This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Bundle Theoretic Descriptions of Massive Single-Particle State Spaces; With a view toward Relativistic Quantum Information Theory

Heon Lee Department of Mathematical Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea [email protected]
Abstract

Relativistic Quantum Information Theory (RQI) is a flourishing research area of physics, yet, there has been no systematic mathematical treatment of the field. In this paper, we suggest bundle theoretic descriptions of massive single-particle state spaces, which are basic building blocks of RQI. In the language of bundle theory, one can construct a vector bundle over the set of all possible motion states of a massive particle, in whose fibers the moving particle’s internal quantum state as perceived by a fixed inertial observer is encoded. A link between the usual Hilbert space description is provided by a generalized induced representation construction on the L2L^{2}-section space of the bundle. The aim of this paper is two-fold. One is to communicate the basic ideas of RQI to mathematicians and the other is to suggest an improved formalism for single-particle state spaces that encompasses all known massive particles including those which have never been dealt with in the RQI literature. Some of the theoretical implications of the formalism will be explored at the end of the paper.

: \jpa
  • March 2022

1 Introduction

Special Relativity (SR) is a principle by which two inertial observers’ perceptions of the laws of physics must agree. When incorporated into Quantum Mechanics (QM), this principle manifests itself as a quantum symmetry, which is expressed as a unitary representation of the spacetime symmetry group G:=4SL(2,)G:=\mathbb{R}^{4}\ltimes SL(2,\mathbb{C}) on a quantum Hilbert space. Given a quantum Hilbert space possessing this symmetry, one can describe how one inertial observer’s perception of the quantum system is related to another inertial observer’s perception of it.

This symmetry principle gave birth to the notion “Single-particle state spaces” [51], which are just the irreducible unitary representation spaces of the group GG and classified by two numerical invariants called mass and spin for the massive particle case (cf. Sect. 4). So, one might say that the single-particle state spaces are the smallest possible quantum systems in which comparisons between different observers’ perceptions of one reality are possible.

However, when incorporated into Quantum Information Theory (QIT) scenarios, this principle, which is indispensable for a complete physical theory, caused some unexpected phenomena. For example, [36] observed that the spin entropy of a massive particle with spin-1/2 is an observer-dependent quantity (it can be zero in one frame and at the same time does not vanish in another frame) and [26] showed that the same conclusion holds with the spin entanglement between two massive spin-1/2 particles, which had immediate consequences on the relativistic Einstein-Podolsky-Rosen type experiment where one deals with two particles maximally entangled in the spin degree of freedom ([12, 13, 26]). See Sect. 3.1 for a brief account of these observations.

An implication that these entailed was that when one wants to use the spin of a massive spin-1/2 particle (such as electron) as an information carrier (i.e., a qubit carrier), the concepts of entropy, entanglement, and correlation of the spin may require a reassessment [37], which are important informational resources in QIT.

The work [36] has generated an intense study ([36, 26, 47, 27, 11, 37, 12, 13, 29, 14, 10, 16, 2, 15, 43, 42, 19, 44, 1, 6, 7, 39, 38, 35, 32]) that is still going on today.111However, the author strongly believes that the perplexity posed in [36] has finally reached a definitive clarification in [32]. In fact, the publication of [32] was one of the main motivations for the conception of the theory developed in this paper. See Sect. 3. A great portion of these works deal with the concepts of relativistic entanglement and correlation of the discrete degrees of freedom (such as spin) between relativistic particles in various settings, using various measures of correlation. However, as far as we know, a relativistically invariant definition of entanglement between the spins of a multi-particle system is still missing [2].

Given these conceptual profundities and prospects, it is a curious fact that there has never appeared a systematic mathematical treatment of this field. One reason for this might be because there is already a nice treatment of the single-particle state space in the physics literature (e.g., [50]). But, the recent paper [32] claimed that the above-mentioned issues arise because there is an inherent conceptual problem in this standard treatment. So, we feel that it is the right time to suggest a new mathematical framework for the single-particle state space that is more suitable for RQI investigations.

The problem with the standard treatment can never be seen clearly when one uses the usual language of Hilbert spaces and operators to describe single-particle state space. However, there is a bundle theoretic way to view single-particle state space, in which the stated conceptual problem becomes transparently visible and is easily resolved. This point of view was first introduced in [32] for the massive spin-1/2 particle case and thoroughly exploited to give a definitive mathematical clarification of the perplexity posed in [36].

In this picture, there is a vector bundle responsible for the description of a massive particle with spin-1/2, which is an assembly of two-level quantum systems corresponding to possible motion states of the particle, whose fibers are arranged in a way that reflects the perception222The precise meaning of “perception” used in this paper is given in Sect. 2.5. of a fixed inertial observer who has prepared the bundle in the first place for the description of the state of the particle. So, given a motion state pp, the fiber over pp is what the fixed observer perceives as the spin quantum system of the particle in the motion state pp. Therefore, this viewpoint also provides us with the precise mathematical description of moving qubit systems as perceived by a fixed inertial observer.

Moreover, there is a naturally defined GG-action on this bundle, which makes it a GG-vector bundle. An action of the element (a,Λ)G(a,\Lambda)\in G on the bundle amounts to a frame change by the transformation (a,Λ)(a,\Lambda). That is, the bundle description of an inertial observer who is (a,Λ)(a,\Lambda)-transformed with respect to a fixed inertial observer is obtained by applying the (a,Λ)(a,\Lambda)-action on the fixed observer’s bundle description.

In this sense, the vector bundle description is similar to the classical coordinate system in which one records a particle’s motion in the spacetime by four numerical values and for which a definite transformation law from one observer to another is given. The vector bundle description is just an extension of it which takes the particle’s internal quantum states into account. We will see that the transformation law of the bundle description (i.e., the stated GG-action) naturally extends that of the coordinate system.

It is the objective of the present paper to develop a mathematical theory that underlies this vector bundle point of view and generalize this point of view to all known massive particles (i.e., massive particles with arbitrary spin). After completing this job, we will explore some of the theoretical implications of this viewpoint. Specifically, we will see that the Dirac equation and the Proca equations are manifestations of a fixed inertial observer’s perception of the internal quantum states of massive particles with spin-1/2 and 1, respectively.

This paper is organized as follows. In Sect. 2, we explain briefly how the ideas of SR come into play in the quantum realm, giving the definition of quantum system with Lorentz symmetry, which is the right playground for testing special relativistic considerations in QM. In Sect. 3, after defining single-particle state space, we briefly survey the perplexities posed by some of the pioneering works of RQI and summarize the main result of the paper [32], in which the problem with the standard approach of RQI, which is responsible for the mentioned perplexities, is clarified and resolved for the spin-1/2 case.

In Sect. 4, we embark on the job of extending the vector bundle point of view, which was first suggested in [32] for the spin-1/2 case, to arbitrary spin case. Specifically, we identify the massive single-particle state spaces and classify them by two numerical invariants called mass and spin. All the results of this section is well-known and included here for completeness. In Sect. 5, we develop a mathematical theory that underlies the bundle theoretic framework that this paper suggests.

In Sect. 6 we present the promised vector bundle point of view for massive particles with arbitrary spin and show that the same problem as in the spin-1/2 case persists in the general spin case and is resolved in a similar manner. Sect. 7 explores some of the theoretical implications of the present work. Concluding remarks and future research directions are given in Sect. 8.

2 Special Relativity in Quantum Mechanics

In this section, we briefly summarize the idea and formalism of Relativistic Quantum Mechanics that is used in the physics literature. The main references for this section are [50] pp.49–55 and [24] pp.39–40.

2.1 Notations

In this section, we summarize some notations and elementary facts that will be used throughout the paper.

Let x4x\in\mathbb{R}^{4}. We write its 4 components as x=(x0,x1,x2,x3)x=(x^{0},x^{1},x^{2},x^{3}) where x0x^{0} is the time component. When we want to deal with each component, we use Greek indices such as xμx^{\mu} (μ=0,1,2,3)(\mu=0,1,2,3) and if we need only spatial components, we use Latin indices such as xjx^{j} (j=1,2,3)(j=1,2,3). When we want to separate time and spatial components, we also use the convention x=(t,𝐱)x=(t,\mathbf{x}). We set =c=1\hbar=c=1.

When we encounter an expression with subscripts rather than superscripts as above, it must be understood as, for example, xμ:=ν=03ημνxνx_{\mu}:=\sum_{\nu=0}^{3}\eta_{\mu\nu}x^{\nu}, where η=diag(1,1,1,1)\eta=\text{diag}(1,-1,-1,-1).

We also use the Einstein summation convention. So that the above becomes xμ=ημνxνx_{\mu}=\eta_{\mu\nu}x^{\nu} and also, for example, pμpμ=μ,ν=03pμημνpνp_{\mu}p^{\mu}=\sum_{\mu,\nu=0}^{3}p^{\mu}\eta_{\mu\nu}p^{\nu} holds.

The Minkowski metric η\eta on 4\mathbb{R}^{4} is also denoted as

x,y=ημνxμyν=xμyμ=x0y0x1y1x2y2x3y3.\langle x,y\rangle=\eta_{\mu\nu}x^{\mu}y^{\nu}=x_{\mu}y^{\mu}=x^{0}y^{0}-x^{1}y^{1}-x^{2}y^{2}-x^{3}y^{3}. (2.1)

Let’s denote the Pauli matrices as

τ0=I,τ1=(0110),τ2=(0ii0),τ3=(1001).\tau^{0}=I,\hskip 2.84544pt\tau^{1}=\begin{pmatrix}0&1\\ 1&0\end{pmatrix},\hskip 2.84544pt\tau^{2}=\begin{pmatrix}0&-i\\ i&0\end{pmatrix},\hskip 2.84544pt\tau^{3}=\begin{pmatrix}1&0\\ 0&-1\end{pmatrix}. (2.2)

Denote

x~\displaystyle\tilde{x} =\displaystyle= (x0+x3x1ix2x1+ix2x0x3)=x0τ0+𝐱𝝉\displaystyle\begin{pmatrix}x^{0}+x^{3}&x^{1}-ix^{2}\\ x^{1}+ix^{2}&x^{0}-x^{3}\end{pmatrix}=x^{0}\tau^{0}+\mathbf{x}\cdot\boldsymbol{\tau} (2.3a)
x~\displaystyle\underaccent{\tilde}{x} =\displaystyle= (x0+x3x1ix2x1+ix2x0x3)=xμτμ.\displaystyle\begin{pmatrix}x_{0}+x_{3}&x_{1}-ix_{2}\\ x_{1}+ix_{2}&x_{0}-x_{3}\end{pmatrix}=x_{\mu}\tau^{\mu}. (2.3b)

Note that the maps ()~,()~:4H2\tilde{(\cdot)},\underaccent{\tilde}{(\cdot)}:\mathbb{R}^{4}\rightarrow H_{2} are \mathbb{R}-linear isomorphisms from 4\mathbb{R}^{4} onto the space of 2×22\times 2 Hermitian matrices H2H_{2}.333These notations were borrowed from the book [8] with a slight modification.

A direct calculation would show

x~y~+y~x~=2x,yI2=x~y~+y~x~\underaccent{\tilde}{x}\tilde{y}+\underaccent{\tilde}{y}\tilde{x}=2\langle x,y\rangle I_{2}=\tilde{x}\underaccent{\tilde}{y}+\tilde{y}\underaccent{\tilde}{x} (2.4a)
and hence
x~x~=x,xI2=x~x~.\underaccent{\tilde}{x}\tilde{x}=\langle x,x\rangle I_{2}=\tilde{x}\underaccent{\tilde}{x}. (2.4b)

2.2 Physical Symmetry

Let (,,)(\mathcal{H},\langle\cdot,\cdot\rangle) be a Hilbert space associated with a quantum system. From the axioms of QM (cf. [28]), we know that two state vectors ϕ,ψ\phi,\psi\in\mathcal{H} represent the same physical state if and only if ϕ=λψ\phi=\lambda\psi for some λ{0}\lambda\in\mathbb{C}\setminus\{0\}. So, denoting this equivalence relation as \sim, the “quantum states” are in fact elements of ():=({0})/\mathbb{P}(\mathcal{H}):=(\mathcal{H}\setminus\{0\})/\sim, the projectivization of \mathcal{H}.

Definition 2.1.

There is a well-defined map ()×()[0,1]\mathbb{P}(\mathcal{H})\times\mathbb{P}(\mathcal{H})\rightarrow[0,1] defined as

([u],[v])(|u,v|uv)2,([u]_{\sim},[v]_{\sim})\mapsto\left(\frac{|\langle u,v\rangle|}{\|u\|\|v\|}\right)^{2}, (2.5)

called the transition probability between [u][u] and [v][v], and denoted as ([u],[v])([u],[v]) (I will omit the \sim signs from now on).

If a system is in a state represented by [u]()[u]\in\mathbb{P}(\mathcal{H}), the probability of finding it in the state represented by [v]()[v]\in\mathbb{P}(\mathcal{H}) (using a certain measurement which has vv as an eigenstate) is ([u],[v])([u],[v]) (cf. [50]).

Definition 2.2.

A bijective map T:()()T:\mathbb{P}(\mathcal{H})\rightarrow\mathbb{P}(\mathcal{H}) that preserves transition probability (i.e., (T[u],T[v])=([u],[v])(T[u],T[v])=([u],[v]) for all u,vu,v\in\mathcal{H}) is called a physical symmetry.

Example 2.3.

Let :=L2(3)L2(3)\mathcal{H}:=L^{2}(\mathbb{R}^{3})\otimes L^{2}(\mathbb{R}^{3}). Define σ:\sigma:\mathcal{H}\rightarrow\mathcal{H} as (σf)(x1,x2)=f(x2,x1)(\sigma f)(x_{1},x_{2})=f(x_{2},x_{1}) for ff\in\mathcal{H}. Then, σ\sigma is a unitary transformation and hence induces a well-defined map σ¯:()()\overline{\sigma}:\mathbb{P}(\mathcal{H})\rightarrow\mathbb{P}(\mathcal{H}) such that the following diagram commutes.

{0}{\mathcal{H}\setminus\{0\}}{0}{\mathcal{H}\setminus\{0\}}(){\mathbb{P}(\mathcal{H})}(){\mathbb{P}(\mathcal{H})}σ\scriptstyle{\sigma}σ¯\scriptstyle{\overline{\sigma}}

Since σ\sigma was unitary, σ¯\overline{\sigma} is a bijection and preserves transition probability. So, σ¯\overline{\sigma} is a physical symmetry.

What is the significance of this permutation symmetry? Let Φ:=ϕψ\Phi:=\phi\otimes\psi\in\mathcal{H} be a state describing two independent particles in 3\mathbb{R}^{3} whose states are represented by ϕ\phi and ψ\psi, respectively. Now, a simple calculation shows σ(Φ)=ψϕ\sigma(\Phi)=\psi\otimes\phi. So, the original state Φ(x1,x2)=ϕ(x1)ψ(x2)\Phi(x_{1},x_{2})=\phi(x_{1})\psi(x_{2}) becomes the transformed state [σΦ](x1,x2)=ϕ(x2)ψ(x1)[\sigma\Phi](x_{1},x_{2})=\phi(x_{2})\psi(x_{1}). So, we see that acting the physical symmetry σ¯\overline{\sigma} on the state [Φ]()[\Phi]\in\mathbb{P}(\mathcal{H}) amounts to “labeling in a different manner” the two particles.

Remark 2.4.

This example gives a general insight into how we should interpret physical symmetries. Given a physical symmetry T:()()T:\mathbb{P}(\mathcal{H})\rightarrow\mathbb{P}(\mathcal{H}), we hypothesize two observers A,AA,A^{\prime} whose observations on the same quantum Hilbert space \mathcal{H} are related by TT so that if a system is in the state [ψ]()[\psi]\in\mathbb{P}(\mathcal{H}) in AA’s frame, then the system is in the state T[ψ]()T[\psi]\in\mathbb{P}(\mathcal{H}) in AA^{\prime}’s frame.

In this respect, a physical symmetry is not an operation that we can perform on the physical system, but, rather, it gives us information about how two observers’ observations are related ([50], pp.50–51).

Example 2.5.

The same analysis of Example 2.3 can be applied to any unitary or antiunitary444U:U:\mathcal{H}\rightarrow\mathcal{H} is called antiunitary if UU is conjugate linear and Uϕ,Uψ=ψ,ϕ\langle U\phi,U\psi\rangle=\langle\psi,\phi\rangle for ϕ,ψ{}^{\forall}\phi,\psi\in\mathcal{H}. transformation U:U:\mathcal{H}\rightarrow\mathcal{H}, yielding a physical symmetry

()()UU¯.\leavevmode\hbox to85.39pt{\vbox to49.57pt{\pgfpicture\makeatletter\hbox{\hskip 42.69444pt\lower-24.83594pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-42.69444pt}{-24.7361pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 8.05554pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.75pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathcal{H}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 8.05554pt\hfil&\hfil\hskip 32.05551pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.75pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathcal{H}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.05554pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 15.34723pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.04169pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{P}(\mathcal{H})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 15.34723pt\hfil&\hfil\hskip 39.3472pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-11.04169pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathbb{P}(\mathcal{H})}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 15.34723pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-19.09167pt}{10.58337pt}\pgfsys@lineto{18.69171pt}{10.58337pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{18.8917pt}{10.58337pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.7713pt}{12.93614pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{U}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-27.34721pt}{4.22366pt}\pgfsys@lineto{-27.34721pt}{-12.97643pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-27.34721pt}{-13.1764pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{27.34721pt}{4.22366pt}\pgfsys@lineto{27.34721pt}{-12.97643pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{27.34721pt}{-13.1764pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.79999pt}{-22.2361pt}\pgfsys@lineto{11.40002pt}{-22.2361pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.6pt}{-22.2361pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.5pt}{-19.88333pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\overline{U}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

It is Wigner’s famous theorem that asserts that the converse of Example 2.5 is also true.

Theorem 2.6 (Wigner).

Given a Hilbert space \mathcal{H} and a physical symmetry T:()()T:\mathbb{P}(\mathcal{H})\rightarrow\mathbb{P}(\mathcal{H}), there exists a map U(T):U(T):\mathcal{H}\rightarrow\mathcal{H} that is either unitary or antiunitary such that the following diagram commutes.

{\mathcal{H}}{\mathcal{H}}(){\mathbb{P}(\mathcal{H})}(){\mathbb{P}(\mathcal{H})}U(T)\scriptstyle{U(T)}T\scriptstyle{T} (2.6)
Proof.

For a proof, see [50] p.91. ∎

If we denote the set of all antiunitary maps on \mathcal{H} as U(H)U^{*}(H), the set U()U()U(\mathcal{H})\amalg U^{*}(\mathcal{H}) becomes a topological group with strong operator topology and contains 𝕋:={λI:λ,|λ|=1}\mathbb{T}:=\{\lambda I_{\mathcal{H}}:\lambda\in\mathbb{C},|\lambda|=1\} as a closed normal subgroup. Note that U()U(\mathcal{H}) is the identity component of this group since it is connected in the strong operator topology (cf. [40]).

According to Winger’s theorem, the set of all physical symmetries on \mathcal{H} is precisely

S()=(U()U())/𝕋.S(\mathcal{H})=\left(U(\mathcal{H})\amalg U^{*}(\mathcal{H})\right)/\mathbb{T}. (2.7)

Note that the image of U()U(\mathcal{H}) in the quotient space, the projective unitary group PU():=U()/𝕋PU(\mathcal{H}):=U(\mathcal{H})/\mathbb{T}, is the identity component of the quotient topological group S()S(\mathcal{H}).

2.3 Lorentz Symmetry

SR is most elegantly described as the “Geometry of the Minkowski spacetime (4,η)(\mathbb{R}^{4},\eta) where η=diag(1,1,1,1)\eta=\text{diag}(1,-1,-1,-1). Throughout, let MM denote this pseudo-Riemannian manifold.

Definition 2.7.

An inertial frame of reference is a global orthonormal coordinate chart φ=(xμ):M4\varphi=(x^{\mu}):M\rightarrow\mathbb{R}^{4} on which the coordinate representation of the metric η\eta is given by ημνdxμdxν\eta_{\mu\nu}dx^{\mu}dx^{\nu} (i.e., (φ1)η=ημνdxμdxν(\varphi^{-1})^{*}\eta=\eta_{\mu\nu}dx^{\mu}dx^{\nu} in Λ2(T4)\Lambda^{2}(T^{*}\mathbb{R}^{4})).

Choosing an inertial frame of reference means setting up a coordinate system φ=(t,x,y,z)\varphi=(t,x,y,z) in which each point EME\in M (called an event) is recorded as the 44 numerical values φ(E)\varphi(E).

Suppose Alice and Bob have chosen inertial frames of reference φA=(tA,xA,yA,zA)\varphi_{A}=(t_{A},x_{A},y_{A},z_{A}) and φB=(tB,xB,yB,zB)\varphi_{B}=(t_{B},x_{B},y_{B},z_{B}) respectively. Then, by definition, φBφA1:44\varphi_{B}\circ\varphi_{A}^{-1}:\mathbb{R}^{4}\rightarrow\mathbb{R}^{4} is an element of the isometry group of (4,η(\mathbb{R}^{4},\eta), which is called the Poincaré group. If we denote the linear isometry group of (4,η)(\mathbb{R}^{4},\eta) (called the Lorentz group) as

O(1,3):={ΛGL4():ΛηΛ=η},O(1,3):=\left\{\Lambda\in GL_{4}(\mathbb{R}):\Lambda^{\intercal}\eta\Lambda=\eta\right\}, (2.8)

then the Poincaré group is given by

P(4):=4O(1,3)P(4):=\mathbb{R}^{4}\ltimes O(1,3) (2.9)

where the semidirect product is taken with respect to the natural action of O(1,3)O(1,3) on the abelian group 4\mathbb{R}^{4}.555The group multiplication is thus given by (a,Λ)(a,Λ)=(a+Λa,ΛΛ)(a,\Lambda)(a^{\prime},\Lambda^{\prime})=(a+\Lambda a^{\prime},\Lambda\Lambda^{\prime}). Obviously, the identity is (0,I4)(0,I_{4}) and (a,Λ)1=(Λ1a,Λ1)(a,\Lambda)^{-1}=(-\Lambda^{-1}a,\Lambda^{-1}).

The study of the group P(4)P(4) is essential in Relativistic Quantum Mechanics, which is succinctly summarized in Arthur Jaffe’s note [31]. I have taken the following result from the note, which will be needed throughout.

Theorem 2.8.

Let SO(1,3)SO^{\uparrow}(1,3) be the connected component of O(1,3)O(1,3). Then, O(1,3)O(1,3) has four connected components given by

O(1,3)=SO(1,3)𝒫SO(1,3)𝒯SO(1,3)𝒫𝒯SO(1,3)O(1,3)=SO^{\uparrow}(1,3)\hskip 1.42271pt\amalg\hskip 1.42271pt\mathcal{P}\hskip 1.42271ptSO^{\uparrow}(1,3)\hskip 1.42271pt\amalg\hskip 1.42271pt\mathcal{T}\hskip 1.42271ptSO^{\uparrow}(1,3)\hskip 1.42271pt\amalg\hskip 1.42271pt\mathcal{PT}\hskip 1.42271ptSO^{\uparrow}(1,3) (2.10)

where 𝒫:=diag(1,1,1,1)\mathcal{P}:=\textup{diag}(1,-1,-1,-1) and 𝒯:=diag(1,1,1,1)\mathcal{T}:=\textup{diag}(-1,1,1,1) are called parity inversion and time reversal, respectively.

Usually, one restricts attention to the connected component 4SO(1,3)\mathbb{R}^{4}\ltimes SO^{\uparrow}(1,3) of P(4)P(4) (there are physical reasons for this. Cf., [50] p.75) and we will follow this practice in this paper.

So, the two observers’ records of an arbitrary event EME\in M, namely, φA(E)=(tA,xA,yA,zA)\varphi_{A}(E)=(t_{A},x_{A},y_{A},z_{A}) and φB(E)=(tB,xB,yB,zB)\varphi_{B}(E)=(t_{B},x_{B},y_{B},z_{B}), are related by an element (a,Λ):=φBφA14SO(1,3)(a,\Lambda):=\varphi_{B}\circ\varphi_{A}^{-1}\in\mathbb{R}^{4}\ltimes SO^{\uparrow}(1,3) such that

(tBxByBzB)=a+Λ(tAxAyAzA)\begin{pmatrix}t_{B}\\ x_{B}\\ y_{B}\\ z_{B}\end{pmatrix}=a+\Lambda\begin{pmatrix}t_{A}\\ x_{A}\\ y_{A}\\ z_{A}\end{pmatrix} (2.11)

which may be expressed as xBμ=aμ+ΛνμxAνx_{B}^{\mu}=a^{\mu}+\Lambda^{\mu}_{\nu}x_{A}^{\nu} (cf. Sect. 2.1).

The postulates of SR require that every physical law and entity has an invariant meaning under this kind of coordinate transformation. Mathematically, this just means that physical entities should be objects living in the manifold MM and physical laws should be equations defined on the manifold MM which are independent of the choice of inertial frames of reference. So that, for example, the vacuum Maxwell’s equations of Electrodynamics can be written as

dF=0\displaystyle dF=0
dF=0\displaystyle d\star F=0

for some 22-form FF (called the electromagnetic tensor) on the manifold MM where dd is the differential on MM and \star is the Hodge star operator on MM (cf. [8]).

But, this requirement is usually expressed in coordinate representations in physics textbooks. For example, suppose a tangent vector vTMv\in TM has component representations (vAμ)(v_{A}^{\mu}) and (vBμ)(v_{B}^{\mu}) in Alice’s frame and Bob’s frame, respectively. Then, the transformation law Eq. (2.11) gives the relation

vBμ=ΛνμvAν.v_{B}^{\mu}=\Lambda_{\nu}^{\mu}v_{A}^{\nu}. (2.12)

Conversely, if any two inertial frames, (xAμ)(x_{A}^{\mu}) and (xBμ)(x_{B}^{\mu}), connected by a transformation (a,Λ)P(4)(a,\Lambda)\in P(4) as in Eq. (2.11) observed a vector quantity (e.g. a velocity of a particle) as (vAμ)(v_{A}^{\mu}) and (vBμ)(v_{B}^{\mu}) in their respective frames and found the relation vBμ=ΛνμvAνv_{B}^{\mu}=\Lambda_{\nu}^{\mu}v_{A}^{\nu}, then they would conclude that the vector quantities are manifestations of an object living in TMTM in their respective coordinate systems, i.e., it has meaning independent of the choice of inertial frames.

Any tensorial quantity transforming in this fashion from one inertial frame to another (e.g., FBμν=ΛαμΛβνFAαβF_{B}^{\mu\nu}=\Lambda_{\alpha}^{\mu}\Lambda_{\beta}^{\nu}F_{A}^{\alpha\beta} for the electromagnetic tensor) is called a Lorentz covariant tensor and can be regarded as elements of a tensor bundle on MM. This is the usual way that physicists take to express the fact that a quantity has an invariant meaning in all inertial frames of reference.

How does this principle affect the description of QM? In special relativistic scenarios, one is interested in two inertial observers’ perceptions of one physical reality. Accordingly, consider two inertial observers Alice and Bob, whose classical observations are related by Eq. (2.11), who are now interested in the investigation of a quantum system described by the states in the Hilbert space \mathcal{H}. We naturally expect that there is a certain transformation U¯(a,Λ)\overline{U}(a,\Lambda) on ()\mathbb{P}(\mathcal{H}) which depends on the Lorentz transformation (a,Λ):=φBφA1(a,\Lambda):=\varphi_{B}\circ\varphi_{A}^{-1} such that whenever Alice perceives a quantum state [ψ]()[\psi]\in\mathbb{P}(\mathcal{H}), Bob would perceive it as U¯(a,Λ)[ψ]()\overline{U}(a,\Lambda)[\psi]\in\mathbb{P}(\mathcal{H}).

Recalling Definition 2.1, the principle of SR naturally requires that the two inertial observers should obtain the same transition probability. In view of Definition 2.2, this means that U¯(a,Λ)\overline{U}(a,\Lambda) is a physical symmetry. I.e., the Lorentz transformations act as physical symmetries on a quantum system.

By Theorem 2.6, this implies the existence of a map U¯:4SO(1,3)S()\overline{U}:\mathbb{R}^{4}\ltimes SO^{\uparrow}(1,3)\rightarrow S(\mathcal{H}) (cf. Eq. (2.7)). A moment’s thought suggests that it is natural to require that U¯\overline{U} be a continuous group homomorphism.666E.g., the change of reference frame from Alice to Bob and then again to Alice should be the identity transformation and that “nearly same” inertial reference frames should observe “nearly same” quantum states, etc. See [50] pp.50–52 for details. Therefore, the range of U¯\overline{U} is entirely contained in the identity component PU()PU(\mathcal{H}) since the group 4SO(1,3)\mathbb{R}^{4}\ltimes SO^{\uparrow}(1,3) is connected. In short, the principle of SR gives us a projective representation U¯:4SO(1,3)PU()\overline{U}:\mathbb{R}^{4}\ltimes SO^{\uparrow}(1,3)\rightarrow PU(\mathcal{H}).

We can ask a question at this point. As in Wigner’s theorem, can we lift the representation to 4SO(1,3)U()\mathbb{R}^{4}\ltimes SO^{\uparrow}(1,3)\rightarrow U(\mathcal{H}) so that the following diagram holds?

U(){U(\mathcal{H})}4SO(1,3){\mathbb{R}^{4}\ltimes SO^{\uparrow}(1,3)}PU(){PU(\mathcal{H})}

The answer is “No” in general. But, Bargman’s theorem ([24], p.40) asserts that passing to the universal cover 4SL(2,)\mathbb{R}^{4}\ltimes SL(2,\mathbb{C}) of 4SO(1,3)\mathbb{R}^{4}\ltimes SO^{\uparrow}(1,3), we always get a unitary representation. To see this, we must first identify a covering map SL(2,)SO(1,3)SL(2,\mathbb{C})\rightarrow SO^{\uparrow}(1,3).

Given ΛSL(2,)\Lambda\in SL(2,\mathbb{C}), let κ(Λ)SO(1,3)\kappa(\Lambda)\in SO^{\uparrow}(1,3) be the matrix which acts on a four-vector x4x\in\mathbb{R}^{4} as

(κ(Λ)x)\displaystyle\left(\kappa(\Lambda)x\right)^{\sim} =\displaystyle= Λx~Λ\displaystyle\Lambda\tilde{x}\Lambda^{\dagger} (2.13a)
(κ(Λ)x)\displaystyle\left(\kappa(\Lambda)x\right)_{\sim} =\displaystyle= Λ1x~Λ1\displaystyle\Lambda^{\dagger-1}\underaccent{\tilde}{x}\Lambda^{-1} (2.13b)

(cf. Eq. (2.3)) where the RHS are ordinary products of matrices in M2()M_{2}(\mathbb{C}) and ()(\cdot)^{\dagger} denotes the Hermitian conjugation of a complex matrix. Then, the map

κ:SL(2,)SO(1,3)\kappa:SL(2,\mathbb{C})\rightarrow SO^{\uparrow}(1,3) (2.14)

is a double covering homomorphism (cf. [24]) and since SL(2,)SL(2,\mathbb{C}) is simply connected, it is a universal covering homomorphism. Via κ\kappa, we obtain an action of SL(2,)SL(2,\mathbb{C}) on 4\mathbb{R}^{4}. We will often suppress κ\kappa when we denote an action of an element SL(2,)SL(2,\mathbb{C}) on an element of 4\mathbb{R}^{4}. (e.g., κ(Λ)x=Λx\kappa(\Lambda)x=\Lambda x and so on.) We can form a semi-direct product 4SL(2,)\mathbb{R}^{4}\ltimes SL(2,\mathbb{C}) using this action. The map 4SL(2,)4SO(1,3)\mathbb{R}^{4}\ltimes SL(2,\mathbb{C})\rightarrow\mathbb{R}^{4}\ltimes SO^{\uparrow}(1,3) defined by (a,Λ)(a,κ(Λ))(a,\Lambda)\mapsto(a,\kappa(\Lambda)) is also a universal covering homomorphism. The following is a consequence of Bargman’s theorem.

Theorem 2.9.

Given a projective unitary representation 4SO(1,3)PU()\mathbb{R}^{4}\ltimes SO^{\uparrow}(1,3)\rightarrow PU(\mathcal{H}) which is continuous with respect to the quotient strong operator topology on PU()PU(\mathcal{H}), there is a (continuous) unitary representation 4SL(2,)U()\mathbb{R}^{4}\ltimes SL(2,\mathbb{C})\rightarrow U(\mathcal{H}) such that the following diagram commutes.

4SL(2,){\mathbb{R}^{4}\ltimes SL(2,\mathbb{C})}U(){U(\mathcal{H})}4SO(1,3){\mathbb{R}^{4}\ltimes SO^{\uparrow}(1,3)}PU(){PU(\mathcal{H})}1×κ\scriptstyle{1\times\kappa}

Accordingly, we make the following definition.

Definition 2.10.

A pair (U,)(U,\mathcal{H}) is called a quantum system with Lorentz symmetry if \mathcal{H} is a Hilbert space and U:4SL(2,)U()U:\mathbb{R}^{4}\ltimes SL(2,\mathbb{C})\rightarrow U(\mathcal{H}) is a unitary representation.

Quantum systems possessing Lorentz symmetry are the right playground for testing relativistic considerations in QM.

Remark 2.11.

Let (U,)(U,\mathcal{H}) be a quantum system with Lorentz symmetry. Here comes how we should interpret relativistic scenarios using this system. Suppose two inertial observers Alice and Bob are related by a Lorentz transformation (a,Λ)4SO(1,3)(a,\Lambda)\in\mathbb{R}^{4}\ltimes SO^{\uparrow}(1,3) as in Eq. (2.11) and the two observers’ perceptions of one quantum state are given by ψA\psi_{A}\in\mathcal{H} and ψB\psi_{B}\in\mathcal{H}, respectively. Then, by the above discussions, we require

[ψB]=[U(a,Λ)ψA][\psi_{B}]=[U(a,\Lambda^{\prime})\psi_{A}] (2.15)

where ΛSL(2,)\Lambda^{\prime}\in SL(2,\mathbb{C}) is a lift of Λ\Lambda via the covering map κ\kappa.

This transformation formula is the quantum analogue of the classical transformation formula Eq. (2.11). If U(I2)=λIU(-I_{2})=\lambda I_{\mathcal{H}} for some scalar λ\lambda\in\mathbb{C} so that it descends to a projective representation as in Theorem 2.9, then this transformation does not depend on the choice of the lift Λ\Lambda^{\prime}. We will see that this is true in all the cases that we will be looking at (cf. Theorems 4.10).

We should always have in mind the two rules Eqs. (2.11) and (2.15) when dealing with a relativistic scenario in which more than one observer is involved.

2.4 A Standard Choice of Lorentz Boostings

Fix an inertial frame of reference (call this frame Alice) and consider a massive particle moving with respect to the frame. If the particle has some internal states (such as spin), one may want to know how it is observed in a “particle-rest frame”. But, there is an ambiguity in this concept. Namely, if one fixes a particle-rest frame, then any other frame transformed by a rotation (that is, an element in SU(2)SU(2)) from this frame is also a particle-rest frame. So, to speak of internal states of a moving particle, it would be convenient for Alice to set up a choice of Lorentz transformation for each possible motion state of the particle.

We make one standard choice in this section. This will be important in later discussions and would serve as a good opportunity to get familiar with the notations of Sect. 2.1 and Eq. (2.13).

Let m>0m>0 be the mass of the particle and denote pm=(m,0,0,0)p_{m}=(m,0,0,0). Then, the set of possible momentums that the particle can assume is given by

X:={p4:pμpμ=m2,p0>0}(cf. [54]).X:=\{p\in\mathbb{R}^{4}:p_{\mu}p^{\mu}=m^{2},\hskip 2.84544ptp^{0}>0\}\quad\text{(cf. \cite[cite]{[\@@bibref{}{zee}{}{}]})}. (2.16)

For each pXp\in X, p~p~=m2I=p~p~\underaccent{\tilde}{p}\tilde{p}=m^{2}I=\tilde{p}\underaccent{\tilde}{p} by Eq. (2.4b). Also, these two matrices are positive matrices with the square roots given by

p~=12(m+p0)(p~+mI)\displaystyle\sqrt{\underaccent{\tilde}{p}}=\frac{1}{\sqrt{2(m+p_{0})}}\left(\underaccent{\tilde}{p}+mI\right) (2.17a)
p~=12(m+p0)(p~+mI).\displaystyle\sqrt{\tilde{p}}=\frac{1}{\sqrt{2(m+p_{0})}}\left(\tilde{p}+mI\right). (2.17b)

It is easy to see that p~p~=mI=p~p~\sqrt{\underaccent{\tilde}{p}}\sqrt{\tilde{p}}=mI=\sqrt{\tilde{p}}\sqrt{\underaccent{\tilde}{p}} holds, which may be expressed as

(p~m)1=(p~m).\left(\sqrt{\frac{\underaccent{\tilde}{p}}{m}}\right)^{-1}=\left(\sqrt{\frac{\tilde{p}}{m}}\right). (2.18)

If we observe p~=mp~mp~m=p~m(pm)p~m\tilde{p}=m\sqrt{\frac{\tilde{p}}{m}}\sqrt{\frac{\tilde{p}}{m}}=\sqrt{\frac{\tilde{p}}{m}}(p_{m})^{\sim}\sqrt{\frac{\tilde{p}}{m}}, we see that for the matrix

L(p):=p~mSL(2,),L(p):=\sqrt{\frac{\tilde{p}}{m}}\in SL(2,\mathbb{C}), (2.19)

we have κ(L(p))pm=p\kappa\big{(}L(p)\big{)}p_{m}=p by Eq. (2.13). L(p)L(p) is called the standard boosting sending pmp_{m} to pp.

Remark 2.12.

If 𝐩^=(sinθcosϕ,sinθsinϕ,cosθ)\hat{\mathbf{p}}=(\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta) with 0ϕ2π0\leq\phi\leq 2\pi and 0θπ0\leq\theta\leq\pi, then

R(𝐩^):=(eiϕ200eiϕ2)(cosθ2sinθ2sinθ2cosθ2)SU(2)R(\hat{\mathbf{p}}):=\begin{pmatrix}e^{-i\frac{\phi}{2}}&0\\ 0&e^{i\frac{\phi}{2}}\end{pmatrix}\begin{pmatrix}\cos\frac{\theta}{2}&-\sin\frac{\theta}{2}\\ \sin\frac{\theta}{2}&\cos\frac{\theta}{2}\end{pmatrix}\in SU(2)

is a rotation which takes z^\hat{z} to 𝐩^\hat{\mathbf{p}} and

Bm(|𝐩|):=(p0+|𝐩|m00p0|𝐩|m)SL(2,)B_{m}(|\mathbf{p}|):=\begin{pmatrix}\sqrt{\frac{p^{0}+|\mathbf{p}|}{m}}&0\\ 0&\sqrt{\frac{p^{0}-|\mathbf{p}|}{m}}\end{pmatrix}\in SL(2,\mathbb{C})

is the boosting along the zz-axis which takes pmp_{m} to (p0,0,0,|𝐩|)(p^{0},0,0,|\mathbf{p}|) (cf. Eq. (2.13)).

One can easily see, using Eq. (2.13), that

p~m=R(𝐩^)Bm(|𝐩|)2R(𝐩^)1\frac{\tilde{p}}{m}=R(\hat{\mathbf{p}})B_{m}(|\mathbf{p}|)^{2}R(\hat{\mathbf{p}})^{-1}

holds. Therefore,

L(p)=p~m=R(𝐩^)Bm(|𝐩|)R(𝐩^)1,L(p)=\sqrt{\frac{\tilde{p}}{m}}=R(\hat{\mathbf{p}})B_{m}(|\mathbf{p}|)R(\hat{\mathbf{p}})^{-1}, (2.20)

which implies that the matrix Eq. (2.19) is equal to the standard boosting that maps pmp_{m} to pp used in the physics literature (cf. [50], p.68).

2.5 Relativistic Perception

In this section, we introduce the concept of “relativistic perception”, which is the central topic of this paper. Let an inertial frame of reference be given (cf. Definition 2.7). Then, any tensorial quantity represented in the coordinate system of the frame that transforms covariantly under Lorentz transformations is called “relativistic perception” of the frame. Perhaps the best way to illustrate this concept is by giving examples and nonexamples.

Fix an inertial frame of reference (call this frame Alice) and suppose we are given a point particle with mass m>0m>0 whose relativistic momentum and angular momentum are represented as pμp^{\mu} and jαβj_{\alpha\beta}777There is a systematic way to promote non-relativistic, frame-dependent dynamical quantities (e.g. angular momentum) to corresponding relativistic concepts that have meaning in every inertial frame (see the discussions right below Eq. (2.11)). For example, the non-relativistic momentum 𝐩:=m𝐯\mathbf{p}:=m\mathbf{v} is an observer-dependent quantity, which is promoted to the four-momentum p=(mγ,mγ𝐯)p=(m\gamma,m\gamma\mathbf{v}) where γ=11|𝐯|2\gamma=\frac{1}{\sqrt{1-|\mathbf{v}|^{2}}}. Likewise, there is an antisymmetric 2-tensor jαβj_{\alpha\beta} called the relativistic angular momentum which is promoted from the ordinary angular momentum 2-tensor jklj_{kl}. Usually, one uses a three-vector 𝒋\boldsymbol{j} defined by j1=j23j^{1}=j_{23}, j2=j31j^{2}=j_{31}, and j3=j12j^{3}=j_{12} as the angular momentum three-vector. For more details, see [54] and [3]. in the frame, respectively. The two quantities are relativistic perceptions of Alice.

Now, suppose that the particle has non-zero spin (for the concept of spin in classical SR, see [3]). Since spin is an internal angular momentum of the particle, we come to consider a particle-rest frame (Bob) in which the spin is represented as a three-vector (0,𝐬)(0,\mathbf{s}). Is the spin of the particle a relativistic perception of Alice? No, apart from the case when p=(m,0,0,0)p=(m,0,0,0). Rather, it is a relativistic perception of Bob.

Example 2.13 (Pauli-Lubansky four-vector and Newton-Winger Spin).

Naturally, we come to wonder how the spin of a particle is perceived by arbitrary inertial frames of reference with respect to which the particle might be moving (such as Alice). The quantity should be a Lorentz covariant vector (cf. Eq. (2.12)) and become a three-vector in any particle-rest frame. The Pauli-Lubansky four-vector turns out to be the right object (see [3] for an extended discussion of this vector). In Alice’s frame, it is defined as

wμ=12εναβμpνjαβw^{\mu}=\frac{1}{2}\varepsilon^{\nu\alpha\beta\mu}p_{\nu}j_{\alpha\beta} (2.21)

where εναβμ\varepsilon^{\nu\alpha\beta\mu} is an alternating 44-tensor which is 11 when (ν,α,β,μ)(\nu,\alpha,\beta,\mu) is a cyclic permutation of (0,1,2,3)(0,1,2,3). One can show that this is a Lorentz covariant vector (i.e., relativistic perception of Alice),

pμwμ=0,p_{\mu}w^{\mu}=0, (2.22)

and when p=(m,0,0,0)p=(m,0,0,0) (that is, in a particle-rest frame),

w=(0,m𝒋),w=(0,m\boldsymbol{j}), (2.23)

as it should be. So, using the concept of “relativistic perception” introduced in this section, one can say that the Pauli-Lubansky four-vector of a particle is the internal angular momentum (i.e., the spin) of the particle perceived by an observer who perceives the spin-carrying particle as moving with momentum pp.

Using the choice of boostings obtained in Sect. 2.4, we can obtain another important object, which will be relevant in later discussions.

Observe that for all pXp\in X,

L(p)1w=(0,m𝐬)L(p)^{-1}w=(0,m\mathbf{s}) (2.24)

holds (see Eqs. (37)–(38) of [32]), where

𝒔=1m(𝐰w0𝐩m+p0)\boldsymbol{s}=\frac{1}{m}\left(\mathbf{w}-\frac{w^{0}\mathbf{p}}{m+p^{0}}\right) (2.25)

is called the Newton-Wigner spin three-vector. The Newton-Wigner spin is just the Pauli-Lubansky four-vector perceived by an L(p)1L(p)^{-1}-transformed inertial observer, with respect to whom the particle is at rest consequently.

Note that while the Pauli-Lubansky vector transforms covariantly under Lorentz transformations, the Newton-Wigner spin does not. Therefore, the Pauli-Lubansky vector is relativistic perception whereas the Newton-Wigner spin is not. The relation between these two vector descriptions of the internal angular momentum of a particle (cf. Eq. (2.23)) will be a recurrent theme throughout the paper (cf. Sect. 3.3.2).

2.5.1 A scheme by which inertial observers can obtain their relativistic perception of the spin of a moving particle

In a relativistic scenario where several inertial observers are interested in the spin of a particle, it is desirable for each observer to record the spin information in the form of relativistic perception, i.e., as the Pauli-Lubansky four-vector in each frame since it is the information that has meaning in every frame (see the discussion surrounding Eq. (2.12)).

So, let’s consider an inertial observer Bob who is trying to calculate the Pauli-Lubansky four-vector ww of a moving particle. Classically, Bob could, in principle, measure the momentum pp of the particle, conceive of a frame change to a particle-rest frame using the transformation L(p)L(p), measure the spin three-vector 𝐬\mathbf{s} in that frame using spin-magnetic field interaction (cf. Ch. 7, pp.248–253 of [3]), which is precisely the Newton-Wigenr spin of the particle, and recover the Pauli-Lubansky four-vector ww by using Eq. (2.24).

Remark 2.14 (The quantum particle case).

However, if the particle under investigation is a quantum particle, the quest of determining the Pauli-Lubansky four-vector ww of the particle becomes subtle. Since the motion state of a quantum particle (see Sect. 3 for the definition) is given by a superposition of possible motion states, there is no such thing as a “particle-rest frame” in which the value of 𝐬\mathbf{s} gets meaningful, from which one can calculate ww. In fact, there is no consensus among researchers about the precise definition of the relativistic spin operator in Relativistic Quantum Mechanics and consequently on how to measure the Pauli-Lubansky four-vector of a moving quantum particle (see [5, 4, 17, 21] on this issue).

One solution to this subtlety is to consider the wave functions representing the states of the quantum particle as fields of spin states corresponding to all possible motion states888This is where the language of bundle theory naturally comes in. apply the above classical scheme to each spin-motion state to make it contain information of the Pauli-Lubansky four-vector, i.e., relativistic perception. This will expose a critical flaw of the standard Hilbert space description of single-particle state spaces and suggest a way to fix it. These statements will be illustrated in Sects. 3.23.3 for massive particles with spin-1/2.

Arranging the internal quantum states in this way not only has the conceptual advantage as explained in this subsection (i.e., it is a faithful reflection of the reality demanded by the principle of SR), but also has observable consequences as we will see in Sect. 7.

3 The RQI of massive particles with spin-1/2

In this section, we define the single-particle state space and use one particular example of them (namely, the particle with mass m>0m>0 and spin-1/2) to briefly survey the fundamental perplexities of RQI first observed by the two pioneering papers [36, 26] and how these perplexities have finally reached a definitive clarification in the recent work [32]. Those who are interested in other aspects of RQI as well are referred to [37, 34] and references therein.

Definition 3.1.

The irreducible unitary representation spaces of the group G:=4SL(2,)G:=\mathbb{R}^{4}\ltimes SL(2,\mathbb{C}) are called single-particle state spaces.

That is, single-particle state spaces are the smallest possible quantum systems which possess Lorentz symmetry. This definition is due to Wigner [51]. We will see in Sect. 6 that the Hilbert space

L,1/2L2(3,d3𝐩m2+|𝐩|2)2,\mathcal{H}_{L,1/2}\cong L^{2}\left(\mathbb{R}^{3},\frac{d^{3}\mathbf{p}}{\sqrt{m^{2}+|\mathbf{p}|^{2}}}\right)\otimes\mathbb{C}^{2}, (3.1a)
on which the representation UL,1/2U_{L,1/2} acts as
[UL,1/2(a,Λ)ψ](p)=eip,aWL(Λ,Λ1p)ψ(Λ1p)[U_{L,1/2}(a,\Lambda)\psi](p)=e^{-i\langle p,a\rangle}W_{L}(\Lambda,\Lambda^{-1}p)\psi(\Lambda^{-1}p) (3.1b)

upon identifying 𝐩(m2+|𝐩|2,𝐩)=p4\mathbf{p}\cong(\sqrt{m^{2}+|\mathbf{p}|^{2}},\mathbf{p})=p\in\mathbb{R}^{4}, is a single-particle state space, which can be called the single-particle state space for particles of mass m>0m>0 and spin-1/2. (Here WL(Λ,p):=L(Λp)1ΛL(p)SU(2)W_{L}(\Lambda,p):=L(\Lambda p)^{-1}\Lambda L(p)\in SU(2) for ΛSL(2,)\Lambda\in SL(2,\mathbb{C}) and pXp\in X is the Wigner rotation matrix.) Many elementary particles including electron and quarks, and also very important non-elementary particles such as proton and neutron can be described by this representation. This case has been the most intensely studied class of particles in the context of RQI and Eq. (3.1) has been the standard representation that has been used to describe the particles of this type.999Note that this representation is different from the one used in the textbook [50] by the normalization factor (Λ1p)0/p0\sqrt{\big{(}\Lambda^{-1}p\big{)}^{0}/p^{0}}. This is because this factor has been subsumed into the measure d3𝐩m2+|𝐩|2\frac{d^{3}\mathbf{p}}{\sqrt{m^{2}+|\mathbf{p}|^{2}}} in the definition of the L2L^{2}-space in Eq. (3.1a). Throughout this paper, except in Sect. 5, GG will always denote the group 4SL(2,)\mathbb{R}^{4}\ltimes SL(2,\mathbb{C}).

3.1 The pioneering works

Here comes a brief mathematical analysis of the two pioneering works [36] and [26]. Throughout, the identification 3X\mathbb{R}^{3}\cong X (cf. Eq. (2.16)) given by 𝐩(m2+|𝐩|2|,𝐩)\mathbf{p}\mapsto(\sqrt{m^{2}+|\mathbf{p}|^{2}|},\mathbf{p}) will be assumed and we will freely identify 𝐩3\mathbf{p}\in\mathbb{R}^{3} with p=(m2+|𝐩|2|,𝐩)Xp=(\sqrt{m^{2}+|\mathbf{p}|^{2}|},\mathbf{p})\in X (i.e., p0=m2+|𝐩|2p^{0}=\sqrt{m^{2}+|\mathbf{p}|^{2}}). In this identification, the measure d3𝐩m2+|𝐩|2\frac{d^{3}\mathbf{p}}{\sqrt{m^{2}+|\mathbf{p}|^{2}}} will be denoted as dμ(p)d\mu(p).

The work of Peres, Scudo, and Terno

In the seminal paper [36], the authors considered a massive spin-1/2 single-particle state space Eq. (3.1). So, an element ψL,1/2\psi\in\mathcal{H}_{L,1/2} can be written as

ψ=(a1a2),(a1,a2L2(3,μ)).\psi=\begin{pmatrix}a_{1}\\ a_{2}\end{pmatrix},\hskip 5.69046pt\Big{(}a_{1},a_{2}\in L^{2}(\mathbb{R}^{3},\mu)\Big{)}.

On this space, they formed the density matrix corresponding to a unit vector ψ\psi (i.e., the projection onto the one dimensional space spanned by ψ\psi)

ρ=|ψψ|L2(3×3,μ×μ)M2(),\rho=|\psi\rangle\langle\psi|\in L^{2}(\mathbb{R}^{3}\times\mathbb{R}^{3},\mu\times\mu)\otimes M_{2}(\mathbb{C}),

and defined the reduced density matrix for spin of ψ\psi by taking the partial trace (cf. Ch. 19 of [28]) with respect to the L2(3,μ)L^{2}(\mathbb{R}^{3},\mu)-component of the Hilbert space, i.e.,

τ:=TrL2(ρ)M2().\tau:=\text{Tr}_{L^{2}}(\rho)\in M_{2}(\mathbb{C}). (3.2)

Since L,1/2L2(3,μ)2\mathcal{H}_{L,1/2}\cong L^{2}(\mathbb{R}^{3},\mu)\otimes\mathbb{C}^{2} is a tensor product system, the 2\mathbb{C}^{2}-factor of which contains the spin information of the single-particle states, the reduced 2×22\times 2-matrix τ\tau is supposed to give the “spin information stored in 2\mathbb{C}^{2} of the single-particle state ψ\psi independent of the momentum variable L2(3,μ)L^{2}(\mathbb{R}^{3},\mu) according to the usual treatment of composite systems in QIT (cf. [30]). Naturally, the authors of the paper defined the spin entropy of the state ψ\psi as

S(τ)=Tr(τlogτ),S(\tau)=-\text{Tr}(\tau\log\tau), (3.3)

which is (supposedly) a quantitative measure of the spin information contained in the state ψ\psi.

Consider a scenario where two parties communicate with each other by using massive particles with spin-1/2 as qubit carriers. One party encodes one bit of information in the spin of a massive spin-1/2 particle and transmits the particle to another party. The receiving party is only interested in the spin information of the particle independent of its momentum. So, the reduced matrix Eq. (3.2) is expected to function as an information resource that can be manipulated as in the usual treatment of QIT.

However, the authors of the paper found a certain perplexity which was against this innocuous expectation. They examined a situation in which one inertial observer (Alice) prepares a (supposed) spin-up state

ψA=(a10)\psi_{A}=\begin{pmatrix}a_{1}\\ 0\end{pmatrix}

where a1L2(3,μ)a_{1}\in L^{2}(\mathbb{R}^{3},\mu) is a normalized Gaussian distribution function, while the other observer (Bob), moving along the xx-axis of Alice’s coordinate system with constant velocity (denote this Lorentz transformation as (0,Λ)G(0,\Lambda)\in G), is trying to measure the spin zz-component of the prerpared state. Let

ψB=(b1b2)\psi_{B}=\begin{pmatrix}b_{1}\\ b_{2}\end{pmatrix}

be the above state in Bob’s reference frame. According to Remark 2.11, the two states are related by

ψB=UL,1/2(0,Λ)ψA.\psi_{B}=U_{L,1/2}(0,\Lambda)\psi_{A}.

Thus, if Bob is able to carry out a momentum-independent spin measurement, what he would get is the quantum informational property of the reduced density matrix given by

τB=TrL2(|ψBψB|)=TrL2[UL,1/2(0,Λ)|ψAψA|UL,1/2(0,Λ)1]\displaystyle\tau_{B}=\text{Tr}_{L^{2}}(|\psi_{B}\rangle\langle\psi_{B}|)=\text{Tr}_{L^{2}}\left[U_{L,1/2}(0,\Lambda)|\psi_{A}\rangle\langle\psi_{A}|U_{L,1/2}(0,\Lambda)^{-1}\right]
=XmWL(Λ,Λ1p)(|a1(Λ1p)|2000)WL(Λ,Λ1p)1𝑑μ(p)\displaystyle=\int_{X_{m}}W_{L}(\Lambda,\Lambda^{-1}p)\begin{pmatrix}|a_{1}(\Lambda^{-1}p)|^{2}&0\\ 0&0\end{pmatrix}W_{L}(\Lambda,\Lambda^{-1}p)^{-1}d\mu(p) (3.4)

while the spin information that Alice has prepared is contained in the matrix

τA=TrL2(|ψAψA|)=TrL2[|a1|2(1000)]=(1000).\tau_{A}=\text{Tr}_{L^{2}}(|\psi_{A}\rangle\langle\psi_{A}|)=\text{Tr}_{L^{2}}\left[|a_{1}|^{2}\otimes\begin{pmatrix}1&0\\ 0&0\end{pmatrix}\right]=\begin{pmatrix}1&0\\ 0&0\end{pmatrix}. (3.5)

The authors calculated the spin entropies of Eqs. (3.1)–(3.5) and showed that, while S(τA)=0S(\tau_{A})=0 always, S(τB)S(\tau_{B}) is in general non-zero depending on Λ\Lambda, showing that the spin entropy of the particle has no relativistically invariant meaning. From this, they concluded that there is no definite transformation law between τA\tau_{A} and τB\tau_{B} which depends only on Λ\Lambda and thus, the notion “spin state of a particle” is meaningless unless one does not specify its complete state, including the momentum variables.

The work of Gingrich and Adami

Shortly, the paper [26] considered a similar scenario, but with two massive spin-1/2 particles. This time the quantum Hilbert space is given by

L,1/2L,1/2L2(3×3,μ×μ)(22).\mathcal{H}_{L,1/2}\otimes\mathcal{H}_{L,1/2}\cong L^{2}(\mathbb{R}^{3}\times\mathbb{R}^{3},\mu\times\mu)\otimes\big{(}\mathbb{C}^{2}\otimes\mathbb{C}^{2}\big{)}. (3.6)

Following [36], the authors considered a two-particle state ψL,1/2L,1/2\psi\in\mathcal{H}_{L,1/2}\otimes\mathcal{H}_{L,1/2}, formed the density matrix corresponding to ψ\psi as

ρ:=|ψψ|L2(3×3,μ×μ)2(M2()M2()),\rho:=|\psi\rangle\langle\psi|\in L^{2}(\mathbb{R}^{3}\times\mathbb{R}^{3},\mu\times\mu)^{\otimes 2}\otimes\big{(}M_{2}(\mathbb{C})\otimes M_{2}(\mathbb{C})\big{)},

and took the partial trace with respect to the momentum variable to obtain a two-qubit bipartite state

τ:=TrL2(ρ)M2()M2(),\tau:=\text{Tr}_{L^{2}}(\rho)\in M_{2}(\mathbb{C})\otimes M_{2}(\mathbb{C}), (3.7)

where each component M2()M_{2}(\mathbb{C}) represents the spin quantum system of each particle, respectively. The entanglement of this bipartite state

E(τ):=S(Tr2(τ))E(\tau):=S(\text{Tr}_{\mathbb{C}^{2}}(\tau)) (3.8)

is called the spin entanglement of the two-particle state ψ\psi. Here, the trace in the RHS is done with respect to any one 2\mathbb{C}^{2}-component of the tensor product space 22\mathbb{C}^{2}\otimes\mathbb{C}^{2}. The result does not depend on the choice (cf. [30]).

With these notions at hand, they considered a situation where Alice has prepared a maximal Bell state with Gaussian momentum distribution

ψA(p,q)=12f(p)f(q)ϕ+L,1/2L,1/2\psi_{A}(p,q)=\frac{1}{\sqrt{2}}f(p)f(q)\phi^{+}\in\mathcal{H}_{L,1/2}\otimes\mathcal{H}_{L,1/2}

where

ϕ+:=((10)(10)+(01)(01))22\phi^{+}:=\left(\begin{pmatrix}1\\ 0\end{pmatrix}\otimes\begin{pmatrix}1\\ 0\end{pmatrix}+\begin{pmatrix}0\\ 1\end{pmatrix}\otimes\begin{pmatrix}0\\ 1\end{pmatrix}\right)\in\mathbb{C}^{2}\otimes\mathbb{C}^{2}

and f(p)f(p) is a normalized Gaussian distribution function.

Bob is now moving with constant velocity along the zz-axis with respect to Alice. Denote this Lorentz transformation as (0,Λ)G(0,\Lambda)\in G. Then, using Eq. (3.1b) on the tensor product system, the state

ψB=[UL,1/2(0,Λ)UL,1/2(0,Λ)]ψA\psi_{B}=[U_{L,1/2}(0,\Lambda)\otimes U_{L,1/2}(0,\Lambda)]\psi_{A}

is what the inertial observer Bob perceives as the Bell state that Alice has prepared (cf. Remark 2.11).

Now, following the above procedure, they form qubit bipartite states τA\tau_{A} and τB\tau_{B}, measure the spin entanglements E(τA)E(\tau_{A}) and E(τB)E(\tau_{B}) in their respective frames, and compare. Since

τA:=TrL2(|ψAψA|)=|ϕ+ϕ+|,\tau_{A}:=\text{Tr}_{L^{2}}(|\psi_{A}\rangle\langle\psi_{A}|)=|\phi^{+}\rangle\langle\phi^{+}|,

we see that τA\tau_{A} is a maximally entangled state and hence E(τA)=1E(\tau_{A})=1 always. However, the authors found that E(τB)E(\tau_{B}) might even vanish depending on Λ\Lambda111111In the paper, however, the authors used Wootter’s concurrence C(τ)C(\tau) instead of our entanglement E(τ)E(\tau). Nevertheless, for two-qubit systems, the relations E(τ)=1C(τ)=1E(\tau)=1\Leftrightarrow C(\tau)=1 and E(τ)=0C(τ)=0E(\tau)=0\Leftrightarrow C(\tau)=0 hold. Therefore, the two notions can be equivalently used for the same purpose of showing whether a pure state is separable or not. See [53] for details., which happens precisely when the bipartite state τB\tau_{B} is separable (cf. [30]). So, in particular, a two-particle state that is maximally entangled in spin with respect to one inertial frame may be perceived as a state that is completely unrelated in spin with respect to another inertial observer, a striking perplexity.

Therefore, just like the spin entropy in [36], the spin entanglement of a two-particle state is also an observer-dependent quantity, showing its inadequacy as an informational resource in the context of RQI.

As written in the introduction, an implication that these two works entailed was that when one wants to use the spin of massive particles with spin-1/2 (such as electron) as information carriers (i.e., qubit carriers), the concepts of entropy, entanglement, and correlation of the spins, which are important informational resources in QIT, may require a reassessment [37].

3.2 A problem with the standard description Eq. (3.1)

Some have questioned the meaning of the reduced density matrix Eq. (3.2). For example, [43] claimed, on the basis of a physical consideration, that a momentum-independent measurement of spin is impossible, and hence Eq. (3.2) is in fact meaningless. A related issue is the search for a right definition of relativistic spin operator, which still has no universally agreed upon definition (cf. [2, 15, 5, 4, 17, 21, 45]) whereas the paper [36] assumed it as the operator 112𝝉1\otimes\frac{1}{2}\boldsymbol{\tau} defined on the space Eq. (3.1a).

Therefore, in effect, these have questioned the validity of the interpretation that the 2\mathbb{C}^{2}-component in Eq. (3.1a) should give the momentum-independent spin states of the particle. As we shall see, the 2\mathbb{C}^{2}-component in Eq. (3.1a) is indeed inherently momentum dependent. This is most clearly seen if we look at the bundle underlying the Hilbert space L,1/2\mathcal{H}_{L,1/2} instead of the space itself.

In [32], it was pointed out that L,1/2\mathcal{H}_{L,1/2} can be viewed as the L2L^{2}-section space of the trivial bundle Xm+×2X_{m}^{+}\times\mathbb{C}^{2} with inner product

(f,g)Xf(p)g(p)𝑑μ(p).(f,g)\mapsto\int_{X}f(p)^{\dagger}g(p)d\mu(p).

Denote this bundle as EL,1/2E_{L,1/2}. This bundle is an assembly of the two-level quantum systems (EL,1/2)p2(E_{L,1/2})_{p}\cong\mathbb{C}^{2} corresponding to each motion state (momentum) pXp\in X, and each wave function ψL,1/2\psi\in\mathcal{H}_{L,1/2} becomes a field of qubits. The so-called momentum-spin eigenstate |p,χ,(pX,χ2)|p,\chi\rangle,(p\in X,\chi\in\mathbb{C}^{2}) used in the physics literature can be identified with the point (p,χ)(EL,1/2)p(p,\chi)\in(E_{L,1/2})_{p} in this formalism.

Since the full information of each quantum state of a massive particle with spin-1/2 can be recorded in the bundle EL,1/2E_{L,1/2}, being an L2L^{2}-section on the bundle121212This mathematical fact has nothing to do with physical measurement., each inertial observer can use the bundle instead of the space L,1/2\mathcal{H}_{L,1/2} for the description of a massive particle with spin-1/21/2. How is this bundle description related among different inertial observers? Suppose two inertial observers Alice and Bob are related by a Lorentz transformation (a,Λ)G(a,\Lambda)\in G as in Eq. (2.11). If Alice has prepared a particle in the state ψL,1/2\psi\in\mathcal{H}_{L,1/2} in her frame, then Bob would perceive this particle as in the state UL,1/2(a,Λ)ψL,sU_{L,1/2}(a,\Lambda)\psi\in\mathcal{H}_{L,s} according to Sect. 2.3 (cf. Remark 2.11).

For these transformation laws for wave functions to be true, Alice’s bundle EL,1/2AE_{L,1/2}^{A} and Bob’s bundle EL,1/2BE_{L,1/2}^{B} should be related by the bundle isomorphism

λL,1/2(a,Λ):EL,1/2AEL,1/2B\displaystyle\lambda_{L,1/2}(a,\Lambda):E_{L,1/2}^{A}\rightarrow E_{L,1/2}^{B}
(p,v)A(Λp,ei(Λp)μaμσ1/2(WL(Λ,p))v)B\displaystyle(p,v)^{A}\mapsto\left(\Lambda p,e^{-i(\Lambda p)_{\mu}a^{\mu}}\sigma_{1/2}\left(W_{L}(\Lambda,p)\right)v\right)^{B} (3.9)

so that the transformation law for the sections

ψAψB=λL,1/2(a,Λ)ψAΛ1\psi^{A}\mapsto\psi^{B}=\lambda_{L,1/2}(a,\Lambda)\circ\psi^{A}\circ\Lambda^{-1} (3.10)

becomes UL,1/2(a,Λ)U_{L,1/2}(a,\Lambda). The following commutative diagram is useful in visualizing the transformation law.

EL,1/2AEL,1/2BXAXBλL,1/2(Λ,a)Λ.\leavevmode\hbox to84.67pt{\vbox to53.73pt{\pgfpicture\makeatletter\hbox{\hskip 42.33604pt\lower-26.91592pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-42.33604pt}{-26.81609pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 15.16803pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.86249pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${E_{L,1/2}^{A}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 15.16803pt\hfil&\hfil\hskip 39.168pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-10.86249pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${E_{L,1/2}^{B}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 15.16803pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 10.94025pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.6347pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${X^{A}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 10.94025pt\hfil&\hfil\hskip 35.10452pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.79901pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${X^{B}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 11.10455pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.79999pt}{13.25003pt}\pgfsys@lineto{11.40002pt}{13.25003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.6pt}{13.25003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.93341pt}{18.1028pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\lambda_{L,1/2}(\Lambda,a)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-27.16801pt}{3.39032pt}\pgfsys@lineto{-27.16801pt}{-13.80977pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-27.16801pt}{-14.00975pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{27.16801pt}{3.39032pt}\pgfsys@lineto{27.16801pt}{-13.80977pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{27.16801pt}{-14.00975pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-16.02777pt}{-24.31609pt}\pgfsys@lineto{15.4635pt}{-24.31609pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{15.66348pt}{-24.31609pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.51271pt}{-21.96332pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\Lambda}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}. (3.11)

Now, suppose two inertial observers Alice and Bob are related by a Lorentz transformation (0,L(p))G(0,L(p))\in G as in Eq. (2.11). Since the EL,1/2E_{L,1/2}-bundle description of the two observers are related by Eq. (3.9), we have

λL,1/2(0,L(p))(pm,χ)A=(p,χ)B\lambda_{L,1/2}(0,L(p))(p_{m},\chi)^{A}=(p,\chi)^{B} (3.12)

for (pm,χ)(EL,1/2A)pm{}^{\forall}(p_{m},\chi)\in(E_{L,1/2}^{A})_{p_{m}}.

To see what physical implications that this equation entails, we need a brief digression into the quantum mechanics of the two-level system.

If χ2\chi\in\mathbb{C}^{2} is a qubit, that is, χ2=1\|\chi\|^{2}=1, then, it is the definite spin-up state along the direction 𝐧:=χ𝝉χ=(χτ1χ,χτ2χ,χτ3χ)3\mathbf{n}:=\chi^{\dagger}\boldsymbol{\tau}\chi=(\chi^{\dagger}\tau^{1}\chi,\chi^{\dagger}\tau^{2}\chi,\chi^{\dagger}\tau^{3}\chi)\in\mathbb{R}^{3}, which means (12𝝉𝐧)χ=12χ(\frac{1}{2}\boldsymbol{\tau}\cdot\mathbf{n})\chi=\frac{1}{2}\chi. In fact,

𝝉𝐧=χχ(I2χχ)=2χχI2\boldsymbol{\tau}\cdot\mathbf{n}=\chi\chi^{\dagger}-(I_{2}-\chi\chi^{\dagger})=2\chi\chi^{\dagger}-I_{2} (3.13)

since a state orthogonal to χ\chi is the spin-down state along the direction 𝐧\mathbf{n}. So, we see that the state χ\chi is completely characterized by the three-vector 𝐧\mathbf{n} and we may call it the spin direction of χ\chi.

Now, suppose an inertial observer Bob is interested in the relativistic perception of the spin of a quantum particle whose state is given by ψL,1/2\psi\in\mathcal{H}_{L,1/2}. Since the particle does not have definite momentum, Bob cannot naively apply the classical scheme given in Sect. 2.5.1 to obtain the relativistic perception. So, he resorts to the strategy outlined in Remark 2.14.

As argued above, the state ψ\psi of the particle can be represented as a section of the L2L^{2}-section space of the bundle EL,1/2BE_{L,1/2}^{B}. So, the full information of the state can be expressed as {(p,ψ(p))EL,1/2B:pX}\{(p,\psi(p))\in E_{L,1/2}^{B}:p\in X\}. Now, treating each motion-spin state (p,ψ(p))(EL,1/2B)p(p,\psi(p))\in(E_{L,1/2}^{B})_{p} as a moving qubit with momentum pXp\in X and spin state ψ(p)2\psi(p)\in\mathbb{C}^{2}, we try to apply the scheme of Sect. 2.5.1.

First, Bob transforms his frame by L(p)1L(p)^{-1}, getting an inertial frame Alice in whose frame the qubit is at rest, calculate the spin direction of the qubit in that frame, and use Eq. (3.12) to obtain his relativistic perception of the spin. If, by calculating the spin direction 𝐧\mathbf{n}, Alice finds that the qubit is (pm,χ)(EL,1/2A)pm(p_{m},\chi)\in(E_{L,1/2}^{A})_{p_{m}}, then Bob would conclude that his relativistic perception of the qubit is (p,χ)(EL,1/2B)p(p,\chi)\in(E_{L,1/2}^{B})_{p} according to Eq. (3.12), whose spin direction is again 𝐧\mathbf{n} by Eq. (3.13).

However, the relativistic perception of 𝐧\mathbf{n} in Bob’s frame should be L(p)(0,𝐧)L(p)(0,\mathbf{n}) according to Eq. (2.12), which is not equal to 𝐧\mathbf{n} in general (cf. [19]). Therefore, we conclude that, without recourse to the frame change L(p)L(p), the three-vector 𝐧\mathbf{n}, and hence the qubit χ\chi itself, does not reflect Bob’s perception of the spin state.

So, Eq. (3.12) tells us that the qubits in (EL,1/2B)p(E_{L,1/2}^{B})_{p} are not Bob’s perception (in the sense of Sect. 2.5) of the spin state if the qubits in (EL,1/2A)pm(E_{L,1/2}^{A})_{p_{m}} are the perception of the L(p)1L(p)^{-1}-transformed observer Alice131313Throughout the paper, we assume (for obvious reason) that the elements in the fiber over the stationary state pmp_{m} correctly reflect the relativistic perception.. In other words, the vectors contained in (EL,1/2B)p(E_{L,1/2}^{B})_{p} themselves don’t have meaning in Bob’s reference frame. They become useful only if Bob is also provided with the knowledge of L(p)L(p). So, in particular, a state of the form (a10)L,1/2\begin{pmatrix}a_{1}\\ 0\end{pmatrix}\in\mathcal{H}_{L,1/2} in Bob’s frame cannot be called “the spin-up state along the z^\hat{z}-axis of Bob”. It only tells us that if the particle happens to have momentum pp, then the L(p)1L(p)^{-1}-transformed observer Alice would see that the particle is in the spin-up state along the z^\hat{z}-axis in her frame.

Because of this fact, when we have no access to the momentum variable, the mere information of the 2\mathbb{C}^{2}-component in Eq. (3.1a) does not give us any information about the spin at all, let alone the reduced density matrix Eq. (3.2) which is formed by summing over these pieces of information.

To see this last assertion explicitly, let’s look more closely at the anatomy of the reduced density matrix for spin (Eq. (3.2)). Let ψ=fχL,1/2\psi=f\chi\in\mathcal{H}_{L,1/2} be a state where fL2(X,μ)f\in L^{2}(X,\mu) is a continuous L2L^{2}-normalized function and χ:XEL,1/2\chi:X\rightarrow E_{L,1/2} is a continuous section such that hL,1/2(χ(p),χ(p))=χ(p)2=1h_{L,1/2}(\chi(p),\chi(p))=\|\chi(p)\|^{2}=1 for all pXp\in X, i.e. χ(p)\chi(p) is a qubit in (EL,1/2)p(E_{L,1/2})_{p} for each pXp\in X. By denoting the spin direction of each qubit χ(p)\chi(p) as 𝐧(p)\mathbf{n}(p) (i.e., 𝐧(p)=χ(p)𝝉χ(p)\mathbf{n}(p)=\chi(p)^{\dagger}\boldsymbol{\tau}\chi(p)), we have

ψ(p)ψ(p)=|f(p)|22(𝝉𝐧(p)+I2)=|f(p)|22((0,𝐧(p))+I2)\psi(p)\psi(p)^{\dagger}=\frac{|f(p)|^{2}}{2}(\boldsymbol{\tau}\cdot\mathbf{n}(p)+I_{2})=\frac{|f(p)|^{2}}{2}\Big{(}(0,\mathbf{n}(p))^{\sim}+I_{2}\Big{)} (3.14)

by Eq. (3.13) (for the last expression, see Eq. (2.3)). So, the spin reduced density matrix Eq. (3.2) becomes

τ:=Xmψ(p)ψ(p)𝑑μ(p)=12+12Xm|f(p)|2(0,𝐧(p))𝑑μ(p)\tau:=\int_{X_{m}}\psi(p)\psi(p)^{\dagger}d\mu(p)=\frac{1}{2}+\frac{1}{2}\int_{X_{m}}|f(p)|^{2}(0,\mathbf{n}(p))^{\sim}d\mu(p) (3.15)

which is just a weighted average of the spin direction 𝐧(p)\mathbf{n}(p) of the qubits χ(p)\chi(p). However, since each three-vector 𝐧(p)\mathbf{n}(p) gets its meaning only with respect to the L(p)1L(p)^{-1}-transformed frame (as shown above), Eq. (3.15) is a summation of vectors living in a whole lot of different coordinate systems. So, we see that this average value really has no meaning at all.141414This mathematical proof is taken from [32]. For a physical reasoning for the meaninglessness of Eq. (3.2), see [43].

Although we will not give as detailed analysis as for Eq. (3.2), we remark that the matrix Eq. (3.7) is meaningless also for the same reason. That is, since the fibers (EL,1/2)p(EL,1/2)q(E_{L,1/2})_{p}\otimes(E_{L,1/2})_{q} don’t reflect the perception of a fixed inertial observer who is using the bundle EL,1/2EL,1/23×3E_{L,1/2}\boxtimes E_{L,1/2}\rightarrow\mathbb{R}^{3}\times\mathbb{R}^{3} for the description of two particles, the mere information of the 22\mathbb{C}^{2}\otimes\mathbb{C}^{2}-component of Eq. (3.6) does not give the observer any information of the spin unless the observer has access to the momentum variable. Therefore, the matrix Eq. (3.7), which is just the sum of these pieces of information, has no real meaning.

This definitive clarification of the perplexities that we explored in Sect. 3.1 is due to the recent work [32]. After giving this proof, the paper went further to remark that “any anticipation that this (the matrix Eq. (3.2)) would give the spin information independent of the momentum variable is an illusion caused by the form of the standard representation space Eq. (3.1a) as a tensor product system.”

Having seen a problem with the representation space Eq. (3.1) regarding the perception of a fixed inertial observer, which was the root of the fundamental perplexities posed by the pioneering works, we now proceed to resolve this difficulty.

3.3 The perception and boosting bundle descriptions for massive spin-1/2 particles

The central idea of the paper [32] was that by introducing an Hermitian metric on the bundle EL,1/2E_{L,1/2}, we can construct another bundle E1/2E_{1/2}, called perception bundle, whose fibers correctly reflect each inertial observer’s “relativistic perception” introduced in Sect. 2.5. So, the problem of the EL,1/2E_{L,1/2}-bundle description as noted in the preceding subsection is resolved in the perception bundle description. These statements will be made clear in this subsection.

Before we begin, we note that L(p)L(p) in Eq. (2.20) is not the only boosting which maps pmp_{m} to pp. In fact, L(p)=L(p)B(p)L^{\prime}(p)=L(p)B(p) for any B(p)SU(2)B(p)\in SU(2) does the same job and all the preceding arguments hold just as well. Of course, if one uses a different definition of L(p)L(p), then the representation Eq. (3.1b) is changed along with the physical meaning of the 2\mathbb{C}^{2}-component in Eq. (3.1a).

So, there is certain arbitrariness in the EL,1/2E_{L,1/2}-bundle description Eq. (3.1), which reveals additional superiority of the perception bundle description since it is completely free from such choices. But, we will not pursue this L(p)L(p)-arbitrariness issue any further in this paper for simplicity (see [44, 32]). Nevertheless, for this reason, the bundle EL,1/2E_{L,1/2} will be called the boosting bundle for massive particle with spin-1/2, signifying its dependence of the boosting LL.

3.3.1 The perception bundle description

On the bundle X×2X\times\mathbb{C}^{2}, we introduce the following Hermitian metric

h1/2((p,v),(p,w)):=(L(p)1v)(L(p)1w)=vp~mw.h_{1/2}\Big{(}(p,v),(p,w)\Big{)}:=\left(L(p)^{-1}v\right)\cdot\left(L(p)^{-1}w\right)=v^{\dagger}\frac{\underaccent{\tilde}{p}}{m}w. (3.16)

The Hermitian bundle (X×2,h1/2)(X\times\mathbb{C}^{2},h_{1/2}) will be denoted as E1/2E_{1/2} and called the perception bundle for massive particle with spin-1/2.

Note that the map

α1/2:E1/2{\alpha_{1/2}:E_{1/2}}EL,1/2{E_{L,1/2}}X{X}(p,v)(p,L(p)1v)\scriptstyle{(p,v)\mapsto(p,L(p)^{-1}v)} (3.17)

is an Hermitian bundle isomorphism. Via α1/2\alpha_{1/2}, the GG-action Eq. (3.9) is pulled back to the following GG-action on E1/2E_{1/2}.

λ1/2(a,Λ):E1/2AE1/2B\displaystyle\lambda_{1/2}(a,\Lambda):E_{1/2}^{A}\rightarrow E_{1/2}^{B}
(p,v)A(Λp,ei(Λp)μaμΛv)B\displaystyle(p,v)^{A}\mapsto\left(\Lambda p,e^{-i(\Lambda p)_{\mu}a^{\mu}}\Lambda v\right)^{B} (3.18)

Let (p,χ)(E1/2)p(p,\chi)\in(E_{1/2})_{p} be a qubit, i.e., χ(E1/2)p=1\|\chi\|_{(E_{1/2})_{p}}=1, which is equivalent to L(p)1χ(EL,1/2)p=L(p)1χ=1\|L(p)^{-1}\chi\|_{(E_{L,1/2})_{p}}=\|L(p)^{-1}\chi\|=1. Denote the spin direction of the qubit L(p)1χ2L(p)^{-1}\chi\in\mathbb{C}^{2} as 𝐧3\mathbf{n}\in\mathbb{R}^{3}. Then, by Eqs. (2.20), (3.13), and (2.13),

mχχp~2=mL(p)L(p)1(χχp~2m)L(p)1L(p)\displaystyle m\chi\chi^{\dagger}-\frac{\tilde{p}}{2}=mL(p)L(p)^{-1}\big{(}\chi\chi^{\dagger}-\frac{\tilde{p}}{2m}\big{)}L(p)^{-1}L(p)
=mL(p)(12𝝉𝐧)L(p)=m2(L(p)(0,𝐧)).\displaystyle=mL(p)\left(\frac{1}{2}\boldsymbol{\tau}\cdot\mathbf{n}\right)L(p)=\frac{m}{2}\Big{(}L(p)(0,\mathbf{n})\Big{)}^{\sim}. (3.19)

So, there is w4w\in\mathbb{R}^{4} such that

w~=mχχp~2\tilde{w}=m\chi\chi^{\dagger}-\frac{\tilde{p}}{2} (3.20)

which will be called the Pauli-Lubansky four-vector of the qubit (p,χ)(E1/2)p(p,\chi)\in(E_{1/2})_{p} (cf. Example 2.13). Note that this definition is completely free from any reference to the boostings L(p)L(p). L(p)L(p) came into the picture for the sole purpose of showing that the RHS of Eq. (3.20) can be represented by an element of 4\mathbb{R}^{4} in the form of Eq. (2.3).

Let Alice and Bob be inertial observers related by a Lorentz transformation (a,Λ)G(a,\Lambda)\in G as in Eq. (2.11). Then, via the isomorphism Eq. (3.17), we see that the perception bundle descriptions of the two observers are related by Eq. (3.18). Substituting (a,Λ)=(0,L(p))(a,\Lambda)=(0,L(p)) into the transformation law, we obtain

λ1/2(0,L(p))(pm,χ)A=(p,L(p)χ)B.\lambda_{1/2}(0,L(p))(p_{m},\chi)^{A}=(p,L(p)\chi)^{B}. (3.21)

As in Sect. 3.2, Alice prepares a qubit (pm,χ)(E1/2A)pm(p_{m},\chi)\in(E_{1/2}^{A})_{p_{m}} in her rest frame. By Eq (3.21), the qubit looks like (p,L(p)χ)B(E1/2B)p(p,L(p)\chi)^{B}\in(E_{1/2}^{B})_{p} in Bob’s frame. He forms the Pauli-Lubansky vector for the qubit (p,L(p)χ)(E1/2B)p(p,L(p)\chi)\in(E_{1/2}^{B})_{p} according to Eq. (3.20) to find that

w~=(L(p)(0,𝐧2))\tilde{w}=\Big{(}L(p)(0,\frac{\mathbf{n}}{2})\Big{)}^{\sim} (3.22)

where 𝐧\mathbf{n} is the spin direction of the qubit (pm,χ)A(E1/2A)pm(p_{m},\chi)^{A}\in(E_{1/2}^{A})_{p_{m}} in Alice’s frame. This four-vector w=L(p)(0,𝐧2)4w=L(p)(0,\frac{\mathbf{n}}{2})\in\mathbb{R}^{4} is exactly the information content of the qubit (pm,χ)A(p_{m},\chi)^{A} as perceived in Bob’s frame (see the paragraph following Eq. (3.13)). So, we see that each fiber (E1/2B)p(E_{1/2}^{B})_{p} correctly reflects Bob’s perception (in the sense of Sect. 2.5) of the particle’s spin state when the particle is moving with momentum pp (hence the name perception bundle). In this regard, choosing the perception bundle description instead of the more standard boosting bundle description seems more sensible in addressing relativistic questions. Also, see [32] for more features of the perception bundle description.

3.3.2 A relation between the two descriptions; the bundles

The relation between the two bundle descriptions E1/2E_{1/2} and EL,1/2E_{L,1/2} is the quantum analogue of the relation between the Pauli-Lubansky four-vector and the Newton-Wigner spin in classical SR (cf. Example 2.13). More precisely, a qubit (p,χ)(E1/2)p(p,\chi)\in(E_{1/2})_{p} has information of the Pauli-Lubansky four-vector of the particle (cf. Eq. (3.20)) and the corresponding vector in the boosting bundle, α1/2(p,χ)=(p,L(p)1χ)(EL,1/2)p\alpha_{1/2}(p,\chi)=(p,L(p)^{-1}\chi)\in(E_{L,1/2})_{p}, has information of the Newton-Wigner spin. To see this, form the spin three-vector 𝐧\mathbf{n} of α1/2(p,χ)=(L(p)1χ)(EL,1/2)p\alpha_{1/2}(p,\chi)=(L(p)^{-1}\chi)\in(E_{L,1/2})_{p} as in Eq. (3.13). Then, by Eqs. (3.20) and (2.24),

𝝉(12𝐧)\displaystyle\boldsymbol{\tau}\cdot\left(\frac{1}{2}\mathbf{n}\right) =L(p)1χχL(p)112I2\displaystyle=L(p)^{-1}\chi\chi^{\dagger}L(p)^{-1}-\frac{1}{2}I_{2}
=L(p)1(w~m+p~2m)L(p)112I2\displaystyle=L(p)^{-1}\left(\frac{\tilde{w}}{m}+\frac{\tilde{p}}{2m}\right)L(p)^{-1}-\frac{1}{2}I_{2}
=1m(L(p)1w)=((0,𝐬))=𝝉𝐬\displaystyle=\frac{1}{m}\left(L(p)^{-1}w\right)^{\sim}=((0,\mathbf{s}))^{\sim}=\boldsymbol{\tau}\cdot\mathbf{s} (3.23)

where 𝐬\mathbf{s} is the Newton Wigner spin given by Eq. (2.25) in terms of the Pauli-Lubansky four-vector ww of the qubit (p,χ)(p,\chi) given by Eq. (3.20).

So, we conclude that the information contained in the qubits of the bundle EL,1/2E_{L,1/2} in relation to those of E1/2E_{1/2} via the bundle isomorphism Eq. (3.17) is precisely the Newton-Wigner spin of the particle. The qubits in the perception bundle are “relativistic perception” just like the Pauli-Lubansky vector is (cf. Example 2.13), whereas those in the boosting bundle are not, just like the Newton-Wigner spin vector.

Now, we can give a classical analogue for each bundle description. Let MM be the Minkowski spacetime. Fix an inertial frame of reference φ=(xμ)\varphi=(x^{\mu}) (cf. Definition 2.7) and suppose there is a spinning particle with momentum pμp^{\mu} and Pauli-Lubansky vector wμw^{\mu} with respect to the frame. These information of the particle can be recorded as a point in the tangent bundle TMTM and expressed as (pμ,wμ)(p^{\mu},w^{\mu}) in the coordinate representation of the chosen frame.

The perception bundle is the faithful quantum analogue of this coordinate representation for moving quantum systems as we have just seen in this subsection. However, the boosting bundle is the quantum version of the altered trivialization (pμ,(L(p)1w)μ)\Big{(}p^{\mu},(L(p)^{-1}w)^{\mu}\Big{)} of the tangent bundle TMTM, which moreover depends on the choice of the boostings LL. This is an utter artificiality given the fact that there is certain arbitrariness in the choice of LL (see the introduction to Sect. 3.3 and references therein).

One should note, however, that the boosting bundle description EL,1/2E_{L,1/2} has been the standard approach to the problems in RQI.

3.3.3 A relation between the two descriptions; the representations

Note that as the action λL,1/2\lambda_{L,1/2} gave rise to the representation UL,1/2U_{L,1/2} (cf. Eq. (3.10)), the action λ1/2\lambda_{1/2} also gives rise to a representation of GG by the formula

[U1/2(a,Λ)ψ](p):=λ1/2(a,Λ)ψΛ1[U_{1/2}(a,\Lambda)\psi](p):=\lambda_{1/2}(a,\Lambda)\circ\psi\circ\Lambda^{-1} (3.24)

on the Hilbert space

1/2:=L2(X,E1/2;μ,h1/2).\mathcal{H}_{1/2}:=L^{2}\left(X,E_{1/2};\mu,h_{1/2}\right). (3.25)

This representation is equivalent to Eq. (3.1) via the isomorphism Eq. (3.17) and hence can be used to describe massive particles with spin-1/2 (cf. Definition 3.1). One may wonder whether the relation between the two bundles E1/2E_{1/2} and EL,1/2E_{L,1/2} manifests itself on the level of the two representations U1/2U_{1/2} and UL,1/2U_{L,1/2}. Later, we will see that this is indeed the case. But, we are forced to defer the discussion until Sect. 6.2.2 since we need to introduce several quantum operators before we can precisely state in what sense this is true.

3.4 A preview of the main results of the paper

We have seen that the fundamental perplexities posed by the two pioneering papers of RQI ([36, 26]) have arisen because the standard representation that has been predominantly used in the RQI literature (Eq. (3.1)) was constructed from a “wrong” bundle (the boosting bundle) and that by using a “right” bundle, the fibers of which correctly reflect relativistic perception (cf. Sect. 2.5) of inertial frames (the perception bundle), the perplexities are resolved.

A natural question that immediately comes to one’s mind would be that whether the same kind of bundle theoretic descriptions are possible for all kinds of particles, not just the massive spin-1/2 ones. In this paper, we are going to show that this is indeed possible for massive particles with arbitrary spin151515We leave out the massless case to a sequel paper., i.e., we are going to construct bundles whose fibers correctly reflect relativistic perception of inertial frames. Also, we will explore some of the theoretical implications of this bundle theoretic description. Specifically, we will see that some of the fundamental equations of Quantum Field Theory (QFT) are just manifestations of relativistic perception of inertial observers.

3.5 Other approaches to RQI and the scope of the paper

Before we begin, we want to mention other existing apporaches to RQI that are not covered in this paper and how the results of the present paper are related to them.

First, localized quantum systems that are relevant to quantum informational tasks such as moving cavities, point-like detectors, and localized wave packets have been discussed in the literature based on the language of QFT (cf. [2]). Since single-particle state spaces are basic building blocks of QFT (cf. [50]), the results of the present paper are closely related to this approach (cf. [13]).161616In fact, we expect that the results of this paper will give a new insight into the QFT approach. However, we do not need to use the language of QFT in this paper since we restrict our attention to how the principle of SR affects our perception of the quantum reality (of which the single-particle state spaces are the simplest examples) and leave out applications of the theory introduced in this paper to actual quantum informational scenarios, which might require QFT, to a future research direction (see the concluding remarks in Sect. 8). Those who are interested in the QFT approach are referred to [2] and references therein.

Also, in order to apply the results of the present paper to actual problems of RQI (which we leave out as a future research), one needs to know the theory of relativistic quantum measurement. One can find a good treatment in Ch. 11 of [9]. We will give a link between this theory and some of the results of the present paper in Sect. 7.4.

4 Single-particle state spaces

In this section, we identify and classify the single-particle state spaces that are called “massive particles”. The main technical tool that is needed to obtain a classification of single-particle state spaces is “Mackey machine”. Let’s set the stage for the main technical theorem. All the discussions until Theorem 4.2 can be found in [25]. First, we define induced representations.

Definition 4.1 (Induced representation).

Let GG be a locally compact group and HGH\leq G be a closed subgroup such that there is a GG-invariant measure μ\mu on G/HG/H. Given a unitary representation σ\sigma of HH on the Hilbert space (σ,,σ)\big{(}\mathcal{H}_{\sigma},\langle\cdot,\cdot\rangle_{\sigma}\big{)}, define

0:={f(G,σ):f(gh)=σ(h)1f(g) (hH),G/Hf(x)σ2𝑑μ(x˙)<}\mathcal{F}_{0}:=\left\{f\in\mathcal{B}(G,\mathcal{H}_{\sigma}):f(gh)=\sigma(h)^{-1}f(g)\small{\text{ (${}^{\forall}h\in H$),}}\int_{G/H}\|f(x)\|_{\sigma}^{2}d\mu(\dot{x})<\infty\right\} (4.1a)
where x˙=xH\dot{x}=xH, ξσ2:=ξ,ξσ\|\xi\|_{\sigma}^{2}:=\langle\xi,\xi\rangle_{\sigma} for ξ\xi\in\mathcal{H}, and (G,σ)\mathcal{B}(G,\mathcal{H}_{\sigma}) is the set of all Borel functions from GG into σ\mathcal{H}_{\sigma}. 171717A discussion about the measurability of Banach space-valued functions can be found, for example, in Appendix B of [52]. But, in all the cases that we will be looking at in this paper, σ\mathcal{H}_{\sigma} is finite dimensional, to which the elementary measure theory as presented in [41] can be applied. 0\mathcal{F}_{0} is a vector space, of which N={f0:G/Hf(x)σ2𝑑μ(x˙)=0}N=\{f\in\mathcal{F}_{0}:\int_{G/H}\|f(x)\|_{\sigma}^{2}d\mu(\dot{x})=0\} is a subspace. Let
:=0/N.\mathcal{F}:=\mathcal{F}_{0}/N. (4.1b)

Then, the map (f,g)G/Hf(x),g(x)σ𝑑μ(x˙)(f,g)\mapsto\int_{G/H}\langle f(x),g(x)\rangle_{\sigma}d\mu(\dot{x}) is a well-defined inner product on the vector space \mathcal{F}, with respect to which \mathcal{F} becomes a Hilbert space.

On this Hilbert space, we have a (continuous) unitary representation IndHG(σ):GU()\text{Ind}_{H}^{G}(\sigma):G\rightarrow U(\mathcal{F}) defined by

[IndHG(σ)(x)f](y)=f(x1y).\left[\text{Ind}_{H}^{G}(\sigma)(x)f\right](y)=f(x^{-1}y). (4.2)

Now, let GG be a second countable locally compact group and NN be a closed abelian normal subgroup of GG such that G=NHG=N\ltimes H for some closed subgroup HGH\leq G, which means that the map N×HGN\times H\rightarrow G given by (n,h)nh(n,h)\mapsto nh is a homeomorphism.

Then, GG has a natural left action on N^\hat{N} (the dual of NN) given by xν(n)=ν(x1nx)x\cdot\nu(n)=\nu(x^{-1}nx) for xGx\in G and νN^\nu\in\hat{N}. Let GνG_{\nu} be the isotropy group for νN^\nu\in\hat{N}. We call Hν=HGνH_{\nu}=H\cap G_{\nu} the little group for ν\nu. Note that Gν=NHνG_{\nu}=N\ltimes H_{\nu}.

Let νN^\nu\in\hat{N} and σ:HνU(σ)\sigma:H_{\nu}\rightarrow U(\mathcal{H}_{\sigma}) be an irreducible representation of HνH_{\nu}. Then, the map νσ:GνU(σ)\nu\sigma:G_{\nu}\rightarrow U(\mathcal{H}_{\sigma}) defined by

νσ(nh)=ν(n)σ(h) (nN,hHν)\nu\sigma(nh)=\nu(n)\sigma(h)\quad\text{ $(n\in N,h\in H_{\nu})$} (4.3)

is a well-defined irreducible representation of GνG_{\nu}.

We say that the action of GG on N^\hat{N} is regular if the natural bijections G/GνGνG/G_{\nu}\rightarrow G\cdot\nu are homeomorphisms for all νN^\nu\in\hat{N} when GνG\cdot\nu is endowed with the subspace topology. Now, let’s state the main technical theorem.

Theorem 4.2 ([25], Theorem 6.43).

Suppose G=NHG=N\ltimes H, where NN is a closed abelian normal subgroup, HH a closed subgroup, and the second countable group GG acts regularly on N^\hat{N}. Then, the following conclusions hold.

  1. 1.

    If νN^\nu\in\hat{N} and σ\sigma is an irreducible representation of HνH_{\nu}, then IndGνG(νσ)\textup{Ind}_{G_{\nu}}^{G}(\nu\sigma) is an irreducible representation of GG.

  2. 2.

    Every irreducible representation of GG is equivalent to one of this form.

  3. 3.

    IndGνG(νσ)\textup{Ind}_{G_{\nu}}^{G}(\nu\sigma) and IndGνG(νσ)\textup{Ind}_{G_{\nu^{\prime}}}^{G}(\nu^{\prime}\sigma^{\prime}) are equivalent if and only if ν\nu and ν\nu^{\prime} belong to the same orbit, say ν=xν\nu^{\prime}=x\nu, and hσ(h)h\mapsto\sigma(h) and hσ(xhx1)h\mapsto\sigma^{\prime}(xhx^{-1}) are equivalent representations of HνH_{\nu}.

Let’s apply this theorem to the group G:=4SL(2,)G:=\mathbb{R}^{4}\ltimes SL(2,\mathbb{C}). From here on, we will follow the approach of [24]. Observe that 4\mathbb{R}^{4} is a closed abelian normal subgroup. To show that the action is regular, we find all the orbits GνG\cdot\nu in ^4\hat{\mathbb{R}}^{4}.

First, the map peip,p\mapsto e^{-i\langle p,\cdot\rangle} is a topological group isomorphism from 4\mathbb{R}^{4} onto ^4\hat{\mathbb{R}}^{4} ([25], p.98). Via this isomorphism, the natural action of GG on ^4\hat{\mathbb{R}}^{4} as defined in this section translates into a GG-action on 4\mathbb{R}^{4} given by ((a,Λ),p)κ(Λ)p((a,\Lambda),p)\mapsto\kappa(\Lambda)p since

[(a,Λ)eip,](b,I)=eip,((a,Λ)1(b,I)(a,Λ))=eip,(κ(Λ)1b,I)\displaystyle\left[(a,\Lambda)\cdot e^{-i\langle p,\cdot\rangle}\right](b,I)=e^{-i\langle p,\cdot\rangle}\left((a,\Lambda)^{-1}(b,I)(a,\Lambda)\right)=e^{-i\langle p,\cdot\rangle}(\kappa(\Lambda)^{-1}b,I)
=eip,κ(Λ)1b=eiκ(Λ)p,b=[eiκ(Λ)p,](b,I)\displaystyle=e^{-i\langle p,\kappa(\Lambda)^{-1}b\rangle}=e^{-i\langle\kappa(\Lambda)p,b\rangle}=\left[e^{-i\langle\kappa(\Lambda)p,\cdot\rangle}\right](b,I)

where we used the fact that κ(Λ)SO(1,3)\kappa(\Lambda)\in SO^{\uparrow}(1,3) preserves the scalar product ,\langle\cdot,\cdot\rangle. For the rest of the paper, we shall remove κ\kappa from all expressions involving an action of ΛSL(2,)\Lambda\in SL(2,\mathbb{C}) on x4x\in\mathbb{R}^{4} via κ\kappa, i.e., we write Λx\Lambda x for κ(Λ)x\kappa(\Lambda)x. So, the action of GG on ^44\hat{\mathbb{R}}^{4}\cong\mathbb{R}^{4} becomes

(a,Λ)p=Λp,(a,\Lambda)\cdot p=\Lambda p, (4.4)

from which we see that the GG-orbits of this action are exactly the SO(1,3)SO^{\uparrow}(1,3) orbits of its canonical action on 4\mathbb{R}^{4}.

Proposition 4.3.

The GG-orbits in 4\mathbb{R}^{4} are exactly the SO(1,3)SO^{\uparrow}(1,3)-orbits in 4\mathbb{R}^{4}, which consist of

Xm+={p:pμpμ=m2,p0>0}Xm={p:pμpμ=m2,p0<0}X_{m}^{+}=\{p:p_{\mu}p^{\mu}=m^{2},p^{0}>0\}\text{, }X_{m}^{-}=\{p:p_{\mu}p^{\mu}=m^{2},p^{0}<0\} (4.5)

for 0m<0\leq m<\infty,

Ym={p:pμpμ=m2}Y_{m}=\{p:p_{\mu}p^{\mu}=-m^{2}\} (4.6)

for 0<m<0<m<\infty, and

{0}.\{0\}.

The following can be used as representatives (elements p4p\in\mathbb{R}^{4} for GpG\cdot p) for these orbits:

For Xm±X_{m}^{\pm},

pm±:=(±m,0,0,0).p_{m}^{\pm}:=(\pm m,0,0,0). (4.7)

For X0±X_{0}^{\pm},

p0±:=(±1,0,0,±1).p_{0}^{\pm}:=(\pm 1,0,0,\pm 1). (4.8)

For YmY_{m},

qm=(0,0,m,0).q_{m}=(0,0,m,0).

For {0}\{0\}, 0.

Proof.

The proof is easy once one notices that each subset listed above is SO(1,3)SO^{\uparrow}(1,3)-invariant. ∎

Note that XX and pmp_{m} used in Sect. 3 are equal to Xm+X_{m}^{+} and pm+p_{m}^{+}, respectively.

These orbits are all embedded submanifolds of 4\mathbb{R}^{4} and the bijections G/GνGνG/G_{\nu}\rightarrow G\cdot\nu are GG-equivariant smooth maps between transitive GG-manifolds. So, these bijections are of constant rank and hence diffeomorphisms when GνG\cdot\nu are endowed with the subspace topologies (cf. [33]), which implies that the action of GG on 4^4\mathbb{R}^{4}\cong\hat{\mathbb{R}}^{4} is regular. Therefore, we can apply Theorem 4.2 to GG.

Remark 4.4.

So, if p4p\in\mathbb{R}^{4} and HpH_{p} is the corresponding little group (that is, the isotropy subgroup of H=SL(2,)H=SL(2,\mathbb{C})), then every irreducible representation σ:HpU(σ)\sigma:H_{p}\rightarrow U(\mathcal{H}_{\sigma}) induces an irreducible representation

ρp,σ(a,Λ)=exp(ipμaμ)σ(Λ)=eip,aσ(Λ)\rho_{p,\sigma}(a,\Lambda)=\exp(-ip_{\mu}a^{\mu})\sigma(\Lambda)=e^{-i\langle p,a\rangle}\sigma(\Lambda)

of GpG_{p} (cf. Eq. (4.3)), which in turn induces an irreducible representation

πp,σ=IndGpG(ρp,σ)\pi_{p,\sigma}=\text{Ind}_{G_{p}}^{G}(\rho_{p,\sigma})

of GG by Theorem 4.2.1. Moreover, Theorem 4.2.2 asserts that every irreducible representation of GG arises in this way and Theorem 4.2.3 tells us that if we restrict the choice of p4p\in\mathbb{R}^{4} to the chosen representatives listed in Proposition 4.3, the resulting representations are all distinct.

So, the classification of single-particle state spaces will be completed once we calculate the little group HpH_{p} for each representative pp listed in Proposition 4.3, find all irreducible representations σ\sigma of this little group, and calculate πp,σ\pi_{p,\sigma}. In this paper, we will only consider the representations associated with the orbits Xm±X_{m}^{\pm} for m>0m>0, which correspond to massive particles.

Let’s investigate the physical meaning of the constant mm which was used to classify the orbits as in Proposition 4.3. Let q4q\in\mathbb{R}^{4} be any element and σ:HqU(σ)\sigma:H_{q}\rightarrow U(\mathcal{H}_{\sigma}) be an irreducible representation of the little group HqH_{q} for qq. By unraveling Definition 4.1, the induced irreducible representation πq,σ:GU()\pi_{q,\sigma}:G\rightarrow U(\mathcal{F}) satisfies, for b4b\in\mathbb{R}^{4}, ff\in\mathcal{F}, and (a,Λ)G(a,\Lambda)\in G,

[πq,σ(b,I)f]((a,Λ))=f((b,I)(a,Λ))=f((a,Λ)(Λ1b,I))\displaystyle\left[\pi_{q,\sigma}(b,I)f\right]((a,\Lambda))=f((-b,I)(a,\Lambda))=f((a,\Lambda)(-\Lambda^{-1}b,I))
=eiq,Λ1bf((a,Λ))=eiΛq,bf((a,Λ)).\displaystyle=e^{-i\langle q,\Lambda^{-1}b\rangle}f((a,\Lambda))=e^{-i\langle\Lambda q,b\rangle}f((a,\Lambda)). (4.9)

Write p=Λq4p=\Lambda q\in\mathbb{R}^{4}. Since πq,σ(b,I)\pi_{q,\sigma}(b,I) would represent spacetime translations (cf. Remark 2.11), we see that the four-momentum operators PμP^{\mu} on this representation space, which are by definition the infinitesimal generators of the spacetime translations (cf. [28]), are given by the following formulae

[P0f](a,Λ)\displaystyle\left[P^{0}f\right](a,\Lambda) :=[ib0πq,σ(b,I)f](a,Λ)=p0f(a,Λ)=p0f(a,Λ)\displaystyle:=\left[i\frac{\partial}{\partial b^{0}}\pi_{q,\sigma}(b,I)f\right](a,\Lambda)=p_{0}f(a,\Lambda)=p^{0}f(a,\Lambda) (4.10a)
[Pjf](a,Λ)\displaystyle\left[P^{j}f\right](a,\Lambda) :=[ibjπq,σ(b,I)f](a,Λ)=pjf(a,Λ)=pjf(a,Λ).\displaystyle:=\left[-i\frac{\partial}{\partial b^{j}}\pi_{q,\sigma}(b,I)f\right](a,\Lambda)=-p_{j}f(a,\Lambda)=p^{j}f(a,\Lambda). (4.10b)

which are (unbounded) multiplication operators.

Since pμpμ=Λq,Λq=qμqμp_{\mu}p^{\mu}=\langle\Lambda q,\Lambda q\rangle=q_{\mu}q^{\mu}, the operator PμPμ=(P0)2(P1)2(P2)2(P3)2P_{\mu}P^{\mu}=(P^{0})^{2}-(P^{1})^{2}-(P^{2})^{2}-(P^{3})^{2} acts on the πq,σ\pi_{q,\sigma}-representation space as f(qμqμ)ff\mapsto(q_{\mu}q^{\mu})f, the multiplication by the constant qμqμq_{\mu}q^{\mu}. So, we see that all the vectors in the representation space of πq,σ\pi_{q,\sigma} are eigenvectors of the operator PμPμP_{\mu}P^{\mu} with the eigenvalue qμqμq_{\mu}q^{\mu}. Inspired by the famous energy-momentum relation from SR (cf. [54]), we make the following definition.

Definition 4.5.

The mass of the single-particle states associated with the irreducible representation πq,σ\pi_{q,\sigma} is the constant M=qμqμM=\sqrt{q_{\mu}q^{\mu}}.

For the orbits Xm±X_{m}^{\pm}, we have M=mM=m and hence the nonnegative number mm represents the mass of the particles associated with the orbit Xm±X_{m}^{\pm}. For this reason, the orbits Xm±X_{m}^{\pm} are called the mass shells. But, for the orbits YmY_{m}, MM is an imaginary number (and hence there is an ambiguity in the definition of MM). In [50], it is stated that there is no known interpretation, in terms of physical states, of the states associated with the orbits YmY_{m}.

From now on, we will focus our attention on the representations associated with the orbits Xm±X_{m}^{\pm} with m>0m>0, the massive particles, leaving the analysis of the orbit X0±X_{0}^{\pm}, the massless particles, to a sequel paper.

Let’s embark on the job that was set in Remark 4.4 for Xm±X_{m}^{\pm} with m>0m>0.

Proposition 4.6.

For m>0m>0, the little group Hpm±H_{p_{m}^{\pm}} for pm±p_{m}^{\pm} is SU(2)SL(2,)SU(2)\leq SL(2,\mathbb{C}).

Proof.

AHpm±A\in H_{p_{m}^{\pm}} if and only if Apm±=pm±Ap_{m}^{\pm}=p_{m}^{\pm}, i.e. by Eq. (2.13), if and only if ±mAA=±mI2\pm mAA^{\dagger}=\pm mI_{2}. ∎

The irreducible representations of the group SU(2)SU(2) are well-known to both mathematicians and physicists. But, for later discussions, we need a concrete realization. The following arguments are adapted from [49].

Let 𝒱:=2\mathcal{V}:=\mathbb{C}^{2}. Fix s120s\in\frac{1}{2}\mathbb{N}_{0} and consider the following vector space

Vs:=Σ2s(𝒱)=𝒱2s/N2sV_{s}:=\Sigma^{2s}(\mathcal{V})=\mathcal{V}^{\otimes{2s}}/N^{2s} (4.11)

where

N2s=span{x1xsxτ(1)xτ(2s)𝒱2s:\displaystyle N^{2s}=\text{span}_{\mathbb{C}}\{x_{1}\otimes\cdots\otimes x_{s}-x_{\tau(1)}\otimes\cdots\otimes x_{\tau(2s)}\in\mathcal{V}^{\otimes 2s}:
x1,,xs𝒱,τS2s}.\displaystyle x_{1},\cdots,x_{s}\in\mathcal{V},\hskip 2.84544pt\tau\in S_{2s}\}. (4.12)

We denote the image of x1x2sx_{1}\otimes\cdots\otimes x_{2s} in the quotient space VsV_{s} as x1x2sx_{1}\cdots x_{2s}. There is a natural embedding Σ2s(𝒱)𝒱2s\Sigma^{2s}(\mathcal{V})\rightarrow\mathcal{V}^{\otimes 2s} given by

x1x2s1(2s)!τS2sxτ(1)xτ(2s).x_{1}\cdots x_{2s}\mapsto\frac{1}{(2s)!}\sum_{\tau\in S_{2s}}x_{\tau(1)}\otimes\cdots\otimes x_{\tau(2s)}. (4.13)

Let ,\langle\cdot,\cdot\rangle be the Hermitian inner product on 𝒱=2\mathcal{V}=\mathbb{C}^{2}. It extends to a unique inner product ,\langle\cdot,\cdot\rangle on 𝒱2s\mathcal{V}^{\otimes 2s} satisfying

x1x2s,y1y2s=x1,y1x2s,y2s.\langle x_{1}\otimes\cdots\otimes x_{2s},y_{1}\otimes\cdots\otimes y_{2s}\rangle=\langle x_{1},y_{1}\rangle\cdots\langle x_{2s},y_{2s}\rangle. (4.14)

Via the embedding Eq. (4.13), VsV_{s} inherits this inner product to become an inner product space. Denote u=(10),v=(01)2u=\begin{pmatrix}1\\ 0\end{pmatrix},v=\begin{pmatrix}0\\ 1\end{pmatrix}\in\mathbb{C}^{2}. Then, VsV_{s} is of dimension 2s+12s+1 with an orthonormal basis give by

={(2s)!k!(2sk)!ukv2sk:0k2s}.\mathcal{B}=\left\{\sqrt{\frac{(2s)!}{k!(2s-k)!}}u^{k}v^{2s-k}:0\leq k\leq 2s\right\}. (4.15)

Given a linear map T:𝒱𝒱T:\mathcal{V}\rightarrow\mathcal{V}, the map T2s:𝒱2s𝒱2sT^{\otimes 2s}:\mathcal{V}^{\otimes 2s}\rightarrow\mathcal{V}^{\otimes 2s} restricts to a well-defined linear map Σ2s(T):VsVs\Sigma^{2s}(T):V_{s}\rightarrow V_{s} defined on the basic elements x1x2sx_{1}\cdots x_{2s} by

Σ2s(T)(x1x2s)=(Tx1)(Tx2s),\Sigma^{2s}(T)\left(x_{1}\cdots x_{2s}\right)=(Tx_{1})\cdots(Tx_{2s}), (4.16)

which is unitary if TT is unitary.

So, the map σs:SU(2)U(Vs)\sigma_{s}:SU(2)\rightarrow U(V_{s}) defined by

σs(A)=Σ2s(A)\sigma_{s}(A)=\Sigma^{2s}(A) (4.17)

is a unitary representation of SU(2)SU(2) on the (2s+12s+1)-dimensional Hilbert space VsV_{s}, which has a natural extension Φs:SL(2,)GL(Vs)\Phi_{s}:SL(2,\mathbb{C})\rightarrow GL(V_{s}) given by

Φs(A)=Σ2s(A).\Phi_{s}(A)=\Sigma^{2s}(A). (4.18)

To show that the representations σs\sigma_{s} are irreducible, we need the following well-known facts about the Lie algebras 𝔰𝔲(2)𝔰𝔩(2,)\mathfrak{su}(2)\leq\mathfrak{sl}(2,\mathbb{C}). Recalling the definitions of the Pauli matrices (Eq. (2.2)),

Jj=i2τj𝔰𝔲(2)\displaystyle J^{j}=-\frac{i}{2}\tau^{j}\in\mathfrak{su}(2) (4.19a)
Kj=12τj𝔰𝔩(2,)\displaystyle K^{j}=\frac{1}{2}\tau^{j}\in\mathfrak{sl}(2,\mathbb{C}) (4.19b)

are respectively called the angular momentum and the boosting along the jj-th axis. Thery are \mathbb{R}-linearly independent, and

𝔰𝔲(2)\displaystyle\mathfrak{su}(2) =\displaystyle= span(J1,J2,J3)\displaystyle\text{span}_{\mathbb{R}}(J^{1},J^{2},J^{3}) (4.20a)
𝔰𝔩(2,)\displaystyle\mathfrak{sl}(2,\mathbb{C}) =\displaystyle= span(J1,J2,J3,K1,K2,K3).\displaystyle\text{span}_{\mathbb{R}}(J^{1},J^{2},J^{3},K^{1},K^{2},K^{3}). (4.20b)

Now, returning to σs\sigma_{s} and Φs\Phi_{s}, observe that for B𝔰𝔩(2,)B\in\mathfrak{sl}(2,\mathbb{C}), one can prove, by carrying out a differentiation, that

(Φs)(B)(x1x2s)\displaystyle(\Phi_{s})_{*}(B)(x_{1}\cdots x_{2s}) =\displaystyle=
(Bx1)x2\displaystyle(Bx_{1})x_{2} x2s+x1(Bx2)x3x2s+x1x2s1(Bx2s).\displaystyle\cdots x_{2s}+x_{1}(Bx_{2})x_{3}\cdots x_{2s}+\cdots x_{1}\cdots x_{2s-1}(Bx_{2s}). (4.21)

Define J^k:=i(σs)(Jk)=i(Φs)(Jk)\hat{J}^{k}:=i(\sigma_{s})_{*}(J^{k})=i(\Phi_{s})_{*}(J^{k}). Using Eq. (4), we see

J^1ukv2sk\displaystyle\hat{J}^{1}u^{k}v^{2s-k} =k2uk1v2sk+1+2sk2uk+1v2sk1\displaystyle=\frac{k}{2}u^{k-1}v^{2s-k+1}+\frac{2s-k}{2}u^{k+1}v^{2s-k-1} (4.22a)
J^2ukv2sk\displaystyle\hat{J}^{2}u^{k}v^{2s-k} =ik2uk1v2sk+1i2sk2uk+1v2sk1\displaystyle=\frac{ik}{2}u^{k-1}v^{2s-k+1}-i\frac{2s-k}{2}u^{k+1}v^{2s-k-1} (4.22b)
J^3ukv2sk\displaystyle\hat{J}^{3}u^{k}v^{2s-k} =(ks)ukv2sk\displaystyle=(k-s)u^{k}v^{2s-k} (4.22c)

and hence

(J^1+iJ^2)u2s\displaystyle\left(\hat{J}^{1}+i\hat{J}^{2}\right)u^{2s} =(J^1iJ^2)v2s=0\displaystyle=\left(\hat{J}^{1}-i\hat{J}^{2}\right)v^{2s}=0 (4.23a)
(J^1+iJ^2)ukv2sk\displaystyle\left(\hat{J}^{1}+i\hat{J}^{2}\right)u^{k}v^{2s-k} =(2sk)uk+1v2sk1,0k2s1\displaystyle=(2s-k)u^{k+1}v^{2s-k-1},\quad 0\leq k\leq 2s-1 (4.23b)
(J^1iJ^2)ukv2sk\displaystyle\left(\hat{J}^{1}-i\hat{J}^{2}\right)u^{k}v^{2s-k} =kuk1v2sk+11k2s.\displaystyle=ku^{k-1}v^{2s-k+1}\quad 1\leq k\leq 2s. (4.23c)
Theorem 4.7.

The representations {σs:s120}\{\sigma_{s}:s\in\frac{1}{2}\mathbb{N}_{0}\} are irreducible, distinct, and exhaust all irreducible representations of SU(2)SU(2). Note that the orthonormal basis Eq. (4.15) consists of the eigenvectors of the operator J^3\hat{J}^{3} whose eigenvalues are given by ksk-s for 0k2s0\leq k\leq 2s, respectively.

Proof.

This follows from Eq. (4.23) and a usual argument involving the “ladder operators” J^1±J^2\hat{J}^{1}\pm\hat{J}^{2} (cf. [28], pp.371–375 and Proposition 16.39). Note that since SU(2)SU(2) is compact, every irreducible representation of it is finite dimensional (cf. [25]). The statement about the orthonormal basis follows from Eq. (4.22c). ∎

So, if we define

πm,s±:=πpm±,σs\pi_{m,s}^{\pm}:=\pi_{p_{m}^{\pm},\sigma_{s}} (4.24)

following the procedure of Remark 4.4, we see from Theorem 4.2 that each πm,s±\pi_{m,s}^{\pm} is distinct for each value of m>0,s=0,12,1,32,m>0,s=0,\frac{1}{2},1,\frac{3}{2},\cdots, and the ±\pm signs, and they exhaust all irreducible representations associated with the orbits Xm±X_{m}^{\pm}.

Remark 4.8.

We know from non-relativistic quantum mechanics that if a particle is described by the states in L2(3)VsL^{2}(\mathbb{R}^{3})\otimes V_{s} with VsV_{s} carrying an irreducible SU(2)SU(2)-representation given in Theorem 4.7, then the number ss is called the spin of the particle (cf. Ch. 17 of [28]). We will see a direct link between this tensor product space and the representation space of πm,s±\pi_{m,s}^{\pm} later (see the rightmost column of Table 2).

This remark suggests the following definition.

Definition 4.9.

The value ss for the irreducible representation πm,s±\pi_{m,s}^{\pm} is called the spin of the single-particle states associated with this representation.

The following is the conclusion of this section.

Theorem 4.10.

The irreducible representations associated with the orbits Xm±X_{m}^{\pm} with m>0m>0 are classified by mass and spin, i.e., they are precisely

{πm,s±:m>0,s=0,12,1,32,}\left\{\pi_{m,s}^{\pm}:m>0,s=0,\frac{1}{2},1,\frac{3}{2},\cdots\right\} (4.25)

and they descend to projective representations of the group 4SO(1,3)\mathbb{R}^{4}\ltimes SO^{\uparrow}(1,3) as in Theorem 2.9 (cf. Remark 2.11). In fact, πm,s±(I)=(1)2s\pi_{m,s}^{\pm}(-I)=(-1)^{2s}.

Proof.

The first assertion is just the summation of the preceding discussions. For the second statement, observe that, by unravelling Definition 4.1,

[πm,s±(0,I)f]((a,Λ))=f((0,I)(a,Λ))f((a,Λ)(0,I))\displaystyle\left[\pi_{m,s}^{\pm}(0,-I)f\right]((a,\Lambda))=f((0,-I)(a,\Lambda))f((a,\Lambda)(0,-I))
=σs(I)f(a,Λ)=(1)2sf(a,Λ),\displaystyle=\sigma_{s}(-I)f(a,\Lambda)=(-1)^{2s}f(a,\Lambda),

where, in the last equality, we used the identity

σs(I)=σs(e2πJ3)=e2π(σs)(J3)=e2πiJ^3=(1)2s\sigma_{s}(-I)=\sigma_{s}(e^{2\pi J^{3}})=e^{2\pi(\sigma_{s})_{*}(J^{3})}=e^{-2\pi i\hat{J}^{3}}=(-1)^{2s}

which follows from Theorem 4.7. ∎

The representations πm,s\pi_{m,s}^{-} associated with XmX_{m}^{-} do not seem to represent realistic particles since the associated particles have negative energy (cf. Eq. (4.10a)). But, by introducing the concept of quantum fields, we can interpret them as representing antiparticle states (cf. [24, 50]).

5 A bundle theoretic description of induced representation

In this section, we develop a relevant mathematical theory that will be needed in the following discussions on RQI. We assume that the readers are familiar with the basic notions of vector bundles such as sections, metrics, subbundles, and tensor products, etc. These materials can be found in [33] and [48]. All the pre-induced representations in this section will be assumed to be smooth and finite-dimensional, and all the bundles, sections, and bundle homomorphisms appearing in this section will mean smooth ones unless stated otherwise.

Section spaces

Let E𝜉ME\xrightarrow{\xi}M be a complex vector bundle. We denote its smooth and continuous section spaces by C(M,E)C^{\infty}(M,E) and C(M,E)C(M,E), respectively. We define the Borel-section space of EE as

(M,E):={ψ:ME|ψ is a Borel map and ξψ(x)=x,xM}.\mathcal{B}(M,E):=\{\psi:M\rightarrow E|\text{$\psi$ is a Borel map and }\xi\circ\psi(x)=x,\hskip 2.84544pt\forall x\in M\}. (5.1)

It is an easy exercise to check that (M,E)\mathcal{B}(M,E) becomes a vector space with respect to the pointwise addition and scalar multiplication. In fact, it is a module over (M)\mathcal{B}(M), the ring of Borel functions on MM.

Let μ\mu be a positive Borel measure on MM and gg be an Hermitian metric on EE. We define the L2L^{2}-section space of EE as

L2(M,E;μ,g):={ψ(M,E):Mg(ψ,ψ)μ<}.L^{2}(M,E;\mu,g):=\left\{\psi\in\mathcal{B}(M,E):\int_{M}g(\psi,\psi)\mu<\infty\right\}. (5.2)
Proposition 5.1.

Upon identifying almost everwhere equal functions, L2(M,E;μ,g)L^{2}(M,E;\mu,g) becomes a Hilbert space with the inner product

ψ,ϕ=Mg(ψ,ϕ)𝑑μ.\langle\psi,\phi\rangle=\int_{M}g(\psi,\phi)d\mu. (5.3)
Proof.

We omit the proof. ∎

Hermitian GG-bundle
Definition 5.2.

Let E𝜉ME\xrightarrow{\xi}M be a vector bundle. Let GG be a Lie group. Suppose there are GG-actions λ:G×EE\lambda:G\times E\rightarrow E and l:G×MMl:G\times M\rightarrow M such that for each sGs\in G, the following diagram commutes

EEMMλ(s)ξξls.\leavevmode\hbox to62.81pt{\vbox to46.41pt{\pgfpicture\makeatletter\hbox{\hskip 31.40273pt\lower-23.2526pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-31.40273pt}{-23.15276pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 8.2847pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.97916pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${E}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 8.2847pt\hfil&\hfil\hskip 32.28467pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.97916pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${E}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.2847pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 9.70137pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.39583pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${M}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.70137pt\hfil&\hfil\hskip 33.70134pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.39583pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${M}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 9.70137pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-13.21666pt}{11.50003pt}\pgfsys@lineto{12.8167pt}{11.50003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{13.01668pt}{11.50003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.40453pt}{15.6028pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\lambda(s)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-21.70135pt}{5.14032pt}\pgfsys@lineto{-21.70135pt}{-12.05977pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-21.70135pt}{-12.25975pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-27.11662pt}{-5.4097pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\xi}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{21.70135pt}{5.14032pt}\pgfsys@lineto{21.70135pt}{-12.05977pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{21.70135pt}{-12.25975pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{24.05412pt}{-5.4097pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\xi}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-11.79999pt}{-20.65276pt}\pgfsys@lineto{11.40002pt}{-20.65276pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{11.6pt}{-20.65276pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-2.05069pt}{-17.43887pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{l_{s}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}. (5.4)

If EE is endowed with a metric gg with respect to which each λ(s)\lambda(s) becomes an isometric bundle isomorphism, then we call the triple (ξ,g,λ)(\xi,g,\lambda) an Hermitian GG-bundle. When the base space MM is understood, we often write it simply as (E,g,λ)(E,g,\lambda) and call it an Hermitian GG-bundle over MM.

Given two Hermitian GG-bundles (E,g,λ)(E,g,\lambda) and (E,g,λ)(E^{\prime},g^{\prime},\lambda^{\prime}) over MM, GG-equivariant isometric homomorphisms from EE into EE^{\prime} over MM are called Hermitian GG-bundle homomorphisms from (E,g,λ)(E,g,\lambda) into (E,g,λ)(E^{\prime},g^{\prime},\lambda^{\prime}) over MM.

Hermitian GG-bundles are related to induced representation by the following construction.

Definition 5.3.

Let (M,μ)(M,\mu) be a (left) GG-invariant measure space and (E,g,λ)(E,g,\lambda) be an Hermitian GG-bundle over MM. Then, the map U:GU(L2(M,E;μ,g))U:G\rightarrow U\Big{(}L^{2}(M,E;\mu,g)\Big{)} given by

U(s)f=λ(s)f(ls)1U(s)f=\lambda(s)\circ f\circ(l_{s})^{-1} (5.5)

is easily seen to be a (strongly continuous) unitary representation. This representation is called the induced representation associated with (E,g,λ;μ)(E,g,\lambda;\mu).

As we shall see, these representations have a close relationship with the induced representation introduced in Definition 4.1.

Proposition 5.4.

Let (M,μ)(M,\mu) be a GG-invariant measure space and let (E,g,λ)𝛼(E,g,λ)(E,g,\lambda)\xrightarrow{\alpha}(E^{\prime},g^{\prime},\lambda^{\prime}) be an Hermitian GG-bundle isomorphism over MM. Then, the map α:L2(M,E;μ,g)α()L2(M,E;μ,g)\alpha:L^{2}(M,E;\mu,g)\xrightarrow{\alpha\circ(\hskip 1.42271pt\cdot\hskip 1.42271pt)}L^{2}(M,E^{\prime};\mu^{\prime},g^{\prime}) is a Hilbert space isomorphism and gives a unitary equivalence between the two induced representations. I.e., if we denote the associated induced representations by UU and UU^{\prime} respectively, then

αU(s)=U(s)α\alpha U(s)=U^{\prime}(s)\alpha (5.6)

for all sGs\in G.

Proof.

α\alpha is a Hilbert space isomorphism because it is isometric on the level of the bundles. Observe that, for ψL2(M,E;μ,g)\psi\in L^{2}(M,E;\mu,g),

αU(s)ψ=α(λ(s)ψ(ls)1)=λ(s)(αψ)(ls)1\displaystyle\alpha U(s)\psi=\alpha\circ(\lambda(s)\circ\psi\circ(l_{s})^{-1})=\lambda^{\prime}(s)\circ(\alpha\circ\psi)\circ(l_{s})^{-1}
=U(s)αψ\displaystyle=U^{\prime}(s)\alpha\psi

due to the GG-equivariance of α\alpha. ∎

The following theorem is the main result of this section.

Theorem 5.5.

Let G=NHG=N\ltimes H and fix νN^\nu\in\hat{N}. Suppose σ\sigma is a unitary representation of HνH_{\nu} on the Hilbert space (σ,,σ)(\mathcal{H}_{\sigma},\langle\cdot,\cdot\rangle_{\sigma}) that extends to a representation Φ:HGL(σ)\Phi:H\rightarrow GL(\mathcal{H}_{\sigma}), L:H/HνHL:H/H_{\nu}\rightarrow H is a global section, and there is an HH-invariant measure μ\mu on H/HνH/H_{\nu}.

Define a group element

WL(x,yH):=L(xyH)1xL(yH)HW_{L}(x,yH):=L(xyH)^{-1}xL(yH)\in H (5.7)

which will be called the Wigner transformation and consider the two Hermitian GG-bundles in Table 1 and their associated induced representations UU and ULU_{L}. Then,

IndGνGνσUUL\textup{Ind}_{G_{\nu}}^{G}\nu\sigma\cong U\cong U_{L} (5.8)

and the map

α:Eσ{\alpha:E_{\sigma}}EL,σ{E_{L,\sigma}}H/Hν{H/H_{\nu}}(xHν,v)(xHν,Φ(L(xHν)1)v)\scriptstyle{(xH_{\nu},v)\mapsto(xH_{\nu},\Phi\big{(}L(xH_{\nu})^{-1}\big{)}v)} (5.9)

is an Hermitian GG-bundle isomorphism that intertwines the structures listed in Table 1.

Table 1: The structures of the perception bundle and boosting bundle
EσE_{\sigma} (The perception bundle) EL,σE_{L,\sigma} (The boosting bundle)
Bundle H/Hν×σH/H_{\nu}\times\mathcal{H}_{\sigma} H/Hν×σH/H_{\nu}\times\mathcal{H}_{\sigma}
Metric h((xHν,v),(xHν,w))h\Big{(}(xH_{\nu},v),(xH_{\nu},w)\Big{)}
=v,Φ(x)1Φ(x)1wσ=\langle v,\Phi(x)^{\dagger-1}\Phi(x)^{-1}w\rangle_{\sigma}
hL((xHν,v),(xHν,w))=v,wσh_{L}\Big{(}(xH_{\nu},v),(xH_{\nu},w)\Big{)}=\langle v,w\rangle_{\sigma}
Action λ(nh)(yHν,v)=\lambda(nh)(yH_{\nu},v)=
(hyHν,ν((hy)1nhy)Φ(h)v)\Big{(}hyH_{\nu},\nu\big{(}(hy)^{-1}nhy\big{)}\Phi(h)v\Big{)}
λL(nh)(yHν,v)=\lambda_{L}(nh)(yH_{\nu},v)=
(hyHν,ν((hy)1nhy)σ(WL(h,yHν))v)\Big{(}hyH_{\nu},\nu\big{(}(hy)^{-1}nhy\big{)}\sigma\big{(}W_{L}(h,yH_{\nu})\big{)}v\Big{)}
Space U:=L2(H/Hν,Eσ;μ,h)\mathcal{H}_{U}:=L^{2}\Big{(}H/H_{\nu},E_{\sigma};\mu,h\Big{)} UL=L2(H/Hν;μ)σ\mathcal{H}_{U_{L}}=L^{2}(H/H_{\nu};\mu)\otimes\mathcal{H}_{\sigma}
IndGνGνσ\textup{Ind}_{G_{\nu}}^{G}\nu\sigma U(nh)ϕ=λ(nh)ϕ(lh)1U(nh)\phi=\lambda(nh)\circ\phi\circ(l_{h})^{-1} UL(nh)ψ=λL(nh)ψ(lh)1U_{L}(nh)\psi=\lambda_{L}(nh)\circ\psi\circ(l_{h})^{-1}

The Hermitian GG-bundles EσE_{\sigma} and EL,σE_{L,\sigma} in Table 1 will be called the perception bundle associated with σ\sigma and the boosting bundle associated with LL and σ\sigma, respectively, for reasons that will become clear in Sect. 6. Accordingly, the representation spaces U\mathcal{H}_{U} and UL\mathcal{H}_{U_{L}} in Table 1 will be called the perception space and the boosting space, respectively.

Proof.

Since the proof needs a long list of new definitions and lemmas, it has been exiled to A. Note that the action of NN on H/HνH/H_{\nu} is trivial. ∎

As shown in Remark 4.4, all single-particle state spaces are of the form IndGνGνσ\textup{Ind}_{G_{\nu}}^{G}\nu\sigma. Thus, we have just seen that the single-particle state spaces can be expressed in terms of induced representations associated with Hermitian GG-bundles as defined in Definition 5.3. We have listed two relevant such descriptions in Table 1, comparisons of which lie at the heart of this paper.

6 Bundle theoretic descriptions of massive particles

In this section, we apply the mathematical framework developed in Sect. 5 to massive particle state spaces listed in Theorem 4.10 and obtain bundle theoretic descriptions of massive particles with arbitrary spin, which was first suggested in [32] for spin-1/2 case (cf. Sect. 3). For the rest of the paper, GG will always denote the group 4SL(2,)\mathbb{R}^{4}\ltimes SL(2,\mathbb{C}). Fix m>0m>0 once and for all.

A GG-invariant measure on the mass shell

First, it is necessary to identify a GG-invariant measure on the orbit space SL(2,)/SU(2)Xm±SL(2,\mathbb{C})/SU(2)\cong X_{m}^{\pm} to apply the result of Sect. 5. Write ω𝐩±:=±m2+|𝐩|2\omega_{\mathbf{p}}^{\pm}:=\pm\sqrt{m^{2}+|\mathbf{p}|^{2}}. Then, the map 3Xm±\mathbb{R}^{3}\rightarrow X_{m}^{\pm} given by

𝐩(ω𝐩±,𝐩)\mathbf{p}\mapsto(\omega_{\mathbf{p}}^{\pm},\mathbf{p}) (6.1)

is a diffeomorphism, by which we always identify 3\mathbb{R}^{3} with Xm±X_{m}^{\pm} and write p=(ω𝐩±,𝐩)Xm±p=(\omega_{\mathbf{p}}^{\pm},\mathbf{p})\in X_{m}^{\pm}. I.e., we set p0=ω𝐩±p^{0}=\omega_{\mathbf{p}}^{\pm}.

Proposition 6.1.

The following is a GG-invariant measure on the orbit Xm±3X_{m}^{\pm}\cong\mathbb{R}^{3}.

dμ±(p)d3𝐩|ω𝐩±|=d3𝐩|p0|d\mu^{\pm}(p)\cong\frac{d^{3}\mathbf{p}}{|\omega_{\mathbf{p}}^{\pm}|}=\frac{d^{3}\mathbf{p}}{|p^{0}|} (6.2)
Proof.

For a proof, see Ch. 1 of [24]. ∎

From now until Sect. 6.2, we restrict our attention to the mass shell Xm+X_{m}^{+} and suppress all the ++ superscripts throughout (e.g., pm+=pmp_{m}^{+}=p_{m}). The mass shell XmX_{m}^{-} will be taken up in Sect. 7.

The description table for massive particles

Note that L:XmH/HpmHL:X_{m}\cong H/H_{p_{m}}\rightarrow H given by Eq. (2.19) is a continuous global section. Let s120s\in\frac{1}{2}\mathbb{N}_{0} and consider the irreducible representation σs:SU(2)U(Vs)\sigma_{s}:SU(2)\rightarrow U(V_{s}) which extends to Φs:SL(2,)GL(Vs)\Phi_{s}:SL(2,\mathbb{C})\rightarrow GL(V_{s}) (cf. Eqs. (4.17)–(4.18)). Then, Theorem 5.5 gives us Table 2 with an intertwining isomorphism

αs:EsEL,sXm(p,v)(p,Φs(L(p)1)v).\leavevmode\hbox to140.93pt{\vbox to54.16pt{\pgfpicture\makeatletter\hbox{\hskip 70.46521pt\lower-25.25662pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-70.46521pt}{-25.25662pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 16.88596pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-12.58041pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\alpha_{s}:E_{s}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 16.88596pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 27.28055pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.97499pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${E_{L,s}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 12.28053pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 26.2987pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.99315pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${X_{m}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 11.29869pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-36.4933pt}{12.39836pt}\pgfsys@lineto{45.30418pt}{12.39836pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{45.50417pt}{12.39836pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-26.61331pt}{17.75113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{(p,v)\mapsto(p,\Phi_{s}\big{(}L(p)^{-1}\big{)}v)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-41.06006pt}{4.83311pt}\pgfsys@lineto{-7.23558pt}{-15.60454pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.8559}{-0.51715}{0.51715}{0.8559}{-7.06444pt}{-15.70796pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{45.70415pt}{4.21126pt}\pgfsys@lineto{16.43849pt}{-14.99364pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.83606}{-0.54865}{0.54865}{-0.83606}{16.2713pt}{-15.10335pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}. (6.3)

Notice that πm,s:=IndGpmGpmσs\pi_{m,s}:=\textup{Ind}_{G_{p_{m}}}^{G}p_{m}\sigma_{s} represents the single-particle of mass mm and spin ss (cf. Remark 4.4 and Theorem 4.10).

Table 2: The perception and boosting bundles for a massive particle with spin-ss
Es (The perception bundle)E_{s}\text{ (The perception bundle)} EL,s (The boosting bundle)E_{L,s}\text{ (The boosting bundle)}
Bundle Xm×VsX_{m}\times V_{s} Xm×VsX_{m}\times V_{s}
Metric hs((p,v),(p,w))h_{s}\Big{(}(p,v),(p,w)\Big{)}
=vΦs(p~m)w=v^{\dagger}\Phi_{s}(\frac{\underaccent{\tilde}{p}}{m})w
hL,s((p,v),(p,w))=vwh_{L,s}\Big{(}(p,v),(p,w)\Big{)}=v^{\dagger}w
Action λs(a,Λ)(p,v)=\lambda_{s}(a,\Lambda)(p,v)=
(Λp,eiΛp,aΦs(Λ)v)\Big{(}\Lambda p,e^{-i\langle\Lambda p,a\rangle}\Phi_{s}(\Lambda)v\Big{)}
λL,s(a,Λ)(p,v)=\lambda_{L,s}(a,\Lambda)(p,v)=
(Λp,eiΛp,aσs(WL(Λ,p))v)\Big{(}\Lambda p,e^{-i\langle\Lambda p,a\rangle}\sigma_{s}\big{(}W_{L}(\Lambda,p)\big{)}v\Big{)}
Space s:=L2(Xm,Es;μ,h)\mathcal{H}_{s}:=L^{2}\Big{(}X_{m},E_{s};\mu,h\Big{)} L,s:=L2(Xm;μ)Vs\mathcal{H}_{L,s}:=L^{2}(X_{m};\mu)\otimes V_{s}
πm,s\pi_{m,s} Us(a,Λ)ϕ=λ(a,Λ)ϕΛ1U_{s}(a,\Lambda)\phi=\lambda(a,\Lambda)\circ\phi\circ\Lambda^{-1} UL,s(a,Λ)ψ=λL,s(a,Λ)ψΛ1U_{L,s}(a,\Lambda)\psi=\lambda_{L,s}(a,\Lambda)\circ\psi\circ\Lambda^{-1}

All the formulae listed in Table 2 are straightforwardly computed from the definitions except the one for hsh_{s}. To obtain it, observe that if p=ΛpmXmp=\Lambda p_{m}\in X_{m}, then since Φs\Phi_{s} preserves the adjoints (cf. Eqs. (4.14)–(4.18)), we have

Φs(Λ)1Φs(Λ)1=Φs(Λ1Λ)=Φs(Λ1(1m(pm))Λ1)=Φs(p~m)\Phi_{s}(\Lambda)^{\dagger-1}\Phi_{s}(\Lambda)^{-1}=\Phi_{s}(\Lambda^{\dagger-1}\Lambda)=\Phi_{s}\left(\Lambda^{\dagger-1}\left(\frac{1}{m}(p_{m})_{\sim}\right)\Lambda^{-1}\right)=\Phi_{s}(\frac{\underaccent{\tilde}{p}}{m})

by Eq. (2.13). Notice that

WL(Λ,p):=L(Λp)1ΛL(p)SU(2)W_{L}(\Lambda,p):=L(\Lambda p)^{-1}\Lambda L(p)\in SU(2) (6.4)

(cf. Eq. (5.7)) is indeed the Wigner rotation matrix used in the physics literature (cf. [50]).

6.1 The vector bundle point of view for massive particles

In [32], it was suggested that expressing some problems of RQI in terms of Hermitian GG-bundles has several advantages. In this picture, the bundles EsE_{s} and EL,sE_{L,s} are assemblies of the d=(2s+1)d=(2s+1)-level quantum systems (Es)p(E_{s})_{p} and (EL,s)p(E_{L,s})_{p} corresponding to each motion state (momentum) pXmp\in X_{m}, and each wave function ψsorL,s\psi\in\mathcal{H}_{s}\hskip 5.69046pt\textup{or}\hskip 5.69046pt\mathcal{H}_{L,s} becomes a field of qudits. The so-called momentum-spin eigenstate |p,χ,(pXm,χVs)|p,\chi\rangle,(p\in X_{m},\chi\in V_{s}) used in the physics literature can be identified with the point (p,χ)(EL,s)p(p,\chi)\in(E_{L,s})_{p} in this formalism.191919However, each point in E1/2E_{1/2} corresponds to a “relativistic chiral qubit” introduced in [38].

Since the single-particle state space for massive particle with spin-ss can be constructed from the bundles EsE_{s} and EL,sE_{L,s} according to Table 2, each inertial observer can use the bundles EsE_{s} and EL,sE_{L,s} instead of πm,s\pi_{m,s} for the description of a massive particle with spin-ss in the sense that the full information of each quantum state that the particle can assume (which is an L2L^{2}-section of the bundles) can be recorded in the bundle.202020This mathematical fact has nothing to do with physical measurement. How are these bundle descriptions related among different inertial observers? Suppose two inertial observers, Alice and Bob, are related by a Lorentz transformation (a,Λ)G(a,\Lambda)\in G as in Eq. (2.11). If Alice has prepared a particle in the state sϕ=αsψL,s\mathcal{H}_{s}\ni\phi\stackrel{{\scriptstyle\alpha_{s}}}{{=}}\psi\in\mathcal{H}_{L,s} (cf. Eq. (6.3)) in her frame, then Bob would perceive this particle as in the state sUs(a,Λ)ϕ=αsUL,s(a,Λ)ψL,s\mathcal{H}_{s}\ni U_{s}(a,\Lambda)\phi\stackrel{{\scriptstyle\alpha_{s}}}{{=}}U_{L,s}(a,\Lambda)\psi\in\mathcal{H}_{L,s} according to Sect. 2.3 (cf. Remark 2.11).

For these transformation laws for wave functions to be true, Alice’s bundles EsAE_{s}^{A}, EL,sAE_{L,s}^{A} and Bob’s bundles EsBE_{s}^{B}, EL,sBE_{L,s}^{B} should be related by the Hermitian GG-bundle isomorphisms

λs(a,Λ):EsAEsB\displaystyle\lambda_{s}(a,\Lambda):E_{s}^{A}\rightarrow E_{s}^{B}
(p,v)A(Λp,ei(Λp)μaμΦs(Λ)v)B\displaystyle(p,v)^{A}\mapsto\left(\Lambda p,e^{-i(\Lambda p)_{\mu}a^{\mu}}\Phi_{s}\left(\Lambda\right)v\right)^{B} (6.5)

and

λL,s(a,Λ):EL,sAEL,sB\displaystyle\lambda_{L,s}(a,\Lambda):E_{L,s}^{A}\rightarrow E_{L,s}^{B}
(p,v)A(Λp,ei(Λp)μaμσs(WL(Λ,p))v)B,\displaystyle(p,v)^{A}\mapsto\left(\Lambda p,e^{-i(\Lambda p)_{\mu}a^{\mu}}\sigma_{s}\left(W_{L}(\Lambda,p)\right)v\right)^{B}, (6.6)

respectively, so that the transformation laws for the sections

ϕAϕB=λs(a,Λ)ϕAΛ1\phi^{A}\mapsto\phi^{B}=\lambda_{s}(a,\Lambda)\circ\phi^{A}\circ\Lambda^{-1} (6.7)

and

ψAψB=λL,s(a,Λ)ψAΛ1\psi^{A}\mapsto\psi^{B}=\lambda_{L,s}(a,\Lambda)\circ\psi^{A}\circ\Lambda^{-1} (6.8)

become Us(a,Λ)U_{s}(a,\Lambda) and UL,s(a,Λ)U_{L,s}(a,\Lambda), respectively. The following commutative diagrams are useful in visualizing the transformation laws.

EsAEsBEL,sAEL,sBXmAXmBXmAXmBλs(Λ,a)λL,s(Λ,a)ΛΛ.\leavevmode\hbox to190.32pt{\vbox to54.44pt{\pgfpicture\makeatletter\hbox{\hskip 95.15839pt\lower-27.26979pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-95.15839pt}{-27.16995pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 9.5972pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.29166pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${E_{s}^{A}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 9.5972pt\hfil&\hfil\hskip 33.59717pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.29166pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${E_{s}^{B}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 9.5972pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 36.2805pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.97499pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${E_{L,s}^{A}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 12.28053pt\hfil&\hfil\hskip 36.2805pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.97499pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${E_{L,s}^{B}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 12.28053pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 11.29869pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.99315pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${X_{m}^{A}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 11.29869pt\hfil&\hfil\hskip 35.29866pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.99315pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${X_{m}^{B}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 11.29869pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 35.29866pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.99315pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${X_{m}^{A}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 11.29869pt\hfil&\hfil\hskip 35.29866pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.99315pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${X_{m}^{B}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 11.29869pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-74.0625pt}{12.39836pt}\pgfsys@lineto{-47.4595pt}{12.39836pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-47.25952pt}{12.39836pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-71.51526pt}{16.50113pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\lambda_{s}(\Lambda,a)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-83.8597pt}{4.83311pt}\pgfsys@lineto{-83.8597pt}{-14.16364pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-83.8597pt}{-14.36362pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-37.26234pt}{4.83311pt}\pgfsys@lineto{-37.26234pt}{-14.16364pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{-37.26234pt}{-14.36362pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{46.79735pt}{12.39836pt}\pgfsys@lineto{69.99736pt}{12.39836pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{70.19734pt}{12.39836pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{45.72643pt}{16.89557pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\lambda_{L,s}(\Lambda,a)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{34.31682pt}{3.03645pt}\pgfsys@lineto{34.31682pt}{-14.16364pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{34.31682pt}{-14.36362pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{82.87785pt}{3.03645pt}\pgfsys@lineto{82.87785pt}{-14.16364pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.0}{-1.0}{1.0}{0.0}{82.87785pt}{-14.36362pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-72.36101pt}{-24.66995pt}\pgfsys@lineto{-49.161pt}{-24.66995pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-48.96101pt}{-24.66995pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-62.99158pt}{-22.31718pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\Lambda}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{45.8155pt}{-24.66995pt}\pgfsys@lineto{70.9792pt}{-24.66995pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{71.17918pt}{-24.66995pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{56.16678pt}{-22.31718pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\Lambda}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}. (6.9)

Note that Eqs. (6.5) and (6.6) are just the GG-actions listed in Table 2.

Remark 6.2.

This vector bundle viewpoint is similar to the setting up of a coordinate system in classical SR. In fact, as we see from the diagrams Eq. (6.9), it is nothing more than a momentum coordinate system with the particle’s internal quantum systems (corresponding to each possible motion state) taken into account, whose transformation law is governed by the Hermitian GG-actions given in Table 2. Note that the two quantum transformation laws between inertial observers (Eqs. (6.5) and (6.6)) are extensions of the classical transformation law for the momentum observation expressed by the base space transformation XmΛXmX_{m}\xrightarrow{\Lambda}X_{m}.

Fix an inertial observer who is interested in describing a massive quantum particle with spin-ss. The full information of the quantum states of the particle as perceived by the observer can be recorded either in the perception bundle EsE_{s} or in the boosting bundle EL,sE_{L,s} (see footnote 20). The recurring theme of the analyses given in this paper is that while the fibers of the perception bundle EsE_{s} reflect correctly the perception (in the sense of Sect. 2.5) of the fixed observer (hence the name), each fiber (EL,s)p(E_{L,s})_{p} of the boosting bundle EL,sE_{L,s} is rather the perception of an L(p)1L(p)^{-1}-boosted observer (with respect to the fixed one) for each pXmp\in X_{m} (hence the name) and hence is not directly accessible from the fixed observer, just as in the case s=1/2s=1/2 which we observed in Sect. 3. So, in the context of RQI, the description provided by the bundle EsE_{s} is conceptually more appropriate than EL,sE_{L,s}.

Theses interpretations of the two bundles will be in a sense proved in Sect. 7, where we will see that the Dirac equation and the Proca equations, which are fundamental equations of QFT obeyed by massive particles with spin-1/2 and 1, respectively, emerge as the defining equations of the respective perception bundles. Therefore, one may say that the Dirac equations and the Proca equations are nothing but manifestations of a fixed inertial observer’s perception of the internal quantum states of massive particles with spin-1/2 and 1, respectively.

6.2 The perception and boosting bundle descriptions for massive particles with arbitrary spin

Let’s take πm,s=πm,s+\pi_{m,s}=\pi_{m,s}^{+} where s12s\in\frac{1}{2}\mathbb{N} and see if the discussions for the s=1/2s=1/2 case (cf. Sect. 3.3) carry over to this case as well.

6.2.1 A relation between the two descriptions; the bundles

In this case, it is not obvious how to find a relationship between the two descriptions since, for higher ss, qudits in a d=(2s+1)d=(2s+1)-level quantum system are not characterized by three-vectors, unlike the s=1/2s=1/2 case.

Therefore, instead of considering a general qudit χVs\chi\in V_{s}, we argue as follows. Suppose Alice has prepared a qudit which is a spin eigenstate with eigenvalue ks,(0k2s)k-s,\hskip 5.69046pt(0\leq k\leq 2s) along the z^\hat{z}-axis in her rest frame. According to Theorem 4.7, this means that she has picked the state (2s)!k!(2sk)!ukv2sk\sqrt{\frac{(2s)!}{k!(2s-k)!}}u^{k}v^{2s-k} from the basis Eq. (4.15). From the L(p)L(p)-transformed Bob’s frame, the qudit should be a spin eigenstate along the L(p)z^L(p)\hat{z}-axis with eigenvalue ksk-s. But, what are spin eigenstates along the L(p)z^L(p)\hat{z}-axis, a four-vector direction?

According to the discussion of Sects. 3.23.3, on the two-level system case, the vectors L(p)uL(p)u and L(p)vL(p)v might be called the spin eigenstates along the L(p)z^L(p)\hat{z}-axis with the eigenvalues 1/21/2 and 1/2-1/2 respectively. Let w=L(p)z^4w=L(p)\hat{z}\in\mathbb{R}^{4}. Observe that the traceless operator

w~p~m=L(p)(12τ3)L(p)1𝔰𝔩(2,)\tilde{w}\frac{\underaccent{\tilde}{p}}{m}=L(p)\left(\frac{1}{2}\tau^{3}\right)L(p)^{-1}\in\mathfrak{sl}(2,\mathbb{C}) (6.10)

(cf. Eqs. (2.13) and (2.19)) is an Hermitian operator in the fiber ((E1/2)p,(h1/2)p)\big{(}(E_{1/2})_{p},(h_{1/2})_{p}\big{)} and L(p)uL(p)u, L(p)vL(p)v are two eigenvectors of this operator with eigenvalues 1/21/2, 1/2-1/2, respectively. So, we see that Eq. (6.10) is the observable for the spin along the L(p)z^L(p)\hat{z}-axis. (In fact, as can be seen from Eq. (7.26), it is the third component of the Newton-Wigner spin operator restricted to the fiber (E1/2)p(E_{1/2})_{p}.)

Generalizing this to the (2s+1)(2s+1)-level quantum system, we see that the operator

(Φs)(w~p~m)=i(σs)(iw~p~m),(\Phi_{s})_{*}(\tilde{w}\frac{\underaccent{\tilde}{p}}{m})=i(\sigma_{s})_{*}(-i\tilde{w}\frac{\underaccent{\tilde}{p}}{m}), (6.11)

which is Hermitian on the fiber ((Es)p,(hs)p)\big{(}(E_{s})_{p},(h_{s})_{p}\big{)}, is the spin observable along the L(p)z^L(p)\hat{z}-axis on this system. (Actually, this is the third component of the Newton-Wigner spin operator restricted to the fiber (Es)p(E_{s})_{p}. See the remark of Sect. 6.2.2.) Since the L(p)L(p)-transformed Bob should perceive the qudit prepared by Alice as a spin eigenstate with eigenvalue ksk-s along the L(p)z^L(p)\hat{z}-axis, the qudit as perceived from Bob’s frame should be an eigenstate of the operator (Φs)(w~p~m)(\Phi_{s})_{*}(\tilde{w}\frac{\underaccent{\tilde}{p}}{m}) whose eigenvalue is ksk-s. By Eq. (4), we see that this is precisely

(2s)!k!(2sk)!(L(p)u)k(L(p)v)2sk=Φs(L(p))((2s)!k!(2sk)!ukv2sk).\sqrt{\frac{(2s)!}{k!(2s-k)!}}(L(p)u)^{k}(L(p)v)^{2s-k}=\Phi_{s}(L(p))\left(\sqrt{\frac{(2s)!}{k!(2s-k)!}}u^{k}v^{2s-k}\right). (6.12)

Since this holds for all the basis elements listed in Eq. (4.15), we conclude that Bob’s perception (in the sense of Sect. 2.5) of the qudit (pm,χ)A(Es)pm=(EL,s)pm(p_{m},\chi)^{A}\in(E_{s})_{p_{m}}=(E_{L,s})_{p_{m}}, which is prepared in Alice’s rest frame, is

(p,Φs(L(p))χ)B,\Big{(}p,\Phi_{s}(L(p))\chi\Big{)}^{B}, (6.13)

which is precisely captured by the transformation law Eq. (6.5). Hence as remarked in Sect. 3.3, the qudits in the bundle EsE_{s} are “relativistic perception” of a fixed inertial observer. I.e., the fibers of the perception bundle EsE_{s} correctly reflect the perception of the fixed inertial observer (hence the name).

Also as a consequence of this fact, the equation

λL,s(0,L(p))(pm,χ)A=(p,χ)B,\lambda_{L,s}(0,L(p))(p_{m},\chi)^{A}=(p,\chi)^{B}, (6.14)

which follows from the transformation law Eq. (6.6), tells us that the qudits in (EL,s)p(E_{L,s})_{p} don’t reflect the perception of the fixed inertial observer in whose frame the qudit-carrying particle is moving with momentum pp. Rather, they are the perception of an L(p)1L(p)^{-1}-boosted observer (hence the name).

We conclude that the interpretations and relations given in Sect. 3.3 about the two descriptions for the spin-1/2 case hold in full generality, i.e., for all possible values of spin.

6.2.2 A relation between the two descriptions; the representations

We need to check whether the description (Es,s)(E_{s},\mathcal{H}_{s}) is related to the Pauli-Lubansky four-vector and (EL,s,L,s)(E_{L,s},\mathcal{H}_{L,s}) is related to the Newton-Wigner spin in relation to the former just as in Sect. 3.3. On the bundle levels, this fact is not so obvious since the qudits in a higher-level system are in general not characterized by vectors in 3\mathbb{R}^{3}. But, moving into the level of wave functions and operators, we can obtain an analogous relation (see Sect. 3.3.3).

For the discussion on the level of Hilbert spaces and operators, we define the Pauli-Lubansky operators which are elements of the universal enveloping algebra of 𝔤\mathfrak{g}_{\mathbb{C}} (here, 𝔤\mathfrak{g}_{\mathbb{C}} is the complexification of the Lie algebra 𝔤\mathfrak{g} of G=4SL(2,)G=\mathbb{R}^{4}\ltimes SL(2,\mathbb{C})) by

Wμ=12εναβμPνJαβW^{\mu}=\frac{1}{2}\varepsilon^{\nu\alpha\beta\mu}P_{\nu}J_{\alpha\beta} (6.15)

where the relativistic angular momentum operators Jαβ=JβαJ_{\alpha\beta}=-J_{\beta\alpha} are defined as J23=J1J_{23}=J^{1}, J31=J2J_{31}=J^{2} , J12=J3J_{12}=J^{3} and Jj0=KjJ_{j0}=K^{j}, respectively (cf. Eq. (4.19)), and hence

W0\displaystyle W^{0} =𝐏𝐉\displaystyle=\mathbf{P}\cdot\mathbf{J} (6.16a)
𝐖\displaystyle\mathbf{W} =P0𝐉𝐏×𝐊.\displaystyle=P^{0}\mathbf{J}-\mathbf{P}\times\mathbf{K}. (6.16b)

Then, the Newton-Wigner spin operator is defined as

𝐒NW:=1m(𝐖W0𝐏m+P0)\mathbf{S}_{NW}:=\frac{1}{m}\left(\mathbf{W}-\frac{W^{0}\mathbf{P}}{m+P^{0}}\right) (6.17)

which is also an element of the universal enveloping algebra of 𝔤\mathfrak{g}_{\mathbb{C}}, which will then become operators on any quantum system with Lorentz symmetry via the given representation of the group GG (cf. Definition 2.10).

In [32], it is proved212121The paper only deals with the s=1/2s=1/2 case. However, if we replace τj\tau^{j} by (Φs)(τj)(\Phi_{s})_{*}(\tau^{j}) in the proof given there, then we obtain Eq. (6.19). that the operator

𝐒:=1(Φs)(12𝝉)=1i(σs)(𝐉)=1𝐉^\mathbf{S}:=1\otimes(\Phi_{s})_{*}(\frac{1}{2}\boldsymbol{\tau})=1\otimes i(\sigma_{s})_{*}(\mathbf{J})=1\otimes\hat{\mathbf{J}} (6.18)

on the Hilbert space L,s\mathcal{H}_{L,s} becomes the Newton-Wigner spin operator on the Hilbert space s\mathcal{H}_{s} (cf. Eq. (6.17)), i.e.,

(Us)(𝐒NW)=αs1𝐒αs(U_{s})_{*}(\mathbf{S}_{NW})=\alpha_{s}^{-1}\circ\mathbf{S}\circ\alpha_{s} (6.19)

where in general, given a unitary representation π\pi of a Lie group, π\pi_{*} denotes the induced *-representation of the universal enveloping algebra of the comlexified Lie algebra of the Lie group (cf. Ch. 0 of [46]).

So, the 2s+1\mathbb{C}^{2s+1}-component of the space L,s\mathcal{H}_{L,s} has the meaning of the Newton-Wigner spin in the perception space description s\mathcal{H}_{s}. We conclude that for s=1/2s=1/2, the relation between the two bundles (cf. Sect. 3.3.2) also holds on the level of Hilbert spaces and operators (see Sect. 3.3.3).

6.2.3 The spin and Pauli-Lubansky reduced density matrices

Let ψL,s\psi\in\mathcal{H}_{L,s} be a state and ρ:=|ψψ|\rho:=|\psi\rangle\langle\psi| be the density matrix corresponding to ψ\psi. Just as in Sect. 3.1, we form the spin reduced density matrix for ψ\psi by

τ=TrL2(ρ),\tau=\text{Tr}_{L^{2}}\hskip 2.84544pt(\rho), (6.20)

which is a (2s+1)×(2s+1)(2s+1)\times(2s+1) density matrix.

We saw in Sect. 3.2 that this matrix for the s=1/2s=1/2 case has no meaning at all. This was because, since the fibers of the bundle EL,1/2E_{L,1/2} do not reflect the perception of a fixed inertial observer who is taking the partial trace, Eq. (6.20) becomes a summation over the objects living in a whole lot of different reference frames, which is an absurdity unless the objects are first pulled back to the fixed inertial frame before the summation takes place.

In Sect. 6.2.1, we saw that the same problem resides in the general spin case as well. I.e., the fibers of the boosting bundle EL,sE_{L,s} for general ss also do not reflect the perception of a fixed inertial observer who is using this bundle. Therefore, in particular, given a state ψ=fχL,s\psi=f\chi\in\mathcal{H}_{L,s} defined analogously as in Sect. 3.2, each qudit state χ(p)χ(p)\chi(p)\chi(p)^{\dagger} gets meaningful only in an L(p)1L(p)^{-1}-transformed inertial observer (cf. Eq. (6.14) and the remark following it). So, we conclude that the spin reduced density matrix Eq. (6.20), which is expressed as

τ:=Xmψ(p)ψ(p)dμ(p)=Xm|f(p)|2χ(p)χ(p)dμ(p)\tau:=\int_{X_{m}}\psi(p)\psi(p)^{\dagger}d\mu(p)=\int_{X_{m}}|f(p)|^{2}\chi(p)\chi(p)^{\dagger}d\mu(p) (6.21)

is meaningless either for all values of spin 0s120\neq s\in\frac{1}{2}\mathbb{Z}.

Even though it is of some interest to see whether the phenomenon observed in [36] (cf. Sect. 3.1) is still present in the general spin case by carrying out an analytic computation of Eq. (6.20) using the formalism presented in this paper, we will not pursue that direction any further since we have just seen that Eq. (6.20) is meaningless.

In [32], moreover, it was suggested that the only way to modify Eq. (6.20) in order for it to attain a substance is by first pulling back the integrand states χ(p)χ(p)\chi(p)\chi(p)^{\dagger} to the fixed inertial frame and then carry out the integration. In Sect. 6.2.1, we saw that the pulled-back integrands are precisely Φs(L(p))χ(p)χ(p)Φs(L(p))\Phi_{s}(L(p))\chi(p)\chi(p)^{\dagger}\Phi_{s}(L(p)) (cf. Eq. (6.13)). So, the modified reduced matrix is

σ:=Xm|f(p)|2Φs(L(p))χ(p)χ(p)Φs(L(p))dμ(p)\displaystyle\sigma:=\int_{X_{m}}|f(p)|^{2}\Phi_{s}(L(p))\chi(p)\chi(p)^{\dagger}\Phi_{s}(L(p))d\mu(p)
=XmΦs(L(p))ψ(p)ψ(p)Φs(L(p))\displaystyle=\int_{X_{m}}\Phi_{s}(L(p))\psi(p)\psi(p)^{\dagger}\Phi_{s}(L(p))
=Xm[α1ψ](p)[α1ψ](p)dμ(p),\displaystyle=\int_{X_{m}}[\alpha^{-1}\psi](p)[\alpha^{-1}\psi](p)d\mu(p), (6.22)

which is just the operation

σ(ϕ)=Xmϕ(p)ϕ(p)dμ(p)\sigma(\phi)=\int_{X_{m}}\phi(p)\phi(p)^{\dagger}d\mu(p) (6.23)

applied to α1ψs\alpha^{-1}\psi\in\mathcal{H}_{s}. One should note that this operation cannot be defined for all elements in s\mathcal{H}_{s} due to the non-trivial Hermitian metric hsh_{s} (cf. Table 2). However, this operation is well-defined at least on the Schwartz section space {ϕs:ϕi is of Schwartz class for i=1,,2s+1}s\{\phi\in\mathcal{H}_{s}:\phi_{i}\text{ is of Schwartz class for }i=1,\cdots,2s+1\}\leq\mathcal{H}_{s} where ϕi\phi_{i} is a component function of the section ϕ\phi of the trivial bundle Es=Xm×2s+1E_{s}=X_{m}\times\mathbb{C}^{2s+1}.

In [32], Eq. (6.23) was called the Pauli-Lubansky reduced matrix since it has information about the average Pauli-Lubansky four-vector plus the average momentum in the s=1/2s=1/2 case. It is very important to notice that Eq. (6.23) is not a partial trace operation since, after all, s\mathcal{H}_{s} is not a tensor product system and second, ϕ(p)ϕ(p)\phi(p)\phi(p)^{\dagger} is not the state corresponding to the qudit ϕ(p)\phi(p) due to the form of the inner product hsh_{s} (cf. Table (2)).

Nevertheless, Eq. (6.23) has some desirable features. It is positive and has a nonzero trace:

uσu=Xdμ(p)uϕ(p)ϕ(p)u0u2u^{\dagger}\sigma u=\int_{X}d\mu(p)\hskip 2.84544ptu^{\dagger}\phi(p)\phi(p)^{\dagger}u\geq 0\quad\forall u\in\mathbb{C}^{2} (6.24)

and

Trσ=Xdμ(p)Trρ=Xdμ(p)(|ϕ1(p)|2+|ϕ2(p)|2)>0.\text{Tr}\hskip 2.84544pt\sigma=\int_{X}d\mu(p)\text{Tr}\rho=\int_{X}d\mu(p)\left(|\phi_{1}(p)|^{2}+|\phi_{2}(p)|^{2}\right)>0. (6.25)

So, the matrix σ\sigma can be normalized to yield a density matrix. Let’s find its transformation law under a change of reference frame.

Suppose Alice has prepared a state ϕs\phi\in\mathcal{H}_{s} and formed the matrix σA=σ(ϕ)\sigma_{A}=\sigma(\phi). Consider another observer Bob, in whose frame the state is πm,s(a,Λ)ϕs\pi_{m,s}(a,\Lambda)\phi\in\mathcal{H}_{s}. Then, according to the transformation law for the perception bundle description (cf. Table 2), we have

σB=Xdμ(p)Φs(Λ)ϕ(Λ1p)ϕ(Λ1p)Φs(Λ)=Φs(Λ)σAΦs(Λ).\sigma_{B}=\int_{X}d\mu(p)\hskip 2.84544pt\Phi_{s}(\Lambda)\phi(\Lambda^{-1}p)\phi(\Lambda^{-1}p)^{\dagger}\Phi_{s}(\Lambda^{\dagger})=\Phi_{s}(\Lambda)\hskip 1.42271pt\sigma_{A}\hskip 1.42271pt\Phi_{s}(\Lambda^{\dagger}). (6.26)

So, we see that Eq. (6.23) is Lorentz covariant and hence has a relativistically invariant meaning, which may be interpreted as the average internal quantum state of the single-particle state ϕs\phi\in\mathcal{H}_{s} as perceived by a fixed inertial observer. Investigating operational aspects of this matrix is beyond the scope of this paper. So, we leave it to researchers who are interested in exploring it.

7 Theoretical implications

In this section, we explore some of the theoretical implications of the perception bundle description. Specifically, we will see that the Dirac equation and the Proca equations (cf. [24]) are manifestations of a fixed inertial observer’s perception of the internal quantum states of massive particles with spin-1/2 and 1, respectively.

7.1 A modified framework

Besides the single-particle state spaces dealt with in Sect. 6, there are some special forms of single-particle state spaces to which the formalism of Sect. 5 cannot be directly applied. These include the Dirac bispinor representation for massive particles with spin-1/2 and the Minkowski space representation of massive particles with spin-1 (see below). To accommodate these into our formalism, we need the following modified version of Theorem 5.5.

Theorem 7.1.

Let G=NHG=N\ltimes H and fix νN^\nu\in\hat{N}. Suppose σ\sigma is a unitary representation of HνH_{\nu} on the Hilbert space (σ,,σ)(\mathcal{H}_{\sigma},\langle\cdot,\cdot\rangle_{\sigma}) that extends to a representation Φ:HGL(𝒦Φ)\Phi:H\rightarrow GL(\mathcal{K}_{\Phi}) where 𝒦Φ\mathcal{K}_{\Phi} contains σ\mathcal{H}_{\sigma} as a closed subspace, L:H/HνHL:H/H_{\nu}\rightarrow H is a global section, and there is an HH-invariant measure μ\mu on H/HνH/H_{\nu}.

Consider the two Hermitian GG-bundles in Table 1 and their associated induced representations UU and ULU_{L} where the bundle RσR_{\sigma} is given by the range of the bundle embedding

α1:EL,σH/Hν×𝒦ΦH/Hν(xHν,w)(xHν,Φ(L(xHν))w).\leavevmode\hbox to228.39pt{\vbox to54.83pt{\pgfpicture\makeatletter\hbox{\hskip 114.19376pt\lower-26.57054pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-114.19376pt}{-26.57054pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 20.87758pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-16.57204pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\alpha^{-1}:E_{L,\sigma}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 20.87758pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 44.05809pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-24.75253pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${H/H_{\nu}\times\mathcal{K}_{\Phi}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 29.05807pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 34.25807pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.95251pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${H/H_{\nu}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 19.25806pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-72.2386pt}{11.75113pt}\pgfsys@lineto{55.47765pt}{11.75113pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{55.67763pt}{11.75113pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-51.61394pt}{17.1039pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{(xH_{\nu},w)\mapsto(xH_{\nu},\Phi\big{(}L(xH_{\nu})\big{)}w)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-72.2386pt}{2.88734pt}\pgfsys@lineto{-28.00716pt}{-15.73677pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.92163}{-0.38806}{0.38806}{0.92163}{-27.82286pt}{-15.81436pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{62.06091pt}{2.89142pt}\pgfsys@lineto{11.65094pt}{-16.4612pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.93356}{-0.3584}{0.3584}{-0.93356}{11.46425pt}{-16.53287pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}. (7.1)

Then, this map is an Hermitian GG-bundle isomorphism that intertwines the structures listed in Table 3 and

IndGνGνσUUL.\textup{Ind}_{G_{\nu}}^{G}\nu\sigma\cong U\cong U_{L}. (7.2)
Table 3: The structures of the perception bundle and boosting bundle
EσE_{\sigma} (The perception bundle) EL,σE_{L,\sigma} (The boosting bundle)
Bundle RσH/Hν×𝒦σR_{\sigma}\leq H/H_{\nu}\times\mathcal{K}_{\sigma} H/Hν×σH/H_{\nu}\times\mathcal{H}_{\sigma}
Metric h((xHν,v),(xHν,w))h\Big{(}(xH_{\nu},v),(xH_{\nu},w)\Big{)}
=v,Φ(x)1Φ(x)1wσ=\langle v,\Phi(x)^{\dagger-1}\Phi(x)^{-1}w\rangle_{\sigma}
hL((xHν,v),(xHν,w))=v,wσh_{L}\Big{(}(xH_{\nu},v),(xH_{\nu},w)\Big{)}=\langle v,w\rangle_{\sigma}
Action λ(nh)(yHν,v)=\lambda(nh)(yH_{\nu},v)=
(hyHν,ν((hy)1nhy)Φ(h)v)\Big{(}hyH_{\nu},\nu\big{(}(hy)^{-1}nhy\big{)}\Phi(h)v\Big{)}
λL(nh)(yHν,v)=\lambda_{L}(nh)(yH_{\nu},v)=
(hyHν,ν((hy)1nhy)σ(W(h,yHν))v)\Big{(}hyH_{\nu},\nu\big{(}(hy)^{-1}nhy\big{)}\sigma\big{(}W(h,yH_{\nu})\big{)}v\Big{)}
Space U:=L2(H/Hν,Eσ;μ,h)\mathcal{H}_{U}:=L^{2}\Big{(}H/H_{\nu},E_{\sigma};\mu,h\Big{)} UL=L2(H/Hν;μ)σ\mathcal{H}_{U_{L}}=L^{2}(H/H_{\nu};\mu)\otimes\mathcal{H}_{\sigma}
IndGνGνσ\textup{Ind}_{G_{\nu}}^{G}\nu\sigma U(nh)ϕ=λ(nh)ϕ(lh)1U(nh)\phi=\lambda(nh)\circ\phi\circ(l_{h})^{-1} UL(nh)ψ=λL(nh)ψ(lh)1U_{L}(nh)\psi=\lambda_{L}(nh)\circ\psi\circ(l_{h})^{-1}

Analogously as in Sect. 5, we call Hermitian GG-bundles EσE_{\sigma} obtained in this way perception bundles. Although we didn’t need to modify the boosting bundle description, we have written it here for the sake of comparison.

Proof.

The proof is a straightforward adaptation of the proof of Theorem 5.5. One only needs to be careful of the fact that the perception bundle might be a proper subbundle of the trivial bundle H/Hν×𝒦ΦH/H_{\nu}\times\mathcal{K}_{\Phi}. See A. ∎

7.2 The Dirac bispinor representation of massive particles with spin-1/2

In addition to the description given in Sect. 3, there is an equivalent way to describe massive particles with spin-1/2 called the Dirac bispinor representation. In the QFT literature this representation is of paramount importance (cf. [50]). In the context of RQI, this representation has been investigated, for example in [6, 7]. Particles/antiparticles described by this representation will be referred to as Dirac particles.

Since antiparticle states will also be relevant to the discussion, we need to consider the representations associated with the two mass shells Xm±X_{m}^{\pm} simultaneously (cf. Proposition 4.3). One must be careful in keeping track of the superscripts ±\pm. Note that Hpm±=SU(2)H_{p_{m}^{\pm}}=SU(2) (cf. Proposition 4.6).

Since we are dealing with two mass shells, we must have two choices of boostings (cf. Sect. 2.4). We choose

L±(p)=±p~m=12m(m±p0)(±p~+mI2)SL(2,),pXm±.L^{\pm}(p)=\sqrt{\frac{\pm\tilde{p}}{m}}=\frac{1}{\sqrt{2m(m\pm p^{0})}}(\pm\tilde{p}+mI_{2})\in SL(2,\mathbb{C}),\quad p\in X_{m}^{\pm}. (7.3)

It is easy to check that κ(L±(p))pm±=p\kappa\big{(}L^{\pm}(p)\big{)}p_{m}^{\pm}=p for pXm±p\in X_{m}^{\pm}. A remark similar to Remark 2.12 also holds for L(p)L^{-}(p) with obvious modifications. To avoid clutter, we will suppress the superscripts ±\pm from L±L^{\pm} when L±L^{\pm} appears as a subscript for an object related to the boosting bundle description.

The perception bundle for Dirac particles

Instead of choosing σ1/2\sigma_{1/2} as in Sect. 3, we choose σ1/2σ1/2:SU(2)GL(4,)\sigma_{1/2}\oplus\sigma_{1/2}:SU(2)\rightarrow GL(4,\mathbb{C}) and its (non-unitary) extension Φ:SL(2,)GL(4,)\Phi:SL(2,\mathbb{C})\rightarrow GL(4,\mathbb{C}) given by

Φ(Λ)=(Λ00Λ1).\Phi(\Lambda)=\begin{pmatrix}\Lambda&0\\ 0&\Lambda^{\dagger-1}\end{pmatrix}. (7.4)

Observe that the subspaces V±:={z4:(z1,z2)=±(z3,z4)}4V^{\pm}:=\left\{z\in\mathbb{C}^{4}:(z_{1},z_{2})=\pm(z_{3},z_{4})\right\}\leq\mathbb{C}^{4} are 2-dimensional orthogonal invariant spaces with respect to σ1/2σ1/2\sigma_{1/2}\oplus\sigma_{1/2}. We write its corresponding subrepresentations as σ±\sigma^{\pm}, i.e., we set σ±(Λ):=[σ1/2σ1/2](Λ)|V±\sigma^{\pm}(\Lambda):=[\sigma_{1/2}\oplus\sigma_{1/2}](\Lambda)|_{V^{\pm}} for ΛSU(2)\Lambda\in SU(2).

The maps u±:2V±u^{\pm}:\mathbb{C}^{2}\rightarrow V^{\pm} given by v12(v,±v)v\mapsto\frac{1}{\sqrt{2}}(v,\pm v) are unitary maps intertwining σ1/2\sigma_{1/2} and σ±\sigma^{\pm}, respectively. So, we see σ±σ1/2\sigma^{\pm}\cong\sigma_{1/2} and thus σ±\sigma^{\pm} are irreducible. With the understanding that 𝒦Φ=4\mathcal{K}_{\Phi}=\mathbb{C}^{4}, we apply Theorem 7.1.

Proposition 7.2.

The range bundles R±Xm±×4R^{\pm}\leq X_{m}^{\pm}\times\mathbb{C}^{4} of Table 3 for Dirac particles are given by

R±={(p,z)Xm±×4:pμγμz=mz}R^{\pm}=\left\{(p,z)\in X_{m}^{\pm}\times\mathbb{C}^{4}:p_{\mu}\gamma^{\mu}z=mz\right\} (7.5)

where γμ:=(0τμτμ0)\gamma^{\mu}:=\begin{pmatrix}0&\tau_{\mu}\\ \tau^{\mu}&0\end{pmatrix} is the Weyl representation of the Dirac matrices (cf. [24]).

The Hermitian metrics h±h^{\pm} on R±R^{\pm} provided by Table 3 become

hp±(v,w)=vΦ(±p~m)w=±vγ0w=m|p0|vwh_{p}^{\pm}(v,w)=v^{\dagger}\Phi(\pm\frac{\underaccent{\tilde}{p}}{m})w=\pm v^{\dagger}\gamma^{0}w=\frac{m}{|p^{0}|}v^{\dagger}w (7.6)

for v,w(R±)pv,w\in\left(R^{\pm}\right)_{p}.

Proof.

Throughout the proof, let’s denote Λ:=L±(p)\Lambda:=L^{\pm}(p) for pXm±{}^{\forall}p\in X_{m}^{\pm} for simplicity of notation. Observe that for pXm±p\in X_{m}^{\pm}, and zV±z\in V^{\pm},

pμγμΦ(Λ)z=(0p~p~0)Φ(Λ)z=(0Λ(pm±)ΛΛ1(pm±)Λ10)Φ(Λ)z\displaystyle p_{\mu}\gamma^{\mu}\Phi(\Lambda)z=\begin{pmatrix}0&\tilde{p}\\ \underaccent{\tilde}{p}&0\end{pmatrix}\Phi(\Lambda)z=\begin{pmatrix}0&\Lambda(p_{m}^{\pm})^{\sim}\Lambda^{\dagger}\\ \Lambda^{\dagger-1}(p_{m}^{\pm})_{\sim}\Lambda^{-1}&0\end{pmatrix}\Phi(\Lambda)z
=±Φ(Λ)mγ0Φ(Λ)1Φ(Λ)z=mΦ(Λ)(±γ0z)=mΦ(Λ)z\displaystyle=\pm\Phi(\Lambda)m\gamma^{0}\Phi(\Lambda)^{-1}\Phi(\Lambda)z=m\Phi(\Lambda)(\pm\gamma^{0}z)=m\Phi(\Lambda)z

and hence indeed the range of the bundle maps given by Eq. (7.1) are contained in the subbundles R±Xm±×4R^{\pm}\leq X_{m}^{\pm}\times\mathbb{C}^{4}.

Since (pμγμ)2=m2I4\left(p_{\mu}\gamma^{\mu}\right)^{2}=m^{2}I_{4} (cf. Eq. (2.4b)), the map pμγμ:44p_{\mu}\gamma^{\mu}:\mathbb{C}^{4}\rightarrow\mathbb{C}^{4} decomposes 4\mathbb{C}^{4} into two eigenspaces corresponding to the eigenvalues ±m\pm m. Since det(pμγμ)=(p2)2=m4\text{det}\left(p_{\mu}\gamma^{\mu}\right)=(p^{2})^{2}=m^{4} and pμγμ±mI4p_{\mu}\gamma^{\mu}\neq\pm mI_{4}, we see the multiplicities of ±m\pm m are both 2. So, R±R^{\pm} are subbundles of the trivial bundle Xm±×4X_{m}^{\pm}\times\mathbb{C}^{4} with rank 2. Since the maps Eq. (7.1) are injective at each fiber of the boosting bundle Xm±×V±X_{m}^{\pm}\times V^{\pm}, this implies that the range bundles are all of R±R^{\pm}.

The first equality of Eq. (7.6) is proved by the same calculation presented right below Table 2. Observe

Φ(p~m)=(p~m00p~m)=1mγ0pμγμ.\Phi(\frac{\underaccent{\tilde}{p}}{m})=\begin{pmatrix}\frac{\underaccent{\tilde}{p}}{m}&0\\ 0&\frac{\tilde{p}}{m}\end{pmatrix}=\frac{1}{m}\gamma^{0}p_{\mu}\gamma^{\mu}.

Since pμγμ=mI4p_{\mu}\gamma^{\mu}=mI_{4} on (R±)p(R^{\pm})_{p} for each pXm±p\in X_{m}^{\pm}, we see the second equality in Eq. (7.6) holds. A direct computation would show that vγjv=0v^{\dagger}\gamma^{j}v=0 for vV±v\in V^{\pm} and γj\gamma^{j} for j=1,2,3j=1,2,3. Now, observe

vγ0v=1p0v(p0γ0)v=1p0v(pμγμ)v=mp0vvv^{\dagger}\gamma^{0}v=\frac{1}{p^{0}}v^{\dagger}(p_{0}\gamma^{0})v=\frac{1}{p^{0}}v^{\dagger}(p_{\mu}\gamma^{\mu})v=\frac{m}{p^{0}}v^{\dagger}v

and use the polarization identity to see that the third identity also holds. ∎

The description table for Dirac particles

Table 4 below, which is a consequence of Theorem 7.1 and Proposition 7.2, is the description table for Dirac particles. Notice that since σ±σ1/2\sigma^{\pm}\cong\sigma_{1/2}, we have IndGpm±G(eipm±,σ±)πm,1/2±\textup{Ind}_{G_{p_{m}^{\pm}}}^{G}(e^{-i\langle p_{m}^{\pm},\cdot\rangle}\sigma^{\pm})\cong\pi_{m,1/2}^{\pm}, which represent particles/antiparticles of mass m>0m>0 and spin-1/2, respectively.

Table 4: The perception and boosting bundles for Dirac particles
E± (The perception bundle)E^{\pm}\text{ (The perception bundle)} EL± (The boosting bundle)E_{L}^{\pm}\text{ (The boosting bundle)}
Bundle R±={(p,z)Xm±×4:pμγμz=mz}R^{\pm}=\left\{(p,z)\in X_{m}^{\pm}\times\mathbb{C}^{4}:p_{\mu}\gamma^{\mu}z=mz\right\} Xm±×V±X_{m}^{\pm}\times V^{\pm}
Metric h±((p,v),(p,w))=±vγ0w=m|p0|vwh^{\pm}\Big{(}(p,v),(p,w)\Big{)}=\pm v^{\dagger}\gamma^{0}w=\frac{m}{|p^{0}|}v^{\dagger}w hL±((p,v),(p,w))=vwh_{L}^{\pm}\Big{(}(p,v),(p,w)\Big{)}=v^{\dagger}w
Action λ±(a,Λ)(p,v)=(Λp,eiΛp,aΦ(Λ)v)\lambda^{\pm}(a,\Lambda)(p,v)=\Big{(}\Lambda p,e^{-i\langle\Lambda p,a\rangle}\Phi(\Lambda)v\Big{)} λL±(a,Λ)(p,v)=\lambda_{L}^{\pm}(a,\Lambda)(p,v)=
(Λp,eiΛp,aσ±(WL±(Λ,p))v)\Big{(}\Lambda p,e^{-i\langle\Lambda p,a\rangle}\sigma^{\pm}(W_{L^{\pm}}(\Lambda,p))v\Big{)}
Space ±:=L2(Xm±,E±;μ±,h±)\mathcal{H}^{\pm}:=L^{2}\Big{(}X_{m}^{\pm},E^{\pm};\mu^{\pm},h^{\pm}\Big{)} L±:=L2(Xm±;μ±)V±\mathcal{H}_{L}^{\pm}:=L^{2}(X_{m}^{\pm};\mu^{\pm})\otimes V^{\pm}
πm,1/2±\pi_{m,1/2}^{\pm} U±(a,Λ)ϕ=λ±(a,Λ)ϕΛ1U^{\pm}(a,\Lambda)\phi=\lambda^{\pm}(a,\Lambda)\circ\phi\circ\Lambda^{-1} UL±(a,Λ)ψ=λL±(a,Λ)ψΛ1U_{L}^{\pm}(a,\Lambda)\psi=\lambda_{L}^{\pm}(a,\Lambda)\circ\psi\circ\Lambda^{-1}

The isomorphisms between the two descriptions (Eq. (7.1)) in this case are given by the Hermitian GG-bundle isomorphisms

α±:E±EL±Xm±(p,v)(p,Φ(L±(p)1)v).\leavevmode\hbox to140.21pt{\vbox to54.7pt{\pgfpicture\makeatletter\hbox{\hskip 70.1055pt\lower-26.34552pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-70.1055pt}{-26.34552pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 18.61652pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.31097pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\alpha^{\pm}:E^{\pm}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 18.61652pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 25.19028pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.88472pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${E_{L}^{\pm}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 10.19026pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 26.2987pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.99315pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${X_{m}^{\pm}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 11.29869pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 15.00002pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-32.67247pt}{11.85393pt}\pgfsys@lineto{49.12502pt}{11.85393pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{49.325pt}{11.85393pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-23.41054pt}{17.2067pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{(p,v)\mapsto(p,\Phi\big{(}L^{\pm}(p)^{-1}\big{)}v)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-40.81898pt}{5.49422pt}\pgfsys@lineto{-3.41602pt}{-16.79466pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.85904}{-0.51192}{0.51192}{0.85904}{-3.24423pt}{-16.89703pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{49.52498pt}{4.65213pt}\pgfsys@lineto{20.25359pt}{-15.65031pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.8217}{-0.56992}{0.56992}{-0.8217}{20.08928pt}{-15.76427pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}. (7.7)

7.2.1 The vector bundle point of view for Dirac particles

As in Sect. 6.1, the description table Table 4 tells us that if two inertial observers Alice and Bob, who are related by a Lorentz transformation (a,Λ)G(a,\Lambda)\in G as in Eq. (2.11), are using the two bundle descriptions for Dirac particles to describe a massive particle/antiparticle with spin-1/2,222222For the precise meaning of this sentence, see Sect. 6.1. then the descriptions should be related by

λ±(a,Λ):E±AE±B\displaystyle\lambda^{\pm}(a,\Lambda):E^{\pm A}\rightarrow E^{\pm B}
(p,c)A(Λp,ei(Λp)μaμΦ(Λ)c)B\displaystyle(p,c)^{A}\mapsto\left(\Lambda p,e^{-i(\Lambda p)_{\mu}a^{\mu}}\Phi\left(\Lambda\right)c\right)^{B} (7.8)

and

λL±(a,Λ):EL±AEL±B\displaystyle\lambda_{L}^{\pm}(a,\Lambda):E_{L}^{\pm A}\rightarrow E_{L}^{\pm B}
(p,c)A(Λp,ei(Λp)μaμσ±(WL±(Λ,p))c)B,\displaystyle(p,c)^{A}\mapsto\left(\Lambda p,e^{-i(\Lambda p)_{\mu}a^{\mu}}\sigma^{\pm}\left(W_{L^{\pm}}(\Lambda,p)\right)c\right)^{B}, (7.9)

respectively.

7.2.2 Physical interpretations of the two bundle descriptions

Let’s see whether the discussions in Sect. 3.3 carry over to the two descriptions E±E^{\pm} and EL±E_{L}^{\pm} as well.

For that, we need analogues of Eqs. (3.13) and (3.20). Given a bispinor c=12(χ±χ)V±c=\frac{1}{\sqrt{2}}\begin{pmatrix}\chi\\ \pm\chi\end{pmatrix}\in V^{\pm}, we form

cc=14(𝝉𝐧+I2±(𝝉𝐧+I2)±(𝝉𝐧+I2)𝝉𝐧+I2)=14(I4±γ0)(𝝉𝐧+I200𝝉𝐧+I2)cc^{\dagger}=\frac{1}{4}\begin{pmatrix}\boldsymbol{\tau}\cdot\mathbf{n}+I_{2}&\pm(\boldsymbol{\tau}\cdot\mathbf{n}+I_{2})\\ \pm(\boldsymbol{\tau}\cdot\mathbf{n}+I_{2})&\boldsymbol{\tau}\cdot\mathbf{n}+I_{2}\end{pmatrix}=\frac{1}{4}(I_{4}\pm\gamma^{0})\begin{pmatrix}\boldsymbol{\tau}\cdot\mathbf{n}+I_{2}&0\\ 0&\boldsymbol{\tau}\cdot\mathbf{n}+I_{2}\end{pmatrix} (7.10)

where 𝐧\mathbf{n} is the spin direction of the qubit χ2\chi\in\mathbb{C}^{2} (cf. Eq. (3.13)). Thus,

Φ(L±(p))ccΦ(L±(p))=12m(w~±p~2p~m(w~±p~2)p~m(w~±p~2)w~±p~2)\displaystyle\Phi(L^{\pm}(p))cc^{\dagger}\Phi(L^{\pm}(p))^{\dagger}=\frac{1}{2m}\begin{pmatrix}\tilde{w}\pm\frac{\tilde{p}}{2}&\frac{\tilde{p}}{m}\left(-\underaccent{\tilde}{w}\pm\frac{\underaccent{\tilde}{p}}{2}\right)\\ \frac{\underaccent{\tilde}{p}}{m}\left(\tilde{w}\pm\frac{\tilde{p}}{2}\right)&-\underaccent{\tilde}{w}\pm\frac{\underaccent{\tilde}{p}}{2}\end{pmatrix}
=12m(I4+1mpμγμ)(w~±p~200w~±p~2)\displaystyle=\frac{1}{2m}(I_{4}+\frac{1}{m}p_{\mu}\gamma^{\mu})\begin{pmatrix}\tilde{w}\pm\frac{\tilde{p}}{2}&0\\ 0&-\underaccent{\tilde}{w}\pm\frac{\underaccent{\tilde}{p}}{2}\end{pmatrix} (7.11)

where w=L±(p)(0,12𝐧)w=L^{\pm}(p)(0,\frac{1}{2}\mathbf{n}) is the Pauli-Lubansky four-vector of the qubit χ\chi (cf. Eq. (3.20)).

So, just as for Eqs. (3.13) and (3.20), we define the spin direction of the bispinor cV±c\in V^{\pm} as the three-vector 𝐧34\mathbf{n}\in\mathbb{R}^{3}\leq\mathbb{R}^{4} which satisfies

𝝉𝐧=4(cc)11I2\boldsymbol{\tau}\cdot\mathbf{n}=4\left(cc^{\dagger}\right)_{11}-I_{2} (7.12)

(here M11M_{11} denotes the upper left 2×22\times 2 component of the 4×44\times 4 complex matrix MM) and the Pauli-Lubansky four-vector of the bispinor (p,d)Ep±(p,d)\in E_{p}^{\pm} as the four-vector w4w\in\mathbb{R}^{4} which satisfies

w~=2m(dd)11p~2.\tilde{w}=2m\left(dd^{\dagger}\right)_{11}\mp\frac{\tilde{p}}{2}. (7.13)

Using these, one can repeat the arguments in Sect. 3.3 to see that the same interpretations also hold for Dirac particles. I.e., the description E±E^{\pm} is related to the Pauli-Lubansky four-vector and EL±E_{L}^{\pm} is related to the Newton-Wigner spin in relation to the former.

In particular, by inserting (a,Λ)=(0,L±(p))(a,\Lambda)=(0,L^{\pm}(p)) into Eq. (7.9), we see the following analogue of Eq. (3.12) still holds

λL±(0,L±(p))(pm±,c)A=(p,c)B\lambda_{L}^{\pm}(0,L^{\pm}(p))(p_{m}^{\pm},c)^{A}=(p,c)^{B} (7.14)

for (pm±,c)(EL±)pm±(p_{m}^{\pm},c)\in(E_{L}^{\pm})_{p_{m}^{\pm}} (cf. Eq. (6.4)). Thus, the same remark discussed right below Eq. (3.12) still holds for EL±E_{L}^{\pm}. I.e., the elements in EL±E_{L}^{\pm} don’t reflect the perception of the fixed inertial observer who is using the bundle EL±E_{L}^{\pm} and hence the description EL±E_{L}^{\pm} inherently depends on frame change considerations.

Also, by inserting (a,Λ)=(0,L±(p))(a,\Lambda)=(0,L^{\pm}(p)) into Eq. (7.8) for (pm±,c)(E±)pm(p_{m}^{\pm},c)\in(E^{\pm})_{p_{m}} and checking Eq. (7.2.2) once more, we see that one can recover the “relativistic perception” w~±p~2\tilde{w}\pm\frac{\tilde{p}}{2} from the bispinor (p,Φ(L(p))c)Ep±(p,\Phi(L(p))c)\in E_{p}^{\pm} without recourse to frame change considerations and vice versa. In other words, the perception bundle description E±E^{\pm} correctly reflects the perception of a fixed inertial observer who is using this bundle for the description of a Dirac particle.

7.2.3 Theoretical implications on the representations

The Dirac equation as a manifestation of relativistic perception

We first investigate a striking consequence of the definition of the perception representation (±,U±)(\mathcal{H}^{\pm},U^{\pm}). Fix ϕ±\phi\in\mathcal{H}^{\pm}. From Table 4, we have

[U±(a,I)ϕ](p)=λ±(a,I)ϕ(p)=eip,aϕ(p),pXm±.[U^{\pm}(a,I)\phi](p)=\lambda^{\pm}(a,I)\circ\phi(p)=e^{-i\langle p,a\rangle}\phi(p),\quad\forall p\in X_{m}^{\pm}. (7.15)

If we define the four-momentum operators PμP^{\mu} on ±\mathcal{H}^{\pm} as in Eq. (4.10), then Eq. (7.15) and a computation analogous to Eq. (4.10) would show that by virtue of Eq. (7.5),

[Pμγμϕ](p)=pμγμϕ(p)=mϕ(p)[P_{\mu}\gamma^{\mu}\phi](p)=p_{\mu}\gamma^{\mu}\phi(p)=m\phi(p) (7.16)

always holds for ϕ±{}^{\forall}\phi\in\mathcal{H}^{\pm}.

Eq. (7.16) is the Dirac equation232323In Sect. 7.4, we will see how Eq. (7.16) can be converted into the more familiar form of differential equation. Cf. Eq. (7.32). which is obeyed by massive spin-1/2 particles/antiparticles and is of fundamental importance in QFT (cf. [50]). We have just found that it is automatically satisfied for all wave functions in ±\mathcal{H}^{\pm}. Given the interpretations of the perception bundles E±E^{\pm} presented in Sect. 7.2.2, we find that the Dirac equation is nothing but a manifestation of a fixed inertial observer’s perception of the internal quantum states of massive particles/antiparticles with spin-1/2. This fact is even more clear if we look once again at the definition of the bundles E±=R±E^{\pm}=R^{\pm} given in Eq. (7.5). The Dirac equation is not only satisfied by the wave functions in ±\mathcal{H}^{\pm} but also manifests itself in the level of bispinors in the fibers of the perception bundles E±E^{\pm} as perceived by a fixed inertial observer (See Remark 6.2 for more on this point).

The Foldy-Wouthuysen transformation

The boosting representation

L±=L2(Xm±;μ±)V±\mathcal{H}_{L}^{\pm}=L^{2}(X_{m}^{\pm};\mu^{\pm})\otimes V^{\pm} (7.17a)
[UL±(a,Λ)ψ](p)=eip,aσ±(WL±(Λ,Λ1p)ψ(Λ1p)[U_{L}^{\pm}(a,\Lambda)\psi](p)=e^{-i\langle p,a\rangle}\sigma^{\pm}(W_{L^{\pm}}(\Lambda,\Lambda^{-1}p)\psi(\Lambda^{-1}p) (7.17b)

from Table 4 has been the standard approach to the description of Dirac particles in the physics literature. However, the perception representation for Dirac particles

±=L2(Xm±,E±;μ±,h±)\mathcal{H}^{\pm}=L^{2}(X_{m}^{\pm},E^{\pm};\mu^{\pm},h^{\pm}) (7.18a)
[U±(a,Λ)ϕ](p)=eip,aΦ(Λ)ϕ(Λ1p)[U^{\pm}(a,\Lambda)\phi](p)=e^{-i\langle p,a\rangle}\Phi(\Lambda)\phi(\Lambda^{-1}p) (7.18b)

from Table 4 has also been given some attention. In fact, composing the Hermitian GG-bundle isomorphism Eq. (7.7) to wave functions in L±\mathcal{H}_{L}^{\pm}, we get a unitary map FW±:=α1():L±±FW^{\pm}:=\alpha^{-1}\circ(\cdot):\mathcal{H}_{L}^{\pm}\rightarrow\mathcal{H}^{\pm} intertwining the two representations UL±U_{L}^{\pm} and U±U^{\pm}. Unwinding the definitions, we see for ψL±{}^{\forall}\psi\in\mathcal{H}_{L}^{\pm},

FW±(ψ)(p):=α1ψ(p)=Φ(L±(p))ψ(p)=12m(m±p0)(mI4+pμγμ)ψ(p)\displaystyle FW^{\pm}(\psi)(p):=\alpha^{-1}\circ\psi(p)=\Phi(L^{\pm}(p))\psi(p)=\frac{1}{\sqrt{2m(m\pm p^{0})}}\left(mI_{4}+p_{\mu}\gamma^{\mu}\right)\psi(p)
=12m(m±p0)((m±p0)I4𝐩𝜸)ψ(p)\displaystyle=\frac{1}{\sqrt{2m(m\pm p^{0})}}\left((m\pm p^{0})I_{4}-\mathbf{p}\cdot\boldsymbol{\gamma}\right)\psi(p) (7.19)

holds. Notice that the last expression is the Foldy-Wouthuysen transformation suggested in [23]. (cf. [20])

This transformation has been widely used to arrange the Dirac Hamiltonian in a mathematically palatable way. Interested readers are referred to [18] for a brief historical account of it and its usefulness in dealing with Dirac particles. We have found that the Foldy-Wouthuysen transformation is a change of representations from the boosting description into the perception description.

The same reasoning as in Sect. 6.2.2 would show that

(U±)(𝐒NW)=(α±)1(1Φ(12𝝉))α±(U^{\pm})_{*}(\mathbf{S}_{NW})=(\alpha^{\pm})^{-1}\circ\left(1\otimes\Phi_{*}(\frac{1}{2}\boldsymbol{\tau})\right)\circ\alpha^{\pm} (7.20)

holds. I.e., the V±V^{\pm}-component of the space L±=L2(Xm±,μ±)V±\mathcal{H}_{L}^{\pm}=L^{2}(X_{m}^{\pm},\mu^{\pm})\otimes V^{\pm} contains information of the Newton-Wigner spin on the representation space ±\mathcal{H}^{\pm}.

7.3 The Minkowski space representation of massive particles with spin-1

In this subsection, we analyze massive particles with spin-1. The WW and ZZ bosons which are responsible for the weak interaction are of this type. In the context of RQI, this case has been investigated, for example, in [14, 10]. Again in this subsection, we restrict our attention to the mass shell Xm=Xm+X_{m}=X_{m}^{+} and remove all the ++-superscripts as we had done in Sects. 66.2.

The perception bundle for massive particles with spin-1

Just as in Sect. 7.2, we do not choose σ1\sigma_{1} from Theorem 4.7. Instead, note that the representation σ:=κ|SU(2):SU(2)SO(3)U(3)\sigma:=\kappa|_{SU(2)}:SU(2)\rightarrow SO(3)\hookrightarrow U(3) (a restriction of the covering map Eq. (2.14)) is an irreducible unitary representation of dimension 3=21+13=2\cdot 1+1. So, by Theorem 4.7, it is equivalent to σ1\sigma_{1}. Notice that the representation σ:SU(2)SO(3)\sigma:SU(2)\rightarrow SO(3) has a (non-unitary) extension κ:SL(2,)SO(1,3)GL(4,)\kappa:SL(2,\mathbb{C})\rightarrow SO^{\uparrow}(1,3)\hookrightarrow GL(4,\mathbb{C}). So, we can apply Theorem 7.1 with the understanding that σ:=3={(z0,z1,z2,z3)4:z0=0}4=:𝒦κ\mathcal{H}_{\sigma}:=\mathbb{C}^{3}=\{(z^{0},z^{1},z^{2},z^{3})\in\mathbb{C}^{4}:z^{0}=0\}\leq\mathbb{C}^{4}=:\mathcal{K}_{\kappa}.

Proposition 7.3.

The range bundle RXm×4R\leq X_{m}\times\mathbb{C}^{4} of Table 3 for the Minkowski space representation is given by

R={(p,v)Xm×4:pμvμ=0},R=\left\{(p,v)\in X_{m}\times\mathbb{C}^{4}:p_{\mu}v^{\mu}=0\right\}, (7.21)

which is a rank-3 subbundle.

The Hermitian metric hh on RR provided by Table 3 for this case becomes

hp(v,w)=vκ(p~m)w=vηwh_{p}(v,w)=v^{\dagger}\kappa(\frac{\underaccent{\tilde}{p}}{m})w=-v^{\dagger}\eta w (7.22)

for v,wRpv,w\in R_{p}.

Proof.

Let (p,v)Xm×σ(p,v)\in X_{m}\times\mathcal{H}_{\sigma}. Then,

pμ(κ(L(p))v)μ=p,κ(L(p))v=κ(L(p))1p,v=pm,v=0p_{\mu}\Big{(}\kappa\big{(}L(p)\big{)}v\Big{)}^{\mu}=\langle p,\kappa\big{(}L(p)\big{)}v\rangle=\langle\kappa\big{(}L(p)\big{)}^{-1}p,v\rangle=\langle p_{m},v\rangle=0

since κ(L(p))SO(1,3)\kappa\big{(}L(p)\big{)}\in SO^{\uparrow}(1,3) and vσ={(z0,z1,z2,z3)4:z0=0}4v\in\mathcal{H}_{\sigma}=\{(z^{0},z^{1},z^{2},z^{3})\in\mathbb{C}^{4}:z^{0}=0\}\leq\mathbb{C}^{4} while pm=(m,0,0,0)p_{m}=(m,0,0,0). So, indeed the map Eq. (7.1) maps the boosting bundle into RR. It is an isomorphism being an injection between two bundles of rank 3.

The first part of Eq. (7.22) is easy and for the second part, notice that the preceding calculation shows that κ(L(p)1)vσ4\kappa(L(p)^{-1})v\in\mathcal{H}_{\sigma}\leq\mathbb{C}^{4} for all vRpv\in R_{p} and hence

vκ(p~m)w=(κ(L(p)1)v)(κ(L(p)1)w)=κ(L(p)1)v¯,κ(L(p)1)w=v¯,w\displaystyle v^{\dagger}\kappa(\frac{\underaccent{\tilde}{p}}{m})w=\Big{(}\kappa(L(p)^{-1})v\Big{)}^{\dagger}\Big{(}\kappa(L(p)^{-1})w\Big{)}=-\left<\kappa(L(p)^{-1})\overline{v},\kappa(L(p)^{-1})w\right>=-\langle\overline{v},w\rangle

where ,\langle\cdot,\cdot\rangle here denotes the complexified Minkowski metric. ∎

The description table for massive particles with spin-1

With the help of Proposition 7.2, we apply Theorem 7.1 to obtain Table 5, the description table for massive particles with spin-1. Note that since σσ1\sigma\cong\sigma_{1}, we see IndGpmG(eipm,σ)πm,1\textup{Ind}_{G_{p_{m}}}^{G}(e^{-i\langle p_{m},\cdot\rangle}\sigma)\cong\pi_{m,1}, which represents particles of mass m>0m>0 and spin-1. We call this representation the Minkowski space representation of massive particle with spin-1.

Table 5: The perception and boosting bundles for the Minkowski space representation
E (The perception bundle)E\text{ (The perception bundle)} EL (The boosting bundle)E_{L}\text{ (The boosting bundle)}
Bundle R={(p,v)Xm×4:pμvμ=0}R=\left\{(p,v)\in X_{m}\times\mathbb{C}^{4}:p_{\mu}v^{\mu}=0\right\} Xm×3X_{m}\times\mathbb{C}^{3}
Metric h((p,v),(p,w))=vκ(p~m)w=vηwh\Big{(}(p,v),(p,w)\Big{)}=v^{\dagger}\kappa(\frac{\underaccent{\tilde}{p}}{m})w=-v^{\dagger}\eta w hL((p,v),(p,w))=vwh_{L}\Big{(}(p,v),(p,w)\Big{)}=v^{\dagger}w
Action λ(a,Λ)(p,v)=(Λp,eiΛp,aκ(Λ)v)\lambda(a,\Lambda)(p,v)=\Big{(}\Lambda p,e^{-i\langle\Lambda p,a\rangle}\kappa(\Lambda)v\Big{)} λL(a,Λ)(p,v)=\lambda_{L}(a,\Lambda)(p,v)=
(Λp,eiΛp,aκ(WL(Λ,p))v)\Big{(}\Lambda p,e^{-i\langle\Lambda p,a\rangle}\kappa(W_{L}(\Lambda,p))v\Big{)}
Space :=L2(Xm,E;μ,h)\mathcal{H}:=L^{2}\Big{(}X_{m},E;\mu,h\Big{)} L:=L2(Xm;μ)3\mathcal{H}_{L}:=L^{2}(X_{m};\mu)\otimes\mathbb{C}^{3}
πm,1\pi_{m,1} U(a,Λ)ϕ=λ(a,Λ)ϕΛ1U(a,\Lambda)\phi=\lambda(a,\Lambda)\circ\phi\circ\Lambda^{-1} UL(a,Λ)ψ=λL(a,Λ)ψΛ1U_{L}(a,\Lambda)\psi=\lambda_{L}(a,\Lambda)\circ\psi\circ\Lambda^{-1}

7.3.1 The vector bundle point of view for massive particles with spin-1

As in Sect. 7.2.1, the description table Table 5 tells us that if two inertial observers Alice and Bob, who are related by a Lorentz transformation (a,Λ)G(a,\Lambda)\in G as in Eq. (2.11), are using the two bundle descriptions to describe a massive particle with spin-1, then the descriptions should be related by

λ(a,Λ):EAEB\displaystyle\lambda(a,\Lambda):E^{A}\rightarrow E^{B}
(p,v)A(Λp,ei(Λp)μaμκ(Λ)v)B\displaystyle(p,v)^{A}\mapsto\left(\Lambda p,e^{-i(\Lambda p)_{\mu}a^{\mu}}\kappa\left(\Lambda\right)v\right)^{B} (7.23)

and

λL(a,Λ):ELAELB\displaystyle\lambda_{L}(a,\Lambda):E_{L}^{A}\rightarrow E_{L}^{B}
(p,v)A(Λp,ei(Λp)μaμκ(WL±(Λ,p))v)B,\displaystyle(p,v)^{A}\mapsto\left(\Lambda p,e^{-i(\Lambda p)_{\mu}a^{\mu}}\kappa\left(W_{L^{\pm}}(\Lambda,p)\right)v\right)^{B}, (7.24)

respectively.

7.3.2 Physical interpretations of the two bundle descriptions

To find physical interpretations of the two bundle descriptions, we need to examine the three-level quantum system σ=3\mathcal{H}_{\sigma}=\mathbb{C}^{3}. Since

J^3:=i(σ)(J3)=(0i0i00000)\hat{J}^{3}:=i(\sigma)_{*}(J^{3})=\begin{pmatrix}0&-i&0\\ i&0&0\\ 0&0&0\end{pmatrix} (7.25)

in this case, the three vectors

e1=12(1i0),e0=(001),e1=12(i10)e_{1}=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\ i\\ 0\end{pmatrix},e_{0}=\begin{pmatrix}0\\ 0\\ 1\end{pmatrix},e_{-1}=\frac{1}{\sqrt{2}}\begin{pmatrix}i\\ 1\\ 0\end{pmatrix} (7.26)

are eigenvectors of the operator J^3\hat{J}^{3} with eigenvalues 1,0,11,0,-1, respectively.

The vectors vσv\in\mathcal{H}_{\sigma} have the meaning of polarization in QFT (cf. [50]). In this interpretation, e1e_{1} gives the right-handed circular polarization, e1e_{-1} the left-handed circular polarization, and e0e_{0} the longitudinal polarization along the z^\hat{z}-axis, respectively. This interpretation becomes clear only when one expands the solutions of the Proca equations (Eq. (7.29)) as generalized linear combinations (i.e., integrals) of the plane wave solutions e±ipμxμe^{\pm ip_{\mu}x^{\mu}}. In such an expression, each vector vv of (p,v)Xm×3(p,v)\in X_{m}\times\mathbb{C}^{3} has the meaning of the polarization along the direction of each momentum pXmp\in X_{m}. For more details, see Sect. 5.3 of [50] together with any physics textbook that deals with electromagnetic waves.

The point is that each element (pm,v)A(EL)pmA=EpmA(p_{m},v)^{A}\in(E_{L})_{p_{m}}^{A}=E_{p_{m}}^{A} is a genuine (complex) three-vector in Alice’s rest frame. So, in the L(p)L(p)-transformed Bob’s frame, the vector vv is perceived as the four-vector κ(L(p))v4\kappa(L(p))v\in\mathbb{C}^{4}, which is precisely captured by the transformation law Eq. (7.23). Therefore, we conclude that the elements in EE are “relativistic perception” of a fixed observer who is using EE for the description of a massive particle with spin-1.

As usual, Eq. (7.24), evaluated at (a,Λ)=(0,L(p))(a,\Lambda)=(0,L(p)) would give

λL(0,L(p))(pm,v)A=(p,v)B,\lambda_{L}(0,L(p))(p_{m},v)^{A}=(p,v)^{B}, (7.27)

which implies that the fibers of the bundle ELE_{L} does not reflect the perception of a fixed inertial observer who is using ELE_{L} for the description of a massive particle with spin-1, in contrast to the EE-bundle description. So, we see that the interpretation of Sect. 3.3 also holds for the Minkowski space representation of massive spin-1 particles.

7.3.3 Theoretical implications on the representations

The Proca equations as a manifestation of relativistic perception

Fix ϕ\phi\in\mathcal{H}. From Table 5, we have

[U(a,I)ϕ](p)=λ(a,I)ϕ(p)=eip,aϕ(p),pXm.[U(a,I)\phi](p)=\lambda(a,I)\circ\phi(p)=e^{-i\langle p,a\rangle}\phi(p),\quad\forall p\in X_{m}. (7.28)

If we define the four-momentum operators PμP^{\mu} on \mathcal{H} as in Eq. (4.10), then Eq. (7.28) and a computation analogous to Eq. (4.10) would show that, by virtue of Eq. (7.21) and Definition 4.5,

[Pμϕμ](p)=pμϕ(p)μ=0,[PμPμϕ](p)=pμpμϕ(p)=m2ϕ(p)[P_{\mu}\phi^{\mu}](p)=p_{\mu}\phi(p)^{\mu}=0,\quad[P_{\mu}P^{\mu}\phi](p)=p_{\mu}p^{\mu}\phi(p)=m^{2}\phi(p) (7.29)

always hold for ϕ{}^{\forall}\phi\in\mathcal{H}.

The set of equations Eq. (7.29) are the Proca equations242424In Sect. 7.4, we will see how Eq. (7.29) can be converted into the more familiar form of differential equation. Cf. Eq. (7.36). which are obeyed by massive spin-1 particles and become the Maxwell equations with the Lorentz gauge condition when m0m\rightarrow 0 (cf. [50]). As in Sect. 7.2.2, we remark that given the interpretations of the bundle EE presented in Sect. 7.3.2, we find that the Proca equations are nothing but a manifestation of a fixed inertial observer’s perception of the internal quantum states of massive particles with spin-1. In fact, as one can see from Eq. (7.21), the Proca equations manifest themselves even in the level of elements in the fibers of the perception bundle EE as perceived by a fixed inertial observer.

7.4 A link between the theory of relativistic quantum measurement

Even though we have not covered any aspect of measurement in this paper, one must be conversant with the theory of relativistic quantum measurement in order to apply the mathematical framework developed in this paper to actual problems of RQI. Particularly, a relativistic measurement theory based on foliations of space-time and the Schwinger-Tomonaga equation (cf. Ch. 11 of [9]) can be applied to the single-particle state spaces analyzed in Sect. 7. We want to indicate how in this subsection.

Dirac particles

Let ϕ±\phi\in\mathcal{H}^{\pm} (cf. Table 4). For each tt\in\mathbb{R}, we define

ψ(t,𝐱):=Xm±exp(ip0t+i𝐩𝐱)mϕ(p)dμ±(p)(2π)32,𝐱3.\psi(t,\mathbf{x}):=\int_{X_{m}^{\pm}}\exp\left(-ip^{0}t+i\mathbf{p}\cdot\mathbf{x}\right)\sqrt{m}\phi(p)\frac{d\mu^{\pm}(p)}{(2\pi)^{\frac{3}{2}}},\quad\mathbf{x}\in\mathbb{R}^{3}. (7.30)

Observe that

3(mϕ(p)|p0|)(mϕ(p)|p0|)d3𝐩=Xm±hp±(ϕ(p),ϕ(p))dμ±(p)=ϕ±2\int_{\mathbb{R}^{3}}\left(\frac{\sqrt{m}\phi(p)}{|p^{0}|}\right)^{\dagger}\left(\frac{\sqrt{m}\phi(p)}{|p^{0}|}\right)d^{3}\mathbf{p}=\int_{X_{m}^{\pm}}h_{p}^{\pm}\big{(}\phi(p),\phi(p)\big{)}d\mu^{\pm}(p)=\|\phi\|_{\mathcal{H}^{\pm}}^{2}

by the definition of the norm ±\|\cdot\|_{\mathcal{H}^{\pm}} of ±\mathcal{H}^{\pm} and Eqs. (6.2), (7.6). Therefore, we see that for each tt\in\mathbb{R}, we have ψ(t,)L2(3,4)\psi(t,\cdot)\in L^{2}(\mathbb{R}^{3},\mathbb{C}^{4}) and each map

±ϕψ(t,𝐱)L2(3,4)\mathcal{H}^{\pm}\ni\phi\mapsto\psi(t,\mathbf{x})\in L^{2}(\mathbb{R}^{3},\mathbb{C}^{4}) (7.31)

is an isometry (by Plancherel’s theorem). Note that Eq. (7.30) is the four-dimensional Fourier inversion formula restricted to the mass shells Xm±X_{m}^{\pm}.

So, we see that the function ψ\psi defined on the spacetime 4\mathbb{R}^{4} at least gives rise to an L2(3,4)L^{2}(\mathbb{R}^{3},\mathbb{C}^{4})-valued functional defined on the set of foliations by spacelike hyperplanes of the spacetime (such as {{t}×3}t\big{\{}\{t\}\times\mathbb{R}^{3}\big{\}}_{t\in\mathbb{R}} or the foliations obtained from it by applying Lorentz transformations). On this functional, we can apply the formalism of [9] to test the relativistic measurement schemes developed there on the state ϕ\phi of the perception space ±\mathcal{H}^{\pm}.

As a final note, observe that if we think of ψ(x)=ψ(t,𝐱)\psi(x)=\psi(t,\mathbf{x}) as a function defined on the Minkowski space 4\mathbb{R}^{4}, then formally we have

iγμxμψ=mψi\gamma^{\mu}\frac{\partial}{\partial x^{\mu}}\psi=m\psi (7.32)

by Eqs. (7.30) and (7.16). I.e., ψ\psi satisfies the Dirac equation.

Massive particles with spin-1

Again, we restrict our attention to the mass shell Xm+X_{m}^{+} and suppress all the ++-signs in the superscripts. Let ϕ\phi\in\mathcal{H} (cf. Table 5). For each tt\in\mathbb{R}, we define

ψ(t,𝐱):=Xmexp(ip0t+i𝐩𝐱)p0ϕ(p)dμ(p)(2π)32,𝐱3.\psi(t,\mathbf{x}):=\int_{X_{m}}\exp\left(-ip^{0}t+i\mathbf{p}\cdot\mathbf{x}\right)\sqrt{p^{0}}\phi(p)\frac{d\mu(p)}{(2\pi)^{\frac{3}{2}}},\quad\mathbf{x}\in\mathbb{R}^{3}. (7.33)

Then,

3(ϕ(p)p0)(η)(ϕ(p)p0)d3𝐩=Xm±hp(ϕ(p),ϕ(p))dμ(p)=ϕ2\int_{\mathbb{R}^{3}}\left(\frac{\phi(p)}{\sqrt{p^{0}}}\right)^{\dagger}(-\eta)\left(\frac{\phi(p)}{\sqrt{p^{0}}}\right)d^{3}\mathbf{p}=\int_{X_{m}^{\pm}}h_{p}\big{(}\phi(p),\phi(p)\big{)}d\mu(p)=\|\phi\|_{\mathcal{H}}^{2}

by the definition of the norm \|\cdot\|_{\mathcal{H}} of \mathcal{H} and Eqs. (6.2), (7.22). Since, for arbitrary 4\mathbb{C}^{4}-valued Schwartz class functions f,gf,g on 3\mathbb{R}^{3},

3f^(𝐱)(η)g^(𝐱)d3𝐱=3f(𝐲)(η)g(𝐲)d3𝐲\int_{\mathbb{R}^{3}}\hat{f}(\mathbf{x})^{\dagger}(-\eta)\hat{g}(\mathbf{x})d^{3}\mathbf{x}=\int_{\mathbb{R}^{3}}f(\mathbf{y})^{\dagger}(-\eta)g(\mathbf{y})d^{3}\mathbf{y}

(here ()^\hat{(\cdot)} denotes the Fourier transform) holds (cf. [40]), we see that for each tt\in\mathbb{R}, we have

ψ(t,)𝒦:={φL2(3,4):03φ(𝐱)(η)φ(𝐱)d3𝐱}\psi(t,\cdot)\in\mathcal{K}:=\left\{\varphi\in L^{2}(\mathbb{R}^{3},\mathbb{C}^{4}):0\leq\int_{\mathbb{R}^{3}}\varphi(\mathbf{x})^{\dagger}(-\eta)\varphi(\mathbf{x})d^{3}\mathbf{x}\right\} (7.34)

and each map

ϕψ(t,𝐱)𝒦\mathcal{H}\ni\phi\mapsto\psi(t,\mathbf{x})\in\mathcal{K} (7.35)

is an isometry if we endow 𝒦\mathcal{K} with the obvious inner product that uses η-\eta.

As in the case of Dirac particles, we can use the function ψ\psi defined on 4\mathbb{R}^{4} to obtain a 𝒦\mathcal{K}-valued functional on the set of foliations by spacelike hyperplanes of the spacetime, thus providing a link between the theory of relativistic measurement.

Finally, regarding ψ(x)=ψ(t,𝐱)\psi(x)=\psi(t,\mathbf{x}) as a function defined on the Minkowski space 4\mathbb{R}^{4}, we obtain

xμψμ=0,xμxμψ=m2ψ\frac{\partial}{\partial x^{\mu}}\psi^{\mu}=0,\quad\frac{\partial}{\partial x^{\mu}}\frac{\partial}{\partial x_{\mu}}\psi=m^{2}\psi (7.36)

by Eqs. (7.33) and (7.29). I.e., ψ\psi satisfies the Proca equations.

8 Concluding remarks and future research

From the basic principles of SR and QM, we have obtained the definition of single-particle state spaces, which are the smallest possible quantum systems in which one can test relativistic considerations. We briefly surveyed the pioneering works of RQI and observed that the notions of spin state independent of momentum, spin entropy, and spin entanglement, which are important quantum informational resources, are not relativistically meaningful. Rephrasing the definition of single-particle state spaces in terms of the bundle theoretic language which is developed in this paper, we were able to figure out the root of the problem. Namely, the boosting bundle description, which has been used in the RQI literature almost exclusively, does not correctly reflect the perception of a fixed inertial observer and therefore the definitions of the above notions become illegitimate algebraic operations.

We have seen that the perception bundle description is free from this issue and hence can be used as a kind of coordinate system for a moving finite-dimensional quantum system which naturally extends the classical coordinate for a moving classical particle. We have extended the bundle descriptions to the case of massive particle with arbitrary spin, observed that the results for the spin-1/2 case holds in full generality, and defined the Pauli-Lubansky reduced matrix for massive particles with arbitrary spin, which is a Lorentz covariant (2s+1)×(2s+1)(2s+1)\times(2s+1)-matrix containing information of average internal quantum state as perceived by a fixed inertial observer. As an application of the perception bundle description developed in this paper, we have seen that the Dirac equation and the Proca equations, which are fundamental equations of QFT obeyed by massive particles with spin-1/2 and 1, respectively, emerge as manifestations of a fixed inertial observer’s perception of the internal quantum states of massive particles with spin-1/2 and 1, respectively. We also briefly indicated a link between the formalism developed in this paper and the theory of relativistic quantum measurement.

While this paper has laid the mathematical foundation for a new framework of single-particle state spaces better suited for RQI investigation and seen some striking theoretical implications of the framework, it has not given any application of the perception bundle description to actual problems of RQI. Given the conceptual advantages of this description over the more standard boosting bundle description as shown in this paper, it is very likely that recasting subtle problems of RQI in terms of the perception bundle description will give profound insight into the problems. An approach closely related to this has appeared only very recently in [39, 38]. Interested researchers are invited to pursue this direction of study.

In the sequel to this work, however, the author is planning to investigate massless particles with helicity by applying the mathematical theory developed in this paper. More precisely, we are going to give the massless analogues of the boosting and perception bundle descriptions, survey some of the RQI papers that deal with massless particles, see if the same interpretations are possible, and draw some interesting theoretical implications from them.

Appendix A Proof of Theorem 5.5

In this appendix, we provide a proof for Theorem 5.5.

A.1 Preliminaries

To prove Theorem 5.5, we need to relate the two induced representation constructions of Definitions 4.1 and 5.3. The relation is provided by the language of principal fiber bundle and associated bundles.

Principal fiber bundle and associated bundle

The associated bundle construction of a principal fiber bundle is the primary source of the Hermitian GG-bundles that will be addressed in this paper. The main reference for this construction is [48], Ch. 6.

Definition A.1.

Let HH be a Lie group and PP be a right HH-manifold whose action is smooth and free. A smooth map P𝜋MP\xrightarrow{\pi}M is called a principal HH-bundle if, for every xMx\in M, there is an open set xUMx\in U\subseteq M and an HH-equivariant fiber preserving diffeomorphism

U×Hπ1(U)Uϕ.\leavevmode\hbox to137.08pt{\vbox to49.47pt{\pgfpicture\makeatletter\hbox{\hskip 68.53955pt\lower-24.7361pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-68.53955pt}{-24.7361pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 18.93811pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-14.63257pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${U\times H}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 18.93811pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 41.33688pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.03137pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\pi^{-1}(U)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 17.33691pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 32.26453pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-3.95901pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${U}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 8.26456pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-30.46333pt}{12.41669pt}\pgfsys@lineto{33.26576pt}{12.41669pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{33.46574pt}{12.41669pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-0.48422pt}{16.13055pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{\phi}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-38.97688pt}{5.22366pt}\pgfsys@lineto{-7.19458pt}{-16.2876pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.82814}{-0.56052}{0.56052}{0.82814}{-7.02898pt}{-16.39969pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{38.52306pt}{3.55698pt}\pgfsys@lineto{10.39362pt}{-16.09468pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.81976}{-0.5727}{0.5727}{-0.81976}{10.22969pt}{-16.2092pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}.

If P𝜋MP\xrightarrow{\pi}M is a principal HH-bundle, then the right action of HH on PP is free and proper, and P/HMP/H\cong M. Conversely, it is easy to show that if an action of HH on PP is free and proper, then PP/HP\rightarrow P/H is a principal HH-bundle (cf. [33], Ch. 21).

In particular, for every Lie group GG and a closed subgroup HH, the right multiplicative action of HH on GG is free and proper and hence GG/HG\rightarrow G/H is a principal HH-bundle. This particular class of principal bundles will be of paramount importance in what follows.

Proposition A.2.

Fix a principal HH-bundle P𝜋MP\xrightarrow{\pi}M. Let σ:HGL(V)\sigma:H\rightarrow GL(V) be a Lie group representation. Then, P×VP\times V becomes a right HH-space with the action (p,v)h=(ph,σ(h)1v)(p,v)\cdot h=(ph,\sigma(h)^{-1}v). The orbit space of this action, denoted by P×σVP\times_{\sigma}V becomes a vector bundle over MM with fiber VV, called the bundle associated with (P,σ)(P,\sigma), whose projection map P×σV𝜉MP\times_{\sigma}V\xrightarrow{\xi}M is induced from the following commutative diagram.

P×V{P\times V}P{P}P×σV{P\times_{\sigma}V}M{M}pr1\scriptstyle{\textup{pr}_{1}}proj.π\scriptstyle{\pi}ξ\scriptstyle{\xi}

We denote the quivalence class of (p,v)P×V(p,v)\in P\times V by [p,v]P×σV[p,v]\in P\times_{\sigma}V.

Proof.

To each local trivialization U×Hϕπ1(U)U\times H\xrightarrow{\phi}\pi^{-1}(U) for PP corresponds a local trivialization U×Vξ1(U)U\times V\rightarrow\xi^{-1}(U) for P×σVP\times_{\sigma}V given by (x,v)[ϕ(x,e),v](x,v)\mapsto[\phi(x,e),v]. ∎

Let :=P×σV\mathcal{E}:=P\times_{\sigma}V. For each xMx\in M and pπ1(x)p\in\pi^{-1}(x), the map [p,]:Vx[p,\cdot\hskip 2.84544pt]:V\rightarrow\mathcal{E}_{x} given by v[p,v]v\mapsto[p,v] is a vector space isomorphism. For each pPp\in P and sHs\in H, there is a commutative diagram of vector space isomorphisms

V{V}V{V}x{\mathcal{E}_{x}}σ(s)\scriptstyle{\sigma(s)}[ps,]\scriptstyle{[ps,\cdot\hskip 2.84544pt]}[p,]\scriptstyle{[p,\cdot\hskip 2.84544pt]} (A.1)

by the definition of \mathcal{E}.

Proposition A.3.

Let :=P×σσ\mathcal{E}:=P\times_{\sigma}\mathcal{H}_{\sigma} be an associated bundle where σ:HU((σ,,σ)\sigma:H\rightarrow U((\mathcal{H}_{\sigma},\langle\cdot,\cdot\rangle_{\sigma}) is a unitary representation. Then, the map g:g:\mathcal{E}\otimes\mathcal{E}\rightarrow\mathbb{C} defined in each fiber as

[p,v][p,w]v,wσ[p,v]\otimes[p,w]\mapsto\langle v,w\rangle_{\sigma} (A.2)

is a well-defined (Hermitian) metric on the bundle \mathcal{E}, making \mathcal{E} an Hermitian bundle over MM. For an associated bundle of this form, we always regard it as an Hermitian bundle endowed with this metric.

Proof.

The diagram (A.1) tells us that we can define an inner product on x\mathcal{E}_{x} by transplanting the inner product of VV into x\mathcal{E}_{x} via the map [p,][p,\cdot\hskip 2.84544pt] and it does not depend on the choice of pπ1(x)p\in\pi^{-1}(x). That is, the map xx\mathcal{E}_{x}\otimes\mathcal{E}_{x}\rightarrow\mathbb{C} defined by [(p,v)][(p,w)]v,wσ[(p,v)]\otimes[(p,w)]\mapsto\langle v,w\rangle_{\sigma} is a well-defined inner product on x\mathcal{E}_{x}. The smoothness is easily checked using local trivializations. ∎

Proposition A.4.

Let :=P×σV\mathcal{E}:=P\times_{\sigma}V be an associated bundle. Let

Cσ(P,V)\displaystyle C_{\sigma}(P,V) :={ϕC(P,V):ϕ(ps)=σ(s)1ϕ(p),pP,sH},\displaystyle:=\left\{\phi\in C(P,V):\phi(ps)=\sigma(s)^{-1}\phi(p),\hskip 2.84544ptp\in P,s\in H\right\}, (A.3a)
Cσ(P,V)\displaystyle C_{\sigma}^{\infty}(P,V) :={ϕC(P,V):ϕ(ps)=σ(s)1ϕ(p),pP,sH},\displaystyle:=\left\{\phi\in C^{\infty}(P,V):\phi(ps)=\sigma(s)^{-1}\phi(p),\hskip 2.84544ptp\in P,s\in H\right\}, (A.3b)
σ(P,V)\displaystyle\mathcal{B}_{\sigma}(P,V) :={ϕ(P,V):ϕ(ps)=σ(s)1ϕ(p),pP,sH}.\displaystyle:=\left\{\phi\in\mathcal{B}(P,V):\phi(ps)=\sigma(s)^{-1}\phi(p),\hskip 2.84544ptp\in P,s\in H\right\}. (A.3c)

Then, there are linear isomorphisms

:C(M,)Cσ(P,V)\displaystyle\sharp:C(M,\mathcal{E})\rightarrow C_{\sigma}(P,V) (A.4a)
:C(M,)Cσ(P,V)\displaystyle\sharp:C^{\infty}(M,\mathcal{E})\rightarrow C_{\sigma}^{\infty}(P,V) (A.4b)
:(M,)σ(P,V)\displaystyle\sharp:\mathcal{B}(M,\mathcal{E})\rightarrow\mathcal{B}_{\sigma}(P,V) (A.4c)

all given by the same formula

ψ(x)=[p,ψ(p)]\psi(x)=\left[p,\psi^{\sharp}(p)\right] (A.5)

where pPp\in P is any element in the fiber π1(x)\pi^{-1}(x). The inverses will be denoted as \flat, i.e., ϕ(x)=[p,ϕ(p)]\phi^{\flat}(x)=[p,\phi(p)].

Let

0:={ϕ(P,V):ϕ(ps)=\displaystyle\mathcal{F}_{0}:=\Big{\{}\phi\in\mathcal{B}(P,V):\phi(ps)= σ(s)1ϕ(p),pP,sH\displaystyle\sigma(s)^{-1}\phi(p),\hskip 2.84544ptp\in P,s\in H
&Mg(ϕ(x),ϕ(x))dμ(x)<}\displaystyle\&\int_{M}g(\phi^{\flat}(x),\phi^{\flat}(x))d\mu(x)<\infty\Big{\}} (A.6a)
and N:={ϕ0:ϕ=0 μ-almost everywhere}0N:=\{\phi\in\mathcal{F}_{0}:\phi^{\flat}=0\textup{ $\mu$-almost everywhere}\}\leq\mathcal{F}_{0}, and put
:=0/N\mathcal{F}:=\mathcal{F}_{0}/N (A.6b)

Then, the isomorphism Eq. (A.4c) induces a linear isomorphism

:L2(M,;μ,g).\sharp:L^{2}(M,\mathcal{E};\mu,g)\rightarrow\mathcal{F}. (A.7)
Proof.

Given a section ψ:M\psi:M\rightarrow\mathcal{E}, define ψ(p)=([p,])1(ψ(π(p)))\psi^{\sharp}(p)=\big{(}[p,\cdot\hskip 2.84544pt]\big{)}^{-1}(\psi(\pi(p))). Then, for pPp\in P and sGs\in G,

ψ(ps)=([ps,])1(ψ(π(ps)))=σ(s)1ψ(p).\psi^{\sharp}(ps)=\big{(}[ps,\cdot\hskip 2.84544pt]\big{)}^{-1}(\psi(\pi(ps)))=\sigma(s)^{-1}\psi(p).

Also, given a map ϕ:PV\phi:P\rightarrow V satisfying ϕ(ps)=σ(s)1ϕ(p)\phi(ps)=\sigma(s)^{-1}\phi(p) for pP,sH{}^{\forall}p\in P,{}^{\forall}s\in H, the expression ϕ(x)=[p,ϕ(p)]\phi^{\flat}(x)=[p,\phi(p)] does not depend on the choice of pπ1(x)p\in\pi^{-1}(x) and gives a well-defined section ϕ:M\phi^{\flat}:M\rightarrow\mathcal{E}.

Using smooth local trivializations for PP and corresponding trivializations for \mathcal{E} (cf. the proof of Proposition A.2), it is an easy matter to check that \sharp and \flat preserve continuity, smoothness, and Borel measurability. Also, it is easy to see that the two maps are inverses to each other. The rest is a straightforward calculation. ∎

Associated Hermitian GG-bundles

Let GG be a Lie group and HGH\leq G be a closed subgroup. Consider the principal HH-bundle GG/HG\rightarrow G/H. If σ:HU(σ)\sigma:H\rightarrow U(\mathcal{H}_{\sigma}) is a unitary representation, then the associated bundle G×σσG/HG\times_{\sigma}\mathcal{H}_{\sigma}\rightarrow G/H is an Hermitian bundle over G/HG/H with the metric gg given by Eq. A.2 according to Proposition A.3.

Proposition A.5.

The bundle G×σσG/HG\times_{\sigma}\mathcal{H}_{\sigma}\rightarrow G/H becomes an Hermitian GG-bundle over G/HG/H with the action

Λx([y,v])=[xy,v]\Lambda_{x}([y,v])=[xy,v] (A.8)

covering the left multiplication map lx:G/HG/Hl_{x}:G/H\rightarrow G/H on the base space.

Proof.

The well-definedness and Hermiticity of the action are easily checked. ∎

The Hermitian GG-bundle (G×σσ,g,Λ)(G\times_{\sigma}\mathcal{H}_{\sigma},g,\Lambda) over G/HG/H will be denoted as σ\mathcal{E}_{\sigma} and called the primitive bundle associated with σ\sigma.

Induced representations and associated Hermitian GG-bundles

We can rephrase the definition of induced representation, Definition 4.1, in terms of induced representation associated with Hermitian GG-bundles (cf. Definition 5.3). Notice the similarity between Eqs. (4.1) and Eqs. (A.6).

Theorem A.6.

Suppose G/HG/H has a GG-invariant measure μ\mu and consider the primitive bundle σ\mathcal{E}_{\sigma} defined in the preceding paragraph. Denote the induced representation associated with σ\mathcal{E}_{\sigma} as UU. Then, the isomorphism Eq. (A.7) gives a unitary equivalence between IndHGσ\textup{Ind}_{H}^{G}\sigma and UU. I.e., for xGx\in G and ψL2(G/H,σ;μ,g)\psi\in L^{2}(G/H,\mathcal{E}_{\sigma};\mu,g),

IndHGσ(x)(ψ)=U(x)(ψ).\textup{Ind}_{H}^{G}\sigma(x)\circ\sharp(\psi)=\sharp\circ U(x)(\psi). (A.9)
Proof.
(IndHGσ(x)(ψ))(yH)\displaystyle\left(\flat\circ\textup{Ind}_{H}^{G}\sigma(x)\circ\sharp(\psi)\right)(yH) =[y,(IndHGσ(x)ψ)(y)]\displaystyle=\left[y,\left(\textup{Ind}_{H}^{G}\sigma(x)\psi^{\sharp}\right)(y)\right]
=[y,ψ(x1y)]\displaystyle=\left[y,\psi^{\sharp}(x^{-1}y)\right] =Lx(ψ(x1yH))=(U(x)ψ)(yH)\displaystyle=L_{x}(\psi(x^{-1}yH))=\left(U(x)\psi\right)(yH)

Thus, in what follows, when speaking of an induced representation, we always mean UU and denote it as IndHGσ\textup{Ind}_{H}^{G}\sigma.

A.2 Perception bundle

Consider the principal HH-bundle GG/HG\rightarrow G/H.

Theorem A.7.

Suppose that a unitary representation σ:HU(σ,,σ)\sigma:H\rightarrow U(\mathcal{H}_{\sigma},\langle\cdot,\cdot\rangle_{\sigma}) extends to a (non-unitary) representation Φ:GGL(σ)\Phi:G\rightarrow GL(\mathcal{H}_{\sigma}). Then, the bundle σ=G×σσ\mathcal{E}_{\sigma}=G\times_{\sigma}\mathcal{H}_{\sigma} is trivial. In fact, there is a vector bundle isomorphism

σG/H×σG/H[x,v](xH,Φ(x)v).\leavevmode\hbox to157.4pt{\vbox to52.64pt{\pgfpicture\makeatletter\hbox{\hskip 78.7011pt\lower-26.31944pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{}{}{}{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{\offinterlineskip{}{}{{{}}{{}}{{}}}{{{}}}{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-78.7011pt}{-26.31944pt}\pgfsys@invoke{ }\hbox{\vbox{\halign{\pgf@matrix@init@row\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding&&\pgf@matrix@step@column{\pgf@matrix@startcell#\pgf@matrix@endcell}&#\pgf@matrix@padding\cr\hfil\hskip 9.30829pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.00275pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${\mathcal{E}_{\sigma}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 9.30829pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}}}&\hskip 0.0pt\hfil&\hfil\hskip 51.87137pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-23.56586pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${G/H\times\mathcal{H}_{\sigma}}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 27.8714pt\hfil\cr\vskip 18.00005pt\cr\hfil\hskip 0.0pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil&\hfil\hskip 41.52141pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.2159pt}{0.0pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{${G/H}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 17.52144pt\hfil&\hfil\hskip 23.99997pt\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}&\hskip 0.0pt\hfil\cr}}}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}}{{{{}}}{{}}{{}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} {}{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}{}{}{{{}{}}}{}{{}}{}{}{}{{{}{}}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-59.88452pt}{11.50003pt}\pgfsys@lineto{22.35834pt}{11.50003pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{22.55832pt}{11.50003pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-43.06877pt}{15.6028pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{$\scriptstyle{[x,v]\mapsto(xH,\Phi(x)v)}$} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{-59.88452pt}{4.89722pt}\pgfsys@lineto{-31.63834pt}{-14.73149pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{0.8212}{-0.57066}{0.57066}{0.8212}{-31.47412pt}{-14.84561pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{ {}{}{}}{}{ {}{}{}} {{{{{}}{ {}{}}{}{}{{}{}}}}}{}{{{{{}}{ {}{}}{}{}{{}{}}}}}{{}}{}{}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.39998pt}\pgfsys@invoke{ }{}{}{}{}{{}}{}{}{{}}\pgfsys@moveto{33.42703pt}{2.64032pt}\pgfsys@lineto{-0.8048pt}{-14.77835pt}\pgfsys@stroke\pgfsys@invoke{ }{{}{{}}{}{}{{}}{{{}}}}{{}{{}}{}{}{{}}{{{}}{{{}}{\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{-0.89125}{-0.4535}{0.4535}{-0.89125}{-0.98302pt}{-14.86903pt}\pgfsys@invoke{ }\pgfsys@invoke{ \lxSVG@closescope }\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}{{}}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}. (A.10)

Via this isomorphism, the Hermitian metric and GG-action on σ\mathcal{E}_{\sigma} are translated into the metric

hxH(v,w)=v,Φ(x)1Φ(x)1wσh_{xH}(v,w)=\langle v,\Phi(x)^{\dagger-1}\Phi(x)^{-1}w\rangle_{\sigma} (A.11)

(here \dagger is the adjoint operation on the algebra of continuous operators on σ\mathcal{H}_{\sigma}) and the GG-action

λx(yH,v)=(xyH,Φ(x)v)\lambda_{x}(yH,v)=(xyH,\Phi(x)v) (A.12)

on the RHS bundle, with respect to which the isomorphism Eq. (A.10) becomes an Hermitian GG-bundle isomorphism. The Hermitian GG-bundle (G/H×σ,h,λ)(G/H\times\mathcal{H}_{\sigma},h,\lambda) over G/HG/H will be denoted as EσE_{\sigma}.

Proof.

The map is well-defined since Φ|H=σ\Phi|_{H}=\sigma. It is an isomorphism at each fiber and hence a vector bundle isomorphism.

Also, note that for xGx\in G and kHk\in H,

Φ(xk)1Φ(xk)1=Φ(x)1σ(k)1σ(k)1Φ(x)1=Φ(x)1Φ(x)1\Phi(xk)^{\dagger-1}\Phi(xk)^{-1}=\Phi(x)^{\dagger-1}\sigma(k)^{\dagger-1}\sigma(k)^{-1}\Phi(x)^{-1}=\Phi(x)^{\dagger-1}\Phi(x)^{-1}

since σ\sigma is unitary. So, hh is a well-defined sesquilinear form at each fiber and it is easy to check that the map Eq. (A.10) becomes a unitary map at each fiber with respect to these metrics. The statement about the actions is easy. ∎

In the case of σs\sigma_{s}, which extends to Φs\Phi_{s} (cf. Eqs. (4.17)–(4.18)), the bundle Es:=EσsE_{s}:=E_{\sigma_{s}} will be called the perception bundle for massive spin-ss particles since the fibers of it will be shown to be “the moving spin systems as perceived by a fixed inertial observer”, as we shall see in Sect. 6.

A.3 Boosting bundle

The method of Sect. A.2 is not the only way to show that the associated bundle G×σσG\times_{\sigma}\mathcal{H}_{\sigma} is trivial. Let P𝜋MP\xrightarrow{\pi}M be a principal GG-bundle. Given a local section s:UPs:U\rightarrow P, we know that the map U×GP|UU\times G\rightarrow P|_{U} given by

(x,g)s(x)g(x,g)\mapsto s(x)g (A.13)

is a local trivialization of PP (cf. [48]).

Lemma A.8.

Let σ:GU(V)\sigma:G\rightarrow U(V) be a representation. Given a (smooth) local section s:UPs:U\rightarrow P, the map

U×V{U\times V}(P×σV)|U{(P\times_{\sigma}V)|_{U}}U{U}(x,v)[s(x),v]\scriptstyle{(x,v)\mapsto[s(x),v]} (A.14)

is a (smooth) local trivialization of P×σVP\times_{\sigma}V.

Proof.

Easy. ∎

So, in particular, if there is a global section s:MPs:M\rightarrow P, then the bundles PP and EE are trivial. Let’s specialize this to the case of the principal HH-bundle GG/HG\rightarrow G/H.

Theorem A.9.

Let σ:HU((σ,,σ))\sigma:H\rightarrow U\big{(}(\mathcal{H}_{\sigma},\langle\cdot,\cdot\rangle_{\sigma})\big{)} be a unitary representation and L:G/HGL:G/H\rightarrow G be a global section. If the trivial bundle G/H×σG/H\times\mathcal{H}_{\sigma} is endowed with the metric

hL((xH,v),(xH,w))=v,wσh_{L}((xH,v),(xH,w))=\langle v,w\rangle_{\sigma} (A.15)

and the GG-action

λL(x)(yH,v)=(xyH,σ(L(xyH)1xL(yH))v),\lambda_{L}(x)(yH,v)=(xyH,\sigma\left(L(xyH)^{-1}xL(yH)\right)v), (A.16)

then it becomes an Hermitian GG-bundle over G/HG/H and the global trivialization

G/H×σ{G/H\times\mathcal{H}_{\sigma}}σ{\hskip 5.69046pt\mathcal{E}_{\sigma}}M{M}(xH,v)[L(xH),v]\scriptstyle{(xH,v)\mapsto[L(xH),v]} (A.17)

becomes an Hermitian GG-bundle isomorphism onto the primitive bundle σ\mathcal{E}_{\sigma}. The Hermitian GG-bundle (G/H×σ,hL,λL,σ)(G/H\times\mathcal{H}_{\sigma},h_{L},\lambda_{L,\sigma}) will be denoted as EL,σE_{L,\sigma}, signifying its dependence on the choice of section LL.

Proof.

Straightforward. ∎

We call LL a choice of boostings for reasons that will become clear in Sect. 6. Note that it has a close relationship with the choice of gauge in Gauge Theory (cf. [8]). EL,σE_{L,\sigma} will be called the boosting bundle associated with LL.

The element

WL(x,yH)=L(xyH)1xL(yH)HW_{L}(x,yH)=L(xyH)^{-1}xL(yH)\in H (A.18)

will be called the Wigner transformation since it is preciesely the Wigner rotation in the case of G=SL(2,)G=SL(2,\mathbb{C}) and H=SU(2)H=SU(2) when LL is chosen appropriately (cf. Sect. 6). Using this notation, we see that the action Eq. (A.16) becomes

λL(x)(yH,v)=(xyH,σ(WL(x,yH))v).\lambda_{L}(x)(yH,v)=(xyH,\sigma\big{(}W_{L}(x,yH)\big{)}v). (A.16)

A.4 Semidirect products

We apply the preceding constructions to the case of semidirect products.

Let GG be a Lie group and N,HGN,H\leq G closed subgroups such that NN is normal and abelian and G=NHG=N\ltimes H, i.e., the map N×HGN\times H\rightarrow G given by (n,h)nh(n,h)\mapsto nh is a diffeomorphism. Since continuous homomorphisms between Lie groups are automatically smooth (cf. [33], Ch. 20), N^\hat{N} consists of Lie group homomorphisms from NN to 𝕋\mathbb{T}.

The following lemma shows that the vector bundles associated with the principal bundle HH/HνH\rightarrow H/H_{\nu} for νN^\nu\in\hat{N} not only have a (left) HH-action provided by Eq. (A.8), but also a (left) GG-action which extends it.

Lemma A.10.

Fix νN^\nu\in\hat{N} and a unitary representation σ:HνU(σ)\sigma:H_{\nu}\rightarrow U(\mathcal{H}_{\sigma}), which induces a unitary representation νσ:GνU(σ)\nu\sigma:G_{\nu}\rightarrow U(\mathcal{H}_{\sigma}) as in Eq. (4.3). Consider the principal GνG_{\nu}-bundle GG/GνG\rightarrow G/G_{\nu} and the principal HνH_{\nu}-bundle HH/HνH\rightarrow H/H_{\nu}. Then, there is an HH-equivariant isometric bundle isomorphism

σ{\mathcal{E}_{\sigma}}νσ{\mathcal{E}_{\nu\sigma}}H/Hν{H/H_{\nu}}G/Gν{G/G_{\nu}}ȷ:[h,v][h,v]\scriptstyle{\jmath:[h,v]\mapsto[h,v]}ı:hHνhGν\scriptstyle{\imath:hH_{\nu}\mapsto hG_{\nu}}\scriptstyle{\cong} (A.19)

whose inverse is given by [nh,v][h,ν(h1nh)v][nh,v]\mapsto[h,\nu(h^{-1}nh)v]. By pulling-back the GG-action on νσ\mathcal{E}_{\nu\sigma} via this map, the HH-action on the bundle σ\mathcal{E}_{\sigma} is extended to a GG-action which is given by

Λ(nh)[k,v]=[hk,ν((hk)1nhk)v],\Lambda(nh)[k,v]=\left[hk,\nu\left((hk)^{-1}nhk\right)v\right], (A.20)

with respect to which σ\mathcal{E}_{\sigma} becomes an Hermitian GG-bundle over H/HνH/H_{\nu}.

Proof.

ı\imath is well-defined and injective since hGν=hGνh1hGνH=HνhG_{\nu}=h^{\prime}G_{\nu}\Leftrightarrow h^{-1}h^{\prime}\in G_{\nu}\cap H=H_{\nu}. Also, given nhGnh\in G, we have h1nhNGνh^{-1}nh\in N\leq G_{\nu} and hence ı(hHν)=hGν=nhGν\imath(hH_{\nu})=hG_{\nu}=nhG_{\nu}, which implies that ı\imath is surjective as well. Since it is an HH-equivariant map from a transitive HH-space, it is a diffeomorphism (cf. [33]). So, ı:H/HνG/Gν\imath:H/H_{\nu}\cong G/G_{\nu}.

ȷ\jmath is easily seen to be a well-defined vector bundle homomorphism covering ı\imath, which is an isomorphism at each fiber and hence a vector bundle isomorphism. This also preserves the metrics at each fiber essentially by definition and is trivially HH-equivariant. The remaining statements are now easily checked. ∎

Upon identifying H/HνG/GνH/H_{\nu}\cong G/G_{\nu}, we can apply Proposition 5.4 and Theorem A.6 to represent IndGνGνσ\textup{Ind}_{G_{\nu}}^{G}\nu\sigma on the Hermitian GG-bundle σ\mathcal{E}_{\sigma}.

Lemma A.11.

In addition to the same setting of Lemma A.10, suppose H/HνG/GνH/H_{\nu}\cong G/G_{\nu} has an HH-invariant (and hence GG-invariant) measure μ\mu. Then, the induced representation IndGνGνσ\textup{Ind}_{G_{\nu}}^{G}\nu\sigma is equivalent to the induced representation associated with the primitive bundle σ\mathcal{E}_{\sigma} (cf. Definition 5.3), which is denoted as U:GU(L2(H/Hν,σ;μ,g))U:G\rightarrow U(L^{2}(H/H_{\nu},\mathcal{E}_{\sigma};\mu,g)) and defined as, for nhGnh\in G and ψL2(H/Hν,σ;μ,g)\psi\in L^{2}(H/H_{\nu},\mathcal{E}_{\sigma};\mu,g),

U(nh)ψ=Λ(nh)ψ(lnh)1=Λ(nh)ψ(lh)1.U(nh)\psi=\Lambda(nh)\circ\psi\circ(l_{nh})^{-1}=\Lambda(nh)\circ\psi\circ(l_{h})^{-1}. (A.21)
Proof.

This follows from Proposition 5.4, Theorem A.6 and the fact that lh=lnhl_{h}=l_{nh} on H/HνH/H_{\nu}. ∎

Now, we are prepared to prove Theorem 5.5.

Proof of Theorem 5.5.

All the conclusions are straightforward from Lemmas A.10A.11 and Theorems A.7A.9. Note that since hLh_{L} is the trivial metric, we have UL:=L2(H/Hν,EL,σ;μ,hL)L2(H/Hν;μ)σ\mathcal{H}_{U_{L}}:=L^{2}(H/H_{\nu},E_{L,\sigma};\mu,h_{L})\cong L^{2}(H/H_{\nu};\mu)\otimes\mathcal{H}_{\sigma}. ∎

Acknowledgments

H. Lee was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) Grant NRF-2022R1A2C1092320.

Data availability statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

References

  • [1] M. Aghaee, A. Rabeie, and M.V. Takook. Two and three particles entanglement; helicity and spin with momentum. J Theor Appl Phys, 11:263–268, 2017.
  • [2] Paul M Alsing and Ivette Fuentes. Observer-dependent entanglement. Classical and Quantum Gravity, 29(22):224001, oct 2012.
  • [3] J. L. Anderson. Principles of Relativity Physics. Academic Press, New York, 1967.
  • [4] Heiko Bauke, Sven Ahrens, Christoph H. Keitel, and Rainer Grobe. Relativistic spin operators in various electromagnetic environments. Phys. Rev. A, 89:052101, May 2014.
  • [5] Heiko Bauke, Sven Ahrens, Christoph H Keitel, and Rainer Grobe. What is the relativistic spin operator? New Journal of Physics, 16(4):043012, apr 2014.
  • [6] Victor A. S. V. Bittencourt, Alex E. Bernardini, and Massimo Blasone. Effects of lorentz boosts on dirac bispinor entanglement. Journal of Physics: Conference Series, 1071:012001, aug 2018.
  • [7] Victor A. S. V. Bittencourt and Massimo Blasone. Lorentz boosts of bispinor bell-like states. Journal of Physics: Conference Series, 1275:012026, sep 2019.
  • [8] David Bleecker. Gauge Theory and Variational Principles. Dover Publications, Inc., 2005.
  • [9] Heinz-Peter Breuer and Francesco Petruccione. The Theory of Open Quantum Systems. Oxford University Press, 01 2007.
  • [10] Paweł Caban. Helicity correlations of vector bosons. Phys. Rev. A, 77:062101, Jun 2008.
  • [11] Paweł Caban and Jakub Rembieliński. Photon polarization and wigner’s little group. Phys. Rev. A, 68:042107, Oct 2003.
  • [12] Paweł Caban and Jakub Rembieliński. Lorentz-covariant reduced spin density matrix and einstein-podolsky-rosen–bohm correlations. Phys. Rev. A, 72:012103, Jul 2005.
  • [13] Paweł Caban and Jakub Rembieliński. Einstein-podolsky-rosen correlations of dirac particles: Quantum field theory approach. Phys. Rev. A, 74:042103, Oct 2006.
  • [14] Paweł Caban, Jakub Rembieliński, and Marta Włodarczyk. Einstein-podolsky-rosen correlations of vector bosons. Phys. Rev. A, 77:012103, Jan 2008.
  • [15] Paweł Caban, Jakub Rembieliński, and Marta Włodarczyk. Spin operator in the dirac theory. Phys. Rev. A, 88:022119, Aug 2013.
  • [16] Paweł Caban, Jakub Rembieliński, and Marta Włodarczyk. Covariant abstract description for a dirac particle. Open Systems & Information Dynamics, 19(4):1250027, 2012.
  • [17] Lucas C. Céleri, Vasilis Kiosses, and Daniel R. Terno. Spin and localization of relativistic fermions and uncertainty relations. Phys. Rev. A, 94:062115, Dec 2016.
  • [18] John P. Costella and Bruce H. J. McKellar. The foldy–wouthuysen transformation. American Journal of Physics, 63(12):1119–1121, Dec 1995.
  • [19] TIAGO DEBARBA and REINALDO O. VIANNA. Quantum state of a free spin-½ particle and the inextricable dependence of spin and momentum under lorentz transformations. International Journal of Quantum Information, 10(04):1230003, Jun 2012.
  • [20] A. A. Deriglazov. Nonminimal spin-field interaction of the classical electron and quantization of spin. Physics of Particles and Nuclei Letters, 17(5):738–743, Sep 2020.
  • [21] Alexei A. Deriglazov and Andrey M. Pupasov-Maksimov. Relativistic corrections to the algebra of position variables and spin-orbital interaction. Physics Letters B, 761:207–212, 2016.
  • [22] M. Duflo. Généralités sur les représentations induites. représentations des groupes de lie résolubles. Monographies de la Soc. Math. de Framce, 4:93–119, 1972.
  • [23] Leslie L. Foldy and Siegfried A. Wouthuysen. On the dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev., 78:29–36, Apr 1950.
  • [24] Gerald B. Folland. Quantum Field Theory, A Tourist Guide for Mathematicians. Mathematical Surveys and Monographs. American Mathematical Society, 2008.
  • [25] Gerald B. Folland. A Course in Abstract Harmonic Analysis. CRC Press, 2 edition, 2015.
  • [26] Robert M. Gingrich and Christoph Adami. Quantum entanglement of moving bodies. Phys. Rev. Lett., 89:270402, Dec 2002.
  • [27] Robert M. Gingrich, Attila J. Bergou, and Christoph Adami. Entangled light in moving frames. Phys. Rev. A, 68:042102, Oct 2003.
  • [28] Brian C. Hall. Quantum Theory for Mathematicians. Graduate Texts in Mathematics. Springer, 2013.
  • [29] Song He, Shuxin Shao, and Hongbao Zhang. Quantum helicity entropy of moving bodies. Journal of Physics A: Mathematical and Theoretical, 40(36):F857–F862, aug 2007.
  • [30] Alexander S. Holevo. Quantum Systems, Channels, Information: A Mathematical Introduction. De Gruyter, 2019.
  • [31] Arthur Jaffe. Lorentz transformations, rotations, and boosts, 2013.
  • [32] Heon Lee. Relativistic massive particle with spin-1/2: A vector bundle point of view. Journal of Mathematical Physics, 63(1):012201, 2022.
  • [33] John M. Lee. Introduction to Smooth Manifolds. Springer, 2 edition, 2012.
  • [34] R B Mann and T C Ralph. Relativistic quantum information. Classical and Quantum Gravity, 29(22):220301, oct 2012.
  • [35] Matthias Ondra and Beatrix C Hiesmayr. Single particle entanglement in the mid- and ultra-relativistic regime. Journal of Physics A: Mathematical and Theoretical, 54(43):435301, sep 2021.
  • [36] Asher Peres, Petra F. Scudo, and Daniel R. Terno. Quantum entropy and special relativity. Phys. Rev. Lett., 88:230402, May 2002.
  • [37] Asher Peres and Daniel R. Terno. Quantum information and relativity theory. Rev. Mod. Phys., 76:93–123, Jan 2004.
  • [38] Jakub Rembieliński and Paweł Caban. Relativistic chiral qubits, their time evolution, and correlations. Phys. Rev. A, 99:022320, Feb 2019.
  • [39] Jakub Rembieliński, Paweł Caban, Kordian A. Smoliński, and Sviatoslav Khrapko. Lorentz-covariant, unitary evolution of a relativistic majorana qubit. Quantum Information Processing, 17(262), 2018.
  • [40] Walter Rudin. Functional Analysis. McGraw-Hill, 2 edition, 1973.
  • [41] Walter Rudin. Real and Complex Analysis. McGraw-Hill, 3 edition, 1987.
  • [42] P. Saldanha and V. Vedral. Spin quantum correlations of relativistic particles. Physical Review A, 85:062101, 2012.
  • [43] Pablo L Saldanha and Vlatko Vedral. Physical interpretation of the wigner rotations and its implications for relativistic quantum information. New Journal of Physics, 14(2):023041, feb 2012.
  • [44] E. R. F. Taillebois and A. T. Avelar. Spin-reduced density matrices for relativistic particles. Phys. Rev. A, 88:060302, Dec 2013.
  • [45] E.R.F. Taillebois and A.T. Avelar. Relativistic spin operator must be intrinsic. Physics Letters A, 392:127166, 2021.
  • [46] Michael E. Taylor. Noncommutative Harmonic Analysis. Mathematical Surveys and Monographs. American Mathematical Society, 1986.
  • [47] Daniel R. Terno. Two roles of relativistic spin operators. Phys. Rev. A, 67:014102, Jan 2003.
  • [48] Loring W. Tu. Differential Geometry, Connections, Curvature, and Charicteristic Classes. Graduate Texts in Mathematics. Springer, 2017.
  • [49] V.S. Varadarajan. Lie groups, Lie algebras, and their representations, pages 271–273. Prentice-hall, 1974.
  • [50] Steven Weinberg. The Quantum Theory of Fields Volume I, Foundations. Camebridge University Press, 1995.
  • [51] Eugene Wigner. On unitary representations of the inhomogeneous lorentz group. Annals of Math, 40(1):191–195, 1939.
  • [52] Dana P. Williams. Crossed Products of CC^{*}-Algebras. Mathematical Surveys and Monographs. American Mathematical Society, 2007.
  • [53] William K. Wootters. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett., 80:2245–2248, Mar 1998.
  • [54] Anthony Zee. Einstein Gravity in a Nutshell. Princeton University Press, 2013.