This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\Received\Accepted
\KeyWords

stars: Population II — stars: Population III — stars: black holes — gravitational waves

Can Population III stars be major origins of both merging binary black holes and extremely metal poor stars?

Ataru Tanikawa11affiliation: Department of Earth Science and Astronomy, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan    Gen Chiaki22affiliation: Astronomical Institute, Graduate School of Science, Tohoku University, Aoba, Sendai 980-8578, Japan    Tomoya Kinugawa33affiliation: Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582, Japan    Yudai Suwa11affiliationmark: 44affiliation: Department of Astrophysics and Atmospheric Sciences, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555, Japan 55affiliation: Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan    Nozomu Tominaga66affiliation: National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 77affiliation: Department of Physics, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Kobe, Hyogo 658-8501, Japan 88affiliation: Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan [email protected]
Abstract

Population (Pop) III stars, first stars, or metal-free stars are made of primordial gas. We have examined if they can be dominant origins of merging binary black holes (BHs) and extremely metal-poor stars. The abundance pattern of EMP stars is helpful to trace back the properties of Pop III stars. We have confirmed previous arguments that the observed BH merger rate needs Pop III star formation efficiency 10 times larger than theoretically predicted values, while the cosmic reionization history still permits such a high Pop III star formation efficiency. On the other hand, we have newly found that the elemental abundance pattern of EMP stars only allows the Pop III initial mass function with the minimum mass of 1527\sim 15-27 MM_{\odot}. In other words, the minimum mass must not deviate largely from the critical mass below and above which Pop III stars leave behind neutron stars and BHs, respectively. Pop III stars may be still a dominant origin of merging binary BHs but our study has reduced the allowed parameter space under a hypothesis that EMP stars are formed from primordial gas mixed with Pop III supernova ejecta.

1 Introduction

Recently, a large number of black hole (BH) mergers have been detected by gravitational wave (GW) observations (Abbott et al., 2019, 2021; The LIGO Scientific Collaboration et al., 2021a). Many formation scenarios of such BH mergers have been suggested: isolated binary evolution of Population I/II (Pop I/II) stars (Bethe & Brown, 1998; Belczynski et al., 2007, 2016a; Mapelli et al., 2017; Eldridge et al., 2017; Ablimit & Maeda, 2018; Eldridge et al., 2019; Mapelli et al., 2019; Belczynski et al., 2020; Olejak et al., 2020; Santoliquido et al., 2021; García et al., 2021), dynamical interactions in globular clusters (Kulkarni et al., 1993; Sigurdsson & Hernquist, 1993; Portegies Zwart & McMillan, 2000; Banerjee et al., 2010; Downing et al., 2010; Tanikawa, 2013; Fujii et al., 2017; Askar et al., 2017; Park et al., 2017; Rodriguez et al., 2018; Samsing et al., 2018; Hong et al., 2020; Kimball et al., 2021; Wang et al., 2021; Anagnostou et al., 2020; Arca-Sedda et al., 2021), star clusters (Ziosi et al., 2014; Banerjee, 2017; Fishbach et al., 2017; Gerosa & Berti, 2017; Rastello et al., 2019; Kumamoto et al., 2020; Di Carlo et al., 2020; Kremer et al., 2020; Trani et al., 2021b; Fragione & Banerjee, 2021), and galactic centers (O’Leary et al., 2009; Antonini & Perets, 2012; VanLandingham et al., 2016; Bartos et al., 2017; Petrovich & Antonini, 2017; Stone et al., 2017; Hoang et al., 2018; Hamers et al., 2018; McKernan et al., 2018; Leigh et al., 2018; Yang et al., 2019; Rasskazov & Kocsis, 2019; Tagawa et al., 2020; McKernan et al., 2020; Arca Sedda, 2020; Mapelli et al., 2021; Gerosa & Fishbach, 2021; Liu & Bromm, 2021), secular evolution in multiple stellar systems (Antonini et al., 2014; Silsbee & Tremaine, 2017; Rodriguez & Antonini, 2018; Liu & Lai, 2019; Fragione & Kocsis, 2019; Hamers & Safarzadeh, 2020; Fragione et al., 2020; Britt et al., 2021; Trani et al., 2021a), hybrid channels of binary evolution and dynamical interactions (Bouffanais et al., 2021), and primordial BHs (Franciolini et al., 2021).

The first-generation metal-free (Population or Pop III) stars are typically massive (10101000M1000~{}M_{\odot}) (Omukai & Nishi, 1998; Abel et al., 2002; Bromm & Larson, 2004; Yoshida et al., 2008; Hosokawa et al., 2011; Stacy et al., 2011; Susa, 2013; Hirano et al., 2014), and thus leave behind BHs more efficiently than Pop I/II stars. Thus, Pop III stars can contribute to the formation of merging BHs (Kinugawa et al., 2014; Hartwig et al., 2016; Belczynski et al., 2017; Tanikawa et al., 2021b; Liu & Bromm, 2020a). Moreover, several rare GW events can be explained by Pop III stars. For example, a GW event with a 2.62.6 MM_{\odot} compact object GW190814 (Abbott et al., 2020b) can be explained by Pop III remnant mergers (Kinugawa et al., 2021b). GW190521 with a BH in the pair instability (PI) mass gap (Abbott et al. (2020a, c); but see Fishbach & Holz (2020)) can be formed from Pop III stars (Liu & Bromm, 2020b; Kinugawa et al., 2021a; Farrell et al., 2021; Tanikawa et al., 2021a, c). Next-generation GW observatories, such as Cosmic Explorer (Reitze et al., 2019) and Einstein telescope (Punturo et al., 2010), may detect Pop III BHs more massive than 100100 MM_{\odot} (Belczynski et al., 2004; Hijikawa et al., 2021).

However, there is a debate whether Pop III stars are a major origin of observed BH mergers. Kinugawa et al. (2021c) have claimed that Pop III stars are a major origin of observed BH mergers with more than 20 MM_{\odot} (hereafter, Pop III BH merger scenario). On the other hand, Hartwig et al. (2016) (see also Tanikawa et al. (2021b); Liu et al. (2021a)) have argued that the merger rate of Pop III BHs should be much lower than observed. This debate comes from adopted Pop III formation rate. The former study has supposed the total Pop III mass in the local universe to be 1015\sim 10^{15} MM_{\odot} Gpc3{\rm Gpc}^{-3}, which is the upper limit constrained by the cosmic reionization (de Souza et al., 2011; Inayoshi et al., 2016, 2021). The latter studies have chosen it as 1013\sim 10^{13} MM_{\odot} Gpc3{\rm Gpc}^{-3} obtained by theoretical studies of Pop III star formation (Magg et al., 2016; Skinner & Wise, 2020; Visbal et al., 2020). It is difficult to determine Pop III formation rate, since no Pop III star has been discovered so far (Frebel & Norris, 2015; Magg et al., 2019).

In this paper, we suggest extremely metal-poor (EMP) stars as another approach to examine if Pop III stars may be a major origin of observed BH mergers. EMP stars are thought as stars with [Fe/H]3{\rm[Fe/H]}\lesssim-3 and considered to form in gas clouds enriched by one or several supernovae (SNe) of Pop III stars (Audouze & Silk, 1995; Ryan et al., 1996; Cayrel et al., 2004; Frebel & Norris, 2015).111[X/Y]=log(nX/nY)log(nX/nY){\rm[X/Y]}=\log(n_{\rm X}/n_{\rm Y})-\log(n_{\rm X}/n_{\rm Y})_{\odot}, where nXn_{\rm X} and is the number density of an element X. The metal contents and elemental abundances of EMP stars are crucial to trace back the properties of Pop III stars. EMP stars can be divided into two types: carbon-normal EMP stars and carbon-rich EMP stars (or carbon-enhanced metal-poor stars, CEMP stars) (Beers & Christlieb, 2005). Carbon-normal EMP stars have elemental abundance patterns similar to the Sun. On the other hand, carbon-rich EMP stars have higher carbon abundances than the Sun ([C/Fe]>0.7{\rm[C/Fe]}>0.7) (Aoki et al., 2007). The abundance ratio of carbon-rich stars to carbon-normal stars increases with [Fe/H] decreasing (Beers & Christlieb, 2005; Yong et al., 2013).

The presence of the two types can be interpreted as follows. Elemental abundances of carbon-normal EMP stars can best fit with the models of successful core-collapse supernovae (CCSNe). To explain the origin of carbon-rich stars, Umeda & Nomoto (2003) have proposed a so-called faint SN model: inner layers of stellar core falls back into central compact remnants, and only outer layers containing light elements, such as carbon, are ejected. However, in their model, mass cut is a free parameter to reproduce the elemental abundance of carbon-rich stars. Fryer et al. (2012) have independently found that a considerable fraction of ejecta falls back into a proto-neutron stars in a window of progenitor mass 202030M30~{}M_{\odot}. Such failed supernovae (FSNe) leave behind a BH and should eject only carbon-rich outer layers. There is a firm evidence that a CEMP star is formed from the mixture of primordial gas and the ejecta of FSNe (Ito et al., 2013). These studies motivate us to define CCSNe and FSNe as the progenitors of carbon-normal and carbon-rich EMP stars, respectively. If primordial gas in dark matter minihalos (hereafter, minihalos) is enriched by carbon-normal and carbon-rich materials, the minihalos form carbon-normal and carbon-rich EMP stars, respectively. Note that there are many other scenarios of carbon-rich star formations: abundant production of carbon in supermassive rapidly rotating stars (Fryer et al., 2001; Liu et al., 2021b), enrichment of a Pop III star from asymptotic giant branch winds (Suda et al., 2004; Campbell et al., 2010), and interstellar medium accretion of gas decoupled from dust (Johnson, 2015).

The purpose of this paper is to assess the Pop III BH merger scenario, under a hypothesis that EMP stars consist of primordial gas and Pop III supernova ejecta. Here, we remark the importance of this purpose. Although many formation scenarios of BH mergers have been proposed as described above, they have not yet been critically verified, and none of them has been rejected. Moreover, several studies have suggested that binary BHs can have multiple origins (Bouffanais et al., 2021; Zevin et al., 2021; Ng et al., 2021; Hütsi et al., 2021). As the first step, we need to narrow down promising formation scenarios of BH mergers, and scrutinize these formation scenarios one by one. In particular, we focus on Pop III stars, since they can be the origin of binary BHs with 30\sim 30 MM_{\odot} (Kinugawa et al., 2014, 2021c), or with PI mass gap BHs (Tanikawa et al., 2021a). Among the scenarios of Pop III star origins, we pay attention to the Pop III BH merger scenario suggested by Kinugawa et al. (2014) and Kinugawa et al. (2021c). Since this scenario assumes the largest Pop III star mass in total among all the BH scenarios requiring Pop III stars, it would be easiest to get constrained. We also attribute CCSNe and FSNe to the formation of EMP stars, although there are several scenarios to explain the formation of EMP stars. This is because this EMP formation scenario can explain the abundance pattern of EMP stars (Ito et al., 2013) as described above.

The structure of this paper is as follows. In section 2, we present our method to obtain the merger rate of Pop III BHs, and the abundance ratio of carbon-rich EMP stars to carbon-normal EMP stars. In sections 3 and 4, we show our results, and summarize this paper, respectively.

2 Method

In this section, we present a method to obtain the merger rate of Pop III BHs, and the abundance ratio of carbon-rich EMP stars to carbon-normal EMP stars. In section 2.1, we describe our Pop III star formation model. In section 2.2, we review our binary population synthesis model to derive the merger rate of Pop III BHs. In section 2.3, we show our EMP star formation model based on the results of binary population synthesis calculations. In section 2.4, we describe the necessary conditions satisfying GW and EMP observations.

2.1 Pop III star formation model

We assume that Pop III stars are born in minihalos. The minihalos are supposed to have 106M\sim 10^{6}M_{\odot} and be formed at the high-redshift universe, z5z\gtrsim 5 (Hartwig et al., 2016; Skinner & Wise, 2020; Visbal et al., 2020). We adopt the number density of the minihalos in the local universe (nhalon_{\rm halo}), such that nhalo1011n_{\rm halo}\sim 10^{11} Gpc3{\rm Gpc}^{-3}. We obtain this number density from the results of Skinner & Wise (2020); their figure 4 shows that the total mass of Pop III stars formed in each 1 cubic Gpc is 3×1013\sim 3\times 10^{13} MM_{\odot} Gpc3{\rm Gpc}^{-3}, and their figure 8 indicates that the total mass of Pop III stars in each minihalo (M¯\overline{M}) is 300\sim 300 MM_{\odot} on average. We basically refer to the Pop III formation model of Skinner & Wise (2020). Although we adopt the model of Skinner & Wise (2020), we note that many research groups have studied the Pop III formation in the universe (Susa et al., 2014; Hirano et al., 2015; Ishiyama et al., 2016; Inayoshi et al., 2016; Magg et al., 2016; Visbal et al., 2020).

We construct the mass function of the total mass of Pop III stars in each minihalo (MM), expressed as

f1(M)M1(0.1Mmax<M<Mmax).\displaystyle f_{1}(M)\propto M^{-1}\;(0.1M_{\max}<M<M_{\max}). (1)

We get this mass function, simplifying that of Skinner & Wise (2020) (see their figure 8) for ease of handling. Their mass function can be interpreted as logarithmic flat over a single digit (from 50M\sim 50M_{\odot} to 500M\sim 500M_{\odot}). We ignore that a small fraction of minihalos form 50M\lesssim 50M_{\odot} Pop III stars in total. We treat the maximum mass of Pop III stars in total (MmaxM_{\max}) as a free parameter, although Mmax500MM_{\max}\sim 500M_{\odot} in Skinner & Wise (2020). A reason for this treatment is that Pop III star formation models in each minihalo still have uncertainties in baryon physics, such as magnetic field, turbulence, and so on (Federrath et al., 2011; Turk et al., 2012; Sadanari et al., 2021; Higashi et al., 2021). Moreover, we practically need Pop III stars enough to explain the observed BH merger rate.

We suppose that all the Pop III stars are born at the same time at the high-redshift of 5\gtrsim 5. We set the binary fraction of Pop III stars to 1. This is because Pop III stars are usually born in multiple stellar systems (Turk et al., 2009; Clark et al., 2011b; Greif et al., 2011; Susa et al., 2014; Sugimura et al., 2020).

The initial mass function (IMF) of primary stars is expressed as

f2(m1)m11(mmin<m1<150M).\displaystyle f_{2}(m_{1})\propto m_{1}^{-1}\;(m_{\min}<m_{1}<150M_{\odot}). (2)

The distribution is logarithmically flat, which is consistent with Susa et al. (2014) and Hirano et al. (2014). Although a part of Pop III stars may have more than 150150 MM_{\odot} (but see Tarumi et al. (2020)), we do not take into account them conservatively. Note that such Pop III stars form more massive than 100100 MM_{\odot} BHs, and thus do not contribute to the observed BH merger rate. We regard the minimum mass of Pop III stars as a free parameter. This parameter has large effects on the elemental abundance pattern of EMP stars.

Binary parameters we adopt are the same as those proposed by Sana et al. (2012). The mass ratio of companion stars to primary stars (qq) can be expressed as

f3(q)q0.1(0.1<q<1).\displaystyle f_{3}(q)\propto q^{-0.1}(0.1<q<1). (3)

Note that the minimum mass of the companion stars is also mminm_{\min}. The binary period (PP) and eccentricity (ee) distribution are, respectively, given by

f4(logP)(logP)0.55(0.15<log(P/day)<5.5),\displaystyle f_{4}(\log P)\propto\left(\log P\right)^{-0.55}\;(0.15<\log(P/{\rm day})<5.5), (4)

and

f5(e)e0.42(0<e<1).\displaystyle f_{5}(e)\propto e^{-0.42}\;(0<e<1). (5)

Note that the minimum and maximum periods are the same as those of de Mink & Belczynski (2015).

2.2 Merging BH formation model

We generate 10610^{6} binary stars with the primary IMF and binary parameters described in section 2.1. We follow the evolution of the binary stars, using binary population synthesis technique. We calculate the BH merger rate density in the current universe (RR) as

R=ρ3sim(td)Δtd,\displaystyle R=\frac{\rho_{3}}{{\cal M}_{\rm sim}}\frac{\nsim(t_{\rm d})}{\Delta t_{\rm d}}, (6)

where ρ3\rho_{3} is the total mass of Pop III stars formed in each unit volume, sim{\cal M}_{\rm sim} is the total mass of the simulated binary stars, tdt_{\rm d} is the delay time of BH mergers from Pop III star formation, and (td)\nsim(t_{\rm d}) is the total number of BH mergers with the delay time from tdt_{\rm d} to td+Δtdt_{\rm d}+\Delta t_{\rm d} in the simulations. We set td=10t_{\rm d}=10 Gyr and Δtd=5\Delta t_{\rm d}=5 Gyr, since Pop III stars are born in the early universe. As described later, we focus on BH mergers with the heavier mass of 204020-40 MM_{\odot}. The BH merger rate can be calculated as

R2040=ρ3sim𝒩sim,2040(td)Δtd,\displaystyle R_{20-40}=\frac{\rho_{3}}{{\cal M}_{\rm sim}}\frac{{\cal N}_{\rm sim,20-40}(t_{\rm d})}{\Delta t_{\rm d}}, (7)

where 𝒩sim,2040(td){\cal N}_{\rm sim,20-40}(t_{\rm d}) is the total number of BH mergers with the heavier mass of 204020-40 MM_{\odot}, and with the delay time from tdt_{\rm d} to td+Δtdt_{\rm d}+\Delta t_{\rm d} in the simulations.

Hereafter, we describe our binary population synthesis technique. We use a binary population synthesis code BSE with extensions to EMP stars (Tanikawa et al., 2020, 2021b). Pop III stars evolve along with the fitting formulae of stars with stellar metallicity Z=108Z=10^{-8} ZZ_{\odot}. The evolution of Z=108Z=10^{-8} ZZ_{\odot} stars is the same as Pop III star evolution because of the low metallicity. We do not consider stellar wind mass loss because of zero metallicity. Our supernova model is based on the rapid model of Fryer et al. (2012) with modifications of PI. The PI model is given by

mrem={mrapid(mcmc,PPI)mc,PPI(mc,PPI<mcmc,PISN)0(mc,PISN<mcmc,DC)mrapid(mc>mc,DC),\displaystyle m_{\rm rem}=\displaystyle\left\{\begin{array}[]{ll}m_{\rm rapid}&(m_{\rm c}\leq m_{\rm c,PPI})\\ m_{\rm c,PPI}&(m_{\rm c,PPI}<m_{\rm c}\leq m_{\rm c,PISN})\\ 0&(m_{\rm c,PISN}<m_{\rm c}\leq m_{\rm c,DC})\\ m_{\rm rapid}&(m_{\rm c}>m_{\rm c,DC})\end{array}\right., (12)

where mremm_{\rm rem} is the remnant mass, mrapidm_{\rm rapid} is the remnant mass without the PI model, and mcm_{\rm c} is the helium core mass. In the ascending order of the helium core mass, stars experience supernovae in the framework of the rapid model, pulsational PI (Heger & Woosley, 2002; Woosley et al., 2007; Yoshida et al., 2016; Woosley, 2017; Leung et al., 2019), PI supernovae (Barkat et al., 1967; Fraley, 1968; Bond et al., 1984; El Eid & Langer, 1986; Fryer et al., 2001; Heger & Woosley, 2002; Umeda & Nomoto, 2002; Kasen et al., 2011; Yoon et al., 2012), and collapse to a BH together with possible association with gamma-ray bursts (Fryer et al., 2001; Nakazato et al., 2006; Suwa et al., 2007a, b, 2009; Suwa & Ioka, 2011; Woosley & Heger, 2012; Nakauchi et al., 2012; Uchida et al., 2019a, b). We adopt (mc,PPI,mc,PISN,mc,DC)=(45M,65M,135M)(m_{\rm c,PPI},m_{\rm c,PISN},m_{\rm c,DC})=(45M_{\odot},65M_{\odot},135M_{\odot}), which is similar to the model of Belczynski et al. (2016b). We do not account for BH natal kicks. BH natal kicks have small effects on merging binary BHs, since their binary motions are much faster than their natal kicks (Tanikawa et al., 2021b).

As described above, stars experience supernovae in the framework of the rapid model if mcmc,PPIm_{\rm c}\leq m_{\rm c,PPI}, or if mzams80m_{\rm zams}\lesssim 80 MM_{\odot}, where mzamsm_{\rm zams} is zero-age main sequence (ZAMS) mass. The supernovae can be divided into three types by mzamsm_{\rm zams}. For mzams20m_{\rm zams}\lesssim 20 MM_{\odot}, stars leave behind neutron stars with supernova ejecta. We regard that these stars cause CCSNe. For 20mzams3020\lesssim m_{\rm zams}\lesssim 30 MM_{\odot}, stars leave behind BHs with supernova ejecta. We regard that these stars cause FSNe. For 30mzams/M8030\lesssim m_{\rm zams}/M_{\odot}\lesssim 80, stars leave behind BHs without supernova ejecta, which can be interpreted as direct collapse.

Our binary evolution model is based on the BSE code (Hurley et al., 2002). We describe the difference between the original BSE and our models. In the original BSE model, core helium burning and shell helium burning stars are assumed to have radiative and convective envelopes, respectively. On the other hand, in our model, stars with log(Teff/K)3.65\log(T_{\rm eff}/K)\geq 3.65 and <3.65<3.65 are assumed to have radiative and convective envelopes, respectively, where TeffT_{\rm eff} is the effective temperature of a star. The original BSE and our models have different formulae of tidal interaction for stars with radiative envelopes. The original BSE model adopts the formulae of Zahn (1975), while our model adopts the formulae of Kinugawa et al. (2021c), based on Yoon et al. (2010) and Qin et al. (2018). The mass transfer rate in Roche-lobe overflow is calculated by the formulae of Kinugawa et al. (2021c), based on Paczyński & Sienkiewicz (1972), Savonije (1978), Edwards & Pringle (1987), and Inayoshi et al. (2017). The common-envelope evolution is modeled as α\alpha formalism (Webbink, 1984). We adopt αCE=1\alpha_{\rm CE}=1 and calculate λCE\lambda_{\rm CE} from Claeys et al. (2014). We omit magnetic braking, since the magnetic field of first stars is expected to weaker than that of Pop I/II stars (Pudritz & Silk, 1989; Doi & Susa, 2011) and the dominant component of the magnetic field is tangled according to Sharda et al. (2020).

2.3 EMP star formation model

We suppose that EMP stars are born in minihalos (Chiaki et al., 2020) and made of primordial gas enriched by Pop III CCSNe and FSNe. We focus only on whether EMP stars are carbon-rich or carbon-normal. Thus, we take into account chemical elements of hydrogen, carbon, and iron.

Each minihalo has the following elemental abundance after all the Pop III stars in the minihalo finish their evolution. Each minihalo has 105M10^{5}M_{\odot} hydrogen. When a Pop III star causes a CCSN, it ejects 0.2M0.2M_{\odot} carbon and 0.07M0.07M_{\odot} iron (Nomoto et al., 2013). When a Pop III star causes a FSN, it ejects 0.989M0.989M_{\odot} carbon and 1.47×105M1.47\times 10^{-5}M_{\odot} iron (Marassi et al., 2014). When a Pop III star experiences pulsational PI, it ejects no carbon or iron, since its carbon core is intact (Umeda et al., 2020). When a Pop III star experiences a PI supernova, it disrupts the minihalo because of its large explosion energy, and thus the minihalo cannot form EMP stars (Greif et al., 2007; Cooke & Madau, 2014; Chiaki et al., 2018).

We regard that the number ratio of carbon-rich EMP stars to carbon-normal EMP stars is equal to that of carbon-rich minihalos to carbon-normal minihalos. In other words, we assume that chemical elements are completely mixed in each minihalo, and that all the minihalos form EMP stars with the same number and IMF. We adopt these conditions for simplicity, although IMF of EMP stars can depend on metallicity (Omukai, 2000; Schneider et al., 2003; Dopcke et al., 2013; Chiaki et al., 2016; Chon et al., 2021).

2.4 Necessary conditions from Pop III, GW and EMP observations

In this section, we describe three necessary conditions where Pop III stars are major origins of merging BHs whose masses are 20–40 MM_{\odot}, and EMP stars are formed from primordial gas mixed with Pop III supernova ejecta. The three necessary conditions are as follows.

  1. 1.

    ρ31015\rho_{3}\leq 10^{15} MM_{\odot} Gpc3{\rm Gpc}^{-3}

  2. 2.

    3R2040/(yr1Gpc3)303\leq R_{20-40}/({\rm yr}^{-1}{\rm Gpc}^{-3})\leq 30

  3. 3.

    0.01fcrich10.01\leq f_{\rm c-rich}\leq 1

We explain these conditions in detail later.

We set the first necessary condition to impose an upper limit on ρ3\rho_{3}, the total mass of Pop III stars formed in each 1 cubic Gpc until now. The upper limit is 101510^{15} MM_{\odot} Gpc3{\rm Gpc}^{-3}. More than the upper limit cannot be permitted by reionization constraints (Inayoshi et al., 2016, 2021).

We need the second necessary condition to regard Pop III BHs as a major origin of observed BH mergers. Kinugawa et al. (2021c) have argued that Pop III BHs can form all the observed BH mergers with the primary masses of >20M>20M_{\odot}. We do not take into account BH mergers with more than 4040 MM_{\odot} for the second necessary condition. There are two reasons. First, we can say that the Pop III BH merger scenario should be successful, if the second necessary condition is satisfied. Second, a BH merger rate with more than 4040 MM_{\odot} strongly depends on uncertainties of the PI model (Farmer et al., 2020; Belczynski, 2020; Costa et al., 2021). The second necessary condition may be strict more than necessary. As a reference, we investigate the case where this condition is relaxed to R2040=1100R_{20-40}=1-100 yr1{\rm yr}^{-1} Gpc3{\rm Gpc}^{-3}.

We adopt the third necessary condition under which the number ratio of carbon-rich EMP stars to carbon-normal EMP stars, fcrichf_{\rm c-rich}, is consistent with EMP observations. We define EMP stars as those with [Fe/H]2.5{\rm[Fe/H]}\leq-2.5. Moreover, we define carbon-rich and carbon-normal EMP stars as those with [C/Fe] >2>2 and <2<2, respectively, following Chiaki et al. (2017) (see also Yoon et al. (2016)). According to the SAGA database (Suda et al., 2008), fcrich0.05f_{\rm c-rich}\sim 0.05. We do not impose a strict condition on fcrichf_{\rm c-rich}. Rather, we allow fcrichf_{\rm c-rich} to have wide range of values, such that fcrichf_{\rm c-rich} ranges over 2 digits. This is because we obtain fcrich0.05f_{\rm c-rich}\sim 0.05 directly from the SAGA database, ignoring selection bias. If we take into account the completeness of EMP star observations, we may take the necessary condition more strictly. Eventually, we can narrow the allowed region. However, this is beyond of the scope of this paper.

3 Results

Figure 1 shows which (mminm_{\min}, MmaxM_{\max}) satisfies the three necessary conditions described in section 2.4. We first focus on MmaxM_{\max}. We need Mmax3×104M_{\max}\lesssim 3\times 10^{4} MM_{\odot} in order to satisfy the first necessary condition. We also need Mmax104M_{\max}\gtrsim 10^{4} MM_{\odot}. Otherwise, the second necessary condition cannot be satisfied, since the Pop III BH merger rate density is too small: R2040<3R_{20-40}<3 yr1{\rm yr}^{-1} Gpc3{\rm Gpc}^{-3}. This MmaxM_{\max} is much larger than Mmax600M_{\max}\sim 600 MM_{\odot} obtained by numerical simulations of Skinner & Wise (2020). Similar things have been already pointed out by Hartwig et al. (2016). Nevertheless, we have to note that the first necessary condition is not still violated even when the second necessary condition is satisfied.

Refer to caption
Figure 1: Combinations of mminm_{\min} and MmaxM_{\max} which satisfy the three necessary conditions described in section 2.4. mminm_{\min} and MmaxM_{\max} are the minimum mass of the primary stellar IMF, the maximum muss for the mass function of the total mass of Pop III stars in each halo, respectively. The combinations indicated by open circles with dots satisfy all the necessary conditions. Those indicated by open circles do so, when the second necessary is relaxed to 1<R2040/(yr1Gpc3)<1021<R_{20-40}/({\rm yr}^{-1}{\rm Gpc}^{-3})<10^{2}. Those indicated by crosses do not. Shaded regions indicate which necessary condition the combinations do not satisfy. In the red, blue, green, and gray regions, R2040R_{20-40} is smaller, fcrichf_{\rm c-rich} is smaller, fcrichf_{\rm c-rich} is larger, and ρ3\rho_{3} is larger than the corresponding necessary conditions, respectively.

We next focus on mminm_{\min}. We need 15mmin/M2715\lesssim m_{\min}/M_{\odot}\lesssim 27 in order to satisfy the third necessary condition. The allowed MmaxM_{\max} becomes narrower when mminm_{\min} deviates from 20M\sim 20M_{\odot}, the boundary mass between CCSNe and FSNe. If mminm_{\min} is too small, fcrich<0.01f_{\rm c-rich}<0.01, since minihalos have a large number of CCSNe, get iron elements, and cannot form carbon-rich EMP stars. If mminm_{\min} is too large, fcrich>1f_{\rm c-rich}>1, since minihalos have a small number of CCSNe, get little iron element, and cannot form carbon-normal EMP stars.

If we relax the second necessary condition from 3R2040/(yr1Gpc3)303\leq R_{20-40}/({\rm yr}^{-1}{\rm Gpc}^{-3})\leq 30 to 1R2040/(yr1Gpc3)1001\leq R_{20-40}/({\rm yr}^{-1}{\rm Gpc}^{-3})\leq 100, the allowed region becomes wider not only in the direction of MmaxM_{\max}, but also in the direction of mminm_{\min}. Especially, mmin=10m_{\min}=10 MM_{\odot} can be allowed. Each minihalo forms a smaller amount of Pop III stars in the latter case than in the former case. Each minihalo has CCSNe at a smaller probability, and gets a smaller amount of iron elements. Thus, some of minihalos can form carbon-rich EMP stars.

Table 1: (mmin,Mmax)(m_{\min},M_{\max}) chosen for Figures 2, 3, and 4, where mminm_{\min} and MmaxM_{\max} are the minimum mass of the primary stellar IMF and the maximum mass for the mass function of the total mass of Pop III stars in each halo, respectively.
Figure mminm_{\min} MmaxM_{\max}
Figure 2 1010 MM_{\odot} 600600 MM_{\odot}
Figure 3 1010 MM_{\odot} 1500015000 MM_{\odot}
Figure 4 1717 MM_{\odot} 1200012000 MM_{\odot}

In order to complement the above explanations, we demonstrate how to satisfy the three necessary conditions. Table 1 shows our choice of (mmin,Mmax)(m_{\min},M_{\max}) in advance. As the starting point, we choose (mmin,Mmax)=(10M,600M)(m_{\min},M_{\max})=(10M_{\odot},600M_{\odot}). The values of mminm_{\min} and MmaxM_{\max} are consistent with Susa et al. (2014) and Skinner & Wise (2020), respectively. Thus, these values are based on recent numerical simulations for Pop III star formations. The results are shown in Figure 2. In this case, the first and third conditions are satisfied. However, the BH merger rate is R20401.6×101R_{20-40}\sim 1.6\times 10^{-1} yr-1 Gpc3{\rm Gpc}^{-3}, which is much smaller than the second necessary condition. Thus, we need to change (mmin,Mmax)(m_{\min},M_{\max}) to increase R2040R_{20-40}.

In order to increase R2040R_{20-40}, we set (mmin,Mmax)=(10M,15000M)(m_{\min},M_{\max})=(10M_{\odot},15000M_{\odot}). Figure 3 shows the results for this case. The Pop III star formation rate is ρ35.9×1014\rho_{3}\sim 5.9\times 10^{14} MM_{\odot} Gpc3{\rm Gpc}^{-3}. This is much larger than that of Skinner & Wise (2020), however does not still violate the first necessary condition. The large MmaxM_{\max} increases R2040R_{20-40} to 3.1\sim 3.1 yr1{\rm yr}^{-1} Gpc3{\rm Gpc}^{-3}, consistent with the second necessary condition. On the other hand, fcrich0.01f_{\rm c-rich}\ll 0.01. This is much smaller than the third necessary condition. The reason why fcrichf_{\rm c-rich} decreases from the case of (mmin,Mmax)=(10M,600M)(m_{\min},M_{\max})=(10M_{\odot},600M_{\odot}) to (10M,15000M)(10M_{\odot},15000M_{\odot}) is as follows. In the case of (mmin,Mmax)=(10M,15000M)(m_{\min},M_{\max})=(10M_{\odot},15000M_{\odot}), all the minihalos have a large number of Pop III stars with mzams20Mm_{\rm zams}\lesssim 20M_{\odot}. They have many CCSNe, and are sufficiently polluted by iron. Thus, they form only carbon-normal EMP stars after that.

In order to increase fcrichf_{\rm c-rich}, we adopt (mmin,Mmax)=(17M,12000M)(m_{\min},M_{\max})=(17M_{\odot},12000M_{\odot}) as seen in Figure 4. In this case, the third necessary condition are satisfied as well as the first and second conditions. Since we increase mminm_{\min}, minihalos have Pop III stars with mzams20Mm_{\rm zams}\lesssim 20M_{\odot} and CCSNe at a small probability. Then, a significant fraction of minihalos are not polluted by iron. There are no EMP stars with [Fe/H]6{\rm[Fe/H]}\sim-63-3 in our model in contrast to the observation of EMP stars. However, this may be reconciled when we take into account inhomogeneous mixing of Pop III supernova ejecta in minihalos.

Refer to caption
Figure 2: (Top left) Input parameters of (mmin,Mmax)=(10M,600M)(m_{\min},M_{\max})=(10M_{\odot},600M_{\odot}), and resulting values of ρ3\rho_{3}, R2040R_{20-40}, and fcrichf_{\rm c-rich}. (Bottom left) BH merger rate density differentiated by the heavier BH mass (mb,pm_{\rm b,p}) in the local universe. Gray-shaded regions in the left panels show 3<R2040/(yr1Gpc3)<303<R_{20-40}/({\rm yr}^{-1}{\rm Gpc}^{-3})<30 if the dR/dmb,pdR/dm_{\rm b,p} distribution is assumed to be flat in this range. The dotted gray histograms indicate BH mergers either of which are formed through FSNe. FSNe form only light BHs. There are two local peaks at m110m_{1}\sim 10 and 4545 MM_{\odot}. The lower-mass peak is formed through the rapid model (Fryer et al. (2012)) in which relatively low-mass progenitors (20203030 MM_{\odot} ZAMS stars) preferentially leave behind 551010 MM_{\odot} BHs. The higher-mass peak is formed by pulsational PI (see Eq. (12)). (Top right) [Fe/H] distribution of minihalos after Pop III star evolution. The abundance of EMP stars is indicated by the cyan histograms normalized to unity. These data are retrieved from the SAGA database (Suda et al. (2008, 2011); Yamada et al. (2013); Suda et al. (2017)). Our model do not obtain 6-6\lesssim [Fe/H] 4\lesssim-4, since we do not take into account variation of FSNe unlike Tominaga et al. (2014). (Bottom right) Carbon (A(C)A(C)) and [Fe/H] distribution of minihalos after Pop III star evolution. Blue and red-shaded regions in the right panels indicate the abundance of carbon-rich and carbon-normal EMP stars, respectively. The cyan points with error bars indicate EMP stars.
Refer to caption
Figure 3: The same as Figure 2 except for input parameters of (mmin,Mmax)=(10M,15000M)(m_{\min},M_{\max})=(10M_{\odot},15000M_{\odot}). Two local peaks at m110m_{1}\sim 10 and 4545 MM_{\odot} in the bottom left panel are formed through the same mechanisms as in Figure 2.
Refer to caption
Figure 4: The same as Figure 2 except for input parameters of (mmin,Mmax)=(17M,12000M)(m_{\min},M_{\max})=(17M_{\odot},12000M_{\odot}). In the bottom left panel, the lower-mass peak is formed through the same mechanism as in Figure 2. The higher-mass peak in Figure 2 disappears in this figure, since the higher-mass peak needs many binary stars with 17\lesssim 17 MM_{\odot} secondary stars.

In order to assess the Pop III BH merger scenario, previous studies have focused on the secondary necessary condition. Thus, they have only pointed out that minihalos should form a larger amount of Pop III stars than predicted theoretically by a factor of more than 10. In addition to that, we find a new constraint on mminm_{\min}: 15mmin/M2715\lesssim m_{\min}/M_{\odot}\lesssim 27 by taking into account the third necessary condition. The allowed range MmaxM_{\max} becomes narrower when mminm_{\min} deviates from 20\sim 20 MM_{\odot}. In other words, mminm_{\min} should be close to the critical mass where the fate of a Pop III star transits from a CCSN to a FSN. The critical mass is 20\sim 20 MM_{\odot} in our adopted supernova model. Otherwise, minihalos can form only one type of carbon-rich and carbon-normal EMP stars.

4 Summary and discussion

We examine the Pop III BH merger scenario under the hypothesis that EMP stars consist of primordial gas and Pop III supernova ejecta. We suppose that the scenario is valid if the following three necessary conditions are satisfied. First, Pop III formation rate is ρ31015\rho_{3}\leq 10^{15} MM_{\odot} Gpc3{\rm Gpc}^{-3}. Second, Pop III BHs merge at a rate of 3R2040/(yr1Gpc3)303\leq R_{20-40}/({\rm yr}^{-1}{\rm Gpc}^{-3})\leq 30. Third, EMP stars have the number ratio 0.01fcrich10.01\leq f_{\rm c-rich}\leq 1. In order to obtain Pop III BHs and EMP stars, we construct a simple formation model of Pop III stars, and simulate the evolution of Pop III stars by binary population synthesis technique.

We find that there is a region satisfying the three necessary conditions. The Pop III formation rate should be ρ33×1014\rho_{3}\gtrsim 3\times 10^{14} MM_{\odot} Gpc3{\rm Gpc}^{-3}. This means that each minihalo should form Pop III stars with Mmax104M_{\max}\sim 10^{4} MM_{\odot}, or 10310410^{3}-10^{4} MM_{\odot} in total. Although this formation rate does not violate the first necessary condition, it is much larger than numerically predicted by Skinner & Wise (2020). Similar things have been already pointed out by Hartwig et al. (2016).

We newly find that the minimum mass of Pop III stars should be 15mmin/M2715\lesssim m_{\min}/M_{\odot}\lesssim 27. If mmin/M15m_{\min}/M_{\odot}\lesssim 15 or mmin/M27m_{\min}/M_{\odot}\gtrsim 27, fcrichf_{\rm c-rich} is smaller or larger than the third necessary condition, respectively. This is because each minihalo gets too much CCSNe and FSNe for mmin/M15m_{\min}/M_{\odot}\lesssim 15 and mmin/M27m_{\min}/M_{\odot}\gtrsim 27, respectively. Moreover, the allowed region becomes narrower with mminm_{\min} deviating from 20\sim 20 MM_{\odot}, which is the boundary mass between CCSNe and FSNe.

We compare the new constraint with mminm_{\min} obtained from numerical simulations. Susa et al. (2014) have shown that the number of Pop III stars is sharply decreased just below 10\sim 10 MM_{\odot}. On the other hand, in Hirano et al. (2014) (see also Hirano et al. (2015)), the number of 1010 MM_{\odot} Pop III stars is much smaller than that of 2020 MM_{\odot}, which can be interpreted as 10mmin/M2010\lesssim m_{\min}/M_{\odot}\lesssim 20. From these numerical simulations, we can regard 10mmin/M2010\lesssim m_{\min}/M_{\odot}\lesssim 20, however cannot strictly determine mminm_{\min}. Thus, we do not exclude possibility of the Pop III BH merger scenario, under our assumption that EMP stars are formed from primordial gas mixed with Pop III supernova ejecta.

We have to note that recent studies have also found the formation of low-mass Pop III stars (Machida et al., 2008; Clark et al., 2011a, b; Greif et al., 2011, 2012; Machida & Doi, 2013; Susa et al., 2014; Chiaki et al., 2016). Such low-mass Pop III stars can have 1\lesssim 1 MM_{\odot}. However, the number of such low-mass Pop III stars is much smaller than Pop III stars with 10\gtrsim 10 MM_{\odot}. The presence of such low-mass Pop III stars can be negligible for our results.

We emphasize that the new constraint on mminm_{\min} (15mmin/M2715\lesssim m_{\min}/M_{\odot}\lesssim 27) is necessary only when we claim the Pop III BH merger scenario. Note that Pop III stars are a major origin of observed BH mergers with more than 20 MM_{\odot} in the Pop III BH merger scenario. In other words, Pop III stars can have 15\lesssim 15 MM_{\odot} stars (say 1010 MM_{\odot} stars or less massive stars) if we do not adopt the Pop III merger scenario. The new constraint on mminm_{\min} can be applicable when we reconcile the Pop III BH merger scenario with 0.01fcrich10.01\leq f_{\rm c-rich}\leq 1.

Hereafter, we make caveats on our model. We treat MmaxM_{\max} as a free parameter, while we fix nhalon_{\rm halo} as 1011\sim 10^{11} Gpc3{\rm Gpc}^{-3}. However, MmaxM_{\max} and nhalon_{\rm halo} may be anti-correlated. Skinner & Wise (2020) have performed numerical simulations to follow cosmic chemical evolution as well as Pop III star formation. Since we assume that more Pop III stars are formed than Skinner & Wise (2020) expected, Pop III’s surrounding gas should be polluted more rapidly. The pollution should stop forming Pop III stars earlier, and start forming Pop I/II stars earlier. Thus, if we assume that each minihalo yields a larger amount of Pop III stars than their results (i.e. Mmax600M_{\max}\gg 600 MM_{\odot}), we should decrease the number density of minihalos (i.e. nhalo1011n_{\rm halo}\ll 10^{11} Gpc3{\rm Gpc}^{-3}). In that case, the Pop III BH merger scenario should be difficult to be valid. In this paper, we do not take into account this, because we simply control Pop III star formation rate.

We prepare the three necessary conditions as described in section 2.4. It might be possible to add other necessary conditions. As for merging BHs, GW observations obtain not only BH masses but also BH spins. We might account for BH spins for necessary conditions. However, we do not do so. This is because the estimates of BH spins are less reliable and less constrained than BH masses (The LIGO Scientific Collaboration et al., 2021b). Thus, we adopt only BH masses for the necessary conditions. As for EMP stars, chemical elements other than carbon are also observed. Nevertheless, we do not take into account them. This is because carbon abundance is the most characteristic and most observed elements in EMP stars, and is the most sensitive to whether CCSNe or FSNe happen.

In our supernova model, Pop III stars with mzams/M20m_{\rm zams}/M_{\odot}\lesssim 20 and 20\gtrsim 20 deterministically cause CCSNe and FSNe, respectively, except that binary interactions slightly change their fates. On the other hand, recent supernova studies have suggested that stars with mzams=1030m_{\rm zams}=10-30 MM_{\odot} cause CCSNe stochastically (Ugliano et al., 2012; Pejcha & Thompson, 2015; Sukhbold et al., 2016; Müller et al., 2016; Sukhbold et al., 2018; Kresse et al., 2021). This may largely affect our results. However, we do not adopt such supernova models. This is because these models have not been prepared to use in binary population synthesis technique. These models tell us whether stars experience CCSNe or direct collapses to BHs, but do not include FSNe which is needed in binary population synthesis technique.

{ack}

We thank organizers of the first star and first galaxy conference 2020 in Japan for giving us a good opportunity to start our collaboration. This study was supported in part by Grants-in-Aid for Scientific Research (19K03907, 20H00174, 20H01904, 21K13915) from the Japan Society for the Promotion of Science and Grants-in-Aid for Scientific Research on Innovative areas (17H06360, 18H05437, 20H04747) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

References

  • Abbott et al. (2019) Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2019, Physical Review X, 9, 031040
  • Abbott et al. (2020a) Abbott, R., Abbott, T. D., Abraham, S., et al. 2020a, Phys. Rev. Lett., 125, 101102
  • Abbott et al. (2020b) —. 2020b, ApJ, 896, L44
  • Abbott et al. (2020c) —. 2020c, ApJ, 900, L13
  • Abbott et al. (2021) —. 2021, Physical Review X, 11, 021053
  • Abel et al. (2002) Abel, T., Bryan, G. L., & Norman, M. L. 2002, Science, 295, 93
  • Ablimit & Maeda (2018) Ablimit, I., & Maeda, K. 2018, ApJ, 866, 151
  • Anagnostou et al. (2020) Anagnostou, O., Trenti, M., & Melatos, A. 2020, PASA, 37, e044
  • Antonini et al. (2014) Antonini, F., Murray, N., & Mikkola, S. 2014, ApJ, 781, 45
  • Antonini & Perets (2012) Antonini, F., & Perets, H. B. 2012, ApJ, 757, 27
  • Aoki et al. (2007) Aoki, W., Beers, T. C., Christlieb, N., et al. 2007, ApJ, 655, 492
  • Arca Sedda (2020) Arca Sedda, M. 2020, ApJ, 891, 47
  • Arca-Sedda et al. (2021) Arca-Sedda, M., Rizzuto, F. P., Naab, T., et al. 2021, ApJ, 920, 128
  • Askar et al. (2017) Askar, A., Szkudlarek, M., Gondek-Rosińska, D., Giersz, M., & Bulik, T. 2017, MNRAS, 464, L36
  • Audouze & Silk (1995) Audouze, J., & Silk, J. 1995, ApJ, 451, L49
  • Banerjee (2017) Banerjee, S. 2017, MNRAS, 467, 524
  • Banerjee et al. (2010) Banerjee, S., Baumgardt, H., & Kroupa, P. 2010, MNRAS, 402, 371
  • Barkat et al. (1967) Barkat, Z., Rakavy, G., & Sack, N. 1967, Phys. Rev. Lett., 18, 379
  • Bartos et al. (2017) Bartos, I., Kocsis, B., Haiman, Z., & Márka, S. 2017, ApJ, 835, 165
  • Beers & Christlieb (2005) Beers, T. C., & Christlieb, N. 2005, ARA&A, 43, 531
  • Belczynski (2020) Belczynski, K. 2020, ApJ, 905, L15
  • Belczynski et al. (2004) Belczynski, K., Bulik, T., & Rudak, B. 2004, ApJ, 608, L45
  • Belczynski et al. (2016a) Belczynski, K., Holz, D. E., Bulik, T., & O’Shaughnessy, R. 2016a, Nature, 534, 512
  • Belczynski et al. (2017) Belczynski, K., Ryu, T., Perna, R., et al. 2017, MNRAS, 471, 4702
  • Belczynski et al. (2007) Belczynski, K., Taam, R. E., Kalogera, V., Rasio, F. A., & Bulik, T. 2007, ApJ, 662, 504
  • Belczynski et al. (2016b) Belczynski, K., Heger, A., Gladysz, W., et al. 2016b, A&A, 594, A97
  • Belczynski et al. (2020) Belczynski, K., Klencki, J., Fields, C. E., et al. 2020, A&A, 636, A104
  • Bethe & Brown (1998) Bethe, H. A., & Brown, G. E. 1998, ApJ, 506, 780
  • Bond et al. (1984) Bond, J. R., Arnett, W. D., & Carr, B. J. 1984, ApJ, 280, 825
  • Bouffanais et al. (2021) Bouffanais, Y., Mapelli, M., Santoliquido, F., et al. 2021, MNRAS, 507, 5224
  • Britt et al. (2021) Britt, D., Johanson, B., Wood, L., Miller, M. C., & Michaely, E. 2021, MNRAS, 505, 3844
  • Bromm & Larson (2004) Bromm, V., & Larson, R. B. 2004, ARA&A, 42, 79
  • Campbell et al. (2010) Campbell, S. W., Lugaro, M., & Karakas, A. I. 2010, A&A, 522, L6
  • Cayrel et al. (2004) Cayrel, R., Depagne, E., Spite, M., et al. 2004, A&A, 416, 1117
  • Chiaki et al. (2018) Chiaki, G., Susa, H., & Hirano, S. 2018, MNRAS, 475, 4378
  • Chiaki et al. (2017) Chiaki, G., Tominaga, N., & Nozawa, T. 2017, MNRAS, 472, L115
  • Chiaki et al. (2020) Chiaki, G., Wise, J. H., Marassi, S., et al. 2020, MNRAS, 497, 3149
  • Chiaki et al. (2016) Chiaki, G., Yoshida, N., & Hirano, S. 2016, MNRAS, 463, 2781
  • Chon et al. (2021) Chon, S., Omukai, K., & Schneider, R. 2021, MNRAS, 508, 4175
  • Claeys et al. (2014) Claeys, J. S. W., Pols, O. R., Izzard, R. G., Vink, J., & Verbunt, F. W. M. 2014, A&A, 563, A83
  • Clark et al. (2011a) Clark, P. C., Glover, S. C. O., Klessen, R. S., & Bromm, V. 2011a, ApJ, 727, 110
  • Clark et al. (2011b) Clark, P. C., Glover, S. C. O., Smith, R. J., et al. 2011b, Science, 331, 1040
  • Cooke & Madau (2014) Cooke, R. J., & Madau, P. 2014, ApJ, 791, 116
  • Costa et al. (2021) Costa, G., Bressan, A., Mapelli, M., et al. 2021, MNRAS, 501, 4514
  • de Mink & Belczynski (2015) de Mink, S. E., & Belczynski, K. 2015, ApJ, 814, 58
  • de Souza et al. (2011) de Souza, R. S., Yoshida, N., & Ioka, K. 2011, A&A, 533, A32
  • Di Carlo et al. (2020) Di Carlo, U. N., Mapelli, M., Giacobbo, N., et al. 2020, MNRAS, 498, 495
  • Doi & Susa (2011) Doi, K., & Susa, H. 2011, ApJ, 741, 93
  • Dopcke et al. (2013) Dopcke, G., Glover, S. C. O., Clark, P. C., & Klessen, R. S. 2013, ApJ, 766, 103
  • Downing et al. (2010) Downing, J. M. B., Benacquista, M. J., Giersz, M., & Spurzem, R. 2010, MNRAS, 407, 1946
  • Edwards & Pringle (1987) Edwards, D. A., & Pringle, J. E. 1987, MNRAS, 229, 383
  • El Eid & Langer (1986) El Eid, M. F., & Langer, N. 1986, A&A, 167, 274
  • Eldridge et al. (2019) Eldridge, J. J., Stanway, E. R., & Tang, P. N. 2019, MNRAS, 482, 870
  • Eldridge et al. (2017) Eldridge, J. J., Stanway, E. R., Xiao, L., et al. 2017, PASA, 34, e058
  • Farmer et al. (2020) Farmer, R., Renzo, M., de Mink, S. E., Fishbach, M., & Justham, S. 2020, ApJ, 902, L36
  • Farrell et al. (2021) Farrell, E., Groh, J. H., Hirschi, R., et al. 2021, MNRAS, 502, L40
  • Federrath et al. (2011) Federrath, C., Sur, S., Schleicher, D. R. G., Banerjee, R., & Klessen, R. S. 2011, ApJ, 731, 62
  • Fishbach & Holz (2020) Fishbach, M., & Holz, D. E. 2020, ApJ, 904, L26
  • Fishbach et al. (2017) Fishbach, M., Holz, D. E., & Farr, B. 2017, ApJ, 840, L24
  • Fragione & Banerjee (2021) Fragione, G., & Banerjee, S. 2021, ApJ, 913, L29
  • Fragione & Kocsis (2019) Fragione, G., & Kocsis, B. 2019, MNRAS, 486, 4781
  • Fragione et al. (2020) Fragione, G., Loeb, A., & Rasio, F. A. 2020, ApJ, 895, L15
  • Fraley (1968) Fraley, G. S. 1968, Ap&SS, 2, 96
  • Franciolini et al. (2021) Franciolini, G., Baibhav, V., De Luca, V., et al. 2021, arXiv e-prints, arXiv:2105.03349
  • Frebel & Norris (2015) Frebel, A., & Norris, J. E. 2015, ARA&A, 53, 631
  • Fryer et al. (2012) Fryer, C. L., Belczynski, K., Wiktorowicz, G., et al. 2012, ApJ, 749, 91
  • Fryer et al. (2001) Fryer, C. L., Woosley, S. E., & Heger, A. 2001, ApJ, 550, 372
  • Fujii et al. (2017) Fujii, M. S., Tanikawa, A., & Makino, J. 2017, PASJ, 69, 94
  • García et al. (2021) García, F., Simaz Bunzel, A., Chaty, S., Porter, E., & Chassande-Mottin, E. 2021, A&A, 649, A114
  • Gerosa & Berti (2017) Gerosa, D., & Berti, E. 2017, Phys. Rev. D, 95, 124046
  • Gerosa & Fishbach (2021) Gerosa, D., & Fishbach, M. 2021, Nature Astronomy, 5, 749
  • Greif et al. (2012) Greif, T. H., Bromm, V., Clark, P. C., et al. 2012, MNRAS, 424, 399
  • Greif et al. (2007) Greif, T. H., Johnson, J. L., Bromm, V., & Klessen, R. S. 2007, ApJ, 670, 1
  • Greif et al. (2011) Greif, T. H., Springel, V., White, S. D. M., et al. 2011, ApJ, 737, 75
  • Hamers et al. (2018) Hamers, A. S., Bar-Or, B., Petrovich, C., & Antonini, F. 2018, ApJ, 865, 2
  • Hamers & Safarzadeh (2020) Hamers, A. S., & Safarzadeh, M. 2020, ApJ, 898, 99
  • Hartwig et al. (2016) Hartwig, T., Volonteri, M., Bromm, V., et al. 2016, MNRAS, 460, L74
  • Heger & Woosley (2002) Heger, A., & Woosley, S. E. 2002, ApJ, 567, 532
  • Higashi et al. (2021) Higashi, S., Susa, H., & Chiaki, G. 2021, ApJ, 915, 107
  • Hijikawa et al. (2021) Hijikawa, K., Tanikawa, A., Kinugawa, T., Yoshida, T., & Umeda, H. 2021, MNRAS, 505, L69
  • Hirano et al. (2015) Hirano, S., Hosokawa, T., Yoshida, N., Omukai, K., & Yorke, H. W. 2015, MNRAS, 448, 568
  • Hirano et al. (2014) Hirano, S., Hosokawa, T., Yoshida, N., et al. 2014, ApJ, 781, 60
  • Hoang et al. (2018) Hoang, B.-M., Naoz, S., Kocsis, B., Rasio, F. A., & Dosopoulou, F. 2018, ApJ, 856, 140
  • Hong et al. (2020) Hong, J., Askar, A., Giersz, M., Hypki, A., & Yoon, S.-J. 2020, MNRAS, 498, 4287
  • Hosokawa et al. (2011) Hosokawa, T., Omukai, K., Yoshida, N., & Yorke, H. W. 2011, Science, 334, 1250
  • Hurley et al. (2002) Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS, 329, 897
  • Hütsi et al. (2021) Hütsi, G., Raidal, M., Vaskonen, V., & Veermäe, H. 2021, J. Cosmology Astropart. Phys, 2021, 068
  • Inayoshi et al. (2017) Inayoshi, K., Hirai, R., Kinugawa, T., & Hotokezaka, K. 2017, MNRAS, 468, 5020
  • Inayoshi et al. (2016) Inayoshi, K., Kashiyama, K., Visbal, E., & Haiman, Z. 2016, MNRAS, 461, 2722
  • Inayoshi et al. (2021) —. 2021, ApJ, 919, 41
  • Ishiyama et al. (2016) Ishiyama, T., Sudo, K., Yokoi, S., et al. 2016, ApJ, 826, 9
  • Ito et al. (2013) Ito, H., Aoki, W., Beers, T. C., et al. 2013, ApJ, 773, 33
  • Johnson (2015) Johnson, J. L. 2015, MNRAS, 453, 2771
  • Kasen et al. (2011) Kasen, D., Woosley, S. E., & Heger, A. 2011, ApJ, 734, 102
  • Kimball et al. (2021) Kimball, C., Talbot, C., Berry, C. P. L., et al. 2021, ApJ, 915, L35
  • Kinugawa et al. (2014) Kinugawa, T., Inayoshi, K., Hotokezaka, K., Nakauchi, D., & Nakamura, T. 2014, MNRAS, 442, 2963
  • Kinugawa et al. (2021a) Kinugawa, T., Nakamura, T., & Nakano, H. 2021a, MNRAS, 501, L49
  • Kinugawa et al. (2021b) —. 2021b, Progress of Theoretical and Experimental Physics, 2021, 021E01
  • Kinugawa et al. (2021c) —. 2021c, MNRAS, 504, L28
  • Kremer et al. (2020) Kremer, K., Spera, M., Becker, D., et al. 2020, ApJ, 903, 45
  • Kresse et al. (2021) Kresse, D., Ertl, T., & Janka, H.-T. 2021, ApJ, 909, 169
  • Kulkarni et al. (1993) Kulkarni, S. R., Hut, P., & McMillan, S. 1993, Nature, 364, 421
  • Kumamoto et al. (2020) Kumamoto, J., Fujii, M. S., & Tanikawa, A. 2020, MNRAS, 495, 4268
  • Leigh et al. (2018) Leigh, N. W. C., Geller, A. M., McKernan, B., et al. 2018, MNRAS, 474, 5672
  • Leung et al. (2019) Leung, S.-C., Nomoto, K., & Blinnikov, S. 2019, ApJ, 887, 72
  • Liu & Bromm (2020a) Liu, B., & Bromm, V. 2020a, MNRAS, 495, 2475
  • Liu & Bromm (2020b) —. 2020b, ApJ, 903, L40
  • Liu & Bromm (2021) —. 2021, MNRAS, 506, 5451
  • Liu & Lai (2019) Liu, B., & Lai, D. 2019, MNRAS, 483, 4060
  • Liu et al. (2021a) Liu, B., Meynet, G., & Bromm, V. 2021a, MNRAS, 501, 643
  • Liu et al. (2021b) Liu, B., Sibony, Y., Meynet, G., & Bromm, V. 2021b, MNRAS, 506, 5247
  • Machida & Doi (2013) Machida, M. N., & Doi, K. 2013, MNRAS, 435, 3283
  • Machida et al. (2008) Machida, M. N., Omukai, K., Matsumoto, T., & Inutsuka, S.-i. 2008, ApJ, 677, 813
  • Magg et al. (2016) Magg, M., Hartwig, T., Glover, S. C. O., Klessen, R. S., & Whalen, D. J. 2016, MNRAS, 462, 3591
  • Magg et al. (2019) Magg, M., Klessen, R. S., Glover, S. C. O., & Li, H. 2019, MNRAS, 487, 486
  • Mapelli et al. (2017) Mapelli, M., Giacobbo, N., Ripamonti, E., & Spera, M. 2017, MNRAS, 472, 2422
  • Mapelli et al. (2019) Mapelli, M., Giacobbo, N., Santoliquido, F., & Artale, M. C. 2019, MNRAS, 487, 2
  • Mapelli et al. (2021) Mapelli, M., Santoliquido, F., Bouffanais, Y., et al. 2021, Symmetry, 13, 1678
  • Marassi et al. (2014) Marassi, S., Chiaki, G., Schneider, R., et al. 2014, ApJ, 794, 100
  • McKernan et al. (2020) McKernan, B., Ford, K. E. S., & O’Shaughnessy, R. 2020, MNRAS, 498, 4088
  • McKernan et al. (2018) McKernan, B., Ford, K. E. S., Bellovary, J., et al. 2018, ApJ, 866, 66
  • Müller et al. (2016) Müller, B., Heger, A., Liptai, D., & Cameron, J. B. 2016, MNRAS, 460, 742
  • Nakauchi et al. (2012) Nakauchi, D., Suwa, Y., Sakamoto, T., Kashiyama, K., & Nakamura, T. 2012, ApJ, 759, 128
  • Nakazato et al. (2006) Nakazato, K., Sumiyoshi, K., & Yamada, S. 2006, ApJ, 645, 519
  • Ng et al. (2021) Ng, K. K. Y., Vitale, S., Farr, W. M., & Rodriguez, C. L. 2021, ApJ, 913, L5
  • Nomoto et al. (2013) Nomoto, K., Kobayashi, C., & Tominaga, N. 2013, ARA&A, 51, 457
  • O’Leary et al. (2009) O’Leary, R. M., Kocsis, B., & Loeb, A. 2009, MNRAS, 395, 2127
  • Olejak et al. (2020) Olejak, A., Fishbach, M., Belczynski, K., et al. 2020, ApJ, 901, L39
  • Omukai (2000) Omukai, K. 2000, ApJ, 534, 809
  • Omukai & Nishi (1998) Omukai, K., & Nishi, R. 1998, ApJ, 508, 141
  • Paczyński & Sienkiewicz (1972) Paczyński, B., & Sienkiewicz, R. 1972, Acta Astron., 22, 73
  • Park et al. (2017) Park, D., Kim, C., Lee, H. M., Bae, Y.-B., & Belczynski, K. 2017, MNRAS, 469, 4665
  • Pejcha & Thompson (2015) Pejcha, O., & Thompson, T. A. 2015, ApJ, 801, 90
  • Petrovich & Antonini (2017) Petrovich, C., & Antonini, F. 2017, ApJ, 846, 146
  • Portegies Zwart & McMillan (2000) Portegies Zwart, S. F., & McMillan, S. L. W. 2000, ApJ, 528, L17
  • Pudritz & Silk (1989) Pudritz, R. E., & Silk, J. 1989, ApJ, 342, 650
  • Punturo et al. (2010) Punturo, M., Abernathy, M., Acernese, F., et al. 2010, Classical and Quantum Gravity, 27, 194002
  • Qin et al. (2018) Qin, Y., Fragos, T., Meynet, G., et al. 2018, A&A, 616, A28
  • Rasskazov & Kocsis (2019) Rasskazov, A., & Kocsis, B. 2019, ApJ, 881, 20
  • Rastello et al. (2019) Rastello, S., Amaro-Seoane, P., Arca-Sedda, M., et al. 2019, MNRAS, 483, 1233
  • Reitze et al. (2019) Reitze, D., Adhikari, R. X., Ballmer, S., et al. 2019, in BAAS, Vol. 51, 35
  • Rodriguez et al. (2018) Rodriguez, C. L., Amaro-Seoane, P., Chatterjee, S., et al. 2018, Phys. Rev. D, 98, 123005
  • Rodriguez & Antonini (2018) Rodriguez, C. L., & Antonini, F. 2018, ApJ, 863, 7
  • Ryan et al. (1996) Ryan, S. G., Norris, J. E., & Beers, T. C. 1996, ApJ, 471, 254
  • Sadanari et al. (2021) Sadanari, K. E., Omukai, K., Sugimura, K., Matsumoto, T., & Tomida, K. 2021, MNRAS, 505, 4197
  • Samsing et al. (2018) Samsing, J., Askar, A., & Giersz, M. 2018, ApJ, 855, 124
  • Sana et al. (2012) Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science, 337, 444
  • Santoliquido et al. (2021) Santoliquido, F., Mapelli, M., Giacobbo, N., Bouffanais, Y., & Artale, M. C. 2021, MNRAS, 502, 4877
  • Savonije (1978) Savonije, G. J. 1978, A&A, 62, 317
  • Schneider et al. (2003) Schneider, R., Ferrara, A., Salvaterra, R., Omukai, K., & Bromm, V. 2003, Nature, 422, 869
  • Sharda et al. (2020) Sharda, P., Federrath, C., & Krumholz, M. R. 2020, MNRAS, 497, 336
  • Sigurdsson & Hernquist (1993) Sigurdsson, S., & Hernquist, L. 1993, Nature, 364, 423
  • Silsbee & Tremaine (2017) Silsbee, K., & Tremaine, S. 2017, ApJ, 836, 39
  • Skinner & Wise (2020) Skinner, D., & Wise, J. H. 2020, MNRAS, 492, 4386
  • Stacy et al. (2011) Stacy, A., Bromm, V., & Loeb, A. 2011, MNRAS, 413, 543
  • Stone et al. (2017) Stone, N. C., Metzger, B. D., & Haiman, Z. 2017, MNRAS, 464, 946
  • Suda et al. (2004) Suda, T., Aikawa, M., Machida, M. N., Fujimoto, M. Y., & Iben, Icko, J. 2004, ApJ, 611, 476
  • Suda et al. (2011) Suda, T., Yamada, S., Katsuta, Y., et al. 2011, MNRAS, 412, 843
  • Suda et al. (2008) Suda, T., Katsuta, Y., Yamada, S., et al. 2008, PASJ, 60, 1159
  • Suda et al. (2017) Suda, T., Hidaka, J., Aoki, W., et al. 2017, PASJ, 69, 76
  • Sugimura et al. (2020) Sugimura, K., Matsumoto, T., Hosokawa, T., Hirano, S., & Omukai, K. 2020, ApJ, 892, L14
  • Sukhbold et al. (2016) Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M., & Janka, H. T. 2016, ApJ, 821, 38
  • Sukhbold et al. (2018) Sukhbold, T., Woosley, S. E., & Heger, A. 2018, ApJ, 860, 93
  • Susa (2013) Susa, H. 2013, ApJ, 773, 185
  • Susa et al. (2014) Susa, H., Hasegawa, K., & Tominaga, N. 2014, ApJ, 792, 32
  • Suwa & Ioka (2011) Suwa, Y., & Ioka, K. 2011, ApJ, 726, 107
  • Suwa et al. (2007a) Suwa, Y., Takiwaki, T., Kotake, K., & Sato, K. 2007a, ApJ, 665, L43
  • Suwa et al. (2007b) —. 2007b, PASJ, 59, 771
  • Suwa et al. (2009) —. 2009, ApJ, 690, 913
  • Tagawa et al. (2020) Tagawa, H., Haiman, Z., Bartos, I., & Kocsis, B. 2020, ApJ, 899, 26
  • Tanikawa (2013) Tanikawa, A. 2013, MNRAS, 435, 1358
  • Tanikawa et al. (2021a) Tanikawa, A., Kinugawa, T., Yoshida, T., Hijikawa, K., & Umeda, H. 2021a, MNRAS, 505, 2170
  • Tanikawa et al. (2021b) Tanikawa, A., Susa, H., Yoshida, T., Trani, A. A., & Kinugawa, T. 2021b, ApJ, 910, 30
  • Tanikawa et al. (2020) Tanikawa, A., Yoshida, T., Kinugawa, T., Takahashi, K., & Umeda, H. 2020, MNRAS, 495, 4170
  • Tanikawa et al. (2021c) Tanikawa, A., Yoshida, T., Kinugawa, T., et al. 2021c, arXiv e-prints, arXiv:2110.10846
  • Tarumi et al. (2020) Tarumi, Y., Hartwig, T., & Magg, M. 2020, ApJ, 897, 58
  • The LIGO Scientific Collaboration et al. (2021a) The LIGO Scientific Collaboration, The Virgo Collaboration, & The KAGRA Scientific Collaboration. 2021a, arXiv e-prints, arXiv:2111.03634
  • The LIGO Scientific Collaboration et al. (2021b) The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, et al. 2021b, arXiv e-prints, arXiv:2111.03606
  • Tominaga et al. (2014) Tominaga, N., Iwamoto, N., & Nomoto, K. 2014, ApJ, 785, 98
  • Trani et al. (2021a) Trani, A. A., Rastello, S., Di Carlo, U. N., et al. 2021a, arXiv e-prints, arXiv:2111.06388
  • Trani et al. (2021b) Trani, A. A., Tanikawa, A., Fujii, M. S., Leigh, N. W. C., & Kumamoto, J. 2021b, MNRAS, 504, 910
  • Turk et al. (2009) Turk, M. J., Abel, T., & O’Shea, B. 2009, Science, 325, 601
  • Turk et al. (2012) Turk, M. J., Oishi, J. S., Abel, T., & Bryan, G. L. 2012, ApJ, 745, 154
  • Uchida et al. (2019a) Uchida, H., Shibata, M., Takahashi, K., & Yoshida, T. 2019a, ApJ, 870, 98
  • Uchida et al. (2019b) —. 2019b, Phys. Rev. D, 99, 041302
  • Ugliano et al. (2012) Ugliano, M., Janka, H.-T., Marek, A., & Arcones, A. 2012, ApJ, 757, 69
  • Umeda & Nomoto (2002) Umeda, H., & Nomoto, K. 2002, ApJ, 565, 385
  • Umeda & Nomoto (2003) —. 2003, Nature, 422, 871
  • Umeda et al. (2020) Umeda, H., Yoshida, T., Nagele, C., & Takahashi, K. 2020, ApJ, 905, L21
  • VanLandingham et al. (2016) VanLandingham, J. H., Miller, M. C., Hamilton, D. P., & Richardson, D. C. 2016, ApJ, 828, 77
  • Visbal et al. (2020) Visbal, E., Bryan, G. L., & Haiman, Z. 2020, ApJ, 897, 95
  • Wang et al. (2021) Wang, L., Fujii, M. S., & Tanikawa, A. 2021, MNRAS, 504, 5778
  • Webbink (1984) Webbink, R. F. 1984, ApJ, 277, 355
  • Woosley (2017) Woosley, S. E. 2017, ApJ, 836, 244
  • Woosley et al. (2007) Woosley, S. E., Blinnikov, S., & Heger, A. 2007, Nature, 450, 390
  • Woosley & Heger (2012) Woosley, S. E., & Heger, A. 2012, ApJ, 752, 32
  • Yamada et al. (2013) Yamada, S., Suda, T., Komiya, Y., Aoki, W., & Fujimoto, M. Y. 2013, MNRAS, 436, 1362
  • Yang et al. (2019) Yang, Y., Bartos, I., Haiman, Z., et al. 2019, ApJ, 876, 122
  • Yong et al. (2013) Yong, D., Norris, J. E., Bessell, M. S., et al. 2013, ApJ, 762, 26
  • Yoon et al. (2016) Yoon, J., Beers, T. C., Placco, V. M., et al. 2016, ApJ, 833, 20
  • Yoon et al. (2012) Yoon, S. C., Dierks, A., & Langer, N. 2012, A&A, 542, A113
  • Yoon et al. (2010) Yoon, S. C., Woosley, S. E., & Langer, N. 2010, ApJ, 725, 940
  • Yoshida et al. (2008) Yoshida, N., Omukai, K., & Hernquist, L. 2008, Science, 321, 669
  • Yoshida et al. (2016) Yoshida, T., Umeda, H., Maeda, K., & Ishii, T. 2016, MNRAS, 457, 351
  • Zahn (1975) Zahn, J. P. 1975, A&A, 41, 329
  • Zevin et al. (2021) Zevin, M., Bavera, S. S., Berry, C. P. L., et al. 2021, ApJ, 910, 152
  • Ziosi et al. (2014) Ziosi, B. M., Mapelli, M., Branchesi, M., & Tormen, G. 2014, MNRAS, 441, 3703