This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Bursty Star Formation Naturally Explains the Abundance of Bright Galaxies at Cosmic Dawn

Guochao Sun CIERA and Department of Physics and Astronomy, Northwestern University, 1800 Sherman Ave, Evanston, IL 60201, USA Claude-André Faucher-Giguère CIERA and Department of Physics and Astronomy, Northwestern University, 1800 Sherman Ave, Evanston, IL 60201, USA Christopher C. Hayward Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA Xuejian Shen TAPIR, California Institute of Technology, Pasadena, CA 91125, USA Department of Physics & Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Andrew Wetzel Department of Physics & Astronomy, University of California, Davis, CA 95616, USA Rachel K. Cochrane Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
Abstract

Recent discoveries of a significant population of bright galaxies at cosmic dawn (z10)\left(z\gtrsim 10\right) have enabled critical tests of cosmological galaxy formation models. In particular, the bright end of the galaxy UV luminosity function (UVLF) appears higher than predicted by many models. Using approximately 25,000 galaxy snapshots at 8z128\leq z\leq 12 in a suite of FIRE-2 cosmological “zoom-in” simulations from the Feedback in Realistic Environments (FIRE) project, we show that the observed abundance of UV-bright galaxies at cosmic dawn is reproduced in these simulations with a multi-channel implementation of standard stellar feedback processes, without any fine-tuning. Notably, we find no need to invoke previously suggested modifications such as a non-standard cosmology, a top-heavy stellar initial mass function, or a strongly enhanced star formation efficiency. We contrast the UVLFs predicted by bursty star formation in these original simulations to those derived from star formation histories (SFHs) smoothed over prescribed timescales (e.g., 100 Myr). The comparison demonstrates that the strongly time-variable SFHs predicted by the FIRE simulations play a key role in correctly reproducing the observed, bright-end UVLFs at cosmic dawn: the bursty SFHs induce order-or-magnitude changes in the abundance of UV-bright (MUV20M_{\mathrm{UV}}\lesssim-20) galaxies at z10z\gtrsim 10. The predicted bright-end UVLFs are consistent with both the spectroscopically confirmed population and the photometrically selected candidates. We also find good agreement between the predicted and observationally inferred integrated UV luminosity densities, which evolve more weakly with redshift in FIRE than suggested by some other models.

galaxies: formation – galaxies: evolution – galaxies: star formation – galaxies: high-redshift
journal: ApJLsoftware: BPASS (Eldridge et al., 2017), GizmoAnalysis (Wetzel et al., 2016; Wetzel & Garrison-Kimmel, 2020), hmf (Murray et al., 2013)

1 Introduction

For the first time, the James Webb Space Telescope (JWST) has unlocked the door to a population-level analysis of galaxies well into the era of cosmic dawn (for a review of key high-redshift science themes of JWST, see Robertson, 2022). Following its discovery of an unexpectedly high abundance of UV-bright, massive galaxy candidates at redshift z10z\gtrsim 10 (e.g., Finkelstein et al., 2022; Naidu et al., 2022a; Donnan et al., 2023; Harikane et al., 2023b; Yan et al., 2023), there is a long list of intriguing questions to be answered about how to interpret these observations. What is the true nature (redshift, mass, metallicity, age, etc.) of these bright galaxies? If they are truly massive galaxies at cosmic dawn, what makes it possible for them to have formed so early? Are these observations in significant tension with the standard Λ\LambdaCDM cosmological model? Observational and theoretical investigations into these questions are being actively pursued in a large body of recent literature from different perspectives, including the purity of high-zz candidates (Naidu et al., 2022b; Arrabal Haro et al., 2023; Curtis-Lake et al., 2023; Furlanetto & Mirocha, 2023; Zavala et al., 2023), the physics of star formation in high-zz galaxies (Dekel et al., 2023; Mirocha & Furlanetto, 2023; Robertson et al., 2023; Qin et al., 2023; Sipple & Lidz, 2023; Trinca et al., 2023), the implications of high-zz observations for the cosmological model (Boylan-Kolchin, 2023; Hassan et al., 2023; Melia, 2023), and so forth.

While spectroscopic follow-up studies for many of the galaxy candidates are still ongoing, conservative lower limits on the bright end of UV luminosity function (UVLF) and the integrated UV luminosity density at z10z\gtrsim 10 derived from the existing, spectroscopically confirmed samples have already suggested milder redshift evolution towards z>10z>10 than expected by many theoretical models (e.g., Harikane et al., 2023a). Such a higher-than-expected abundance of bright galaxies based on secure redshifts is consistent with earlier studies based on photometrically selected samples, thus calling for a re-examination of the theoretical landscape of galaxy formation at cosmic dawn111Some recent studies found that galaxies with properties similar to observed ones could be reproduced in simulations (e.g., Keller et al., 2023; McCaffrey et al., 2023). However, these studies did not directly model the UVLF and compare it with available JWST measurements.. Several physical mechanisms have been considered to explain a high abundance of bright galaxies at high redshifts. For example, a higher star formation efficiency (SFE) resulting from less efficient feedback regulation could boost the UV-bright galaxy abundance by forming more stars per unit baryon (Dekel et al., 2023; Harikane et al., 2023b), whereas a more top-heavy initial mass function (IMF) of the stellar population could similarly lead to more bright galaxies by creating more UV photons per unit stellar mass formed (Inayoshi et al., 2022; Yung et al., 2023). A conspiracy between the redshift evolution of dust attenuation and the abundance of massive halos at high zz could also potentially allow the bright-end UVLF and UV luminosity density to evolve relatively mildly (Ferrara et al., 2023; Mirocha & Furlanetto, 2023), although such a coincidence would not by itself explain the correct absolute abundance of bright galaxies. A number of studies have also examined the possibility that the high abundance of early massive galaxies implies physics beyond the standard Λ\LambdaCDM cosmology, such as a modified primordial power spectrum (Hirano & Yoshida 2023; Padmanabhan & Loeb 2023; Parashari & Laha 2023; though see Sabti et al. 2023), primordial non-Gaussianity (Biagetti et al., 2023), or alternative dark matter models (Bird et al., 2023; Dayal & Giri, 2023; Gong et al., 2023).

Another promising avenue to elevate the abundance of bright galaxies is the strong time variability (“burstiness”) of star formation. In recent years, several different galaxy formation simulations have predicted that the star formation rate (SFR) is highly time-variable in low-mass galaxies (e.g., Hopkins et al., 2014; Domínguez et al., 2015; Muratov et al., 2015; Sparre et al., 2017; Pallottini & Ferrara, 2023). The prediction of bursty star formation appears generic to codes that resolve the clustering of supernovae in the interstellar medium (Hu et al., 2023). The simulations predict that bursty star formation is especially common in low-mass galaxies, likely due to the shallow potential wells which allow clumpy, cold inflows and outflows to drive repeated inflow-star formation-outflow cycles (Stern et al., 2021; Gurvich et al., 2023; Byrne et al., 2023; Hopkins et al., 2023). Since low-mass galaxies dominate at high redshift, we expect the implications of bursty star formation on the UVLF to be particularly important in this regime (e.g., Furlanetto & Mirocha, 2022). Indeed, evidence for an increased level of bursty star formation has emerged from recent JWST observations of cosmic dawn galaxies (e.g., Dressler et al., 2023; Endsley et al., 2023; Looser et al., 2023a, b). As pointed out in recent theoretical studies (Mason et al., 2023; Mirocha & Furlanetto, 2023; Shen et al., 2023; Muñoz et al., 2023), an increased level of UV variability sourced by bursty star formation can give rise to more UV-bright galaxies due to the Eddington bias, which flattens the bright end of the UVLF. In this case, the observed UVLFs at z10z\gtrsim 10 could potentially be explained by bursty star formation combined with “normal” SFE and production efficiency of UV photons. While bursty star formation can in principle enhance the abundance of bright galaxies, it remains to be shown whether the enhancement is sufficient to reproduce the observed bright-end of the UVLF in a self-consistent galaxy formation model, such as those provided by hydrodynamic simulations.

In this Letter, we use a suite of cosmological “zoom-in” simulations from the Feedback in Realistic Environments (FIRE) project222See the FIRE project website: http://fire.northwestern.edu. to investigate the effects of bursty star formation on the UVLF at 8z128\leq z\leq 12. In these simulations, the SFR variability arises self-consistently from the modeling of standard stellar feedback processes. It is noteworthy that these simulations — generated before the launch of JWST — were in particular not in any way tuned to match recent observations. Moreover, the simulations use exactly the same FIRE-2 code (Hopkins et al., 2018) that has been used to evolve large sets of simulated galaxies all the way to z=0z=0 and demonstrated to produce broadly realistic galaxy properties down to the present time (e.g. Wetzel et al., 2023, and references therein). This is in contrast with many other simulations of cosmic dawn galaxies, in which the simulations are stopped at high redshift and for which we therefore do not know how the feedback model performs at lower redshifts. We show that the FIRE-2 simulations produce an excellent match to the UVLF recently measured by JWST during cosmic dawn, and that the time variability of star formation plays an important role in explaining the observations at the bright end. These results constitute an important test of the feedback model and highlight the importance of considering the variability of star formation when modeling high-zz observations.

Throughout the Letter, we adopt a flat Λ\LambdaCDM cosmology consistent with Planck Collaboration et al. (2020), and all magnitudes are quoted in the AB system (Oke & Gunn, 1983).

2 Simulations and Analysis Methods

2.1 The Simulations

In this Letter, we analyze the same set of simulations as recently studied by Sun et al. (2023a), which is a subset of the High-Redshift suite (Ma et al., 2018a, b, 2019) of the FIRE-2 cosmological zoom-in simulations (Hopkins et al., 2018). The FIRE-2 simulations use the GIZMO code with its meshless-finite mass (MFM) hydro solver (Hopkins, 2015), and include multiple channels of stellar feedback to regulate star formation. Star formation occurs in dense molecular gas (nH>1000cm3n_{\mathrm{H}}>1000\,\mathrm{cm^{3}}) that is self-gravitating and self-shielding. The stellar feedback mechanisms implemented include: (1) energy, momentum, mass, and metal injection from core collapse and Type Ia supernovae and winds from OB and AGB stars, (2) photoionization and photoelectric heating, and (3) radiation pressure. A redshift-dependent but homogeneous ionizing background is also included following Faucher-Giguère et al. (2009).333The version of the ionizing background used in these simulations reionizes the universe at zreion10z_{\rm reion}\approx 10, which is earlier than the mid-point of reionization of zreion8z_{\rm reion}\approx 8 favored by more recent observational constraints (e.g., Planck Collaboration et al., 2020; Faucher-Giguère, 2020). However, our main results focus on the bright end of the UVLF, which arises from relatively massive halos, whereas the suppression of galaxy formation due to heating by the ionizing background primarily affects low-mass halos (Mh109M_{\rm h}\lesssim 10^{9} MM_{\odot}; e.g. Gnedin, 2000; Noh & McQuinn, 2014). Moreover, an earlier reionization redshift implies that in the present simulations, galaxy formation is suppressed starting earlier in the small halos, so adopting a more up-to-date reionization model would (if anything) enhance the predicted UV luminosity density. Similar arguments apply to other IGM heating processes. The baryonic (dark matter) mass resolution of the set of simulations considered in this work is mb=7×103Mm_{\mathrm{b}}=7\times 10^{3}\,M_{\odot} (mDM=4×104Mm_{\rm DM}=4\times 10^{4}\,M_{\odot}), except for the simulations z5m11a and z5m11b, which have mb1×103Mm_{\mathrm{b}}\approx 1\times 10^{3}\,M_{\odot} (mDM=5×103Mm_{\rm DM}=5\times 10^{3}\,M_{\odot}). The gravitational softenings are fixed in physical units to ϵDM=42\epsilon_{\mathrm{DM}}=42 pc for the dark matter and ϵstar=2.1\epsilon_{\mathrm{star}}=2.1 pc for stars. The gravitational softenings are adaptive for gas, with a minimum of ϵb=0.42\epsilon_{\mathrm{b}}=0.42 pc. This is, again, with the exception of z5m11a and z5m11b (see Figure 4 for a list of simulation IDs considered in this work), which have ϵDM=21\epsilon_{\mathrm{DM}}=21 pc, ϵstar=1.4\epsilon_{\mathrm{star}}=1.4 pc, and ϵb=0.28\epsilon_{\mathrm{b}}=0.28 pc.

Part of the High-Redshift suite of simulations was presented and analyzed in detail by Ma et al. (2018a, b) for the predicted properties of the simulated galaxy population at 5z125\leq z\leq 12, including sizes, morphologies, scaling relations, and number statistics measured by the stellar mass and luminosity functions. In this follow-up analysis of Ma et al. (2018b) motivated by recent JWST observations of the abundance of galaxies at z10z\gtrsim 10, we follow closely the methodology adopted in Ma et al. (2018b) for fair comparisons, but the sample size of high-zz, massive galaxies has been substantially increased to better determine the bright-end behavior of galaxy UVLFs at cosmic dawn. Below, we will only briefly summarize the key information about the sample of simulated galaxies pertinent to the analysis presented here. We refer interested readers to the aforementioned papers for further details about the FIRE-2 simulations and the High-Redshift suite.

For a robust analysis of UVLFs at their bright end, we build a maximum possible sample size of massive galaxies by making use of all the zoom-in simulations available at each redshift above the ending redshift zendz_{\mathrm{end}}. In each zoom-in region, we consider all the well-resolved halos444Halos containing at least 10410^{4} particles in total and uncontaminated by low-resolution particles are considered “well-resolved”. that host a central galaxy, rather than the one hosting just the most massive, primary galaxy (typically near the center of the zoom-in region). Following Ma et al. (2018b), we define galaxies based on catalogs of halos identified with the Amiga Halo Finder (AHF; Knollmann & Knebe 2009). The radius RmaxR_{\mathrm{max}} at which the halo rotation curve reaches maximum is used to define a galaxy by incorporating star particles within Rmax/3R_{\mathrm{max}}/3 and excluding the contamination from subhalos outside Rmax/5R_{\mathrm{max}}/5. We restrict the scope of our UVLF analysis to halos with mass Mh>107.5MM_{\mathrm{h}}>10^{7.5}\,M_{\odot} in snapshots at 8z128\leq z\leq 12 because most of the recent UVLF measurements at z<8z<8 with JWST can be well explained by previous theoretical predictions and a sufficiently constraining sample of spectroscopically-confirmed galaxies is not available at z>12z>12 (Harikane et al., 2023a). In Appendix A, we illustrate how the halo/galaxy sample is constructed with (snapshots of) the 26 individual zoom-in simulations, which build up a total sample of 25,000\approx 25,000 galaxy snapshots over 8z128\leq z\leq 12. For all simulations, snapshots are saved at a cadence of every 10–20 Myr.

2.2 Processing of the Simulations

We process the simulated galaxy sample in order to arrive at their 1600 Å UV magnitudes MUVM_{\mathrm{UV}}, following Sun et al. (2023a). Templates of binary, single-stellar-population (SSP) spectra from BPASS v2.1 (Eldridge et al., 2017) are interpolated and applied to star particles according to their stellar age and metallicity, assuming a Kroupa IMF (Kroupa, 2001). Including nebular (continuum) emission can in principle augment both the UV emissivity and variability (Byler et al., 2017), although we opt to ignore it here as nebular emission is not expected to strongly affect the measurement of MUVM_{\mathrm{UV}}, especially when compared with effects of SFR variations. Two notable differences from Sun et al. (2023a) exist, though, for the treatment of (1) the connection between MUVM_{\mathrm{UV}} and the SFH and (2) dust attenuation, on which we elaborate below.

2.2.1 Bursty vs Smoothed Star Formation Histories

At cosmic dawn, an increased SFR variability can strongly modulate the observed number statistics of galaxies. To assess the impact of bursty star formation on the MUVM_{\mathrm{UV}}MhM_{\mathrm{h}} relation and thus the UVLF, we consider two contrasting scenarios to model MUVM_{\mathrm{UV}}.

The baseline scenario, which we refer to as “bursty”, assumes that the SFH of each galaxy in our sample is exactly as predicted by the simulations and thus MUVM_{\mathrm{UV}} can be derived by summing up the spectral emissivities of all star particles of the galaxy at a given snapshot according to their age and metallicity, as in Sun et al. (2023a). This is the approach most faithful to the SFHs predicted by the simulations. In this approach, MUVM_{\mathrm{UV}} naturally inherits the burstiness predicted by the simulations — as the SFR varies, the UV 1600 Å luminosity of the galaxy also fluctuates accordingly because most of FUV continuum emission is sourced by the massive, short-lived stars formed. As a result, a bursty SFH imprints significant stochasticity in MUVM_{\mathrm{UV}} at a fixed stellar or halo mass.

In the contrasting scenario, which we refer to as “smoothed”, we artificially reduce the impact of bursty SFH on the evaluation of MUVM_{\mathrm{UV}} by redistributing the ages of star particles (while retaining their metallicities). Specifically, we first define a smoothing kernel of duration τSF\tau_{\mathrm{SF}} Myr and bin star particles using their star formation times into time bins of width τSF\tau_{\mathrm{SF}}. We then redistribute the ages of the star particles in individual bins such that the stellar mass forms at a nearly constant rate by enforcing evenly-distributed star formation times within each bin. This redistribution of stellar ages effectively smooths the SFH and reduces to the “bursty” case for a sufficiently small τSF\tau_{\mathrm{SF}}. Notably, unlike some previous work where effects of varying the UV variability on UVLFs are studied assuming a fixed mean/median LUVL_{\mathrm{UV}}MhM_{\mathrm{h}} relation (e.g., Mirocha & Furlanetto, 2023; Shen et al., 2023), our method by its nature conserves the total amount of cosmic star formation such that the two scenarios differ only in terms of the short-timescale SFR variability and its impact on the UV emissivity.

2.2.2 Dust Attenuation

Observations have shown compelling evidence of early chemical enrichment and the production of non-negligible dust in galaxies at z7z\gtrsim 7 (Tamura et al., 2019; Fudamoto et al., 2021; Witstok et al., 2023). A reasonable treatment of dust attenuation is therefore needed for our predictions of the UVLF at cosmic dawn, especially at the bright end because massive (intrinsically UV-bright) galaxies generally contain more dust.

To estimate the effect of dust attenuation on MUVM_{\mathrm{UV}}, we employ an empirical model motivated by an up-to-date measurement of the βUV\beta_{\mathrm{UV}}MUVM_{\mathrm{UV}} (color–magnitude) relation at z>8z>8 by Cullen et al. (2023) using a combination of JWST and ground-based observations555See also Topping et al. (2023), who find slightly steeper βUV\beta_{\mathrm{UV}} that steepens with increasing redshift from z6z\sim 6–12.. We combine the best-fit relation βUV=0.17MUV+5.40\beta_{\mathrm{UV}}=-0.17M_{\mathrm{UV}}+5.40 with the attenuation–UV slope relation, AUV=0.48(βUV+2.62)A_{\mathrm{UV}}=0.48(\beta_{\mathrm{UV}}+2.62), determined from z5.5z\approx 5.5 galaxies observed in the ALPINE survey (Fudamoto et al. 2020; see also Reddy et al. 2018). While an extrapolation in redshift is involved, this best-fit relation from ALMA observations represents a state-of-the-art empirical baseline for estimating dust attenuation properties at cosmic dawn, which should suffice for the purpose of this work. We neglect the scatter around these mean relations given its small impact on MUVM_{\mathrm{UV}} and caution that results with dust attenuation included that follow should be taken as rough estimates only. The validity of these simplistic treatments can be tested with simulations with detailed dust radiative transfer (Cochrane et al., 2019, 2022; Ma et al., 2019; Vogelsberger et al., 2020; Shen et al., 2022) and multi-wavelength observations (Akins et al., 2023; Bakx et al., 2023), which are left for future work. We note, though, that at z>10z>10 the difference between UVLFs with and without dust attenuation is predicted to be very small in our model (see Figure 2), such that uncertainties in the treatment of dust should not affect our results significantly.

2.3 Estimating the UVLF from Zoom-in Simulations

Using UV magnitudes derived for the sample of simulated galaxies binned into redshift bins of width Δz=±0.5\Delta z=\pm 0.5, we calculate the UVLF through a convolution with the halo mass function (HMF) following the “HMF-weighting” method introduced by Ma et al. (2018b). This method has been verified to provide robust estimates of the UVLF from galaxy samples drawn from zoom-in simulations, so we only summarize briefly here. First, in narrow halo mass and redshift bins, we count the number of simulated halos NSN_{\mathrm{S}} from the sample and compute the expected number of halos NEN_{\mathrm{E}}, which scales with the HMF, dn/dlogMh\mathrm{d}n/\mathrm{d}\log M_{\mathrm{h}}, calculated using the hmf code (Murray et al., 2013) for the fitting function from Behroozi et al. (2013). A common weight w=NE/NSw=N_{\mathrm{E}}/N_{\mathrm{S}} is assigned to all the halos in the same bin, such that a summation of halo weights in a given mass bin yields the expected number of halos in the universe. These weights are then applied to sample galaxies binned in MUVM_{\mathrm{UV}} to obtain the UVLF, which is essentially a convolution between the HMF and MUVM_{\mathrm{UV}}MhM_{\mathrm{h}} relation including the full, MhM_{\mathrm{h}}-dependent distribution (see Section 2.4 of Ma et al., 2018b). Finally, we stress that, compared with Ma et al. (2018b) where only a subset of the High-Redshift suite was analyzed, we substantially increase the number of samples of massive halos/bright galaxies in this work (a factor 8 increase of halos with Mh>1010MM_{\mathrm{h}}>10^{10}\,M_{\odot} at z=10z=10) by considering the full High-Redshift suite as in Ma et al. (2019), thereby extending the magnitude down to which the UVLF at z>10z>10 can be reliably determined to MUV<20M_{\mathrm{UV}}<-20, overlapping with the bright-end UVLF probed by JWST.

3 Results

Refer to caption
Figure 1: Top: UV magnitude–halo mass relations at z=8z=8–12. Data for individual galaxies are denoted by the grey dots (no smoothing applied to the SFH). The thick solid curves indicate the range of the 5th and 95th percentiles in the “bursty” and “smoothed” cases, from which the suppression of bright galaxy number counts due to smoothing is apparent. Bottom: UVLFs at z=8z=8–12 derived from the convolution between the UV magnitude–halo mass relation and the HMF. Dust-free predictions are shown as solid for both “bursty” and “smoothed” cases, whereas the dust-attenuated scenario is shown as dashed for only the “bursty” case (Section 2.2.2) for visual clarity. Constraints from observations are shown by the data points in black for the spectroscopically-confirmed-only samples (Harikane et al., 2023a) and in grey for data sets involving photometric candidates (Oesch et al., 2018; Bowler et al., 2020; Rojas-Ruiz et al., 2020; Bouwens et al., 2021, 2023; Finkelstein et al., 2022; Leethochawalit et al., 2022; Castellano et al., 2023; Donnan et al., 2023; Harikane et al., 2023a; Pérez-González et al., 2023). Cases with larger and smaller smoothing timescale τSF\tau_{\mathrm{SF}} values than the fiducial one (100 Myr) are shown at z=10z=10 to illustrate the impact of SFH smoothing on the UVLF.

3.1 The MUVM_{\mathrm{UV}}MhM_{\mathrm{h}} Relation and the UVLF

Following the methods outlined in Sections 2.2 and 2.3, we first use our samples of simulated galaxies to quantify the MUVM_{\mathrm{UV}}MhM_{\mathrm{h}} relation in different redshift regimes, assuming either “bursty” or “smoothed” SFH. A comparison of the MUVM_{\mathrm{UV}}MhM_{\mathrm{h}} relations at z=8z=8, 10, and 12 from our simulations is shown in the top row of Figure 1. Overall, galaxies become more UV-bright at higher MhM_{\mathrm{h}} and, at a given MhM_{\mathrm{h}}, MUVM_{\mathrm{UV}} decreases modestly with increasing redshift as a result of more rapid halo growth at higher redshift. A significant scatter in MUVM_{\mathrm{UV}} around the median relation that gradually increases towards lower masses exists, which is a sign of increasing star formation burstiness at low masses, given the proportionality between LUVL_{\mathrm{UV}} and the SFR. At a fixed MhM_{\mathrm{h}}, we find a modest trend for the scatter in MUVM_{\mathrm{UV}} to decrease with decreasing redshift that continues to z<8z<8 (not shown). This tentative evidence for the redshift evolution of the UV variability might be testable using comparisons of SFR indicators sensitive to different star formation timescales or high-precision measurements of the halo–galaxy connection with galaxy clustering (see Section 4). From the comparison between the “bursty” and “smoothed” cases shown by the 5–95th percentiles (especially in the top middle panel where three “smoothed” cases with varying τSF\tau_{\mathrm{SF}} are shown), it can be seen that evaluating MUVM_{\mathrm{UV}} from a smoothed SFH leads to a shallower MUVM_{\mathrm{UV}}MhM_{\mathrm{h}} relation with a reduced scatter in MUVM_{\mathrm{UV}} at higher masses, which effectively suppresses the population of UV-bright galaxies at a given MhM_{\mathrm{h}}.

In the bottom row of Figure 1, we show the UVLF at z=8z=8–12 implied by the MUVM_{\mathrm{UV}}MhM_{\mathrm{h}} relation. From the comparisons against recent observational constraints and between the two SFH cases, several key results are immediately apparent. First, in the fiducial, “bursty” SFH scenario, the predicted UVLFs agree remarkably well with the observational constraints available. In particular, our z10z\gtrsim 10 predictions lie safely above the firm lower bounds set by the dust-uncorrected, spectroscopically-confirmed samples recently compiled by Harikane et al. (2023a), and they are also broadly consistent with the variety of measurements based on photometrically selected candidates (see the caption for details)666We have verified by bootstrapping 1000 times the simulated galaxy samples that the statistical uncertainty on the UVLF, especially at the bright end, is small enough that it does not affect the bright-end comparisons of interest to this study. In the brightest bin, the 1σ\sigma statistical uncertainties in logϕ\log\phi estimated from bootstrapping are approximately 0.15 dex, 0.15 dex, and 0.3 dex at z=8z=8, 10, and 12, respectively.. Unlike some other theoretical predictions (e.g., Mason et al., 2023; Yung et al., 2023), for which a clear tension with the spec-zz lower bounds exists without modifications, our bursty-case predictions do not require any additional tuning of UV variability or production efficiency to match observations. Despite uncertainties associated with the treatment of dust, this good agreement implies that the UVLFs observed by JWST at z10z\gtrsim 10 are consistent with generally “normal” SFE and UV production efficiency as predicted by the FIRE-2 simulations. As demonstrated in Ma et al. (2018b), the relation between MM_{*} and MhM_{\mathrm{h}} in these simulations is broadly consistent with extrapolations from lower zz where empirical analyses show that the SFE is strongly suppressed by stellar feedback in low-mass halos (Behroozi et al., 2013; Tacchella et al., 2018).

Table 1: Dust-free UVLFs at z=8z=8, 10, and 12 from the simulated galaxies.
MUVM_{\mathrm{UV}} logϕ\log\phi MUVM_{\mathrm{UV}} logϕ\log\phi MUVM_{\mathrm{UV}} logϕ\log\phi
z=8z=8 z=10z=10 z=12z=12
10.5-10.5 0.085-0.085 10.25-10.25 0.207-0.207 9.75-9.75 0.234-0.234
12.5-12.5 0.570-0.570 12.25-12.25 0.677-0.677 11.75-11.75 0.971-0.971
14.5-14.5 1.206-1.206 14.25-14.25 1.242-1.242 13.75-13.75 1.576-1.576
16.5-16.5 1.926-1.926 16.25-16.25 2.124-2.124 15.75-15.75 2.200-2.200
18.5-18.5 2.815-2.815 18.25-18.25 3.072-3.072 17.75-17.75 3.282-3.282
20.5-20.5 3.872-3.872 20.25-20.25 4.344-4.344 19.75-19.75 4.500-4.500
22.5-22.5 5.158-5.158 22.25-22.25 5.902-5.902
  • Notes.
    ϕ\phi values are quoted in units of mag1Mpc3\mathrm{mag^{-1}\,Mpc^{-3}}. See Equation (1) for analytic fits to the UVLF over 8<z<128<z<12. For reference, in the two brightest bins, ϕ\phi is extracted from a sample of (39, 17), (39, 13), (93, 17) galaxies at z=8z=8, 10, and 12, respectively.

Second, in the contrasting, “smoothed” SFH scenario, a clear deficit of UV-bright galaxies is seen as a result of suppressed up-scattering in MUVM_{\mathrm{UV}} of low-mass halos when the SFR is averaged over a long timescale τSF\tau_{\mathrm{SF}}. The underestimated abundance of UV-bright galaxies reveals the important role played by the burstiness of star formation in determining the number statistics of galaxies at cosmic dawn. As also shown by the comparison of different τSF\tau_{\mathrm{SF}} values at z=10z=10, smoothed SFHs with τSF100\tau_{\mathrm{SF}}\gtrsim 100\,Myr result in bright-end UVLFs that are too steep compared with observations, especially the photometrically selected samples, for which the bright-end UVLF can be underpredicted at >2σ>2\sigma level in some cases (Castellano et al., 2023; Donnan et al., 2023). At z=12z=12, predictions of the smoothed SFH are in tension with even the most conservative lower limits derived from only the spectroscopically confirmed samples (Harikane et al., 2023a). It is therefore clear that the UVLF serves as a useful probe of the burstiness in the SFH, as been noted in e.g., Furlanetto & Mirocha (2022) and Shen et al. (2023), although in practice it can be challenging to extract the burstiness information from only the UVLF measurements (see Section 4). The overall shallower MUVM_{\mathrm{UV}}MhM_{\mathrm{h}} relation when the SFH is smoothed also leads to slightly steeper slope at the faint end, although the effect is much smaller than the suppression at the bright end.

Refer to caption
Figure 2: Dust-free UVLFs at z=8z=8, 10, and 12 predicted by the FIRE-2 simulations and from the literature. The binned and the best-fit, double-power law UVLFs are denoted by the crosses and solid curves, as specified in Table 1 and Equation (1), respectively. Several example dust-free predictions from other cosmological hydrodynamical simulations, including MillenniumTNG (dashed, Kannan et al., 2023), FLARES (dotted, Vijayan et al., 2021; Wilkins et al., 2023), and CoDa II (dotted and only at z=8z=8 and 10, Ocvirk et al., 2020; Dawoodbhoy et al., 2023) are also plotted for comparison.

The binned UVLFs without dust attenuation extracted from our simulations at z=8z=8, 10, and 12 are summarized in Table 1. As has been demonstrated in Figure 1, dust attenuation only modestly affects the UVLF at the very bright end, reducing ϕ\phi (in the brightest bin) by approximately 0.4, 0.25, and 0.01 dex at z=8z=8, 10, and 12, respectively. The binning scheme is chosen such that the brightest MUVM_{\mathrm{UV}} bin contains more than ten simulated galaxies for robust statistics. Meanwhile, we fit the dust-free UVLF at 8z128\leq z\leq 12 assuming a universal double-power law (DPL) in MUVM_{\mathrm{UV}},

Φ(MUV)=0.4(ln10) 10ϕ100.4(α+1)(MUVMUV)+100.4(β+1)(MUVMUV).\Phi(M_{\mathrm{UV}})=\frac{0.4(\ln 10)\,10^{\phi_{*}}}{10^{0.4(\alpha+1)(M^{*}_{\mathrm{UV}}-M_{\mathrm{UV}})}+10^{0.4(\beta+1)(M^{*}_{\mathrm{UV}}-M_{\mathrm{UV}})}}. (1)

We specify the redshift-dependent DPL parameters ϕ\phi_{*}, MUVM^{*}_{\mathrm{UV}}, α\alpha, and β\beta in the form of a single power law as ϕ(z)=ϕ,0[(1+z)/10]ϕ,1\phi_{*}(z)=\phi_{*,0}[(1+z)/10]^{\phi_{*,1}}, MUV(z)=MUV,0[(1+z)/10]MUV,1M^{*}_{\mathrm{UV}}(z)=M^{*,0}_{\mathrm{UV}}[(1+z)/10]^{M^{*,1}_{\mathrm{UV}}}, α(z)=α,0[(1+z)/10]α,1\alpha_{*}(z)=\alpha_{*,0}[(1+z)/10]^{\alpha_{*,1}}, and β(z)=β,0[(1+z)/10]β,1\beta_{*}(z)=\beta_{*,0}[(1+z)/10]^{\beta_{*,1}}, where the best-fit parameters are found to be ϕ,0=2.01\phi_{*,0}=-2.01, ϕ,1=0.68\phi_{*,1}=0.68, MUV,0=17.26M^{*,0}_{\mathrm{UV}}=-17.26, MUV,1=0.08M^{*,1}_{\mathrm{UV}}=-0.08, α,0=0.31\alpha_{*,0}=-0.31, α,1=0.93\alpha_{*,1}=-0.93, β,0=0.68\beta_{*,0}=0.68, and α,1=0.93\alpha_{*,1}=0.93.

Figure 2 shows a comparison between the binned and best-fit UVLFs predicted by our simulations and other theoretical predictions in the literature based on cosmological hydrodynamical simulations (Ocvirk et al., 2020; Vijayan et al., 2021; Dawoodbhoy et al., 2023; Kannan et al., 2023; Wilkins et al., 2023). Overall, our predicted UVLFs show a weaker redshift evolution beyond z=8z=8 compared with the predictions from the MillenniumTNG (Kannan et al., 2023) and CoDa II (Ocvirk et al., 2020; Dawoodbhoy et al., 2023) simulations, which results in a higher abundance of bright (MUV20M_{\mathrm{UV}}\lesssim-20) galaxies at z10z\gtrsim 10. Our bright-end predictions are generally comparable to those from the FLARES simulations (Vijayan et al., 2021; Wilkins et al., 2023) in both normalization and slope, despite the vastly different nature of the simulations and methods to evaluate the UVLF. It is noteworthy, though, that the FIRE-2 simulations analyzed in this work have significantly higher resolution (mb7×103Mm_{\mathrm{b}}\approx 7\times 10^{3}\,M_{\odot} in FIRE-2 vs. mb2×106Mm_{\mathrm{b}}\approx 2\times 10^{6}\,M_{\odot} in FLARES), which allows us to predict the UVLFs at 8z128\leq z\leq 12 down to MUV10M_{\mathrm{UV}}\sim-10 vs. the FLARES predictions down to MUV18M_{\mathrm{UV}}\sim-18. We have also verified that UVLFs in this work and from Ma et al. (2018b, 2019) are in good agreement in the overlapping regime.

3.2 UV Luminosity Density

By integrating the predicted UVLFs, we can derive the UV luminosity density, ρUV\rho_{\mathrm{UV}}, as a function of time, which traces the cosmic star formation rate density (SFRD). Since at z10z\gtrsim 10 only the brightest end (MUVMUV,M_{\mathrm{UV}}\ll M_{\mathrm{UV,*}}) of the UVLF has been probed, we follow Harikane et al. (2023a) to compare the UV luminosity density contributed by galaxies brighter than MUV=18M_{\mathrm{UV}}=-18, namely ρUV,bright=ρUV(MUV<18)\rho_{\mathrm{UV,bright}}=\rho_{\mathrm{UV}}(M_{\mathrm{UV}}<-18), which corresponds to the contribution from halos with Mh1010MM_{\mathrm{h}}\gtrsim 10^{10}\,M_{\odot} at z=10z=10. The unconstrained contribution by fainter, lower-mass galaxies is highly sensitive to the faint-end slope of the UVLF and might even outweigh ρUV,bright\rho_{\mathrm{UV,bright}} (Sun & Furlanetto, 2016), but the comparison restricted to MUV<18M_{\mathrm{UV}}<-18 galaxies still serves as a useful test of the overall abundance of bright, massive galaxies and their SFE at cosmic dawn777Results from this work, Harikane et al. (2018, 2023b), and Bouwens et al. (2023) are integrated down to MUV,lim=18M_{\mathrm{UV,lim}}=-18, whereas the rest are down to MUV,lim=17M_{\mathrm{UV,lim}}=-17. Figure 3 thus shows conservatively that our simulations without smoothing predict enough total UV emission compared with observations, regardless of the modest difference in MUV,limM_{\mathrm{UV,lim}}..

Figure 3 shows a comparison of the cumulative UV luminosity density between the dust-attenuated predictions from our simulations and a compilation of constraints from observations and theoretical forecasts in the literature. Throughout, dust-attenuated predictions from models/simulations (curves) are compared with observations (data points), which are dust-uncorrected. Over 8z128\leq z\leq 12, dust-attenuated luminosity densities predicted by our simulations without smoothing the SFH are fully consistent with observations of both photometric galaxy candidates and spectroscopically-confirmed galaxies that provide firm lower limits. Due to the integrated nature of ρUV\rho_{\mathrm{UV}}, the “smoothed” case appears more consistent with the spec-zz-only lower limits here than at the bright end of the UVLF as shown in Figure 2. In both cases with dust attenuation, a power-law evolution of ρUV(1+z)0.3\rho_{\mathrm{UV}}\propto(1+z)^{-0.3} over 8z128\leq z\leq 12 is implied, which appears more gradual compared with the predictions by some previously proposed semi-analytic/semi-empirical models, such as in Mason et al. (2015) and Harikane et al. (2018).

Refer to caption
Figure 3: The cumulative UV luminosity density ρUV(<MUV,lim)\rho_{\mathrm{UV}}(<M_{\mathrm{UV,lim}}) integrated down to MUV,lim18M_{\mathrm{UV,lim}}\simeq-18 with dust attenuation included (see Section 2.2.2). At z10z\gtrsim 10, some theoretical models (e.g., Mason et al., 2015; Harikane et al., 2018) underestimate ρUV\rho_{\mathrm{UV}} compared with observational constraints based on photometric galaxy candidates (e.g., Bouwens et al., 2023; Donnan et al., 2023; McLeod et al., 2023; Pérez-González et al., 2023) and/or spectroscopically-confirmed galaxies as firm lower limits (Harikane et al., 2023a). Predictions from our “bursty” case are broadly consistent with both photometric and spectroscopic samples and show a slightly weaker redshift evolution ρUV(1+z)0.3\rho_{\mathrm{UV}}\propto(1+z)^{-0.3} over 8z128\leq z\leq 12.

4 Discussion and Conclusions

We have demonstrated that the FIRE-2 simulations with a multi-channel implementation of standard stellar feedback processes can reproduce well the observed abundance of UV-bright galaxies at z10z\gtrsim 10, including both the photometrically selected candidates and the spectroscopically confirmed sources recently discovered by JWST. We further showed that the bursty SFH predicted to be common in galaxies at cosmic dawn is important for explaining the bright-end of the UVLF. With burstiness included, the simulations demonstrate that a boosted UV emissivity due to, e.g., an enhanced SFE, a top-heavy IMF, AGN contributions, or Population III stars (see e.g., Harikane et al., 2023b, c), is not necessary to explain the bright-end UVLF at z10z\gtrsim 10. (This is of course not to say that none of these other effects could be present in the real universe, so it certainly remains interesting to investigate these other possibilities!) Compared to semi-analytic/empirical models Mason et al. (2023); Mirocha & Furlanetto (2023); Shen et al. (2023); Yung et al. (2023), our predictions based on the FIRE-2 simulations avoid ad hoc fine-tuning of the MUVM_{\mathrm{UV}}MhM_{\mathrm{h}} relation to match observations.

Though not shown explicitly in this Letter, we have verified that the stellar mass–halo mass (SMHM) relation, as a measure of the time-integrated, galaxy-scale SFE, fM/(fbMhf_{\star}\equiv M_{\star}/(f_{\mathrm{b}}M_{\mathrm{h}}) (where fb=Ωb/Ωmf_{\mathrm{b}}=\Omega_{\rm b}/\Omega_{\rm m} is the cosmic baryon fraction), barely evolves over 5z125\leq z\leq 12 in our simulations. This is consistent with the previous results presented in Ma et al. (2018b) based on a subset of the full High-Redshift suite considered in this work (see their Figure 4). These results indicate that ff_{\star} changes from approximately 103.310^{-3.3} to 101.510^{-1.5} as MhM_{\mathrm{h}} increases from 108M10^{8}\,M_{\odot} to 1011M10^{11}\,M_{\odot} following a simple power law of slope 0.6\sim 0.6 in log-log space. Thus, even though star formation is bursty, the galaxy-scale SFE is not strongly enhanced in these simulations relative to, e.g., an extrapolation of the SMHM relation empirically determined at lower redshift (Behroozi et al., 2019). In particular, our simulations do not appear to realize the “feedback-free starburst” scenario predicted by Dekel et al. (2023) using analytic arguments, which would result in ff_{\star} values up to order-unity.888While the FIRE-2 simulations assume a local, instantaneous SFE of 100% per free-fall time, this only applies in dense, self-gravitating gas (see the methods in Hopkins et al., 2018). On galaxy and molecular cloud scales, stellar feedback generally regulates the SFE to much lower values (e.g., Grudić et al., 2018; Orr et al., 2018; Gurvich et al., 2020).

We note that Pallottini & Ferrara (2023) also recently used a set of cosmological zoom-in simulations (SERRA; Pallottini et al. 2022) to investigate some implications of stochastic star formation in early galaxies for the abundance of z10z\gtrsim 10 galaxies observed by JWST. By characterizing the distribution of time-dependent variations in the SFR of individual galaxies, they concluded that the predicted SFR variability cannot account for the required boost suggested by some recent literature to match the observed UVLF at z10z\gtrsim 10 (Mirocha & Furlanetto, 2023; Shen et al., 2023). However, Pallottini & Ferrara (2023) did not self-consistently derive the UVLF from their simulations. Since other physical factors such as the SFE also impact the UVLF, in addition to burstiness (Mirocha & Furlanetto, 2023; Muñoz et al., 2023), in order to unambiguously gauge the importance of bursty star formation it is desirable to perform a self-consistent, end-to-end study of the UVLF as we do in this work.

Looking ahead, a detailed characterization of the SFR variability on different timescales will shed light on the physical processes at play in the build-up of galaxies at early times, as has been demonstrated in recent work using periodogram (Pallottini & Ferrara, 2023) or more generally power spectral density (PSD) analysis (Iyer et al., 2020; Tacchella et al., 2020). Moreover, various implications of bursty star formation should be explicitly considered when interpreting observations of highz-z galaxies. For example, Sun et al. (2023a) showed that SFR variability introduces important selection effects in rest UV-selected samples. Since most galaxies at cosmic dawn may form stars in a highly bursty manner, the impact of burstiness on galaxy number statistics also raises questions about how to reliably constrain cosmology with high-zz galaxy observations (Sabti et al., 2023). At the same time, it is of great interest to investigate how to observationally characterize the time variability of star formation and its mass and redshift dependence, e.g. using SFR indicators sensitive to different timescales (Sparre et al., 2017; Flores Velázquez et al., 2021; Sun et al., 2023b) or the spatial clustering of galaxies (Muñoz et al., 2023). Quantifying the effects of bursty star formation on statistics such as galaxy clustering is a critical stepping stone towards the usage of high-zz galaxies as robust cosmological probes.

The authors thank the anonymous reviewer for comments that helped improve this Letter, as well as Pratik Gandhi, Yuichi Harikane, and Julian Muñoz for helpful discussion. GS was supported by a CIERA Postdoctoral Fellowship. CAFG was supported by NSF through grants AST-2108230 and CAREER award AST-1652522; by NASA through grants 17-ATP17-0067 and 21-ATP21-0036; by STScI through grant HST-GO-16730.016-A; and by CXO through grant TM2-23005X. The Flatiron Institute is supported by the Simons Foundation. AW received support from: NSF via CAREER award AST-2045928 and grant AST-2107772; NASA ATP grant 80NSSC20K0513; and HST grants AR-15809, GO-15902, GO-16273 from STScI. The simulations used in this Letter were run on XSEDE computational resources (allocations TG-AST120025, TG-AST130039, TG-AST140023, and TG-AST140064). Additional analysis was done using the Quest computing cluster at Northwestern University.

\twocolumngrid

Appendix A Forming the halo/galaxy sample

Throughout, we analyze snapshots of a galaxy in a Δz=0.5\Delta z=0.5 bin multiple times per the cadence at which snapshots are stored (every 10–20 Myr). While the same galaxy from neighbouring snapshots are not strictly independent as far as MUVM_{\mathrm{UV}} is considered, this method is useful because the highly time-variable SFR limits the temporal correlation between consecutive snapshots. It yields a large statistical sample appropriate for UVLF analysis (see Figure 4) and the sampling cadence does not bias the results, as have been shown by analyses that randomly exclude approximately half of the samples (Ma et al., 2018b). At z=8z=8, 10, and 12, the UVLF is evaluated from a sample of approximately 12,000, 9,000, and 4,000 galaxies, respectively. Summing over the three redshift bins, this yields 25,000\approx 25,000 galaxy samples in total.

Refer to caption
Figure 4: The number of galaxies sampled in each halo mass bin for the 26 simulations inspected for evaluating the UVLF at z=10±0.5z=10\pm 0.5. This amounts to a total of 9000\approx 9000 galaxies sampled from snapshots of the 26 zoom-in regions over 9.5<z<10.59.5<z<10.5. Simulation IDs are listed in the legend (c.f., Sun et al., 2023a).

References

  • Akins et al. (2023) Akins, H. B., Casey, C. M., Allen, N., et al. 2023, arXiv e-prints, arXiv:2304.12347, doi: 10.48550/arXiv.2304.12347
  • Arrabal Haro et al. (2023) Arrabal Haro, P., Dickinson, M., Finkelstein, S. L., et al. 2023, arXiv e-prints, arXiv:2303.15431, doi: 10.48550/arXiv.2303.15431
  • Bakx et al. (2023) Bakx, T. J. L. C., Zavala, J. A., Mitsuhashi, I., et al. 2023, MNRAS, 519, 5076, doi: 10.1093/mnras/stac3723
  • Behroozi et al. (2019) Behroozi, P., Wechsler, R. H., Hearin, A. P., & Conroy, C. 2019, MNRAS, 488, 3143, doi: 10.1093/mnras/stz1182
  • Behroozi et al. (2013) Behroozi, P. S., Wechsler, R. H., & Conroy, C. 2013, ApJ, 770, 57, doi: 10.1088/0004-637X/770/1/57
  • Biagetti et al. (2023) Biagetti, M., Franciolini, G., & Riotto, A. 2023, ApJ, 944, 113, doi: 10.3847/1538-4357/acb5ea
  • Bird et al. (2023) Bird, S., Chang, C.-F., Cui, Y., & Yang, D. 2023, arXiv e-prints, arXiv:2307.10302. https://arxiv.org/abs/2307.10302
  • Bouwens et al. (2021) Bouwens, R. J., Oesch, P. A., Stefanon, M., et al. 2021, AJ, 162, 47, doi: 10.3847/1538-3881/abf83e
  • Bouwens et al. (2023) Bouwens, R. J., Stefanon, M., Brammer, G., et al. 2023, MNRAS, 523, 1036, doi: 10.1093/mnras/stad1145
  • Bowler et al. (2020) Bowler, R. A. A., Jarvis, M. J., Dunlop, J. S., et al. 2020, MNRAS, 493, 2059, doi: 10.1093/mnras/staa313
  • Boylan-Kolchin (2023) Boylan-Kolchin, M. 2023, Nature Astronomy, doi: 10.1038/s41550-023-01937-7
  • Byler et al. (2017) Byler, N., Dalcanton, J. J., Conroy, C., & Johnson, B. D. 2017, ApJ, 840, 44, doi: 10.3847/1538-4357/aa6c66
  • Byrne et al. (2023) Byrne, L., Faucher-Giguère, C.-A., Stern, J., et al. 2023, MNRAS, 520, 722, doi: 10.1093/mnras/stad171
  • Castellano et al. (2023) Castellano, M., Fontana, A., Treu, T., et al. 2023, ApJ, 948, L14, doi: 10.3847/2041-8213/accea5
  • Cochrane et al. (2022) Cochrane, R. K., Hayward, C. C., & Anglés-Alcázar, D. 2022, ApJ, 939, L27, doi: 10.3847/2041-8213/ac951d
  • Cochrane et al. (2019) Cochrane, R. K., Hayward, C. C., Anglés-Alcázar, D., et al. 2019, MNRAS, 488, 1779, doi: 10.1093/mnras/stz1736
  • Cullen et al. (2023) Cullen, F., McLure, R. J., McLeod, D. J., et al. 2023, MNRAS, 520, 14, doi: 10.1093/mnras/stad073
  • Curtis-Lake et al. (2023) Curtis-Lake, E., Carniani, S., Cameron, A., et al. 2023, Nature Astronomy, 7, 622, doi: 10.1038/s41550-023-01918-w
  • Dawoodbhoy et al. (2023) Dawoodbhoy, T., Shapiro, P. R., Ocvirk, P., et al. 2023, arXiv e-prints, arXiv:2302.08523, doi: 10.48550/arXiv.2302.08523
  • Dayal & Giri (2023) Dayal, P., & Giri, S. K. 2023, arXiv e-prints, arXiv:2303.14239, doi: 10.48550/arXiv.2303.14239
  • Dekel et al. (2023) Dekel, A., Sarkar, K. C., Birnboim, Y., Mandelker, N., & Li, Z. 2023, MNRAS, doi: 10.1093/mnras/stad1557
  • Domínguez et al. (2015) Domínguez, A., Siana, B., Brooks, A. M., et al. 2015, MNRAS, 451, 839, doi: 10.1093/mnras/stv1001
  • Donnan et al. (2023) Donnan, C. T., McLeod, D. J., Dunlop, J. S., et al. 2023, MNRAS, 518, 6011, doi: 10.1093/mnras/stac3472
  • Dressler et al. (2023) Dressler, A., Rieke, M., Eisenstein, D., et al. 2023, arXiv e-prints, arXiv:2306.02469, doi: 10.48550/arXiv.2306.02469
  • Eldridge et al. (2017) Eldridge, J. J., Stanway, E. R., Xiao, L., et al. 2017, PASA, 34, e058, doi: 10.1017/pasa.2017.51
  • Endsley et al. (2023) Endsley, R., Stark, D. P., Whitler, L., et al. 2023, arXiv e-prints, arXiv:2306.05295, doi: 10.48550/arXiv.2306.05295
  • Faucher-Giguère (2020) Faucher-Giguère, C.-A. 2020, MNRAS, 493, 1614, doi: 10.1093/mnras/staa302
  • Faucher-Giguère et al. (2009) Faucher-Giguère, C.-A., Lidz, A., Zaldarriaga, M., & Hernquist, L. 2009, ApJ, 703, 1416, doi: 10.1088/0004-637X/703/2/1416
  • Ferrara et al. (2023) Ferrara, A., Pallottini, A., & Dayal, P. 2023, MNRAS, 522, 3986, doi: 10.1093/mnras/stad1095
  • Finkelstein et al. (2022) Finkelstein, S. L., Bagley, M. B., Haro, P. A., et al. 2022, ApJ, 940, L55, doi: 10.3847/2041-8213/ac966e
  • Flores Velázquez et al. (2021) Flores Velázquez, J. A., Gurvich, A. B., Faucher-Giguère, C.-A., et al. 2021, MNRAS, 501, 4812, doi: 10.1093/mnras/staa3893
  • Fudamoto et al. (2020) Fudamoto, Y., Oesch, P. A., Faisst, A., et al. 2020, A&A, 643, A4, doi: 10.1051/0004-6361/202038163
  • Fudamoto et al. (2021) Fudamoto, Y., Oesch, P. A., Schouws, S., et al. 2021, Nature, 597, 489, doi: 10.1038/s41586-021-03846-z
  • Furlanetto & Mirocha (2022) Furlanetto, S. R., & Mirocha, J. 2022, MNRAS, 511, 3895, doi: 10.1093/mnras/stac310
  • Furlanetto & Mirocha (2023) —. 2023, MNRAS, 523, 5274, doi: 10.1093/mnras/stad1799
  • Gnedin (2000) Gnedin, N. Y. 2000, ApJ, 542, 535, doi: 10.1086/317042
  • Gong et al. (2023) Gong, Y., Yue, B., Cao, Y., & Chen, X. 2023, ApJ, 947, 28, doi: 10.3847/1538-4357/acc109
  • Grudić et al. (2018) Grudić, M. Y., Hopkins, P. F., Faucher-Giguère, C.-A., et al. 2018, MNRAS, 475, 3511, doi: 10.1093/mnras/sty035
  • Gurvich et al. (2020) Gurvich, A. B., Faucher-Giguère, C.-A., Richings, A. J., et al. 2020, MNRAS, 498, 3664, doi: 10.1093/mnras/staa2578
  • Gurvich et al. (2023) Gurvich, A. B., Stern, J., Faucher-Giguère, C.-A., et al. 2023, MNRAS, 519, 2598, doi: 10.1093/mnras/stac3712
  • Harikane et al. (2023a) Harikane, Y., Nakajima, K., Ouchi, M., et al. 2023a, arXiv e-prints, arXiv:2304.06658, doi: 10.48550/arXiv.2304.06658
  • Harikane et al. (2018) Harikane, Y., Ouchi, M., Ono, Y., et al. 2018, PASJ, 70, S11, doi: 10.1093/pasj/psx097
  • Harikane et al. (2023b) Harikane, Y., Ouchi, M., Oguri, M., et al. 2023b, ApJS, 265, 5, doi: 10.3847/1538-4365/acaaa9
  • Harikane et al. (2023c) Harikane, Y., Zhang, Y., Nakajima, K., et al. 2023c, arXiv e-prints, arXiv:2303.11946, doi: 10.48550/arXiv.2303.11946
  • Hassan et al. (2023) Hassan, S., Lovell, C. C., Madau, P., et al. 2023, arXiv e-prints, arXiv:2305.02703, doi: 10.48550/arXiv.2305.02703
  • Hirano & Yoshida (2023) Hirano, S., & Yoshida, N. 2023, arXiv e-prints, arXiv:2306.11993, doi: 10.48550/arXiv.2306.11993
  • Hopkins (2015) Hopkins, P. F. 2015, MNRAS, 450, 53, doi: 10.1093/mnras/stv195
  • Hopkins et al. (2014) Hopkins, P. F., Kereš, D., Oñorbe, J., et al. 2014, MNRAS, 445, 581, doi: 10.1093/mnras/stu1738
  • Hopkins et al. (2018) Hopkins, P. F., Wetzel, A., Kereš, D., et al. 2018, MNRAS, 480, 800, doi: 10.1093/mnras/sty1690
  • Hopkins et al. (2023) Hopkins, P. F., Gurvich, A. B., Shen, X., et al. 2023, MNRAS, doi: 10.1093/mnras/stad1902
  • Hu et al. (2023) Hu, C.-Y., Smith, M. C., Teyssier, R., et al. 2023, ApJ, 950, 132, doi: 10.3847/1538-4357/accf9e
  • Inayoshi et al. (2022) Inayoshi, K., Harikane, Y., Inoue, A. K., Li, W., & Ho, L. C. 2022, ApJ, 938, L10, doi: 10.3847/2041-8213/ac9310
  • Iyer et al. (2020) Iyer, K. G., Tacchella, S., Genel, S., et al. 2020, MNRAS, 498, 430, doi: 10.1093/mnras/staa2150
  • Kannan et al. (2023) Kannan, R., Springel, V., Hernquist, L., et al. 2023, MNRAS, 524, 2594, doi: 10.1093/mnras/stac3743
  • Keller et al. (2023) Keller, B. W., Munshi, F., Trebitsch, M., & Tremmel, M. 2023, ApJ, 943, L28, doi: 10.3847/2041-8213/acb148
  • Knollmann & Knebe (2009) Knollmann, S. R., & Knebe, A. 2009, ApJS, 182, 608, doi: 10.1088/0067-0049/182/2/608
  • Kroupa (2001) Kroupa, P. 2001, MNRAS, 322, 231, doi: 10.1046/j.1365-8711.2001.04022.x
  • Leethochawalit et al. (2022) Leethochawalit, N., Roberts-Borsani, G., Morishita, T., Trenti, M., & Treu, T. 2022, arXiv e-prints, arXiv:2205.15388, doi: 10.48550/arXiv.2205.15388
  • Looser et al. (2023a) Looser, T. J., D’Eugenio, F., Maiolino, R., et al. 2023a, arXiv e-prints, arXiv:2302.14155, doi: 10.48550/arXiv.2302.14155
  • Looser et al. (2023b) —. 2023b, arXiv e-prints, arXiv:2306.02470, doi: 10.48550/arXiv.2306.02470
  • Ma et al. (2018a) Ma, X., Hopkins, P. F., Boylan-Kolchin, M., et al. 2018a, MNRAS, 477, 219, doi: 10.1093/mnras/sty684
  • Ma et al. (2018b) Ma, X., Hopkins, P. F., Garrison-Kimmel, S., et al. 2018b, MNRAS, 478, 1694, doi: 10.1093/mnras/sty1024
  • Ma et al. (2019) Ma, X., Hayward, C. C., Casey, C. M., et al. 2019, MNRAS, 487, 1844, doi: 10.1093/mnras/stz1324
  • Mason et al. (2015) Mason, C. A., Trenti, M., & Treu, T. 2015, ApJ, 813, 21, doi: 10.1088/0004-637X/813/1/21
  • Mason et al. (2023) —. 2023, MNRAS, 521, 497, doi: 10.1093/mnras/stad035
  • McCaffrey et al. (2023) McCaffrey, J., Hardin, S., Wise, J., & Regan, J. 2023, arXiv e-prints, arXiv:2304.13755, doi: 10.48550/arXiv.2304.13755
  • McLeod et al. (2023) McLeod, D. J., Donnan, C. T., McLure, R. J., et al. 2023, arXiv e-prints, arXiv:2304.14469, doi: 10.48550/arXiv.2304.14469
  • Melia (2023) Melia, F. 2023, MNRAS, 521, L85, doi: 10.1093/mnrasl/slad025
  • Mirocha & Furlanetto (2023) Mirocha, J., & Furlanetto, S. R. 2023, MNRAS, 519, 843, doi: 10.1093/mnras/stac3578
  • Muñoz et al. (2023) Muñoz, J. B., Mirocha, J., Furlanetto, S., & Sabti, N. 2023, arXiv e-prints, arXiv:2306.09403, doi: 10.48550/arXiv.2306.09403
  • Muratov et al. (2015) Muratov, A. L., Kereš, D., Faucher-Giguère, C.-A., et al. 2015, MNRAS, 454, 2691, doi: 10.1093/mnras/stv2126
  • Murray et al. (2013) Murray, S. G., Power, C., & Robotham, A. S. G. 2013, Astronomy and Computing, 3, 23, doi: 10.1016/j.ascom.2013.11.001
  • Naidu et al. (2022a) Naidu, R. P., Oesch, P. A., van Dokkum, P., et al. 2022a, ApJ, 940, L14, doi: 10.3847/2041-8213/ac9b22
  • Naidu et al. (2022b) Naidu, R. P., Oesch, P. A., Setton, D. J., et al. 2022b, arXiv e-prints, arXiv:2208.02794, doi: 10.48550/arXiv.2208.02794
  • Noh & McQuinn (2014) Noh, Y., & McQuinn, M. 2014, MNRAS, 444, 503, doi: 10.1093/mnras/stu1412
  • Ocvirk et al. (2020) Ocvirk, P., Aubert, D., Sorce, J. G., et al. 2020, MNRAS, 496, 4087, doi: 10.1093/mnras/staa1266
  • Oesch et al. (2018) Oesch, P. A., Bouwens, R. J., Illingworth, G. D., Labbé, I., & Stefanon, M. 2018, ApJ, 855, 105, doi: 10.3847/1538-4357/aab03f
  • Oke & Gunn (1983) Oke, J. B., & Gunn, J. E. 1983, ApJ, 266, 713, doi: 10.1086/160817
  • Orr et al. (2018) Orr, M. E., Hayward, C. C., Hopkins, P. F., et al. 2018, MNRAS, 478, 3653, doi: 10.1093/mnras/sty1241
  • Padmanabhan & Loeb (2023) Padmanabhan, H., & Loeb, A. 2023, arXiv e-prints, arXiv:2306.04684, doi: 10.48550/arXiv.2306.04684
  • Pallottini & Ferrara (2023) Pallottini, A., & Ferrara, A. 2023, arXiv e-prints, arXiv:2307.03219, doi: 10.48550/arXiv.2307.03219
  • Pallottini et al. (2022) Pallottini, A., Ferrara, A., Gallerani, S., et al. 2022, MNRAS, 513, 5621, doi: 10.1093/mnras/stac1281
  • Parashari & Laha (2023) Parashari, P., & Laha, R. 2023, arXiv e-prints, arXiv:2305.00999, doi: 10.48550/arXiv.2305.00999
  • Pérez-González et al. (2023) Pérez-González, P. G., Costantin, L., Langeroodi, D., et al. 2023, arXiv e-prints, arXiv:2302.02429, doi: 10.48550/arXiv.2302.02429
  • Planck Collaboration et al. (2020) Planck Collaboration, Aghanim, N., Akrami, Y., et al. 2020, A&A, 641, A6, doi: 10.1051/0004-6361/201833910
  • Qin et al. (2023) Qin, Y., Balu, S., & Wyithe, J. S. B. 2023, arXiv e-prints, arXiv:2305.17959, doi: 10.48550/arXiv.2305.17959
  • Reddy et al. (2018) Reddy, N. A., Oesch, P. A., Bouwens, R. J., et al. 2018, ApJ, 853, 56, doi: 10.3847/1538-4357/aaa3e7
  • Robertson (2022) Robertson, B. E. 2022, ARA&A, 60, 121, doi: 10.1146/annurev-astro-120221-044656
  • Robertson et al. (2023) Robertson, B. E., Tacchella, S., Johnson, B. D., et al. 2023, Nature Astronomy, 7, 611, doi: 10.1038/s41550-023-01921-1
  • Rojas-Ruiz et al. (2020) Rojas-Ruiz, S., Finkelstein, S. L., Bagley, M. B., et al. 2020, ApJ, 891, 146, doi: 10.3847/1538-4357/ab7659
  • Sabti et al. (2023) Sabti, N., Muñoz, J. B., & Kamionkowski, M. 2023, arXiv e-prints, arXiv:2305.07049, doi: 10.48550/arXiv.2305.07049
  • Shen et al. (2023) Shen, X., Vogelsberger, M., Boylan-Kolchin, M., Tacchella, S., & Kannan, R. 2023, arXiv e-prints, arXiv:2305.05679, doi: 10.48550/arXiv.2305.05679
  • Shen et al. (2022) Shen, X., Vogelsberger, M., Nelson, D., et al. 2022, MNRAS, 510, 5560, doi: 10.1093/mnras/stab3794
  • Sipple & Lidz (2023) Sipple, J., & Lidz, A. 2023, arXiv e-prints, arXiv:2306.12087, doi: 10.48550/arXiv.2306.12087
  • Sparre et al. (2017) Sparre, M., Hayward, C. C., Feldmann, R., et al. 2017, MNRAS, 466, 88, doi: 10.1093/mnras/stw3011
  • Stern et al. (2021) Stern, J., Faucher-Giguère, C.-A., Fielding, D., et al. 2021, ApJ, 911, 88, doi: 10.3847/1538-4357/abd776
  • Sun et al. (2023a) Sun, G., Faucher-Giguère, C.-A., Hayward, C. C., & Shen, X. 2023a, arXiv e-prints, arXiv:2305.02713, doi: 10.48550/arXiv.2305.02713
  • Sun & Furlanetto (2016) Sun, G., & Furlanetto, S. R. 2016, MNRAS, 460, 417, doi: 10.1093/mnras/stw980
  • Sun et al. (2023b) Sun, G., Lidz, A., Faisst, A. L., & Faucher-Giguère, C.-A. 2023b, MNRAS, doi: 10.1093/mnras/stad2000
  • Tacchella et al. (2018) Tacchella, S., Bose, S., Conroy, C., Eisenstein, D. J., & Johnson, B. D. 2018, ApJ, 868, 92, doi: 10.3847/1538-4357/aae8e0
  • Tacchella et al. (2020) Tacchella, S., Forbes, J. C., & Caplar, N. 2020, MNRAS, 497, 698, doi: 10.1093/mnras/staa1838
  • Tamura et al. (2019) Tamura, Y., Mawatari, K., Hashimoto, T., et al. 2019, ApJ, 874, 27, doi: 10.3847/1538-4357/ab0374
  • Topping et al. (2023) Topping, M. W., Stark, D. P., Endsley, R., et al. 2023, arXiv e-prints, arXiv:2307.08835, doi: 10.48550/arXiv.2307.08835
  • Trinca et al. (2023) Trinca, A., Schneider, R., Valiante, R., et al. 2023, arXiv e-prints, arXiv:2305.04944, doi: 10.48550/arXiv.2305.04944
  • Vijayan et al. (2021) Vijayan, A. P., Lovell, C. C., Wilkins, S. M., et al. 2021, MNRAS, 501, 3289, doi: 10.1093/mnras/staa3715
  • Vogelsberger et al. (2020) Vogelsberger, M., Nelson, D., Pillepich, A., et al. 2020, MNRAS, 492, 5167, doi: 10.1093/mnras/staa137
  • Wetzel & Garrison-Kimmel (2020) Wetzel, A., & Garrison-Kimmel, S. 2020, GizmoAnalysis: Read and analyze Gizmo simulations, Astrophysics Source Code Library, record ascl:2002.015. http://ascl.net/2002.015
  • Wetzel et al. (2023) Wetzel, A., Hayward, C. C., Sanderson, R. E., et al. 2023, ApJS, 265, 44, doi: 10.3847/1538-4365/acb99a
  • Wetzel et al. (2016) Wetzel, A. R., Hopkins, P. F., Kim, J.-h., et al. 2016, ApJ, 827, L23, doi: 10.3847/2041-8205/827/2/L23
  • Wilkins et al. (2023) Wilkins, S. M., Vijayan, A. P., Lovell, C. C., et al. 2023, MNRAS, 519, 3118, doi: 10.1093/mnras/stac3280
  • Witstok et al. (2023) Witstok, J., Shivaei, I., Smit, R., et al. 2023, arXiv e-prints, arXiv:2302.05468, doi: 10.48550/arXiv.2302.05468
  • Yan et al. (2023) Yan, H., Ma, Z., Ling, C., Cheng, C., & Huang, J.-S. 2023, ApJ, 942, L9, doi: 10.3847/2041-8213/aca80c
  • Yung et al. (2023) Yung, L. Y. A., Somerville, R. S., Finkelstein, S. L., Wilkins, S. M., & Gardner, J. P. 2023, arXiv e-prints, arXiv:2304.04348, doi: 10.48550/arXiv.2304.04348
  • Zavala et al. (2023) Zavala, J. A., Buat, V., Casey, C. M., et al. 2023, ApJ, 943, L9, doi: 10.3847/2041-8213/acacfe