamma\left(\frac{d-1}{2}\right)}{\pi^{3/2}\,\Gamma\left(\frac{d}{2}\right)}\,, (80)

while for the 1/N1/N correction we derive

δC^s2ψ¯ψ=δZs2ψ¯ψ+Aψ+As+h2+δu\boxed{\delta\hat{C}_{s^{2}\bar{\psi}\psi}=\delta Z_{s^{2}\bar{\psi}\psi}+A_{\psi}+A_{s}+\frac{h}{2}+\delta u} (81)

As a consistency check for our expression (81) let us consider its limiting value in d=4d=4 dimension:

δC^s2ψ¯ψ|d=4=6N,\delta\hat{C}_{s^{2}\bar{\psi}\psi}|_{d=4}=-\frac{6}{N}\,, (82)

where the UV fixed point of the GN model is critically equivalent to the IR fixed point of the GNY model. For the latter, the δC^s2ψ¯ψ\delta\hat{C}_{s^{2}\bar{\psi}\psi} is obtained perturbatively in ϵ\epsilon in d=4ϵd=4-\epsilon dimensions by using the fixed point value of the sψ¯ψs\bar{\psi}\psi coupling ZinnJustin:1991yn

g1=4πϵN(13N+𝒪(1/N2))+𝒪(1/N2,ϵ)g_{1}^{\star}=4\pi\sqrt{\frac{\epsilon}{N}}\,\left(1-\frac{3}{N}+{\cal O}(1/N^{2})\right)+{\cal O}(1/N^{2},\epsilon) (83)

in the leading-order s2ψ¯ψ\langle s^{2}\bar{\psi}\psi\rangle diagram. Since there are two sψ¯ψs\bar{\psi}\psi vertices in that diagram, we obtain δC^s2ψ¯ψ|d=4=6/N+𝒪(1/N2,ϵ)\delta\hat{C}_{s^{2}\bar{\psi}\psi}|_{d=4}=-6/N+{\cal O}(1/N^{2},\epsilon), in agreement with (82).

Finally, notice that the normalized amplitude C^s2ψ¯ψ(1/N)\hat{C}_{s^{2}\bar{\psi}\psi}^{(1/N)} vanishes in d=2d=2, which can be alternatively seen as follows. In two dimensions the GN model is asymptotically free, and sψ¯ψs\simeq\bar{\psi}\psi. Therefore the s2ψ¯ψ\langle s^{2}\bar{\psi}\psi\rangle three-point function can be calculated using the diagram

s(x1)2s(x_{1})^{2}ψ¯(x2)\bar{\psi}(x_{2})ψ(x3)\psi(x_{3})

This diagram contains a fermionic tadpole loop, and therefore it vanishes in CFT. In fact, s2ψ¯ψ|d=2=0\langle s^{2}\bar{\psi}\psi\rangle|_{d=2}=0 to all orders in 1/N1/N.

6 Conformal triangle from propagator

In this section we will provide an alternative derivation of the 1/N1/N correction δVs2ss\delta V_{s^{2}ss} to the amplitude of the s2sss^{2}ss conformal triangle via the s2s2\langle s^{2}s^{2}\rangle propagator. This will serve as a non-trivial consistency check for our result (45). On the other hand, the calculation presented in this section can be viewed as a new method of deriving conformal triangles, which we believe has not been reported before in the literature on the large NN vector models.

At the leading order the s2s2\langle s^{2}s^{2}\rangle two-point function is given by the diagram:

0xx=Cs21|x|4=C_{s^{2}}\,\frac{1}{|x|^{4}}

The diagrams contributing at the next-to-leading order are given by dressing of the internal ss lines and the s2sss^{2}ss sub-diagram of this leading order diagram. The former is straightforward to calculate171717This diagram contains the entire leading order contribution to s2s2\langle s^{2}s^{2}\rangle.

0xx=Cs2(1+As)2μ4γs|x|4+4γs=C_{s^{2}}\,\frac{(1+A_{s})^{2}\,\mu^{-4\gamma_{s}}}{|x|^{4+4\gamma_{s}}}

while the latter is given by

Using the s2sss^{2}ss conformal triangle introduced in section 3.2 we can re-write the total of the diagrams contributing to s2s2\langle s^{2}s^{2}\rangle up to the next-to-leading order as

4+2γs24+2\gamma_{s^{2}}d2γs2d-2-\gamma_{s^{2}}d2γs2d-2-\gamma_{s^{2}}d+γs22γsd+\gamma_{s^{2}}-2\gamma_{s}d+γs22γsd+\gamma_{s^{2}}-2\gamma_{s}2+2γs+δ2+2\gamma_{s}+\delta2+2γs+δ2+2\gamma_{s}+\deltad2γs2d-2-\gamma_{s^{2}}d2γs2d-2-\gamma_{s^{2}}4+2γs24+2\gamma_{s^{2}}12×\frac{1}{2}\times+12×+\frac{1}{2}\times

Here the first diagram contains two s2sss^{2}ss conformal triangles. To compensate for this double counting we multiplied it by the factor of 1/21/2. Furthermore, the first diagram already contains the leading order s2s2\langle s^{2}s^{2}\rangle diagram, as well as the corrections obtained by dressing of its internal ss lines. However since the first diagram is multiplied by the factor of 1/21/2, we need to add another 1/21/2 of such contributions. Finally, notice that the first diagram is divergent. To regularize it we introduced a small shift δ\delta to the internal ss propagators.

Contribution of the second diagram is given by

s2(x)s2(0)Cs21|x|4(12+As2γslog(μ|x|))\langle s^{2}(x)s^{2}(0)\rangle\supset C_{s^{2}}\,\frac{1}{|x|^{4}}\,\left(\frac{1}{2}+A_{s}-2\gamma_{s}\log(\mu|x|)\right) (84)

while contribution of the first diagram is

s2(x)s2(0)\displaystyle\langle s^{2}(x)s^{2}(0)\rangle 12(Cs2(1+As2)Cs(1+As)Zs2ss(0)(1+δZs2ss))2V(δ),\displaystyle\supset\frac{1}{2}(C_{s^{2}}(1+A_{s^{2}})C_{s}(1+A_{s})Z_{s^{2}ss}^{(0)}(1+\delta Z_{s^{2}ss}))^{2}\,V(\delta)\,, (85)

where V(δ)V(\delta) is obtained by integrating over the internal vertices. To find the latter we first integrate over the left-most and the right-most vertices, resulting in

2+γs2+η2+\gamma_{s^{2}}+\eta2+γs2η2+\gamma_{s^{2}}-\eta2d4γs22γs2d-4-\gamma_{s^{2}}-2\gamma_{s}2d4γs22γs2d-4-\gamma_{s^{2}}-2\gamma_{s}2+2γs+δ2+2\gamma_{s}+\delta2+2γs+δ2+2\gamma_{s}+\delta2+γs2η2+\gamma_{s^{2}}-\eta2+γs2+η2+\gamma_{s^{2}}+\eta

Here we have introduced an auxiliary parameter η\eta, shifting exponents of some of the lines. One can easily see that the diagram is an even function of η\eta,181818One can see this by noticing that ηη\eta\rightarrow-\eta can be undone by swapping vertices of integration related by mirror reflection in the horizontal axes. and as a result choosing η=𝒪(δ)\eta={\cal O}(\delta) will not affect the value of the diagram in the limit δ0\delta\rightarrow 0 Vasiliev:1981yc ; Vasiliev:1981dg ; Gubser:2017vgc . We will take advantage of this fact by setting η=δ\eta=\delta, which will render two of the vertices unique. Integrating over those vertices we obtain the diagram:

4d+γs2+2γs+η4-d+\gamma_{s^{2}}+2\gamma_{s}+\eta^{\prime}d+γs22γsηd+\gamma_{s^{2}}-2\gamma_{s}-\eta^{\prime}2d42γs2+2δ2d-4-2\gamma_{s^{2}}+2\delta4d+γs2+2γsη4-d+\gamma_{s^{2}}+2\gamma_{s}-\eta^{\prime}d+γs22γs+ηd+\gamma_{s^{2}}-2\gamma_{s}+\eta^{\prime}

Here we introduced yet another auxiliary shift η\eta^{\prime}, such that the resulting diagram is an even function of η\eta^{\prime}.191919This can be seen by renaming the vertices of integration x1,2x_{1,2} as x1xx2x_{1}\rightarrow x-x_{2}, x2xx1x_{2}\rightarrow x-x_{1}. We refer the reader to Gubser:2017vgc for the detailed explanation of this method of calculating such diagrams. Consequently choosing η=δ\eta^{\prime}=\delta we will not change the value of the diagram in the δ0\delta\rightarrow 0 limit, while this will make the topmost vertex unique. Completing the last two integrals we obtain for the total:

V(δ)\displaystyle V(\delta) =12U(2+γs2,dγs221,dγs221)2U(1+γs+δ2,d2γsγs22,1+γs2δ2)2\displaystyle{=}\frac{1}{2}U\left(2{+}\gamma_{s^{2}},\frac{d{-}\gamma_{s^{2}}}{2}{-}1,\frac{d{-}\gamma_{s^{2}}}{2}{-}1\right)^{2}U\left(1{+}\gamma_{s}{+}\frac{\delta}{2},d{-}2{-}\gamma_{s}{-}\frac{\gamma_{s^{2}}}{2},1{+}\frac{\gamma_{s^{2}}{-}\delta}{2}\right)^{2}
×U(d2γs2+δ,d+γs2δ2γs,γs2dδ2+2+γs)U(d2+δ,d2+δ,2δ)μ2γs22δ|x|4+2γs2+2δ,\displaystyle\times U\left(d{-}2{-}\gamma_{s^{2}}{+}\delta,\frac{d{+}\gamma_{s^{2}}{-}\delta}{2}{-}\gamma_{s},\frac{\gamma_{s^{2}}{-}d{-}\delta}{2}{+}2{+}\gamma_{s}\right)U\left(\frac{d}{2}{+}\delta,\frac{d}{2}{+}\delta,{-}2\delta\right)\frac{\mu^{-2\gamma_{s^{2}}-2\delta}}{|x|^{4+2\gamma_{s^{2}}+2\delta}}\,,

where 1/21/2 is the symmetry factor of the diagram. Expanding the product of the UU functions around δ=0\delta=0 and N=N=\infty we obtain

V(δ)\displaystyle V(\delta) =v0(1+γs22γsδ+δv)μ2γs22δ|x|4+2γs2+2δ\displaystyle=v_{0}\left(1+\frac{\gamma_{s^{2}}-2\gamma_{s}}{\delta}+\delta v\right)\,\frac{\mu^{-2\gamma_{s^{2}}-2\delta}}{|x|^{4+2\gamma_{s^{2}}+2\delta}} (86)
=v0(1+δv+(4γs4γs2)log(μ|x|))1|x|4,\displaystyle=v_{0}\,\left(1+\delta v+(4\gamma_{s}-4\gamma_{s^{2}})\,\log(\mu|x|)\right)\,\frac{1}{|x|^{4}}\,,

where we subtracted divergent part using s2sss^{2}ss counterterm discussed in section 4, and

v0\displaystyle v_{0} =Cs2(Cs2CsZs2ss(0))2,\displaystyle=\frac{C_{s^{2}}}{\left(C_{s^{2}}\,C_{s}\,Z_{s^{2}ss}^{(0)}\right)^{2}}\,, (87)
δv\displaystyle\delta v =(2γs+γs2)(πcot(πd2)+Hd3)2d6d4γs2.\displaystyle=(2\gamma_{s}+\gamma_{s^{2}})\,\left(\pi\cot\left(\frac{\pi d}{2}\right)+H_{d-3}\right)-2\,\frac{d-6}{d-4}\,\gamma_{s^{2}}\,. (88)

The corresponding contribution to the two-point function is then

s2(x)s2(0)Cs2(12+As2+As+δZs2ss+δv2+(2γs2γs2)log(μ|x|))1|x|4,\langle s^{2}(x)s^{2}(0)\rangle\supset C_{s^{2}}\,\left(\frac{1}{2}+A_{s^{2}}+A_{s}+\delta Z_{s^{2}ss}+\frac{\delta v}{2}+(2\gamma_{s}-2\gamma_{s^{2}})\,\log(\mu|x|)\right)\,\frac{1}{|x|^{4}}\,, (89)

Combining (84), (89) we obtain

s2(x)s2(0)=Cs2(1+As2+2As+δZs2ss+δv2)1|x|4+2γs2,\langle s^{2}(x)s^{2}(0)\rangle=C_{s^{2}}\,\left(1+A_{s^{2}}+2A_{s}+\delta Z_{s^{2}ss}+\frac{\delta v}{2}\right)\,\frac{1}{|x|^{4+2\gamma_{s^{2}}}}\,, (90)

Using the expression (45) for δZs2ss\delta Z_{s^{2}ss} derived at the next-to-leading order in 1/N1/N in section 3 we obtain

2As+δZs2ss+δv2\displaystyle 2A_{s}+\delta Z_{s^{2}ss}+\frac{\delta v}{2} =W3+W4δwδz+δv2\displaystyle=W_{3}+W_{4}-\delta w-\delta z+\frac{\delta v}{2}
=γs22γs+1N2dsin(πd2)Γ(d+12)π3/2Γ(d2).\displaystyle=\frac{\gamma_{s^{2}}}{2}-\gamma_{s}+\frac{1}{N}\,\frac{2^{d}\sin\left(\frac{\pi d}{2}\right)\Gamma\left(\frac{d+1}{2}\right)}{\pi^{3/2}\Gamma\left(\frac{d}{2}\right)}\,. (91)

Using expressions (5), (63) for the anomalous dimensions γs,s2\gamma_{s,s^{2}} we can verify explicitly that the r.h.s. of (91) vanishes, which provides a non-trivial consistency check for our calculation of the W3+W4W_{3}+W_{4} diagrams performed in section 3, as well as for the resulting value of δZs2ss\delta Z_{s^{2}ss}.

7 Discussion

In this paper we derived new CFT data at the UV fixed point of the Gross-Neveu model in 2<d<42<d<4 dimensions. In particular, we further established the computational power of the background field method, first proposed in the context of the large-NN vector models in Goykhman:2020ffn , for the calculation of the finite parts of the effective vertices, and the corresponding OPE coefficients. To this end, we derived new expressions for the s2ψ¯ψs^{2}\bar{\psi}\psi and s2sss^{2}ss conformal triangles, and obtained the correlation functions s2ψ¯ψ\langle s^{2}\bar{\psi}\psi\rangle, s2ss\langle s^{2}ss\rangle, and s2s2\langle s^{2}s^{2}\rangle, while working at the next-to-leading order in the 1/N1/N expansion.

Our results are complementary to the literature on the vector models, in that they provide the finite parts of the correlation functions, useful to obtain the OPE coefficients. Specifically, the background field method allows one to easily go beyond the singular parts of the correlation functions, and the associated anomalous dimensions of the primary operators of the theory.

A natural extension of our results would be to apply the methods developed in the present work to the O(N)O(N) vector model and derive the corresponding conformal triangles s2sss^{2}ss and s2ϕϕs^{2}\phi\phi, where ϕ\phi is the fundamental O(N)O(N) field and ss is the Hubbard-Stratonovich field. In particular, the s2sss^{2}ss conformal triangle can be subjected to the consistency check by calculating the s2s2\langle s^{2}s^{2}\rangle two-point function, along the lines of section 6. One can also use this data to derive the s2ss\langle s^{2}ss\rangle and s2ϕϕ\langle s^{2}\phi\phi\rangle three-point functions and extract the corresponding OPE coefficients.

Another possible application of our results could be found in the study of vector models at finite temperature. This direction of research has recently received a renewed attention due to the discovery of the bi-conical vector models exhibiting symmetry breaking at all temperatures Chai:2020onq ; Chai:2020zgq ; Chai:2020hnu .

Acknowledgements

We thank Michael Smolkin for numerous discussions, comments on the draft, and the suggestion to calculate s2ψ¯ψ\langle s^{2}\bar{\psi}\psi\rangle, and John Gracey for helpful correspondence. This work was partially supported by the Binational Science Foundation (grant No. 2016186), the Israeli Science Foundation Center of Excellence (grant No. 2289/18) and by the Quantum Universe I-CORE program of the Israel Planning and Budgeting Committee (grant No. 1937/12).

References

  • (1) A. M. Polyakov, “Conformal symmetry of critical fluctuations,” JETP Lett. 12, 381-383 (1970)
  • (2) G. Parisi, “On self-consistency conditions in conformal covariant field theory,” Lett. Nuovo Cim. 4S2, 777-780 (1972) doi:10.1007/BF02757039
  • (3) A. M. Polyakov, “Nonhamiltonian approach to conformal quantum field theory,” Zh. Eksp. Teor. Fiz. 66, 23-42 (1974)
  • (4) S. Ferrara, A. F. Grillo and R. Gatto, “Tensor representations of conformal algebra and conformally covariant operator product expansion,” Annals Phys. 76, 161-188 (1973) doi:10.1016/0003-4916(73)90446-6
  • (5) S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, “Solving the 3D Ising Model with the Conformal Bootstrap,” Phys. Rev. D 86, 025022 (2012) doi:10.1103/PhysRevD.86.025022 [arXiv:1203.6064 [hep-th]].
  • (6) D. Simmons-Duffin, “The Conformal Bootstrap,” doi:10.1142/9789813149441_0001 [arXiv:1602.07982 [hep-th]].
  • (7) H. E. Stanley, “Dependence of critical properties on dimensionality of spins,” Phys. Rev. Lett. 20, 589 (1968) doi:10.1103/PhysRevLett.20.589
  • (8) R. Guida and J. Zinn-Justin, “Critical exponents of the N vector model,” J. Phys. A 31, 8103-8121 (1998) doi:10.1088/0305-4470/31/40/006 [arXiv:cond-mat/9803240 [cond-mat]].
  • (9) K. G. Wilson and M. E. Fisher, “Critical exponents in 3.99 dimensions,” Phys. Rev. Lett. 28, 240-243 (1972) doi:10.1103/PhysRevLett.28.240
  • (10) D. J. Gross and A. Neveu, “Dynamical Symmetry Breaking in Asymptotically Free Field Theories,” Phys. Rev. D 10, 3235 (1974) doi:10.1103/PhysRevD.10.3235
  • (11) J. Zinn-Justin, “Four fermion interaction near four-dimensions,” Nucl. Phys. B 367, 105-122 (1991) doi:10.1016/0550-3213(91)90043-W
  • (12) G. Parisi, “The Theory of Nonrenormalizable Interactions. 1. The Large N Expansion,” Nucl. Phys. B 100, 368-388 (1975) doi:10.1016/0550-3213(75)90624-0
  • (13) A. N. Vasiliev, Y. M. Pismak and Y. R. Khonkonen, “Simple Method of Calculating the Critical Indices in the 1/NN Expansion,” Theor. Math. Phys. 46, 104-113 (1981) doi:10.1007/BF01030844
  • (14) A. N. Vasiliev, Y. M. Pismak and Y. R. Khonkonen, “1/NN Expansion: Calculation of the Exponents η\eta and Nu in the Order 1/N2N^{2} for Arbitrary Number of Dimensions,” Theor. Math. Phys. 47, 465-475 (1981) doi:10.1007/BF01019296
  • (15) A. N. Vasiliev and M. Y. Nalimov, “Analog of Dimensional Regularization for Calculation of the Renormalization Group Functions in the 1/n Expansion for Arbitrary Dimension of Space,” Theor. Math. Phys. 55, 423-431 (1983) doi:10.1007/BF01015800
  • (16) A. N. Vasiliev, Y. M. Pismak and Y. R. Khonkonen, “1/N expansion: calculation of the exponent eta in the order 1/N31/N^{3} by the conformal bootstrap method,” Theor. Math. Phys. 50, 127-134 (1982) doi:10.1007/BF01015292
  • (17) J. A. Gracey, “Calculation of exponent eta to O(1/N**2) in the O(N) Gross-Neveu model,” Int. J. Mod. Phys. A 6, 395-408 (1991) [erratum: Int. J. Mod. Phys. A 6, 2755 (1991)] doi:10.1142/S0217751X91000241
  • (18) K. Lang and W. Ruhl, “The Critical O(N) sigma model at dimension 2 << d << 4 and order 1/n**2: Operator product expansions and renormalization,” Nucl. Phys. B 377, 371-401 (1992) doi:10.1016/0550-3213(92)90028-A
  • (19) J. A. Gracey, “Anomalous mass dimension at O(1/N**2) in the O(N) Gross-Neveu model,” Phys. Lett. B 297, 293-297 (1992) doi:10.1016/0370-2693(92)91265-B
  • (20) A. N. Vasiliev, S. E. Derkachov, N. A. Kivel and A. S. Stepanenko, “The 1/n expansion in the Gross-Neveu model: Conformal bootstrap calculation of the index eta in order 1/n**3,” Theor. Math. Phys. 94, 127-136 (1993) doi:10.1007/BF01019324
  • (21) A. N. Vasiliev and A. S. Stepanenko, “The 1/n expansion in the Gross-Neveu model: Conformal bootstrap calculation of the exponent 1/nu to the order 1/n**2,” Theor. Math. Phys. 97, 1349-1354 (1993)
  • (22) J. A. Gracey, “Computation of Beta-prime (g(c)) at O(1/N**2) in the O(N) Gross-Neveu model in arbitrary dimensions,” Int. J. Mod. Phys. A 9, 567-590 (1994) doi:10.1142/S0217751X94000285 [arXiv:hep-th/9306106 [hep-th]].
  • (23) J. A. Gracey, “Computation of critical exponent eta at O(1/N**3) in the four Fermi model in arbitrary dimensions,” Int. J. Mod. Phys. A 9, 727-744 (1994) doi:10.1142/S0217751X94000340 [arXiv:hep-th/9306107 [hep-th]]. doi:10.1007/BF01015764
  • (24) K. Lang and W. Ruhl, “Critical nonlinear O(N) sigma models at 2<d<42<d<4: The Degeneracy of quasiprimary fields and it resolution,” Z. Phys. C 61, 495-510 (1994) doi:10.1007/BF01413189
  • (25) A. C. Petkou, “C(T) and C(J) up to next-to-leading order in 1/N in the conformally invariant 0(N) vector model for 2 << d << 4,” Phys. Lett. B 359, 101-107 (1995) doi:10.1016/0370-2693(95)00936-F [arXiv:hep-th/9506116 [hep-th]].
  • (26) A. Petkou, “Conserved currents, consistency relations and operator product expansions in the conformally invariant O(N) vector model,” Annals Phys. 249, 180-221 (1996) doi:10.1006/aphy.1996.0068 [arXiv:hep-th/9410093 [hep-th]].
  • (27) S. E. Derkachov, N. A. Kivel, A. S. Stepanenko and A. N. Vasiliev, “On calculation in 1/n expansions of critical exponents in the Gross-Neveu model with the conformal technique,” [arXiv:hep-th/9302034 [hep-th]].
  • (28) S. E. Derkachov and A. N. Manashov, “The Simple scheme for the calculation of the anomalous dimensions of composite operators in the 1/N expansion,” Nucl. Phys. B 522, 301-320 (1998) doi:10.1016/S0550-3213(98)00103-5 [arXiv:hep-th/9710015 [hep-th]].
  • (29) T. Leonhardt and W. Ruhl, “The Minimal conformal O(N) vector sigma model at d = 3,” J. Phys. A 37, 1403-1413 (2004) doi:10.1088/0305-4470/37/4/023 [arXiv:hep-th/0308111 [hep-th]].
  • (30) L. Fei, S. Giombi and I. R. Klebanov, “Critical O(N)O(N) models in 6ϵ6-\epsilon dimensions,” Phys. Rev. D 90, no.2, 025018 (2014) doi:10.1103/PhysRevD.90.025018 [arXiv:1404.1094 [hep-th]].
  • (31) L. Fei, S. Giombi, I. R. Klebanov and G. Tarnopolsky, “Three loop analysis of the critical O(N) models in 6-ϵ\epsilon dimensions,” Phys. Rev. D 91, no.4, 045011 (2015) doi:10.1103/PhysRevD.91.045011 [arXiv:1411.1099 [hep-th]].
  • (32) J. A. Gracey, “Four loop renormalization of ϕ3\phi^{3} theory in six dimensions,” Phys. Rev. D 92, no.2, 025012 (2015) doi:10.1103/PhysRevD.92.025012 [arXiv:1506.03357 [hep-th]].
  • (33) A. N. Manashov and E. D. Skvortsov, “Higher-spin currents in the Gross-Neveu model at 1/n2,” JHEP 01, 132 (2017) doi:10.1007/JHEP01(2017)132 [arXiv:1610.06938 [hep-th]].
  • (34) K. Diab, L. Fei, S. Giombi, I. R. Klebanov and G. Tarnopolsky, “On CJ{C}_{J} and CT{C}_{T} in the Gross–Neveu and O(N) models,” J. Phys. A 49, no.40, 405402 (2016) doi:10.1088/1751-8113/49/40/405402 [arXiv:1601.07198 [hep-th]].
  • (35) S. Giombi, G. Tarnopolsky and I. R. Klebanov, “On CJC_{J} and CTC_{T} in Conformal QED,” JHEP 1608, 156 (2016) doi:10.1007/JHEP08(2016)156 [arXiv:1602.01076 [hep-th]].
  • (36) L. Fei, S. Giombi, I. R. Klebanov and G. Tarnopolsky, “Yukawa CFTs and Emergent Supersymmetry,” PTEP 2016, no.12, 12C105 (2016) doi:10.1093/ptep/ptw120 [arXiv:1607.05316 [hep-th]].
  • (37) J. A. Gracey, T. Luthe and Y. Schroder, “Four loop renormalization of the Gross-Neveu model,” Phys. Rev. D 94, no.12, 125028 (2016) doi:10.1103/PhysRevD.94.125028 [arXiv:1609.05071 [hep-th]].
  • (38) A. N. Manashov and M. Strohmaier, “Correction exponents in the Gross–Neveu–Yukawa model at 1/N21/N^{2},” Eur. Phys. J. C 78, no.6, 454 (2018) doi:10.1140/epjc/s10052-018-5902-1 [arXiv:1711.02493 [hep-th]].
  • (39) J. A. Gracey, “Large NfN_{f} quantum field theory,” Int. J. Mod. Phys. A 33, no.35, 1830032 (2019) doi:10.1142/S0217751X18300326 [arXiv:1812.05368 [hep-th]].
  • (40) L. F. Alday, J. Henriksson and M. van Loon, “An alternative to diagrams for the critical O(N) model: dimensions and structure constants to order 1/N2,” JHEP 01, 063 (2020) doi:10.1007/JHEP01(2020)063 [arXiv:1907.02445 [hep-th]].
  • (41) S. Giombi, R. Huang, I. R. Klebanov, S. S. Pufu and G. Tarnopolsky, “The O(N)O(N) Model in 4<d<6{4<d<6} : Instantons and complex CFTs,” Phys. Rev. D 101, no.4, 045013 (2020) doi:10.1103/PhysRevD.101.045013 [arXiv:1910.02462 [hep-th]].
  • (42) M. Goykhman and M. Smolkin, “Vector model in various dimensions,” Phys. Rev. D 102, no.2, 025003 (2020) doi:10.1103/PhysRevD.102.025003 [arXiv:1911.08298 [hep-th]].
  • (43) M. Goykhman, V. Rosenhaus and M. Smolkin, “The background field method and critical vector models,” [arXiv:2009.13137 [hep-th]].
  • (44) B. Rosenstein, B. J. Warr and S. H. Park, “The Four Fermi Theory Is Renormalizable in (2+1)-Dimensions,” Phys. Rev. Lett. 62, 1433-1436 (1989) doi:10.1103/PhysRevLett.62.1433
  • (45) J. Goldstone, A. Salam and S. Weinberg, “Broken Symmetries,” Phys. Rev. 127, 965-970 (1962) doi:10.1103/PhysRev.127.965
  • (46) M. D’Eramo, G. Parisi and L. Peliti, “Theoretical predictions for critical exponents at the lambda point of Bose liquids,” Lett. Nuovo Cim. 2, no.17, 878-880 (1971) doi:10.1007/BF02774121
  • (47) K. Symanzik, “On Calculations in conformal invariant field theories,” Lett. Nuovo Cim. 3, 734-738 (1972) doi:10.1007/BF02824349
  • (48) S. S. Gubser, C. Jepsen, S. Parikh and B. Trundy, “O(N) and O(N) and O(N),” JHEP 11, 107 (2017) doi:10.1007/JHEP11(2017)107 [arXiv:1703.04202 [hep-th]].
  • (49) N. Chai, S. Chaudhuri, C. Choi, Z. Komargodski, E. Rabinovici and M. Smolkin, “Symmetry Breaking at All Temperatures,” Phys. Rev. Lett. 125, no.13, 131603 (2020) doi:10.1103/PhysRevLett.125.131603
  • (50) N. Chai, S. Chaudhuri, C. Choi, Z. Komargodski, E. Rabinovici and M. Smolkin, “Thermal Order in Conformal Theories,” Phys. Rev. D 102, no.6, 065014 (2020) doi:10.1103/PhysRevD.102.065014 [arXiv:2005.03676 [hep-th]].
  • (51) N. Chai, E. Rabinovici, R. Sinha and M. Smolkin, “The bi-conical vector model at 1/N1/N,” [arXiv:2011.06003 [hep-th]].