This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Calculation of magnon drag force induced by an electric current in ferromagnetic metals

Hiroshi Funaki Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China    Gen Tatara RIKEN Center for Emergent Matter Science (CEMS) and RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
Abstract

Magnon drag effect induced by an applied electric field in ferromagnetic metals is theoretically studied by a microscopic calculation of the force on magnons arising from magnon emission/absorption and scattering due to driven electrons. It is shown that magnon scattering contribution dominates over the emission/absorption one in a wide temperature regime in good metals with long elastic lifetime τ\tau, as the latter has a relative suppression factor of (Δτ)2(\Delta\tau)^{-2} due to the electron spin flip by the magnon, where Δ\Delta is the sdsd exchange interaction energy. Spin-transfer efficiency is discussed including the magnon drag effect.

I Introduction

Magnon or spin wave is an elementary excitation in magnetic systems, which are expected to be useful in spintronics for information transport and processing different from the conventional electronics [1]. An obvious advantage of using magnons is the fact that they exist even in insulators, where conduction electrons are absent. Spin-transfer effect due to magnon current was theoretically argued in the context of domain wall motion in Ref. [2]. Magnons are, however, not easy to control and to detect, as it does not have direct coupling to an electric field. Thermal driving by applying a temperature gradient is therefore a common method for inducing magnon flow like in the spin Seebeck effect [3]. Unlike conduction electrons, magnon effects are generally temperature-dependent owing to a Bose distribution function for magnon excitation, but the effects are not easy to separate from other bosonic origins such as phonons with similar character. Responses to an external magnetic field were used to identify the magnon contribution [4]. Magnon drag effect was experimentally identified by use of a thermopile structure to cancel nonmagnetic origins in Ref. [5].

In ferromagnetic metals, conduction electron spin is polarized due to strong sdsd exchange interaction to the magnetization, as suggested by large magnetoresistance in magnetic multilayers and high efficiency of the spin-transfer effect for domain walls. Strong sdsd exchange interaction indicates that the system is a strongly correlated fluid of magnon and electron with spin up and down, where a significant magnon drag effect by the electron flow and vice versa are expected. In 1976, magnon-drag Peltier effect, i.e., the energy current due to magnon flow when an electric field is applied, was phenomenologically argued and magnon drift velocity was found from experimental data to be vm=μm/evev_{\rm m}=\mu_{\rm m/e}v_{\rm e} with a constant μm/e=23\mu_{\rm m/e}=2-3, where vev_{\rm e} is the electron drift velocity [4]. It is striking that the magnons are driven so efficiently by an electric field even without a direct coupling. Magnon-drag effect was studied by use of a microscopic diagrammatic method in Ref. [6]. The magnon velocity was calculated taking account of the magnon emission and absorption due to the sd exchange interaction and an applied electric field, and an expression μm/ePη/(αGΔ)\mu_{\rm m/e}\propto P\eta/(\alpha_{\rm G}\Delta) was obtained for the velocity ratio, where PP denotes the spin polarization of conduction electron, η\eta is the inverse electron elastic lifetime, Δ\Delta is the electron spin polarization energy and αG\alpha_{\rm G} is the (Gilbert) damping constant for magnon. The electric current induced by the magnon current driven by a temperature gradient was calculated and argued in the context of magnonic spin-motive force in Ref. [7].

The mechanism considered in Refs. [4, 6], the magnon emission and absorption, is the following process. When the conduction electron has a drift velocity opposite to the applied electric field, a forward emission of a magnon and an absorption of a backward propagating magnon occurs (Fig. 1). The transferred momentum from or to the magnon contributes to a drag force. Magnon carries a spin of 1-1, and thus an absorption and emission flips the electron spin. The absorption/emission event therefore results in a high energy excitation of the order of 2Δ2\Delta for the electron at the Fermi energy, unless the magnon wave vector matches the difference of the Fermi wave vectors, kF+kFk_{F+}-k_{F-} for spin ±\pm. The electron amplitude for the force has therefore a suppression factor of (Δτ)n(\Delta\tau)^{-n} (n1n\geq 1), where nn turns out to be 1 (Eq. (27)), τ\tau being the electron elastic lifetime. Being a single magnon process, the magnon amplitude for the emission/absorption turns out to depend on the temperature TT as T52T^{\frac{5}{2}}. Besides the emission and absorption, electron drift causes a magnon scattering. The scattering conserves the electron spin, and the electron stays near the Fermi energy, and thus there is no electron suppression factor for the scattering process. The scattering is a two magnon process, whose amplitude turns out to be T4\propto T^{4} and is weaker at low temperatures. The relative strength of the emission/absorption and scattering contribution to the force is given by Γea/scS1(Δτ)2(kBT/J~)32\Gamma_{{\rm ea}/{\rm sc}}\propto S^{-1}(\Delta\tau)^{-2}({k_{B}}T/\tilde{J})^{-\frac{3}{2}} (Eq. (43)), where J~\tilde{J} is the ferromagnetic exchange energy, SS is the magnitude of localized spin and kB{k_{B}} is the Boltzmann constant. The factor of SS is due to the fact that emission/absorption and absorption processes corresponds to the first and the second order of the 1/S1/S-expansion for the magnons. The emission/absorption process therefore dominates for kBTS23(Δτ)43J~{k_{B}}T\lesssim S^{-\frac{2}{3}}(\Delta\tau)^{-\frac{4}{3}}\tilde{J}, which correspond to a very low temperature for good metals with a long elastic lifetime.

Refer to caption
Refer to caption
Figure 1: Diagrammatic representation of the magnon emission, absorption and scattering. Solid line is the electron with spin labeled by σ=±\sigma=\pm and wavy line is the magnon.

Besides the Peltier effect, magnon drag effect contributes to other transport effects. In fact, magnon velocity contributes to a temperature-dependent spin-transfer effect, and magnon drag force is directly detected as a contribution to electric conductivity. Close analysis of experimental data on various transport effects would make possible the separation of the magnon drag effect from other effects. The aim of the paper is to provide a comprehensive theory of magnon drag effects on spin-transfer effect and resistivity by calculating the drag force microscopically using the approach of Ref. [8, 9] taking account of the magnon scattering effect. It turns out that the magnon scattering effect for the magnon drag force and spin-transfer effect is larger than the emission/absorption effect in the wide temperature range as we argued above.

Our result for the magnon emission/absorption contribution is μm/eη/(αGΔ)\mu_{\rm m/e}\propto\eta/(\alpha_{\rm G}\Delta) (the first term of Eq. (54)), and is different from the result of Ref. [6], which is proportional to PP. Comparing the analyses of Ref. [6] and ours, the difference appears to arose from perhaps an insufficient treatment in Ref. [6] of electron (lesser) and hole (greater) contributions of the vertex function Λ\Lambda (Eq. (99)). Physically, the absence of PP in the magnon velocity appears natural as driven electrons with both spin contribute to the forward motion of magnons. In fact, up spin electron, which can only absorb a magnon, transfers positive momentum to magnons by absorbing magnons moving backward relative to the electron, while down spin electron pushes magnons forward by emitting magnons forward. The transferred momentum and force in both cases are positive and would not change sign by a reversal of spin polarization of the electrons.

II Model

The system we study is the conduction electron coupling to the localized spin (magnetization) by the sdsd exchange interaction. The localized spin Hamiltonian we consider is the one with an exchange interaction and an easy-axis anisotropy energy, represented by the strength JJ and KK, respectively:

HS\displaystyle H_{S} =12a3d3r[J(𝑺)2KSz2]\displaystyle=\frac{1}{2a^{3}}\int\!{d^{3}r}\left[J(\nabla{{\bm{S}}})^{2}-KS_{z}^{2}\right] (1)

where aa is the lattice constant. We consider the case where the localized spin 𝑺{{\bm{S}}} is polarized along the zz axis. The fluctuation around the average, the magnon, is taken into account using the Holstein-Primakov expansion as

𝑺=(S2(b+b)S2(i)(bb)Sbb)+O(b,b)3\displaystyle{{\bm{S}}}=\left(\begin{array}[]{c}\sqrt{\frac{S}{2}}(b+b^{\dagger})\\ \sqrt{\frac{S}{2}}(-i)(b-b^{\dagger})\\ S-b^{\dagger}b\end{array}\right)+O(b,b^{\dagger})^{3} (5)

The magnon energy for a wave vector 𝒑{\bm{p}} reads

ωpJSp2+KS\displaystyle\omega_{p}\equiv JSp^{2}+KS (6)

The current density of magnon is

𝒋m\displaystyle\bm{j}_{\rm m} =iJSbb\displaystyle=-i{JS}b^{\dagger}\stackrel{{\scriptstyle\leftrightarrow}}{{\nabla}}b (7)

and momentum density is 𝒑m=i2bb{\bm{p}}_{\rm m}=-\frac{i}{2}b^{\dagger}\stackrel{{\scriptstyle\leftrightarrow}}{{\nabla}}b.

The sdsd exchange interaction Hamiltonian is

Hsd\displaystyle H_{sd} =ΔSd3r𝑺(c𝝈c)\displaystyle=-\frac{\Delta}{S}\int\!{d^{3}r}{{\bm{S}}}\cdot(c^{\dagger}{\bm{\sigma}}c) (8)

where Δ\Delta is the sdsd coupling energy and S|𝑺|S\equiv|{{\bm{S}}}|. The interaction in terms of magnon field reads Hsd=Hsd(1)+Hsd(2)H_{sd}=H_{sd}^{(1)}+H_{sd}^{(2)}, where

Hsd(1)\displaystyle H_{sd}^{(1)} =Δ2Sd3r[bcσc+bcσ+c]\displaystyle=-\frac{\Delta}{\sqrt{2S}}\int\!{d^{3}r}\left[bc^{\dagger}\sigma_{-}c+b^{\dagger}c^{\dagger}\sigma_{+}c\right]
Hsd(2)\displaystyle H_{sd}^{(2)} =ΔSd3rbbcσzc\displaystyle=\frac{\Delta}{S}\int\!{d^{3}r}b^{\dagger}bc^{\dagger}\sigma_{z}c (9)

represent magnon emission/absorption and scattering, respectively.

Force on magnon induced by the electron is calculated by evaluating 𝒑˙m\dot{{\bm{p}}}_{\rm m} taking account of HsdH_{sd}. The force due to the linear order of the sdsd exchange interaction, Fi(1)12[Hsd(1),bib]{F}^{(1)}_{i}\equiv\frac{1}{2}[H_{sd}^{(1)},b^{\dagger}\stackrel{{\scriptstyle\leftrightarrow}}{{\nabla}}_{i}b] is

Fi(1)(𝒓)\displaystyle{F}^{(1)}_{i}({\bm{r}}) =Δ22S[(ib)(cσ+c)bi(cσ+c)+(ib)(cσc)bi(cσc)]\displaystyle=-\frac{\Delta}{2\sqrt{2S}}\left[(\nabla_{i}b^{\dagger})(c^{\dagger}\sigma_{+}c)-b^{\dagger}\nabla_{i}(c^{\dagger}\sigma_{+}c)+(\nabla_{i}b)(c^{\dagger}\sigma_{-}c)-b\nabla_{i}(c^{\dagger}\sigma_{-}c)\right] (10)

Defining Fourier transform as c(𝒓)=𝒌ei𝒌𝒓c𝒌c({\bm{r}})=\sum_{{\bm{k}}}e^{i{\bm{k}}\cdot{\bm{r}}}c_{\bm{k}}, b(𝒓)=𝒑ei𝒑𝒓b𝒑b({\bm{r}})=\sum_{{\bm{p}}}e^{i{\bm{p}}\cdot{\bm{r}}}b_{\bm{p}}, Fi(1)(𝒓)𝒒ei𝒒𝒓Fi(1)(𝒒){F}^{(1)}_{i}({\bm{r}})\equiv\sum_{\bm{q}}e^{i{\bm{q}}\cdot{\bm{r}}}{F}^{(1)}_{i}({\bm{q}}), the momentum representation is

Fi(1)(𝒒)\displaystyle{F}^{(1)}_{i}({\bm{q}}) =iΔ22S𝒌𝒌𝒑(kk+p)i[b𝒑(c𝒌σ+c𝒌)+b𝒑(c𝒌σc𝒌)]𝒒=𝒌+𝒌+𝒑\displaystyle=-i\frac{\Delta}{2\sqrt{2S}}\sum_{{\bm{k}}{\bm{k}}^{\prime}{\bm{p}}}(k^{\prime}-k+p)_{i}\left[b_{-{\bm{p}}}^{\dagger}(c_{{\bm{k}}^{\prime}}^{\dagger}\sigma_{+}c_{{\bm{k}}})+b_{{\bm{p}}}(c_{{\bm{k}}^{\prime}}^{\dagger}\sigma_{-}c_{{\bm{k}}})\right]_{{\bm{q}}=-{\bm{k}}^{\prime}+{\bm{k}}+{\bm{p}}} (11)

The uniform component of the force is

Fi(1)(0)\displaystyle{F}^{(1)}_{i}(0) =iΔ2S𝒌𝒑pi[b𝒑(c𝒌𝒑σ+c𝒌)+b𝒑(c𝒌𝒑σc𝒌)]\displaystyle=i\frac{\Delta}{\sqrt{2S}}\sum_{{\bm{k}}{\bm{p}}}p_{i}\left[b_{{\bm{p}}}^{\dagger}(c_{{\bm{k}}-{\bm{p}}}^{\dagger}\sigma_{+}c_{{\bm{k}}})+b_{-{\bm{p}}}(c_{{\bm{k}}-{\bm{p}}}^{\dagger}\sigma_{-}c_{{\bm{k}}})\right] (12)

showing that spin down electron emitting a magnon of momentum 𝒑{\bm{p}} and spin up electron absorbing magnon of 𝒑-{\bm{p}} result in a ’positive’ force on magnon (Fig. 1).

The force due to the magnon scattering contribution is

Fi(2)(𝒓)\displaystyle{F}^{(2)}_{i}({\bm{r}}) =ΔSi(cσzc)bb\displaystyle=-\frac{\Delta}{S}\nabla_{i}(c^{\dagger}\sigma_{z}c)b^{\dagger}b (13)

indicating that the force arises from the compression of the electron spin density. The uniform component in the Fourier representation is

Fi(2)(𝒒=0)\displaystyle{F}^{(2)}_{i}({\bm{q}}=0) =iJsd𝒌𝒑𝒑(pp)ib𝒑b𝒑(c𝒌σzc𝒌)|𝒌=𝒌+𝒑𝒑\displaystyle=-i{J_{sd}}\sum_{{\bm{k}}{\bm{p}}{\bm{p}}^{\prime}}(p^{\prime}-p)_{i}b_{{\bm{p}}^{\prime}}^{\dagger}b_{{\bm{p}}}(c_{{\bm{k}}^{\prime}}^{\dagger}\sigma_{z}c_{{\bm{k}}})|_{{\bm{k}}^{\prime}={\bm{k}}+{\bm{p}}-{\bm{p}}^{\prime}} (14)

III Linear response calculation of magnon force

We calculate the expectation value of magnon force as a linear response to an applied electric field, represented by use of a vector potential, 𝑨{\bm{A}}, where 𝑬=𝑨˙{\bm{E}}=-\dot{{\bm{A}}}. The coupling to the electric current is represented by an interaction Hamiltonian

Hem\displaystyle H_{\rm em} =𝒌𝒒em(𝑨(𝒒,t)𝒌)c𝒌+𝒒2c𝒌𝒒2\displaystyle=-\sum_{{\bm{k}}{\bm{q}}}\frac{e}{m}\left({\bm{A}}({\bm{q}},t)\cdot{\bm{k}}\right)c_{{\bm{k}}+\frac{{\bm{q}}}{2}}^{\dagger}c_{{\bm{k}}-\frac{{\bm{q}}}{2}} (15)

where ee is the electron charge.

III.1 Magnon emission/absorption contribution

In this subsection, the magnon force due to emission and absorption is calculated to the lowest (the second) order in the sdsd exchange interaction. We focus on the uniform component of the force. Using the path-ordered (non-equilibrium or Keldysh) Green’s function, g𝒌(t,t)g_{{\bm{k}}}(t,t^{\prime}) (𝒌{\bm{k}} is the electron wave vector), defined for time on a path C=C+CC=C_{\rightarrow}+C_{\leftarrow} (See Appendix A), the expectation value of the force is written in terms of the lesser component for the electron contribution as (diagrams shown in Fig. 2)

Fi(1)(t,𝒒)=\displaystyle{F}^{(1)}_{i}(t,{\bm{q}})= eΔ22Sm𝒌𝒌𝒑dΩ2πAj(Ω)pikjC𝑑t1C𝑑t2tr\displaystyle\frac{e{\Delta}^{2}}{2Sm}\sum_{{\bm{k}}{\bm{k}}^{\prime}{\bm{p}}}\int\!\frac{d\Omega}{2\pi}A_{j}(\Omega)p_{i}k_{j}\int_{C}dt_{1}\int_{C}dt_{2}{\rm tr}
[eiΩt2σΠ𝒌(+),(𝒌𝒑,𝒑)(t,t1)σ+g𝒌(t1,t2)g𝒌(t2,t)\displaystyle\biggl{[}e^{-i\Omega t_{2}}\sigma_{-}\Pi_{{\bm{k}}}^{(+),({\bm{k}}-{\bm{p}},{\bm{p}})}(t,t_{1})\sigma_{+}g_{{\bm{k}}}(t_{1},t_{2})g_{{\bm{k}}}(t_{2},t^{\prime})
eiΩt1σ+g𝒌(t,t1)g𝒌(t1,t2)σΠ𝒌(+),(𝒌𝒑,𝒑)(t2,t)\displaystyle-e^{-i\Omega t_{1}}\sigma_{+}g_{{\bm{k}}}(t,t_{1})g_{{\bm{k}}}(t_{1},t_{2})\sigma_{-}\Pi_{{\bm{k}}}^{(+),({\bm{k}}-{\bm{p}},{\bm{p}})}(t_{2},t^{\prime})
+eiΩt1σg𝒌(t,t1)g𝒌(t1,t2)σ+Π𝒌(),(𝒌+𝒑,𝒑)(t2,t)\displaystyle+e^{-i\Omega t_{1}}\sigma_{-}g_{{\bm{k}}}(t,t_{1})g_{{\bm{k}}}(t_{1},t_{2})\sigma_{+}\Pi_{{\bm{k}}}^{(-),({\bm{k}}+{\bm{p}},{\bm{p}})}(t_{2},t^{\prime})
eiΩt2σ+Πk(),(𝒌+𝒑,𝒑)(t,t1)σg𝒌(t1,t2)g𝒌(t2,t)]\displaystyle-e^{-i\Omega t_{2}}\sigma_{+}\Pi_{k}^{(-),({\bm{k}}+{\bm{p}},{\bm{p}})}(t,t_{1})\sigma_{-}g_{{\bm{k}}}(t_{1},t_{2})g_{{\bm{k}}}(t_{2},t^{\prime})\biggr{]} (16)

Here the time tt is on the path CC_{\rightarrow} while tt^{\prime} is on the path CC_{\leftarrow}, and they correspond to the same real time tt. We used the fact that the magnon operator at the force vertex can be at either tt or tt^{\prime}. The magnon-electron composite propagators are defined as (Fig. 3)

Πk(+),(kp,p)(t,t)\displaystyle\Pi_{k}^{(+),(k-p,p)}(t,t^{\prime}) igkp(t,t)dp(t,t)\displaystyle\equiv ig_{k-p}(t,t^{\prime})d_{p}(t,t^{\prime})
Πk(),(k+p,p)(t,t)\displaystyle\Pi_{k}^{(-),(k+p,p)}(t,t^{\prime}) igk+p(t,t)dp(t,t)\displaystyle\equiv ig_{k+p}(t,t^{\prime})d_{p}(t^{\prime},t) (17)

corresponding to the propagation in the same (++) and opposite (-)time direction, respectively, where dp(t,t)d_{p}(t,t^{\prime}) is the magnon Green’s function. The imaginary factor ii is for Πk(±),(kp,p)\Pi_{k}^{(\pm),(k-p,p)} to have the same behavior like a single Green’s function, such as the lesser and greater components are pure imaginary.

Refer to caption
Figure 2: Feynman diagrams for the force on magnon due to emission and absorption. The external wave vector, 𝒒{\bm{q}}, is zero for the uniform component we consider.
Refer to caption
Refer to caption
Figure 3: Diagrammatic representation of the two magnon-electron pair propagators. Electron spin is ++ for a magnon-electron pair and - for a magnon hole-electron pair.

Writing in terms of the real-time Green’s functions using properties of the Green’s functions and composite propagators described in Appendix A, the force reads

Fi(1)=\displaystyle{F}^{(1)}_{i}= eΔ22Sm𝒌𝒌𝒑dΩ2πdω2πAj(Ω)pikjtr[\displaystyle\frac{e\Delta^{2}}{2Sm}\sum_{{\bm{k}}{\bm{k}}^{\prime}{\bm{p}}}\int\!\frac{d\Omega}{2\pi}\int\!\frac{d\omega}{2\pi}A_{j}(\Omega)p_{i}k_{j}{\rm tr}\biggl{[}
[σΠkω(+),(kp,p),rσ+gkωrgk,ωΩ<+(r<a)+(<aa)]\displaystyle[\sigma_{-}\Pi_{k\omega}^{(+),(k-p,p),{\rm r}}\sigma_{+}g_{k\omega}^{\rm r}g^{<}_{k,\omega-\Omega}+({\rm r}<{\rm a})+(<{\rm a}{\rm a})]
[σ+gk,ω+ΩrgkωrσΠkω(+),(kp,p),<+(r<a)+(<aa)]\displaystyle-[\sigma_{+}g_{k,\omega+\Omega}^{\rm r}g_{k\omega}^{\rm r}\sigma_{-}\Pi_{k\omega}^{(+),(k-p,p),<}+({\rm r}<{\rm a})+(<{\rm a}{\rm a})]
[σ+Πkω(),(k+p,p),rσgkωrgk,ωΩ<+(r<a)+(<aa)]\displaystyle-[\sigma_{+}\Pi_{k\omega}^{(-),(k+p,p),{\rm r}}\sigma_{-}g_{k\omega}^{\rm r}g_{k,\omega-\Omega}^{<}+({\rm r}<{\rm a})+(<{\rm a}{\rm a})]
+[σgk,ω+Ωrgkωrσ+Πkω(),(k+p,p),<+(r<a)+(<aa)]]\displaystyle+[\sigma_{-}g_{k,\omega+\Omega}^{\rm r}g_{k\omega}^{\rm r}\sigma_{+}\Pi_{k\omega}^{(-),(k+p,p),<}+({\rm r}<{\rm a})+(<{\rm a}{\rm a})]\biggr{]} (18)

In the case of static electric field (Ω0\Omega\rightarrow 0), the Fermi surface contribution, which is dominant, is obtained using the relation (70) as

Fi(1)=\displaystyle{F}^{(1)}_{i}= eΔ22Sm𝒌𝒌𝒑dΩ2πdω2πΩAj(Ω)f(ω)pikjtr[\displaystyle\frac{e\Delta^{2}}{2Sm}\sum_{{\bm{k}}{\bm{k}}^{\prime}{\bm{p}}}\int\!\frac{d\Omega}{2\pi}\int\!\frac{d\omega}{2\pi}\Omega A_{j}(\Omega)f^{\prime}(\omega)p_{i}k_{j}{\rm tr}\biggl{[}
[σΠkω(+),(kp,p),rσ+gkωrgk,ωaσ+gk,ωrgk,ωaσΠkω(+),(kp,p),a]\displaystyle\left[\sigma_{-}\Pi_{k\omega}^{(+),(k-p,p),{\rm r}}\sigma_{+}g_{k\omega}^{\rm r}g^{\rm a}_{k,\omega}-\sigma_{+}g_{k,\omega}^{\rm r}g_{k,\omega}^{\rm a}\sigma_{-}\Pi_{k\omega}^{(+),(k-p,p),{\rm a}}\right]
[σ+Πkω(),(k+p,p),rσgkωrgk,ωaσgk,ωrgkωaσ+Πkω(),(k+p,p),a]]\displaystyle-\left[\sigma_{+}\Pi_{k\omega}^{(-),(k+p,p),{\rm r}}\sigma_{-}g_{k\omega}^{\rm r}g_{k,\omega}^{\rm a}-\sigma_{-}g_{k,\omega}^{\rm r}g_{k\omega}^{\rm a}\sigma_{+}\Pi_{k\omega}^{(-),(k+p,p),{\rm a}}\right]\biggr{]} (19)

where f(ω)[eβω+1]1f(\omega)\equiv[e^{\beta\omega}+1]^{-1}, β(𝒌T)1\beta\equiv({\bm{k}}T)^{-1}, kB{k_{B}} and TT being the Boltzmann constant and temperature, respectively. At low temperature, f(ω)δ(ω)f^{\prime}(\omega)\simeq-\delta(\omega), and we obtain uniform component as Fi(1)=ij(1)eEj{F}^{(1)}_{i}={\cal F}^{(1)}_{ij}eE_{j} (E=dΩ2πeiΩtiΩAΩE=\int\frac{d\Omega}{2\pi}e^{-i\Omega t}i\Omega A_{\Omega}), where the coefficient is (g𝒌g𝒌,ω=0g_{{\bm{k}}}\equiv g_{{\bm{k}},\omega=0})

ij(1)=\displaystyle{\cal F}^{(1)}_{ij}= Δ24πSm𝒌𝒌𝒑pikjImtr[σ|gka|2σ+Πkω=0(),(k+p,p),aσ+|gka|2σΠkω=0(+),(kp,p),a]\displaystyle-\frac{\Delta^{2}}{4\pi Sm}\sum_{{\bm{k}}{\bm{k}}^{\prime}{\bm{p}}}p_{i}k_{j}{\rm Im}{\rm tr}\biggl{[}\sigma_{-}|g_{k}^{\rm a}|^{2}\sigma_{+}\Pi_{k\omega=0}^{(-),(k+p,p),{\rm a}}-\sigma_{+}|g_{k}^{\rm a}|^{2}\sigma_{-}\Pi_{k\omega=0}^{(+),(k-p,p),{\rm a}}\biggr{]}
=\displaystyle= Δ22πSm𝒌𝒌𝒑pikj±(±)|gk±a|2Im[Πk,(),(k±p,p),a]\displaystyle-\frac{\Delta^{2}}{2\pi Sm}\sum_{{\bm{k}}{\bm{k}}^{\prime}{\bm{p}}}p_{i}k_{j}\sum_{\pm}(\pm)|g_{k\pm}^{\rm a}|^{2}{\rm Im}[\Pi_{k,\mp}^{(\mp),(k\pm p,p),{\rm a}}] (20)

where Πk,\Pi_{k,\mp} denotes Πk,ω=0\Pi_{k,\omega=0} with electron spin \mp. Writing the imaginary part of the pair propagator by use of magnon propagator (Eq. (73)), we obtain

ij(1)=\displaystyle{\cal F}^{(1)}_{ij}= 2Δ2πSm𝒌𝒌𝒑pikjνnν(1fν)±Im[dp,νa]|gk±a|2Im[gk±p,ν,a]\displaystyle\frac{2\Delta^{2}}{\pi Sm}\sum_{{\bm{k}}{\bm{k}}^{\prime}{\bm{p}}}p_{i}k_{j}\sum_{\nu}n_{\nu}(1-f_{\nu})\sum_{\pm}{\rm Im}[d^{\rm a}_{p,\mp\nu}]|g_{k\pm}^{\rm a}|^{2}{\rm Im}[g_{k\pm p,-\nu,\mp}^{\rm a}] (21)

where ν\nu is the magnon frequency, ν=dν2π\sum_{\nu}=\int\frac{d\nu}{2\pi} and nν[eβν1]1n_{\nu}\equiv[e^{\beta\nu}-1]^{-1} is the Bose distribution function. The magnon Green’s function at weak damping is

Im[dp,νa]=\displaystyle{\rm Im}[d^{\rm a}_{p,\mp\nu}]= Im1νωpiηmπδ(νωp)\displaystyle{\rm Im}\frac{1}{\mp\nu-\omega_{p}-i\eta_{\rm m}}\simeq\pi\delta(\mp\nu-\omega_{p}) (22)

where ηm\eta_{\rm m} represents damping of magnon, which is ηm=αGωp\eta_{\rm m}=\alpha_{\rm G}\omega_{p} in terms of the Gilbert damping constant αG\alpha_{\rm G}. To proceed, we consider the case where magnon dynamics is slow compared to the electron one, namely, frequency ν\nu in electron Green’s functions is treated as zero. The approximation assumes therefore that ωmτ1\omega_{\rm m}\tau\ll 1, where ωm\omega_{\rm m} is typical magnon energy. In this case, we obtain the sum of ν\nu as νnν(1fν)Im[dp,νa]=12nωp(1fωp)\sum_{\nu}n_{\nu}(1-f_{\nu}){\rm Im}[d^{\rm a}_{p,\mp\nu}]=\mp\frac{1}{2}n_{\omega_{p}}(1-f_{\omega_{p}}), where we used nν+fν=(nν+fν)=2nν(1fν)n_{-\nu}+f_{-\nu}=-(n_{\nu}+f_{\nu})=-2n_{\nu}(1-f_{\nu}). We thus have

ij(1)=\displaystyle{\cal F}^{(1)}_{ij}= Δ2πSm𝒌𝒌𝒑pikjnωp(1fωp)±(±)|gk±a|2Im[gk±p,0,a]\displaystyle-\frac{\Delta^{2}}{\pi Sm}\sum_{{\bm{k}}{\bm{k}}^{\prime}{\bm{p}}}p_{i}k_{j}n_{\omega_{p}}(1-f_{\omega_{p}})\sum_{\pm}(\pm)|g_{k\pm}^{\rm a}|^{2}{\rm Im}[g_{k\pm p,0,\mp}^{\rm a}] (23)

The wave vector for magnon is also assumed to be small, pkFp\ll{k_{F}}. The expression in this case becomes, using gk±p,ν,agk±p,agka±𝒌𝒑m(gka)2g_{k\pm p,-\nu,\mp}^{\rm a}\simeq g_{k\pm p,\mp}^{\rm a}\simeq g_{k\mp}^{\rm a}\pm\frac{{\bm{k}}\cdot{\bm{p}}}{m}(g_{k\mp}^{\rm a})^{2},

ij(1)=\displaystyle{\cal F}^{(1)}_{ij}= Δ2πSm2𝒌𝒑pikj(𝒌𝒑)nωp(1fωp)±|gk±a|2Im(gka)2\displaystyle-\frac{\Delta^{2}}{\pi Sm^{2}}\sum_{{\bm{k}}{\bm{p}}}p_{i}k_{j}({\bm{k}}\cdot{\bm{p}})n_{\omega_{p}}(1-f_{\omega_{p}})\sum_{\pm}|g_{k\pm}^{\rm a}|^{2}{\rm Im}(g_{k\mp}^{\rm a})^{2}
=\displaystyle= δij¯(1)\displaystyle\delta_{ij}\overline{{\cal F}}^{(1)}
¯(1)=\displaystyle\overline{{\cal F}}^{(1)}= Δ23πSm2𝒑p2nωp(1fωp)𝒌±k2|gk±a|2Im(gka)2\displaystyle-\frac{\Delta^{2}}{3\pi Sm^{2}}\sum_{{\bm{p}}}p^{2}n_{\omega_{p}}(1-f_{\omega_{p}})\sum_{{\bm{k}}}\sum_{\pm}k^{2}|g_{k\pm}^{\rm a}|^{2}{\rm Im}(g_{k\mp}^{\rm a})^{2} (24)

The electron part is estimated by use of contour integration with respect to electron energy as (derivation in Appendix B)

Im𝒌σk2|gkσa|2(gk,σa)2\displaystyle{\rm Im}\sum_{{\bm{k}}\sigma}k^{2}|g_{k\sigma}^{\rm a}|^{2}(g_{k,-\sigma}^{\rm a})^{2} =9π8ma3ne¯Δ2ϵF\displaystyle=-\frac{9\pi}{8}\frac{ma^{3}\overline{n_{\rm e}}}{\Delta^{2}{\epsilon_{F}}} (25)

where ne¯=σneσ\overline{n_{\rm e}}=\sum_{\sigma}{n_{\rm e}}_{\sigma} and neσ13ma3σσνeσkσ2{n_{\rm e}}_{\sigma}\equiv\frac{1}{3ma^{3}}\sum_{\sigma}\sigma{{\nu_{\rm e}}_{\sigma}k_{\sigma}^{2}} are the total and spin-resolved electron density, respectively, νeσ{\nu_{\rm e}}_{\sigma} and kσk_{\sigma} being the electron density of states at the Fermi energy and the Fermi wave length for spin σ\sigma, respectively. The force coefficient is

¯(1)=\displaystyle\overline{{\cal F}}^{(1)}= 38Sma2a3ne¯ϵFW(1)(T)\displaystyle\frac{3}{8Sma^{2}}\frac{a^{3}\overline{n_{\rm e}}}{{\epsilon_{F}}}W^{(1)}(T) (26)
W(1)(T)\displaystyle W^{(1)}(T)\equiv a2𝒑p2nωp(1fωp)\displaystyle a^{2}\sum_{{\bm{p}}}p^{2}n_{\omega_{p}}(1-f_{\omega_{p}}) (27)

III.2 Magnon scattering contribution

The force due to the magnon scattering, Fi(2){F}^{(2)}_{i}, is similarly calculated. The uniform component of the linear response at the second order in the sdsd exchange interaction reads

Fi(2a)(t)=\displaystyle{F}^{(2{\rm a})}_{i}(t)= eΔ2S2mdΩ2π𝑨j(q,Ω)𝒌𝒌𝒑(pp)ikjC𝑑t1C𝑑t2tr\displaystyle-\frac{e\Delta^{2}}{S^{2}m}\int\!\frac{d\Omega}{2\pi}{\bm{A}}_{j}(q,\Omega)\sum_{{\bm{k}}{\bm{k}}^{\prime}{\bm{p}}}(p-p^{\prime})_{i}k_{j}\int_{C}dt_{1}\int_{C}dt_{2}{\rm tr}
[eiΩt2σzΠk(2),k,p,p(t,t1)σzg𝒌(t1,t2)g𝒌(t2,t)+eiΩt2σzg𝒌(t,t1)g𝒌(t1,t2)σzΠ𝒌(2),k,p,p(t2,t)]k=k+pp\displaystyle\biggl{[}e^{i\Omega t_{2}}\sigma_{z}\Pi^{(2),k^{\prime},p,p^{\prime}}_{k}(t,t_{1})\sigma_{z}g_{{\bm{k}}}(t_{1},t_{2})g_{{\bm{k}}}(t_{2},t^{\prime})+e^{i\Omega t_{2}}\sigma_{z}g_{{\bm{k}}}(t,t_{1})g_{{\bm{k}}}(t_{1},t_{2})\sigma_{z}\Pi^{(2),k^{\prime},p^{\prime},p}_{{\bm{k}}}(t_{2},t^{\prime})\biggr{]}_{k^{\prime}=k+p-p^{\prime}} (28)

where a composite propagator of electron and two magnons is defined as (Fig. 4)

Πk+pp(2),k,p,p(t,t)\displaystyle\Pi^{(2),k,p,p^{\prime}}_{k+p-p^{\prime}}(t,t^{\prime}) =g𝒌(t,t)d𝒑(t,t)d𝒑(t,t)\displaystyle=g_{{\bm{k}}}(t,t^{\prime})d_{{\bm{p}}}(t,t^{\prime})d_{{\bm{p}}^{\prime}}(t^{\prime},t) (29)
Refer to caption
Figure 4: Feynman diagrams for the two magnon and electron composite propagator.

The leading Fermi surface term in the limit of Ω0\Omega\rightarrow 0 is

Fi(2a)=\displaystyle{F}^{(2{\rm a})}_{i}= eΔ2S2mdΩ2πdω2πΩ𝑨j(Ω)𝒌𝒌𝒑(pp)ikjf(ω)tr\displaystyle-\frac{e\Delta^{2}}{S^{2}m}\int\!\frac{d\Omega}{2\pi}\int\!\frac{d\omega}{2\pi}\Omega{\bm{A}}_{j}(\Omega)\sum_{{\bm{k}}{\bm{k}}^{\prime}{\bm{p}}}(p-p^{\prime})_{i}k_{j}f^{\prime}(\omega){\rm tr}
[σzΠk(2),k,p,p,r(ω)σzg𝒌r(ω)g𝒌a(ω)+σzg𝒌r(ω)g𝒌a(ω)σzΠ𝒌(2),k,p,p,a(ω)]k=k+pp\displaystyle\biggl{[}\sigma_{z}\Pi^{(2),k^{\prime},p,p^{\prime},{\rm r}}_{k}(\omega)\sigma_{z}g_{{\bm{k}}}^{\rm r}(\omega)g_{{\bm{k}}}^{\rm a}(\omega)+\sigma_{z}g_{{\bm{k}}}^{\rm r}(\omega)g_{{\bm{k}}}^{\rm a}(\omega)\sigma_{z}\Pi^{(2),k^{\prime},p^{\prime},p,{\rm a}}_{{\bm{k}}}(\omega)\biggr{]}_{k^{\prime}=k+p-p^{\prime}} (30)

As the Green’s functions are diagonal in spin, the two Pauli matrix σz\sigma_{z} becomes irrelevant. Namely, the scattering force is a response of electron charge sector. The effect is similar to the zz-component of the electron magnetic susceptibility in the presence of a magnetization along zz direction. We obtain finally (see Eq. (82))

Fi(2a)\displaystyle{F}^{(2{\rm a})}_{i} =ij(2a)eEj\displaystyle={\cal F}^{(2{\rm a})}_{ij}eE_{j}
ij(2a)\displaystyle{\cal F}^{(2{\rm a})}_{ij} =Δ2πS2m𝒑𝒑𝒌σ(pp)ikjtr[Im(Πk,σ,ω=0(2),k+pp,p,p,a)|g𝒌σa|2]\displaystyle=\frac{\Delta^{2}}{\pi S^{2}m}\sum_{{\bm{p}}{\bm{p}}^{\prime}}\sum_{{\bm{k}}\sigma}(p-p^{\prime})_{i}k_{j}{\rm tr}\biggl{[}{\rm Im}(\Pi^{(2),k+p-p^{\prime},p,p^{\prime},{\rm a}}_{k,\sigma,\omega=0})|g_{{\bm{k}}\sigma}^{\rm a}|^{2}\biggr{]}
=2Δ2πS2m𝒑𝒑𝒌σ(pp)ikjIm[dpνa]Im[dpνa]nν(1+nν)fννIm[gk+ppa]|g𝒌σa|2\displaystyle=-2\frac{\Delta^{2}}{\pi S^{2}m}\sum_{{\bm{p}}{\bm{p}}^{\prime}}\sum_{{\bm{k}}\sigma}(p-p^{\prime})_{i}k_{j}{\rm Im}[d_{p\nu}^{\rm a}]{\rm Im}[d_{p^{\prime}\nu^{\prime}}^{\rm a}]n_{\nu}(1+n_{\nu^{\prime}})f_{\nu^{\prime}-\nu}{\rm Im}[g_{k+p-p^{\prime}}^{\rm a}]|g_{{\bm{k}}\sigma}^{\rm a}|^{2} (31)
Refer to caption
Refer to caption
Figure 5: Feynman diagrams for the two magnon and electron composite propagator with magnon absorption and emission at different times. Electron spin (denoted by ±\pm) is fixed for emission and absorption processes.

The scattering force has other contributions of higher-order in the sdsd exchange interaction, with the emission and absorption vertices at different time as in Fig. 5. This contribution is characterized by the composite propagator

Πk+pp(2+),(k,p,p)(t,t)\displaystyle\Pi_{k+p-p^{\prime}}^{(2+),(k,p,p^{\prime})}(t,t^{\prime}) =iΔ2C𝑑t1Πk+p(+),(k,p)(t,t1)gk+p,(t1,t)dp(t,t)\displaystyle=-i\frac{\Delta}{2}\int_{C}dt_{1}\Pi_{k+p}^{(+),(k,p)}(t,t_{1})g_{k+p,-}(t_{1},t^{\prime})d_{p^{\prime}}(t^{\prime},t)
Πk+pp(2),(k,p,p)(t,t)\displaystyle\Pi_{k+p-p^{\prime}}^{(2-),(k,p,p^{\prime})}(t,t^{\prime}) =iΔ2C𝑑t1Πkp(),(k,p)(t,t1)gkp,+(t1,t)dp(t,t)\displaystyle=-i\frac{\Delta}{2}\int_{C}dt_{1}\Pi_{k-p^{\prime}}^{(-),(k,p^{\prime})}(t,t_{1})g_{k-p^{\prime},+}(t_{1},t^{\prime})d_{p}(t,t^{\prime}) (32)

where factors are included to have the same normalization as Π(2)\Pi^{(2)}. The electron spin (±\pm) is fixed for the two propagators, as the magnon absorption and emission causes lowering and highering of electron spin, respectively. Considering a strong sdsd splitting case, electron spin flip costs energy of 2Δ2\Delta, and thus contributions with more electron Green’s functions with flipped spin are suppressed and neglected. The electron propagators with flipped spin inside the composite propagator of Eq. (32) is approximated as gk+p,±(t,t)δ(tt)(2Δ)1g_{k+p,\pm}(t,t^{\prime})\sim\mp\delta(t-t^{\prime})(2\Delta)^{-1}, resulting in

Πk+pp(2+),(k,p,p)(t,t)\displaystyle\Pi_{k+p-p^{\prime}}^{(2+),(k,p,p^{\prime})}(t,t^{\prime}) i4Πk+p,+(+),(k,p)(t,t)dp(t,t)=14Πk+pp,+(2),k,p,p(t,t)\displaystyle\simeq\frac{-i}{4}\Pi_{k+p,+}^{(+),(k,p)}(t,t^{\prime})d_{p^{\prime}}(t^{\prime},t)=\frac{1}{4}\Pi^{(2),k,p,p^{\prime}}_{k+p-p^{\prime},+}(t,t^{\prime})
Πk+pp(2),(k,p,p)(t,t)\displaystyle\Pi_{k+p-p^{\prime}}^{(2-),(k,p,p^{\prime})}(t,t^{\prime}) i4Πkp,(),(k,p)(t,t)dp(t,t)=14Πk+pp,(2),k,p,p(t,t)\displaystyle\simeq\frac{i}{4}\Pi_{k-p^{\prime},-}^{(-),(k,p^{\prime})}(t,t^{\prime})d_{p}(t,t^{\prime})=-\frac{1}{4}\Pi^{(2),k,p,p^{\prime}}_{k+p-p^{\prime},-}(t,t^{\prime}) (33)

The contribution to the force coefficient from the propagators of Fig. 5 is therefore

ij(2b)\displaystyle{\cal F}^{(2{\rm b})}_{ij} =iΔ2πS2m𝒑𝒑𝒌σ(pp)ikjσ4tr[Im(Πk,σ,ω=0(2),k+pp,p,p,a)|g𝒌σa|2]\displaystyle=i\frac{\Delta^{2}}{\pi S^{2}m}\sum_{{\bm{p}}{\bm{p}}^{\prime}}\sum_{{\bm{k}}\sigma}(p-p^{\prime})_{i}k_{j}\frac{\sigma}{4}{\rm tr}\biggl{[}{\rm Im}(\Pi^{(2),k+p-p^{\prime},p,p^{\prime},{\rm a}}_{k,\sigma,\omega=0})|g_{{\bm{k}}\sigma}^{\rm a}|^{2}\biggr{]} (34)

Using Eq. (82) and assuming p,pkp,p^{\prime}\ll k and low frequency magnons, we obtain the sum of the two contributions as

ij(2)\displaystyle{\cal F}^{(2)}_{ij} ij(2a)+ij(2b)=δij¯(2)\displaystyle\equiv{\cal F}^{(2{\rm a})}_{ij}+{\cal F}^{(2{\rm b})}_{ij}=\delta_{ij}\overline{{\cal F}}^{(2)}
¯(2)\displaystyle\overline{{\cal F}}^{(2)} =Δ23S2m2𝒑𝒑(𝒑𝒑)2nωp(1+nωp)fωpωp𝒌σk2(1+σ4)|g𝒌σa|2Im[(g𝒌σa)2]\displaystyle=-\frac{\Delta^{2}}{3S^{2}m^{2}}\sum_{{\bm{p}}{\bm{p}}^{\prime}}({\bm{p}}-{\bm{p}}^{\prime})^{2}n_{\omega_{p}}(1+n_{\omega_{p^{\prime}}})f_{\omega_{p^{\prime}}-\omega_{p}}\sum_{{\bm{k}}\sigma}k^{2}\left(1+\frac{\sigma}{4}\right)|g_{{\bm{k}}\sigma}^{\rm a}|^{2}{\rm Im}[(g_{{\bm{k}}\sigma}^{\rm a})^{2}] (35)

The summation over 𝒌{\bm{k}} and σ\sigma is (using ki(g𝒌σa)3=m2ki(g𝒌σa)2k_{i}(g_{{\bm{k}}\sigma}^{\rm a})^{3}=\frac{m}{2}\partial_{k_{i}}(g_{{\bm{k}}\sigma}^{\rm a})^{2} and integral by parts)

𝒌σk2|g𝒌σa|2Im[(g𝒌σa)2]\displaystyle\sum_{{\bm{k}}\sigma}k^{2}|g_{{\bm{k}}\sigma}^{\rm a}|^{2}{\rm Im}[(g_{{\bm{k}}\sigma}^{\rm a})^{2}] =πmτ2σνeσ\displaystyle=-\pi m\tau^{2}\sum_{\sigma}{\nu_{\rm e}}_{\sigma} (36)

We therefore obtain (νe¯σνeσ\overline{{\nu_{\rm e}}}\equiv\sum_{\sigma}{\nu_{\rm e}}_{\sigma} and PνσσνeσσνeσP_{\nu}\equiv\frac{\sum_{\sigma}\sigma{\nu_{\rm e}}_{\sigma}}{\sum_{\sigma}{\nu_{\rm e}}_{\sigma}})

¯(2)=\displaystyle\overline{{\cal F}}^{(2)}= π3S2ma2(Δτ)2νe¯(1+Pν4)W(2)(T)\displaystyle\frac{\pi}{3S^{2}ma^{2}}{(\Delta\tau)}^{2}\overline{{\nu_{\rm e}}}\left(1+\frac{P_{\nu}}{4}\right)W^{(2)}(T) (37)
W(2)(T)\displaystyle W^{(2)}(T)\equiv a2𝒑𝒑(𝒑𝒑)2nωp(1+nωp)fωpωp\displaystyle a^{2}\sum_{{\bm{p}}{\bm{p}}^{\prime}}({\bm{p}}-{\bm{p}}^{\prime})^{2}n_{\omega_{p}}(1+n_{\omega_{p^{\prime}}})f_{\omega_{p^{\prime}}-\omega_{p}} (38)

III.3 Force on electron

The recoil force on the electron with spin σ\sigma arising from the magnon emission/absorption due to the sdsd exchange interaction is (in the field operator form)

Fe+,i(1)(𝒒=0)\displaystyle{F}^{(1)}_{{\rm e}+,i}({\bm{q}}=0) =iΔ2S𝒌𝒌𝒑pib𝒑(c𝒌σc𝒌)𝒌=𝒌+𝒑\displaystyle=i\frac{\Delta}{\sqrt{2S}}\sum_{{\bm{k}}{\bm{k}}^{\prime}{\bm{p}}}p_{i}b_{{\bm{p}}}(c_{{\bm{k}}^{\prime}}^{\dagger}\sigma_{-}c_{{\bm{k}}})_{{\bm{k}}^{\prime}={\bm{k}}+{\bm{p}}}
Fe,i(1)(𝒒=0)\displaystyle{F}^{(1)}_{{\rm e}-,i}({\bm{q}}=0) =iΔ2S𝒌𝒌𝒑pib𝒑(c𝒌σ+c𝒌)𝒌=𝒌+𝒑\displaystyle=i\frac{\Delta}{\sqrt{2S}}\sum_{{\bm{k}}{\bm{k}}^{\prime}{\bm{p}}}p_{i}b_{-{\bm{p}}}^{\dagger}(c_{{\bm{k}}^{\prime}}^{\dagger}\sigma_{+}c_{{\bm{k}}})_{{\bm{k}}^{\prime}={\bm{k}}+{\bm{p}}} (39)

whose sum is opposite to the force on magnons; σFeσ,i(1)=Fm,i(1)\sum_{\sigma}{F}^{(1)}_{{\rm e}\sigma,i}=-{F}^{(1)}_{{\rm m},i}. It turns out that the force is spin-independent, i.e.,

Fe+i(1)=Fei(1)=\displaystyle{F}^{(1)}_{{\rm e}+{i}}={F}^{(1)}_{{\rm e}-{i}}= 12Fi(1)\displaystyle-\frac{1}{2}{F}^{(1)}_{i} (40)

This result indicates that magnon emission and absorption induced by an electric field does not acts as spin motive force but drives only charge sector.

The force on electron spin arising from magnon scattering is calculated using

Feσ,i(2)\displaystyle{F}^{(2)}_{{\rm e}\sigma,i} =ΔS[(bb)]σcσcσ\displaystyle=\frac{\Delta}{S}[\nabla(b^{\dagger}b)]\sigma c^{\dagger}_{\sigma}c_{\sigma} (41)

and its coefficient (Feσ(2)eEeσ(2){F}^{(2)}_{{\rm e}\sigma}\equiv eE{\cal F}^{(2)}_{{\rm e}\sigma}) is (from Eq. (35)),

eσ(2)\displaystyle{\cal F}^{(2)}_{{\rm e}\sigma} =Δ26S2m2𝒑𝒑(𝒑𝒑)2nωp(1+nωp)fωpωp(1+σ4)𝒌k2|g𝒌σa|2Im[(g𝒌σa)2]\displaystyle=\frac{{\Delta}^{2}}{6S^{2}m^{2}}\sum_{{\bm{p}}{\bm{p}}^{\prime}}({\bm{p}}-{\bm{p}}^{\prime})^{2}n_{\omega_{p}}(1+n_{\omega_{p^{\prime}}})f_{\omega_{p^{\prime}}-\omega_{p}}\left(1+\frac{\sigma}{4}\right)\sum_{{\bm{k}}}k^{2}|g_{{\bm{k}}\sigma}^{\rm a}|^{2}{\rm Im}[(g_{{\bm{k}}\sigma}^{\rm a})^{2}] (42)

This force is generally spin-dependent.

Those forces on the electron are different from the driven-magnon contribution to the motive force due to smooth magnetization structures discussed in Refs. [10, 7]. In fact, the motive force in the adiabatic (slowly varying) limit are proportional to the magnon energy current linear in the magnon momentum, while the force argued in the present analysis are the second order of pp and pp^{\prime}, corresponding to nonadiabatic contributions.

IV Total force on magnon

From Eqs. (26) (38), the total force on magnon lowest order in the sdsd exchange interaction, FmF(1)+F(2)=meE{F}_{\rm m}\equiv{F}^{(1)}+{F}^{(2)}={\cal F}_{\rm m}eE, where the coefficient m¯(1)+¯(2){\cal F}_{\rm m}\equiv\overline{{\cal F}}^{(1)}+\overline{{\cal F}}^{(2)} is

m=\displaystyle{\cal F}_{\rm m}= γ1W(1)(T)+γ2(Δτ)2W(2)(T)\displaystyle\gamma_{1}W^{(1)}(T)+\gamma_{2}(\Delta\tau)^{2}W^{(2)}(T) (43)

where

γ1\displaystyle\gamma_{1} 38Sγfne¯a3\displaystyle\equiv\frac{3}{8S}\gamma_{f}\overline{n_{\rm e}}a^{3}
γ2\displaystyle\gamma_{2} π3S2γfϵFνe¯(1+Pν4)\displaystyle\equiv\frac{\pi}{3S^{2}}\gamma_{f}{\epsilon_{F}}\overline{{\nu_{\rm e}}}(1+\tfrac{P_{\nu}}{4})
γf\displaystyle\gamma_{f} 1ma2ϵF\displaystyle\equiv\frac{1}{ma^{2}{\epsilon_{F}}} (44)

where the magnon weight factors are

W(1)(T)=\displaystyle W^{(1)}(T)= a52π20𝑑pp41e2βωp1\displaystyle\frac{a^{5}}{2\pi^{2}}\int_{0}^{\infty}dpp^{4}\frac{1}{e^{2\beta\omega_{p}}-1}
W(2)(T)=\displaystyle W^{(2)}(T)= a8(2π2)20𝑑p0𝑑pp2(p)2(p2+(p)2)1eβωp111eβωp1eβ(ωpωp)+1\displaystyle\frac{a^{8}}{(2\pi^{2})^{2}}\int_{0}^{\infty}dp\int_{0}^{\infty}dp^{\prime}p^{2}(p^{\prime})^{2}(p^{2}+(p^{\prime})^{2})\frac{1}{e^{\beta\omega_{p}}-1}\frac{1}{1-e^{-\beta\omega_{p^{\prime}}}}\frac{1}{e^{\beta(\omega_{p^{\prime}}-\omega_{p})}+1} (45)

Considering strong spin polarization in 3dd ferromagnets, we may approximate γ1γ2\gamma_{1}\sim\gamma_{2}, and then the magnon scattering contribution has a larger coefficient by a factor of (Δτ)2(\Delta\tau)^{2} compared to the emission/absorption contribution. Considering temperatures higher than the magnon gap (kBTKS{k_{B}}T\gg KS) the weight factors in three dimensions are (xβωpx\equiv\beta\omega_{p})

W(1)(T)=\displaystyle W^{(1)}(T)= If(1)(kBTJ~)52\displaystyle I_{f}^{(1)}\left(\frac{{k_{B}}T}{\tilde{J}}\right)^{\frac{5}{2}}
W(2)(T)=\displaystyle W^{(2)}(T)= If(2)(kBTJ~)4\displaystyle I_{f}^{(2)}\left(\frac{{k_{B}}T}{\tilde{J}}\right)^{4} (46)

where J~JS/a2\tilde{J}\equiv JS/a^{2} and

If(1)\displaystyle I_{f}^{(1)} 14π20𝑑xx32e2x1=7.985×103\displaystyle\equiv\frac{1}{4\pi^{2}}\int_{0}^{\infty}dx\frac{x^{\frac{3}{2}}}{e^{2x}-1}=7.985\times 10^{-3}
If(2)\displaystyle I_{f}^{(2)} 1(4π2)20𝑑x𝑑xx12(x)12(x+x)(ex1)(1ex)(exx+1)=1.069×102\displaystyle\equiv\frac{1}{(4\pi^{2})^{2}}\int\int_{0}^{\infty}dxdx^{\prime}\frac{x^{\frac{1}{2}}(x^{\prime})^{\frac{1}{2}}(x+x^{\prime})}{(e^{x}-1)(1-e^{-x^{\prime}})(e^{x^{\prime}-x}+1)}=1.069\times 10^{-2} (47)

The total force coefficient m{\cal F}_{\rm m} is plotted as function of temperature in Fig. 6. The temperature is normalized by J~\tilde{J}, which is related to the mean-field ferromagnetic transition temperature in three dimensions as kBTc=2(S+1)J~{k_{B}}T_{\rm c}=2(S+1)\tilde{J} [11]. The temperature regime in Fig. 6 thus corresponds to low temperature (TTc/4T\lesssim T_{\rm c}/4 for S=1S=1). This is confirmed from the plot of the magnon number per cite (Fig. 6),

nm=a3p2dp2π21eβωp1=In(kBTJ~)32\displaystyle n_{\rm m}=a^{3}\int\frac{p^{2}dp}{2\pi^{2}}\frac{1}{e^{\beta\omega_{p}}-1}=I_{n}\left(\frac{{k_{B}}T}{\tilde{J}}\right)^{\frac{3}{2}} (48)

where

In14π20𝑑xxex1=0.05864\displaystyle I_{n}\equiv\frac{1}{4\pi^{2}}\int_{0}^{\infty}dx\frac{\sqrt{x}}{e^{x}-1}=0.05864 (49)

As is seen in Fig. 6, the scattering contribution (F(2){F}^{(2)}) dominates in the wide temperature region, as a result of large factor (Δτ)2(\Delta\tau)^{2}. The crossover temperature from emission/absorption to scattering regime is kBTeasc=J~(γ1I(1)γ2I(2))23(Δτ)43{k_{B}}T_{\rm ea-sc}=\tilde{J}\left(\frac{\gamma_{1}I^{(1)}}{\gamma_{2}I^{(2)}}\right)^{\frac{2}{3}}(\Delta\tau)^{-\frac{4}{3}}. The crossover temperatures shall be discussed in Sec. IV.3.

Refer to caption
Figure 6: The total force coefficient m{\cal F}_{\rm m} as function of T~kBT/J~\tilde{T}\equiv{k_{B}}T/\tilde{J} (denoted by TT in the xx axis) for Δτ=2,10,20\Delta\tau=2,10,20 and γ1=γ2=1\gamma_{1}=\gamma_{2}=1. The contribution (1){\cal F}^{(1)} is shown by a dashed line. The magnon number per cite nn, plotted on the right axis, indicates that the temperature regime is dilute magnon regime.

The force on magnon resulting in the sdsd exchange interaction means that the opposite force acts on electrons. It reads,

𝑭e\displaystyle{\bm{{F}}}_{e} (𝑭(1)+𝑭(2))=em𝑬\displaystyle\equiv-({\bm{{F}}}^{(1)}+{\bm{{F}}}^{(2)})=-e{{\cal F}}_{\rm m}{\bm{E}} (50)

The coefficient m{\cal F}_{\rm m} thus corresponds to a reduction of the applied electric field as 𝑬(1m)𝑬{\bm{E}}\rightarrow(1-{\cal F}_{\rm m}){\bm{E}}. The effect represents a resistance due to magnon scattering and emission. The electric current taking account magnons is 𝒋=σe(1m)𝑬\bm{j}=\sigma_{\rm e}(1-{\cal F}_{\rm m}){\bm{E}} (σe\sigma_{\rm e} is the Boltzmann conductivity). The magnon contribution to the resistivity in the case of m1{\cal F}_{\rm m}\ll 1 is therefore

δρm\displaystyle\delta\rho_{\rm m} =ρ0m\displaystyle=\rho_{0}{\cal F}_{\rm m} (51)

where ρ0=1/σe\rho_{0}=1/\sigma_{\rm e}. The force on magnon is therefore directly accessible by the resistivity measurement.

IV.1 Magnon velocity

When a force Fm{F}_{\rm m} acts on a magnon, the magnon is driven at a velocity Fmτmmm{F}_{\rm m}\frac{\tau_{\rm m}}{m_{\rm m}}, where τm\tau_{\rm m} and mmm_{\rm m} are the magnon lifetime and mass. The lifetime is written in terms of the Gilbert damping parameter αG\alpha_{\rm G} and the frequency of the magnon ω\omega as 1/τm=αGω1/\tau_{\rm m}=\alpha_{\rm G}\omega and magnon mass in the present case is mm=(2JS)1m_{\rm m}=(2JS)^{-1}. The correctness of the above argument is supported by a direct linear response calculation of the magnon velocity (Appendix C). From our results of the forces, Eq. (43), the magnon current induced by each force reads 𝒋m(1)=σm(1)e𝑬\bm{j}_{\rm m}^{(1)}=\sigma_{\rm m}^{(1)}e{\bm{E}} and 𝒋m(2)=σm(2)e𝑬\bm{j}_{\rm m}^{(2)}=\sigma_{\rm m}^{(2)}e{\bm{E}}, where

σm(1)=\displaystyle\sigma_{\rm m}^{(1)}= 2γ1αGa(kBTJ~)32Iv(1)\displaystyle\frac{2\gamma_{1}}{\alpha_{\rm G}a}\left(\frac{{k_{B}}T}{\tilde{J}}\right)^{\frac{3}{2}}I_{v}^{(1)}
σm(2)=\displaystyle\sigma_{\rm m}^{(2)}= 2γ2αGa(Δτ)2(kBTJ~)3Iv(2)\displaystyle\frac{2\gamma_{2}}{\alpha_{\rm G}a}(\Delta\tau)^{2}\left(\frac{{k_{B}}T}{\tilde{J}}\right)^{3}I_{v}^{(2)} (52)

correspond to conductivity for magnons (without the factor of e2e^{2}), with magnon integrals

Iv(1)\displaystyle I_{v}^{(1)} 14π20𝑑xx12e2x1=2.073×102\displaystyle\equiv\frac{1}{4\pi^{2}}\int_{0}^{\infty}dx\frac{x^{\frac{1}{2}}}{e^{2x}-1}=2.073\times 10^{-2}
Iv(2)\displaystyle I_{v}^{(2)} 1(4π2)2x0𝑑x0𝑑xx12(x)12(x+x)(ex1)(1ex)(exx+1)\displaystyle\equiv\frac{1}{(4\pi^{2})^{2}}\int_{x_{0}}^{\infty}dx\int_{0}^{\infty}dx^{\prime}\frac{x^{-\frac{1}{2}}(x^{\prime})^{\frac{1}{2}}(x+x^{\prime})}{(e^{x}-1)(1-e^{-x^{\prime}})(e^{x^{\prime}-x}+1)} (53)

. The expressions for Iv(2)I_{v}^{(2)} diverges at low energy due to insufficient phenomenological treatment of magnon lifetime in terms of the Gilbert damping in the low frequency limit. Here we avoid the problem by introducing a low energy cutoff ω0\omega_{0} (x0=ω02/(kBT)x_{0}=\omega_{0}^{2}/({k_{B}}T)). Iv(2)I_{v}^{(2)} is of the order of 0.01 for x00.02x_{0}\gtrsim 0.02 and logarithmically diverges as x00x_{0}\rightarrow 0. The electric conductivity in the same approximation (1/(2ma2)ϵF1/(2ma^{2})\sim{\epsilon_{F}}, kFa1{k_{F}}a\sim 1, νe¯1/ϵF\overline{{\nu_{\rm e}}}\sim 1/{\epsilon_{F}}) is σe/e21aϵFτ\sigma_{\rm e}/e^{2}\simeq\frac{1}{a}{\epsilon_{F}}\tau. The ratio of the magnon conductivity to the electron one thus is

μm/e=σmσe\displaystyle\mu_{\rm m/e}=\frac{\sigma_{\rm m}}{\sigma_{\rm e}} 2αGϵFτ[γ1Iv(1)T~32+γ2Iv(2)(Δτ)2T~3]\displaystyle\sim\frac{2}{\alpha_{\rm G}{\epsilon_{F}}\tau}\left[\gamma_{1}I_{v}^{(1)}\tilde{T}^{\frac{3}{2}}+\gamma_{2}I_{v}^{(2)}({\Delta\tau})^{2}\tilde{T}^{{3}}\right] (54)

where T~kBTJ~\tilde{T}\equiv\frac{{k_{B}}T}{\tilde{J}}. As seen from Fig. 7, in good metals with large Δτ\Delta\tau, magnon conductivity is larger than the electric conductivity even for a low temperature (e.g., T~0.4\tilde{T}\gtrsim 0.4 for ϵFτ=20{\epsilon_{F}}\tau=20). The result is qualitatively consistent with seminal work of Grannemann and Berger [4], where it was argued that average drift velocity of magnon is 2-3 times larger than that of electron in Ni66Cu34 and Ni69Fe31. Our result for σm(1)\sigma_{\rm m}^{(1)} is consistent with previous analysis [6], where energy current driven by an electric field was microscopically calculated taking account of the magnon emission/absorption (f(1)f^{(1)}) . Our result, however, indicates that more efficient magnon-drag effect occurs due to the magnon scattering (f(2)f^{(2)}) in strongly spin-polarized good metals. The reason is that the scattering contribution is a response of the electron charge sector (spin summed), while the emission/absorption is a spin response containing electron propagators with opposite spins, resulting in a relative suppression factor of (Δτ)2(\Delta\tau)^{-2}. As the electron elastic lifetime is long, ϵFτ1{\epsilon_{F}}\tau\gg 1, except for extremely dirty metals, the enhancement factor of (Δτ)2(\Delta\tau)^{2} for scattering contribution makes the contribution larger even for temperatures of kBT(Δτ)43J~{k_{B}}T\gtrsim(\Delta\tau)^{-\frac{4}{3}}\tilde{J} (See Sec. IV.3).

The expression for the emission/absorption, σm(1)\sigma_{\rm m}^{(1)}, of Eq. (52) is consistent with previous analysis indicating σm(1)1αGτT32\sigma_{\rm m}^{(1)}\propto\frac{1}{\alpha_{\rm G}\tau}T^{\frac{3}{2}} [4, 6], although the result of Ref. [6] is proportional to electron spin polarization, σm(1)PαGτT32\sigma_{\rm m}^{(1)}\propto\frac{P}{\alpha_{\rm G}\tau}T^{\frac{3}{2}}, probably due to an insufficient treatment of magnon and hole contributions in Ref. [6].

The result for σm(2)\sigma_{\rm m}^{(2)} suggests that the magnon damping effect for low energy magnons are critical for estimation of the magnon conductivity. Further theoretical and experimental investigations are expected in this direction.

Refer to caption
Figure 7: The ratio σmσe\frac{\sigma_{\rm m}}{\sigma_{\rm e}} of magnon and electron conductivity plotted for T~=kBT/J~\tilde{T}={k_{B}}T/\tilde{J} for Δτ=2,10,20\Delta\tau=2,10,20. Solid and dashed lines corresponds to the total magnon conductivity and the contribution from the emission/absorption (σm(1)\sigma_{\rm m}^{(1)}), respectively. Parameters used are γ1=γ2=1\gamma_{1}=\gamma_{2}=1 and Δ=ϵF\Delta={\epsilon_{F}}, Iv(2)=0.01I_{v}^{(2)}=0.01 and αG=0.01\alpha_{\rm G}=0.01. For good metal (ϵFτ10{\epsilon_{F}}\tau\gtrsim 10), the magnon conductivity is larger than the electric conductivity even at low temperature of T~0.5\tilde{T}\gtrsim 0.5. The emission/absorption contribution is smaller than the scattering contribution in this temperature range as a result of a relative suppression factor of (Δτ)2(\Delta\tau)^{-2}.

IV.2 Magnon spin-transfer effect

The magnon current can be estimated by observing magnetization dynamics induced by the magnon spin-transfer effect. In the case of electron spin-transfer effect, the flow of magnetization structures is at the velocity of

vst,e\displaystyle v_{\rm st,e} =a3P2eSj\displaystyle=\frac{a^{3}P}{2eS}j (55)

in the direction of spin current PjPj (P=nnn+nP=\frac{n_{\uparrow}-n_{\downarrow}}{n_{\uparrow}+n_{\downarrow}}) in the adiabatic limit [12]. The current is written in terms of the current in the low temperature limit (i.e., without magnons) j(0)j^{(0)} as j=j(0)(1m)j=j^{(0)}(1-{\cal F}_{\rm m}), where m{\cal F}_{\rm m} represents the resistivity effect due to magnons. Assuming the adiabatic limit for magnons, the magnon spin transfer effect drives magnetization structures at the velocity of

vst,m\displaystyle v_{\rm st,m} =a3Sjm\displaystyle=-\frac{a^{3}}{S}j_{\rm m} (56)

in the opposite direction to the magnon current. Considering the two mechanisms for magnon current, the velocity of the magnetization structure for an applied electric current 𝒋\bm{j} is

vst\displaystyle v_{\rm st} =a32eSPeffj(0)\displaystyle=\frac{a^{3}}{2eS}P_{\rm eff}j^{(0)} (57)

where

Peff\displaystyle P_{\rm eff} P[1m]4αGϵFτ[γ1Iv(1)T~32+γ2Iv(2)(Δτ)2T~3]\displaystyle\equiv P\left[1-{\cal F}_{\rm m}\right]-\frac{4}{\alpha_{\rm G}{\epsilon_{F}}\tau}\left[\gamma_{1}I_{v}^{(1)}\tilde{T}^{\frac{3}{2}}+\gamma_{2}I_{v}^{(2)}({\Delta\tau})^{2}\tilde{T}^{3}\right] (58)

represents the effective spin-transfer efficiency including the magnon effects, plotted in Fig. 8. In the weak damping regime αG(ϵFτ)1\alpha_{\rm G}\lesssim({\epsilon_{F}}\tau)^{-1}, the contribution of m{\cal F}_{\rm m} (magnon resistivity) is negligible compared to the conductivity correction (the last square bracket) in the temperature regime in Fig. 8. Crossover from electron-dominated to the magnon-dominated regime occurs at kBT/J~0.2{k_{B}}T/\tilde{J}\lesssim 0.2 in the present case, with a significant negative enhancement in the high temperature regime. The magnon spin-transfer effect is correlated with the behavior of magnon contribution to the resistance, that is proportional to the force plotted in Fig. 6. Identification of magnon drag effects would be carried out by careful analyses of temperature dependence of the experimental data.

Refer to caption
Figure 8: The effective spin-transfer efficiency PeffP_{\rm eff} plotted for T~=kBT/J~\tilde{T}={k_{B}}T/\tilde{J} for Δτ=2,10,20\Delta\tau=2,10,20 and P=1P=1 (solid lines) and P=1P=-1 (dashed lines). Parameters used are γ1=γ2=1\gamma_{1}=\gamma_{2}=1 and Δ=ϵF\Delta={\epsilon_{F}}, Iv(2)=0.01I_{v}^{(2)}=0.01 and αG=0.01\alpha_{\rm G}=0.01.

IV.3 Crossover temperatures

Let us look into the crossover temperatures based on the results Eqs. (43) (58). We consider the case γ1γ21\gamma_{1}\sim\gamma_{2}\sim 1, Δ/ϵF1\Delta/{\epsilon_{F}}\sim 1 and neglect the contribution from m{\cal F}_{\rm m} in PeffP_{\rm eff} for simplicity. As for the magnons, emission/absorption effect is dominant at low temperature, and the crossover to the scattering-dominated temperature is read from Eq. (43) as

Teasc(Δτ)43J~/kB\displaystyle T_{{\rm ea-sc}}\simeq(\Delta\tau)^{-\frac{4}{3}}\tilde{J}/{k_{B}} (59)

The crossover would be seen in the magnon resistivity, assuming that drag force is not directly observable.

The spin-transfer efficiency, PeffP_{\rm eff}, at zero temperature reduces to the electron origin, PP. The magnon emission/absorption contribution becomes larger than the electron contribution above

Teea(12×αG)23(Δτ)23J~/kB\displaystyle T_{{\rm e-ea}}\simeq(12\times\alpha_{\rm G})^{\frac{2}{3}}(\Delta\tau)^{\frac{2}{3}}\tilde{J}/{k_{B}} (60)

which corresponds to high temperature TeeaJ~/kBT_{{\rm e-ea}}\gtrsim\tilde{J}/{k_{B}} unless in an extremely low damping materials with αG0.08×(Δτ)1\alpha_{\rm G}\ll 0.08\times(\Delta\tau)^{-1}. In contrast, magnon scattering effect overcomes the electron contribution at lower temperature of

Tesc(25×αG)13(Δτ)13J~/kB\displaystyle T_{{\rm e-sc}}\simeq(25\times\alpha_{\rm G})^{\frac{1}{3}}(\Delta\tau)^{-\frac{1}{3}}\tilde{J}/{k_{B}} (61)

for Iv(2)=0.01I_{v}^{(2)}=0.01, meaning that the magnon emission/absorption regime emerges only in very dirty metals with ΔτO(1)\Delta\tau\sim O(1) (Fig. 8). The crossover behavior is summarized in Fig. 9.

Refer to caption
Figure 9: Schematic figure showing the crossover temperatures. In the magnon force FmF_{\rm m} and magnon contribution to the electric resistivity (Δρm\Delta\rho_{\rm m}), crossover from magnon emission/absorption (e/a) to scattering is at TeascT_{\rm ea-sc}. The effective spin polarization (spin transfer efficiency) PeffP_{\rm eff} is dominated by the electron contribution at low temperature while a crossover to magnon spin-transfer dominated regime driven by magnon scattering occurs at TescT_{\rm e-sc}. The order of magnitude of PeffP_{\rm eff} in terms of powers of Δτ\Delta\tau is shown. The magnon emission/absorption process, relevant above TeeaT_{\rm e-ea},d would not be dominant in PeffP_{\rm eff} in the dilute magnon regime kBT/J~1{k_{B}}T/\tilde{J}\lesssim 1 unless in very dirty metal with ΔτO(1)\Delta\tau\sim O(1).

V Summary

We have calculated the force between the magnon and conduction electron when an electric field is applied to a ferromagnetic metal based on a microscopic approach. The force due to magnon emission/absorption and scattering were considered and the latter turned out to dominate in a wide temperature regime in good metals with long elastic mean free path. The magnon contribution to the resistivity and total spin-transfer efficiency were discussed.

Acknowledgements.
This study was supported by a Grant-in-Aid for Scientific Research (B) (No. 21H01034) from the Japan Society for the Promotion of Science.

Appendix A Properties of magnon-electron composite propagators

The path-ordered Green’s functions, defined on a time contour CC (Fig. 10), are written in terms of real-time Green’s functions as

G(t,t)\displaystyle G^{--}(t,t^{\prime}) G(tC,tC)=θ(tt)G>(t,t)+θ(tt)G<(t,t)=Gt(t,t)\displaystyle\equiv G(t\in C_{\rightarrow},t^{\prime}\in C_{\rightarrow})=\theta(t-t^{\prime})G^{>}(t,t^{\prime})+\theta(t^{\prime}-t)G^{<}(t,t^{\prime})=G^{\rm t}(t,t^{\prime})
G+(t,t)\displaystyle G^{-+}(t,t^{\prime}) G(tC,tC)=G<(t,t)\displaystyle\equiv G(t\in C_{\rightarrow},t^{\prime}\in C_{\leftarrow})=G^{<}(t,t^{\prime})
G+(t,t)\displaystyle G^{+-}(t,t^{\prime}) G(tC,tC)=G>(t,t)\displaystyle\equiv G(t\in C_{\leftarrow},t^{\prime}\in C_{\rightarrow})=G^{>}(t,t^{\prime})
G++(t,t)\displaystyle G^{++}(t,t^{\prime}) G(tC,tC)=θ(tt)G<(t,t)+θ(tt)G>(t,t)=Gt¯(t,t)\displaystyle\equiv G(t\in C_{\leftarrow},t^{\prime}\in C_{\leftarrow})=\theta(t-t^{\prime})G^{<}(t,t^{\prime})+\theta(t^{\prime}-t)G^{>}(t,t^{\prime})=G^{\rm\bar{t}}(t,t^{\prime}) (62)

where the time on the path CC_{\rightarrow} and CC_{\leftarrow} are denoted as - and ++, respectively, and GtG^{\rm t} and Gt¯G^{\rm\bar{t}} are the time-ordered and anti-time-ordered Green’s functions. These expressions are direct consequence of the definition of path ordering on CC. A straightforward relation derived from Eq. (62) is

G(t,t)+G++(t,t)=G+(t,t)+G+(t,t)=GK(t,t)[G<+G>](t,t)\displaystyle G^{--}(t,t^{\prime})+G^{++}(t,t^{\prime})=G^{-+}(t,t^{\prime})+G^{+-}(t,t^{\prime})=G^{\rm K}(t,t^{\prime})\equiv[G^{<}+G^{>}](t,t^{\prime}) (63)

Noting the relations

Gt\displaystyle G^{\rm t} =G<+Gr=G>+Ga\displaystyle=G^{<}+G^{\rm r}=G^{>}+G^{\rm a}
Gt¯\displaystyle G^{\rm\bar{t}} =G<Ga=G>Gr,\displaystyle=G^{<}-G^{\rm a}=G^{>}-G^{\rm r}, (64)

which read Ga=GG+G^{\rm a}=G^{--}-G^{+-} and Gr=G+G++G^{\rm r}=G^{+-}-G^{++}, the definition (62) is summarized as

Gαβ(t,t)\displaystyle G^{\alpha\beta}(t,t^{\prime}) =12[GK(t,t)αGa(t,t)βGr(t,t)]\displaystyle=\frac{1}{2}[G^{\rm K}(t,t^{\prime})-\alpha G^{\rm a}(t,t^{\prime})-\beta G^{\rm r}(t,t^{\prime})] (65)

where α,β=±\alpha,\beta=\pm are labels representing the path for the time, GaG^{\rm a} and GrG^{\rm r} are the advanced and retarded Green’s functions.

Refer to caption
Figure 10: The time contour the path-ordered Green’s functions are defined. The upper (lower) path is CC_{\rightarrow} (CC_{\leftarrow}).

A.1 Magnon electron pair propagator

An advantage to define the pair propagators defined in Eq. (17) is that the definition has the same structure with respect to time as the single particle case (62) and thus the propagators satisfy the same relation as Eqs. (63)(64). They therefore satisfy in parallel to Eq. (65)

Πk(±),(kp,p),αβ\displaystyle\Pi_{k}^{(\pm),(k\mp p,p),{\alpha\beta}} =12(Πk(±),(kp,p),KαΠk(±),(kp,p),aβΠk(±),(kp,p),r)\displaystyle=\frac{1}{2}\left(\Pi_{k}^{(\pm),(k\mp p,p),{\rm K}}-\alpha\Pi_{k}^{(\pm),(k\mp p,p),{{\rm a}}}-\beta\Pi_{k}^{(\pm),(k\mp p,p),{{\rm r}}}\right) (66)

where

Πk(+),(kp,p),μ(t,t)\displaystyle\Pi_{k}^{(+),(k-p,p),\mu}(t,t^{\prime}) =i[gkpμ(t,t)dp>(t,t)+gkp<(t,t)dpμ(t,t)]\displaystyle=i[g_{k-p}^{\mu}(t,t^{\prime})d_{p}^{>}(t,t^{\prime})+g_{k-p}^{<}(t,t^{\prime})d_{p}^{\mu}(t,t^{\prime})]
Πk(+),(kp,p),ν(t,t)\displaystyle\Pi_{k}^{(+),(k-p,p),\nu}(t,t^{\prime}) =i[gkpν(t,t)dpν(t,t)]\displaystyle=i[g_{k-p}^{\nu}(t,t^{\prime})d_{p}^{\nu}(t,t^{\prime})] (67)

for μ=r,a\mu={\rm r},{\rm a} and ν=>,<\nu=>,< (with ΠKΠ<+Π>\Pi^{\rm K}\equiv\Pi^{<}+\Pi^{>}) and

Πk(),(k+p,p),a(t,t)\displaystyle\Pi_{k}^{(-),(k+p,p),{\rm a}}(t,t^{\prime}) =i[gk+pa(t,t)dp<(t,t)+gk+p<(t,t)dpr(t,t)]\displaystyle=i[g_{k+p}^{\rm a}(t,t^{\prime})d_{p}^{<}(t^{\prime},t)+g_{k+p}^{<}(t,t^{\prime})d_{p}^{\rm r}(t^{\prime},t)]
Πk(),(k+p,p),r(t,t)\displaystyle\Pi_{k}^{(-),(k+p,p),{\rm r}}(t,t^{\prime}) =i[gk+pr(t,t)dp<(t,t)+gk+p<(t,t)dpa(t,t)]\displaystyle=i[g_{k+p}^{\rm r}(t,t^{\prime})d_{p}^{<}(t^{\prime},t)+g_{k+p}^{<}(t,t^{\prime})d_{p}^{\rm a}(t^{\prime},t)]
Πk(),(k+p,p),<(t,t)\displaystyle\Pi_{k}^{(-),(k+p,p),<}(t,t^{\prime}) =i[gk+p<(t,t)dp>(t,t)]\displaystyle=i[g_{k+p}^{<}(t,t^{\prime})d_{p}^{>}(t^{\prime},t)]
Πk(),(k+p,p),>(t,t)\displaystyle\Pi_{k}^{(-),(k+p,p),>}(t,t^{\prime}) =i[gk+p>(t,t)dp<(t,t)]\displaystyle=i[g_{k+p}^{>}(t,t^{\prime})d_{p}^{<}(t^{\prime},t)] (68)

This fact indicates that the pair propagator indeed behaves as a propagator of a composite particle. In the frequency representation,

Πk(+),(k+p,p),>(ω)\displaystyle\Pi_{k}^{(+),(k+p,p),>}(\omega) 𝑑teiωtΠk(+),(k+p,p),>(t)=2πiω1gk+p>(ω1)dp>(ω1ω)\displaystyle\equiv\int dte^{i\omega t}\Pi_{k}^{(+),(k+p,p),>}(t)=2\pi i\sum_{\omega_{1}}g_{k+p}^{>}(\omega_{1})d_{p}^{>}(-\omega_{1}-\omega)
Πk(),(k+p,p),>(ω)\displaystyle\Pi_{k}^{(-),(k+p,p),>}(\omega) 𝑑teiωtΠk(),(k+p,p),>(t)=2πiω1gk+p>(ω1)dp<(ω1ω)\displaystyle\equiv\int dte^{i\omega t}\Pi_{k}^{(-),(k+p,p),>}(t)=2\pi i\sum_{\omega_{1}}g_{k+p}^{>}(\omega_{1})d_{p}^{<}(\omega_{1}-\omega) (69)

Moreover, the pair propagator satisfy the the same relation as single particle Green’s function without dynamic interaction, i.e.,

Πk(±),(kp,p),<(ω)\displaystyle\Pi_{k}^{(\pm),(k\mp p,p),<}(\omega) =f(ω)[Πk(±),(kp,p),a(ω)Πk(±),(kp,p),r(ω)]\displaystyle=f(\omega)[\Pi_{k}^{(\pm),(k\mp p,p),{\rm a}}(\omega)-\Pi_{k}^{(\pm),(k\mp p,p),{\rm r}}(\omega)] (70)

which is useful to extract the low energy contributions.

For the ω=0\omega=0 component of the advanced pair propagator in Eq. (20), we have, using Eqs. (67)(68),

Πkσ(+),(kp,p),a\displaystyle\Pi_{k\sigma}^{(+),(k-p,p),{\rm a}} =iν[gkp,ν,σadp,ν>+gkp,ν,σ<dp,νa]\displaystyle=i\sum_{\nu}[g_{k-p,\nu,\sigma}^{\rm a}d^{>}_{p,-\nu}+g_{k-p,\nu,\sigma}^{<}d^{\rm a}_{p,-\nu}] (71)

where ν\nu is the frequency for electron Green’s function. The frequency of magnon is ν-\nu as the total frequency of the pair propagator π(+)\pi^{(+)} is zero and

Πkσ(),(k+p,p),a\displaystyle\Pi_{k\sigma}^{(-),(k+p,p),{\rm a}} =iν[gk+p,ν,σadp,ν<+gk+p,ν,σ<dp,νr]\displaystyle=i\sum_{\nu}[g_{k+p,\nu,\sigma}^{\rm a}d^{<}_{p,\nu}+g_{k+p,\nu,\sigma}^{<}d^{\rm r}_{p,\nu}] (72)

where magnon frequency is equal to the electron one for Π()\Pi^{(-)}. We thus obtain

ImΠkσ(+),(kp,p),a\displaystyle{\rm Im}\Pi_{k\sigma}^{(+),(k-p,p),{\rm a}} =4νnν(1fν)Im[gkp,ν,σa]Im[dp,νa]]\displaystyle=4\sum_{\nu}n_{\nu}(1-f_{\nu}){\rm Im}[g_{k-p,\nu,\sigma}^{\rm a}]{\rm Im}[d^{\rm a}_{p,-\nu}]]
ImΠkσ(),(k+p,p),a\displaystyle{\rm Im}\Pi_{k\sigma}^{(-),(k+p,p),{\rm a}} =4νnν(1fν)Im[gk+p,ν,σa]Im[dp,νa]]\displaystyle=-4\sum_{\nu}n_{\nu}(1-f_{\nu}){\rm Im}[g_{k+p,\nu,\sigma}^{\rm a}]{\rm Im}[d^{\rm a}_{p,\nu}]] (73)

where we used fν=1fνf_{-\nu}=1-f_{\nu} and nν+fν=2nν(1fν)=2(1+nν)fνn_{\nu}+f_{\nu}=2n_{\nu}(1-f_{\nu})=2(1+n_{\nu})f_{\nu}

A.2 Two-magnon electron composite propagator

Two-magnon electron composite propagator defined by Eq. (29) has the same mathematical structure as the magnon-electron pair propagator and single particle Green’s functions. Namely, by definitions (±\pm denotes the time contour CC_{\rightarrow} and CC_{\leftarrow})

Πkσ(2),k,p,p(t,t)\displaystyle\Pi^{(2),k^{\prime},p,p^{\prime}}_{k\sigma}(t,t^{\prime}) g𝒌σ(t,t)d𝒑(t,t)d𝒑(t,t)\displaystyle\equiv g_{{\bm{k}}^{\prime}\sigma}(t,t^{\prime})d_{{\bm{p}}}(t,t^{\prime})d_{{\bm{p}}^{\prime}}(t^{\prime},t)
Πkσ(2),k,p,p()(t,t)\displaystyle\Pi^{(2),k^{\prime},p,p^{\prime}(--)}_{k\sigma}(t,t^{\prime}) =θ(tt)g𝒌σ<(t,t)d𝒑<(t,t)d𝒑>(t,t)+θ(tt)g𝒌σ>(t,t)d𝒑>(t,t)d𝒑<(t,t)\displaystyle=\theta(t^{\prime}-t)g_{{\bm{k}}^{\prime}\sigma}^{<}(t,t^{\prime})d_{{\bm{p}}}^{<}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{>}(t^{\prime},t)+\theta(t-t^{\prime})g_{{\bm{k}}^{\prime}\sigma}^{>}(t,t^{\prime})d_{{\bm{p}}}^{>}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{<}(t^{\prime},t)
Πkσ(2),k,p,p(++)(t,t)\displaystyle\Pi^{(2),k^{\prime},p,p^{\prime}(++)}_{k\sigma}(t,t^{\prime}) =θ(tt)g𝒌σ<(t,t)d𝒑<(t,t)d𝒑>(t,t)+θ(tt)g𝒌σ>(t,t)d𝒑>(t,t)d𝒑<(t,t)\displaystyle=\theta(t-t^{\prime})g_{{\bm{k}}^{\prime}\sigma}^{<}(t,t^{\prime})d_{{\bm{p}}}^{<}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{>}(t^{\prime},t)+\theta(t^{\prime}-t)g_{{\bm{k}}^{\prime}\sigma}^{>}(t,t^{\prime})d_{{\bm{p}}}^{>}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{<}(t^{\prime},t) (74)

we have

Πkσ(2),k,p,p()(t,t)+Πkσ(2),k,p,p(++)(t,t)\displaystyle\Pi^{(2),k^{\prime},p,p^{\prime}(--)}_{k\sigma}(t,t^{\prime})+\Pi^{(2),k^{\prime},p,p^{\prime}(++)}_{k\sigma}(t,t^{\prime}) =Πkσ(2),k,p,p(+)(t,t)+Πkσ(2),k,p,p(+)(t,t)\displaystyle=\Pi^{(2),k^{\prime},p,p^{\prime}(-+)}_{k\sigma}(t,t^{\prime})+\Pi^{(2),k^{\prime},p,p^{\prime}(+-)}_{k\sigma}(t,t^{\prime}) (75)

and this relation allows us to write (α,β=±\alpha,\beta=\pm)

Πkσ(2),k,p,p(αβ)(t,t)\displaystyle\Pi^{(2),k^{\prime},p,p^{\prime}(\alpha\beta)}_{k\sigma}(t,t^{\prime}) =12[Πkσ(2),k,p,p,K(t,t)αΠkσ(2),k,p,p,a(t,t)βΠkσ(2),k,p,p,r(t,t)]\displaystyle=\frac{1}{2}\left[\Pi^{(2),k^{\prime},p,p^{\prime},K}_{k\sigma}(t,t^{\prime})-\alpha\Pi^{(2),k^{\prime},p,p^{\prime},{\rm a}}_{k\sigma}(t,t^{\prime})-\beta\Pi^{(2),k^{\prime},p,p^{\prime},{\rm r}}_{k\sigma}(t,t^{\prime})\right] (76)

where

Πkσ(2),k,p,p,K\displaystyle\Pi^{(2),k^{\prime},p,p^{\prime},K}_{k\sigma} (Πkσ(2),k,p,p(++)+Πkσ(2),k,p,p())\displaystyle\equiv(\Pi^{(2),k^{\prime},p,p^{\prime}(++)}_{k\sigma}+\Pi^{(2),k^{\prime},p,p^{\prime}(--)}_{k\sigma})
Πkσ(2),k,p,p,a\displaystyle\Pi^{(2),k^{\prime},p,p^{\prime},{\rm a}}_{k\sigma} (Πkσ(2),k,p,p(+)Πkσ(2),k,p,p(++))=(Πkσ(2),k,p,p()Πkσ(2),k,p,p(+))\displaystyle\equiv(\Pi^{(2),k^{\prime},p,p^{\prime}(-+)}_{k\sigma}-\Pi^{(2),k^{\prime},p,p^{\prime}(++)}_{k\sigma})=(\Pi^{(2),k^{\prime},p,p^{\prime}(--)}_{k\sigma}-\Pi^{(2),k^{\prime},p,p^{\prime}(+-)}_{k\sigma})
Πkσ(2),k,p,p,r\displaystyle\Pi^{(2),k^{\prime},p,p^{\prime},{\rm r}}_{k\sigma} (Πkσ(2),k,p,p(+)Πkσ(2),k,p,p(++))=(Πkσ(2),k,p,p()Πkσ(2),k,p,p(+))\displaystyle\equiv(\Pi^{(2),k^{\prime},p,p^{\prime}(+-)}_{k\sigma}-\Pi^{(2),k^{\prime},p,p^{\prime}(++)}_{k\sigma})=(\Pi^{(2),k^{\prime},p,p^{\prime}(--)}_{k\sigma}-\Pi^{(2),k^{\prime},p,p^{\prime}(-+)}_{k\sigma}) (77)

Note that here retarded, advanced components are not in the original sense for the single particle Green’s functions, written in terms of (anti)commutators of field operators. Nevertheless, the relation (76) indicates that multi particle propagators behaves mathematically the same as single particle Green’s functions, and it simplifies the calculation greatly.

Using explicit expressions

Πkσ(2),k,p,p()(t,t)\displaystyle\Pi^{(2),k^{\prime},p,p^{\prime}(--)}_{k\sigma}(t,t^{\prime}) =g𝒌σ<(t,t)d𝒑<(t,t)d𝒑<(t,t)+g𝒌σr(t,t)d𝒑<(t,t)d𝒑<(t,t)\displaystyle=g_{{\bm{k}}^{\prime}\sigma}^{<}(t,t^{\prime})d_{{\bm{p}}}^{<}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{<}(t^{\prime},t)+g_{{\bm{k}}^{\prime}\sigma}^{\rm r}(t,t^{\prime})d_{{\bm{p}}}^{<}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{<}(t^{\prime},t)
+g𝒌σ<(t,t)d𝒑<(t,t)d𝒑r(t,t)+g𝒌σ>(t,t)d𝒑r(t,t)d𝒑<(t,t)\displaystyle+g_{{\bm{k}}^{\prime}\sigma}^{<}(t,t^{\prime})d_{{\bm{p}}}^{<}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{\rm r}(t^{\prime},t)+g_{{\bm{k}}^{\prime}\sigma}^{>}(t,t^{\prime})d_{{\bm{p}}}^{\rm r}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{<}(t^{\prime},t)
Πkσ(2),k,p,p(+)(t,t)\displaystyle\Pi^{(2),k^{\prime},p,p^{\prime}(-+)}_{k\sigma}(t,t^{\prime}) =g𝒌σ<(t,t)d𝒑<(t,t)d𝒑>(t,t)\displaystyle=g_{{\bm{k}}^{\prime}\sigma}^{<}(t,t^{\prime})d_{{\bm{p}}}^{<}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{>}(t^{\prime},t)
Πkσ(2),k,p,p(+)(t,t)\displaystyle\Pi^{(2),k^{\prime},p,p^{\prime}(+-)}_{k\sigma}(t,t^{\prime}) =g𝒌σ>(t,t)d𝒑>(t,t)d𝒑<(t,t)\displaystyle=g_{{\bm{k}}^{\prime}\sigma}^{>}(t,t^{\prime})d_{{\bm{p}}}^{>}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{<}(t^{\prime},t) (78)

we obtain

Πkσ(2),k,p,p,K(t,t)\displaystyle\Pi^{(2),k^{\prime},p,p^{\prime},K}_{k\sigma}(t,t^{\prime}) =[g𝒌σ<(t,t)d𝒑<(t,t)d𝒑>(t,t)+g𝒌σ>(t,t)d𝒑>(t,t)d𝒑<(t,t)]\displaystyle=\left[g_{{\bm{k}}^{\prime}\sigma}^{<}(t,t^{\prime})d_{{\bm{p}}}^{<}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{>}(t^{\prime},t)+g_{{\bm{k}}^{\prime}\sigma}^{>}(t,t^{\prime})d_{{\bm{p}}}^{>}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{<}(t^{\prime},t)\right]
Πkσ(2),k,p,p,a(t,t)\displaystyle\Pi^{(2),k^{\prime},p,p^{\prime},{\rm a}}_{k\sigma}(t,t^{\prime}) =[g𝒌σ<(t,t)d𝒑<(t,t)d𝒑r(t,t)+g𝒌σ<(t,t)d𝒑a(t,t)d𝒑<(t,t)+g𝒌σa(t,t)d𝒑>(t,t)d𝒑<(t,t)]\displaystyle=\left[g_{{\bm{k}}^{\prime}\sigma}^{<}(t,t^{\prime})d_{{\bm{p}}}^{<}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{\rm r}(t^{\prime},t)+g_{{\bm{k}}^{\prime}\sigma}^{<}(t,t^{\prime})d_{{\bm{p}}}^{\rm a}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{<}(t^{\prime},t)+g_{{\bm{k}}^{\prime}\sigma}^{\rm a}(t,t^{\prime})d_{{\bm{p}}}^{>}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{<}(t^{\prime},t)\right]
Πkσ(2),k,p,p,r(t,t)\displaystyle\Pi^{(2),k^{\prime},p,p^{\prime},{\rm r}}_{k\sigma}(t,t^{\prime}) =[g𝒌σ<(t,t)d𝒑r(t,t)d𝒑<(t,t)+g𝒌σ<(t,t)d𝒑<(t,t)d𝒑a(t,t)+g𝒌σr(t,t)d𝒑>(t,t)d𝒑<(t,t)]\displaystyle=\left[g_{{\bm{k}}^{\prime}\sigma}^{<}(t,t^{\prime})d_{{\bm{p}}}^{\rm r}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{<}(t^{\prime},t)+g_{{\bm{k}}^{\prime}\sigma}^{<}(t,t^{\prime})d_{{\bm{p}}}^{<}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{\rm a}(t^{\prime},t)+g_{{\bm{k}}^{\prime}\sigma}^{\rm r}(t,t^{\prime})d_{{\bm{p}}}^{>}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{<}(t^{\prime},t)\right] (79)

The advanced component can be derived also by use of decompose relation and Eq. (67) as

Πkσ(2),k,p,p,a(t,t)\displaystyle\Pi^{(2),k^{\prime},p,p^{\prime},{\rm a}}_{k\sigma}(t,t^{\prime}) =i[Πk+p(+)(k,p)(t,t)dp(t,t)]a\displaystyle=-i[\Pi_{k+p}^{(+)(k,p)}(t,t^{\prime})d_{p^{\prime}}(t^{\prime},t)]^{\rm a}
=i[Πk+p(+)(k,p),a(t,t)dp<(t,t)+Πk+p(+)(k,p),<(t,t)dpr(t,t)]\displaystyle=-i[\Pi_{k+p}^{(+)(k,p),{\rm a}}(t,t^{\prime})d^{<}_{p^{\prime}}(t^{\prime},t)+\Pi_{k+p}^{(+)(k,p),<}(t,t^{\prime})d^{\rm r}_{p^{\prime}}(t^{\prime},t)]
=(g𝒌σ<(t,t)d𝒑<(t,t)d𝒑r(t,t)+g𝒌σ<(t,t)d𝒑a(t,t)d𝒑<(t,t)+g𝒌σa(t,t)d𝒑>(t,t)d𝒑<(t,t))\displaystyle=(g_{{\bm{k}}\sigma}^{<}(t,t^{\prime})d_{{\bm{p}}}^{<}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{\rm r}(t^{\prime},t)+g_{{\bm{k}}\sigma}^{<}(t,t^{\prime})d_{{\bm{p}}}^{\rm a}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{<}(t^{\prime},t)+g_{{\bm{k}}\sigma}^{\rm a}(t,t^{\prime})d_{{\bm{p}}}^{>}(t,t^{\prime})d_{{\bm{p}}^{\prime}}^{<}(t^{\prime},t)) (80)

indicating consistency of composite propagator representation. The advanced component of the composite propagator in the Fourier representation is

Πkσ(2),k,p,p,a\displaystyle\Pi^{(2),k^{\prime},p,p^{\prime},{\rm a}}_{k\sigma} =νν[g𝒌,νν,σad𝒑ν<d𝒑ν>+g𝒌,νν,σ>d𝒑νad𝒑ν<+g𝒌,νν,σ>d𝒑ν<d𝒑νr]\displaystyle=\sum_{\nu\nu^{\prime}}[g_{{\bm{k}}^{\prime},\nu^{\prime}-\nu,\sigma}^{\rm a}d_{{\bm{p}}\nu}^{<}d_{{\bm{p}}^{\prime}\nu^{\prime}}^{>}+g_{{\bm{k}}^{\prime},\nu^{\prime}-\nu,\sigma}^{>}d_{{\bm{p}}\nu}^{\rm a}d_{{\bm{p}}^{\prime}\nu^{\prime}}^{<}+g_{{\bm{k}}^{\prime},\nu^{\prime}-\nu,\sigma}^{>}d_{{\bm{p}}\nu}^{<}d_{{\bm{p}}^{\prime}\nu^{\prime}}^{\rm r}] (81)

Using Im[dpνa]=πδ(νωp){\rm Im}[d_{p\nu}^{\rm a}]=\pi\delta(\nu-\omega_{p}), we have

Im[Πkσ(2),k,p,p,a]\displaystyle{\rm Im}[\Pi^{(2),k^{\prime},p,p^{\prime},{\rm a}}_{k\sigma}] =[nωp(1+nωp)fωpωp+nωp(1+nωp)fωpωp]Im[g𝒌,νν,σa]\displaystyle=-[n_{\omega_{p}}(1+n_{\omega_{p}^{\prime}})f_{\omega_{p^{\prime}}-{\omega_{p}}}+n_{\omega_{p^{\prime}}}(1+n_{\omega_{p}})f_{{\omega_{p}}-{\omega_{p}^{\prime}}}]{\rm Im}[g_{{\bm{k}}^{\prime},\nu^{\prime}-\nu,\sigma}^{\rm a}] (82)

Appendix B Calculation of electron contribution of Eq. (25)

Refer to caption
Figure 11: energy contour CϵFC_{\epsilon_{F}} for calculating the kk-summation of the electron Green’s function.

The electron contribution, Eq. (25), to the emission/absorption force F(1)F^{(1)} is calculated here by use of a contour integration. We first write Iσ𝒌k2|gkσa|2(gk,σa)2I_{\sigma}\equiv\sum_{{\bm{k}}}k^{2}|g_{k\sigma}^{\rm a}|^{2}(g_{k,-\sigma}^{\rm a})^{2} by use of the energy (ϵϵk\epsilon\equiv\epsilon_{k}) integral as

Iσ\displaystyle I_{\sigma} =ϵF𝑑ϵνe(ϵ)k2(ϵ)(ϵσΔ)2+η21(ϵ+σΔ+iη)2\displaystyle=\int_{-{\epsilon_{F}}}^{\infty}d\epsilon\frac{{\nu_{\rm e}}(\epsilon)k^{2}(\epsilon)}{(\epsilon-\sigma\Delta)^{2}+\eta^{2}}\frac{1}{(\epsilon+\sigma\Delta+i\eta)^{2}} (83)

where νe(ϵ)=mk(ϵ)a32π2{\nu_{\rm e}}(\epsilon)=\frac{mk(\epsilon)a^{3}}{2\pi^{2}} is the electron density of states, k(ϵ)2m(ϵ+ϵF)k(\epsilon)\equiv\sqrt{2m(\epsilon+{\epsilon_{F}})}. The integration is written as an integration over a contour CϵFC_{{\epsilon_{F}}} avoiding a cut along the real axis (due to νe(ϵ)ϵ+ϵF{\nu_{\rm e}}(\epsilon)\sqrt{\epsilon+{\epsilon_{F}}}) shown in Fig. 11as

Iσ\displaystyle I_{\sigma} =12CϵF𝑑ϵνe(ϵ)k2(ϵ)(ϵσΔ)2+η21(ϵ+σΔ+iη)2\displaystyle=\frac{1}{2}\int_{C_{{\epsilon_{F}}}}d\epsilon\frac{{\nu_{\rm e}}(\epsilon)k^{2}(\epsilon)}{(\epsilon-\sigma\Delta)^{2}+\eta^{2}}\frac{1}{(\epsilon+\sigma\Delta+i\eta)^{2}} (84)

The residues at poles ϵ=σΔ±iη\epsilon=\sigma\Delta\pm i\eta and ϵ=σΔiη\epsilon=-\sigma\Delta-i\eta are calculated, paying attention to the fact that νe(ϵiη)=νe(ϵ+iη){\nu_{\rm e}}(\epsilon-i\eta)=-{\nu_{\rm e}}(\epsilon+i\eta) due to the cut, to obtain

Iσ\displaystyle I_{\sigma} =π2ηνeσ14[1Δ2+1(Δ+iση)2]+iπddϵ[νe(ϵ)k2(ϵ)ϵσΔ+iη1ϵσΔiη]ϵ=σΔiη\displaystyle=\frac{\pi}{2\eta}{\nu_{\rm e}}_{\sigma}\frac{1}{4}\left[\frac{1}{\Delta^{2}}+\frac{1}{(\Delta+i\sigma\eta)^{2}}\right]+i\pi\frac{d}{d\epsilon}\left[\frac{{\nu_{\rm e}}(\epsilon)k^{2}(\epsilon)}{\epsilon-\sigma\Delta+i\eta}\frac{1}{\epsilon-\sigma\Delta-i\eta}\right]_{\epsilon=-\sigma\Delta-i\eta} (85)

It turns out that the lowest order contribution in the limit of η/ϵF1\eta/{\epsilon_{F}}\ll 1 arises from the derivative of ν(ϵ)k2(ϵ)\nu(\epsilon)k^{2}(\epsilon), i.e.,

Iσ\displaystyle I_{\sigma} =iπ38ϵFνeσkσ21Δ(Δ+iση)\displaystyle=-i\pi\frac{3}{8{\epsilon_{F}}}{\nu_{\rm e}}_{-\sigma}k^{2}_{-\sigma}\frac{1}{\Delta(\Delta+i\sigma\eta)} (86)

We therefore obtain

ImσIσ\displaystyle{\rm Im}\sum_{\sigma}I_{\sigma} =3π81Δ2ϵFσσνeσkσ2=9π8ma3neΔ2ϵF\displaystyle=-\frac{3\pi}{8}\frac{1}{\Delta^{2}{\epsilon_{F}}}\sum_{\sigma}\sigma{{\nu_{\rm e}}_{\sigma}k_{\sigma}^{2}}=-\frac{9\pi}{8}\frac{ma^{3}n_{\rm e}}{\Delta^{2}{\epsilon_{F}}} (87)

where ne=13ma3σσνeσkσ2n_{\rm e}=\frac{1}{3ma^{3}}\sum_{\sigma}\sigma{{\nu_{\rm e}}_{\sigma}k_{\sigma}^{2}} is the total electron density.

Appendix C Linear response calculation of magnon current

Here we calculate the magnon current driven by an electric field directly diagrammatically to show the correctness of the argument in Sec. IV.1 of the velocity based on the calculation result of the force on magnon. The calculation of the emission/absorption contribution is essentially the same as the one for the magnon energy current in Ref. [6], while scattering contribution was not argued there. Magnon current is

𝒋m\displaystyle\bm{j}_{\rm m} =iJSbb\displaystyle=-i{JS}b^{\dagger}\stackrel{{\scriptstyle\leftrightarrow}}{{\nabla}}b
=JS(rr)D<(𝒓,t,𝒓,t)|𝒓=𝒓\displaystyle=JS(\nabla_{r}-\nabla_{r^{\prime}})D^{<}({\bm{r}},t,{\bm{r}}^{\prime},t)|_{{\bm{r}}={\bm{r}}^{\prime}} (88)

where D<(𝒓,t,𝒓,t)=ib(𝒓,t)b(𝒓,t)D^{<}({\bm{r}},t,{\bm{r}}^{\prime},t^{\prime})=-i\left\langle{b^{\dagger}({\bm{r}}^{\prime},t^{\prime})b({\bm{r}},t)}\right\rangle is the full Greens function of magnon including interactions (the sign of - is for boson lesser Green’s function). The full Green’s function at the linear response is perturbatively expanded including the sdsd exchange interaction to the second order and the electric field

C.1 Magnon emission/absorption contribution

Refer to caption
Figure 12: Feynman diagrams representing the magnon current (left vertex) induced by an electric field (denoted by a dotted line) by the magnon emission/absorption due to the sdsd exchange interaction. Wavy and solid lines denote magnon and electron propagators, respectively. The sign ±\pm denotes electron spin.

Here magnon current jm(1)j_{\rm m}^{(1)} due to the linear magnon coupling to electrons arising from the sdsd exchange interaction is calculated. The corresponding contribution to the Green’s function defined on the time contour,D(1)(𝒓,t,𝒓,t)D^{(1)}({\bm{r}},t,{\bm{r}}^{\prime},t^{\prime}), is (diagrams shown in Fig. 12)

D(1)(𝒓,t,𝒓,t)\displaystyle D^{(1)}({\bm{r}},t,{\bm{r}}^{\prime},t^{\prime}) =iemΔ22SC𝑑t1C𝑑t2C𝑑t3r1r2r3d(𝒓2,t2,𝒓,t)d(𝒓,t,𝒓1,t1)Aj(t3)\displaystyle=i\frac{e}{m}\frac{\Delta^{2}}{2S}\int_{C}dt_{1}\int_{C}dt_{2}\int_{C}dt_{3}\sum_{r_{1}r_{2}r_{3}}d({\bm{r}}_{2},t_{2},{\bm{r}}^{\prime},t^{\prime})d({\bm{r}},t,{\bm{r}}_{1},t_{1})A_{j}(t_{3})
×tr[σ+g(𝒓1,t1,𝒓2,t2)σg(𝒓2,t2,𝒓3,t3)p^jg(𝒓3,t3,𝒓1,t1)\displaystyle\times{\rm tr}[\sigma_{+}g({{\bm{r}}_{1},t_{1}},{\bm{r}}_{2},t_{2})\sigma_{-}g({\bm{r}}_{2},t_{2},{\bm{r}}_{3},t_{3})\hat{p}_{j}g({\bm{r}}_{3},t_{3},{\bm{r}}_{1},t_{1})
+σ+g(𝒓1,t1,𝒓3,t3)p^jg(𝒓3,t3,𝒓2,t2)σg(𝒓2,t2,𝒓1,t1)]\displaystyle+\sigma_{+}g({{\bm{r}}_{1},t_{1}},{\bm{r}}_{3},t_{3})\hat{p}_{j}g({\bm{r}}_{3},t_{3},{\bm{r}}_{2},t_{2})\sigma_{-}g({\bm{r}}_{2},t_{2},{\bm{r}}_{1},t_{1})] (89)

Denoting (𝒓,t)({\bm{r}},t) by xx, the Green’s function part is

C𝑑t3\displaystyle\int_{C}dt_{3} d(x,x1)tr[σ+g(x1,x2)σg(x2,x3)(𝑨(t3)𝒑^)g(x3,x1)\displaystyle d(x,x_{1}){\rm tr}[\sigma_{+}g(x_{1},x_{2})\sigma_{-}g(x_{2},x_{3})({\bm{A}}(t_{3})\cdot\hat{{\bm{p}}})g(x_{3},x_{1})
+g(x1,x3)(𝑨(t3)𝒑^)g(x3,x2)σg(x2,x1)σ+]d(x2,x)\displaystyle+g(x_{1},x_{3})({\bm{A}}(t_{3})\cdot\hat{{\bm{p}}})g(x_{3},x_{2})\sigma_{-}g(x_{2},x_{1})\sigma_{+}]d(x_{2},x^{\prime})
=d(x,x1)[Λ~(x1,x2)+Λ~+(x2,x1)]d(x2,x)\displaystyle=d(x,x_{1})[\tilde{\Lambda}_{-}(x_{1},x_{2})+\tilde{\Lambda}_{+}(x_{2},x_{1})]d(x_{2},x^{\prime}) (90)

where (subscripts ±\pm denotes electron spin)

Λ~(x1,x2)\displaystyle\tilde{\Lambda}_{-}(x_{1},x_{2}) g(x1,x2)(gAg)+(x2,x1)\displaystyle\equiv g_{-}(x_{1},x_{2})(gAg)_{+}(x_{2},x_{1})
Λ~+(x2,x1)\displaystyle\tilde{\Lambda}_{+}(x_{2},x_{1}) g+(x2,x1)(gAg)(x1,x2)\displaystyle\equiv g_{+}(x_{2},x_{1})(gAg)_{-}(x_{1},x_{2}) (91)

and gAg(x2,x1)C𝑑t3g(x2,x3)(𝑨(t3)𝒑^)g(x3,x1)gAg(x_{2},x_{1})\equiv\int_{C}dt_{3}g(x_{2},x_{3})({\bm{A}}(t_{3})\cdot\hat{{\bm{p}}})g(x_{3},x_{1}) behaves as composite propagators. The lesser component, D(1)<D^{(1)<}, for Eq. (88) is calculated using

C𝑑t1\displaystyle\int_{C}dt_{1} C𝑑t2[d(x,x1)[Λ~(x1,x2)+Λ~+(x2,x1)]d(x2,x)]<\displaystyle\int_{C}dt_{2}[d(x,x_{1})[\tilde{\Lambda}_{-}(x_{1},x_{2})+\tilde{\Lambda}_{+}(x_{2},x_{1})]d(x_{2},x^{\prime})]^{<}
=dt1dt2αβ()2αβ[dα(x,x1)[Λ~αβ(x1,x2)+Λ~+βα(x2,x1)]dβ+(x2,x)\displaystyle=\int_{-\infty}^{\infty}dt_{1}\int_{-\infty}^{\infty}dt_{2}\sum_{\alpha\beta}(-)^{2}\alpha\beta\left[d^{-\alpha}(x,x_{1})[\tilde{\Lambda}_{-}^{\alpha\beta}(x_{1},x_{2})+\tilde{\Lambda}_{+}^{\beta\alpha}(x_{2},x_{1})\right]d^{\beta+}(x_{2},x^{\prime}) (92)

Here superscripts such as in dαβd^{\alpha\beta} (α,β=±\alpha,\beta=\pm) denotes the time contour: d(t,t1)=d(tC,t1C)d^{--}(t,t_{1})=d(t\in C_{\rightarrow},t_{1}\in C_{\rightarrow}), d+(t,t1)=d(tC,t1C)d^{-+}(t,t_{1})=d(t\in C_{\rightarrow},t_{1}\in C_{\leftarrow}), etc. The result is (suppressing the time integration)

[C𝑑t1C𝑑t2d(x,x1)Λ~(x1,x2)d(x2,x)]<\displaystyle[\int_{C}dt_{1}\int_{C}dt_{2}d(x,x_{1})\tilde{\Lambda}_{-}(x_{1},x_{2})d(x_{2},x^{\prime})]^{<} =12(drΛ~Kda+drΛ~rdK+dKΛ~ada)\displaystyle=\frac{1}{2}(d^{\rm r}\tilde{\Lambda}_{-}^{\rm K}d^{\rm a}+d^{\rm r}\tilde{\Lambda}_{-}^{\rm r}d^{\rm K}+d^{\rm K}\tilde{\Lambda}_{-}^{\rm a}d^{\rm a})
[C𝑑t1C𝑑t2d(x,x1)Λ~+(x2,x1)d(x2,x)]<\displaystyle[\int_{C}dt_{1}\int_{C}dt_{2}d(x,x_{1})\tilde{\Lambda}_{+}(x_{2},x_{1})d(x_{2},x^{\prime})]^{<} =12(drΛ~+Kda+drΛ~+adK+dKΛ~+rda)\displaystyle=\frac{1}{2}(d^{\rm r}\tilde{\Lambda}_{+}^{\rm K}d^{\rm a}+d^{\rm r}\tilde{\Lambda}_{+}^{\rm a}d^{\rm K}+d^{\rm K}\tilde{\Lambda}_{+}^{\rm r}d^{\rm a}) (93)

Fourier representation of Λ~\tilde{\Lambda} is (using A(t)eiΩtA(t)\propto e^{-i\Omega t})

Λ~σ(x1,x2)\displaystyle\tilde{\Lambda}_{\sigma}(x_{1},x_{2}) =𝒌𝒌Ωωωei(ωω)(t1t2)ei(𝒌𝒌)(𝒓1𝒓2)eiΩt2(𝑨(Ω)𝒌)Λk,ω+Ω,ω,σk,ω,σ\displaystyle=\sum_{{\bm{k}}{\bm{k}}^{\prime}}\sum_{\Omega\omega\omega^{\prime}}e^{-i(\omega-\omega^{\prime})(t_{1}-t_{2})}e^{-i({\bm{k}}-{\bm{k}}^{\prime})\cdot({\bm{r}}_{1}-{\bm{r}}_{2})}e^{-i\Omega t_{2}}({\bm{A}}(\Omega)\cdot{{\bm{k}}})\Lambda_{k,\omega+\Omega,\omega,-\sigma}^{k^{\prime},\omega^{\prime},\sigma} (94)

where

Λk,ω+Ω,ω,σk,ω,σg𝒌,ω,σg𝒌,ω+Ω,σg𝒌,ω,σ\displaystyle\Lambda_{k,\omega+\Omega,\omega,-\sigma}^{k^{\prime},\omega^{\prime},\sigma}\equiv g_{{\bm{k}}^{\prime},\omega^{\prime},\sigma}g_{{\bm{k}},\omega+\Omega,-\sigma}g_{{\bm{k}},\omega,-\sigma} (95)

The magnon current therefore reads

jm,i(1)\displaystyle j_{{\rm m},i}^{(1)} =e2mJΔ2pνkωΩpikjAj(Ω)[{dpνrdpνa[Λk,ω+Ω,ω,+k+p,ω+ν,]K+(rKr)+(Kaa)}\displaystyle=-\frac{e}{2m}J\Delta^{2}\sum_{p\nu}\sum_{k\omega}\sum_{\Omega}p_{i}k_{j}A_{j}(\Omega)\biggl{[}\left\{d_{p\nu}^{\rm r}d_{p\nu}^{\rm a}[\Lambda^{k+p,\omega+\nu,-}_{k,\omega+\Omega,\omega,+}]^{\rm K}+(rKr)+(Kaa)\right\}
+{dpνrdpνa[Λk,ω+Ω,ω,kp,ων,+]K+(rKa)+(Kar)}]\displaystyle+\left\{d_{p\nu}^{\rm r}d_{p\nu}^{\rm a}[\Lambda^{k-p,\omega-\nu,+}_{k,\omega+\Omega,\omega,-}]^{\rm K}+(rKa)+(Kar)\right\}\biggr{]} (96)

Here the external frequency Ω\Omega is neglected in the magnon frequencies (ν+Ων\nu+\Omega\sim\nu) focusing the Fermi surface (excitation) contribution.

In Eq. (96), (rKr)+(Kaa) terms are, using dpνK=(1+2nν)(dpνadpνr)d_{p\nu}^{\rm K}=-(1+2n_{\nu})(d_{p\nu}^{{\rm a}}-d_{p\nu}^{{\rm r}}),

dpνrdpνK[Λk,ω+Ω,ω,+k+p,ω+ν,]r\displaystyle d_{p\nu}^{\rm r}d_{p\nu}^{\rm K}[\Lambda^{k+p,\omega+\nu,-}_{k,\omega+\Omega,\omega,+}]^{\rm r} +dpνKdpνa[Λk,ω+Ω,ω,+k+p,ω+ν,]a\displaystyle+d_{p\nu}^{\rm K}d_{p\nu}^{{\rm a}}[\Lambda^{k+p,\omega+\nu,-}_{k,\omega+\Omega,\omega,+}]^{\rm a}
=(1+2nν)[dpνr(dpνadpνr)[Λk,ω+Ω,ω,+k+p,ω+ν,]r+(dpνadpνr)dpνa[Λk,ω+Ω,ω,+k+p,ω+ν,]a]\displaystyle=-(1+2n_{\nu})[d_{p\nu}^{\rm r}(d_{p\nu}^{{\rm a}}-d_{p\nu}^{{\rm r}})[\Lambda^{k+p,\omega+\nu,-}_{k,\omega+\Omega,\omega,+}]^{\rm r}+(d_{p\nu}^{{\rm a}}-d_{p\nu}^{{\rm r}})d_{p\nu}^{{\rm a}}[\Lambda^{k+p,\omega+\nu,-}_{k,\omega+\Omega,\omega,+}]^{\rm a}]
(1+2nν)dpνrdpνa[[Λk,ω+Ω,ω,+k+p,ω+ν,]a[Λk,ω+Ω,ω,+k+p,ω+ν,]r]\displaystyle\simeq(1+2n_{\nu})d_{p\nu}^{\rm r}d_{p\nu}^{{\rm a}}\left[[\Lambda^{k+p,\omega+\nu,-}_{k,\omega+\Omega,\omega,+}]^{\rm a}-[\Lambda^{k+p,\omega+\nu,-}_{k,\omega+\Omega,\omega,+}]^{\rm r}\right] (97)

where contributions (dpνr)2(d_{p\nu}^{\rm r})^{2} and (dpνa)2(d_{p\nu}^{\rm a})^{2} are neglected as they are smaller compared to dpνrdpνad_{p\nu}^{\rm r}d_{p\nu}^{{\rm a}} after ν\nu summation. The magnon current in this approximation reads

jm,i(1)\displaystyle j_{{\rm m},i}^{(1)} =e2mJΔ2pνkωΩpikjAj(Ω)dpνrdpνa[[Λk+,ω+Ω,ωk+p,ω+ν,]K+(1+2nν)[[Λk+,ω+Ω,ωk+p,ω+ν,]a[Λk+,ω+Ω,ωk+p,ω+ν,]r]\displaystyle=-\frac{e}{2m}J\Delta^{2}\sum_{p\nu}\sum_{k\omega}\sum_{\Omega}p_{i}k_{j}A_{j}(\Omega)d_{p\nu}^{\rm r}d_{p\nu}^{\rm a}\left[[\Lambda^{k+p,\omega+\nu,-}_{k+,\omega+\Omega,\omega}]^{\rm K}+(1+2n_{\nu})\left[[\Lambda^{k+p,\omega+\nu,-}_{k+,\omega+\Omega,\omega}]^{{\rm a}}-[\Lambda^{k+p,\omega+\nu,-}_{k+,\omega+\Omega,\omega}]^{{\rm r}}\right]\right.
+[Λk,ω+Ω,ωkp,ων,+]K(1+2nν)[[Λk,ω+Ω,ωkp,ων,+]a[Λk,ω+Ω,ωkp,ων,+]r]]\displaystyle\left.+[\Lambda^{k-p,\omega-\nu,+}_{k-,\omega+\Omega,\omega}]^{\rm K}-(1+2n_{\nu})\left[[\Lambda^{k-p,\omega-\nu,+}_{k-,\omega+\Omega,\omega}]^{{\rm a}}-[\Lambda^{k-p,\omega-\nu,+}_{k-,\omega+\Omega,\omega}]^{{\rm r}}\right]\right] (98)

The Keldysh, advanced and retarded components of Λ\Lambda are (in the suppressed notation)

ΛK\displaystyle\Lambda^{\rm K} =g<(gg)>+g>(gg)<\displaystyle=g^{<}(gg)^{>}+g^{>}(gg)^{<}
Λa\displaystyle\Lambda^{\rm a} =ga(gg)<+g<(gg)r=ga(gg)>+g>(gg)r\displaystyle=g^{{\rm a}}(gg)^{<}+g^{<}(gg)^{\rm r}=g^{{\rm a}}(gg)^{>}+g^{>}(gg)^{\rm r}
Λr\displaystyle\Lambda^{\rm r} =gr(gg)<+g<(gg)a=gr(gg)>+g>(gg)a\displaystyle=g^{{\rm r}}(gg)^{<}+g^{<}(gg)^{\rm a}=g^{{\rm r}}(gg)^{>}+g^{>}(gg)^{\rm a} (99)

Focusing on the Fermi surface (excitation) contribution, we neglect terms containing only the retarded or the advanced Green’s functions, to obtain

ΛK\displaystyle\Lambda^{\rm K} (fωfω)(2fω′′1)(gagr)grga\displaystyle\simeq(f_{\omega}-f_{\omega^{\prime}})(2f_{\omega^{\prime\prime}}-1)(g^{\rm a}-g^{\rm r})g^{\rm r}g^{\rm a}
[fω′′(fω1)+fω(fω′′1)]gr(gg)a[fω′′(fω1)+fω(fω′′1)]ga(gg)r\displaystyle-[f_{\omega^{\prime\prime}}(f_{\omega^{\prime}}-1)+f_{\omega^{\prime}}(f_{\omega^{\prime\prime}}-1)]g^{\rm r}(gg)^{\rm a}-[f_{\omega^{\prime\prime}}(f_{\omega}-1)+f_{\omega}(f_{\omega^{\prime\prime}}-1)]g^{\rm a}(gg)^{\rm r}
Λa\displaystyle\Lambda^{{\rm a}} fω′′ga(gg)r+ga[(fωfω)grgafω(gg)r]\displaystyle\simeq f_{\omega^{\prime\prime}}g^{\rm a}(gg)^{\rm r}+g^{\rm a}\left[(f_{\omega}-f_{\omega^{\prime}})g^{\rm r}g^{\rm a}-f_{\omega}(gg)^{\rm r}\right]
Λr\displaystyle\Lambda^{{\rm r}} fω′′gr(gg)a+gr[(fωfω)grga+fω(gg)a]\displaystyle\simeq-f_{\omega^{\prime\prime}}g^{\rm r}(gg)^{\rm a}+g^{\rm r}\left[(f_{\omega}-f_{\omega^{\prime}})g^{\rm r}g^{\rm a}+f_{\omega^{\prime}}(gg)^{\rm a}\right] (100)

where Λ\Lambda of Eq. (95) is simply denoted by gω′′gωgωg_{\omega^{\prime\prime}}g_{\omega^{\prime}}g_{\omega} (with ω′′=ω±ν\omega^{\prime\prime}=\omega\pm\nu, ωω+Ω\omega^{\prime}-\omega+\Omega). Using the Fermi surface approximation for the two Greens function, (gg)<(fωfω)grga(gg)^{<}\simeq(f_{\omega}-f_{\omega^{\prime}})g^{\rm r}g^{\rm a}, we obtain

ΛK\displaystyle\Lambda^{\rm K} (2f±ν1)(ΛaΛr)\displaystyle\simeq(2f_{\pm\nu}-1)(\Lambda^{{\rm a}}-\Lambda^{{\rm r}})
Λa\displaystyle\Lambda^{{\rm a}} Ωf(ω)gagrga\displaystyle\simeq-\Omega f^{\prime}(\omega)g^{\rm a}g^{\rm r}g^{\rm a}
Λr\displaystyle\Lambda^{{\rm r}} Ωf(ω)grgrga\displaystyle\simeq-\Omega f^{\prime}(\omega)g^{\rm r}g^{\rm r}g^{\rm a} (101)

Considering low temperature, f(ω)δ(ω)f^{\prime}(\omega)\simeq-\delta(\omega), we obtain (using 2fν1=12fν2f_{-\nu}-1=1-2f_{\nu})

jm,i(1)\displaystyle j_{{\rm m},i}^{(1)} e2πmJΔ2pνkωΩpikjΩAj(Ω)|dpνa|2±(±)(fν+nν)[[Λk,±,0,0k±p,±ν,]a[Λk,±,0,0k±p,±ν,]r]\displaystyle\simeq-\frac{e}{2\pi m}J\Delta^{2}\sum_{p\nu}\sum_{k\omega}\sum_{\Omega}p_{i}k_{j}\Omega A_{j}(\Omega)|d_{p\nu}^{\rm a}|^{2}\sum_{\pm}(\pm)(f_{\nu}+n_{\nu})\left[[\Lambda^{k\pm p,\pm\nu,\mp}_{k,\pm,0,0}]^{{\rm a}}-[\Lambda^{k\pm p,\pm\nu,\mp}_{k,\pm,0,0}]^{{\rm r}}\right] (102)

Using fν+nν=2nν(1fν)f_{\nu}+n_{\nu}=2n_{\nu}(1-f_{\nu}), and iΩA=Ei\Omega A=E, we obtain the final result of

jm,i(1)\displaystyle j_{{\rm m},i}^{(1)} 2eπmJΔ2τmpνkωΩpikjEjIm[dpνa]±(±)nν(1fν)Im[gk±p,±ν,a]|gk,±a|2\displaystyle\simeq-\frac{2e}{\pi m}{J\Delta^{2}}{\tau_{\rm m}}\sum_{p\nu}\sum_{k\omega}\sum_{\Omega}p_{i}k_{j}E_{j}{\rm Im}[d_{p\nu}^{\rm a}]\sum_{\pm}(\pm)n_{\nu}(1-f_{\nu}){\rm Im}[g_{k\pm p,\pm\nu,\mp}^{\rm a}]|g_{k,\pm}^{{\rm a}}|^{2}
σm,i,j(1)Ej\displaystyle\equiv\sigma_{{\rm m},i,j}^{(1)}E_{j} (103)

We therefore confirm the correct relation between the force and velocity of magnon, σm,ij(1)=ij(1)τmmm\sigma_{{\rm m},ij}^{(1)}={\cal F}_{ij}^{(1)}\frac{\tau_{\rm m}}{m_{\rm m}}, where mm=(2JS)1m_{\rm m}=(2JS)^{-1} is the effective magnon mass.

C.2 Magnon scattering contribution

Refer to caption
Figure 13: Feynman diagrams representing the magnon current (left vertex) induced by an electric field (denoted by a dotted line) due to the magnon scattering by the sdsd exchange interaction. Wavy and solid lines denote magnon and electron propagators, respectively. σ\sigma denotes electron spin.

Here the second-order magnon coupling to electrons representing the magnon scattering arising from the sdsd exchange interaction is studied. This contribution was not studied in Ref. [6]. The contribution to the magnon Green’s function defined on the time contour, D(2)(𝒓,t,𝒓,t)D^{(2)}({\bm{r}},t,{\bm{r}}^{\prime},t^{\prime}), is (Fig. 13)

D(2)\displaystyle D^{(2)} (𝒓,t,𝒓,t)=iemΔ2S2C𝑑t1C𝑑t2C𝑑t3r1r2r3d(𝒓2,t2,𝒓,t)d(𝒓,t,𝒓1,t1)Aj(t3)\displaystyle({\bm{r}},t,{\bm{r}}^{\prime},t^{\prime})=i\frac{e}{m}\frac{\Delta^{2}}{S^{2}}\int_{C}dt_{1}\int_{C}dt_{2}\int_{C}dt_{3}\sum_{r_{1}r_{2}r_{3}}d({\bm{r}}_{2},t_{2},{\bm{r}}^{\prime},t^{\prime})d({\bm{r}},t,{\bm{r}}_{1},t_{1})A_{j}(t_{3})
×tr[σzΠ(+)(𝒓1,t1,𝒓2,t2)σzg(𝒓2,t2,𝒓3,t3)p^jg(𝒓3,t3,𝒓1,t1)\displaystyle\times{\rm tr}[\sigma_{z}\Pi^{(+)}({{\bm{r}}_{1},t_{1}},{\bm{r}}_{2},t_{2})\sigma_{z}g({\bm{r}}_{2},t_{2},{\bm{r}}_{3},t_{3})\hat{p}_{j}g({\bm{r}}_{3},t_{3},{\bm{r}}_{1},t_{1})
+σzg(𝒓1,t1,𝒓3,t3)p^jg(𝒓3,t3,𝒓2,t2)σzΠ()(𝒓2,t2,𝒓1,t1)]\displaystyle+\sigma_{z}g({{\bm{r}}_{1},t_{1}},{\bm{r}}_{3},t_{3})\hat{p}_{j}g({\bm{r}}_{3},t_{3},{\bm{r}}_{2},t_{2})\sigma_{z}\Pi^{(-)}({\bm{r}}_{2},t_{2},{\bm{r}}_{1},t_{1})] (104)

where Π(±)\Pi^{(\pm)} are magnon-electron pair propagators defined in Eq. (17) (suffixes are suppressed in Eq. (104)). As the expression of Eq. (104) has the same structure as Eq. (89), we immediately obtain the magnon current as (see Eq. (96))

jm,i(2)\displaystyle j_{{\rm m},i}^{(2)} =e2mSJΔ2pνkωΩpikjAj(Ω)\displaystyle=-\frac{e}{2mS}J\Delta^{2}\sum_{p\nu}\sum_{k\omega\Omega}p_{i}k_{j}A_{j}(\Omega)
×[{dpνrdpνa[Λk,ω+Ω,ω(2+),k+p,ω+ν]K+(rKr)+(Kaa)}+{dpνrdpνa[Λk,ω+Ω,ω(2),kp,ων]K+(rKa)+(Kar)}]\displaystyle\times\left[\left\{d_{p\nu}^{\rm r}d_{p\nu}^{\rm a}[\Lambda^{(2+),k+p,\omega+\nu}_{k,\omega+\Omega,\omega}]^{\rm K}+(rKr)+(Kaa)\right\}+\left\{d_{p\nu}^{\rm r}d_{p\nu}^{\rm a}[\Lambda^{(2-),k-p,\omega-\nu}_{k,\omega+\Omega,\omega}]^{\rm K}+(rKa)+(Kar)\right\}\right] (105)

where ((𝒑{\bm{p}}^{\prime} is the wave vector of the magnon in the pair propagators)

Λk,ω+Ω,ω(2+),k+p,ω+ν\displaystyle\Lambda^{(2+),k+p,\omega+\nu}_{k,\omega+\Omega,\omega} =σΠ𝒌+𝒑,ω+ν(+),(𝒌+𝒑𝒑,σ,𝒑)g𝒌,ω+Ω,σg𝒌,ω,σ\displaystyle=\sum_{\sigma}\Pi_{{\bm{k}}+{\bm{p}},\omega+\nu}^{(+),({\bm{k}}+{\bm{p}}-{\bm{p}}^{\prime},\sigma,{\bm{p}}^{\prime})}g_{{\bm{k}},\omega+\Omega,\sigma}g_{{\bm{k}},\omega,\sigma}
Λk,ω+Ω,ω(2),kp,ων\displaystyle\Lambda^{(2-),k-p,\omega-\nu}_{k,\omega+\Omega,\omega} =σΠ𝒌𝒑,ων(),(𝒌𝒑+𝒑,σ,𝒑)g𝒌,ω+Ω,σg𝒌,ω,σ\displaystyle=\sum_{\sigma}\Pi_{{\bm{k}}-{\bm{p}},\omega-\nu}^{(-),({\bm{k}}-{\bm{p}}+{\bm{p}}^{\prime},\sigma,{\bm{p}}^{\prime})}g_{{\bm{k}},\omega+\Omega,\sigma}g_{{\bm{k}},\omega,\sigma} (106)

Using the Fermi surface approximation as in Eq. (101),

Λ(2)K\displaystyle\Lambda^{(2){\rm K}} (2f±ν1)(Λ(2)aΛ(2)r)\displaystyle\simeq(2f_{\pm\nu}-1)(\Lambda^{(2){\rm a}}-\Lambda^{(2){\rm r}})
Λ(2)a\displaystyle\Lambda^{(2){\rm a}} (fωfω)ΠagrgaΩf(ω)Πagrga\displaystyle\simeq(f_{\omega}-f_{\omega^{\prime}})\Pi^{\rm a}g^{\rm r}g^{\rm a}\simeq-\Omega f^{\prime}(\omega)\Pi^{\rm a}g^{\rm r}g^{\rm a}
Λ(2)r\displaystyle\Lambda^{(2){\rm r}} Ωf(ω)Πrgrga\displaystyle\simeq-\Omega f^{\prime}(\omega)\Pi^{\rm r}g^{\rm r}g^{\rm a} (107)

we obtain

jm,i(2)\displaystyle j_{{\rm m},i}^{(2)} 2eπmSJΔ2ppkνpikjEj|dpνa|2±(±)σnν(1fν)Im[Π𝒌±𝒑,±ν(±),(𝒌±𝒑𝒑,σ,𝒑)a]|gk,σa|2\displaystyle\simeq-\frac{2e}{\pi mS}J\Delta^{2}\sum_{pp^{\prime}k}\sum_{\nu}p_{i}k_{j}E_{j}|d_{p\nu}^{\rm a}|^{2}\sum_{\pm}(\pm)\sum_{\sigma}n_{\nu}(1-f_{\nu}){\rm Im}[{\Pi_{{\bm{k}}\pm{\bm{p}},\pm\nu}^{(\pm),({\bm{k}}\pm{\bm{p}}-{\bm{p}}^{\prime},\sigma,{\bm{p}}^{\prime})}}^{\rm a}]|g_{k,\sigma}^{{\rm a}}|^{2} (108)

Here the magnon-electron pair propagator has an external frequency of ±ν\pm\nu (external magnon frequency), and its imaginary part reads (see Eq. (73) for the case of ν=0\nu=0)

ImΠk±p,σ,±ν(±),(k±(pp),±(νν);p,ν),a\displaystyle{\rm Im}\Pi_{k\pm p,\sigma,\pm\nu}^{(\pm),(k\pm(p-p^{\prime}),\pm(\nu-\nu^{\prime});p^{\prime},\nu^{\prime}),{\rm a}} =2ν(nν+fνν)Im[gk±(pp),±(νν),σa]Im[dp,νa]\displaystyle=2\sum_{\nu^{\prime}}(n_{\nu^{\prime}}+f_{\nu^{\prime}-\nu}){\rm Im}[g_{k\pm(p-p^{\prime}),\pm(\nu-\nu^{\prime}),\sigma}^{\rm a}]{\rm Im}[d^{\rm a}_{p^{\prime},\nu^{\prime}}] (109)

Using (nν+fνν)=(1+nν)fνν(1fν)1(n_{\nu^{\prime}}+f_{\nu^{\prime}-\nu})=(1+n_{\nu^{\prime}})f_{\nu^{\prime}-\nu}(1-f_{\nu})^{-1} and Im[dpνa]=2ηm|dpνa|2=(τm)1|dpνa|2{\rm Im}[d_{p^{\prime}\nu^{\prime}}^{\rm a}]=2\eta_{\rm m}|d_{p^{\prime}\nu^{\prime}}^{\rm a}|^{2}=(\tau_{\rm m})^{-1}|d_{p^{\prime}\nu^{\prime}}^{\rm a}|^{2} (τm\tau_{\rm m} is the relaxation time for magnon), we obtain

jm,i(2)\displaystyle j_{{\rm m},i}^{(2)} =2eπmSJΔ2τmppkpikjEjIm[dpνa]Im[dpνa]±(±)ννσnν(1+nν)fννIm[gk±(pp),±(νν),σa]|gk,σa|2\displaystyle=-\frac{2e}{\pi mS}\frac{J\Delta^{2}}{\tau_{\rm m}}\sum_{pp^{\prime}k}p_{i}k_{j}E_{j}{\rm Im}[d_{p\nu}^{\rm a}]{\rm Im}[d_{p^{\prime}\nu^{\prime}}^{\rm a}]\sum_{\pm}(\pm)\sum_{\nu\nu^{\prime}}\sum_{\sigma}n_{\nu}(1+n_{\nu^{\prime}})f_{\nu^{\prime}-\nu}{\rm Im}[g_{k\pm(p-p^{\prime}),\pm(\nu-\nu^{\prime}),\sigma}^{\rm a}]|g_{k,\sigma}^{{\rm a}}|^{2} (110)

confirming the relation between the corresponding force density and current density, jm,i(2)=(2)τmmmj_{{\rm m},i}^{(2)}={\cal F}^{(2)}\frac{\tau_{\rm m}}{m_{\rm m}}.

References