This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.




Casimir-Lifshitz pressure on cavity walls

C. Romaniega 111e-mail: [email protected] Departamento de Física Teórica, Atómica y Óptica,
Universidad de Valladolid, 47011. Valladolid, Spain.
Abstract

We extend our previous work on the electromagnetic Casimir-Lifshitz interaction between two bodies when one is contained within the other. We focus on the fluctuation-induced pressure acting on the cavity wall, which is assumed to be spherical. This pressure can be positive or negative depending on the response functions describing the bodies and the medium filling the cavity. However, we find that, under general hypotheses, the sign is independent of the geometry of the configuration. This result is based on the representation of the Casimir-Lifshitz energy in terms of transition operators. In particular, we study the components of these operators related to inside scattering amplitudes, adapting the invariant imbedding procedure to this unfamiliar scattering setup. We find that our main result is in agreement with the Dzyaloshinskii-Lifshitz-Pitaevskii result, which is obtained as a limiting case.

pacs:
03.65.-w Quantum mechanics, 03.65.Nk Scattering theory, 11.10.-z Field theory

I Introduction

Casimir-Lifshitz forces are a directly observable manifestation of quantum field theory. These arise from the quantum fluctuations of the electromagnetic field in the presence of material boundaries. In the past few decades, the measurement of such forces has become increasingly precise, proving the good agreement between theory and experiment for simple geometries mohideen1998precision ; chan2001quantum ; munday2009measured ; garrett2018measurement . One of the most significant achievements has been the experimental confirmation of the Dzyaloshinskii-Lifshitz-Pitaevskii (DLP) formula dzyaloshinskii1961general . In this case, the Casimir-Lifshitz force between two homogeneous slabs separated by a medium with nontrivial electromagnetic response satisfies

sgnFint=sgn[(ε1εM)(ε2εM)].\text{sgn}\,F_{\text{int}}=-\text{sgn}[(\varepsilon_{1}-\varepsilon_{M})(\varepsilon_{2}-\varepsilon_{M})]. (1)

This behaviour, hereinafter referred to as the DLP result, leads to repulsion if the permittivities of the objects εi\varepsilon_{i} and the medium εM\varepsilon_{M} satisfy εi<εM<εj\varepsilon_{i}<\varepsilon_{M}<\varepsilon_{j}, i,j{1,2}i,j\in\{1,2\}. It took almost fifty years to experimentally confirm this prediction for material bodies munday2009measured . This was accomplished with a gold-covered sphere and a large silica plate immersed in bromobenzene since, over a wide frequency range,

εsilica<εbromobenzene<εgold.\varepsilon_{\text{silica}}<\varepsilon_{\text{bromobenzene}}<\varepsilon_{\text{gold}}.

With this, an attractive interaction was also found replacing the silica plate with a gold plate.

The experiments on Casimir force measurements have traditionally been restricted to objects like spheres and plates. Nonetheless, it is known that nontrivial geometries modify the strength and the sign of the force bordag2009advances ; garrett2018measurement ; venkataram2020fundamental , raising the possibility for specific applications in nanomechanics and nanotechnology. However, there is a lack of general theorems regarding this dependence on geometry and boundaries. For instance, one of the few general results on the sign of the force is for a mirror symmetric arrangement of objects kenneth2006opposites ; bachas2007comment . In this case, the attractive character of the force can be proved from the representation of the energy in terms of transition operators. As a result, the interaction force is also attractive between a single object and a plane when both share boundary conditions. This attraction may lead to the permanent adhesion of the moving parts in nanoscale machines buks2001stiction ; munday2010repulsive . In this context, the stability of the configuration should also be considered, specially when looking for ultra-low stiction and levitating devices capasso2007casimir ; munday2009measured . Within an approach similar to the one in kenneth2006opposites , an extension of Earnshaw’s theorem was stated in rahi2010constraints . This result sets restrictive constraints on the stability of arbitrarily shaped objects held in equilibrium by Casimir-Lifshitz forces. Nevertheless, a possible way to avoid the assumptions of the previous no-go theorems kenneth2006opposites ; rahi2010constraints has recently been proposed jiang2019chiral . This is based on the introduction of a chiral medium, where the strength of the resulting forces can be tailored in response to an external magnetic field.

In this paper we investigate the Casimir effect in configurations in which one object lies inside the other marachevsky2001casimir ; hoye2001casimir ; brevik2002casimir ; brevik2005casimir ; dalvit2006exact ; marachevsky2007casimir ; zaheer2010casimir ; teo2010casimir ; rahi2010stable ; parashar2017electromagnetic . We extend our previous work on the pressure acting on spherical surfaces romaniega2021repulsive . Instead of a dielectric sphere enclosed within an arbitrarily shaped magnetodielectric body, we now consider two arbitrarily shaped objects: a dielectric with a spherical cavity in which a magnetodielectric is enclosed. Indeed, this study is also related to cavero2021casimir , where we study the sign of the interaction energy for scalar fields in the presence of spherical δ\delta-δ\delta^{\prime} contact interactions. In all of these cases, we have written the energy in terms of the transition operators in a similar manner as in the two above-mentioned theorems kenneth2008casimir ; rahi2009scattering . With this, in this paper we show that the signs of the interaction energy and pressure are essentially determined as in the DLP result (1). Furthermore, the same condition appears in rahi2010constraints , excluding stable equilibrium for two nonmagnetic bodies immersed in vacuum.

The paper is organized as follows. In Sec. II we rewrite the interaction energy formula in terms of transition operators. This representation of the energy is proposed to facilitate the computation of the pressure. In Sec. III we study the variation of these transition operators with respect to the radius of the cavity wall. We employ the invariant imbedding procedure for the transition matrix, which was originally developed to solve quantum mechanical scattering problems for atomic and molecular collisions. Indeed, we only need to study certain components of these operators, which are related to the inside scattering amplitudes properly defined in this section. We also include an appendix devoted to adapt this technique for other unusual scattering setups in which the source and the detector of the scattering experiment can be inside or outside the target. In Sec. IV we prove that the sign of the interaction pressure acting on the cavity wall equals the sign of the interaction energy and that both can be written as in Eq. (1). As a consistency test, we also compare with previous results for cavity configurations. In particular, we extend the DLP result to inhomogeneous slabs, showing the relation between the interaction pressure on the wall and the force between the slabs. We end in Sec. V with some remarks on the main result and the conclusions in Sec. VI.

Throughout this paper we will use the natural units =c=ε0=μ0=1\hslash=c=\varepsilon_{0}=\mu_{0}=1, neglecting fluctuations due to nonelectromagnetic oscillations when the medium is different from vacuum, which are usually small dzyaloshinskii1961general .

II Interaction energy

This section is devoted to study the interaction energy between two material bodies, one inside the other, due to the quantum fluctuations of the electromagnetic field. In particular, we consider the appropriate representation for determining the sign of the pressure acting on the spherical cavity wall shown in Fig. 1.

Refer to caption
Figure 1: Cross-section view of the system under study. The pressure on the spherical cavity wall due to the interaction with the magnetodielectric object is considered. Between both objects there is a homogeneous dielectric. Each body is characterized by its corresponding permittivity εi\varepsilon_{i} (and permeability μ1\mu_{1} for the inner object) being i{1,2,M}i\in\{1,2,M\}.

For these bodies and the homogeneous medium filling the cavity we assume that the coupling of the electromagnetic field to matter can be described by continuous permittivity ε\varepsilon and permeability μ{\mu} functions. With this, Maxwell curl equations,

×E(t,𝐱)\displaystyle\bm{\nabla}\times\textbf{E}(t,\mathbf{x}) =\displaystyle= tB(t,𝐱),\displaystyle-\partial_{t}\textbf{B}(t,\mathbf{x}),
×[μ1(t,𝐱)B(t,𝐱)]\displaystyle\quad\bm{\nabla}\times\left[{\mu}^{-1}(t,\mathbf{x})\textbf{B}(t,\mathbf{x})\right] =\displaystyle= t[ε(t,𝐱)E(t,𝐱)],\displaystyle-\partial_{t}\left[\varepsilon(t,\mathbf{x})\textbf{E}(t,\mathbf{x})\right],

after Fourier transform in time, can be rearranged to give newton2013scattering

[××+𝕍(ω,𝐱)]E(ω,𝐱)=εMω2E(ω,𝐱),\left[\bm{\nabla}\times\bm{\nabla}\times+\mathbb{V}(\omega,\mathbf{x})\right]\textbf{E}(\omega,\mathbf{x})={\varepsilon_{M}}\omega^{2}\textbf{E}(\omega,\mathbf{x}), (2)

where the potential operator is

𝕍(ω,𝐱)=𝕀ω2[εM(ω)ε(ω,x)]+×[1μ(ω,x)1μM(ω)]×.\mathbb{V}(\omega,\mathbf{x})=\mathbb{I}{\omega^{2}}\left[\varepsilon_{M}(\omega)-\varepsilon(\omega,\textbf{x})\right]+\bm{\nabla}\times\left[\frac{1}{\mu(\omega,\textbf{x})}-\frac{1}{\mu_{M}(\omega)}\right]\bm{\nabla}\times.

Since the magnetic response of ordinary materials is typically close to one, we will focus on nonmagnetic bodies. However, we shall see that in some cases the introduction of nontrivial permeabilities poses no additional difficulties, especially for the inner object. Hence, the potential operator reduces to

𝕍i(ω,x)=𝕀Vi(ω,x)=𝕀ω2[εM(ω)εi(ω,x)].\mathbb{V}_{i}(\omega,\textbf{x})=\mathbb{I}{V}_{i}(\omega,\textbf{x})=\mathbb{I}\omega^{2}\left[\varepsilon_{M}(\omega)-\varepsilon_{i}(\omega,\textbf{x})\right]. (3)

Since εi(ω,x)\varepsilon_{i}(\omega,\textbf{x}) is equal to the permittivity of the medium outside each body, the spatial support of each potential satisfies suppV1suppV2=\text{supp}\,V_{1}\cap\,\text{supp}\,V_{2}=\emptyset. Consequently, the Casimir-Lifshitz interaction energy between the two objects is given by the so-called TGTG formula kenneth2008casimir ; rahi2009scattering

Eint=12π0dωTrlog(𝕀𝕋1𝔾12M𝕋2𝔾21M).E_{\text{int}}=\frac{1}{2\pi}\int_{0}^{\infty}\mathrm{d}\omega\,\text{Tr}\log(\mathbb{I}-{\mathbb{T}_{1}}\mathbb{G}^{M}_{12}\mathbb{{T}}_{2}\mathbb{G}^{M}_{21}). (4)

The properties of each body are encoded in its Lippmann-Schwinger 𝕋\mathbb{T} operator 𝕋i:ii\mathbb{T}_{i}:\mathcal{H}_{i}\to\mathcal{H}_{i}, being iL2(supp𝕍i)3\mathcal{H}_{i}\equiv L^{2}(\text{supp}\,\mathbb{V}_{i})^{3} hanson2013operator . Furthermore, the relative position between both objects enters through 𝔾ijMi𝔾Mj:ji,\mathbb{G}^{M}_{ij}\equiv\mathbb{P}_{i}\mathbb{G}^{M}\mathbb{P}_{j}:\mathcal{H}_{j}\to\mathcal{H}_{i}, being 𝔾M\mathbb{G}^{M} the propagator across the medium and i\mathbb{P}_{i} the projection operator onto the Hilbert space i\mathcal{H}_{i}. These electric Green’s dyadics fulfill

[××+εM(ik)k2]𝔾M(ik,𝐱,𝐱)=𝕀δ(𝐱𝐱),\left[\bm{\nabla}\times\bm{\nabla}\times+\varepsilon_{M}(ik){k^{2}}\right]\mathbb{G}^{M}(ik,\mathbf{x},\mathbf{x}^{\prime})=~{}\mathbb{I}\delta(\mathbf{x}~{}-~{}\mathbf{x}^{\prime}), (5)

being related to the 𝕋i\mathbb{T}_{i} operators of the Lippmann-Schwinger equation

E =\displaystyle= Ein𝔾M𝕋iEin,\displaystyle\textbf{E}_{\text{in}}-\mathbb{G}^{M}\mathbb{T}_{i}\textbf{E}_{\text{in}}, (6)
𝕋i\displaystyle\mathbb{T}_{i} =\displaystyle= 𝕍i(𝕀+𝔾M𝕍i)1.\displaystyle{\mathbb{V}_{i}}\left({\mathbb{I}+\mathbb{G}^{M}\mathbb{V}_{i}}\right)^{-1}. (7)

Since the integral in Eq. (4) will be carried out over imaginary frequencies ω=ik\omega=ik, we have written the analytic continuation to the imaginary frequency axis of functions such as εM\varepsilon_{M}. The two bodies are separated from each other so we can expand the Green’s functions in terms of free solutions of Eq. (2). In spherical coordinates, there is a complete set of regular solutions at the origin {Eareg}\{\textbf{E}_{a}^{\text{reg}}\}, whose radial part is determined by the spherical Bessel function, and a complete set of outgoing solutions {Eaout}\{\textbf{E}_{a}^{\text{out}}\}, whose radial part is determined by the spherical Hankel function of the first kind sun2019invariant . The subscript of these transverse solutions stands for the angular momentum values and polarizations {,m,P}\{\ell,{m},P\}. Note that we have to choose the appropriate representation of 𝔾ijM\mathbb{G}^{M}_{ij} depending on the relative position between both objects rahi2009scattering . When the two bodies lie outside each other, the suitable expansion leads to the usual components of 𝕋i=1,2\mathbb{T}_{i=1,2} in Eq. (4), i.e., the scattering amplitude related to a process in which a regular wave interacts with the target and scatters outward newton2013scattering . However, when one body is inside the other different components of 𝕋2\mathbb{T}_{2} are needed. Specifically, with the appropriate normalization, 𝕋1𝔾12M𝕋2𝔾21M{\mathbb{T}_{1}}\mathbb{G}^{M}_{12}\mathbb{{T}}_{2}\mathbb{G}^{M}_{21} can be expanded as

a,b,cEjreg,𝕋1EaregEareg,𝔾12MEboutEbout,𝕋2EcoutEcout,𝔾21MEkreg.\sum_{a,\,b,\,c}\langle\textbf{E}_{j}^{\text{reg}},{\mathbb{T}_{1}}\textbf{E}_{a}^{\text{reg}}\rangle\langle\textbf{E}_{a}^{\text{reg}},\mathbb{G}^{M}_{12}\textbf{E}_{b}^{\text{out}}\rangle\langle\textbf{E}_{b}^{\text{out}},\mathbb{{T}}_{2}\textbf{E}_{c}^{\text{out}}\rangle\langle\textbf{E}_{c}^{\text{out}},\mathbb{G}^{M}_{21}\textbf{E}_{k}^{\text{reg}}\rangle. (8)

As we shall see in Sec. III, Ebout,𝕋2Ecout\langle\textbf{E}_{b}^{\text{out}},\mathbb{{T}}_{2}\textbf{E}_{c}^{\text{out}}\rangle is related to the scattering amplitude when both the source and detector are inside the target.

Now, in order to determine the conditions leading to positive or negative values of the Casimir-Lifshitz energy, we assume that the sign of the potential ViV_{i} in Eq. (3) is constant over the whole body, being

sisgnVi=±1ifεi(ik,x)εM(ik),xsuppVi.s_{i}\equiv\text{sgn}\,V_{i}=\pm 1\ \ \text{if}\ \ \varepsilon_{i}(ik,\textbf{x})\gtrless\varepsilon_{M}(ik),\ \ \forall\textbf{x}\in\text{supp}\,V_{i}. (9)

We shall see that our analysis applies to each fixed frequency so Eq. (9) should hold for all of them. However, we can simply assume constant sign over the frequencies contributing most to the energy dzyaloshinskii1961general ; munday2009measured . Note that from Kramers-Kronig causality conditions the permittivity satisfies ε(ik)1\varepsilon(ik)\geq 1, where the equality holds for vacuum bordag2009advances . Indeed, the vacuum Green’s functions are related to the medium ones by 𝔾0(iεMk,𝐱,𝐱)=𝔾M(ik,𝐱,𝐱),\mathbb{G}^{0}(i\sqrt{\varepsilon_{M}}k,\mathbf{x},\mathbf{x}^{\prime})=\mathbb{G}^{M}(ik,\mathbf{x},\mathbf{x}^{\prime}), being 𝔾M\mathbb{G}^{M} a nonnegative operator 𝔾M0\mathbb{G}^{M}\geq~{}0 so we have 𝔾21M=𝔾12M\mathbb{G}^{M\dagger}_{21}=\mathbb{G}^{M}_{12}. In addition, 𝕋i(ik)\mathbb{T}_{i}(ik) is real and symmetric and in this case it can be written in the form 𝕋i=sisi𝕋isi𝕋i,\mathbb{T}_{i}=s_{i}\sqrt{s_{i}\mathbb{T}_{i}}\sqrt{s_{i}\mathbb{T}_{i}}, where si𝕋i\sqrt{s_{i}\mathbb{T}_{i}} is the square root of the positive operator si𝕋is_{i}\mathbb{T}_{i}. We will not analyze convergence issues or the self-adjointness of the presented operators (for those see hanson2013operator ), assuming that the appropriate conditions are fulfilled in realistic systems rahi2010constraints .

As a result of the above, the interaction energy can be rewritten as romaniega2021repulsive

Eint=12π0dkTrlog(𝕀s𝕄),E_{\text{int}}=\frac{1}{2\pi}\int_{0}^{\infty}\mathrm{d}k\,\text{Tr}\log(\mathbb{I}-s\,\mathbb{M}), (10)

where we have defined ss1s2s\equiv s_{1}s_{2} and the nonnegative operator

𝕄(s2𝕋2𝔾21Ms1𝕋1)s2𝕋2𝔾21Ms1𝕋1.\mathbb{M}\equiv(\sqrt{s_{2}\mathbb{T}_{2}}\mathbb{G}^{M}_{21}\sqrt{s_{1}\mathbb{T}_{1}})^{\dagger}\sqrt{s_{2}\mathbb{T}_{2}}\mathbb{G}^{M}_{21}\sqrt{s_{1}\mathbb{T}_{1}}. (11)

In romaniega2021repulsive we proved that the eigenvalues of 𝕄\mathbb{M} belong to [0,1)[0,1) and that the sign of the interaction energy, including when both objects lie outside each other, is determined by

sgnEint=s=s1s2=sgn[(ε1εM)(ε2εM)].\textup{sgn}\,E_{\textup{int}}=-s=-s_{1}s_{2}=-\textup{sgn}\left[(\varepsilon_{1}-\varepsilon_{M}\right)(\varepsilon_{2}-\varepsilon_{M})]. (12)

In addition, for objects described by εi\varepsilon_{i} and μi\mu_{i}, we showed that the relation sgnEint=s1s2\textup{sgn}\,E_{\textup{int}}=-s_{1}s_{2} remains valid as long as the sign of the differential operator 𝕍i(ik,𝐱)\mathbb{V}_{i}(ik,\mathbf{x}) in Eq. (2) is well-defined. This is determined by Eq. (9) with an additional condition for the whole magnetodielectric rahi2009scattering

si=±1ifεi(ik,x)εM(ik)andμi(ik,x)μM(ik).s_{i}=\pm 1\quad\text{if}\ \varepsilon_{i}(ik,\textbf{x})\gtrless\varepsilon_{M}(ik)\ \text{and}\ \mu_{i}(ik,\textbf{x})\lesseqgtr\mu_{M}(ik). (13)

III Inside scattering

In this section we explore scattering processes within cavities. We are interested in how the probing wave can be scattered when it reaches the spherical cavity wall. This unusual scattering setup, in which source and detector are inside the target, will be useful in the following section. In particular, we will focus on the variation of the scattering amplitude with the radius r0r_{0} depicted in Fig. 2.

Refer to caption
Figure 2: Cross-section view of the scattering object. The radii of the smallest circumscribed sphere of the object and the spherical cavity wall are RR and r0r_{0}, respectively, being rnr_{n} an intermediate radius.

This will be determined employing the invariant imbedding technique sun2019invariant ; johnson1988invariant . This method, related to the variable phase approach of electromagnetic scattering, is progressively reaching some importance in Casimir physics since it enables to compute efficiently 𝕋i\mathbb{T}_{i} for arbitrarily shaped objects forrow2012variable . As we shall see, the derivation of this section holds for each fixed frequency. This will allow us to easily extend the result to systems at thermal equilibrium in Sec. V. Therefore, we will omit this frequency dependence on the functions, except to indicate the analytic continuation to the imaginary frequency axis.

The starting point of the approach is the Lippmann-Schwinger equation (6) in position space

E(𝐱)=Ein(𝐱)d𝐱𝔾M(𝐱,𝐱)𝕍2(ω,𝐱)E(𝐱),\textbf{E}(\mathbf{x})=\textbf{E}_{\text{in}}(\mathbf{x})-\int\mathrm{d}\mathbf{x}^{\prime}\mathbb{G}^{M}(\mathbf{x},\mathbf{x}^{\prime})\mathbb{V}_{2}(\omega,\mathbf{x}^{\prime})\textbf{E}(\mathbf{x}^{\prime}), (14)

where Ein\textbf{E}_{\text{in}} is the incident wave. The dyadic Green’s function defined in Eq. (5) can be written as the sum of a transverse and a local contribution sun2019invariant

𝔾M(𝐱,𝐱)=𝔾0M(𝐱,𝐱)+δ(𝐱𝐱)κ2𝐮𝐱𝐮𝐱,\mathbb{G}^{M}(\mathbf{x},\mathbf{x}^{\prime})=\mathbb{G}^{M}_{0}(\mathbf{x},\mathbf{x}^{\prime})+\dfrac{\delta(\mathbf{x}-\mathbf{x}^{\prime})}{\kappa^{2}}\mathbf{u}_{\mathbf{x}}\otimes\mathbf{u}_{\mathbf{x}}, (15)

where 𝔾0M(𝐱,𝐱)\mathbb{G}^{M}_{0}(\mathbf{x},\mathbf{x}^{\prime}) can be expanded as

𝔾0M(𝐱,𝐱)=κm{𝕐m(Ω)(iκr)𝕁(iκr)𝕐m(Ω)ifr>r,𝕐m(Ω)𝕁(iκr)(iκr)𝕐m(Ω)ifr<r.\mathbb{G}^{M}_{0}(\mathbf{x},\mathbf{x}^{\prime})=-\kappa\sum_{\ell m}\left\{\begin{array}[]{cc}\mathbb{Y}_{\ell m}(\Omega)\,\mathbb{H}^{\,}_{\ell}(i\kappa r)\mathbb{J}^{\dagger}_{\ell}(i\kappa r^{\prime})\mathbb{Y}^{\dagger}_{\ell m}(\Omega^{\prime})&\,{\rm if}\ \ r>r^{\prime},\\[4.30554pt] \mathbb{Y}_{\ell m}(\Omega)\,\mathbb{J}^{\,}_{\ell}(i\kappa r)\mathbb{H}^{\dagger}_{\ell}(i\kappa r^{\prime})\mathbb{Y}^{\dagger}_{\ell m}(\Omega^{\prime})&\,{\rm if}\ \ r<r^{\prime}.\end{array}\right.

We have defined ω=ik\omega=ik, κkεM\kappa\equiv{k}{\sqrt{\varepsilon_{M}}} and

𝕁(iz)\displaystyle\mathbb{J}_{\ell}(iz) \displaystyle\equiv i(i(z)00izddz[zi(z)]0i(+1)zi(z)),\displaystyle i^{\ell}\left(\begin{array}[]{cc}i_{\ell}(z)&0\\ 0&\frac{i}{z}\frac{\mathrm{d}\,}{\mathrm{d}z}[z\,i_{\ell}(z)]\\[2.15277pt] 0&\frac{i\sqrt{\ell(\ell+1)}}{z}i_{\ell}(z)\\ \end{array}\right)\!, (19)
(iz)\displaystyle\mathbb{H}_{\ell}(iz) \displaystyle\equiv i(k(z)00izddz[zk(z)]0i(+1)zk(z)),\displaystyle i^{\ell}\left(\begin{array}[]{cc}-k_{\ell}(z)&0\\ 0&\frac{i}{z}\frac{\mathrm{d}\,}{\mathrm{d}z}[z\,k_{\ell}(z)]\\[2.15277pt] 0&\frac{i\sqrt{\ell(\ell+1)}}{z}k_{\ell}(z)\\ \end{array}\right), (23)

being i(z)i_{\ell}(z) and k(z)k_{\ell}(z) the modified spherical Bessel functions

i(z)π2zI+1/2(z),k(z)2πzK+1/2(z).i_{\ell}(z)\equiv\sqrt{\frac{\pi}{2z}}\,I_{\ell+{1}/{2}}(z),\quad k_{\ell}(z)\equiv\sqrt{\frac{2}{\pi z}}\,K_{\ell+{1}/{2}}(z). (24)

The angular part is encoded in the square matrix 𝕐m\mathbb{Y}_{\ell m} composed of vector spherical harmonics sun2019invariant . In this case 𝕐m(Ω)(iκr)\mathbb{Y}_{\ell m}(\Omega)\,\mathbb{H}^{\,}_{\ell}(i\kappa r) corresponds to an outgoing mode of the wave, where the first and second columns are transverse electric (TE) and transverse magnetic (TM) modes, respectively. Similarly, the first and second columns of 𝕐m(Ω)𝕁(iκr)\mathbb{Y}_{\ell m}(\Omega)\,\mathbb{J}^{\,}_{\ell}(i\kappa r) represent regular TE and TM modes johnson1988invariant . With these definitions we note that 𝔾0M(𝐱,𝐱)\mathbb{G}^{M}_{0}(\mathbf{x},\mathbf{x}^{\prime}) is subject to boundary conditions which correspond to outgoing waves johnson1988invariant and it can be rewritten as

𝔾0M(𝐱,𝐱)=m𝕐m(Ω)𝔾(r,r)𝕐m(Ω),\mathbb{G}^{M}_{0}(\mathbf{x},\mathbf{x}^{\prime})=\sum_{\ell m}\mathbb{Y}_{\ell m}(\Omega)\,\mathbb{G}^{\,}_{\ell}(r,r^{\prime})\mathbb{Y}^{\dagger}_{\ell m}(\Omega^{\prime}),

where

𝔾(r,r)κm{(iκr)𝕁(iκr)ifr>r,𝕁(iκr)(iκr)ifr<r.\mathbb{G}^{\,}_{\ell}(r,r^{\prime})\equiv-\kappa\sum_{\ell m}\left\{\begin{array}[]{cc}\mathbb{H}^{\,}_{\ell}(i\kappa r)\mathbb{J}^{\dagger}_{\ell}(i\kappa r^{\prime})&\,{\rm if}\ \ r>r^{\prime},\\[4.30554pt] \mathbb{J}^{\,}_{\ell}(i\kappa r)\mathbb{H}^{\dagger}_{\ell}(i\kappa r^{\prime})&\,{\rm if}\ \ r<r^{\prime}.\end{array}\right.

The dielectric body is described by the potential of Eq. (3)

𝕍2(ik,x)=𝕀V2(ik,x)=𝕀k2[ε2(ik,x)εM(ik)],\mathbb{V}_{2}(ik,\textbf{x})=\mathbb{I}{V}_{2}(ik,\textbf{x})=\mathbb{I}k^{2}\left[\varepsilon_{2}(ik,\textbf{x})-\varepsilon_{M}(ik)\right], (25)

which from Eqs. (14) and (15) satisfies

(𝕀+V2(ik,𝐱)κ2𝐮𝐱𝐮𝐱)E(𝐱)=Ein(𝐱)d𝐱V2(ik,𝐱)𝔾0M(𝐱,𝐱)E(𝐱).\displaystyle\left(\mathbb{I}+\dfrac{V_{2}(ik,\mathbf{x})}{\kappa^{2}}\mathbf{u}_{\mathbf{x}}\otimes\mathbf{u}_{\mathbf{x}}\right)\textbf{E}(\mathbf{x})=\textbf{E}_{\text{in}}(\mathbf{x})-\int\mathrm{d}\mathbf{x}^{\prime}{V}_{2}(ik,\mathbf{x}^{\prime})\mathbb{G}^{M}_{0}(\mathbf{x},\mathbf{x}^{\prime})\textbf{E}(\mathbf{x}^{\prime}). (26)

Note that the spatial integral is over the volume of the second object suppV2\text{supp}\,V_{2}. We now define

E0(𝐱)(𝕀+V2(ik,𝐱)κ2𝐮𝐱𝐮𝐱)E(𝐱)=𝔻1(𝐱)E(𝐱),\textbf{E}^{0}(\mathbf{x})\equiv\left(\mathbb{I}+\dfrac{V_{2}(ik,\mathbf{x})}{\kappa^{2}}\mathbf{u}_{\mathbf{x}}\otimes\mathbf{u}_{\mathbf{x}}\right)\textbf{E}(\mathbf{x})=\mathbb{D}^{-1}(\mathbf{x})\textbf{E}(\mathbf{x}),

being 𝔻(𝐱)=diag(εM(ik)/ε2(ik,x),1,1)\mathbb{D}(\mathbf{x})=\text{diag}(\varepsilon_{M}(ik)/\varepsilon_{2}(ik,\textbf{x}),1,1) and E0(𝐱)=E(𝐱)\textbf{E}^{0}(\mathbf{x})=\textbf{E}(\mathbf{x}) if r[r0,R]r\notin[r_{0},R]. With this we rewrite Eq. (26) as

E0(𝐱)=Ein(𝐱)d𝐱V2(ik,x)𝔾0M(𝐱,𝐱)𝔻(𝐱)E0(𝐱).\textbf{E}^{0}(\mathbf{x})=\textbf{E}_{\text{in}}(\mathbf{x})-\int\mathrm{d}\mathbf{x}^{\prime}{V}_{2}(ik,\textbf{x}^{\prime})\mathbb{G}^{M}_{0}(\mathbf{x},\mathbf{x}^{\prime})\mathbb{D}(\mathbf{x}^{\prime})\textbf{E}^{0}(\mathbf{x}^{\prime}). (27)

Since the source of the scattering experiment is inside the cavity we assume an outgoing incident wave

Em0(𝐱)=𝕐m(Ω)(iκr)md𝐱V2(ik,x)𝕐m(Ω)𝔾(r,r)𝕐m(Ω)𝔻(𝐱)Em0(𝐱).\textbf{E}^{0}_{\ell m}(\mathbf{x})=\mathbb{Y}_{\ell m}(\Omega)\mathbb{H}^{\,}_{\ell}(i\kappa r)-\sum_{\ell^{\prime}m^{\prime}}\int\mathrm{d}\mathbf{x}^{\prime}{V}_{2}(ik,\textbf{x}^{\prime})\mathbb{Y}_{\ell^{\prime}m^{\prime}}(\Omega)\,\mathbb{G}^{\,}_{\ell^{\prime}}(r,r^{\prime})\mathbb{Y}^{\dagger}_{\ell^{\prime}m^{\prime}}(\Omega^{\prime})\mathbb{D}(\mathbf{x}^{\prime})\textbf{E}^{0}_{\ell m}(\mathbf{x}^{\prime}). (28)

In addition, since the detector is also inside we can write

Em0(𝐱)=𝕐m(Ω)(iκr)+m𝕐m(Ω)𝕁(iκr)𝕋mmint(ik),\displaystyle\textbf{E}^{0}_{\ell m}(\mathbf{x})=\mathbb{Y}_{\ell m}(\Omega)\mathbb{H}^{\,}_{\ell}(i\kappa r)+\sum_{\ell^{\prime}m^{\prime}}\mathbb{Y}_{\ell^{\prime}m^{\prime}}(\Omega)\mathbb{J}^{\,}_{\ell^{\prime}}(i\kappa r)\mathbb{T}^{\text{int}}_{\ell^{\prime}m^{\prime}\ell m}(ik), (29)

being

𝕋mmint(ik)κr0Rdrr2(iκr)S2dΩV2(ik,x)𝕐m(Ω)𝔻(𝐱)Em0(𝐱).\mathbb{T}^{\text{int}}_{\ell^{\prime}m^{\prime}\ell m}(ik)\equiv\kappa\int_{r_{0}}^{R}\mathrm{d}r^{\prime}r^{\prime 2}\mathbb{H}^{\dagger}_{\ell^{\prime}}(i\kappa r^{\prime})\int_{S^{2}}\mathrm{d}\Omega^{\prime}{V}_{2}({ik},\textbf{x}^{\prime})\mathbb{Y}^{\dagger}_{\ell^{\prime}m^{\prime}}(\Omega^{\prime})\mathbb{D}(\mathbf{x}^{\prime})\textbf{E}^{0}_{\ell m}(\mathbf{x}^{\prime}). (30)

The physical interpretation of Eq. (29) is clear. The electric field detected is composed of the incident field and a combination of regular waves modulated by 𝕋int(ik)\mathbb{T}^{\text{int}}(ik), where the four components of 𝕋mmint(ik)\mathbb{T}^{\text{int}}_{\ell m\ell^{\prime}m^{\prime}}(ik) are determined by {EmPout,𝕋EmPout}P,P{TE,TM}\{\langle\textbf{E}_{\ell mP}^{\text{out}},\mathbb{{T}}\,\textbf{E}_{\ell^{\prime}m^{\prime}P^{\prime}}^{\text{out}}\rangle\}_{P,\,P^{\prime}\in\{\text{TE},\text{TM}\}} sun2019invariant ; rahi2009scattering . It is instructive to compare the previous result with the regular scattering setup, in which source and detector are outside the target. In the latter, we have a regular wave and a scattered field composed of a combination of outgoing waves modulated by the usual transition matrix

Em0(𝐱)=𝕐m(Ω)𝕁(iκr)+m𝕐m(Ω)(iκr)𝕋mmext(ik).\displaystyle\textbf{E}^{0}_{\ell m}(\mathbf{x})=\mathbb{Y}_{\ell m}(\Omega)\mathbb{J}^{\,}_{\ell}(i\kappa r)+\sum_{\ell^{\prime}m^{\prime}}\mathbb{Y}_{\ell^{\prime}m^{\prime}}(\Omega)\mathbb{H}^{\,}_{\ell^{\prime}}(i\kappa r)\mathbb{T}^{\text{ext}}_{\ell^{\prime}m^{\prime}\ell m}(ik). (31)

In both cases, in order to study 𝕋(ik)\mathbb{T}(ik) it is useful to use Eq. (28) for defining 𝔽mm(r)\mathbb{F}_{\ell^{\prime}m^{\prime}\ell m}(r^{\prime}) by means of

𝔽mm(r)\displaystyle\mathbb{F}_{\ell^{\prime}m^{\prime}\ell m}(r) \displaystyle\equiv r2S2dΩ𝕐m(Ω)V2(ik,x)𝔻(𝐱)Em0(𝐱)\displaystyle r^{2}\int_{S^{2}}\mathrm{d}\Omega\mathbb{Y}^{\dagger}_{\ell m}(\Omega){V}_{2}({ik},\textbf{x})\mathbb{D}(\mathbf{x})\textbf{E}^{0}_{\ell^{\prime}m^{\prime}}(\mathbf{x})
=\displaystyle= 𝕌mm(r)(iκr)′′m′′𝕌m′′m′′(r)r0Rdr𝔾′′(r,r)𝔽′′m′′m(r),\displaystyle\mathbb{U}_{\ell^{\prime}m^{\prime}\ell m}(r)\mathbb{H}_{\ell^{\prime}}(i\kappa r)-\sum_{\ell^{\prime\prime}m^{\prime\prime}}\mathbb{U}_{\ell^{\prime}m^{\prime}\ell^{\prime\prime}m^{\prime\prime}}(r)\int_{r_{0}}^{R}\mathrm{d}r^{\prime}\mathbb{G}^{\,}_{\ell^{\prime\prime}}(r,r^{\prime})\mathbb{F}_{\ell^{\prime\prime}m^{\prime\prime}\ell^{\prime}m^{\prime}}(r^{\prime}),

being

𝕌mm(r)r2S2dΩV2(ik,x)𝕐m(Ω)𝔻(𝐱)𝕐m(Ω).\mathbb{U}_{\ell m\ell^{\prime}m^{\prime}}(r)\equiv r^{2}\int_{S^{2}}\mathrm{d}\Omega{V}_{2}({ik},\textbf{x})\mathbb{Y}^{\dagger}_{\ell m}(\Omega)\mathbb{D}(\mathbf{x})\mathbb{Y}_{\ell^{\prime}m^{\prime}}(\Omega). (32)

Note that 𝕌mm(r)=0\mathbb{U}_{\ell m\ell^{\prime}m^{\prime}}(r)=0 if r[r0,R]r\notin[r_{0},R] and from Eq. (29) we have

𝕋mmint(ik)=κr0Rdr(iκr)𝔽mm(r).\mathbb{T}^{\text{int}}_{\ell^{\prime}m^{\prime}\ell m}(ik)=\kappa\int_{r_{0}}^{R}\mathrm{d}r^{\prime}\mathbb{H}^{\dagger}_{\ell^{\prime}}(i\kappa r^{\prime}){\mathbb{F}_{\ell^{\prime}m^{\prime}\ell m}(r^{\prime})}. (33)

In order to use a more compact notation we can establish a unique correspondence between {,m}\{\ell,\,m\} and a single index, which goes from one to infinity, and write sun2019invariant

𝔽(r)\displaystyle\mathbb{F}(r) =\displaystyle= 𝕌(r)(iκr)𝕌(r)r0Rdr𝔾(r,r)𝔽(r),\displaystyle\mathbb{U}(r)\mathbb{H}(i\kappa r)-\mathbb{U}(r)\int_{r_{0}}^{R}\mathrm{d}r^{\prime}\mathbb{G}^{\,}(r,r^{\prime})\mathbb{F}(r^{\prime}), (34)
𝕋int(ik)\displaystyle\mathbb{T}^{\text{int}}(ik) =\displaystyle= κr0Rdr(iκr)𝔽(r).\displaystyle\kappa\int_{r_{0}}^{R}\mathrm{d}r^{\prime}\mathbb{H}^{\dagger}(i\kappa r^{\prime}){\mathbb{F}(r^{\prime})}. (35)

Now we can evaluate r0𝕋int(ik)\partial_{r_{0}}\mathbb{T}^{\text{int}}(ik) using the invariant imbedding technique bi2013efficient . This method is based on considering the scattering by a cavity whose largest inscribed sphere radius is rnr_{n} instead of r0r_{0}, as shown in Fig. 2. This lower limit can vary from r0r_{0} to RR and if we start with rnr_{n} close to RR we can keep imbedding spherical shells until the whole object is included. In the regular case this allows to transform a boundary condition problem into an initial condition one sun2019invariant ; johnson1988invariant . Consequently, we define

𝕌(rn;r)\displaystyle\mathbb{U}(r_{n};r) \displaystyle\equiv 𝕌(r)θ(rrn),\displaystyle\mathbb{U}(r)\theta(r-r_{n}),
𝔽(rn;r)\displaystyle\mathbb{F}(r_{n};r) \displaystyle\equiv 𝕌(rn;r)(iκr)𝕌(rn;r)rnRdr𝔾(r,r)𝔽(rn;r),\displaystyle\mathbb{U}(r_{n};r)\mathbb{H}(i\kappa r)-\mathbb{U}(r_{n};r)\int_{r_{n}}^{R}\mathrm{d}r^{\prime}\mathbb{G}^{\,}(r,r^{\prime})\mathbb{F}(r_{n};r^{\prime}),
𝕋int(rn;ik)\displaystyle\mathbb{T}^{\text{int}}(r_{n};ik) \displaystyle\equiv κrnRdr(iκr)𝔽(rn;r).\displaystyle\kappa\int_{r_{n}}^{R}\mathrm{d}r^{\prime}\mathbb{H}^{\dagger}(i\kappa r^{\prime}){\mathbb{F}(r_{n};r^{\prime})}.

From these definitions we obtain

𝔽(rn;r)rn=κ𝕌(rn;r)(iκr)𝕁(iκrn)𝔽(rn;rn)𝕌(rn;r)rnRdr𝔾(r,r)𝔽(rn;r)rn,\frac{\partial\mathbb{F}(r_{n};r)}{\partial{r_{n}}}=-\kappa\mathbb{U}(r_{n};r)\mathbb{H}(i\kappa r)\mathbb{J}^{\dagger}(i\kappa r_{n})\mathbb{F}(r_{n};r_{n})-\mathbb{U}(r_{n};r)\int_{r_{n}}^{R}\mathrm{d}r^{\prime}\mathbb{G}(r,r^{\prime})\frac{\partial\mathbb{F}(r_{n};r^{\prime})}{\partial{r_{n}}},

where the condition r>rnr>r_{n} has been used. The previous equation can be written as

𝔽(rn;r)rn=κ𝔽(rn;r)𝕁(iκrn)𝔽(rn;rn).\frac{\partial\mathbb{F}(r_{n};r)}{\partial{r_{n}}}=-\kappa\mathbb{F}(r_{n};r)\mathbb{J}^{\dagger}(i\kappa r_{n})\mathbb{F}(r_{n};r_{n}). (36)

Now, as can be seen from Eq. (III),

𝕋int(rn;ik)rn=κ(iκrn)𝔽(rn;rn)+κrnRdr(iκr)𝔽(rn;r)rn.\frac{\partial\mathbb{T}^{\text{int}}(r_{n};ik)}{\partial{r_{n}}}=-\kappa\mathbb{H}^{\dagger}(i\kappa r_{n}){\mathbb{F}(r_{n};r_{n})}+\kappa\int_{r_{n}}^{R}\mathrm{d}r^{\prime}\mathbb{H}^{\dagger}(i\kappa r^{\prime})\frac{\partial\mathbb{F}(r_{n};r^{\prime})}{\partial{r_{n}}}. (37)

Noting that 𝔾(rn,r)=κ𝕁(iκrn)(iκr)\mathbb{G}(r_{n},r^{\prime})=-\kappa\mathbb{J}(i\kappa r_{n})\mathbb{H}^{\dagger}(i\kappa r), we have

𝔽(rn;rn)=𝕌(rn;rn)[(iκrn)+𝕁(iκrn)𝕋int(rn;ik)].\mathbb{F}(r_{n};r_{n})=\mathbb{U}(r_{n};r_{n})[\mathbb{H}(i\kappa r_{n})+\mathbb{J}(i\kappa r_{n})\mathbb{T}^{\text{int}}(r_{n};ik)]. (38)

Using Eqs. (36), (38) and the fact that 𝕋i(ik)\mathbb{T}_{i}(ik) is real and symmetric, we can finally write

𝕋int(rn;ik)rn=κ𝕎int(rn)𝕌(rn;rn)𝕎int(rn),\frac{\partial\mathbb{T}^{\text{int}}(r_{n};ik)}{\partial{r_{n}}}=-\kappa\mathbb{W}^{\dagger}_{\text{int}}(r_{n})\mathbb{U}(r_{n};r_{n})\mathbb{W}_{\text{int}}(r_{n}), (39)

where 𝕎int(r0)(iκrn)+𝕁(iκrn)𝕋int(rn;ik)\mathbb{W}_{\text{int}}(r_{0})\equiv\mathbb{H}(i\kappa r_{n})+\mathbb{J}(i\kappa r_{n})\mathbb{T}^{\text{int}}(r_{n};ik). In particular, for rn=r0r_{n}=r_{0} we have

𝕋int(ik)r0=κ𝕎int(r0)𝕌(r0)𝕎int(r0).\frac{\partial\mathbb{T}^{\text{int}}(ik)}{\partial{r_{0}}}=-\kappa\mathbb{W}^{\dagger}_{\text{int}}(r_{0})\mathbb{U}(r_{0})\mathbb{W}_{\text{int}}(r_{0}). (40)

This nonlinear first-order differential equation is the basis of the numerical computation of 𝕋\mathbb{T} within the invariant imbedding approach. Again, it can be compared with the one found in johnson1988invariant for regular scattering. Adapted to imaginary frequencies with the definitions given in Eq. (19), the derivative with respect to RR of 𝕋ext(ik)\mathbb{T}^{\text{ext}}(ik) in Eq. (31) is

𝕋ext(ik)R=κ𝕎ext(r0)𝕌(R)𝕎ext(r0),\displaystyle\frac{\partial\mathbb{T}^{\text{ext}}(ik)}{\partial{R}}=\kappa\mathbb{W}_{\text{ext}}^{\dagger}(r_{0})\mathbb{U}(R)\mathbb{W}_{\text{ext}}(r_{0}), (41)

where 𝕎ext(r0)𝕁(iκR)+(iκR)𝕋ext(ik)\mathbb{W}_{\text{ext}}(r_{0})\equiv\mathbb{J}(i\kappa R)+\mathbb{H}(i\kappa R)\mathbb{T}^{\text{ext}}(ik). To our knowledge, the latter was first proved in johnson1988invariant , where the definition of V(ω,𝐱)V(\omega,\mathbf{x}) differs from our definition by a global minus sign. Since the source is outside, the derivative is performed with respect to the smallest circumscribed sphere of the target. This equation for the transition matrix is formally identical to the so-called Calogero equation of the quantum mechanical variable phase approach calogero1967variable .

As we have seen in Sec. II, in order to compute the Casimir-Lifshitz energy we only need on-shell matrix elements of 𝕋i\mathbb{T}_{i}. The latter are essentially the scattering amplitudes 𝕋int(ik)\mathbb{T}^{\text{int}}(ik) and 𝕋ext(ik)\mathbb{T}^{\text{ext}}(ik) defined in Eqs. (29) and (31). Note that for each body we employ a different complete set of free solutions of a given frequency. For instance, these components of 𝕋\mathbb{{T}} for the second object are determined by

Eaout,𝕋2Eaout=d𝐱d𝐱Eaout*(ik,𝐱)𝕋2(ik,𝐱,𝐱)Eaout(ik,𝐱).\langle\textbf{E}_{a}^{\text{out}},\mathbb{{T}}_{2}\textbf{E}_{a}^{\text{out}}\rangle=\int\mathrm{d}\mathbf{x}\mathrm{d}\mathbf{x}^{\prime}\textbf{E}_{a}^{\text{out*}}(ik,\mathbf{x}^{\prime})\mathbb{{T}}_{2}(ik,\mathbf{x}^{\prime},\mathbf{x})\textbf{E}_{a}^{\text{out}}(ik,\mathbf{x}). (42)

The singular behaviour of Eaout*(ik,𝐱)\textbf{E}_{a}^{\text{out*}}(ik,\mathbf{x}) and Eaout*(ik,𝐱)\textbf{E}_{a}^{\text{out*}}(ik,\mathbf{x}^{\prime}) at the origin is avoided since 𝕋2(ik,𝐱,𝐱)\mathbb{{T}}_{2}(ik,\mathbf{x}^{\prime},\mathbf{x}) is nonzero only if both 𝐱\|\mathbf{x}\| and 𝐱[r0,R]\|\mathbf{x}^{\prime}\|\in[r_{0},R]. In this sense, if we consider the required components of 𝕋\mathbb{T} appearing in Eq. (8), i.e., if we select the appropriate subspace determined by each complete set of solutions, and apply a Hellmann-Feynman argument feynman1939forces using Eqs. (40) and (41) we can write

s1R𝕋1>0,s2r0𝕋2<0.s_{1}\partial_{R}\mathbb{T}_{1}>0,\quad s_{2}\partial_{r_{0}}\mathbb{T}_{2}<0. (43)

We have proved the first inequality explicitly for spherically symmetric bodies in romaniega2021repulsive . In this case the problem is completely decoupled for {,m,P}\{\ell,m,P\} so the square matrices 𝕋mmext(ik)\mathbb{T}^{\text{ext}}_{\ell m\ell^{\prime}m^{\prime}}(ik) are diagonal.

IV Interaction pressure

There are cavity configurations in which the sum of the Casimir-Lifshitz forces on each object equals zero. This is the case for systems invariant under mirror symmetry with respect to the three spatial planes, such as the spherical one shown in Fig. 3.

Refer to caption
Figure 3: Cross-section view of a particular case of the system shown in Fig. 1. For this spherical configuration the sum of the Casimir-Lifshitz forces on each object equals zero.

However, the pressure acting on the surface of the bodies does not vanish. In this sense, we will study the above-mentioned Casimir-Lifshitz interaction pressure acting on the cavity wall. The key idea is to obtain this pressure from the interaction energy given in Eq. (10). This can be achieved introducing virtual variations of the radius r0r_{0} shown in Fig. 2 barton2004casimir . Specifically, the mean value of the pressure on the wall satisfies li2019casimir

pint14πS2dΩpint(r0,Ω)=14πr02Eintr0.\displaystyle\langle p_{\text{int}}\rangle\equiv\dfrac{1}{4\pi}\int_{S^{2}}\mathrm{d}\Omega\,p_{\text{int}}(r_{0},\Omega)=-\dfrac{1}{4\pi r_{0}^{2}}\frac{\partial E_{\text{int}}}{\partial r_{0}}. (44)

In this way, we can straightforwardly find the sign of pint\langle p_{\textup{int}}\rangle. We simply note that only 𝕋2\mathbb{T}_{2} depends on r0r_{0}, i.e., using the second equation of (43) we can write

r0𝕄=(𝔾21Ms1𝕋1)r0(s2𝕋2)(𝔾21Ms1𝕋1)>0.-\partial_{r_{0}}\mathbb{M}=-\left(\mathbb{G}^{M}_{21}\sqrt{s_{1}\mathbb{T}_{1}}\right)^{\dagger}\partial_{r_{0}}({s_{2}\mathbb{T}_{2}})\left(\mathbb{G}^{M}_{21}\sqrt{s_{1}\mathbb{T}_{1}}\right)>0.

In consequence, the derivative of the eigenvalues of 𝕄\mathbb{M} satisfy r0λα<0\partial_{r_{0}}\lambda_{\alpha}~{}<~{}0 feynman1939forces so we have

sgn[r0log(1sλα)]=s.\textup{sgn}[\partial_{r_{0}}\log(1-s\lambda_{\alpha})]=s. (45)

Finally, from Eq. (10) and Lidskii’s theorem we obtain sgnr0Eint=s\text{sgn}\,\partial_{r_{0}}E_{\text{int}}=s, which can be written in terms of the pressure with Eq. (44) as

sgnpint=s=sgn[(ε1εM)(ε2εM)].\textup{sgn}\langle p_{\textup{int}}\rangle=-s=-\textup{sgn}\left[(\varepsilon_{1}-\varepsilon_{M}\right)(\varepsilon_{2}-\varepsilon_{M})]. (46)

As before, we have considered permittivity functions ε(ik,x)\varepsilon(ik,\textbf{x}) such that the sign of εi(ik,x)εM(ik)\varepsilon_{i}(ik,\textbf{x})-\varepsilon_{M}(ik) is independent of kk and x, so we can write

si=sgn(εiεM)=sgn[εi(ik,x)εM(ik)].s_{i}=\textup{sgn}(\varepsilon_{i}-\varepsilon_{M})=\textup{sgn}[\varepsilon_{i}(ik,\textbf{x})-\varepsilon_{M}(ik)]. (47)

IV.1 Consistency tests and DLP configuration

The previous result can be compared with particular configurations studied in the literature. First, for two concentric spherical shells satisfying perfectly conducting boundary conditions a negative pressure, which tends to push the outer shell towards the inner shell, is found in teo2010casimir . The latter is obtained using the zeta function regularization method and is consistent with Eq. (46) since these idealized conditions arise in the limit of large permittivities. For the same boundary conditions this negative pressure is also obtained from Maxwell’s stress tensor in the experimental setup suggested in brevik2005casimir . Furthermore, this pressure is computed within a quantum statistical approach for a system of two spherically shaped concentric dielectrics in hoye2001casimir . From the latter, it can be proved romaniega2021repulsive that for the configuration shown in Fig. 3 with homogeneous dielectrics the sign of the pressure sgnpint\textup{sgn}\,\langle p_{\textup{int}}\rangle equals to

sgn{[ε1(ik)εM(ik)][ε2(ik)εM(ik)](+1)[ε1(ik)+εM(ik)(+1)][εM(ik)+ε2(ik)(+1)]},\textup{sgn}\!\left\{\!\frac{-\left[\varepsilon_{1}(ik)-\varepsilon_{M}(ik)\right]\left[\varepsilon_{2}(ik)-\varepsilon_{M}(ik)\right]\ell(\ell+1)}{\left[\ell\varepsilon_{1}(ik)+\varepsilon_{M}(ik)(\ell+1)\right]\left[\ell\varepsilon_{M}(ik)+\varepsilon_{2}(ik)(\ell+1)\right]}\!\right\},

which is in agreement with Eq. (46).

We conclude this section verifying Eq. (46) against the DLP result. First of all, we assume the spherical configuration of Fig. 3 and we take the limits r0,r0r_{0},r_{0}^{\prime}\to\infty, where the difference between the radius of the sphere and the spherical shell dr0r0>0d\equiv r_{0}-r_{0}^{\prime}>0 is kept constant. With this we achieve the planar geometry cavero2021casimir . Now, the sign of the force per unit area sgnFint\textup{sgn}\,F_{\textup{int}} can be found from Eq. (46). We first note that

sgnFint=sgndEint=sgnr0Eint.\textup{sgn}\,F_{\textup{int}}=-\textup{sgn}\,\partial_{d}E_{\text{int}}=-\textup{sgn}\,\partial_{r_{0}}E_{\text{int}}. (48)

Bearing in mind Eqs. (44) and (46) we can finally write

sgnFint=sgn[(ε1εM)(ε2εM)].\textup{sgn}\,F_{\textup{int}}=-\textup{sgn}\left[(\varepsilon_{1}-\varepsilon_{M}\right)(\varepsilon_{2}-\varepsilon_{M})]. (49)

This is the DLP result cited in Sec. I. As we have mentioned, both the repulsive and the attractive interactions resulting from this configuration have been confirmed experimentally munday2009measured . Furthermore, we have proved that the DLP result in dzyaloshinskii1961general can be extended to inhomogeneous slabs as long as Eq. (9) holds. The latter is in agreement with the result we found in romaniega2021repulsive . In the latter, the DLP result was recovered in a similar way but computing the pressure on a sphere enclosed within an arbitrarily shaped cavity. For this configuration we obtained

sgnEint=sgnFint=sgnpint,\textup{sgn}\,E_{\textup{int}}=\textup{sgn}\,F_{\textup{int}}=-\textup{sgn}\,\langle p_{\textup{int}}\rangle, (50)

where pint\langle p_{\textup{int}}\rangle here denotes the mean pressure on the inner sphere.

V Extensions

In the previous sections, we have determined the signs of the interaction energy and pressure, finding that both depend on the difference between the permittivities of the bodies and the medium in the same way

sgnEint=sgnpint=sgn[(ε1εM)(ε2εM)].\textup{sgn}\,E_{\textup{int}}=\textup{sgn}\,\langle p_{\text{int}}\rangle=-\textup{sgn}\left[(\varepsilon_{1}-\varepsilon_{M}\right)(\varepsilon_{2}-\varepsilon_{M})]. (51)

In this final section we study two generalizations of the system considered so far, showing that these results remain valid with some minor changes.

Firstly, we can consider a magnetodielectric inner object. The derivation of Sec. III holds for a homogeneous background and a nonmagnetic scattering object. However, in order to determine sgnpint\text{sgn}\,\langle p_{\textup{int}}\rangle we have only assumed a well-defined sign of 𝕋1(ik)\mathbb{T}_{1}(ik). Therefore, if the whole body is described by permittivity and permeability functions such that

s1=±1ifε1(ik,x)εM(ik)andμ1(ik,x)μM(ik)s_{1}=\pm 1\quad\text{if}\ \varepsilon_{1}(ik,\textbf{x})\gtrless\varepsilon_{M}(ik)\ \text{and}\ \mu_{1}(ik,\textbf{x})~{}\lesseqgtr~{}\mu_{M}(ik)

the relation sgnpint=s1s2\textup{sgn}\,\langle p_{\text{int}}\rangle=-s_{1}s_{2} remains valid.

We can also extend the aforementioned results to quantum systems at thermal equilibrium. In analogy to the interaction energy, the free energy int\mathcal{F}_{\text{int}} satisfies milton2001casimir

pint(T)=14πr02int(T)r0.\langle p_{\text{int}}(T)\rangle=-\frac{1}{4\pi r_{0}^{2}}\,\frac{\partial\mathcal{F}_{\text{int}}(T)}{\partial r_{0}}. (52)

In this case we can compute int(T)\mathcal{F}_{\text{int}}(T) replacing the integral in EintE_{\textup{int}} by a sum over the Matsubara frequencies kn=2πkBnTk_{n}~{}=~{}2\pi k_{\text{B}}{n}T, where the zero mode is weighted by 1/21/2 bordag2009advances

int=kBTn=0Trlog[𝕀s𝕄(ikn)].\mathcal{F}_{\text{int}}=k_{B}T\sum_{n=0}^{\infty}{}^{\prime}\ \text{Tr}\log\left[\mathbb{I}-s\,\mathbb{M}(ik_{n})\right]. (53)

Since the proofs of (51) apply to each fixed frequency, they will also hold for systems at thermal equilibrium.

VI Conclusions

In this paper, we have extended previous work on the sign of the interaction pressure on spherical surfaces. Again, we find that the sign of the interaction pressure and energy changes as follows:

sgnEint=sgnpint=sgn[(ε1εM)(ε2εM)]=s.\textup{sgn}\,E_{\textup{int}}=\textup{sgn}\,\langle p_{\text{int}}\rangle=-\textup{sgn}\left[(\varepsilon_{1}-\varepsilon_{M}\right)(\varepsilon_{2}-\varepsilon_{M})]=-s. (54)

This behavior was first found by DLP in dzyaloshinskii1961general , where they extended Casimir’s formulation for ideal metal plates in vacuum to dielectric materials. Our result is independent of the geometry of the objects as long as the assumption (9) on the sign of the potentials holds. Since the proof applies to each frequency independently, the extension to systems at thermal equilibrium is almost immediate. Expressing the energy in terms of transition operator also enables us to generalize the previous result to a magnetodielectric inner object and to recover the DLP result, generalized to inhomogeneous slabs, as a limiting case.

In order to determine the attractive or repulsive character of the fluctuation-induced pressure acting on the cavity wall, the self-energy contribution should also be considered, as we did in romaniega2021repulsive . Nevertheless, the interaction term itself already leads to theoretical and experimental implications. We can illustrate some of them considering the spherical system of Fig. 3. From romaniega2021repulsive and Eq. (54) we conclude that the interaction term always gives rise to opposite behaviours on both spherical surfaces, i.e., sgnpint=±s\textup{sgn}\,\langle p_{\textup{int}}\rangle=\pm s on the sphere and cavity wall, respectively. For instance, when the permittivities of the objects and medium satisfy εi<εM<εj\varepsilon_{i}<\varepsilon_{M}<\varepsilon_{j}, i,j{1,2}i,j\in\{1,2\}, we obtain a positive interaction energy and the pressure acting on these spherical surfaces tends to repel each other. That is to say, the interaction terms tends to contract the inner surface and expand the outer one, which is consistent with the experimental verification of the above-mentioned repulsion between material bodies munday2009measured . For values of the permittivities resulting in a negative interaction energy, the pressure tends to push the inner surface to the outer one, and vice versa. For instance, this attractive behaviour necessarily arises when the objects are immersed in vacuum. From the theorem on the stability by Casimir–Lifshitz forces rahi2010constraints , which is also governed by the sign of (ε1εM)(ε2εM)(\varepsilon_{1}-\varepsilon_{M})(\varepsilon_{2}-\varepsilon_{M}), we know that in the previous case any equilibrium position of the two objects subject to such forces is unstable.

To end with, we note that although the configurations considered in this paper and in romaniega2021repulsive are different, in both cases the conclusions are based on the study of the scattering amplitudes of each body. The main difference is the scattering amplitudes needed: the regular ones in romaniega2021repulsive and the ones associated with an unusual scattering setup in which source and detector are inside the target in this paper. For the latter, we have derived the suitable expressions using the invariant imbedding technique.

Acknowledgments

I am grateful to A. Romaniega, L. M. Nieto, I. Cavero -Peláez and J. M. Muñoz-Castañeda for the useful suggestions. This work was supported by the FPU fellowship program (FPU17/01475) and the Junta de Castilla y León and FEDER (Project BU229P18).

Appendix A Inside and outside scattering

Similar to the proof in Sec. III, we can study the variation of the scattering amplitudes with respect to a parameter defining the body, such as the radius of the cavity wall. In this appendix we perform a similar derivation for two different configurations. Both of them are determined by the position of the source and the detector in the scattering experiment. As we shall see, in these two cases the derivative can not be written as in Eqs. (40) and (41).

A.1 Detector outside, source inside

Similar to the proof of Sec. III, the starting point is the Lippmann-Schwinger equation (27)

E0(𝐱)=Ein(𝐱)d𝐱V2(ik,x)𝔾0M(𝐱,𝐱)𝔻(𝐱)E0(𝐱).\textbf{E}^{0}(\mathbf{x})=\textbf{E}_{\text{in}}(\mathbf{x})-\int\mathrm{d}\mathbf{x}^{\prime}{V}_{2}(ik,\textbf{x}^{\prime})\mathbb{G}^{M}_{0}(\mathbf{x},\mathbf{x}^{\prime})\mathbb{D}(\mathbf{x}^{\prime})\textbf{E}^{0}(\mathbf{x}^{\prime}). (55)

We are interested in a scattering process in which the source is inside the cavity but the detector is outside. Consequently, we assume an outgoing incident wave

Em0(𝐱)=𝕐m(Ω)(iκr)md𝐱V2(ik,x)𝕐m(Ω)𝔾(r,r)𝕐m(Ω)𝔻(𝐱)Em0(𝐱).\textbf{E}^{0}_{\ell m}(\mathbf{x})=\mathbb{Y}_{\ell m}(\Omega)\mathbb{H}^{\,}_{\ell}(i\kappa r)-\sum_{\ell^{\prime}m^{\prime}}\int\mathrm{d}\mathbf{x}^{\prime}{V}_{2}(ik,\textbf{x}^{\prime})\mathbb{Y}_{\ell^{\prime}m^{\prime}}(\Omega)\,\mathbb{G}^{\,}_{\ell^{\prime}}(r,r^{\prime})\mathbb{Y}^{\dagger}_{\ell^{\prime}m^{\prime}}(\Omega^{\prime})\mathbb{D}(\mathbf{x}^{\prime})\textbf{E}^{0}_{\ell m}(\mathbf{x}^{\prime}). (56)

In addition, since the detector is outside,

Em0(𝐱)=𝕐m(Ω)(iκr)+m𝕐m(Ω)(iκr)𝕋mmei(ik),\displaystyle\textbf{E}^{0}_{\ell m}(\mathbf{x})=\mathbb{Y}_{\ell m}(\Omega)\mathbb{H}^{\,}_{\ell}(i\kappa r)+\sum_{\ell^{\prime}m^{\prime}}\mathbb{Y}_{\ell^{\prime}m^{\prime}}(\Omega)\mathbb{H}^{\,}_{\ell^{\prime}}(i\kappa r)\mathbb{T}^{\text{ei}}_{\ell^{\prime}m^{\prime}\ell m}(ik), (57)

being

𝕋mmei(ik)κr0Rdrr2𝕁(iκr)S2dΩV2(ik,x)𝕐m(Ω)𝔻(𝐱)Em0(𝐱).\mathbb{T}^{\text{ei}}_{\ell^{\prime}m^{\prime}\ell m}(ik)\equiv\kappa\int_{r_{0}}^{R}\mathrm{d}r^{\prime}r^{\prime 2}\mathbb{J}^{\dagger}_{\ell^{\prime}}(i\kappa r^{\prime})\int_{S^{2}}\mathrm{d}\Omega^{\prime}{V}_{2}({ik},\textbf{x}^{\prime})\mathbb{Y}^{\dagger}_{\ell^{\prime}m^{\prime}}(\Omega^{\prime})\mathbb{D}(\mathbf{x}^{\prime})\textbf{E}^{0}_{\ell m}(\mathbf{x}^{\prime}). (58)

Equation (57) is analogous to Eq. (4.12) in rahi2009scattering . The electric field detected is composed of the incident field and a combination of outgoing waves modulated by

𝕋mmei(ik)=κr0Rdr𝕁(iκr)𝔽mm(r).\mathbb{T}^{\text{ei}}_{\ell^{\prime}m^{\prime}\ell m}(ik)=\kappa\int_{r_{0}}^{R}\mathrm{d}r^{\prime}\mathbb{J}^{\dagger}_{\ell^{\prime}}(i\kappa r^{\prime}){\mathbb{F}_{\ell^{\prime}m^{\prime}\ell m}(r^{\prime})}. (59)

If we insert Eq. (56) in 𝔽mm(r)\mathbb{F}_{\ell m\ell^{\prime}m^{\prime}}(r) we obtain the following relation:

𝔽mm(r)=𝕌mm(r)(iκr)′′m′′𝕌m′′m′′(r)r0Rdr𝔾′′(r,r)𝔽′′m′′m(r),\mathbb{F}_{\ell^{\prime}m^{\prime}\ell m}(r)=\mathbb{U}_{\ell^{\prime}m^{\prime}\ell m}(r)\mathbb{H}_{\ell^{\prime}}(i\kappa r)-\sum_{\ell^{\prime\prime}m^{\prime\prime}}\mathbb{U}_{\ell^{\prime}m^{\prime}\ell^{\prime\prime}m^{\prime\prime}}(r)\int_{r_{0}}^{R}\mathrm{d}r^{\prime}\mathbb{G}^{\,}_{\ell^{\prime\prime}}(r,r^{\prime})\mathbb{F}_{\ell^{\prime\prime}m^{\prime\prime}\ell^{\prime}m^{\prime}}(r^{\prime}),

where 𝕌mm(r)\mathbb{U}_{\ell m\ell^{\prime}m^{\prime}}(r) has been defined in Eq. (32). As in Sec. III, these results can be written in compact notation sun2019invariant

𝔽(r)\displaystyle\mathbb{F}(r) =\displaystyle= 𝕌(r)(iκr)𝕌(r)r0Rdr𝔾(r,r)𝔽(r),\displaystyle\mathbb{U}(r)\mathbb{H}(i\kappa r)-\mathbb{U}(r)\int_{r_{0}}^{R}\mathrm{d}r^{\prime}\mathbb{G}^{\,}(r,r^{\prime})\mathbb{F}(r^{\prime}), (60)
𝕋ei(ik)\displaystyle\mathbb{T}^{\text{ei}}(ik) =\displaystyle= κr0Rdr𝕁(iκr)𝔽(r),\displaystyle\kappa\int_{r_{0}}^{R}\mathrm{d}r^{\prime}\mathbb{J}^{\dagger}(i\kappa r^{\prime}){\mathbb{F}(r^{\prime})}, (61)

and in order to compute r0𝕋ei(ik)\partial_{r_{0}}\mathbb{T}^{\text{ei}}(ik) in the present case we define

𝕌(rn;r)\displaystyle\mathbb{U}(r_{n};r) \displaystyle\equiv 𝕌(r)θ(rrn),\displaystyle\mathbb{U}(r)\theta(r-r_{n}), (62)
𝔽(rn;r)\displaystyle\mathbb{F}(r_{n};r) \displaystyle\equiv 𝕌(rn;r)(iκr)𝕌(rn;r)rnRdr𝔾(r,r)𝔽(rn;r),\displaystyle\mathbb{U}(r_{n};r)\mathbb{H}(i\kappa r)-\mathbb{U}(r_{n};r)\int_{r_{n}}^{R}\mathrm{d}r^{\prime}\mathbb{G}^{\,}(r,r^{\prime})\mathbb{F}(r_{n};r^{\prime}), (63)
𝕋ei(rn;ik)\displaystyle\mathbb{T}^{\text{ei}}(r_{n};ik) \displaystyle\equiv κrnRdr𝕁(iκr)𝔽(rn;r).\displaystyle\kappa\int_{r_{n}}^{R}\mathrm{d}r^{\prime}\mathbb{J}^{\dagger}(i\kappa r^{\prime}){\mathbb{F}(r_{n};r^{\prime})}. (64)

Now, evaluating rn𝔽(rn;r)\partial_{r_{n}}\mathbb{F}(r_{n};r) we obtain

𝔽(rn;r)rn\displaystyle\frac{\partial\mathbb{F}(r_{n};r)}{\partial{r_{n}}} =\displaystyle= 𝕌(rn;r)𝔾(r,rn)𝔽(rn;rn)𝕌(rn;r)rnRdr𝔾(r,r)𝔽(rn;r)rn\displaystyle\mathbb{U}(r_{n};r)\mathbb{G}(r,r_{n})\mathbb{F}(r_{n};r_{n})-\mathbb{U}(r_{n};r)\int_{r_{n}}^{R}\mathrm{d}r^{\prime}\mathbb{G}(r,r^{\prime})\frac{\partial\mathbb{F}(r_{n};r^{\prime})}{\partial{r_{n}}}
=\displaystyle= κ𝕌(rn;r)(iκr)𝕁(iκrn)𝔽(rn;rn)𝕌(rn;r)rnRdr𝔾(r,r)𝔽(rn;r)rn,\displaystyle-\kappa\mathbb{U}(r_{n};r)\mathbb{H}(i\kappa r)\mathbb{J}^{\dagger}(i\kappa r_{n})\mathbb{F}(r_{n};r_{n})-\mathbb{U}(r_{n};r)\int_{r_{n}}^{R}\mathrm{d}r^{\prime}\mathbb{G}(r,r^{\prime})\frac{\partial\mathbb{F}(r_{n};r^{\prime})}{\partial{r_{n}}},

where the condition r>rnr>r_{n} has been used. The previous equation can be written as

𝔽(rn;r)rn=κ𝔽(rn;r)𝕁(iκrn)𝔽(rn;rn).\frac{\partial\mathbb{F}(r_{n};r)}{\partial{r_{n}}}=-\kappa\mathbb{F}(r_{n};r)\mathbb{J}^{\dagger}(i\kappa r_{n})\mathbb{F}(r_{n};r_{n}). (65)

Now, as can be seen from Eq. (64)

d𝕋ei(rn;ik)drn=κ𝕁(iκrn)𝔽(rn;rn)+κrnRdr𝕁(iκr)𝔽(rn;r)rn,\frac{\mathrm{d}\mathbb{T}^{\text{ei}}(r_{n};ik)}{\mathrm{d}{r_{n}}}=-\kappa\mathbb{J}^{\dagger}(i\kappa r_{n}){\mathbb{F}(r_{n};r_{n})}+\kappa\int_{r_{n}}^{R}\mathrm{d}r^{\prime}\mathbb{J}^{\dagger}(i\kappa r^{\prime})\frac{\partial\mathbb{F}(r_{n};r^{\prime})}{\partial{r_{n}}}, (66)

and noting that 𝔾(rn,r)=κ𝕁(iκrn)(iκr)\mathbb{G}(r_{n},r^{\prime})=-\kappa\mathbb{J}(i\kappa r_{n})\mathbb{H}^{\dagger}(i\kappa r) we have

𝔽(rn;rn)=𝕌(rn;rn)[(iκrn)+𝕁(iκrn)𝕋ei(rn;ik)].\mathbb{F}(r_{n};r_{n})=\mathbb{U}(r_{n};r_{n})[\mathbb{H}(i\kappa r_{n})+\mathbb{J}(i\kappa r_{n})\mathbb{T}^{\text{ei}}(r_{n};ik)]. (67)

Using Eqs. (65) and (67) we can finally write

d𝕋ei(rn;ik)drn=κ[𝕁(iκrn)+𝕋ei(rn;ik)𝕁(iκrn)]𝔽(rn;rn).\frac{\mathrm{d}\mathbb{T}^{\text{ei}}(r_{n};ik)}{\mathrm{d}{r_{n}}}=-\kappa[\mathbb{J}^{\dagger}(i\kappa r_{n})+{\mathbb{T}^{\text{ei}}}(r_{n};ik)\mathbb{J}^{\dagger}(i\kappa r_{n})]\mathbb{F}(r_{n};r_{n}). (68)

Note that the structure of this derivative and the one in Eq. (40) are entirely different. In this case the scattering amplitude is essentially Eareg,𝕋Ebout\langle\textbf{E}^{\text{reg}}_{a},\mathbb{T}\textbf{E}^{\text{out}}_{b}\rangle and the sign is not necessarily well-defined since the derivative cannot be written as κ𝕎ei(rn)𝕌(rn)𝕎ei(rn)-\kappa\mathbb{W}^{\dagger}_{\text{ei}}(r_{n})\mathbb{U}(r_{n})\mathbb{W}_{\text{ei}}(r_{n}).

A.2 Detector inside, source outside

Similar to the proof in Sec. III, the starting point is the Lippmann-Schwinger equation (27)

E0(𝐱)=Ein(𝐱)d𝐱V2(ik,x)𝔾0M(𝐱,𝐱)𝔻(𝐱)E0(𝐱).\textbf{E}^{0}(\mathbf{x})=\textbf{E}_{\text{in}}(\mathbf{x})-\int\mathrm{d}\mathbf{x}^{\prime}{V}_{2}(ik,\textbf{x}^{\prime})\mathbb{G}^{M}_{0}(\mathbf{x},\mathbf{x}^{\prime})\mathbb{D}(\mathbf{x}^{\prime})\textbf{E}^{0}(\mathbf{x}^{\prime}). (69)

We are interested in a scattering process in which the source is outside the cavity being the detector inside. Consequently, we assume a regular incident wave

Em0(𝐱)=𝕐m(Ω)𝕁(iκr)md𝐱V2(ik,x)𝕐m(Ω)𝔾(r,r)𝕐m(Ω)𝔻(𝐱)Em0(𝐱).\textbf{E}^{0}_{\ell m}(\mathbf{x})=\mathbb{Y}_{\ell m}(\Omega)\mathbb{J}^{\,}_{\ell}(i\kappa r)-\sum_{\ell^{\prime}m^{\prime}}\int\mathrm{d}\mathbf{x}^{\prime}{V}_{2}(ik,\textbf{x}^{\prime})\mathbb{Y}_{\ell^{\prime}m^{\prime}}(\Omega)\,\mathbb{G}^{\,}_{\ell^{\prime}}(r,r^{\prime})\mathbb{Y}^{\dagger}_{\ell^{\prime}m^{\prime}}(\Omega^{\prime})\mathbb{D}(\mathbf{x}^{\prime})\textbf{E}^{0}_{\ell m}(\mathbf{x}^{\prime}). (70)

In addition, since the detector is inside,

Em0(𝐱)=𝕐m(Ω)𝕁(iκr)+m𝕐m(Ω)𝕁(iκr)𝕋mmie(ik),\displaystyle\textbf{E}^{0}_{\ell m}(\mathbf{x})=\mathbb{Y}_{\ell m}(\Omega)\mathbb{J}^{\,}_{\ell}(i\kappa r)+\sum_{\ell^{\prime}m^{\prime}}\mathbb{Y}_{\ell^{\prime}m^{\prime}}(\Omega)\mathbb{J}^{\,}_{\ell^{\prime}}(i\kappa r)\mathbb{T}^{\text{ie}}_{\ell^{\prime}m^{\prime}\ell m}(ik), (71)

being

𝕋mmie(ik)κr0Rdrr2(iκr)S2dΩV2(ik,x)𝕐m(Ω)𝔻(𝐱)Em0(𝐱).\mathbb{T}^{\text{ie}}_{\ell^{\prime}m^{\prime}\ell m}(ik)\equiv\kappa\int_{r_{0}}^{R}\mathrm{d}r^{\prime}r^{\prime 2}\mathbb{H}^{\dagger}_{\ell^{\prime}}(i\kappa r^{\prime})\int_{S^{2}}\mathrm{d}\Omega^{\prime}{V}_{2}({ik},\textbf{x}^{\prime})\mathbb{Y}^{\dagger}_{\ell^{\prime}m^{\prime}}(\Omega^{\prime})\mathbb{D}(\mathbf{x}^{\prime})\textbf{E}^{0}_{\ell m}(\mathbf{x}^{\prime}). (72)

Equation (71) is analogous to Eq. (4.10) in rahi2009scattering . The electric field detected is composed of the incident field and a combination of regular waves modulated by

𝕋mmie(ik)=κr0Rdr(iκr)𝔽mm(r).\mathbb{T}^{\text{ie}}_{\ell^{\prime}m^{\prime}\ell m}(ik)=\kappa\int_{r_{0}}^{R}\mathrm{d}r^{\prime}\mathbb{H}^{\dagger}_{\ell^{\prime}}(i\kappa r^{\prime}){\mathbb{F}_{\ell^{\prime}m^{\prime}\ell m}(r^{\prime})}. (73)

If we insert Eq. (70) in 𝔽mm(r)\mathbb{F}_{\ell m\ell^{\prime}m^{\prime}}(r) we obtain the following relation:

𝔽mm(r)=𝕌mm(r)𝕁(iκr)′′m′′𝕌m′′m′′(r)r0Rdr𝔾′′(r,r)𝔽′′m′′m(r),\mathbb{F}_{\ell^{\prime}m^{\prime}\ell m}(r)=\mathbb{U}_{\ell^{\prime}m^{\prime}\ell m}(r)\mathbb{J}_{\ell^{\prime}}(i\kappa r)-\sum_{\ell^{\prime\prime}m^{\prime\prime}}\mathbb{U}_{\ell^{\prime}m^{\prime}\ell^{\prime\prime}m^{\prime\prime}}(r)\int_{r_{0}}^{R}\mathrm{d}r^{\prime}\mathbb{G}^{\,}_{\ell^{\prime\prime}}(r,r^{\prime})\mathbb{F}_{\ell^{\prime\prime}m^{\prime\prime}\ell^{\prime}m^{\prime}}(r^{\prime}),

where 𝕌mm(r)\mathbb{U}_{\ell m\ell^{\prime}m^{\prime}}(r) has been defined in Eq. (32). As in Sec. III, these results can be written in compact notation sun2019invariant

𝔽(r)\displaystyle\mathbb{F}(r) =\displaystyle= 𝕌(r)𝕁(iκr)𝕌(r)r0Rdr𝔾(r,r)𝔽(r),\displaystyle\mathbb{U}(r)\mathbb{J}(i\kappa r)-\mathbb{U}(r)\int_{r_{0}}^{R}\mathrm{d}r^{\prime}\mathbb{G}^{\,}(r,r^{\prime})\mathbb{F}(r^{\prime}), (74)
𝕋ie(ik)\displaystyle\mathbb{T}^{\text{ie}}(ik) =\displaystyle= κr0Rdr(iκr)𝔽(r),\displaystyle\kappa\int_{r_{0}}^{R}\mathrm{d}r^{\prime}\mathbb{H}^{\dagger}(i\kappa r^{\prime}){\mathbb{F}(r^{\prime})}, (75)

and in order to compute r0𝕋ie(ik)\partial_{r_{0}}\mathbb{T}^{\text{ie}}(ik) in the present case we define

𝕌(rn;r)\displaystyle\mathbb{U}(r_{n};r) \displaystyle\equiv 𝕌(r)θ(rnr),\displaystyle\mathbb{U}(r)\theta(r_{n}-r), (76)
𝔽(rn;r)\displaystyle\mathbb{F}(r_{n};r) \displaystyle\equiv 𝕌(rn;r)𝕁(iκr)𝕌(rn;r)r0rndr𝔾(r,r)𝔽(rn;r),\displaystyle\mathbb{U}(r_{n};r)\mathbb{J}(i\kappa r)-\mathbb{U}(r_{n};r)\int_{r_{0}}^{r_{n}}\mathrm{d}r^{\prime}\mathbb{G}^{\,}(r,r^{\prime})\mathbb{F}(r_{n};r^{\prime}), (77)
𝕋ie(rn;ik)\displaystyle\mathbb{T}^{\text{ie}}(r_{n};ik) \displaystyle\equiv κr0rndr(iκr)𝔽(rn;r).\displaystyle\kappa\int_{r_{0}}^{r_{n}}\mathrm{d}r^{\prime}\mathbb{H}^{\dagger}(i\kappa r^{\prime}){\mathbb{F}(r_{n};r^{\prime})}. (78)

Note that we are considering the derivative with respect to rnr_{n}, being the new body defined by the potential V2(ik)θ(rnr)V_{2}(ik)\theta(r_{n}-r) and not V2(ik)θ(rrn)V_{2}(ik)\theta(r-r_{n}). Now, evaluating rn𝔽(rn;r)\partial_{r_{n}}\mathbb{F}(r_{n};r) we obtain

𝔽(rn;r)rn\displaystyle\frac{\partial\mathbb{F}(r_{n};r)}{\partial{r_{n}}} =\displaystyle= 𝕌(rn;r)𝔾(r,rn)𝔽(rn;rn)𝕌(rn;r)r0rndr𝔾(r,r)𝔽(rn;r)rn\displaystyle-\mathbb{U}(r_{n};r)\mathbb{G}(r,r_{n})\mathbb{F}(r_{n};r_{n})-\mathbb{U}(r_{n};r)\int_{r_{0}}^{r_{n}}\mathrm{d}r^{\prime}\mathbb{G}(r,r^{\prime})\frac{\partial\mathbb{F}(r_{n};r^{\prime})}{\partial{r_{n}}}
=\displaystyle= κ𝕌(rn;r)𝕁(iκr)(iκrn)𝔽(rn;rn)𝕌(rn;r)r0rndr𝔾(r,r)𝔽(rn;r)rn,\displaystyle\kappa\mathbb{U}(r_{n};r)\mathbb{J}(i\kappa r)\mathbb{H}^{\dagger}(i\kappa r_{n})\mathbb{F}(r_{n};r_{n})-\mathbb{U}(r_{n};r)\int_{r_{0}}^{r_{n}}\mathrm{d}r^{\prime}\mathbb{G}(r,r^{\prime})\frac{\partial\mathbb{F}(r_{n};r^{\prime})}{\partial{r_{n}}},

where the condition r<rnr<r_{n} has been used. The previous equation can be written as

𝔽(rn;r)rn=κ𝔽(rn;r)(iκrn)𝔽(rn;rn).\frac{\partial\mathbb{F}(r_{n};r)}{\partial{r_{n}}}=\kappa\mathbb{F}(r_{n};r)\mathbb{H}^{\dagger}(i\kappa r_{n})\mathbb{F}(r_{n};r_{n}). (79)

Now, as can be seen from Eq. (78)

d𝕋ie(rn;ik)drn=κ(iκrn)𝔽(rn;rn)+κr0rndr(iκr)𝔽(rn;r)rn,\frac{\mathrm{d}\mathbb{T}^{\text{ie}}(r_{n};ik)}{\mathrm{d}{r_{n}}}=\kappa\mathbb{H}^{\dagger}(i\kappa r_{n}){\mathbb{F}(r_{n};r_{n})}+\kappa\int_{r_{0}}^{r_{n}}\mathrm{d}r^{\prime}\mathbb{H}^{\dagger}(i\kappa r^{\prime})\frac{\partial\mathbb{F}(r_{n};r^{\prime})}{\partial{r_{n}}}, (80)

and noting that 𝔾(rn,r)=κ(iκrn)𝕁(iκr)\mathbb{G}(r_{n},r^{\prime})=-\kappa\mathbb{H}(i\kappa r_{n})\mathbb{J}^{\dagger}(i\kappa r) we have

𝔽(rn;rn)=𝕌(rn;rn)[𝕁(iκrn)+(iκrn)𝕋ie(rn;ik)].\mathbb{F}(r_{n};r_{n})=\mathbb{U}(r_{n};r_{n})[\mathbb{J}(i\kappa r_{n})+\mathbb{H}(i\kappa r_{n})\mathbb{T}^{\text{ie}}(r_{n};ik)]. (81)

Using Eqs. (79) and (81) we can finally write

d𝕋ie(rn;ik)drn=κ[(iκrn)+𝕋ie(rn;ik)(iκrn)]𝔽(rn;rn).\frac{\mathrm{d}\mathbb{T}^{\text{ie}}(r_{n};ik)}{\mathrm{d}{r_{n}}}=\kappa[\mathbb{H}^{\dagger}(i\kappa r_{n})+{\mathbb{T}^{\text{ie}}}(r_{n};ik)\mathbb{H}^{\dagger}(i\kappa r_{n})]\mathbb{F}(r_{n};r_{n}). (82)

As in the previous section, the structure of this derivative and the one in Eq. (40) are different. In this case the scattering amplitude is essentially Eaout,𝕋Ebreg\langle\textbf{E}^{\text{out}}_{a},\mathbb{T}\textbf{E}^{\text{reg}}_{b}\rangle and the sign is also not necessarily well-defined since the derivative cannot be written as κ𝕎ie(rn)𝕌(rn)𝕎ie(rn)-\kappa\mathbb{W}^{\dagger}_{\text{ie}}(r_{n})\mathbb{U}(r_{n})\mathbb{W}_{\text{ie}}(r_{n}). Indeed, we have Eaout,𝕋Ebreg=Eareg,𝕋Ebout\langle\textbf{E}^{\text{out}}_{a},\mathbb{T}\textbf{E}^{\text{reg}}_{b}\rangle^{*}=\langle\textbf{E}^{\text{reg}}_{a},\mathbb{T}\textbf{E}^{\text{out}}_{b}\rangle.

References

  • (1) U. Mohideen and A. Roy. Phys. Rev. Lett., 81:4549, 1998.
  • (2) H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and F. Capasso. Science, 291:1941–1944, 2001.
  • (3) J. N. Munday, F. Capasso, and V. A. Parsegian. Nature, 457:170–173, 2009.
  • (4) J. L. Garrett, D. A. T. Somers, and J. N. Munday. Phys. Rev. Lett., 120:040401, 2018.
  • (5) I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii. Adv. Phys., 10:165–209, 1961.
  • (6) M. Bordag, G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko. Advances in the Casimir effect, volume 145. OUP Oxford, 2009.
  • (7) P. S. Venkataram, S. Molesky, P. Chao, and A. W. Rodriguez. Phys. Rev. A, 101:052115, 2020.
  • (8) O. Kenneth and I. Klich. Phys. Rev. Lett., 97:160401, 2006.
  • (9) C. P. Bachas. J. Phys. A, 40:9089, 2007.
  • (10) E. Buks and M. L. Roukes. Phys. Rev. B, 63:033402, 2001.
  • (11) J. N. Munday and F. Capasso. Int. J. Mod. Phys. A, 25:2252–2259, 2010.
  • (12) F. Capasso, J. N. Munday, D. Iannuzzi, and H. B. Chan. IEEE J. Quantum Electron., 13:400–414, 2007.
  • (13) S. J. Rahi, M. Kardar, and T. Emig. Phys. Rev. Lett., 105:070404, 2010.
  • (14) Q. D. Jiang and F. Wilczek. Phys. Rev. B, 99:125403, 2019.
  • (15) V. N. Marachevsky. Phys. Scr., 64:205, 2001.
  • (16) J. S. Høye, I. Brevik, and J. B. Aarseth. Phys. Rev. E, 63:051101, 2001.
  • (17) I Brevik, J. B. Aarseth, and J. S. Høye. Phys. Rev. E, 66:026119, 2002.
  • (18) I. Brevik, E. K. Dahl, and G. O. Myhr. J. Phys. A Math. Gen., 38:L49, 2005.
  • (19) D. A. R. Dalvit, F. C. Lombardo, F. D. Mazzitelli, and R. Onofrio. Phys. Rev. A, 74:020101, 2006.
  • (20) V. N. Marachevsky. Phys. Rev. D, 75:085019, 2007.
  • (21) S. Zaheer, S. J. Rahi, T. Emig, and R. L. Jaffe. Phys. Rev. A, 82:052507, 2010.
  • (22) L. P. Teo. Phys. Rev. D, 82:085009, 2010.
  • (23) S. J. Rahi and S. Zaheer. Phys. Rev. Lett., 104:070405, 2010.
  • (24) P. Parashar, K. A. Milton, K. V. Shajesh, and I. Brevik. Phys. Rev. D, 96:085010, 2017.
  • (25) C. Romaniega. Eur. Phys. J. Plus, 136:327, 2021.
  • (26) I. Cavero-Peláez, J.M. Munoz-Castaneda, and C. Romaniega. Phys. Rev. D, 103:045005, 2021.
  • (27) O. Kenneth and I. Klich. Phys. Rev. B, 78:014103, 2008.
  • (28) S. J. Rahi, T. Emig, N. Graham, R. L. Jaffe, and M. Kardar. Phys. Rev. D, 80:085021, 2009.
  • (29) R. G. Newton. Scattering theory of waves and particles. Springer Science & Business Media, 2013.
  • (30) G. W. Hanson and A. B. Yakovlev. Operator theory for electromagnetics: an introduction. Springer Science & Business Media, 2013.
  • (31) B. Sun, L. Bi, P. Yang, M. Kahnert, and G. Kattawar. Invariant Imbedding T-matrix method for light scattering by nonspherical and inhomogeneous particles. Elsevier, 2019.
  • (32) B. R. Johnson. Appl. Opt., 27:4861–4873, 1988.
  • (33) A. Forrow and N. Graham. Phys. Rev. A, 86:062715, 2012.
  • (34) L. Bi, P. Yang, G. W. Kattawar, and M. I. Mishchenko. J. Quant. Spectrosc. Radiat. Transfer, 116:169–183, 2013.
  • (35) F. Calogero. Variable Phase Approach to Potential Scattering. Elsevier, 1967.
  • (36) R. P. Feynman. Phys. Rev., 56:340, 1939.
  • (37) G. Barton. J. Phys. A Math. Gen., 37:3725, 2004.
  • (38) Y. Li, K. A. Milton, X. Guo, G. Kennedy, and S. A. Fulling. Phys. Rev. D, 99:125004, 2019.
  • (39) K. A. Milton. The Casimir effect: physical manifestations of zero-point energy. World Scientific, 2001.