This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\DeclareFontSeriesDefault

[rm]bfb

Cartesian closed varieties I:
The classification theorem

Richard Garner School of Math. & Phys. Sciences, Macquarie University, NSW 2109, Australia [email protected]
(Date: 2nd April 2025)
Abstract.

In 1990, Johnstone gave a syntactic characterisation of the equational theories whose associated varieties are cartesian closed. Among such theories are all unary theories—whose models are sets equipped with an action by a monoid MM—and all hyperaffine theories—whose models are sets with an action by a Boolean algebra BB. We improve on Johnstone’s result by showing that an equational theory is cartesian closed just when its operations have a unique hyperaffine–unary decomposition. It follows that any non-degenerate cartesian closed variety is a variety of sets equipped with compatible actions by a monoid MM and a Boolean algebra BB; this is the classification theorem of the title.

The support of Australian Research Council grant DP190102432 is gratefully acknowledged.

1. Introduction

In [10], Johnstone considered the following very natural question: when is a variety—by which we mean the category of models of a single-sorted equational algebraic theory—a cartesian closed category? This was, in fact, a follow-up to an earlier question—“when is a variety a topos?”—asked by Johnstone in [9], with the answers in the two cases turning out to be surprisingly similar. The solutions Johnstone provides are syntactic recognition theorems, giving necessary and sufficient conditions on the operations of an equational theory for the variety it presents to be cartesian closed or a topos. We recall the cartesian closed result as Theorem 5.2 below, and the reader will readily observe that, while a little delicate, the conditions involved are straightforward enough to be practically useful; and indeed, a very similar set of conditions finds computational application in [13].

Be this as it may, Johnstone’s conditions do little to help us delineate the scope of the cartesian closed varieties. Much as we can say that every Grothendieck topos is the topos of sheaves on a site, we would like to say that every cartesian closed variety is … and filling this gap would amount to providing a semantic classification theorem for cartesian closed varieties. This is one of the main objectives of this paper: we will show that every cartesian closed variety is the variety of sets endowed with two actions, one by a monoid MM and one by a Boolean algebra BB, which interact in a suitable way. Thus, our classification shows that any cartesian closed variety is a kind of “bicrossed product” of the variety of MM-sets, which as a presheaf category, is well known to be cartesian closed; and the variety of BB-sets, as introduced in [1] and recalled in Section 3, which was shown to be cartesian closed in [10, Example 8.8].

Our semantic classification theorem will be obtained by way of a syntactic classification theorem derived from Johnstone’s recognition theorem. To motivate this result, observe first that the cartesian closed varieties of MM-sets are precisely those which can be presented by unary algebraic theories, that is, theories whose operations and equations are all of arity 11. On the other hand, as shown in [10] and recalled in Section 4, the cartesian closed varieties of BB-sets are precisely those which are presented by hyperaffine algebraic theories, that is ones whose every operation is hyperaffine (Definition 4.1); here, for (say) a ternary operation ff, hyperaffineness asserts that f(x,x,x)=xf(x,x,x)=x, i.e., ff is affine, and moreover that:

f(f(x11,x12,x13),f(x21,x22,x23),f(x31,x32,x33))=f(x11,x22,x33) .f(f(x_{11},x_{12},x_{13}),f(x_{21},x_{22},x_{23}),f(x_{31},x_{32},x_{33}))=f(x_{11},x_{22},x_{33})\hbox to0.0pt{ .\hss}

Our syntactic classification theorem (Theorem 5.5) now states that:

Theorem.

An equational theory presents a cartesian closed variety if, and only if, every operation ff has a unique decomposition as a hyperaffine operation hh applied to a unary one mm, i.e., f(x1,x2,,xn)=h(m(x1),m(x2),,m(xn))f(x_{1},x_{2},\dots,x_{n})=h(m(x_{1}),m(x_{2}),\dots,m(x_{n})).

The proof of this result is simply Johnstone’s recognition theorem together with a little calculation, but we should note that our result does not supplant Johnstone’s, but rather complements it: for while our condition may be simpler to state, it is harder to check if one wants to determine if a given variety is cartesian closed.

Where our formulation comes into its own is in deriving our semantic classification theorem. If 𝕋\mathbb{T} presents a cartesian closed variety, then the syntactic classification theorem tell us that its operations are completely determined by the monoid of unary operations MM together with the subtheory 𝕋\mathbb{H}\subseteq\mathbb{T} of hyperaffine operations. However, just knowing these is not enough to recover the substitution of our equational theory, and so we must also record the manner in which \mathbb{H} and MM act on each other by substitution. This leads to what we term a matched pair of theories [M]\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right] (Definition 6.3), and our second main result (Theorem 6.9):

Theorem.

The category of non-degenerate cartesian closed varieties is equivalent to the category of non-degenerate matched pairs of theories.

Applying the correspondence between hyperaffine algebraic theories \mathbb{H} and theories of BB-sets over Boolean algebras BB now transforms each matched pair of theories into what we term a matched pair of algebras [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]} (Definition 7.1). This involves a Boolean algebra BB and a monoid MM such that MM is a BB-set, BB is an MM-set, and various further equational axioms hold. In fact, this structure has been studied in the literature: in the nomenclature of [6], we would say that MM is a BB-monoid. Concomitantly, we have a notion of [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]}-set (Definition 7.3), which is a set equipped with BB-action and MM-action in a manner which is compatible with the BB-action on MM and the MM-action on BB. In terms of this, we finally obtain our semantic classification result (Theorem 7.10):

Theorem.

The category of non-degenerate cartesian closed varieties is equivalent to the category of non-degenerate matched pairs of algebras via an equivalence which identifies the matched pair [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]} with the cartesian closed variety of [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]}-sets.

There is one point we should clarify about the preceding result. As stated, it is only valid for varieties and equational theories which are finitary, i.e., generated by operations of finite arity. However, in the paper proper, it will also be valid in the infinitary case; and the adjustments needed to account for this are entirely confined to the Boolean algebra side of things. Indeed, whereas finitary hyperaffine theories correspond to Boolean algebras BB, arbitary hyperaffine theories correspond to strongly zero-dimensional locales; these are locales (= complete Heyting algebras) in which every cover can be refined to a partition. Two different proofs of this correspondence can be found in [10, Example 8.8] and in [7, §2]; we in fact provide a third proof (Theorem 4.9), but with respect to a slightly different presentation of strongly zero-dimensional locales, inspired by [14]: we consider Boolean algebras BB equipped with a collection 𝒥{\mathcal{J}} of well-behaved partitions of BB, under axioms which make them correspond to strongly zero-dimensional topologies on BB. We refer to such a pair (B,𝒥)(B,{\mathcal{J}}) as a Grothendieck Boolean algebra B𝒥B_{{\mathcal{J}}}; and we now have notions of Grothendieck matched pair of algebras [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]} and of [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-set which, when deployed in the theorem above, make it valid for infinitary cartesian closed varieties.

This concludes our overview of the paper, and the reader will notice that we give scarcely any examples. The justification for this is the companion paper [5], which begins a programme to develop the theory of [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-sets and link them to structures from operator algebra; in particular, we will see that any matched pair [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]} has an associated topological category, and that for suitable, and natural, choices of [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]}, we can recover the étale topological groupoids which give rise to structures such as Cuntz CC^{\ast}-algebras, Leavitt path algebras, and CC^{\ast}-algebras associated to self-similar groups, and so on.

2. Background

2.1. Conventions

Given sets II and JJ we write JIJ^{I} for the set of functions from II to JJ. If uJIu\in J^{I}, we write uiu_{i} for the value of the function uu at iIi\in I; on the other hand, given a family of elements (tiJ:iI)(t_{i}\in J:i\in I), we write λi.ti\lambda i.\,t_{i} for the corresponding element of JIJ^{I}. Given tJIt\in J^{I}, iIi\in I and jJj\in J, we may write t[j/ti]t[j/t_{i}] for the function which agrees with tt except that its value at ii is given by jj. We may identify a natural number nn with the set {1,,n}\{1,\dots,n\}\subseteq\mathbb{N}.

A category 𝒞{\mathcal{C}} is concrete if it comes equipped with a faithful functor UU to the category of sets. This UU is often an obvious “forgetful” functor, in which case we suppress it from our notation. A concrete functor (𝒞,U)(𝒞,U)({\mathcal{C}},U)\rightarrow({\mathcal{C}}^{\prime},U^{\prime}) is a functor H:𝒞𝒞H\colon{\mathcal{C}}\rightarrow{\mathcal{C}}^{\prime} with UH=UU^{\prime}H=U. Such an HH associates to each 𝒞{\mathcal{C}}-structure on a set XX a corresponding 𝒞{\mathcal{C}}^{\prime}-structure, in such a way that each 𝒞{\mathcal{C}}-homomorphism f:XYf\colon X\rightarrow Y is also a homomorphism of the associated 𝒞{\mathcal{C}}^{\prime}-structures. A concrete isomorphism is an invertible concrete functor; this amounts to a bijection between 𝒞{\mathcal{C}}-structures and 𝒞{\mathcal{C}}^{\prime}-structures on each set XX for which the homomorphisms match up.

If 𝒞{\mathcal{C}} is a concrete category and XX a set, then a free 𝒞{\mathcal{C}}-object on XX is a 𝒞{\mathcal{C}}-object 𝑭(X){\boldsymbol{F}}(X) endowed with a function ηX:XF(X)\eta_{X}\colon X\rightarrow F(X), the unit, such that, for any 𝒞{\mathcal{C}}-object 𝒀{\boldsymbol{Y}}, each function f:XYf\colon X\rightarrow Y has a unique factorisation through ηX\eta_{X} via a 𝒞{\mathcal{C}}-homomorphism f:𝑭(X)𝒀f^{\dagger}\colon{\boldsymbol{F}}(X)\rightarrow{\boldsymbol{Y}}. We say that free 𝒞{\mathcal{C}}-structures exist if they exist for every set XX; this is equivalent to the faithful functor UU having a left adjoint.

2.2. Varieties and algebraic theories

By a variety 𝒱{\mathcal{V}}, we mean the concrete category of (possibly empty) models of a (possibly infinitary) single-sorted equational theory. For theories with a mere set of function symbols, free 𝒱{\mathcal{V}}-structures always exist; we will relax this by allowing a proper class of function symbols, but still assuming that free 𝒱{\mathcal{V}}-structures exist. So the category of complete join-lattices is a variety in our sense, but not the category of complete Boolean algebras. We write 𝒱ar\mathrm{\mathcal{V}ar} for the category of varieties and concrete functors between them.

A variety is non-degenerate if it contains a structure with at least two elements. To within concrete isomorphism, there are two degenerate varieties: 𝒱𝟏{\mathcal{V}}_{\mathbf{1}} is the full subcategory of 𝒮et\mathrm{\mathcal{S}et} on the one-element sets, while 𝒱𝟐{\mathcal{V}}_{\mathbf{2}} is the full subcategory on the zero- and one-element sets. The former is the category of models of the equational theory with no operation symbols and the axiom x=yx=y; while the latter is the category of models of the theory with a single constant cc and the axiom c=xc=x.

A given variety may be axiomatised by operations and equations in many ways; however, there is always a maximal choice, which is captured by the following notion of algebraic theory. This is what a universal algebraist would call an (infinitary) abstract clone, and what a category theorist would call a monad relative to the identity functor 𝒮et𝒮et\mathrm{\mathcal{S}et}\rightarrow\mathrm{\mathcal{S}et}.

Definition 2.1 (Algebraic theories).

An algebraic theory 𝕋\mathbb{T} comprises:

  • For each set II, a set T(I)T(I) of 𝕋\mathbb{T}-operations of arity II;

  • For each set II and iIi\in I, an element πiT(I)\pi_{i}\in T(I) (the iith projection);

  • For all sets I,JI,J a substitution function T(I)×T(J)IT(J)T(I)\times T(J)^{I}\mapsto T(J), written as (t,u)t(u)(t,u)\mapsto t(u), or when I=nI=n as (t,u)t(u1,,un)(t,u)\mapsto t(u_{1},\dots,u_{n});

all subject to the axioms:

  • t(λi.πi)=tt(\lambda i.\,\pi_{i})=t for all tT(I)t\in T(I);

  • πi(u)=ui\pi_{i}(u)=u_{i} for all uT(J)Iu\in T(J)^{I} and iIi\in I;

  • (t(u))(v)=t(λi.ui(v))(t(u))(v)=t(\lambda i.\,u_{i}(v)) for all tT(I)t\in T(I), uT(J)Iu\in T(J)^{I} and vT(K)Jv\in T(K)^{J}.

If 𝕊\mathbb{S} and 𝕋\mathbb{T} are algebraic theories, then a homomorphism of algebraic theories φ:𝕊𝕋\varphi\colon\mathbb{S}\rightarrow\mathbb{T} comprises functions φI:S(I)T(I)\varphi_{I}\colon S(I)\rightarrow T(I) for each set II, such that:

  • φI(πi)=πi\varphi_{I}(\pi_{i})=\pi_{i} for all iIi\in I;

  • φJ(t(u))=φI(t)(λi.φJ(ui))\varphi_{J}(t(u))=\varphi_{I}(t)(\lambda i.\,\varphi_{J}(u_{i})) for all tT(I)t\in T(I) and uT(J)Iu\in T(J)^{I}.

We write 𝒯hy\mathrm{\mathcal{{\mathcal{T}}}hy} for the category of algebraic theories and homomomorphisms.

An algebraic theory is said to be non-degenerate if π1π2T(2)\pi_{1}\neq\pi_{2}\in T(2), or equivalently, if ijIi\neq j\in I implies πiπjT(I)\pi_{i}\neq\pi_{j}\in T(I). To within isomorphism, there are exactly two degenerate algebraic theories: 𝕋𝟏\mathbb{T}_{\mathbf{1}}, in which T𝟏(I)=1T_{\mathbf{1}}(I)=1 for all II; and 𝕋𝟐\mathbb{T}_{\mathbf{2}}, in which T𝟐(0)=0T_{\mathbf{2}}(0)=0 and T𝟐(I)=1T_{\mathbf{2}}(I)=1 otherwise.

When working with an algebraic theory 𝕋\mathbb{T} we will deploy variable notation. For example, in the algebraic theory of semigroups, the defining axiom is expressed by the equality left below in T(3)T(3); however, we would prefer to write it as to the right.

m(m(π1,π2),π3)=m(π1,m(π2,π3))m(m(x,y),z)=m(x,m(y,z)) .m(m(\pi_{1},\pi_{2}),\pi_{3})=m(\pi_{1},m(\pi_{2},\pi_{3}))\qquad m(m(x,y),z)=m(x,m(y,z))\hbox to0.0pt{ .\hss}

We may do so if we view this right-hand equality as universally quantified over all sets II and all elements x,y,zT(I)x,y,z\in T(I). It then implies the left-hand equality on taking (x,y,z)=(π1,π2,π3)(x,y,z)=(\pi_{1},\pi_{2},\pi_{3}), and conversely, is implied by the left equality via substitution. Our convention throughout will be that any xx-, yy- or zz-symbol (possibly subscripted) appearing in an equality is to be interpreted in this way.

2.3. Semantics and realisation

We now draw the link between algebraic theories and varieties via the semantics of an algebraic theory.

Definition 2.2 (Category of models of a theory).

A model 𝑿{\boldsymbol{X}} for an algebraic theory 𝕋\mathbb{T} is a set XX together with for each set II an interpretation function T(I)×XIMT(I)\times X^{I}\rightarrow M, written as (t,a)t(a)(t,a)\mapsto\mathord{\left\llbracket{t}\right\rrbracket}(a) satisfying the following axioms:

  • πi(x)=xi\mathord{\left\llbracket{\pi_{i}}\right\rrbracket}(x)=x_{i} for all xXIx\in X^{I} and iIi\in I;

  • t(u)(x)=t(λi.ui(x))\mathord{\left\llbracket{t(u)}\right\rrbracket}(x)=\mathord{\left\llbracket{t}\right\rrbracket}(\lambda i.\,\mathord{\left\llbracket{u_{i}}\right\rrbracket}(x)) for all tT(I)t\in T(I), uT(J)Iu\in T(J)^{I} and xAJx\in A^{J}.

A 𝕋\mathbb{T}-model homomorphism 𝑿𝒀{\boldsymbol{X}}\rightarrow{\boldsymbol{Y}} is a function f:XYf\colon X\rightarrow Y with f(t𝑿(x))=t𝒀(f(x))f(\mathord{\left\llbracket{t}\right\rrbracket}_{{\boldsymbol{X}}}(x))=\mathord{\left\llbracket{t}\right\rrbracket}_{{\boldsymbol{Y}}}(f(x)) for all tT(I)t\in T(I) and aXIa\in X^{I}. We write 𝕋-od\mathbb{T}\text{-}\mathrm{\mathcal{M}od} for the concrete category of 𝕋\mathbb{T}-models and homomorphisms.

The category 𝕋-od\mathbb{T}\text{-}\mathrm{\mathcal{M}od} can be presented as the models of an equational first-order theory, whose proper class of function-symbols is given by the disjoint union of the T(I)T(I)’s. Moreover, free 𝕋\mathbb{T}-models exist; for indeed, given a set XX, the set T(X)T(X) becomes a 𝕋\mathbb{T}-model 𝑻(X){\boldsymbol{T}}(X) on defining t𝑻(X)(u)=t(u)\mathord{\left\llbracket{t}\right\rrbracket}_{{\boldsymbol{T}}(X)}(u)=t(u), and now the map ηX:XT(X)\eta_{X}\colon X\rightarrow T(X) sending xx to πx\pi_{x} exhibits 𝑻(X){\boldsymbol{T}}(X) as free on XX. Thus, the concrete category 𝕋-od\mathbb{T}\text{-}\mathrm{\mathcal{M}od} is a variety for any theory 𝕋\mathbb{T}. In fact, this process is functorial:

Definition 2.3 (Semantics of algebraic theories).

For any homomorphism φ:𝕊𝕋\varphi\colon\mathbb{S}\rightarrow\mathbb{T} of algebraic theories, we write φ:𝕋-od𝕊-od\varphi^{\ast}\colon\mathbb{T}\text{-}\mathrm{\mathcal{M}od}\rightarrow\mathbb{S}\text{-}\mathrm{\mathcal{M}od} for the concrete functor which to each 𝕋\mathbb{T}-model 𝑿{\boldsymbol{X}} associates the 𝕊\mathbb{S}-model structure φ𝑿\varphi^{\ast}{\boldsymbol{X}} on XX with tφ𝑿(x)=φ(t)𝑿(x)\mathord{\left\llbracket{t}\right\rrbracket}_{\varphi^{\ast}{\boldsymbol{X}}}(x)=\mathord{\left\llbracket{\varphi(t)}\right\rrbracket}_{{\boldsymbol{X}}}(x). We write ()-od:𝒯hyop𝒱ar({\mathord{\text{--}}})\text{-}\mathrm{\mathcal{M}od}\colon\mathrm{\mathcal{{\mathcal{T}}}hy}^{\mathrm{op}}\rightarrow\mathrm{\mathcal{V}ar} for the functor sending each algebraic theory to its concrete category of models, and each homomorphism φ\varphi to φ\varphi^{\ast}.

A basic result in the functorial semantics of algebraic theories is that ()-od({\mathord{\text{--}}})\text{-}\mathrm{\mathcal{M}od} is an equivalence of categories. In particular, it is essentially surjective, which is to say that every variety is realised by some algebraic theory; here, we say that an algebraic theory 𝕋\mathbb{T} realises a variety 𝒱{\mathcal{V}} if 𝕋-od\mathbb{T}\text{-}\mathrm{\mathcal{M}od} and 𝒱{\mathcal{V}} are concretely isomorphic. For example, the degenerate varieties 𝒱𝟏{\mathcal{V}}_{\mathbf{1}}, 𝒱𝟐{\mathcal{V}}_{\mathbf{2}} are realised by the degenerate algebraic theories 𝕋𝟏\mathbb{T}_{\mathbf{1}}, 𝕋𝟐\mathbb{T}_{\mathbf{2}}. In general, we can find a 𝕋\mathbb{T} which realises a variety 𝒱{\mathcal{V}} using free objects in 𝒱{\mathcal{V}}. Writing 𝑻(I){\boldsymbol{T}}(I) for the free 𝒱{\mathcal{V}}-object on XX, with unit ηI:IT(I)\eta_{I}\colon I\rightarrow T(I), the desired theory 𝕋\mathbb{T} has sets of operations T(I)T(I); projection elements πi=ηX(i)T(I)\pi_{i}=\eta_{X}(i)\in T(I); and substitution given by t(u)=u(t)t(u)=u^{\dagger}(t).

2.4. Cartesian closed varieties

Any variety 𝒱{\mathcal{V}} has finite products, with the product of 𝑿,𝒀𝒱{\boldsymbol{X}},{\boldsymbol{Y}}\in{\mathcal{V}} being X×YX\times Y with the componentwise 𝒱{\mathcal{V}}-structure. We say 𝒱{\mathcal{V}} is cartesian closed if for every 𝒀𝒱{\boldsymbol{Y}}\in{\mathcal{V}}, the functor ()×𝒀:𝒱𝒱({\mathord{\text{--}}})\times{\boldsymbol{Y}}\colon{\mathcal{V}}\rightarrow{\mathcal{V}} has a right adjoint. More elementarily, this means that for every 𝒀,𝒁{\boldsymbol{Y}},{\boldsymbol{Z}} in 𝒱{\mathcal{V}}, there is a “function-space” 𝒁𝒀𝒱{\boldsymbol{Z}}^{{\boldsymbol{Y}}}\in{\mathcal{V}} and a homomorphism ev:𝒁𝒀×𝒀𝒁\mathrm{ev}\colon{\boldsymbol{Z}}^{{\boldsymbol{Y}}}\times{\boldsymbol{Y}}\rightarrow{\boldsymbol{Z}} (“evaluation”), such that for all f:𝑿×𝒀𝒁f\colon{\boldsymbol{X}}\times{\boldsymbol{Y}}\rightarrow{\boldsymbol{Z}}, there is a unique f¯:𝑿𝒁𝒀\bar{f}\colon{\boldsymbol{X}}\rightarrow{\boldsymbol{Z}}^{{\boldsymbol{Y}}} with ev(f¯×1)=f\mathrm{ev}\circ(\bar{f}\times 1)=f. Note that, in particular, the degenerate varieties 𝒱𝟏{\mathcal{V}}_{\mathbf{1}} and 𝒱𝟐{\mathcal{V}}_{\mathbf{2}} are cartesian closed, since they are equivalent to the one- and two-element Heyting algebras respectively.

The simplest possible class of non-degenerate cartesian closed varieties are the varieties of MM-sets for a monoid MM: sets equipped with an associative, unital left MM-action. It is well known that the variety of MM-sets, being a presheaf category, is cartesian closed; we record the structure here for future reference.

Proposition 2.4.

The variety of MM-sets is cartesian closed.

Proof.

For MM-sets YY and ZZ, the function-space ZYZ^{Y} is the set of MM-set maps φ:M×YZ\varphi\colon M\times Y\rightarrow Z (where MM acts on itself by multiplication) under the action

m,fmf=(λn,y.f(nm,y)) .m,f\qquad\mapsto\qquad m^{\ast}f=(\lambda n,y.\,f(nm,y))\hbox to0.0pt{ .\hss} (2.1)

Evaluation ev:ZY×YZ\mathrm{ev}\colon Z^{Y}\times Y\rightarrow Z is given by ev(f,y)=f(1,y)\mathrm{ev}(f,y)=f(1,y); and given a homomorphism f:X×YZf\colon X\times Y\rightarrow Z, its transpose f¯:XZY\bar{f}\colon X\rightarrow Z^{Y} is given by f¯(x)(m,y)=f(mx,y)\bar{f}(x)(m,y)=f(mx,y). ∎

3. Boolean algebras and BB-sets

3.1. Varieties of BB-sets

In this section, we discuss another important class of non-degenerate cartesian closed varieties, namely the varieties of BB-sets for a Boolean algebra BB, as introduced by Bergman in [1]. In what follows, we write (,,0,1)(\vee,\wedge,0,1) for the distributive lattice structure of a Boolean algebra BB, and ()({\mathord{\text{--}}})^{\prime} for its negation; we say that BB is non-degenerate if 010\neq 1.

Definition 3.1 (Variety of BB-sets).

Let BB be a non-degenerate Boolean algebra. A BB-set is a set XX endowed with an action B×X×XXB\times X\times X\rightarrow X, written (b,x,y)b(x,y)(b,x,y)\mapsto b(x,y), satisfying the axioms

b(x,x)\displaystyle b(x,x) =xb(b(x,y),z)=b(x,z)b(x,b(y,z))=b(x,z)\displaystyle=x\qquad b(b(x,y),z)=b(x,z)\qquad b(x,b(y,z))=b(x,z) (3.1)
1(x,y)\displaystyle 1(x,y) =xb(x,y)=b(y,x)(bc)(x,y)=b(c(x,y),y) .\displaystyle=x\qquad b^{\prime}(x,y)=b(y,x)\qquad(b\wedge c)(x,y)=b(c(x,y),y)\hbox to0.0pt{ .\hss}

We write B-𝒮etB\text{-}\mathrm{\mathcal{S}et} for the variety of BB-sets.

As explained in [1], the first three axioms make each b(,):X×XXb({\mathord{\text{--}}},{\mathord{\text{--}}})\colon X\times X\rightarrow X into a decomposition operation [12, Definition 4.32], meaning that it induces a direct product decomposition XX1×X2X\cong X_{1}\times X_{2} where X1X_{1} and X2X_{2} are quotients of XX by suitable equivalence relations. The first equivalence relation b\equiv_{b} is defined by

xbyb(x,y)=y ;x\equiv_{b}y\iff b(x,y)=y\hbox to0.0pt{ ;\hss} (3.2)

the second dually relates xx and yy just when b(x,y)=xb(x,y)=x but, in light of the fifth BB-set axiom, can equally be described as b\equiv_{b^{\prime}}. In fact, as in [12, Theorem 4.33], we can recover b(,)b({\mathord{\text{--}}},{\mathord{\text{--}}}) from b\equiv_{b} and b\equiv_{b^{\prime}}, since b(x,y)b(x,y) is the unique element of XX with

b(x,y)bxandb(x,y)by .b(x,y)\equiv_{b}x\qquad\text{and}\qquad b(x,y)\equiv_{b^{\prime}}y\hbox to0.0pt{ .\hss} (3.3)

Thus, we can recast the notion of BB-set in terms of a set equipped with a suitable family of equivalence relations:

Proposition 3.2.

Let BB be a non-degenerate Boolean algebra. Each BB-set structure on a set XX induces equivalence relations (b:bB)(\mathord{\equiv_{b}}:b\in B) as in (3.2) which satisfy:

  1. (i)

    If xbyx\equiv_{b}y and cbc\leqslant b then xcyx\equiv_{c}y;

  2. (ii)

    x1yx\equiv_{1}y if and only if x=yx=y, and x0yx\equiv_{0}y always;

  3. (iii)

    If xbyx\equiv_{b}y and xcyx\equiv_{c}y then xbcyx\equiv_{b\vee c}y;

  4. (iv)

    For any x,yXx,y\in X and bBb\in B, there is zXz\in X such that zbxz\equiv_{b}x and zbyz\equiv_{b^{\prime}}y.

Any family of equivalence relations (b:bB)(\mathord{\equiv_{b}}:b\in B) satisfying (i)–(iv) arises in this way from a unique BB-set structure on XX whose operations are characterised by (3.3). Furthermore, under this correspondence, a function XYX\rightarrow Y between BB-sets is a homomorphism if and only it preserves each equivalence relation b\equiv_{b}.

Proof.

Given BB-set structure on XX, each b\equiv_{b} as in (3.2) is an equivalence relation by [12, Lemma on p.162]. To verify (i), if xbyx\equiv_{b}y and cbc\leqslant b, then c(x,y)=(cb)(x,y)=c(b(x,y),y)=c(y,y)=yc(x,y)=(c\wedge b)(x,y)=c(b(x,y),y)=c(y,y)=y, so xcyx\equiv_{c}y. Next, (ii) follows immediately from 1(x,y)=x1(x,y)=x and 0(x,y)=y0(x,y)=y. For (iii), if b(x,y)=yb(x,y)=y and c(x,y)=yc(x,y)=y, then (bc)(x,y)=b(x,c(x,y))=b(x,y)=y(b\vee c)(x,y)=b(x,c(x,y))=b(x,y)=y. Finally, for (iv), we take z=b(x,y)z=b(x,y); then b(z,x)=b(b(x,y),x)=b(x,x)=xb(z,x)=b(b(x,y),x)=b(x,x)=x and b(z,y)=b(y,z)=b(y,b(x,y))=b(y,y)=yb^{\prime}(z,y)=b(y,z)=b(y,b(x,y))=b(y,y)=y as desired. We argued above that we can reconstruct the BB-set operations from the b\equiv_{b}’s, so this gives an injective map from BB-set structures on XX to families of equivalence relations satifying (i)–(iv).

To show surjectivity, consider a family (b:bB)(\mathord{\equiv_{b}}:b\in B) satisfying (i)–(iv). For any x,yXx,y\in X and bBb\in B, the element whose existence is asserted by (iv) is, by (ii) and (iii), unique. If we write it as b(x,y)b(x,y) as in (3.3), then we claim this assignment endows XX with BB-set structure. Indeed:

  • Since xbxx\equiv_{b}x and xbxx\equiv_{b^{\prime}}x, we have b(x,x)=xb(x,x)=x;

  • Since b(b(x,y),z)bb(x,y)bxb(b(x,y),z)\equiv_{b}b(x,y)\equiv_{b}x and b(b(x,y),z)bzb(b(x,y),z)\equiv_{b^{\prime}}z, we have b(b(x,y),z)=b(x,z)b(b(x,y),z)=b(x,z), and likewise we have b(x,b(y,z))=b(x,z)b(x,b(y,z))=b(x,z);

  • Since xx is the only zz with x1zx\equiv_{1}z, we have 1(x,y)=x1(x,y)=x;

  • Since b(x,y)byb(x,y)\equiv_{b^{\prime}}y and b(x,y)byb(x,y)\equiv_{b}y we have b(y,x)=b(x,y)b^{\prime}(y,x)=b(x,y);

  • By (i) we have b(c(x,y),y)bcc(x,y)bcxb(c(x,y),y)\equiv_{b\wedge c}c(x,y)\equiv_{b\wedge c}x. Similarly b(c(x,y),y)bcc(x,y)bcyb(c(x,y),y)\equiv_{b\wedge c^{\prime}}c(x,y)\equiv_{b\wedge c^{\prime}}y, and also b(c(x,y),y)byb(c(x,y),y)\equiv_{b^{\prime}}y, whence by (iii), b(c(x,y),y)(bc)yb(c(x,y),y)\equiv_{(b\wedge c)^{\prime}}y. Thus b(c(x,y),y)=(bc)(x,y)b(c(x,y),y)=(b\wedge c)(x,y).

Moreover, this BB-set structure induces the given equivalence relations b\equiv_{b}; indeed, since b(x,y)byb(x,y)\equiv_{b^{\prime}}y and b(x,y)bxb(x,y)\equiv_{b}x we have by (i)–(iii) that b(x,y)=yb(x,y)=y if and only if xbyx\equiv_{b}y. Finally, any BB-set homomorphism f:XYf\colon X\rightarrow Y clearly preserves each b\equiv_{b}; conversely, if ff preserves each b\equiv_{b}, then from (3.3) in XX we have f(b(x,y))bf(x)f(b(x,y))\equiv_{b}f(x) and f(b(x,y))bf(y)f(b(x,y))\equiv_{b^{\prime}}f(y), and so f(b(x,y))=b(f(x),f(y))f(b(x,y))=b(f(x),f(y)) by (3.3) in YY. ∎

Remark 3.3.

Conditions (i)–(iii) above say that, for any elements x,yx,y of a BB-set XX, the set x=y={bB:xby}{\mathord{\left\llbracket{{x}\mathrel{\!\texttt{=}\!}{y}}\right\rrbracket}}=\{b\in B:x\equiv_{b}y\} is an ideal of the Boolean algebra BB; and since each b\equiv_{b} is an equivalence relation, the function =:X×XIdl(B){\mathord{\left\llbracket{{\,\ }\mathrel{\!\texttt{=}\!}{\,\ }}\right\rrbracket}}\colon X\times X\rightarrow\mathrm{Idl}(B) is an Idl(B)\mathrm{Idl}(B)-valued equivalence relation, in the sense that x=x=1{\mathord{\left\llbracket{{x}\mathrel{\!\texttt{=}\!}{x}}\right\rrbracket}}=1, x=y=y=x{\mathord{\left\llbracket{{x}\mathrel{\!\texttt{=}\!}{y}}\right\rrbracket}}={\mathord{\left\llbracket{{y}\mathrel{\!\texttt{=}\!}{x}}\right\rrbracket}} and x=yy=zx=z{\mathord{\left\llbracket{{x}\mathrel{\!\texttt{=}\!}{y}}\right\rrbracket}}\wedge{\mathord{\left\llbracket{{y}\mathrel{\!\texttt{=}\!}{z}}\right\rrbracket}}\leqslant{\mathord{\left\llbracket{{x}\mathrel{\!\texttt{=}\!}{z}}\right\rrbracket}}. So XX becomes an Idl(B)\mathrm{Idl}(B)-valued set in the sense of [4]—but one of a rather special kind, since in a general Idl(B)\mathrm{Idl}(B)-valued set the equality ={\mathord{\left\llbracket{{\,\ }\mathrel{\!\texttt{=}\!}{\,\ }}\right\rrbracket}} need only be a partial equivalence relation. As explained in [4], Idl(B)\mathrm{Idl}(B)-valued sets are a way of presenting sheaves on BB, and so the preceding observations draw the link between BB-sets and sheaves that was central to [1]. In this context, the totality of our ={\mathord{\left\llbracket{{\,\ }\mathrel{\!\texttt{=}\!}{\,\ }}\right\rrbracket}} reflects the fact that the elements of a BB-set XX correspond to total elements of the corresponding sheaf.

By exploiting Proposition 3.2 we can now prove easily that:

Proposition 3.4.

The variety of BB-sets is cartesian closed.

Proof.

Given BB-sets YY and ZZ, we consider the set ZYZ^{Y} of BB-set homomorphisms YZY\rightarrow Z. We claim this is a BB-set under the pointwise equivalence relations b\equiv_{b}. Only axiom (iv) is non-trivial. So suppose f,gZYf,g\in Z^{Y} and bBb\in B. For each yYy\in Y, we have h(y)Zh(y)\in Z such that h(y)bf(y)h(y)\equiv_{b}f(y) and h(y)bg(y)h(y)\equiv_{b^{\prime}}g(y), and so h:YZh\colon Y\rightarrow Z will satisfy hbfh\equiv_{b}f and hbgh\equiv_{b^{\prime}}g so long as it is in fact a homomorphism. So suppose that y1cy2y_{1}\equiv_{c}y_{2} in YY; we must show f(y1)cf(y2)f(y_{1})\equiv_{c}f(y_{2}). Since h(yi)bf(yi)h(y_{i})\equiv_{b}f(y_{i}) and f(y1)cf(y2)f(y_{1})\equiv_{c}f(y_{2}) (as ff is a homomorphism) we have by (i) that h(y1)bcf(y1)bcf(y2)bch(y2)h(y_{1})\equiv_{b\wedge c}f(y_{1})\equiv_{b\wedge c}f(y_{2})\equiv_{b\wedge c}h(y_{2}); and similarly h(y1)bch(y2)h(y_{1})\equiv_{b^{\prime}\wedge c}h(y_{2}). Thus h(y1)ch(y2)h(y_{1})\equiv_{c}h(y_{2}) by (iii) and so hh is a homomorphism as desired. So ZYZ^{Y} is a BB-set under the pointwise structure; whereupon it is clear that the usual evaluation map ev:ZY×YZ\mathrm{ev}\colon Z^{Y}\times Y\rightarrow Z is a homomorphism, and that for any homomorphism f:X×YZf\colon X\times Y\rightarrow Z, the usual transpose f¯:XZY\bar{f}\colon X\rightarrow Z^{Y} is a homomorphism: so ZYZ^{Y} is a function-space as desired. ∎

3.2. Varieties of B𝒥B_{{\mathcal{J}}}-sets

If nn is a finite set, then as in [10, Proposition 4.3], a 𝒫(n){\mathcal{P}}(n)-set structure on a set XX determines and is determined by equivalence relations {1},,{n}\equiv_{\{1\}},\dots,\equiv_{\{n\}} on XX, for which the quotient maps exhibit XX as the product of the sets X/{i}X\delimiter 84079374\mathopen{}\mathord{\equiv_{\{i\}}}. Thus the category of 𝒫(n){\mathcal{P}}(n)-sets is equivalent to the category of nn-fold cartesian products of sets. However, this does not carry over to infinite sets II, for which a 𝒫(I){\mathcal{P}}(I)-set is more general than an II-fold cartesian product of sets. The reason is that the notion of 𝒫(I){\mathcal{P}}(I)-set does not pay regard to the infinite joins needed to construct each AIA\subseteq I from atoms {i}\{i\}. This can be rectified by equipping 𝒫(I){\mathcal{P}}(I) with a suitable collection of “well-behaved” joins.

Definition 3.5 (Partition).

Let BB be a Boolean algebra and bBb\in B. A partition of bb is a subset PB{0}P\subseteq B\setminus\{0\} such that P=b\bigvee P=b, and cd=0c\wedge d=0 whenever cdPc\neq d\in P. An extended partition of bb is a subset PBP\subseteq B (possibly containing 0) satisfying the same conditions. If PP is an extended partition of bb, then we write P=P{0}P^{-}=P\setminus\{0\} for the corresponding partition. We say merely “partition” to mean “partition of 11”.

Definition 3.6 (Zero-dimensional topology, Grothendieck Boolean algebra).

A zero-dimensional topology on a Boolean algebra BB is a collection 𝒥{\mathcal{J}} of partitions of BB which contains every finite partition, and satisfies:

  1. (i)

    If P𝒥P\in{\mathcal{J}}, and Qb𝒥Q_{b}\in{\mathcal{J}} for each bPb\in P, then P(Q)={bc:bP,cQb}𝒥P(Q)=\{b\wedge c:b\in P,c\in Q_{b}\}^{-}\in{\mathcal{J}};

  2. (ii)

    If P𝒥P\in{\mathcal{J}} and α:PI\alpha\colon P\rightarrow I is a surjective map, then each join α1(i)\bigvee\alpha^{-1}(i) exists and α!(P)={α1(i):iI}𝒥\alpha_{!}(P)=\{\textstyle\bigvee\alpha^{-1}(i):i\in I\}\in{\mathcal{J}}.

A Grothendieck Boolean algebra B𝒥B_{{\mathcal{J}}} is a Boolean algebra BB with a zero-dimensional topology 𝒥{\mathcal{J}}. A homomorphism of Grothendieck Boolean algebras f:B𝒥C𝒦f\colon B_{{\mathcal{J}}}\rightarrow C_{\mathcal{K}} is a Boolean homomorphism f:BCf\colon B\rightarrow C such that P𝒥P\in{\mathcal{J}} implies f(P)𝒦f(P)^{-}\in{\mathcal{K}}.

A zero-dimensional topology on BB is a special kind of Grothendieck topology on BB in the sense of [8, §II.2.11], wherein the covers of 1B1\in B are the elements of 𝒥{\mathcal{J}}, and the covers of an arbitrary bBb\in B are given by:

Definition 3.7 (Local partitions).

Let B𝒥B_{{\mathcal{J}}} be a Grothendieck Boolean algebra and bBb\in B. We write 𝒥b{\mathcal{J}}_{b} for the set of partitions of bb characterised by:

P𝒥bP{b}𝒥PQ𝒥 and P=b .P\in{\mathcal{J}}_{b}\iff P\cup\{b^{\prime}\}\in{\mathcal{J}}\iff P\subseteq Q\in{\mathcal{J}}\text{ and }\bigvee P=b\hbox to0.0pt{ .\hss}

However, our presentation follows not [8] but rather [14]—according to which, our Grothendieck Boolean algebras are the “subcomplete, locally refinable Boolean partition algebras”. Via the general theory of [8, §II.2.11], any Grothendieck Boolean algebra generates a locale (= complete Heyting algebra) given by the set Idl𝒥(B)\mathrm{Idl}_{\mathcal{J}}(B) of ideals IBI\subseteq B which are 𝒥{\mathcal{J}}-closed, meaning that bIb\in I as soon as PIP\subseteq I for some P𝒥bP\in{\mathcal{J}}_{b}. The locales so arising are the strongly zero-dimensional locales considered in [7], and in fact, our category of Grothendieck Boolean algebras is dually equivalent to the category of strongly zero-dimensional locales [15, Theorem 24].

Definition 3.8 (Variety of B𝒥B_{{\mathcal{J}}}-sets).

Let B𝒥B_{{\mathcal{J}}} be a non-degenerate Grothendieck Boolean algebra. A B𝒥B_{{\mathcal{J}}}-set is a BB-set XX endowed with a function P:XPXP\colon X^{P}\rightarrow X for each infinite P𝒥P\in{\mathcal{J}}, satisfying:

P(λb.x)=xP(λb.b(xb,yb))=P(λb.xb)b(P(x),xb)=xb bP.P(\lambda b.\,x)=x\ \ \ \ \ P(\lambda b.\,b(x_{b},y_{b}))=P(\lambda b.\,x_{b})\ \ \ \ \ b(P(x),x_{b})=x_{b}\text{ $\forall b\in P$.} (3.4)

We write B𝒥-𝒮et{B_{{\mathcal{J}}}}\text{-}\mathrm{\mathcal{S}et} for the variety of B𝒥B_{{\mathcal{J}}}-sets.

Note that any non-degenerate Boolean algebra BB has a least zero-dimensional topology given by the collection of all finite partitions of BB. In this case, B𝒥B_{\mathcal{J}}-sets are just BB-sets, so that Definition 3.8 includes Definition 3.1 as a special case.

While the existence of functions like PP above looks like extra structure on a BB-set, it is in fact a property, rather like the existence of inverses in a monoid:

Proposition 3.9.

Let BB be a non-degenerate Boolean algebra and PP a partition of BB.

  1. (i)

    An operation PP on a BB-set XX satisfying the axioms (3.4) is unique if it exists.

  2. (ii)

    If XX and YY are BB-sets admitting the operation PP, then any homomorphism of BB-sets f:XYf\colon X\rightarrow Y will preserve it.

Proof.

For (i), suppose PP and PP^{\prime} both satisfy the axioms of (3.4). For any xXPx\in X^{P} we have P(x)=P(λb.b(P(x),xb))=P(λb.P(x))=P(x)P(x)=P(\lambda b.\,b(P^{\prime}(x),x_{b}))=P(\lambda b.\,P^{\prime}(x))=P^{\prime}(x) and so P=PP=P^{\prime}. For (ii), let xXPx\in X^{P} again; since b(P(x),xb)=xbb(P(x),x_{b})=x_{b} and ff preserves bb, we have b(f(P(x)),f(xb))=f(xb)b(f(P(x)),f(x_{b}))=f(x_{b}), and so

P(λb.f(xb))=P(λb.b(f(P(x)),f(xb)))=P(λb.f(P(x)))=f(P(x)) .P(\lambda b.\,f(x_{b}))=P(\lambda b.\,b(f(P(x)),f(x_{b})))=P(\lambda b.\,f(P(x)))=f(P(x))\hbox to0.0pt{ .\hss}\qed

It follows that B𝒥-𝒮etB_{{\mathcal{J}}}\text{-}\mathrm{\mathcal{S}et} is a full subcategory of B-𝒮etB\text{-}\mathrm{\mathcal{S}et}. We can also characterise this subcategory in terms of the induced equivalence relations of Proposition 3.2.

Proposition 3.10.

Let B𝒥B_{{\mathcal{J}}} be a non-degenerate Grothendieck Boolean algebra. A BB-set XX is a B𝒥B_{{\mathcal{J}}}-set if, and only if, for each infinite P𝒥P\in{\mathcal{J}} and xXPx\in X^{P}, there is a unique element zXz\in X with zbxbz\equiv_{b}x_{b} for all bPb\in P.

Proof.

First, suppose XX is a B𝒥B_{{\mathcal{J}}}-set. Given P𝒥P\in{\mathcal{J}} infinite and xXPx\in X^{P}, we define z=P(x)z=P(x); we now have zbxbz\equiv_{b}x_{b} by the right-hand axiom in (3.4), and if zbxbz^{\prime}\equiv_{b}x_{b} for each bPb\in P, then z=P(x)=P(λb.b(xb,z))=P(λb.z)=zz=P(x)=P(\lambda b.\,b(x_{b},z^{\prime}))=P(\lambda b.\,z^{\prime})=z^{\prime} by the other two axioms, so that zz is unique with the desired property.

Suppose conversely that the stated condition holds; we endow XX with B𝒥B_{{\mathcal{J}}}-set structure. Given P𝒥P\in{\mathcal{J}} infinite and xXPx\in X^{P}, we define P(x)P(x) as the unique element such that P(x)bxbP(x)\equiv_{b}x_{b} for all bPb\in P. Since ybzy\equiv_{b}z just when b(y,z)=zb(y,z)=z we have b(P(x),xb)=xbb(P(x),x_{b})=x_{b} for all bPb\in P; we also have P(λb.x)=xP(\lambda b.\,x)=x as xbxx\equiv_{b}x for each xx. Finally, for the second axiom in (3.4), given bPb\in P we have P(λb.b(xb,yb))bb(xb,yb)bxbbP(λb.xb)P(\lambda b.\,b(x_{b},y_{b}))\equiv_{b}b(x_{b},y_{b})\equiv_{b}x_{b}\equiv_{b}P(\lambda b.\,x_{b}) and so P(λb.b(xb,yb))=P(λb.xb)P(\lambda b.\,b(x_{b},y_{b}))=P(\lambda b.\,x_{b}) by unicity. ∎

There is some awkwardness above in the distinction between infinite and non-infinite partitions; but in fact, this can be avoided.

Proposition 3.11.

Let B𝒥B_{{\mathcal{J}}} be a non-degenerate Grothendieck Boolean algebra. A family of equivalence relations (b:bB)(\mathord{\equiv_{b}}:b\in B) on a set XX determines B𝒥B_{{\mathcal{J}}}-set structure on XX if, and only if, it satisfies axiom (i) of Proposition 3.2 together with

  1. (ii)

    For any P𝒥P\in{\mathcal{J}} and xXPx\in X^{P}, there is a unique zXz\in X with zbxbz\equiv_{b}x_{b} for all bPb\in P.

Proof.

Suppose first that (i) and (ii) hold. It suffices to show that axioms (ii)–(iv) of Proposition 3.2 also hold. (ii) and (iv) follow easily on applying (ii) to the partitions {1}\{1\} and {b,b}\{b,b^{\prime}\} respectively. As for (iii), given its hypotheses, let zz be unique by (ii) such that zbcxz\equiv_{b\vee c}x and zbcyz\equiv_{b^{\prime}\wedge c^{\prime}}y. Then using (i) and the hypotheses, we have zbxbyz\equiv_{b}x\equiv_{b}y and zbcxbcyz\equiv_{b^{\prime}\wedge c}x\equiv_{b^{\prime}\wedge c}y. So zz agrees with yy on each part of {b,bc,bc}\{b,b^{\prime}\wedge c,b^{\prime}\wedge c^{\prime}\} and so z=yz=y; whence y=zbcxy=z\equiv_{b\vee c}x as desired.

For the converse, we must show that (i)–(iv) of Proposition 3.2 imply (ii) for any finite partition P={b1,,bk}P=\{b_{1},\dots,b_{k}\}. The unicity in (ii) holds by repeatedly applying axiom (iii) then axiom (i). For existence, the base case k=1k=1 is trivial; so let us assume the result for k1k-1, and prove it for kk. By induction, we find yy such that yb1b2x2y\equiv_{b_{1}\vee b_{2}}x_{2} and ybixiy\equiv_{b_{i}}x_{i} for i>2i>2; now by (iv) we can find zz such that zb1x1z\equiv_{b_{1}}x_{1} and zb1yz\equiv_{b_{1}^{\prime}}y. Since bib1b_{i}\leqslant b_{1}^{\prime} for i2i\geqslant 2 also zbiybixiz\equiv_{b_{i}}y\equiv_{b_{i}}x_{i} for all 2ik2\leqslant i\leqslant k, as desired. ∎

Again, using the equalities b\equiv_{b} makes it easy to show that B𝒥B_{{\mathcal{J}}}-sets are a cartesian closed variety. First we need a preparatory lemma.

Lemma 3.12.

Let XX be a B𝒥B_{{\mathcal{J}}}-set and let x,yXx,y\in X.

  1. (i)

    For any P𝒥P\in{\mathcal{J}} and bBb\in B, if xbcyx\equiv_{b\wedge c}y for all cPc\in P, then xbyx\equiv_{b}y.

  2. (ii)

    For any P𝒥bP\in{\mathcal{J}}_{b}, if xcyx\equiv_{c}y for all cPc\in P, then xbyx\equiv_{b}y.

Proof.

For (i), first note bP=({bc:cP}{b})𝒥b\wedge P=(\{b\wedge c:c\in P\}\cup\{b^{\prime}\})^{-}\in{\mathcal{J}} by applying condition (i) for a zero-dimensional topology with P={b,b}P=\{b,b^{\prime}\}, Qb=PQ_{b}=P and Qb={1}Q_{b^{\prime}}=\{1\}. Now let zXz\in X be unique such that zbyz\equiv_{b}y and zbxz\equiv_{b^{\prime}}x. For each cPc\in P we have zbcybcxz\equiv_{b\wedge c}y\equiv_{b\wedge c}x, and so zz agrees with xx on each part of the partition bPb\wedge P in 𝒥{\mathcal{J}}. Thus z=xz=x and so x=zbyx=z\equiv_{b}y as desired. For (ii), apply (i) with b=Pb=\bigvee P. ∎

Remark 3.13.

Note that part (ii) of this Lemma asserts that, for all elements x,yx,y in a B𝒥B_{{\mathcal{J}}}-set XX, the ideal x=y={bB:xby}{\mathord{\left\llbracket{{x}\mathrel{\!\texttt{=}\!}{y}}\right\rrbracket}}=\{b\in B:x\equiv_{b}y\} of Remark 3.3 is a 𝒥{\mathcal{J}}-closed ideal.

Proposition 3.14.

The variety of B𝒥B_{{\mathcal{J}}}-sets is cartesian closed.

Proof.

It suffices to show that for B𝒥B_{{\mathcal{J}}}-sets YY and ZZ, the BB-set exponential ZYZ^{Y} of Proposition 3.14 is itself a B𝒥B_{{\mathcal{J}}}-set. So suppose given a partition P𝒥P\in{\mathcal{J}} and a family of homomorphisms fb:YZf_{b}\colon Y\rightarrow Z for each bPb\in P, and define g:YZg\colon Y\rightarrow Z by the property that g(y)bfb(y)g(y)\equiv_{b}f_{b}(y) for each bPb\in P; this gg will be unique such that gbfbg\equiv_{b}f_{b} for each bPb\in P, so long as it is a BB-set map. So suppose that y1cy2y_{1}\equiv_{c}y_{2}; we must show that g(y1)cg(y2)g(y_{1})\equiv_{c}g(y_{2}), for which by the preceding lemma it suffices to show that g(y1)bcg(y2)g(y_{1})\equiv_{b\wedge c}g(y_{2}) for all bPb\in P: and this follows exactly as in Proposition 3.4. ∎

3.3. Theories of BB-sets and B𝒥B_{{\mathcal{J}}}-sets

To conclude this section, we describe algebraic theories which realise the varieties of BB-sets and B𝒥B_{{\mathcal{J}}}-sets.

Definition 3.15.

Let B𝒥B_{{\mathcal{J}}} be a non-degenerate Grothendieck Boolean algebra. A B𝒥B_{{\mathcal{J}}}-valued distribution on a set II is a function ω:IB\omega\colon I\rightarrow B whose restriction to supp(ω)={iI:ω(i)0}\mathrm{supp}(\omega)=\{i\in I:\omega(i)\neq 0\} is an injection onto a partition in 𝒥{\mathcal{J}}. The theory of B𝒥B_{{\mathcal{J}}}-sets 𝕋B𝒥\mathbb{T}_{B_{{\mathcal{J}}}} has TB𝒥(I)T_{B_{{\mathcal{J}}}}(I) given by the set of B𝒥B_{{\mathcal{J}}}-valued distributions on II; the projection element πiTB𝒥(I)\pi_{i}\in T_{B_{{\mathcal{J}}}}(I) given by πi(j)=1\pi_{i}(j)=1 if i=ji=j and πi(j)=0\pi_{i}(j)=0 otherwise; and the composition ω(γ)TB𝒥(J)\omega(\gamma)\in T_{B_{{\mathcal{J}}}}(J) of ωTB𝒥(I)\omega\in T_{B_{{\mathcal{J}}}}(I) and γTB𝒥(J)I\gamma\in T_{B_{{\mathcal{J}}}}(J)^{I} given by ω(γ)(j)=iIω(i)γi(j)\omega(\gamma)(j)=\textstyle\bigvee_{i\in I}\omega(i)\wedge\gamma_{i}(j), where this join exists using axioms (ii) and (iii) for a zero-dimensional topology.

When 𝒥{\mathcal{J}} is the topology of finite partitions, we will write 𝕋B\mathbb{T}_{B} in place of 𝕋B𝒥\mathbb{T}_{B_{\mathcal{J}}} and call it the theory of BB-sets. In this case, a BB-valued distribution is simply an ω:IB\omega\colon I\rightarrow B whose support injects onto a finite partition of BB.

Proposition 3.16.

For any non-degenerate Grothendieck Boolean algebra B𝒥B_{{\mathcal{J}}} the theory of B𝒥B_{{\mathcal{J}}}-sets realises the variety of B𝒥B_{{\mathcal{J}}}-sets. In particular, for any non-degenerate Boolean algebra, the theory of BB-sets realises the variety of BB-sets.

Proof.

Suppose first that XX is a 𝕋B𝒥\mathbb{T}_{B_{{\mathcal{J}}}}-model. For each bBb\in B, we have the element ωbTB𝒥(2)\omega_{b}\in T_{B_{{\mathcal{J}}}}(2) with ωb(1)=b\omega_{b}(1)=b and ωb(2)=b\omega_{b}(2)=b^{\prime}, while for each infinite partition P𝒥P\in{\mathcal{J}}, we have the element ωPTB𝒥(P)\omega_{P}\in T_{B_{{\mathcal{J}}}}(P) given by the inclusion map PBP\hookrightarrow B. It is straightforward to verify that these elements satisfy the axioms of (3.1) and (3.4) in 𝕋B𝒥\mathbb{T}_{B_{{\mathcal{J}}}}, so their interpretations equip any 𝕋B𝒥\mathbb{T}_{B_{{\mathcal{J}}}}-model with the structure of a B𝒥B_{{\mathcal{J}}}-set.

Suppose conversely that XX is a B𝒥B_{{\mathcal{J}}}-set, and let ωTB𝒥(I)\omega\in T_{B_{{\mathcal{J}}}}(I) and xXIx\in X^{I}. Since (imω)(\operatorname{im}\omega)^{-} is a partition in 𝒥{\mathcal{J}}, we may use the B𝒥B_{{\mathcal{J}}}-set structure of XX to define ω(x)\mathord{\left\llbracket{\omega}\right\rrbracket}(x) as the unique element with ω(x)ω(i)xi\mathord{\left\llbracket{\omega}\right\rrbracket}(x)\equiv_{\omega(i)}x_{i} for all isupp(ω)i\in\mathrm{supp}(\omega). We now check the two 𝕋B𝒥\mathbb{T}_{B_{{\mathcal{J}}}}-model axioms. First, we have πi(x)1xi\mathord{\left\llbracket{\pi_{i}}\right\rrbracket}(x)\equiv_{1}x_{i}, i.e., πi(x)=xi\mathord{\left\llbracket{\pi_{i}}\right\rrbracket}(x)=x_{i}. Second, given ωTB(I)\omega\in T_{B}(I) and γTB(J)I\gamma\in T_{B}(J)^{I} and xXJx\in X^{J}, we have ω(λi.γi(x))ω(i)γi(x)\mathord{\left\llbracket{\omega}\right\rrbracket}(\lambda i.\,\mathord{\left\llbracket{\gamma_{i}}\right\rrbracket}(x))\equiv_{\omega(i)}\mathord{\left\llbracket{\gamma_{i}}\right\rrbracket}(x) and γi(x)γi(j)xj\mathord{\left\llbracket{\gamma_{i}}\right\rrbracket}(x)\equiv_{\gamma_{i}(j)}x_{j} for all iI,jJi\in I,j\in J, and so ω(λi.γi(x))ω(i)γi(j)xj\mathord{\left\llbracket{\omega}\right\rrbracket}(\lambda i.\,\mathord{\left\llbracket{\gamma_{i}}\right\rrbracket}(x))\equiv_{\omega(i)\wedge\gamma_{i}(j)}x_{j}. Now Lemma 3.12(ii) yields

ω(λi.γi(x))iω(i)γi(j)xjfor all jJ;\mathord{\left\llbracket{\omega}\right\rrbracket}(\lambda i.\,\mathord{\left\llbracket{\gamma_{i}}\right\rrbracket}(x))\equiv_{\bigvee_{i}\omega(i)\wedge\gamma_{i}(j)}x_{j}\qquad\text{for all $j\in J$;}

but ω(γ)(x)\mathord{\left\llbracket{\omega(\gamma)}\right\rrbracket}(x) is unique with this property, whence ω(λi.γi(x))=ω(γ)(x)\mathord{\left\llbracket{\omega}\right\rrbracket}(\lambda i.\,\mathord{\left\llbracket{\gamma_{i}}\right\rrbracket}(x))=\mathord{\left\llbracket{\omega(\gamma)}\right\rrbracket}(x).

Starting from a B𝒥B_{{\mathcal{J}}}-set structure on XX, the induced 𝕋B𝒥\mathbb{T}_{B_{{\mathcal{J}}}}-model on XX satisfies ωb(x,y)bx\mathord{\left\llbracket{\omega_{b}}\right\rrbracket}(x,y)\equiv_{b}x and ωb(x,y)by\mathord{\left\llbracket{\omega_{b}}\right\rrbracket}(x,y)\equiv_{b^{\prime}}y, i.e., ωb(x,y)=b(x,y)\mathord{\left\llbracket{\omega_{b}}\right\rrbracket}(x,y)=b(x,y), and also satisfies ωP(x)bxb\mathord{\left\llbracket{\omega_{P}}\right\rrbracket}(x)\equiv_{b}x_{b} for all bPb\in P, i.e., ωP(x)=P(x)\mathord{\left\llbracket{\omega_{P}}\right\rrbracket}(x)=P(x), and so yields the original BB-set structure back. Conversely, given a 𝕋B𝒥\mathbb{T}_{B_{{\mathcal{J}}}}-model structure \mathord{\left\llbracket{{\mathord{\text{--}}}}\right\rrbracket}, the model structure \mathord{\left\llbracket{{\mathord{\text{--}}}}\right\rrbracket}^{\prime} induced from the associated B𝒥B_{{\mathcal{J}}}-set satisfies ω(x)ω(i)xi\mathord{\left\llbracket{\omega}\right\rrbracket}^{\prime}(x)\equiv_{\omega(i)}x_{i}, i.e., ωω(i)(ω(x),xi)=xi\mathord{\left\llbracket{\smash{\omega_{\omega(i)}}}\right\rrbracket}(\mathord{\left\llbracket{\omega}\right\rrbracket}^{\prime}(x),x_{i})=x_{i} for each ii. But by an easy calculation, we have ω(λi.ωω(i)(xi,yi))=ω(λi.xi)\omega(\lambda i.\,\omega_{\omega(i)}(x_{i},y_{i}))=\omega(\lambda i.\,x_{i}) in 𝕋B(2×I)\mathbb{T}_{B}(2\times I), and so

ω(x)=ω(λi.ωω(i)(ω(x),xi))=ω(λi.ω(x),xi)=ω(x) .\mathord{\left\llbracket{\omega}\right\rrbracket}(x)=\mathord{\left\llbracket{\omega}\right\rrbracket}(\lambda i.\,\mathord{\left\llbracket{\smash{\omega_{\omega(i)}}}\right\rrbracket}(\mathord{\left\llbracket{\omega}\right\rrbracket}^{\prime}(x),x_{i}))=\mathord{\left\llbracket{\omega}\right\rrbracket}(\lambda i.\,\mathord{\left\llbracket{\omega}\right\rrbracket}^{\prime}(x),x_{i})=\mathord{\left\llbracket{\omega}\right\rrbracket}^{\prime}(x)\hbox to0.0pt{ .\hss}\qed
Remark 3.17.

We can read off from this proof that the free B𝒥B_{{\mathcal{J}}}-set on a set XX is given by TB𝒥(X)T_{B_{{\mathcal{J}}}}(X), endowed with the B𝒥B_{{\mathcal{J}}}-set structure in which ωbγ\omega\equiv_{b}\gamma just when bω(x)=bγ(x)b\wedge\omega(x)=b\wedge\gamma(x) for all xXx\in X. Given a partition P𝒥P\in{\mathcal{J}} and family of elements ωTB𝒥(X)P\omega\in T_{B_{{\mathcal{J}}}}(X)^{P}, the element P(ω)TB𝒥(X)P(\omega)\in T_{B_{{\mathcal{J}}}}(X) is given by P(ω)(x)=bPbωb(x)P(\omega)(x)=\bigvee_{b\in P}b\wedge\omega_{b}(x). The function XTB𝒥(X)X\rightarrow T_{B_{{\mathcal{J}}}}(X) exhibiting TB𝒥(X)T_{B_{{\mathcal{J}}}}(X) as free on XX is given by xπxx\mapsto\pi_{x}.

As a special case, the free B𝒥B_{{\mathcal{J}}}-set on two generators can be identified with BB itself (with generators 0 and 11) under the B𝒥B_{{\mathcal{J}}}-set structure of “conditioned disjunction”:

b(c,d)=(bc)(bd)andP(λb.cb)=bPbcb .b(c,d)=(b\wedge c)\vee(b^{\prime}\wedge d)\qquad\text{and}\qquad P(\lambda b.\,c_{b})=\textstyle\bigvee_{b\in P}b\wedge c_{b}\hbox to0.0pt{ .\hss}

4. Hyperaffine theories

In this section, we describe, following [10, 7], the syntactic characterisation of theories of B𝒥B_{{\mathcal{J}}}-sets as (non-degenerate) hyperaffine algebraic theories, with the BB-sets matching under this correspondence with the finitary hyperaffine theories.

As is well known, an algebraic theory is finitary if it corresponds to a finitary variety: which is to say that for each tT(I)t\in T(I), there exist i1,,inIi_{1},\dots,i_{n}\in I and uT(n)u\in T(n) such that t(x)=u(xi1,,xin)t(x)=u(x_{i_{1}},\dots,x_{i_{n}}). The notion of hyperaffine algebraic theory is perhaps slightly less familiar:

Definition 4.1 (Hyperaffine operation, hyperaffine algebraic theory).

Let 𝕋\mathbb{T} be an algebraic theory. We say that tT(I)t\in T(I) is affine if t(λi.x)=xt(\lambda i.\,x)=x in T(1)T(1), and hyperaffine if also t(λi.t(λj.xij))=t(λi.xii)t(\lambda i.\,t(\lambda j.\,x_{ij}))=t(\lambda i.\,x_{ii}) in T(I×I)T(I\times I). We say that 𝕋\mathbb{T} is hyperaffine if each of its operations is so.

Our objective now is to prove:

Proposition 4.2.

A non-degenerate algebraic theory 𝕋\mathbb{T} is hyperaffine if, and only if, it is isomomorphic to 𝕋B𝒥\mathbb{T}_{B_{{\mathcal{J}}}} for some non-degenerate Grothendieck Boolean algebra B𝒥B_{{\mathcal{J}}}; and it is finitary and hyperaffine if, and only if, it is isomorphic to some 𝕋B\mathbb{T}_{B}.

For the “if” direction, we need only show that each 𝕋B𝒥\mathbb{T}_{B_{{\mathcal{J}}}} is hyperaffine, and that each 𝕋B\mathbb{T}_{B} is finitary. For the first claim, since TB𝒥(1)T_{B_{{\mathcal{J}}}}(1) is a singleton, every operation of 𝕋B𝒥\mathbb{T}_{B_{{\mathcal{J}}}} must be affine. To see that each ωTB𝒥(I)\omega\in T_{B_{{\mathcal{J}}}}(I) is hyperaffine, we observe that α=ω(λi.ω(λj.xij))\alpha=\omega(\lambda i.\,\omega(\lambda j.\,x_{ij})) and β=ω(λi.xii)\beta=\omega(\lambda i.\,x_{ii}) correspond to the elements of TB(I×I)T_{B}(I\times I) given by, respectively,

α(i,j)=ω(i)ω(j)andβ(i,j)={ω(i)if i=j;0otherwise.\alpha(i,j)=\omega(i)\wedge\omega(j)\qquad\text{and}\qquad\beta(i,j)=\begin{cases}\omega(i)&\text{if $i=j$;}\\ 0&\text{otherwise.}\end{cases}

and these are equal since ω\omega is an injection of supp(ω)\mathrm{supp}(\omega) onto a partition of BB. To show finitariness of each 𝕋B\mathbb{T}_{B}, note that any ω:IB\omega\colon I\rightarrow B in TB(I)T_{B}(I) has finite support i1,,ini_{1},\dots,i_{n}; so we have the element γT(n)\gamma\in T(n) given by γ(k)=ω(ik)\gamma(k)=\omega(i_{k}) and see easily that ω=γ(πi1,,πin)\omega=\gamma(\pi_{i_{1}},\dots,\pi_{i_{n}}). So 𝕋B\mathbb{T}_{B} is finitary.

The “only if” direction of Proposition 4.2 is harder, and we will attack it in stages. We begin by establishing an important property of hyperaffine theories:

Lemma 4.3.

If 𝕋\mathbb{T} is a hyperaffine algebraic theory, then every pair of operations tT(I)t\in T(I) and uT(J)u\in T(J) commute, i.e., we have t(λi.u(λj.xij))=u(λj.t(λi.xij))t(\lambda i.\,u(\lambda j.\,x_{ij}))=u(\lambda j.\,t(\lambda i.\,x_{ij})).

Proof.

The operation t(λi.u(λj.xij))t(\lambda i.\,u(\lambda j.\,x_{ij})) is hyperaffine, which says that

t(λi.u(λj.xijij))=t(λi.u(λj.t(λk.u(λ.xijk)))) .t(\lambda i.\,u(\lambda j.\,x_{ijij}))=t(\lambda i.\,u(\lambda j.\,t(\lambda k.\,u(\lambda\ell.\,x_{ijk\ell}))))\hbox to0.0pt{ .\hss}

Now taking xijk=yjkx_{ijk\ell}=y_{jk} gives the desired result:

t(λi.u(λj.yji))=t(λi.u(λj.t(λk.u(λ.yjk))))=u(λj.t(λk.yjk)) .t(\lambda i.\,u(\lambda j.\,y_{ji}))=t(\lambda i.\,u(\lambda j.\,t(\lambda k.\,u(\lambda\ell.\,y_{jk}))))=u(\lambda j.\,t(\lambda k.\,y_{jk}))\hbox to0.0pt{ .\hss}\qed

Now, we observed in Remark 3.17 that, in the theory of B𝒥B_{{\mathcal{J}}}-sets, the Boolean algebra BB appears as the free B𝒥B_{{\mathcal{J}}}-set on two generators. This indicates how we should reconstruct a Boolean algebra from a hyperaffine theory.

Proposition 4.4.

If 𝕋\mathbb{T} is non-degenerate hyperaffine, then T(2)T(2) underlies a non-degenerate Boolean algebra with 1=π11=\pi_{1}, 0=π20=\pi_{2}, and \wedge, \vee and ()({\mathord{\text{--}}})^{\prime} determined by

(bc)(x,y)=b(c(x,y),y)(bc)(x,y)=b(x,c(x,y))b(x,y)=b(y,x) .(b\wedge c)(x,y)=b(c(x,y),y)\quad(b\vee c)(x,y)=b(x,c(x,y))\quad b^{\prime}(x,y)=b(y,x)\hbox to0.0pt{ .\hss}
Proof.

According to [3, Theorem 1], to give Boolean algebra structure on T(2)T(2) is to give constants 1,01,0 and a ternary operation a,b,ca(b,c)a,b,c\mapsto a(b,c) (thought of as encoding the Boolean operation “if aa then bb else cc”) satisfying the five axioms:

a(b,c)(d,e)\displaystyle a(b,c)(d,e) =a(b(d,e),c(d,e))\displaystyle=a(b(d,e),c(d,e)) 0(b,c)\displaystyle 0(b,c) =c\displaystyle=c 1(b,c)\displaystyle 1(b,c) =b\displaystyle=b (4.1)
a(0,a)\displaystyle a(0,a) =0\displaystyle=0 a(b,0)\displaystyle a(b,0) =b(a,0) ;\displaystyle=b(a,0)\hbox to0.0pt{ ;\hss}

and in this presentation, the usual Boolean operations \wedge, \vee and ()({\mathord{\text{--}}})^{\prime} are re-found as bc=b(c,0)b\wedge c=b(c,0) and bc=b(b,c)b\vee c=b(b,c) and b=b(0,1)b^{\prime}=b(0,1). In the case of T(2)T(2), if we take 1=π11=\pi_{1} and 0=π20=\pi_{2} and a(b,c)a(b,c) to be the substitution operation in 𝕋\mathbb{T}, then all but the last-displayed axiom are trivial. For this last axiom, we compute that a(b(x,y),y)=a(b(x,y),b(y,y))=b(a(x,y),a(y,y))=b(a(x,y),y)a(b(x,y),y)=a(b(x,y),b(y,y))=b(a(x,y),a(y,y))=b(a(x,y),y) using affineness of bb; commutativity of aa and bb via Lemma 4.3; and affineness of aa. So T(2)T(2) is a Boolean algebra structure, with operations \wedge, \vee and ()({\mathord{\text{--}}})^{\prime} as displayed above; it is non-degenerate by the assumption that π1π2T(2)\pi_{1}\neq\pi_{2}\in T(2). ∎

We now explain how to endow the Boolean algebra of this proposition with a zero-dimensional topology. In this we follow [7, §2] by first introducing binary reducts and proving some important facts about them.

Definition 4.5 (Binary reducts).

Let 𝕋\mathbb{T} be an algebraic theory and tT(I)t\in T(I). For each subset UIU\subseteq I, we write t(U)T(2)t^{(U)}\in T(2) for the binary operation with

t(U)(x,y)=t(λi.{x if iU;y otherwise.)t^{(U)}(x,y)=t\biggl{(}\lambda i.\,\begin{cases}x&\text{ if $i\in U$;}\\ y&\text{ otherwise.}\end{cases}\biggr{)}

When UU is a singleton {i}\{i\}, we may write t(i)t^{(i)} rather than t({i})t^{(\{i\})}.

Lemma 4.6.

Let 𝕋\mathbb{T} be a non-degenerate hyperaffine algebraic theory, let B=T(2)B=T(2) be the Boolean algebra of Proposition 4.4, and let t,uT(I)t,u\in T(I).

  1. (i)

    If t(i)=u(i)t^{(i)}=u^{(i)} for all iIi\in I then t=ut=u;

  2. (ii)

    If iji\neq j then t(i)t(j)=0t^{(i)}\wedge t^{(j)}=0 in BB;

  3. (iii)

    For all UIU\subseteq I, we have t(U)=iUt(i)t^{(U)}=\bigvee_{i\in U}t^{(i)} in BB.

Proof.

The elements of B=T(2)B=T(2) easily satisfy the axioms of (3.1) in 𝕋\mathbb{T} and so via their action by substitution endow each T(J)T(J) with a BB-set structure. We claim that, with respect to this structure, we have for each hT(I)h\in T(I) that:

h(x) is unique such that h(x)h(i)xi for all iI.h(x)\text{ is unique such that }h(x)\equiv_{h^{(i)}}x_{i}\text{ for all $i\in I$.} (4.2)

To see that hh satisfies the displayed condition, fix iIi\in I and define wjk=xkw_{jk}=x_{k} if j=ij=i and wjk=xiw_{jk}=x_{i} otherwise; then we have h(i)(h(x),xi)=h(i)(h(λk.xk),h(λk.xi))=h(λj.h(λk.wjk))=h(λj.wjj)=xih^{(i)}(h(x),x_{i})=h^{(i)}(h(\lambda k.\,x_{k}),h(\lambda k.\,x_{i}))=h(\lambda j.\,h(\lambda k.\,w_{jk}))=h(\lambda j.\,w_{jj})=x_{i} as required. To show the unicity, suppose h(i)(k(x),xi)=xih^{(i)}(k(x),x_{i})=x_{i} for each ii, and set zij=k(x)z_{ij}=k(x) if j=ij=i and zij=xiz_{ij}=x_{i} otherwise; then h(x)=h(λi.h(i)(k(x),xi))=h(λi.h(λj.zij))=h(λi.zii)=k(x)h(x)=h(\lambda i.\,h^{(i)}(k(x),x_{i}))=h(\lambda i.\,h(\lambda j.\,z_{ij}))=h(\lambda i.\,z_{ii})=k(x) as desired.

We now prove (i)–(iii). For (i), if t(i)=u(i)t^{(i)}=u^{(i)} for each ii, then u(x)t(i)xiu(x)\equiv_{t^{(i)}}x_{i} for each ii, whence u(x)=t(x)u(x)=t(x) by unicity in (4.2). For (ii), (4.2) yields h(j)(x,y)h(i)yh^{(j)}(x,y)\equiv_{h^{(i)}}y for iji\neq j, i.e., y=h(i)(h(j)(x,y),y)y=h^{(i)}(h^{(j)}(x,y),y) which says h(i)h(j)=0h^{(i)}\wedge h^{(j)}=0. Finally for (iii), observe that (4.2) implies that h(x)=h(y)h(x)=h(y) if and only if xih(i)yix_{i}\equiv_{h^{(i)}}y_{i} for all iIi\in I. Thus, for any tT(I)t\in T(I), UIU\subseteq I and uT(2)u\in T(2), we have t(U)ut^{(U)}\leqslant u in T(2)T(2) just when t(U)(u(x,y),y)=t(U)(x,y)t^{(U)}(u(x,y),y)=t^{(U)}(x,y), just when u(x,y)t(i)xu(x,y)\equiv_{t^{(i)}}x for all iUi\in U. In particular, t(U)ut^{(U)}\leqslant u if and only if t(i)ut^{(i)}\leqslant u for all iUi\in U, so t(U)=iUt(i)t^{(U)}=\bigvee_{i\in U}t^{(i)} as desired. ∎

This lemma implies, in particular, that if 𝕋\mathbb{T} is hyperaffine and hT(I)h\in T(I), then the set P={h(i):iI}P=\{h^{(i)}:i\in I\}^{-} is a partition of B=T(2)B=T(2). In this situation, we will say that the operation hh realises the partition PP.

Proposition 4.7.

Let 𝕋\mathbb{T} be a non-degenerate hyperaffine theory and B=T(2)B=T(2) the Boolean algebra of Proposition 4.4. The set 𝒥{\mathcal{J}} of all partitions realised by operations of 𝕋\mathbb{T} constitutes a zero-dimensional topology on BB. If 𝕋\mathbb{T} is finitary, then 𝒥{\mathcal{J}} is necessarily the topology of finite partitions.

Proof.

We first show that any P𝒥P\in{\mathcal{J}} has a canonical realisation by a (necessarily unique) hT(P)h\in T(P) with h(b)=bh^{(b)}=b for all bPb\in P. To this end, let kT(I)k\in T(I) be any realiser for PP, pick an arbitrary element bPb\in P, and define a function f:IPf\colon I\rightarrow P by taking f(i)=k(i)f(i)=k^{(i)} if k(i)0k^{(i)}\neq 0 and f(i)=bf(i)=b otherwise; we now easily see that h(x)=k(λi.xf(i))h(x)=k(\lambda i.\,x_{f(i)}) is the desired canonical realisation for PP.

We now verify the axioms for a zero-dimensional topology. First observe that the trivial partition {1}\{1\} is (canonically) realised by π1T(1)\pi_{1}\in T(1); and that if all (n1)(n-1)-fold partitions are realised, then so is every nn-fold partition {b1,,bn}\{b_{1},\dots,b_{n}\}: for indeed, if hT(n1)h\in T(n-1) realises {b1b2,,bn}\{b_{1}\vee b_{2},\dots,b_{n}\}, then k(x1,,xn)=b1(x1,h(x2,,xn))k(x_{1},\dots,x_{n})=b_{1}(x_{1},h(x_{2},\dots,x_{n})) is easily seen to realise {b1,,bn}\{b_{1},\dots,b_{n}\}. So all finite partitions are in 𝒥{\mathcal{J}}.

Now for (i), suppose given P𝒥P\in{\mathcal{J}} and Qb𝒥Q_{b}\in{\mathcal{J}} for each bBb\in B. Let hT(P)h\in T(P) and kbT(Qb)k_{b}\in T(Q_{b}) be their canonical realisers, and consider the term T(bQb)\ell\in T(\sum_{b}Q_{b}) with (x)=h(λb.kb(λc.xbc)) .\ell(x)=h(\lambda b.\,k_{b}(\lambda c.\,x_{bc}))\hbox to0.0pt{ .\hss} Easily we have (b,c)(x,y)=h(b)(kb(c)(x,y),y)=b(c(x,y),y)=(bc)(x,y)\ell^{(b,c)}(x,y)=h^{(b)}(k_{b}^{(c)}(x,y),y)=b(c(x,y),y)=(b\wedge c)(x,y) so that \ell realises the partition P(Q)P(Q) as desired. Finally for (ii), let P𝒥P\in{\mathcal{J}} with canonical realiser hT(P)h\in T(P), and let α:PI\alpha\colon P\rightarrow I be a surjection. Let k(x)=h(λi.xα(i))k(x)=h(\lambda i.\,x_{\alpha(i)}) in T(I)T(I); then by Lemma 4.6(iii), we have k(i)=h(α1(i))=bα1(i)h(b)=α1(i)k^{(i)}=h^{(\alpha^{-1}(i))}=\bigvee_{b\in\alpha^{-1}(i)}h^{(b)}=\bigvee\alpha^{-1}(i), so that kk realises the partition α!(P)\alpha_{!}(P).

Finally, if 𝕋\mathbb{T} is finitary, then we can write any hT(I)h\in T(I) as k(xi1,,xik)k(x_{i_{1}},\dots,x_{i_{k}}) for some finite list i1,,ikIi_{1},\dots,i_{k}\in I. It follows that h(i)=0h^{(i)}=0 unless i{i1,,ik}i\in\{i_{1},\dots,i_{k}\}, so that partitions which 𝕋\mathbb{T} realises are precisely the finite ones. ∎

The following result now completes the proof of Proposition 4.2.

Proposition 4.8.

Let 𝕋\mathbb{T} be a non-degenerate hyperaffine theory, and B𝒥B_{{\mathcal{J}}} the non-degenerate Grothendieck Boolean algebra of Propositions 4.4 and 4.7. The maps

ω():T(I)TB𝒥(I)tλi.t(i)\omega_{({\mathord{\text{--}}})}\colon T(I)\rightarrow T_{B_{{\mathcal{J}}}}(I)\qquad t\mapsto\lambda i.\,t^{(i)} (4.3)

are the components of an isomorphism of algebraic theories 𝕋𝕋B𝒥\mathbb{T}\cong\mathbb{T}_{B_{{\mathcal{J}}}}. In particular, if 𝕋\mathbb{T} is finitary, then we have an isomorphism 𝕋𝕋B\mathbb{T}\cong\mathbb{T}_{B}.

Proof.

By Lemma 4.6 and definition of 𝒥{\mathcal{J}}, each ωt:IB\omega_{t}\colon I\rightarrow B is injective from its support onto a partition in 𝒥{\mathcal{J}}, so that the maps in (4.3) are well-defined.

For any iIi\in I it is clear that ωπi=πiTB𝒥(I)\omega_{\pi_{i}}=\pi_{i}\in T_{B_{{\mathcal{J}}}}(I). As for preservation of composition, let tT(I)t\in T(I) and uT(J)Iu\in T(J)^{I}; we must show t(u)(j)=iIt(i)ui(j)t(u)^{(j)}=\bigvee_{i\in I}t^{(i)}\wedge{u_{i}}^{(j)} for each jJj\in J. To this end, note that the term v=t(λi.ui(λj.xij))v=t(\lambda i.\,u_{i}(\lambda j.\,x_{ij})) satisfies

v(i,j)(x,y)=t(i)(u(j)(x,y),y)=(t(i)ui(j))(x,y) ;v^{(i,j)}(x,y)=t^{(i)}(u^{(j)}(x,y),y)=(t^{(i)}\wedge{u_{i}}^{(j)})(x,y)\hbox to0.0pt{ ;\hss}

whence, by Lemma 4.6(iii), t(u)(j)=v(I×{j})=iIω(i)γi(j)t(u)^{(j)}=v^{(I\times\{j\})}=\bigvee_{i\in I}\omega(i)\wedge\gamma_{i}(j) as desired.

So we have a theory morphism ω():𝕋𝕋B𝒥\omega_{({\mathord{\text{--}}})}\colon\mathbb{T}\rightarrow\mathbb{T}_{B_{{\mathcal{J}}}}, whose components are injective by Lemma 4.6(i). It remains to show they are also surjective. To this end, let ω:IB\omega\colon I\rightarrow B be a distribution. By assumption, ω|supp(ω)\left.{\omega}\right|_{\mathrm{supp}(\omega)} is an injection onto some P𝒥P\in{\mathcal{J}}. So let ι:PI\iota\colon P\rightarrow I be the injective function sending ω(i)\omega(i) to ii, let hT(P)h\in T(P) be the canonical realiser of PP, and define tT(I)t\in T(I) to be t(x)=h(λb.xι(b))t(x)=h(\lambda b.\,\smash{x_{\iota(b)}}). It is now clear that t(i)=h(ω(i))=ω(i)t^{(i)}=h^{(\omega(i))}=\omega(i) for all isupp(ω)i\in\mathrm{supp}(\omega), and that t(i)=0t^{(i)}=0 for all isupp(ω)i\notin\mathrm{supp}(\omega). Thus ωt=ω\omega_{t}=\omega as desired. ∎

We now make the correspondences between non-degenerate Grothendieck Boolean algebras, varieties of B𝒥B_{{\mathcal{J}}}-sets, and non-degenerate hyperaffine algebraic theories—and their finitary variants—into functorial equivalences. Let us write:

  • 𝒜lg\mathrm{\mathcal{B}{\mathcal{A}}lg} (resp., gr𝒜lg\mathrm{gr}\mathrm{\mathcal{{\mathcal{B}}}{\mathcal{A}}lg}) for the category of non-degenerate Boolean (resp., Grothendieck Boolean) algebras and their homomorphisms.

  • 𝒜ff\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff} (resp., 𝒜ffω\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff}^{\omega}) for the full subcategory of 𝒯hy\mathrm{\mathcal{{\mathcal{T}}}hy} on the non-degenerate hyperaffine (resp., finitary hyperaffine) algebraic theories.

  • B-𝒱arB\text{-}\mathrm{\mathcal{V}ar} (resp., B𝒥-𝒱arB_{{\mathcal{J}}}\text{-}\mathrm{\mathcal{V}ar}) for the full subcategory of 𝒱ar\mathrm{\mathcal{V}ar} on the varieties isomorphic to some B-𝒮etB\text{-}\mathrm{\mathcal{S}et} (resp. B𝒥-𝒮etB_{{\mathcal{J}}}\text{-}\mathrm{\mathcal{S}et}).

The assignments B𝒥B𝒥-𝒮etB_{{\mathcal{J}}}\mapsto B_{{\mathcal{J}}}\text{-}\mathrm{\mathcal{S}et} and B𝒥𝕋B𝒥B_{{\mathcal{J}}}\mapsto\mathbb{T}_{B_{{\mathcal{J}}}} can now be made functorial. A homomorphism of non-degenerate Grothendieck Boolean algebras f:B𝒥B𝒥f\colon B_{{\mathcal{J}}}\rightarrow B^{\prime}_{{\mathcal{J}}^{\prime}} induces, on the one hand, a concrete functor f:B𝒥-𝒮etB𝒥-𝒮etf^{\ast}\colon B^{\prime}_{{\mathcal{J}}^{\prime}}\text{-}\mathrm{\mathcal{S}et}\rightarrow B_{{\mathcal{J}}}\text{-}\mathrm{\mathcal{S}et}, where ff^{\ast} assigns to a B𝒥B^{\prime}_{{\mathcal{J}}^{\prime}}-set structure on XX the B𝒥B_{{\mathcal{J}}}-set structure with b,x,y(fb)(x,y)b,x,y\mapsto(fb)(x,y); and on the other hand, a theory homomorphism 𝕋f:𝕋B𝒥𝕋B𝒥\mathbb{T}_{f}\colon\mathbb{T}_{B_{{\mathcal{J}}}}\rightarrow\mathbb{T}_{B^{\prime}_{{\mathcal{J}}^{\prime}}} with components

(𝕋f)I:TB𝒥(I)TB𝒥(I)ωfω .(\mathbb{T}_{f})_{I}\colon T_{B_{{\mathcal{J}}}}(I)\rightarrow T_{B^{\prime}_{{\mathcal{J}}^{\prime}}}(I)\qquad\omega\mapsto f\circ\omega\hbox to0.0pt{ .\hss} (4.4)

In this way, we obtain functors 𝕋()\mathbb{T}_{({\mathord{\text{--}}})} and ()-𝒮et({\mathord{\text{--}}})\text{-}\mathrm{\mathcal{S}et} as in the statement of:

Theorem 4.9.

We have a triangle of equivalences, commuting to within natural isomorphism, as to the left in:

gr𝒜lg\textstyle{\mathrm{gr}\mathrm{\mathcal{{\mathcal{B}}}{\mathcal{A}}lg}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()-𝒮et\scriptstyle{({\mathord{\text{--}}})\text{-}\mathrm{\mathcal{S}et}}𝕋()\scriptstyle{\mathbb{T}_{({\mathord{\text{--}}})}}𝒜ff\textstyle{\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()-od\scriptstyle{({\mathord{\text{--}}})\text{-}\mathrm{\mathcal{M}od}}(B𝒥-𝒱ar)op\textstyle{(B_{{\mathcal{J}}}\text{-}\mathrm{\mathcal{V}ar})^{\mathrm{op}}}
      
𝒜lg\textstyle{\mathrm{\mathcal{B}{\mathcal{A}}lg}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()-𝒮et\scriptstyle{({\mathord{\text{--}}})\text{-}\mathrm{\mathcal{S}et}}𝕋()\scriptstyle{\mathbb{T}_{({\mathord{\text{--}}})}}𝒜ffω\textstyle{\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff}^{\omega}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()-od\scriptstyle{({\mathord{\text{--}}})\text{-}\mathrm{\mathcal{M}od}}(B-𝒱ar)op\textstyle{(B\text{-}\mathrm{\mathcal{V}ar})^{\mathrm{op}}}
(4.5)

which restricts back to a triangle of equivalences as to the right.

Proof.

By Propositions 3.16 and 4.2, the equivalence ()-od:𝒯hy𝒱arop({\mathord{\text{--}}})\text{-}\mathrm{\mathcal{M}od}\colon\mathrm{\mathcal{{\mathcal{T}}}hy}\rightarrow\mathrm{\mathcal{V}ar}^{\mathrm{op}} restricts to one 𝒜ff(B𝒥-𝒱ar)op\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff}\rightarrow(B_{{\mathcal{J}}}\text{-}\mathrm{\mathcal{V}ar})^{\mathrm{op}} and further back to one 𝒜ffω(B-𝒱ar)op\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff}^{\omega}\rightarrow(B\text{-}\mathrm{\mathcal{V}ar})^{\mathrm{op}}. Again because of Proposition 3.16, the triangles commute to within isomorphism. So to complete the proof, it suffices to show that 𝕋()\mathbb{T}_{({\mathord{\text{--}}})} is an equivalence both to the left and the right. We already know by Proposition 4.2 that in both cases it is essentially surjective, so we just need to check it is also full and faithful.

As in the proof of Proposition 3.16, given bBb\in B we write ωbTB𝒥(2)\omega_{b}\in T_{B_{{\mathcal{J}}}}(2) for the element with ωb(1)=b\omega_{b}(1)=b and ωb(2)=b\omega_{b}(2)=b^{\prime}, and given P𝒥P\in{\mathcal{J}} we write ωPTB𝒥(P)\omega_{P}\in T_{B_{{\mathcal{J}}}}(P) for the element given by the inclusion PBP\hookrightarrow B. Note that every element of TB(2)T_{B}(2) is of the form ωb\omega_{b} for a unique bBb\in B; so given a theory homomorphism φ:𝕋B𝕋C\varphi\colon\mathbb{T}_{B}\rightarrow\mathbb{T}_{C} there is a unique map f:BCf\colon B\rightarrow C such that φ(ωb)=ωf(b)\varphi(\omega_{b})=\omega_{f(b)} for each bBb\in B. Since ω1=π1\omega_{1}=\pi_{1}, ωb=ωb(π2,π1)\omega_{b^{\prime}}=\omega_{b}(\pi_{2},\pi_{1}) and ωbc=ωb(ωc(π1,π2)π2)\omega_{b\wedge c}=\omega_{b}(\omega_{c}(\pi_{1},\pi_{2})\pi_{2}) in TB(2)T_{B}(2), and φ\varphi preserves these identities, this ff is a Boolean homomorphism. Moreover, for each ωTB(I)\omega\in T_{B}(I) and iIi\in I, we have ωω(i)=ω(i)TB(2)\smash{\omega_{\omega(i)}}=\omega^{(i)}\in T_{B}(2), and so φ(ω)(i)=φ(ω(i))=φ(ωω(i))=ωf(ω(i))\varphi(\omega)^{(i)}=\varphi(\omega^{(i)})=\varphi(\omega_{\omega(i)})=\omega_{f(\omega(i))}, so that φ(ω)=λi.f(ω(i))\varphi(\omega)=\lambda i.\,f(\omega(i)). In particular, ff must be a homomorphism of Grothendieck Boolean algebras: for indeed, if P𝒥P\in{\mathcal{J}}, then (imφ(ωP))=f(P)𝒦(\operatorname{im}\varphi(\omega_{P}))^{-}=f(P)^{-}\in{\mathcal{K}}. Moreover, we have that φ=𝕋f\varphi=\mathbb{T}_{f}; now if also φ=𝕋g\varphi=\mathbb{T}_{g}, then ωf(b)=φ(ωb)=ωg(b)\omega_{f(b)}=\varphi(\omega_{b})=\omega_{g(b)} for all bBb\in B and so f=gf=g. So 𝕋()\mathbb{T}_{({\mathord{\text{--}}})} is full and faithful as claimed, and this completes the proof. ∎

5. Hyperaffine–unary theories

In this section, we prove our first main result, which gives a syntactic characterisation of the algebraic theories which correspond to cartesian closed varieties. This simplifies an existing characterisation due to Johnstone in [10]; as such, we begin by recalling Johnstone’s result, and then use it to deduce ours.

Notation 5.1 (Placed equality, dependency; [10]).

Let 𝕋\mathbb{T} be an algebraic theory, let qT(I)q\in T(I) and let iIi\in I. Given t,uT(J)t,u\in T(J), we write tq,iut\equiv_{q,i}u (read as “tt and uu are equal in the iith place of qq”) as an abbreviation for the assertion that

q(x[t(y)/xi])=q(x[u(y)/xi]) .q(\,x[t(y)/x_{i}]\,)=q(\,x[u(y)/x_{i}]\,)\hbox to0.0pt{ .\hss}

We say that qT(I)q\in T(I) does not depend on iIi\in I if xq,iyx\equiv_{q,i}y.

Theorem 5.2 ([10]).

A non-degenerate algebraic theory 𝕋\mathbb{T} presents a cartesian closed variety if, and only if, the following two conditions hold:

  1. (i)

    For every pT(A)p\in T(A), there exist qT(B)q\in T(B), families u,vT(1)Bu,v\in T(1)^{B}, and a function α:BA\alpha\colon B\rightarrow A such that

    q(λb.ub(x))=xandub(p(λa.xa))q,bvb(xα(b)) for all bB.q(\lambda b.\,u_{b}(x))=x\quad\text{and}\quad u_{b}(p(\lambda a.\,x_{a}))\equiv_{q,b}v_{b}(x_{\alpha(b)})\text{ for all $b\in B$.} (5.1)
  2. (ii)

    For any qT(B)q\in T(B), uT(1)Bu\in T(1)^{B} and α:BA\alpha\colon B\rightarrow A, if q(λb.ub(xα(b)))T(A)q(\lambda b.\,u_{b}(x_{\alpha(b)}))\in T(A) does not depend on ii, then qq does not depend on any jα1(i)j\in\alpha^{-1}(i).

Our improved characterisation says that 𝕋\mathbb{T} presents a cartesian closed variety if, and only if, each operation decomposes uniquely into hyperaffine and unary parts.

Definition 5.3 (Hyperaffine–unary decomposition, hyperaffine–unary theory).

Let 𝕋\mathbb{T} be an algebraic theory. Given a hyperaffine hT(I)h\in T(I) and a unary mT(1)m\in T(1), we write [hm]\left[\smash{{h}\mathbin{\mid}{m}}\right] for the operation h(λi.m)T(I)h(\lambda i.\,m)\in T(I). A hyperaffine–unary decomposition of tT(I)t\in T(I) is a choice of hh and mm as above such that t=[hm]t=\left[\smash{{h}\mathbin{\mid}{m}}\right]. We say that the theory 𝕋\mathbb{T} is hyperaffine–unary if every operation tT(I)t\in T(I) admits a unique hyperaffine–unary decomposition.

The crucial lemma which will enable us to prove this is:

Lemma 5.4.

If the algebraic theory 𝕋\mathbb{T} satisfies condition (i) of Theorem 5.2, then any affine operation of 𝕋\mathbb{T} is hyperaffine.

Proof.

Let pT(A)p\in T(A) be affine, and let q,u,v,αq,u,v,\alpha be as in Theorem 5.2(i). Note first that, since pp is affine, on substituting xx for each xax_{a} in the right-hand equation of (5.1), we have that ubq,bvbu_{b}\equiv_{q,b}v_{b} for all bBb\in B. To show pp is hyperaffine, it suffices, by the left equation of (5.1), to prove that ub(p(λa.p(λa.xaa)))q,bub(p(λa.xaa))u_{b}(p(\lambda a.\,p(\lambda a^{\prime}.\,x_{aa^{\prime}})))\equiv_{q,b}u_{b}(p(\lambda a.\,x_{aa})) for all bBb\in B. But we calculate that

ub(p(λa.p(λa.xaa)))\displaystyle u_{b}(p(\lambda a.\,p(\lambda a^{\prime}.\,x_{aa^{\prime}}))) q,bvb(p(λa.xα(b),a))q,bub(p(λa.xα(b),a))\displaystyle\equiv_{q,b}v_{b}(p(\lambda a^{\prime}.\,x_{\alpha(b),a^{\prime}}))\equiv_{q,b}u_{b}(p(\lambda a^{\prime}.\,x_{\alpha(b),a^{\prime}}))
q,bvb(xα(b),α(b))q,bub(p(λa.xaa))\displaystyle\equiv_{q,b}v_{b}(x_{\alpha(b),\alpha(b)})\equiv_{q,b}u_{b}(p(\lambda a.\,x_{aa}))

using the right equation of (5.1) three times and the fact that ubq,bvbu_{b}\equiv_{q,b}v_{b} once. ∎

Theorem 5.5.

An algebraic theory 𝕋\mathbb{T} presents a cartesian closed variety if, and only if, it is hyperaffine–unary.

Proof.

Firstly, if 𝕋\mathbb{T} is degenerate then it is both cartesian closed and hyperaffine, so a fortiori hyperaffine–unary. Thus, we may assume henceforth that 𝕋\mathbb{T} is non-degenerate and so apply Johnstone’s characterisation theorem.

We first prove the only if direction. To begin with, we show that each pT(A)p\in T(A) has some hyperaffine–unary decomposition. To this end, let q,u,v,αq,u,v,\alpha be as in Theorem 5.2(i). Let hT(A)h\in T(A) be given by h(x)=q(λb.ub(xα(b)))h(x)=q(\lambda b.\,u_{b}(x_{\alpha(b)})). By the left condition of (5.1) hh is affine, and so it is hyperaffine by Lemma 5.4. Let mT(1)m\in T(1) be given by m(x)=p(λa.x)m(x)=p(\lambda a.\,x). We now calculate that

p(x)\displaystyle p(x) =q(λb.ub(p(x)))=q(λb.vb(xα(b)))=q(λb.ub(p(λa.xα(b))))\displaystyle=q(\lambda b.\,u_{b}(p(x)))=q(\lambda b.\,v_{b}(x_{\alpha(b)}))=q(\lambda b.\,u_{b}(p(\lambda a.\,x_{\alpha(b)})))
=q(λb.ub(m(xα(b))))=h(λa.m(xa))\displaystyle=q(\lambda b.\,u_{b}(m(x_{\alpha(b)})))=h(\lambda a.\,m(x_{a}))

using in succession, the left equality in (5.1); the right equality twice; the definition of mm; and the definition of hh.

We now show this decomposition of pp is unique. Suppose we have h,hT(A)h,h^{\prime}\in T(A) hyperaffine and m,mT(1)m,m^{\prime}\in T(1) with [hm]=[hm]\left[\smash{{h}\mathbin{\mid}{m}}\right]=\left[\smash{{h^{\prime}}\mathbin{\mid}{m^{\prime}}}\right]. As hh and hh^{\prime} are affine, we have m(x)=h(λa.m(x))=h(λa.m(x))=m(x)m(x)=h(\lambda a.\,m(x))=h^{\prime}(\lambda a.\,m^{\prime}(x))=m^{\prime}(x). We must show also that h=hh=h^{\prime}. Note that h(λa.m(xaa))=h(λa.h(λa.m(xaa)))=h(λa.h(λa.m(xaa)))h(\lambda a.\,m(x_{aa}))=h(\lambda a.\,h(\lambda a^{\prime}.\,m(x_{aa^{\prime}})))=h(\lambda a.\,h^{\prime}(\lambda a^{\prime}.\,m(x_{aa^{\prime}}))), so that the right-hand side does not depend on xaax_{aa^{\prime}} whenever aaa\neq a^{\prime}. Thus by Theorem 5.2(ii), we conclude that h(λa.h(λa.xaa))h(\lambda a.\,h^{\prime}(\lambda a^{\prime}.\,x_{aa^{\prime}})) does not depend on xaax_{aa^{\prime}} for any aaa\neq a^{\prime}. It follows that h(λa.h(λa.xaa))=h(λa.h(λa.xaa))=h(λa.xaa)h(\lambda a.\,h^{\prime}(\lambda a^{\prime}.\,x_{aa^{\prime}}))=h(\lambda a.\,h^{\prime}(\lambda a^{\prime}.\,x_{aa}))=h(\lambda a.\,x_{aa}) and so taking xaa=yax_{aa^{\prime}}=y_{a}, we conclude that h(λa.ya)=h(λa.h(λa.ya))=h(λa.ya)h^{\prime}(\lambda a.\,y_{a})=h(\lambda a.\,h^{\prime}(\lambda a.\,y_{a}))=h(\lambda a.\,y_{a}) so that h=hh=h^{\prime} as desired.

We now prove the if direction. Supposing that every operation of 𝕋\mathbb{T} has a unique hyperaffine–unary decomposition, we prove (i) and (ii) of Theorem 5.2. For (i), given pT(A)p\in T(A) with decomposition p=[hm]p=\left[\smash{{h}\mathbin{\mid}{m}}\right], we take q=hq=h, ua=idu_{a}=\mathrm{id}, va=mv_{a}=m and α=id\alpha=\mathrm{id} to obtain the required data satisfying (5.1). It remains to verify condition (ii). So let qT(B)q\in T(B), uT(1)Bu\in T(1)^{B} and α:BA\alpha\colon B\rightarrow A be such that pT(A)p\in T(A) given by p(x)=q(λb.ub(xα(b)))p(x)=q(\lambda b.\,u_{b}(x_{\alpha(b)})) does not depend on xax_{a}. Writing q=[hm]q=\left[\smash{{h}\mathbin{\mid}{m}}\right], we have

p(x)\displaystyle p(x) =[hm](λb.ub(xα(b)))=h(λb.m(ub(xα(b))))\displaystyle=\left[\smash{{h}\mathbin{\mid}{m}}\right](\lambda b.\,u_{b}(x_{\alpha(b)}))=h(\lambda b.\,m(u_{b}(x_{\alpha(b)})))
=h(λb.h(λb.m(ub(xα(b)))))=h(λb.n(xα(b)))=k(λa.n(xa))\displaystyle=h(\lambda b.\,h(\lambda b^{\prime}.\,m(u_{b^{\prime}}(x_{\alpha(b)}))))=h(\lambda b.\,n(x_{\alpha(b)}))=k(\lambda a.\,n(x_{a}))

where we define n(x)=h(λb.m(ub(x)))n(x)=h(\lambda b^{\prime}.\,m(u_{b^{\prime}}(x))) and k(x)=h(λb.xα(b))k(x)=h(\lambda b.\,x_{\alpha(b)}). Now consider the hyperaffine operations k,k′′T(A+1)k^{\prime},k^{\prime\prime}\in T(A+1) with

k(x,y)=k(x)andk′′(x,y)=k(x[y/xa]) .k^{\prime}(x,y)=k(x)\qquad\text{and}\qquad k^{\prime\prime}(x,y)=k(x[y/x_{a}])\hbox to0.0pt{ .\hss}

Because p=[kn]p=\left[\smash{{k}\mathbin{\mid}{n}}\right] does not depend on xax_{a}, the operations [kn]\left[\smash{{k^{\prime}}\mathbin{\mid}{n}}\right] and [k′′n]\left[\smash{{k^{\prime\prime}}\mathbin{\mid}{n}}\right] are equal. By unicity of decompositions, we have k=k′′k^{\prime}=k^{\prime\prime} in T(A+1)T(A+1), so that k(x)k(x) does not depend on xax_{a}. We claim it follows that h(y)h(y) does not depend on yby_{b} for any bα1(a)b\in\alpha^{-1}(a). For indeed, we have that x=k(λi.x)=k(a)(y,x)=h(α1(a))(y,x)x=k(\lambda i.\,x)=k^{(a)}(y,x)=h^{(\alpha^{-1}(a))}(y,x) in T(2)T(2), since k(x)k(x) does not depend on xax_{a}. Since, by hyperaffineness of hh, we have h(x)h,bxbh(x)\equiv_{h,b}x_{b} for each bBb\in B, we conclude that, for any bα1(a)b\in\alpha^{-1}(a), we have x=h(α1(a))(y,x)h,byx=h^{(\alpha^{-1}(a))}(y,x)\equiv_{h,b}y so that hh does not depend on bb. ∎

The proof of Theorem 5.5 just given provides an intellectually honest account of the genesis of the ideas in this paper; but for good measure, we will also give a direct proof of the theorem which does not rely on [10]. For now we only show that every cartesian closed variety is hyperaffine–unary; we will close the loop in Section 7 once we have a better handle on what hyperaffine–unary theories are.

It will in fact be clearer if we prove something more general. Recall that the copower IXI\cdot X of some X𝒞X\in{\mathcal{C}} by a set II is a coproduct of II copies of XX. We write ιi:XIX\iota_{i}\colon X\rightarrow I\cdot X for the coproduct coprojections, and given maps (fi:XY)iI(f_{i}\colon X\rightarrow Y)_{i\in I}, write fi:IXY{\langle{f_{i}}\rangle}\colon I\cdot X\rightarrow Y for the unique map with fiιi=fi{\langle{f_{i}}\rangle}\circ\iota_{i}=f_{i} for each ii.

Definition 5.6 (Complete theory of dual operations).

Let 𝒞{\mathcal{C}} be a category with all set-indexed copowers and let X𝒞X\in{\mathcal{C}}. The complete theory of dual operations of XX 𝕋X\mathbb{T}_{X} is the algebraic theory with:

  • TX(I)=𝒞(X,IX)T_{X}(I)={\mathcal{C}}(X,I\cdot X);

  • Projection elements ιiT(I)\iota_{i}\in T(I);

  • Substitution 𝒞(X,IX)×𝒞(X,JX)I𝒞(X,JX){\mathcal{C}}(X,I\cdot X)\times{\mathcal{C}}(X,J\cdot X)^{I}\rightarrow{\mathcal{C}}(X,J\cdot X) given by

    (t,u)X\ext@arrow01200\rightarrowfill@tIX\ext@arrow01200\rightarrowfill@uiJX .(t,u)\mapsto X\ext@arrow 01{20}0\rightarrowfill@{}{t}I\cdot X\ext@arrow 01{20}0\rightarrowfill@{}{{\langle{u_{i}}\rangle}}J\cdot X\hbox to0.0pt{ .\hss}

To a universal algebraist, this is the (infinitary) clone of co-operations of XX [2]; to a category theorist, it is the structure of the hom-functor 𝒞(X,):𝒞𝒮et{\mathcal{C}}(X,{\mathord{\text{--}}})\colon{\mathcal{C}}\rightarrow\mathrm{\mathcal{S}et} [11]. The following standard result is now [11, Theorem III.2]:

Proposition 5.7.

Let 𝒞{\mathcal{C}} be a category with set-indexed copowers and let X𝒞X\in{\mathcal{C}}. For any Y𝒞Y\in{\mathcal{C}}, the set 𝒞(X,Y){\mathcal{C}}(X,Y) is a model for 𝕋X\mathbb{T}_{X} with t(f)=fit:XIXY\mathord{\left\llbracket{t}\right\rrbracket}(f)={\langle{f_{i}}\rangle}\circ t\colon X\rightarrow I\cdot X\rightarrow Y for each tT(I)t\in T(I). For any g:YZg\colon Y\rightarrow Z, the function g():𝒞(X,Y)𝒞(X,Z)g\circ({\mathord{\text{--}}})\colon{\mathcal{C}}(X,Y)\rightarrow{\mathcal{C}}(X,Z) is a 𝕋X\mathbb{T}_{X}-homomorphism, and so we induce a factorisation

𝒞\textstyle{{{\mathcal{C}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K\scriptstyle{K}𝒞(X,)\scriptstyle{{\mathcal{C}}(X,{\mathord{\text{--}}})}𝕋X-od ,\textstyle{{\mathbb{T}_{X}\text{-}\mathrm{\mathcal{M}od}\hbox to0.0pt{ ,\hss}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}U\scriptstyle{U}𝒮et\textstyle{{\mathrm{\mathcal{S}et}}}
(5.2)

which is universal among factorisations of 𝒞(X,){\mathcal{C}}(X,{\mathord{\text{--}}}) through a variety.

When, in the above proposition, we take 𝒞{\mathcal{C}} itself to be a variety 𝕋-od\mathbb{T}\text{-}\mathrm{\mathcal{M}od}, and take X=𝐓(1)X=\mathbf{T}(1), the free model on one generator, it is visibly the case that 𝕋X𝕋\mathbb{T}_{X}\cong\mathbb{T} and that KK is an isomorphism. Thus, the fact that any cartesian closed variety is hyperaffine–unary follows from:

Proposition 5.8.

Let 𝒞{\mathcal{C}} be a category with finite products and set-indexed copowers, and suppose that each ()×X:𝒞𝒞({\mathord{\text{--}}})\times X\colon{\mathcal{C}}\rightarrow{\mathcal{C}} preserves copowers; in particular, this will be so if 𝒞{\mathcal{C}} is cartesian closed. For any X𝒞X\in{\mathcal{C}}, the complete theory of dual operations 𝕋X\mathbb{T}_{X} is hyperaffine–unary.

Proof.

Since ()×X({\mathord{\text{--}}})\times X preserves copowers, we may realise the copower IXI\cdot X as the product (I1)×X(I\cdot 1)\times X via the coprojection maps

X\ext@arrow01200\rightarrowfill@1×X\ext@arrow01200\rightarrowfill@ιi×X(I1)×X .X\ext@arrow 01{20}0\rightarrowfill@{}{\cong}1\times X\ext@arrow 01{20}0\rightarrowfill@{}{\iota_{i}\times X}(I\cdot 1)\times X\hbox to0.0pt{ .\hss}

Thus, we may write operations in T(I)T(I) as pairs (h,m):X(I1)×X(h,m)\colon X\rightarrow(I\cdot 1)\times X where h:XI1h\colon X\rightarrow I\cdot 1 and m:XXm\colon X\rightarrow X. From the definition of substitution in 𝕋X\mathbb{T}_{X}, such an operation is affine just when

X\ext@arrow01200\rightarrowfill@(h,m)(I1)×X\ext@arrow01200\rightarrowfill@π2X=X\ext@arrow01200\rightarrowfill@idX ,X\ext@arrow 01{20}0\rightarrowfill@{}{(h,m)}(I\cdot 1)\times X\ext@arrow 01{20}0\rightarrowfill@{}{\pi_{2}}X\quad=\quad X\ext@arrow 01{20}0\rightarrowfill@{}{\mathrm{id}}X\hbox to0.0pt{ ,\hss}

i.e., just when m=idm=\mathrm{id}. We claim that any such t=(h,id)t=(h,\mathrm{id}) is in fact hyperaffine. This follows from commutativity in:

(I1)×X\textstyle{(I\cdot 1)\times X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(I1)×(h,id)\scriptstyle{(I\cdot 1)\times(h,\mathrm{id})}X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(h,id)\scriptstyle{(h,\mathrm{id})}(h,id)\scriptstyle{(h,\mathrm{id})}(Δ,id)\scriptstyle{(\Delta,\mathrm{id})}X×X×X\textstyle{X\times X\times X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h×h×X\scriptstyle{h\times h\times X}(I1)×(I1)×X\textstyle{(I\cdot 1)\times(I\cdot 1)\times X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}θ×X\scriptstyle{\theta\times X}(I1)×X\textstyle{(I\cdot 1)\times X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(Δ1)×X\scriptstyle{(\Delta\cdot 1)\times X}Δ×X\scriptstyle{\Delta\times X}((I×I)1)×X\textstyle{((I\times I)\cdot 1)\times X}

whose uppermost composite is the interpretation of t(λi.t(λj.xij))t(\lambda i.\,t(\lambda j.\,x_{ij})) and whose lower composite interprets t(λi.xii)t(\lambda i.x_{ii}); here θ:(I1)×(I1)(I×I)1\theta\colon(I\cdot 1)\times(I\cdot 1)\rightarrow(I\times I)\cdot 1 is the canonical isomorphism characterised by θ(ιi,ιj)=ι(i,j)\theta\cdot(\iota_{i},\iota_{j})=\iota_{(i,j)}.

So the hyperaffine operations of 𝕋X\mathbb{T}_{X} are those of the form (h,id):X(1I)×X(h,\mathrm{id})\colon X\rightarrow(1\cdot I)\times X; and, of course, the unary operations are those of the form m:XXm\colon X\rightarrow X. Moreover, if hh is hyperaffine and mm is unary, then the operation [hm]=h(λi.m(i))\left[\smash{{h}\mathbin{\mid}{m}}\right]=h(\lambda i.\,m(i)) is interpreted by the composite

X\ext@arrow01200\rightarrowfill@(h,id)(1I)×X\ext@arrow01200\rightarrowfill@id×m(1I)×X=X\ext@arrow01200\rightarrowfill@(h,m)(1I)×X .X\ext@arrow 01{20}0\rightarrowfill@{}{(h,\mathrm{id})}(1\cdot I)\times X\ext@arrow 01{20}0\rightarrowfill@{}{\mathrm{id}\times m}(1\cdot I)\times X\quad=\quad X\ext@arrow 01{20}0\rightarrowfill@{}{(h,m)}(1\cdot I)\times X\hbox to0.0pt{ .\hss}

So each operation t=(h,m)T(I)t=(h,m)\in T(I) has a unique hyperaffine–unary decomposition into the hyperaffine (h,id)T(I)(h,\mathrm{id})\in T(I) and the unary mT(1)m\in T(1), as desired. ∎

6. Matched pairs of theories

As the name suggests, a hyperaffine–unary theory has a hyperaffine part and a unary part. In this section, we show that these two parts, together with their actions on each other, provide an entirely equivalent description of the notion of hyperaffine–unary theory. To begin with, let us record how we extract out the two parts of a hyperaffine–unary theory.

Proposition 6.1.

Let 𝕋\mathbb{T} be a hyperaffine–unary theory. The hyperaffine operations of 𝕋\mathbb{T} form a subtheory \mathbb{H}, called the hyperaffine part; while T(1)T(1) forms a monoid MM under substitution, called the unary part.

Proof.

The only non-trivial point is that hyperaffine operations are closed under substitution. But every affine operation is hyperaffine by Lemma 5.4, and the affine operations in any theory are easily closed under substitution. ∎

Clearly, if we know \mathbb{H} and MM then we know every operation of 𝕋\mathbb{T}. However, the monoid structure of MM and the substitution structure of \mathbb{H} do not determine the substitution structure of 𝕋\mathbb{T}. For this, we also need to record how \mathbb{H} and MM act on each other via substitution in 𝕋\mathbb{T}.

Proposition 6.2.

Let 𝕋\mathbb{T} be a hyperaffine–unary theory with hyperaffine and unary parts \mathbb{H} and MM. We may determine operations

M×H(I)\displaystyle M\times H(I) H(I)\displaystyle\rightarrow H(I) H(I)×MI\displaystyle\qquad\quad H(I)\times M^{I} M\displaystyle\rightarrow M
(m,h)\displaystyle(m,h) mh\displaystyle\mapsto m^{\ast}h (h,n)\displaystyle(h,n) hn\displaystyle\mapsto h\rhd n

as follows: if hH(I)h\in H(I) and mMm\in M, then mhH(I)m^{\ast}h\in H(I) is unique such that

m(h(λi.xi))=(mh)(λi.m(xi)) ;m(h(\lambda i.\,x_{i}))=(m^{\ast}h)(\lambda i.\,m(x_{i}))\hbox to0.0pt{ ;\hss} (6.1)

while if hH(I)h\in H(I) and nMIn\in M^{I}, then hnMh\rhd n\in M is unique such that

h(λi.ni(x))=(hn)(x) .h(\lambda i.\,n_{i}(x))=(h\rhd n)(x)\hbox to0.0pt{ .\hss} (6.2)

These operations uniquely determine the substitution structure of 𝕋\mathbb{T} via the formulae:

  • πi=[πi1]\pi_{i}=\left[\smash{{\pi_{i}}\mathbin{\mid}{1}}\right] in T(I)T(I), where 1=π11=\pi_{1} is the identity element of MM;

  • If [hm]T(I)\left[\smash{{h}\mathbin{\mid}{m}}\right]\in T(I) and [kn]T(J)I\left[\smash{{k}\mathbin{\mid}{n}}\right]\in T(J)^{I} (i.e., [kini]T(J)\left[\smash{{k_{i}}\mathbin{\mid}{n_{i}}}\right]\in T(J) for each ii), then

    [hm]([kn])=[h(λi.mki)h(λi.mni)] in T(J) .\left[\smash{{h}\mathbin{\mid}{m}}\right](\left[\smash{{k}\mathbin{\mid}{n}}\right])=\left[\smash{{h(\lambda i.\,m^{\ast}k_{i})}\mathbin{\mid}{h\rhd(\lambda i.\,mn_{i})}}\right]\text{ in }T(J)\hbox to0.0pt{ .\hss} (6.3)
Proof.

For the unique existence of mhm^{\ast}h, the composite operation m(h(λi.xi))T(I)m(h(\lambda i.\,x_{i}))\in T(I) admits a unique hyperaffine–unary decomposition; but since m(h(λi.x))=m(x)m(h(\lambda i.\,x))=m(x), the unary part of this must be mm. The corresponding hyperaffine part mhH(I)m^{\ast}h\in H(I) is thus the unique operation making (6.1) hold. The unique existence of hnh\rhd n is trivial: take it as the substitution h(n)h(n) in 𝕋\mathbb{T}, and then (6.2) follows from associativity of substitution. It remains to prove that these operations determine the projections and substitutions for 𝕋\mathbb{T}. That πi=[πi1]\pi_{i}=\left[\smash{{\pi_{i}}\mathbin{\mid}{1}}\right] is trivial; as for (6.3), we calculate that:

[hm]([kn])(x)\displaystyle\left[\smash{{h}\mathbin{\mid}{m}}\right](\left[\smash{{k}\mathbin{\mid}{n}}\right])(x) =h(λi.m(ki(λj.ni(xj))))\displaystyle=h(\lambda i.\,m(k_{i}(\lambda j.\,n_{i}(x_{j})))) definition of []\left[\smash{{\ }\mathbin{\mid}{\ }}\right]
=h(λi.(mki)(λj.m(ni(xj))))\displaystyle=h(\lambda i.\,(m^{\ast}k_{i})(\lambda j.\,m(n_{i}(x_{j})))) definition of mkim^{\ast}k_{i}
=h(λi.h(λi.(mki)(λj.m(ni(xj)))))\displaystyle=h(\lambda i.\,h(\lambda i^{\prime}.\,(m^{\ast}k_{i})(\lambda j.\,m(n_{i^{\prime}}(x_{j}))))) hyperaffineness of hh
=h(λi.(mki)(λj.h(λi.m(ni(xj)))))\displaystyle=h(\lambda i.\,(m^{\ast}k_{i})(\lambda j.\,h(\lambda i^{\prime}.\,m(n_{i^{\prime}}(x_{j}))))) commutativity in \mathbb{H}
=(h(λi.mki))(λj.h(λi.mni)(xj))\displaystyle=(h(\lambda i.\,m^{\ast}k_{i}))(\lambda j.\,h(\lambda i.\,mn_{i})(x_{j})) associativity in \mathbb{H}
=[h(λi.mki)h(λi.mni)](x)\displaystyle=\left[\smash{{h(\lambda i.\,m^{\ast}k_{i})}\mathbin{\mid}{h\rhd(\lambda i.\,mn_{i})}}\right](x) definition of []\left[\smash{{\ }\mathbin{\mid}{\ }}\right].

So any hyperaffine–unary algebraic theory is determined by its hyperaffine and unary parts, together with the operations of (6.1) and (6.2). However, if given a hyperaffine theory \mathbb{H} and a monoid MM, together with operations of the same form, we should not expect to obtain a structure of hyperaffine–unary theory on the sets T(I)=H(I)×MT(I)=H(I)\times M: for although the preceding proposition indicates how to define substitution from these operations, it does not ensure that the axioms of a theory are satisfied. For this, we must impose axioms on the operations relating \mathbb{H} and MM.

Definition 6.3 (Matched pairs of theories).

A matched pair of theories [M]\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right] comprises a hyperaffine theory \mathbb{H} and a monoid MM together with operations:

M×H(I)\displaystyle M\times H(I) H(I)\displaystyle\rightarrow H(I) H(I)×MI\displaystyle\qquad\quad H(I)\times M^{I} M\displaystyle\rightarrow M (6.4)
(m,h)\displaystyle(m,h) mh\displaystyle\mapsto m^{\ast}h (h,n)\displaystyle(h,n) hn\displaystyle\mapsto h\rhd n

satisfying the following axioms:

  1. (i)

    For mMm\in M, the maps m():H(I)H(I)m^{\ast}({\mathord{\text{--}}})\colon H(I)\rightarrow H(I) give a homomorphism of algebraic theories m:{m^{\ast}\colon\mathbb{H}\rightarrow\mathbb{H}}:

    m(πi)\displaystyle m^{\ast}(\pi_{i}) =πi\displaystyle=\pi_{i} (6.5)
    m(h(k))\displaystyle m^{\ast}(h(k)) =(mh)(λi.mki) ;\displaystyle=(m^{\ast}h)(\lambda i.\,m^{\ast}k_{i})\hbox to0.0pt{ ;\hss} (6.6)
  2. (ii)

    The maps in (i) constitute an MM-action on \mathbb{H}:

    1h\displaystyle 1^{\ast}h =h\displaystyle=h (6.7)
    mnh\displaystyle m^{\ast}n^{\ast}h =(mn)(h) ;\displaystyle=(mn)^{\ast}(h)\hbox to0.0pt{ ;\hss} (6.8)
  3. (iii)

    The operations :H(I)×MIM\mathord{\rhd}\colon H(I)\times M^{I}\rightarrow M make MM into a \mathbb{H}-model 𝑴{\boldsymbol{M}}:

    πim\displaystyle\pi_{i}\rhd m =mi\displaystyle=m_{i} (6.9)
    h(k)(m)\displaystyle h(k)\rhd(m) =h(λi.kim) ;\displaystyle=h\rhd(\lambda i.\,k_{i}\rhd m)\hbox to0.0pt{ ;\hss} (6.10)
  4. (iv)

    Right multiplication by nMn\in M is a \mathbb{H}-model homomorphism ()n:𝑴𝑴({\mathord{\text{--}}})n\colon{\boldsymbol{M}}\rightarrow{\boldsymbol{M}}:

    (hm)n=h(λi.min) ;(h\rhd m)n=h\rhd(\lambda i.\,m_{i}n)\hbox to0.0pt{ ;\hss} (6.11)
  5. (v)

    Left multiplication by nMn\in M is a \mathbb{H}-model homomorphism n():𝑴n𝑴{n({\mathord{\text{--}}})\colon{\boldsymbol{M}}\rightarrow n^{\ast}{\boldsymbol{M}}}, where n𝑴n^{\ast}{\boldsymbol{M}} is the \mathbb{H}-model obtained by pulling back 𝑴{\boldsymbol{M}} along the theory homomorphism n:n^{\ast}\colon\mathbb{H}\rightarrow\mathbb{H}:

    n(hm)=nh(λi.nmi) ;n(h\rhd m)=n^{\ast}h\rhd(\lambda i.\,nm_{i})\hbox to0.0pt{ ;\hss} (6.12)
  6. (vi)

    For hH(I)h\in H(I), the map ()h:MH(I)({\mathord{\text{--}}})^{\ast}h\colon M\rightarrow H(I) is a \mathbb{H}-model homomorphism 𝑴𝑯(I){\boldsymbol{M}}\rightarrow{\boldsymbol{H}}(I), where 𝑯(I){\boldsymbol{H}}(I) is the free \mathbb{H}-model structure on H(I)H(I):

    (km)(h)=k(λj.mjh) .(k\rhd m)^{\ast}(h)=k(\lambda j.\,m_{j}^{\ast}h)\hbox to0.0pt{ .\hss} (6.13)

We call a matched pair of theories finitary or non-degenerate when \mathbb{H} is so.

A homomorphism [φf]:[M][M]\left[\smash{{\varphi}\mathbin{\mid}{f}}\right]\colon\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right]\rightarrow\left[\smash{{\mathbb{H}^{\prime}}\mathbin{\mid}{M^{\prime}}}\right] of matched pairs of theories is a homomorphism of theories φ:\varphi\colon\mathbb{H}\rightarrow\mathbb{H}^{\prime} and a monoid homomorphism f:MMf\colon M\rightarrow M^{\prime} such that for all hH(I)h\in H(I), mMm\in M and nMIn\in M^{I}, we have:

φ(mh)=f(m)(φ(h))andf(hn)=φ(h)(λi.f(ni)) .\varphi(m^{\ast}h)=f(m)^{\ast}(\varphi(h))\quad\text{and}\quad f(h\rhd n)=\varphi(h)\rhd(\lambda i.\,f(n_{i}))\hbox to0.0pt{ .\hss} (6.14)

We now show soundness and completeness of this axiomatisation.

Proposition 6.4.

If 𝕋\mathbb{T} is a hyperaffine–unary theory, then its hyperaffine and unary parts \mathbb{H} and MM constitute a matched pair of theories 𝕋=[M]\mathbb{T}^{\downarrow}=\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right] under the operations of Proposition 6.2; and 𝕋\mathbb{T}^{\downarrow} is finitary or non-degenerate just when 𝕋\mathbb{T} is so.

Proof.

For (6.5)–(6.8), we calculate using (6.1) and the theory axioms of 𝕋\mathbb{T} and conclude using unicity of hyperaffine–unary decompositions. For (6.5), the calculation is (mπi)(λj.m(xj))=m(πi(λj.xj))=m(xi)=πi(λj.m(xj))(m^{\ast}\pi_{i})(\lambda j.\,m(x_{j}))=m(\pi_{i}(\lambda j.\,x_{j}))=m(x_{i})=\pi_{i}(\lambda j.\,m(x_{j})). For (6.6):

(m(t(u)))(λj.m(xj))\displaystyle(m^{\ast}(t(u)))(\lambda j.\,m(x_{j})) =m(t(λi.ui(x)))=(mt)(λi.m(ui(x)))\displaystyle=m(t(\lambda i.\,u_{i}(x)))=(m^{\ast}t)(\lambda i.\,m(u_{i}(x)))
=(mt)(λi.(mui)(λj.m(xj))))\displaystyle=(m^{\ast}t)(\lambda i.\,(m^{\ast}u_{i})(\lambda j.\,m(x_{j}))))
=((mt)(λi.mui))(λj.m(xj)) .\displaystyle=((m^{\ast}t)(\lambda i.\,m^{\ast}u_{i}))(\lambda j.\,m(x_{j}))\hbox to0.0pt{ .\hss}

For (6.7), we have (1h)(x)=(1h)(λi. 1(xi))=1(h(x))=h(x)(1^{\ast}h)(x)=(1^{\ast}h)(\lambda i.\,1(x_{i}))=1(h(x))=h(x), and for (6.8),

(mnh)(λi.m(n(xi)))\displaystyle(m^{\ast}n^{\ast}h)(\lambda i.\,m(n(x_{i}))) =m((nh)(λi.n(xi))=m(n(h(x)))\displaystyle=m((n^{\ast}h)(\lambda i.\,n(x_{i}))=m(n(h(x)))
=(mn)(h(x))=((mn)h)(λi.m(n(xi))) .\displaystyle=(mn)(h(x))=((mn)^{\ast}h)(\lambda i.\,m(n(x_{i})))\hbox to0.0pt{ .\hss}

Next, (6.9) and (6.10) follow directly from the theory axioms for 𝕋\mathbb{T}. Finally, for (6.11)–(6.13), we calculate using (6.1) and (6.2) and conclude using unicity of decompositions. For (6.11) the calculation is that (hm)(n)(x)=h(λi.mi(n(x)))=(h(λi.min))(x)(h\rhd m)(n)(x)=h(\lambda i.\,m_{i}(n(x)))=(h\rhd(\lambda i.\,m_{i}n))(x). For (6.12) we have:

(n(hm))(x)=n(h(λi.mi(x))=(nh)(λi.n(mi(x)))=(nh(λi.nmi))(x) ;(n(h\rhd m))(x)=n(h(\lambda i.\,m_{i}(x))=(n^{\ast}h)(\lambda i.\,n(m_{i}(x)))=(n^{\ast}h\rhd(\lambda i.\,nm_{i}))(x)\hbox to0.0pt{ ;\hss}

and finally, for (6.13) we have:

((km)h)(λi.(km)(xi))\displaystyle((k\rhd m)^{\ast}h)(\lambda i.\,(k\rhd m)(x_{i})) =(km)(h(x))=k(λj.mj(h(x)))\displaystyle=(k\rhd m)(h(x))=k(\lambda j.\,m_{j}(h(x)))
=k(λj.(mjh)(λi.mj(xi)))\displaystyle=k(\lambda j.\,(m_{j}^{\ast}h)(\lambda i.\,m_{j}(x_{i})))
=k(λj.k(λj.(mjh)(λi.mj(xi))))\displaystyle=k(\lambda j.\,k(\lambda j^{\prime}.\,(m_{j}^{\ast}h)(\lambda i.\,m_{j^{\prime}}(x_{i}))))
=k(λj.(mjh)(λi.k(λj.mj(xi))))\displaystyle=k(\lambda j.\,(m_{j}^{\ast}h)(\lambda i.\,k(\lambda j^{\prime}.\,m_{j^{\prime}}(x_{i}))))
=(k(λj.(mjh)))(λi.(km)(xi)) .\displaystyle=(k(\lambda j.\,(m_{j}^{\ast}h)))(\lambda i.\,(k\rhd m)(x_{i}))\hbox to0.0pt{ .\hss}\qed
Proposition 6.5.

For any matched pair of theories [M]\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right], there is a hyperaffine–unary theory M\mathbb{H}\mathbin{\bowtie}M, the bicrossed product of \mathbb{H} and MM, with (M)[M](\mathbb{H}\mathbin{\bowtie}M)^{\downarrow}\cong\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right].

Proof.

For each set II, we take (M)(I)=H(I)×M(\mathbb{H}\mathbin{\bowtie}M)(I)=H(I)\times M, and write a typical element like before as [hm]\left[\smash{{h}\mathbin{\mid}{m}}\right]. We define projection elements πi=[πi1]\pi_{i}=\left[\smash{{\pi_{i}}\mathbin{\mid}{1}}\right] and substitution operations by the formula (6.3), and claim that, upon doing so, we obtain an algebraic theory M\mathbb{H}\mathbin{\bowtie}M. For this, we must check the three theory axioms. Firstly:

[hm](λi.[πi1])=[h(λi.mπi)h(λi.m1)]=[h(λi.πi)h(λi.m)]=[hm]\left[\smash{{h}\mathbin{\mid}{m}}\right](\lambda i.\,\left[\smash{{\pi_{i}}\mathbin{\mid}{1}}\right])=\left[\smash{{h(\lambda i.\,m^{\ast}\pi_{i})}\mathbin{\mid}{h\rhd(\lambda i.\,m1)}}\right]=\left[\smash{{h(\lambda i.\,\pi_{i})}\mathbin{\mid}{h\rhd(\lambda i.\,m)}}\right]=\left[\smash{{h}\mathbin{\mid}{m}}\right]

by the definition, axiom (6.5), and axiom (6.10). Secondly,

[πi1]([kn])=[πi(λj. 1kj)πi(λj. 1nj)]=[1ki1ni]=[kini] .\left[\smash{{\pi_{i}}\mathbin{\mid}{1}}\right](\left[\smash{{k}\mathbin{\mid}{n}}\right])=\left[\smash{{\pi_{i}(\lambda j.\,1^{\ast}k_{j})}\mathbin{\mid}{\pi_{i}\rhd(\lambda j.\,1n_{j})}}\right]=\left[\smash{{1^{\ast}k_{i}}\mathbin{\mid}{1n_{i}}}\right]=\left[\smash{{k_{i}}\mathbin{\mid}{n_{i}}}\right]\hbox to0.0pt{ .\hss}

by the definition, axiom (6.9) and axiom (6.7). Finally, for associativity of substitution, we first compute that ([hm]([kn]))([p])(\left[\smash{{h}\mathbin{\mid}{m}}\right](\left[\smash{{k}\mathbin{\mid}{n}}\right]))(\left[\smash{{\ell}\mathbin{\mid}{p}}\right]) is given by

[h(λi.mki)h(λi.mni)]([p])\displaystyle{}\mathrel{\phantom{=}}\left[\smash{{h(\lambda i.\,m^{\ast}k_{i})}\mathbin{\mid}{h\rhd(\lambda i.\,mn_{i})}}\right](\left[\smash{{\ell}\mathbin{\mid}{p}}\right])
=[(h(λi.mki))(λj.(h(λi.mni))j)h(λi.mki)(λj.(h(λi.mni))pj)]\displaystyle=\left[\smash{{(h(\lambda i.\,m^{\ast}k_{i}))(\lambda j.\,(h\rhd(\lambda i.\,mn_{i}))^{\ast}\ell_{j})}\mathbin{\mid}{h(\lambda i.\,m^{\ast}k_{i})\rhd(\lambda j.\,(h\rhd(\lambda i.\,mn_{i}))p_{j})}}\right]

while [hm](λi.[kini]([p]))\left[\smash{{h}\mathbin{\mid}{m}}\right](\lambda i.\,\left[\smash{{k_{i}}\mathbin{\mid}{n_{i}}}\right](\left[\smash{{\ell}\mathbin{\mid}{p}}\right])) is given by

[hm](λi.[ki(λj.nij)ki(λj.nipj)])\displaystyle{}\mathrel{\phantom{=}}\left[\smash{{h}\mathbin{\mid}{m}}\right](\lambda i.\,\left[\smash{{k_{i}(\lambda j.\,n_{i}^{\ast}\ell_{j})}\mathbin{\mid}{k_{i}\rhd(\lambda j.\,n_{i}p_{j})}}\right])
=[h(λi.m(ki(λj.nij)))h(λi.m(ki(λj.nipj)))] .\displaystyle=\left[\smash{{h(\lambda i.\,m^{\ast}(k_{i}(\lambda j.\,n_{i}^{\ast}\ell_{j})))}\mathbin{\mid}{h\rhd(\lambda i.\,m(k_{i}\rhd(\lambda j.\,n_{i}p_{j})))}}\right]\hbox to0.0pt{ .\hss}

Comparing first terms we have:

(h(λi.mki))(λj.h(λi.mni)j)\displaystyle{}\mathrel{\phantom{=}}(h(\lambda i.\,m^{\ast}k_{i}))(\lambda j.\,h\rhd(\lambda i.\,mn_{i})^{\ast}\ell_{j})
=h(λi.mki(λj.(h(λi.mni))j))\displaystyle=h(\lambda i.\,m^{\ast}k_{i}(\lambda j.\,(h\rhd(\lambda i^{\prime}.\,mn_{i^{\prime}}))^{\ast}\ell_{j})) associativity in \mathbb{H}
=h(λi.mki(λj.h(λi.(mni)j)))\displaystyle=h(\lambda i.\,m^{\ast}k_{i}(\lambda j.\,h(\lambda i^{\prime}.\,(mn_{i^{\prime}})^{\ast}\ell_{j}))) (6.13)
=h(λi.h(λi.mki(λj.(mni)j)))\displaystyle=h(\lambda i.\,h(\lambda i^{\prime}.\,m^{\ast}k_{i}(\lambda j.\,(mn_{i^{\prime}})^{\ast}\ell_{j}))) commutativity in \mathbb{H}
=h(λi.mki(λj.(mni)j))\displaystyle=h(\lambda i.\,m^{\ast}k_{i}(\lambda j.\,(mn_{i})^{\ast}\ell_{j})) hyperaffinness
=h(λi.mki(λj.mnij))\displaystyle=h(\lambda i.\,m^{\ast}k_{i}(\lambda j.\,m^{\ast}n_{i}^{\ast}\ell_{j})) (6.8)
=h(λi.m(ki(λj.nij))) ;\displaystyle=h(\lambda i.\,m^{\ast}(k_{i}(\lambda j.\,n_{i}^{\ast}\ell_{j})))\hbox to0.0pt{ ;\hss} (6.6)

while comparing second terms, we have

h(λi.mki)(λj.(h(λi.mni))pj)\displaystyle{}\mathrel{\phantom{=}}h(\lambda i.\,m^{\ast}k_{i})\rhd(\lambda j.\,(h\rhd(\lambda i.\,mn_{i}))p_{j})
=h(λi.mki)(λj.h(λi.mnipj))\displaystyle=h(\lambda i.\,m^{\ast}k_{i})\rhd(\lambda j.\,h\rhd(\lambda i.\,mn_{i}p_{j})) (6.11)
=h(λi.mki(λj.h(λi.mnipj)))\displaystyle=h\rhd(\lambda i.\,m^{\ast}k_{i}\rhd(\lambda j.\,h\rhd(\lambda i^{\prime}.\,mn_{i^{\prime}}p_{j}))) (6.10)
=h(λi.h(λi.mki(λj.mnipj)))\displaystyle=h\rhd(\lambda i.\,h\rhd(\lambda i^{\prime}.\,m^{\ast}k_{i}\rhd(\lambda j.\,mn_{i^{\prime}}p_{j}))) commutativity in \mathbb{H}
=h(λi.mki(λj.mnipj)))\displaystyle=h\rhd(\lambda i.\,m^{\ast}k_{i}\rhd(\lambda j.\,mn_{i}p_{j}))) hyperaffineness
=h(λi.m(ki(λj.nipj)))\displaystyle=h\rhd(\lambda i.\,m(k_{i}\rhd(\lambda j.\,n_{i}p_{j}))) (6.12)

as desired. So M\mathbb{H}\mathbin{\bowtie}M is an algebraic theory.

We next characterise the unary and hyperaffine operations of M\mathbb{H}\mathbin{\bowtie}M. Clearly the unary operations are those of the form [1m]{\left[\smash{{1}\mathbin{\mid}{m}}\right]}. As for the hyperaffines, note that [hm](M)(I)\left[\smash{{h}\mathbin{\mid}{m}}\right]\in(\mathbb{H}\mathbin{\bowtie}M)(I) will be hyperaffine when [hm](λi.x)=x{\left[\smash{{h}\mathbin{\mid}{m}}\right](\lambda i.\,x)=x}, i.e., when [h(λi.x)m]=[x1]\left[\smash{{h(\lambda i.\,x)}\mathbin{\mid}{m}}\right]=\left[\smash{{x}\mathbin{\mid}{1}}\right]. In particular, we must have m=1m=1; and such an element will be hyperaffine just when also [h1](λi.[h1](λj.xij))=[h1](λi.xii)\left[\smash{{h}\mathbin{\mid}{1}}\right](\lambda i.\,\left[\smash{{h}\mathbin{\mid}{1}}\right](\lambda j.\,x_{ij}))=\left[\smash{{h}\mathbin{\mid}{1}}\right](\lambda i.\,x_{ii}), i.e., [h(λi.h(λj.xij))1]=[h(λi.xii)1]\left[\smash{{h(\lambda i.\,h(\lambda j.\,x_{ij}))}\mathbin{\mid}{1}}\right]=\left[\smash{{h(\lambda i.\,x_{ii})}\mathbin{\mid}{1}}\right]. Since each hH(I)h\in H(I) is hyperaffine, we conclude that the hyperaffines in (M)(I)(\mathbb{H}\mathbin{\bowtie}M)(I) are all elements of the form [h1]\left[\smash{{h}\mathbin{\mid}{1}}\right]. It follows from this characterisation that each [hm](M)(I)\left[\smash{{h}\mathbin{\mid}{m}}\right]\in(\mathbb{H}\mathbin{\bowtie}M)(I) has the unique hyperaffine–unary decomposition [hm](x)=[h1](λi.[1m](xi))\left[\smash{{h}\mathbin{\mid}{m}}\right](x)=\left[\smash{{h}\mathbin{\mid}{1}}\right](\lambda i.\,\left[\smash{{1}\mathbin{\mid}{m}}\right](x_{i})), whence it follows that M\mathbb{H}\mathbin{\bowtie}M is a hyperaffine–unary theory.

It remains to show that (M)[M](\mathbb{H}\mathbin{\bowtie}M)^{\downarrow}\cong\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right]. Writing {\mathbb{H}^{\prime}} and M{M^{\prime}} for the hyperaffine and unary parts of M\mathbb{H}\mathbin{\bowtie}M, we have isomorphisms φI:H(I)H(I)\varphi_{I}\colon H(I)\rightarrow H^{\prime}(I) and f:MMf\colon M\rightarrow M^{\prime} given by h[h1]h\mapsto\left[\smash{{h}\mathbin{\mid}{1}}\right] and m[1m]m\mapsto\left[\smash{{1}\mathbin{\mid}{m}}\right]. Because [h1](λi.[ki1])=[h(k)1]\left[\smash{{h}\mathbin{\mid}{1}}\right](\lambda i.\,\left[\smash{{k_{i}}\mathbin{\mid}{1}}\right])=\left[\smash{{h(k)}\mathbin{\mid}{1}}\right] and πi=[πi1]\pi_{i}=\left[\smash{{\pi_{i}}\mathbin{\mid}{1}}\right] in M\mathbb{H}\mathbin{\bowtie}M, the maps φI\varphi_{I} constitute an isomorphism of theories \mathbb{H}\rightarrow\mathbb{H}^{\prime}; and because [1m]([1n])=[1mn]\left[\smash{{1}\mathbin{\mid}{m}}\right](\left[\smash{{1}\mathbin{\mid}{n}}\right])=\left[\smash{{1}\mathbin{\mid}{mn}}\right] and 1=π1=[11]1=\pi_{1}=\left[\smash{{1}\mathbin{\mid}{1}}\right] in T(1)T(1), the map ff is a monoid isomorphism MMM\rightarrow M^{\prime}.

We now verify the two axioms in (6.14). For the first, observe that the operation ()({\mathord{\text{--}}})^{\ast} on (M)(\mathbb{H}\mathbin{\bowtie}M)^{\downarrow} has ([1m])([h1])(\left[\smash{{1}\mathbin{\mid}{m}}\right])^{\ast}(\left[\smash{{h}\mathbin{\mid}{1}}\right]) given by the unique element [k1]H(I)\left[\smash{{k}\mathbin{\mid}{1}}\right]\in H^{\prime}(I) for which [k1](λi.[1m](xi))=[1m]([h1])\left[\smash{{k}\mathbin{\mid}{1}}\right](\lambda i.\,\left[\smash{{1}\mathbin{\mid}{m}}\right](x_{i}))=\left[\smash{{1}\mathbin{\mid}{m}}\right](\left[\smash{{h}\mathbin{\mid}{1}}\right]). But [k1](λi.[1m](xi))=[km]\left[\smash{{k}\mathbin{\mid}{1}}\right](\lambda i.\,\left[\smash{{1}\mathbin{\mid}{m}}\right](x_{i}))=\left[\smash{{k}\mathbin{\mid}{m}}\right] and [1m]([h1])=[mh1]\left[\smash{{1}\mathbin{\mid}{m}}\right](\left[\smash{{h}\mathbin{\mid}{1}}\right])=\left[\smash{{m^{\ast}h}\mathbin{\mid}{1}}\right], whence ([1m])([h1])=[mh1](\left[\smash{{1}\mathbin{\mid}{m}}\right])^{\ast}(\left[\smash{{h}\mathbin{\mid}{1}}\right])=\left[\smash{{m^{\ast}h}\mathbin{\mid}{1}}\right], i.e., f(m)(φ(h))=φ(mh)f(m)^{\ast}(\varphi(h))=\varphi(m^{\ast}h) as required. For the second axiom in (6.14), note that the operation \rhd on (M)(\mathbb{H}\mathbin{\bowtie}M)^{\downarrow} is given by [h1](λi.[1mi])=[h1](λi.[1mi])=[1hm]\left[\smash{{h}\mathbin{\mid}{1}}\right]\rhd(\lambda i.\,\left[\smash{{1}\mathbin{\mid}{m_{i}}}\right])=\left[\smash{{h}\mathbin{\mid}{1}}\right](\lambda i.\,\left[\smash{{1}\mathbin{\mid}{m_{i}}}\right])=\left[\smash{{1}\mathbin{\mid}{h\rhd m}}\right], which says that φ(h)(λi.f(mi))=f(hm)\varphi(h)\rhd(\lambda i.\,f(m_{i}))=f(h\rhd m) as required.

Finally, it is trivial to observe that 𝕋\mathbb{T} is finitary or non-degenerate if and only if \mathbb{H} is so, i.e., if and only if 𝕋\mathbb{T}^{\downarrow} is so. ∎

So we have a correspondence between hyperaffine–unary theories and matched pairs of theories; we now describe how this correspondence interacts with semantics.

Definition 6.6 (Models of matched pairs of theories).

Let [M]\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right] be a matched pair of theories. A [M]\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right]-model 𝑿{\boldsymbol{X}} is a set XX endowed with both \mathbb{H}-model structure h,xh(x)h,x\mapsto\mathord{\left\llbracket{h}\right\rrbracket}(x) and MM-set structure m,xmxm,x\rightarrow m\cdot x in such a way that

(hm)x=h(λi.mix)andnh(x)=nh(λi.nx)(h\rhd m)\cdot x=\mathord{\left\llbracket{h}\right\rrbracket}(\lambda i.\,m_{i}\cdot x)\qquad\text{and}\qquad n\cdot\mathord{\left\llbracket{h}\right\rrbracket}(x)=\mathord{\left\llbracket{n^{\ast}h}\right\rrbracket}(\lambda i.\,n\cdot x) (6.15)

for all hH(I)h\in H(I), xXIx\in X^{I}, mMIm\in M^{I} and nMn\in M; while a homomorphism of [M]\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right]-models is a function preserving both \mathbb{H}-model and MM-set structure. We write [M]-od\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right]\text{-}\mathrm{\mathcal{M}od} for the variety of [M]\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right]-models.

Proposition 6.7.

Let 𝕋\mathbb{T} be a hyperaffine–unary theory with 𝕋=[M]\mathbb{T}^{\downarrow}=\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right]. The variety of 𝕋\mathbb{T}-models is concretely isomorphic to the variety of [M]\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right]-models.

Proof.

Firstly, restricting back a 𝕋\mathbb{T}-model structure on a set XX to the hyperaffine and unary parts yields \mathbb{H}-model and MM-set structure which satisfy the axioms in (6.15) due to the definitions of the operations ()({\mathord{\text{--}}})^{\ast} and \rhd in 𝕋\mathbb{T}^{\downarrow}. Conversely, \mathbb{H}-model and MM-set structure on XX yields 𝕋\mathbb{T}-model structure with

[hm](x)=h(λi.mxi) .\mathord{\left\llbracket{\,\left[\smash{{h}\mathbin{\mid}{m}}\right]\,}\right\rrbracket}(x)=\mathord{\left\llbracket{h}\right\rrbracket}(\lambda i.\,m\cdot x_{i})\hbox to0.0pt{ .\hss} (6.16)

The projection axioms hold as every projection is in \mathbb{H}. As for substitution:

[hm](λi.[kini](x))\displaystyle{}\phantom{=}{\ }\mathord{\left\llbracket{\,\left[\smash{{h}\mathbin{\mid}{m}}\right]\,}\right\rrbracket}(\lambda i.\,\mathord{\left\llbracket{\,\left[\smash{{k_{i}}\mathbin{\mid}{n_{i}}}\right]}\right\rrbracket}(x))
=h(λi.mki(λj.nixj))\displaystyle=\mathord{\left\llbracket{h}\right\rrbracket}(\lambda i.\,m\cdot\mathord{\left\llbracket{k_{i}}\right\rrbracket}(\lambda j.\,n_{i}\cdot x_{j})) definition
=h(λi.mki(λj.mnixj))\displaystyle=\mathord{\left\llbracket{h}\right\rrbracket}(\lambda i.\,\mathord{\left\llbracket{m^{\ast}k_{i}}\right\rrbracket}(\lambda j.\,mn_{i}\cdot x_{j})) (6.15)
=h(λi.h(λi.mki(λj.mnixj)))\displaystyle=\mathord{\left\llbracket{h}\right\rrbracket}(\lambda i.\,\mathord{\left\llbracket{h}\right\rrbracket}(\lambda i^{\prime}.\,\mathord{\left\llbracket{m^{\ast}k_{i}}\right\rrbracket}(\lambda j.\,mn_{i^{\prime}}\cdot x_{j}))) hyperaffinness
=h(λi.mki(λj.h(λi.mnixj)))\displaystyle=\mathord{\left\llbracket{h}\right\rrbracket}(\lambda i.\,\mathord{\left\llbracket{m^{\ast}k_{i}}\right\rrbracket}(\lambda j.\,\mathord{\left\llbracket{h}\right\rrbracket}(\lambda i^{\prime}.\,mn_{i^{\prime}}\cdot x_{j}))) commutativity
=h(λi.mki(λj.(h(λi.mni))xj))\displaystyle=\mathord{\left\llbracket{h}\right\rrbracket}(\lambda i.\,\mathord{\left\llbracket{m^{\ast}k_{i}}\right\rrbracket}(\lambda j.\,(h\rhd(\lambda i^{\prime}.\,mn_{i^{\prime}}))\cdot x_{j})) (6.15)
=h(λi.mki)(λj.(h(λi.mni))xj))\displaystyle=\mathord{\left\llbracket{h(\lambda i.\,m^{\ast}k_{i})}\right\rrbracket}(\lambda j.\,(h\rhd(\lambda i.\,mn_{i}))\cdot x_{j})) \mathbb{H}-model axiom
=[h(λi.mki)h(λi.mni)](x)\displaystyle=\mathord{\left\llbracket{\,\left[\smash{{h(\lambda i.\,m^{\ast}k_{i})}\mathbin{\mid}{h\rhd(\lambda i.\,mn_{i})}}\right]\,}\right\rrbracket}(x) definition
=[hm]([kn])(x)\displaystyle=\mathord{\left\llbracket{\,\left[\smash{{h}\mathbin{\mid}{m}}\right](\left[\smash{{k}\mathbin{\mid}{n}}\right])}\right\rrbracket}(x) (6.3).

It is easy to see that these assignments are mutually inverse; and in light of (6.16), the homomorphisms match up under the correspondence. ∎

To conclude this section, we make the correspondence between hyperaffine–unary theories and matched pairs of theories functorial. We write:

  • [𝒜ff𝒰n]\left[\smash{{\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff}}\mathbin{\mid}{\mathrm{\mathcal{{\mathcal{U}}}n}}}\right] (resp., [𝒜ffω𝒰n]\left[\smash{{\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff}^{\omega}}\mathbin{\mid}{\mathrm{\mathcal{{\mathcal{U}}}n}}}\right]) for the category of non-degenerate matched pairs (resp., finitary matched pairs) of theories and their homomorphisms;

  • 𝒜ff𝒰n\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff\text{--}{\mathcal{U}}n} (resp., 𝒜ff𝒰nω\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff\text{--}{\mathcal{U}}n^{\omega}}) for the full subcategory of 𝒯hy\mathrm{\mathcal{{\mathcal{T}}}hy} on the non-degenerate hyperaffine–unary (resp.  finitary hyperaffine–unary) theories;

  • cc𝒱ar\mathrm{cc}\mathrm{\mathcal{{\mathcal{V}}}ar} (resp., cc𝒱arω\mathrm{cc}\mathrm{\mathcal{{\mathcal{V}}}ar}^{\omega}) for the full subcategory of 𝒱ar\mathrm{\mathcal{V}ar} on the non-degenerate cartesian closed (resp., cartesian closed finitary) varieties.

Now the assignment [M][M]-od\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right]\mapsto\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right]\text{-}\mathrm{\mathcal{M}od} can be made functorial. Indeed, given a homomorphism [φf]:[M][M]\left[\smash{{\varphi}\mathbin{\mid}{f}}\right]\colon\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right]\rightarrow\left[\smash{{\mathbb{H}^{\prime}}\mathbin{\mid}{M^{\prime}}}\right] of non-degenerate matched pairs of theories, we have a concrete functor [φf]:[M]-od[M]-od{\left[\smash{{\varphi}\mathbin{\mid}{f}}\right]}^{\ast}\colon\left[\smash{{\mathbb{H}^{\prime}}\mathbin{\mid}{M^{\prime}}}\right]\text{-}\mathrm{\mathcal{M}od}\rightarrow\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right]\text{-}\mathrm{\mathcal{M}od} which acts by φ\varphi^{\ast} and ff^{\ast} on the \mathbb{H}^{\prime}-model and MM^{\prime}-set structures. In this way, we obtain a functor ()-od:[𝒜ff𝒰n]op𝒱ar({\mathord{\text{--}}})\text{-}\mathrm{\mathcal{M}od}\colon\left[\smash{{\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff}}\mathbin{\mid}{\mathrm{\mathcal{{\mathcal{U}}}n}}}\right]^{\mathrm{op}}\rightarrow\mathrm{\mathcal{V}ar} which, in light of Proposition 6.7, the final clause of Proposition 6.4, and Theorem 5.5, must land inside cc𝒱ar\mathrm{cc}\mathrm{\mathcal{{\mathcal{V}}}ar}.

The assignment ()({\mathord{\text{--}}})^{\downarrow} of Proposition 6.4 can also be made functorial:

Proposition 6.8.

The assignment 𝕋𝕋\mathbb{T}\mapsto\mathbb{T}^{\downarrow} is the action on objects of a functor ():𝒜ff𝒰n[𝒜ff𝒰n]({\mathord{\text{--}}})^{\downarrow}\colon\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff\text{--}{\mathcal{U}}n}\rightarrow\left[\smash{{\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff}}\mathbin{\mid}{\mathrm{\mathcal{{\mathcal{U}}}n}}}\right], which on morphisms takes φ:𝕊𝕋\varphi\colon\mathbb{S}\rightarrow\mathbb{T} to the homomorphism [φ|φ|M]:𝕊𝕋\left[\smash{{\left.{\varphi}\right|_{\mathbb{H}}}\mathbin{\mid}{\left.{\varphi}\right|_{M}}}\right]\colon\mathbb{S}^{\downarrow}\rightarrow\mathbb{T}^{\downarrow}.

Proof.

()({\mathord{\text{--}}})^{\downarrow} is clearly functorial so long as it is well-defined on morphisms. To show this, let φ:𝕋𝕋\varphi\colon\mathbb{T}\rightarrow\mathbb{T}^{\prime} be a homomorphism between hyperaffine–unary theories. Clearly, φ\varphi preserves both hyperaffine operations and unary operations, and so restricts back to φ|:\left.{\varphi}\right|_{\mathbb{H}}\colon\mathbb{H}\rightarrow\mathbb{H}^{\prime} and φ|M:MM\left.{\varphi}\right|_{M}\colon M\rightarrow M^{\prime}. We must verify that these restrictions satisfy the axioms in (6.14). The second axiom is simply an instance of the homomorphism axiom for φ\varphi; as for the first, we have:

φ(mh)(λi.φ(m)(xi))\displaystyle\varphi(m^{\ast}h)\bigl{(}\lambda i.\,\varphi(m)(x_{i})\bigr{)} =φ(mh(λi.m(xi)))=φ(m(h(x)))\displaystyle=\varphi\bigl{(}m^{\ast}h(\lambda i.\,m(x_{i}))\bigr{)}=\varphi\bigl{(}m(h(x))\bigr{)}
=φ(m)(φ(h)(x))=(φ(m)φ(h))(λi.φ(m)(xi))\displaystyle=\varphi(m)\bigl{(}\varphi(h)(x)\bigr{)}=\bigl{(}\varphi(m)^{\ast}\varphi(h)\bigr{)}\bigl{(}\lambda i.\,\varphi(m)(x_{i})\bigr{)}

whence φ|(mh)=(φ|M(m))(φ|(h))\left.{\varphi}\right|_{\mathbb{H}}(m^{\ast}h)=(\left.{\varphi}\right|_{M}(m))^{\ast}(\left.{\varphi}\right|_{\mathbb{H}}(h)) by unicity of decompositions. ∎

Given the above, we are now ready to state the main result of this section:

Theorem 6.9.

We have a triangle of equivalences, commuting to within natural isomorphism, as to the left in:

𝒜ff𝒰n\textstyle{\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff\text{--}{\mathcal{U}}n}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()-Mod\scriptstyle{({\mathord{\text{--}}})\text{-}\mathrm{Mod}}()\scriptstyle{({\mathord{\text{--}}})^{\downarrow}}[𝒜ff𝒰n]\textstyle{\left[\smash{{\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff}}\mathbin{\mid}{\mathrm{\mathcal{{\mathcal{U}}}n}}}\right]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()-Mod\scriptstyle{({\mathord{\text{--}}})\text{-}\mathrm{Mod}}(cc𝒱ar)op\textstyle{(\mathrm{cc}\mathrm{\mathcal{{\mathcal{V}}}ar})^{\mathrm{op}}}
      
𝒜ff𝒰nω\textstyle{\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff\text{--}{\mathcal{U}}n^{\omega}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()-Mod\scriptstyle{({\mathord{\text{--}}})\text{-}\mathrm{Mod}}()\scriptstyle{({\mathord{\text{--}}})^{\downarrow}}[𝒜ffω𝒰n]\textstyle{\left[\smash{{\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff}^{\omega}}\mathbin{\mid}{\mathrm{\mathcal{{\mathcal{U}}}n}}}\right]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()-Mod\scriptstyle{({\mathord{\text{--}}})\text{-}\mathrm{Mod}}(cc𝒱arω)op\textstyle{(\mathrm{cc}\mathrm{\mathcal{{\mathcal{V}}}ar}^{\omega})^{\mathrm{op}}}

which restricts back to a triangle of equivalences as to the right.

Proof.

The triangles commute to within isomorphism by Proposition 6.7, and by Theorem 5.5, their left edges are equivalences. So to complete the proof it suffices to show that ()({\mathord{\text{--}}})^{\downarrow} is an equivalence to the left and the right. We know that in both cases it is essentially surjective by Proposition 6.5, and so it remains only to show it is also full and faithful. For fidelity, note that any homomorphism φ:𝕊𝕋𝒜ff𝒰n\varphi\colon\mathbb{S}\rightarrow\mathbb{T}\in\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff\text{--}{\mathcal{U}}n} must, by unicity of decompositions, send [hm]\left[\smash{{h}\mathbin{\mid}{m}}\right] to [φ(h)φ(m)]\left[\smash{{\varphi(h)}\mathbin{\mid}{\varphi(m)}}\right], and so is determined by its hyperaffine and unary restrictions. For fullness, let 𝕊,𝕋𝒜ff𝒰n\mathbb{S},\mathbb{T}\in\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff\text{--}{\mathcal{U}}n} and let [φf]:𝕊𝕋\left[\smash{{\varphi}\mathbin{\mid}{f}}\right]\colon\mathbb{S}^{\downarrow}\rightarrow\mathbb{T}^{\downarrow}. We must show that the functions

ψ:S(I)T(I)[hm][φ(h)f(m)]\psi\colon S(I)\rightarrow T(I)\qquad\left[\smash{{h}\mathbin{\mid}{m}}\right]\mapsto\left[\smash{{\varphi(h)}\mathbin{\mid}{f(m)}}\right]

preserve projections and substitution. For projections, we have ψ(πi)=φ([πi1])=[φ(πi)f(1)]=[πi1]=πi\psi(\pi_{i})=\varphi(\left[\smash{{\pi_{i}}\mathbin{\mid}{1}}\right])=\left[\smash{{\varphi(\pi_{i})}\mathbin{\mid}{f(1)}}\right]=\left[\smash{{\pi_{i}}\mathbin{\mid}{1}}\right]=\pi_{i}, while for substitution, we have:

ψ([hm]([kn]))\displaystyle\psi(\left[\smash{{h}\mathbin{\mid}{m}}\right](\left[\smash{{k}\mathbin{\mid}{n}}\right])) =ψ([h(λi.mki)h(λi.mni)])\displaystyle=\psi(\left[\smash{{h(\lambda i.\,m^{\ast}k_{i})}\mathbin{\mid}{h\rhd(\lambda i.\,mn_{i})}}\right])
=[φ(h(λi.mki))f(h(λi.mni))]\displaystyle=\left[\smash{{\varphi(h(\lambda i.\,m^{\ast}k_{i}))}\mathbin{\mid}{f(h\rhd(\lambda i.\,mn_{i}))}}\right]
=[(φ(h))(λi.φ(mki)))φ(h)(λi.f(mni))]\displaystyle=\left[\smash{{(\varphi(h))(\lambda i.\,\varphi(m^{\ast}k_{i})))}\mathbin{\mid}{\varphi(h)\rhd(\lambda i.\,f(mn_{i}))}}\right]
=[(φ(h))(λi.f(m)(φ(ki)))φ(h)(λi.f(m)f(ni))]\displaystyle=\left[\smash{{(\varphi(h))(\lambda i.\,f(m)^{\ast}(\varphi(k_{i})))}\mathbin{\mid}{\varphi(h)\rhd(\lambda i.\,f(m)f(n_{i}))}}\right]
=[φ(h)f(m)](λi.[φ(k)f(n)])\displaystyle=\left[\smash{{\varphi(h)}\mathbin{\mid}{f(m)}}\right](\lambda i.\,\left[\smash{{\varphi(k)}\mathbin{\mid}{f(n)}}\right])
=ψ([hm])(λi.ψ([kini])) .\displaystyle=\psi(\left[\smash{{h}\mathbin{\mid}{m}}\right])(\lambda i.\,\psi(\left[\smash{{k_{i}}\mathbin{\mid}{n_{i}}}\right]))\hbox to0.0pt{ .\hss}\qed

7. Matched algebras and [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]}-sets

In this section we use Theorem 4.9 to recast the notion of matched pair of theories in terms of what we will call a matched pair of algebras. This yields a reformulation of Theorem 6.9 giving a functorial equivalence between (non-degenerate) hyperaffine–unary theories, matched pairs of algebras, and cartesian closed varieties. We begin in the finitary case, where a matched pair [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]} involves a Boolean algebra BB and a monoid MM which act on each in a suitable way—a structure which was already considered in [6, §4], in a related, though different, context.

Definition 7.1 (Matched pair of algebras).

A non-degenerate matched pair of algebras [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]} comprises a non-degenerate Boolean algebra BB, a monoid MM and:

  • BB-set structure on MM, which we write as b,m,nb(m,n)b,m,n\mapsto b(m,n);

  • MM-set structure on BB, which we write as m,bmbm,b\mapsto m^{\ast}b;

such that MM acts on BB by Boolean homomorphisms, and such that:

  • b(m,n)p=b(mp,np)b(m,n)p=b(mp,np);

  • m(b(n,p))=(mb)(mn,mp)m(b(n,p))=(m^{\ast}b)(mn,mp); and

  • b(m,n)(c)=b(mc,nc)b(m,n)^{\ast}(c)=b(m^{\ast}c,n^{\ast}c),

for all m,n,pMm,n,p\in M and b,cBb,c\in B. Here, in the final axiom, we recall from Remark 3.17 that BB itself is a BB-set under the operation of conditioned disjunction b(c,d)=(bc)(bd)b(c,d)=(b\wedge c)\vee(b^{\prime}\wedge d). These axioms are equivalently the conditions that:

  • mbnmpbnpm\equiv_{b}n\implies mp\equiv_{b}np;

  • nbpmnmbmpn\equiv_{b}p\implies mn\equiv_{m^{\ast}b}mp;

  • mbnmcbncm\equiv_{b}n\implies m^{\ast}c\equiv_{b}n^{\ast}c, i.e., bmc=bncb\wedge m^{\ast}c=b\wedge n^{\ast}c.

A homomorphism of matched pairs of algebras [φf]:[BM][BM]\left[\smash{{\varphi}\mathbin{\mid}{f}}\right]\colon{\left[\smash{{B}\mathbin{\mid}{M}}\right]}\rightarrow\left[\smash{{B^{\prime}}\mathbin{\mid}{M^{\prime}}}\right] comprises a Boolean homomorphism φ:BB\varphi\colon B\rightarrow B^{\prime} and a monoid homomorphism f:MMf\colon M\rightarrow M^{\prime} such that, for all m,nMm,n\in M and bBb\in B we have:

φ(b)(f(m),f(n))=f(b(m,n))andf(m)(φ(b))=φ(mb) ,\varphi(b)(f(m),f(n))=f(b(m,n))\ \ \ \text{and}\ \ \ f(m)^{\ast}(\varphi(b))=\varphi(m^{\ast}b)\hbox to0.0pt{ ,\hss} (7.1)

or equivalently, such that

mbnf(m)φ(b)f(n)andf(m)(φ(b))=φ(mb) .\ \ \quad m\equiv_{b}n\implies f(m)\equiv_{\varphi(b)}f(n)\qquad\text{and}\qquad f(m)^{\ast}(\varphi(b))=\varphi(m^{\ast}b)\text{ .} (7.2)

We write [𝒜lgon]\left[\smash{{\mathrm{\mathcal{B}{\mathcal{A}}lg}}\mathbin{\mid}{\mathrm{\mathcal{M}on}}}\right] for the category of non-degenerate matched pairs of algebras.

We now establish the desired equivalence between finitary matched pairs of theories, and matched pairs of algebras.

Proposition 7.2.

The assignment sending a non-degenerate finitary hyperaffine theory \mathbb{H} to the Boolean algebra B=H(2)B=H(2) of Proposition 4.4 induces an equivalence of categories Θ:[𝒜ffω𝒰n][𝒜lgon]\Theta\colon\left[\smash{{\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff}^{\omega}}\mathbin{\mid}{\mathrm{\mathcal{{\mathcal{U}}}n}}}\right]\rightarrow\left[\smash{{\mathrm{\mathcal{B}{\mathcal{A}}lg}}\mathbin{\mid}{\mathrm{\mathcal{M}on}}}\right].

Proof.

The assignment H(2)\mathbb{H}\mapsto H(2) is, by Theorem 4.9, the action on objects of an equivalence 𝒜ffω𝒜lg\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff}^{\omega}\rightarrow\mathrm{\mathcal{B}{\mathcal{A}}lg}. Under this equivalence, the data and axioms of a matched pair of theories [M]\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right] as in Definition 6.3 transform as follows:

  • \mathbb{H} and MM correspond to the Boolean algebra B=H(2)B=H(2) and monoid MM;

  • The maps to the left of (6.4), satisfying the bicrossed pair axioms (i) and (ii), correspond to a monoid action m,bmbm,b\mapsto m^{\ast}b of MM on BB by Boolean homomorphisms;

  • The maps to the right of (6.4), satisfying the axiom (iii), correspond to a BB-set structure b,m,nb(m,n)b,m,n\mapsto b(m,n) on MM;

  • The axioms (iv) and (v) correspond directly to the first two axioms for a matched pair of algebras.

As for axiom (vi), we claim that this corresponds to the final axiom for a matched pair of algebras. This is not completely immediate: we must first observe that (vi) can be replaced by the apparently weaker special case which takes I=2I=2:

  1. (vi)

    For hH(2)h\in H(2), the map ()h:MH(2)({\mathord{\text{--}}})^{\ast}h\colon M\rightarrow H(2) is an \mathbb{H}-model map 𝑴𝑯(2){\boldsymbol{M}}\rightarrow{\boldsymbol{H}}(2).

To see that this special case implies the general one, we must show that for any hH(I)h\in H(I), kH(J)k\in H(J) and mMJm\in M^{J} we have: (km)(h)=k(λj.mjh)(k\rhd m)^{\ast}(h)=k(\lambda j.\,m_{j}^{\ast}h). By Lemma 4.6(i), it suffices to verify for each iIi\in I the equality of the binary reducts ()(i)({\mathord{\text{--}}})^{(i)} of each side. Since the operations (km)(k\rhd m)^{\ast} and mjm_{j}^{\ast} are theory homomorphisms \mathbb{H}\rightarrow\mathbb{H}, we have

((km)h)(i)=(km)(h(i))andk(λj.mjh)(i)=k(λj.mj(h(i)))((k\rhd m)^{\ast}h)^{(i)}=(k\rhd m)^{\ast}(h^{(i)})\quad\text{and}\quad k(\lambda j.\,m_{j}^{\ast}h)^{(i)}=k(\lambda j.\,m_{j}^{\ast}(h^{(i)}))

and since the h(i)h^{(i)} are binary, these terms are equal by the special case (vi). Observing that the \mathbb{H}-model structure on 𝐇(2)\mathbf{H}(2) corresponds to the BB-action on BB by conditioned disjunction, we thus conclude that (vi), and hence also (vi), are equivalent to the final axiom for a matched pair of theories.

It remains to show that homomorphisms match up under the above correspondences: for which we must show that the two conditions of (6.14) correspond to the two conditions of (7.1). For the first condition in (6.14), this is achieved by exploiting Lemma 4.6(i) like before to reduce to then case I=2I=2. As for the second condition, we may re-express it as saying that ff is a homomorphism of \mathbb{H}-models 𝑴φ(𝑴){\boldsymbol{M}}\rightarrow\varphi^{\ast}({\boldsymbol{M^{\prime}}}), from which the correspondence with (7.1) is immediate. ∎

So each finitary matched pair of theories [M]\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right] has a more concrete expression as a matched pair of algebras [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]}; we now show that, correspondingly, the variety of [M]\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right]-models has a more concrete expression as a variety of [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]}-sets:

Definition 7.3 (Variety of [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]}-sets).

Let [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]} be a non-degenerate matched pair of algebras. A [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]}-set is a set XX endowed with BB-set structure and MM-set structure, such that in addition we have:

b(m,n)x=b(mx,nx)andmb(x,y)=(mb)(mx,my)b(m,n)\cdot x=b(m\cdot x,n\cdot x)\qquad\text{and}\qquad m\cdot b(x,y)=(m^{\ast}b)(m\cdot x,m\cdot y) (7.3)

for all bBb\in B, m,nMm,n\in M and x,yXx,y\in X; or equivalently, such that:

mbnmxbnxandxbymxmbmy .m\equiv_{b}n\implies m\cdot x\equiv_{b}n\cdot x\qquad\text{and}\qquad x\equiv_{b}y\implies m\cdot x\equiv_{m^{\ast}b}m\cdot y\hbox to0.0pt{ .\hss} (7.4)

A homomorphism of [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]}-sets is a function which is at once a BB-set and an MM-set homomorphism. We write [BM]-𝒮et{\left[\smash{{B}\mathbin{\mid}{M}}\right]}\text{-}\mathrm{\mathcal{S}et} for the variety of [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]}-sets.

We noted in the preceding sections that any non-degenerate Boolean algebra BB is always a BB-set over itself, and that any monoid MM is always an MM-set over itself. If [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]} is a matched pair, then by definition we also have that BB is an MM-set, and MM is a BB-set; it should therefore be no surprise that, when endowed with these actions, both BB and MM become [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]}-sets. In fact, MM is the free [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]}-set on one generator; while BB is the coproduct of two copies of the terminal [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]}-set.

Proposition 7.4.

The equivalence Θ\Theta of Proposition 7.2 fits into a triangle of equivalences, commuting to within natural isomorphism:

[𝒜ffω𝒰n]\textstyle{\left[\smash{{\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff}^{\omega}}\mathbin{\mid}{\mathrm{\mathcal{{\mathcal{U}}}n}}}\right]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()-Mod\scriptstyle{({\mathord{\text{--}}})\text{-}\mathrm{Mod}}Θ\scriptstyle{\Theta}[𝒜lgon]\textstyle{\left[\smash{{\mathrm{\mathcal{B}{\mathcal{A}}lg}}\mathbin{\mid}{\mathrm{\mathcal{M}on}}}\right]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()-Set\scriptstyle{({\mathord{\text{--}}})\text{-}\mathrm{Set}}(cc𝒱arω)op .\textstyle{(\mathrm{cc}\mathrm{\mathcal{{\mathcal{V}}}ar}^{\omega})^{\mathrm{op}}\hbox to0.0pt{ .\hss}}
Proof.

Given a matched pair of theories [M][𝒜ffω𝒰n]\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right]\in\left[\smash{{\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff}^{\omega}}\mathbin{\mid}{\mathrm{\mathcal{{\mathcal{U}}}n}}}\right] with associated matched pair of algebras [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]}, we know by Theorem 4.9 that the data of an [M]\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right]-model structure on XX, as in Definition 6.6, will transform as follows:

  • The \mathbb{H}-model and MM-set structure on XX correspond to a BB-set structure b,x,yb(x,y)b,x,y\mapsto b(x,y) and an MM-set structure;

  • The left-hand axiom in (6.15), after reducing to the case I=2I=2 as in the proof of Proposition 7.2, becomes the left-hand axiom in (7.3).

  • The right-hand axiom in (6.15) states that n()n\cdot({\mathord{\text{--}}}) is an \mathbb{H}-model homomorphism 𝑿n𝑿{\boldsymbol{X}}\rightarrow n^{\ast}{\boldsymbol{X}}, and thus becomes the right-hand axiom in (7.3).

It is clear that the homomorphisms match up under this correspondence, and so the variety of [M]\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right]-models and the variety of [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]}-sets are concretely isomorphic. It is easy to check that these isomorphisms are natural in [M]\left[\smash{{\mathbb{H}}\mathbin{\mid}{M}}\right] as required. ∎

Now extending the preceding arguments to the non-finitary case is straightforward. First we generalise the notion of matched pair of algebras.

Definition 7.5.

A non-degenerate Grothendieck matched pair of algebras [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]} comprises a non-degenerate matched pair of algebras [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]} and a zero-dimensional topology 𝒥{\mathcal{J}} on BB, such that:

  • The BB-set MM is a B𝒥B_{{\mathcal{J}}}-set;

  • The MM-action on BB is by Grothendieck Boolean homomorphisms B𝒥B𝒥B_{{\mathcal{J}}}\rightarrow B_{{\mathcal{J}}}.

A homomorphism of Grothendieck matched pairs of algebras [φf]:[B𝒥M][B𝒥M]\left[\smash{{\varphi}\mathbin{\mid}{f}}\right]\colon{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}\rightarrow\left[\smash{{B^{\prime}_{{\mathcal{J}}^{\prime}}}\mathbin{\mid}{M^{\prime}}}\right] is a homomorphism of matched pairs of algebras for which φ:B𝒥B𝒥\varphi\colon B_{{\mathcal{J}}}\rightarrow B^{\prime}_{{\mathcal{J}}^{\prime}} is a Grothendieck Boolean homomorphism. We write [gr𝒜lgon]\left[\smash{{\mathrm{gr}\mathrm{\mathcal{{\mathcal{B}}}{\mathcal{A}}lg}}\mathbin{\mid}{\mathrm{\mathcal{M}on}}}\right] for the category of non-degenerate Grothendieck matched pairs of algebras.

We next generalise the correspondence between finitary hyperaffine theories and matched pairs of algebras; the proof of this result is mutatis mutandis the same as Proposition 7.2.

Proposition 7.6.

The assignment sending a non-degenerate hyperaffine theory \mathbb{H} to the Grothendieck Boolean algebra B𝒥B_{{\mathcal{J}}} of Proposition 4.7 induces an equivalence of categories Θ:[𝒜ff𝒰n][gr𝒜lgon]\Theta\colon\left[\smash{{\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff}}\mathbin{\mid}{\mathrm{\mathcal{{\mathcal{U}}}n}}}\right]\rightarrow\left[\smash{{\mathrm{gr}\mathrm{\mathcal{{\mathcal{B}}}{\mathcal{A}}lg}}\mathbin{\mid}{\mathrm{\mathcal{M}on}}}\right]. ∎

Finally, we introduce the varieties associated to Grothendieck matched pairs of algebras [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}, and show that they match up with the models of the corresponding matched pairs of theories.

Definition 7.7 (Variety of [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-sets).

Let [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]} be a non-degenerate Grothendieck matched pair of algebras. A [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-set is a [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]}-set XX whose underlying BB-set is in fact a B𝒥B_{{\mathcal{J}}}-set; a homomorphism of [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-sets is just a homomorphism of [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]}-sets. We write [B𝒥M]-𝒮et{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}\text{-}\mathrm{\mathcal{S}et} for the variety of [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-sets.

Like before, both BB and MM are [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-sets via their canonical actions on themselves and each other.

Proposition 7.8.

The equivalence Θ{\Theta} of Proposition 7.6 fits into a triangle of equivalences, commuting to within natural isomorphism:

[𝒜ff𝒰n]\textstyle{\left[\smash{{\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff}}\mathbin{\mid}{\mathrm{\mathcal{{\mathcal{U}}}n}}}\right]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()-Mod\scriptstyle{({\mathord{\text{--}}})\text{-}\mathrm{Mod}}Θ\scriptstyle{\Theta}[gr𝒜lgon]\textstyle{\left[\smash{{\mathrm{gr}\mathrm{\mathcal{{\mathcal{B}}}{\mathcal{A}}lg}}\mathbin{\mid}{\mathrm{\mathcal{M}on}}}\right]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()-Set\scriptstyle{({\mathord{\text{--}}})\text{-}\mathrm{Set}}(cc𝒱ar)op .\textstyle{(\mathrm{cc}\mathrm{\mathcal{{\mathcal{V}}}ar})^{\mathrm{op}}\hbox to0.0pt{ .\hss}}
       
Remark 7.9.

We can extract from the above development a description of the free [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-set on a set XX as given by the product of [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-sets M×TB𝒥XM\times T_{B_{{\mathcal{J}}}}X. Here, MM is seen as a [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-set via its canonical structures of B𝒥B_{{\mathcal{J}}}- and MM-set, while TB𝒥(X)T_{B_{{\mathcal{J}}}}(X) is seen as a B𝒥B_{{\mathcal{J}}}-set as in Remark 3.17 and as an MM-set via the action n(m,ω)=(nm,nω)n\cdot(m,\omega)=(nm,n^{\ast}\circ\omega). The function η:XM×TB𝒥(X)\eta\colon X\rightarrow M\times T_{B_{{\mathcal{J}}}}(X) exhibiting M×TB𝒥(X)M\times T_{B_{{\mathcal{J}}}}(X) as free on XX is given by x(1,πx)x\mapsto(1,\pi_{x}).

Combining Propositions 7.6 and 7.8 with Theorem 6.9, we obtain the main theorem of this section, relating (non-degenerate) Grothendieck matched pairs, hyperaffine–unary theories and cartesian closed varieties.

Theorem 7.10.

We have a triangle of equivalences, commuting to within natural isomorphism, as to the left in:

𝒜ff𝒰n\textstyle{\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff\text{--}{\mathcal{U}}n}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()-od\scriptstyle{({\mathord{\text{--}}})\text{-}\mathrm{\mathcal{M}od}}()\scriptstyle{({\mathord{\text{--}}})^{\downarrow}}[gr𝒜lgon]\textstyle{\left[\smash{{\mathrm{gr}\mathrm{\mathcal{{\mathcal{B}}}{\mathcal{A}}lg}}\mathbin{\mid}{\mathrm{\mathcal{M}on}}}\right]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()-𝒮et\scriptstyle{({\mathord{\text{--}}})\text{-}\mathrm{\mathcal{S}et}}(cc𝒱ar)op\textstyle{(\mathrm{cc}\mathrm{\mathcal{{\mathcal{V}}}ar})^{\mathrm{op}}}
      
𝒜ff𝒰nω\textstyle{\mathrm{\mathcal{{\mathcal{H}}}{\mathcal{A}}ff\text{--}{\mathcal{U}}n^{\omega}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()-od\scriptstyle{({\mathord{\text{--}}})\text{-}\mathrm{\mathcal{M}od}}()\scriptstyle{({\mathord{\text{--}}})^{\downarrow}}[𝒜lgon]\textstyle{\left[\smash{{\mathrm{\mathcal{B}{\mathcal{A}}lg}}\mathbin{\mid}{\mathrm{\mathcal{M}on}}}\right]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}()-𝒮et\scriptstyle{({\mathord{\text{--}}})\text{-}\mathrm{\mathcal{S}et}}(cc𝒱arω)op\textstyle{(\mathrm{cc}\mathrm{\mathcal{{\mathcal{V}}}ar}^{\omega})^{\mathrm{op}}}

which restricts back to a triangle of equivalences as to the right.

Another way to say this is that every non-degenerate cartesian closed variety is a variety of [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-sets for some Grothendieck matched pair of algebras [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}. We now make explicit the cartesian closed structure of [B𝒥M]-𝒮et{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}\text{-}\mathrm{\mathcal{S}et}.

Proposition 7.11.

The variety of [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-sets is cartesian closed. In particular, the variety of [BM]{\left[\smash{{B}\mathbin{\mid}{M}}\right]}-sets is cartesian closed.

Proof.

Given [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-sets YY and ZZ, we define the function space ZYZ^{Y} to be the set of [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-set homomorphisms f:M×YZf\colon M\times Y\rightarrow Z. We make this into an MM-set under the same action as in Proposition 2.4:

m,fmf=(λn,y.f(nm,y)) .m,f\qquad\mapsto\qquad m^{\ast}f=(\lambda n,y.\,f(nm,y))\hbox to0.0pt{ .\hss}

We must check mfm^{\ast}f is a [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-set homomorphism if ff is one. For the MM-set aspect this is just as in Proposition 2.4; for the B𝒥B_{{\mathcal{J}}}-set aspect, if nbpn\equiv_{b}p and ybzy\equiv_{b}z then nmbpmnm\equiv_{b}pm and so f(nm,y)bf(pm,y)f(nm,y)\equiv_{b}f(pm,y), i.e., (mf)(n,y)b(mf)(p,z)(m^{\ast}f)(n,y)\equiv_{b}(m^{\ast}f)(p,z) as desired. We now make ZYZ^{Y} into a B𝒥B_{{\mathcal{J}}}-set via the equivalence relations:

fbgf(m,y)mbg(m,y) for all m,yM×Y.f\equiv_{b}g\qquad\iff\qquad f(m,y)\equiv_{m^{\ast}b}g(m,y)\text{ for all $m,y\in M\times Y$.}

Axiom (i) of Proposition 3.2 is straightforward, given that each mm^{\ast} is a Grothendieck Boolean homomorphism; so it now suffices to check axiom (ii) of Proposition 3.11. Thus, given a partition P𝒥P\in{\mathcal{J}} and homomorphisms fb:M×YZf_{b}\colon M\times Y\rightarrow Z for each bPb\in P, we must show there is a unique g:M×YZg\colon M\times Y\rightarrow Z with gbfbg\equiv_{b}f_{b} for all bPb\in P, i.e.,

g(m,y)mbfb(m,y)for all bB.g(m,y)\equiv_{m^{\ast}b}f_{b}(m,y)\qquad\text{for all $b\in B$.} (7.5)

As mm^{\ast} is a Grothendieck Boolean homomorphism, the set mP={mb:bB}m^{\ast}P=\{m^{\ast}b:b\in B\}^{-} is in 𝒥{\mathcal{J}}, and so for each (m,y)(m,y) there is a unique element g(m,y)g(m,y) satisfying (7.5). It remains to show that the g:M×YZg\colon M\times Y\rightarrow Z so defined is a [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-set homomorphism.

To see gg preserves the B𝒥B_{{\mathcal{J}}}-set structure, suppose that mcnm\equiv_{c}n in MM and yczy\equiv_{c}z in YY; we must show g(m,y)cg(n,z)g(m,y)\equiv_{c}g(n,z) in ZZ. Since mcnm\equiv_{c}n we have for each bPb\in P that cmb=cnbc\wedge m^{\ast}b=c\wedge n^{\ast}b, and so g(m,y)cmbfb(m,y)cmbfb(n,z)cmbg(n,z)g(m,y)\equiv_{c\wedge m^{\ast}b}f_{b}(m,y)\equiv_{c\wedge m^{\ast}b}f_{b}(n,z)\equiv_{c\wedge m^{\ast}b}g(n,z), using that g(m,y)mbfb(m,y)g(m,y)\equiv_{m^{\ast}b}f_{b}(m,y) and fb(m,y)cfb(n,z)f_{b}(m,y)\equiv_{c}f_{b}(n,z) and fb(n,z)nbg(n,z)f_{b}(n,z)\equiv_{n^{\ast}b}g(n,z). Thus, for all mbmPm^{\ast}b\in m^{\ast}P we have g(m,y)cmbg(n,z)g(m,y)\equiv_{c\wedge m^{\ast}b}g(n,z) and so by Lemma 3.12(i) that g(m,y)cg(n,z)g(m,y)\equiv_{c}g(n,z) as required. To see gg preserves the MM-set structure, we must show mg(n,y)=g(mn,my)m\cdot g(n,y)=g(mn,my). But for each bPb\in P we have g(n,y)nbfb(n,y)g(n,y)\equiv_{n^{\ast}b}f_{b}(n,y), and so mg(n,y)(mn)bmfb(n,y)=fb(mn,my)(mn)bg(mn,my)m\cdot g(n,y)\equiv_{(mn)^{\ast}b}m\cdot f_{b}(n,y)=f_{b}(mn,my)\equiv_{(mn)^{\ast}b}g(mn,my). Thus mg(n,y)=g(mn,my)m\cdot g(n,y)=g(mn,my) by Lemma 3.12(i).

So ZYZ^{Y} is a well-defined [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-set. We now define the evaluation homomorphism ev:ZY×YZ\mathrm{ev}\colon Z^{Y}\times Y\rightarrow Z as in Proposition 2.4 by ev(f,y)=f(1,y)\mathrm{ev}(f,y)=f(1,y). This preserves MM-set structure as there; while for the B𝒥B_{{\mathcal{J}}}-set structure, if fbgf\equiv_{b}g in ZYZ^{Y} and ybyy\equiv_{b}y^{\prime} in YY, then ev(f,y)=f(1,y)bg(1,y)bg(1,y)=ev(g,y)\mathrm{ev}(f,y)=f(1,y)\equiv_{b}g(1,y)\equiv_{b}g(1,y^{\prime})=\mathrm{ev}(g,y^{\prime}) as desired.

Finally, given a [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-set homomorphism f:X×YZf\colon X\times Y\rightarrow Z, its transpose f¯:XZY\bar{f}\colon X\rightarrow Z^{Y} is given by f¯(x)(m,y)=f(mx,y)\bar{f}(x)(m,y)=f(mx,y). As in Proposition 2.4, this is an MM-set homomorphism, and is the unique such with ev(f¯(x),y)=f(x,y)\mathrm{ev}(\bar{f}(x),y)=f(x,y) for all x,yx,y. It remains to show that f¯\bar{f} preserves B𝒥B_{{\mathcal{J}}}-set structure. But if xbxx\equiv_{b}x^{\prime}, then mxmbmxmx\equiv_{m^{\ast}b}mx^{\prime} for all mMm\in M, and so f¯(x)(m,y)=f(mx,y)mbf(mx,y)=f¯(x)(m,y)\bar{f}(x)(m,y)=f(mx,y)\equiv_{m^{\ast}b}f(mx^{\prime},y)=\bar{f}(x^{\prime})(m,y) for all (m,y)M×Y(m,y)\in M\times Y, i.e., f¯(x)bf¯(x)\bar{f}(x)\equiv_{b}\bar{f}(x^{\prime}). ∎

Note that the results of the preceding sections have shown, without reference to [10], that every non-degenerate hyperaffine–unary theory is a theory of [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-sets. Since every degenerate hyperaffine–unary theory clearly presents a cartesian closed variety, the preceding result thus completes a proof of the “if” direction of Theorem 5.5 that does not rely on [10]. Taken together with Proposition 5.8, we thus obtain our desired independent proof of Theorem 5.5.

As mentioned in the introduction, we defer substantive examples of varieties of [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-sets to the companion paper [5], where we establish links with topics in operator algebra. However, Proposition 5.8 assures us that there is a plentiful supply of such varieties: we have one for any object XX of a category with finite products and distributive set-indexed copowers. We can now be more explicit about the [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]} associated to such an XX.

Proposition 7.12.

Let 𝒞{\mathcal{C}} be a category with finite products and set-based copowers for which each functor C×()C\times({\mathord{\text{--}}}) preserves copowers, and let X𝒞X\in{\mathcal{C}}.

  1. (a)

    The set =C(X,X){\mathcal{M}}=C(X,X) is a monoid with unit idX\mathrm{id}_{X} under the operation of composition in diagrammatic order, i.e.:

    mn=X\ext@arrow01200\rightarrowfill@mX\ext@arrow01200\rightarrowfill@nX ;mn\quad=\quad X\ext@arrow 01{20}0\rightarrowfill@{}{m}X\ext@arrow 01{20}0\rightarrowfill@{}{n}X\hbox to0.0pt{ ;\hss}
  2. (b)

    Writing ι,ι:11+1\iota_{\top},\iota_{\bot}\colon 1\rightarrow 1+1 for the first and second copower coprojections, the set B=𝒞(X,1+1)B={\mathcal{C}}(X,1+1) is a Boolean algebra under the operations

    1=X\ext@arrow01200\rightarrowfill@!1\ext@arrow01200\rightarrowfill@ι1+1b=X\ext@arrow01200\rightarrowfill@b1+1\ext@arrow01200\rightarrowfill@ι2,ι11+1\displaystyle\smash{1=X\ext@arrow 01{20}0\rightarrowfill@{}{!}1\ext@arrow 01{20}0\rightarrowfill@{}{\iota_{\top}}1+1\qquad\qquad b^{\prime}=X\ext@arrow 01{20}0\rightarrowfill@{}{b}1+1\ext@arrow 01{20}0\rightarrowfill@{}{{\langle{\iota_{2},\iota_{1}}\rangle}}1+1}
    andbc=X\ext@arrow01200\rightarrowfill@(b,c)(1+1)×(1+1)\ext@arrow01200\rightarrowfill@1+1\displaystyle\text{and}\quad\smash{b\wedge c=X\ext@arrow 01{20}0\rightarrowfill@{}{(b,c)}(1+1)\times(1+1)\ext@arrow 01{20}0\rightarrowfill@{}{\wedge}1+1}

    where :(1+1)×(1+1)1+1\wedge\colon(1+1)\times(1+1)\rightarrow 1+1 satisfies (ιi×ιj)=ιij\wedge\circ(\iota_{i}\times\iota_{j})=\iota_{i\wedge j} for i,j{,}i,j\in\{\top,\bot\};

  3. (c)

    There is a zero-dimensional coverage 𝒥{\mathcal{J}} on BB in which PBP\subseteq B is in 𝒥{\mathcal{J}} just when there exists a map f:XP1f\colon X\rightarrow P\cdot 1 with δbcbBf=c{\langle{\delta_{bc}}\rangle}_{b\in B}\circ f=c for all cPc\in P, where here δbc:11+1\delta_{bc}\colon 1\rightarrow 1+1 is given by δbc=ι\delta_{bc}=\iota_{\top} when b=cb=c and δbc=ι\delta_{bc}=\iota_{\bot} otherwise;

  4. (d)

    MM acts on BB via precomposition;

    mb=X\ext@arrow01200\rightarrowfill@mX\ext@arrow01200\rightarrowfill@b1+1 ;\smash{m^{\ast}b\quad=\quad X\ext@arrow 01{20}0\rightarrowfill@{}{m}X\ext@arrow 01{20}0\rightarrowfill@{}{b}1+1\hbox to0.0pt{ ;\hss}}
  5. (e)

    BB acts on MM via:

    (b,m,n)X\ext@arrow01200\rightarrowfill@(b,id)(1+1)×X\ext@arrow01200\rightarrowfill@X+X\ext@arrow01200\rightarrowfill@m,nX .\smash{(b,m,n)\mapsto X\ext@arrow 01{20}0\rightarrowfill@{}{(b,\mathrm{id})}(1+1)\times X\ext@arrow 01{20}0\rightarrowfill@{}{\cong}X+X\ext@arrow 01{20}0\rightarrowfill@{}{{\langle{m,n}\rangle}}X\hbox to0.0pt{ .\hss}}

So long as BB is non-degenerate, the above operations make [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]} into a non-degenerate Grothendieck matched pair of algebras. Moreover, for all Y𝒞Y\in{\mathcal{C}}, the set 𝒞(X,Y){\mathcal{C}}(X,Y) becomes a [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}-set, where MM acts on 𝒞(X,Y){\mathcal{C}}(X,Y) via precomposition, and BB acts on 𝒞(X,Y){\mathcal{C}}(X,Y) via

(b,x,y)X\ext@arrow01200\rightarrowfill@(b,id)(1+1)×X\ext@arrow01200\rightarrowfill@X+X\ext@arrow01200\rightarrowfill@x,yY .\smash{(b,x,y)\mapsto X\ext@arrow 01{20}0\rightarrowfill@{}{(b,\mathrm{id})}(1+1)\times X\ext@arrow 01{20}0\rightarrowfill@{}{\cong}X+X\ext@arrow 01{20}0\rightarrowfill@{}{{\langle{x,y}\rangle}}Y\hbox to0.0pt{ .\hss}}

In this manner, we obtain a factorisation of the hom-functor 𝒞(X,){\mathcal{C}}(X,{\mathord{\text{--}}}) as

𝒞\textstyle{{{\mathcal{C}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K\scriptstyle{K}𝒞(X,)\scriptstyle{{\mathcal{C}}(X,{\mathord{\text{--}}})}[B𝒥M]-𝒮et\textstyle{{{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}\text{-}\mathrm{\mathcal{S}et}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}U\scriptstyle{U}𝒮et\textstyle{{\mathrm{\mathcal{S}et}}}
(7.6)

which is universal among factorisations of 𝒞(X,){\mathcal{C}}(X,{\mathord{\text{--}}}) through a variety. In particular, if 𝒞{\mathcal{C}} is a non-degenerate cartesian closed variety and XX is the free model F1F1 on one generator, then KK is an isomorphism.

Proof.

By Proposition 5.8, the complete theory 𝕋X\mathbb{T}_{X} of dual operations of X𝒞X\in{\mathcal{C}} is hyperaffine–unary. If 𝕋X\mathbb{T}_{X} is degenerate, then so is the Boolean algebra BB described above, and there is nothing to do; otherwise, we know that the non-degenerate hyperaffine–unary 𝕋X\mathbb{T}_{X} corresponds to a Grothendieck matched pair [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]} for which 𝕋-od\mathbb{T}\text{-}\mathrm{\mathcal{M}od} is concretely isomorphic to [B𝒥M]-𝒮et{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}\text{-}\mathrm{\mathcal{S}et}. Using that the hyperaffine operations of 𝕋X\mathbb{T}_{X} are, as in the proof of Proposition 5.8, those of the form (h,1):X(I1)×XIX(h,1)\colon X\rightarrow(I\cdot 1)\times X\cong I\cdot X, and following through the construction of [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]} from the hyperaffine–unary theory 𝕋X\mathbb{T}_{X} as in Sections 6 and 7, yields the description above. Finally, the factorisation (7.6) is simply the factorisation (5.2) after transporting across the isomorphism 𝕋-od[B𝒥M]-𝒮et\mathbb{T}\text{-}\mathrm{\mathcal{M}od}\cong{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]}\text{-}\mathrm{\mathcal{S}et}. ∎

We encourage the reader to apply this result in any category satisfying its rather mild hypotheses. For example, when 𝒞{\mathcal{C}} is the category of topological spaces, the monoid MM associated to a space XX comprises all continuous endomorphisms of XX, while the Grothendieck Boolean algebra B𝒥B_{\mathcal{J}} comprises all clopen subsets of XX, with the infinite partitions in 𝒥{\mathcal{J}} being all infinite clopen partitions of XX. Now MM acts on BB by inverse image, φ,Uφ1(U)\varphi,U\mapsto\varphi^{-1}(U), while BB acts on MM by restriction and glueing: U,f,gf|U,g|UcU,f,g\mapsto{\langle{\left.{f}\right|_{U},\left.{g}\right|_{U^{c}}}\rangle}. In this example, [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]} is rather large, in much the same way that full automorphism groups of objects tend to be rather large, and a key aspect of [5] will be to apply this result in carefully chosen situations where [B𝒥M]{\left[\smash{{B_{{\mathcal{J}}}}\mathbin{\mid}{M}}\right]} comes out as something combinatorially tractable and of independent interest.

References

  • [1] Bergman, G. M. Actions of Boolean rings on sets. Algebra Universalis 28 (1991), 153–187.
  • [2] Csákány, B. Completeness in coalgebras. Acta Sci. Math. (Szeged) 48, 1-4 (1985), 75–84.
  • [3] Dicker, R. M. A set of independent axioms for Boolean algebra. Proc. London Math. Soc. 13 (1963), 20–30.
  • [4] Fourman, M. P., and Scott, D. S. Sheaves and logic. In Applications of sheaves (1979), vol. 753 of Lecture Notes in Mathematics, Springer, pp. 302–401.
  • [5] Garner, R. Cartesian closed varieties II: links to operator algebra. Preprint, available as arXiv:2302.04403, 2023.
  • [6] Jackson, M., and Stokes, T. Semigroups with if-then-else and halting programs. International Journal of Algebra and Computation 19 (2009), 937–961.
  • [7] Johnstone, P. Cartesian monads on toposes. J. Pure Appl. Algebra 116 (1997), 199–220.
  • [8] Johnstone, P. T. Stone spaces, vol. 3 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1982.
  • [9] Johnstone, P. T. When is a variety a topos? Algebra Universalis 21 (1985), 198–212.
  • [10] Johnstone, P. T. Collapsed toposes and Cartesian closed varieties. J. Algebra 129 (1990), 446–480.
  • [11] Lawvere, F. W. Functorial semantics of algebraic theories. PhD thesis, Columbia University, 1963.
  • [12] McKenzie, R. N., McNulty, G. F., and Taylor, W. F. Algebras, lattices, varieties. Vol. I. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole, 1987.
  • [13] Pattinson, D., and Schröder, L. Sound and complete equational reasoning over comodels. In 31st Conference on Mathematical Foundations of Programming Semantics (MFPS XXXI), vol. 319 of Electronic Notes in Theoretical Computer Science. Elsevier, 2015, pp. 315–331.
  • [14] Van Name, J. Boolean Partition Algebras. PhD thesis, University of South Florida, 2013.
  • [15] Van Name, J. Ultraparacompactness and ultranormality. Preprint, available as arXiv:1306.6086, 2013.