This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Bubble towers in the ancient solution of energy-critical heat equation

Liming Sun Academy of Mathematics and Systems Science, the Chinese Academy of Sciences, Beijing 100190, China. [email protected] Jun-cheng Wei Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, CA. [email protected]  and  Qidi Zhang Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, CA. [email protected]
Abstract.

We construct a radially smooth positive ancient solution for energy critical semi-linear heat equation in n\mathbb{R}^{n}, n7n\geq 7. It blows up at the origin with the profile of multiple Talenti bubbles in the backward time infinity.

Key words and phrases:
Semi-linear heat equation, energy critical, ancient solution, blow up, inner-outer gluing.
2020 Mathematics Subject Classification:
Primary 35K58, 35B09; Secondary 35K55

1. Introduction

1.1. Motivation

This paper deals with the analysis of ancient solutions that exhibit infinite time blow-up in the energy critical semi-linear heat equation.

ut=Δu+|u|p1u\displaystyle u_{t}=\Delta u+|u|^{p-1}u\quad in n×(,0)\displaystyle\text{ in }\mathbb{R}^{n}\times(-\infty,0) (1.1)

where n3n\geq 3 and pp is the critical Sobolev exponent pS:=n+2n2p_{S}:=\frac{n+2}{n-2}. We are interested in the positive solutions u(x,t)u(x,t) globally defined for ancient time such that

limtu(,t)L(n)=+.\displaystyle\lim_{t\to-\infty}\|u(\cdot,t)\|_{L^{\infty}(\mathbb{R}^{n})}=+\infty. (1.2)

Problem (1.1) has a more popular counterpart in the forward direction, namely

{ut=Δu+|u|p1u in n×(0,T),u(x,0)=u0(x) in n.\displaystyle\begin{cases}u_{t}=\Delta u+|u|^{p-1}u&\text{ in }\mathbb{R}^{n}\times(0,T),\\ u(x,0)=u_{0}(x)&\text{ in }\mathbb{R}^{n}.\end{cases} (1.3)

The energy functional associated to (1.3) is

J(u):=n12|u|21p+1|u|p+1.\displaystyle J(u):=\int_{\mathbb{R}^{n}}\frac{1}{2}|\nabla u|^{2}-\frac{1}{p+1}|u|^{p+1}. (1.4)

The scaling u(x,t)λ2/(p1)u(λx,λ2t)u(x,t)\mapsto\lambda^{2/(p-1)}u\left(\lambda x,\lambda^{2}t\right) keeps the equation invariant and transforms J(u)J(u) to λ4p1+2nJ(u)\lambda^{\frac{4}{p-1}+2-n}J(u). Evidently, (1.3) is energy critical when p=pSp=p_{S}.

Problem (1.3) has been extensively studied in the literature. It is well-known that for a large class of initial data, say bounded continuous, there is a unique maximal classical solution u(x,t)u(x,t) for t(0,T)t\in(0,T). If TT is finite, then uu will blow up at TT. There are two types of blow-up depending on the rate

Type I :lim suptT(Tt)1p1u(,t)L(n)<,\displaystyle:\limsup_{t\rightarrow T}(T-t)^{\frac{1}{p-1}}\|u(\cdot,t)\|_{L^{\infty}(\mathbb{R}^{n})}<\infty, (1.5)
Type II :lim suptT(Tt)1p1u(,t)L(n)=.\displaystyle:\limsup_{t\rightarrow T}(T-t)^{\frac{1}{p-1}}\|u(\cdot,t)\|_{L^{\infty}(\mathbb{R}^{n})}=\infty. (1.6)

The blow-up is almost completely understood in the sub-critical range p<pSp<p_{S}, for instance, by [11, 14, 15, 16, 28, 33]. The solution always blows up in type I in this range. The existence of type II blow-up has been established in various settings, for instance by [19, 20, 25] when p>pJLp>p_{JL}, where

pJL={ if n10,1+4n42n1 if n11.\displaystyle p_{{JL}}=\begin{cases}\infty&\text{ if }n\leq 10,\\ 1+\frac{4}{n-4-2\sqrt{n-1}}&\text{ if }n\geq 11.\end{cases} (1.7)

Recently, there are active researches in the energy critical case p=pSp=p_{S} by [12, 30, 3, 6, 8, 7, 17, 18]. These works found that uu can exhibit type II blow-up in finite time in lower dimensions, while Wang and Wei [34] precluded this fast blow-up for n7n\geq 7.

Ancient solutions play an important role in studies of singularities and long-time behavior of solutions of many evolution problems, for instance in the mean curvature flow, Ricci flow and Yamabe flow. Comparing to the forward direction, the studies to ancient solutions of semi-linear heat equation (1.1) are quite limited. In the sub-critical case, Merle and Zaag [24] first established the following result.

Theorem 1.1 ([24]).

Let p<pSp<p_{S} and uu be a positive solution of (1.1) satisfying

u(,t)L(n)C(t)1/(p1) as t.\|u(\cdot,t)\|_{L^{\infty}(\mathbb{R}^{n})}\leq C(-t)^{-1/(p-1)}\quad\text{ as }\quad t\rightarrow-\infty.

Then there exists T0T^{*}\geq 0 such that u(x,t)=(p1)1/(p1)(Tt)1/(p1)u(x,t)=(p-1)^{-1/(p-1)}\left(T^{*}-t\right)^{-1/(p-1)}.

The above result about ancient solutions has some interesting and important consequences in the study of the (forward) blow-up behavior of solutions of (1.3) when p<pSp<p_{S}. See [24] for details.

For the super-critical case, one knows that there exists one-parameter radially positive steady states {ϕα}\{\phi_{\alpha}\} for each α>0\alpha>0. Furthermore, if p>pJLp>p_{JL}, then these solutions are ordered as ϕα<ϕβ\phi_{\alpha}<\phi_{\beta} for α<β\alpha<\beta and ϕβϕ\phi_{\beta}\to\phi_{\infty} as β\beta\to\infty, where (see [29, 35])

ϕ(x):=L|x|2/(p1),L:=(2(p1)2((n2)pn))1p1.\phi_{\infty}(x):=L|x|^{-2/(p-1)},\quad L:=\left(\frac{2}{(p-1)^{2}}((n-2)p-n)\right)^{\frac{1}{p-1}}.

The following Liouville-type results are known by Fila and Yanagida [10, Theorem 2.4] and Poláčik and Yanagida [26, Theorem 1.2].

Theorem 1.2 ([10, 26]).

Let uu be a non-negative radial solution of (1.1).

  1. (1)

    Assume pSp<pJLp_{S}\leq p<p_{JL} and u(,t)ϕu(\cdot,t)\leq\phi_{\infty} for all t0t\leq 0. Then u0u\equiv 0.

  2. (2)

    Assume p>pJLp>p_{JL} and ϕαu(,t)ϕ\phi_{\alpha}\leq u(\cdot,t)\leq\phi_{\infty} for some α>0\alpha>0 and all t0t\leq 0. Then u(,t)ϕγu(\cdot,t)\equiv\phi_{\gamma} for some γα\gamma\geq\alpha.

Without this ϕ\phi_{\infty} bound, [10] also constructed some radially positive bounded solutions which do depend on time. Poláčik and Quittner [27] classified all radially positive ancient solutions under some further conditions for the super-critical regime.

We are interested in the energy-critical case p=pSp=p_{S}. The steady states of the equation (1.3) satisfy

Δu+|u|4n2u=0 in n.\Delta u+|u|^{\frac{4}{n-2}}u=0\quad\text{ in }\mathbb{R}^{n}. (1.8)

We recall that all positive entire solutions of the equation are given by the family of Aubin-Talenti solitons [1, 32, 13]

Uμ,ξ(x)=μn22U(xξμ)\displaystyle U_{\mu,\xi}(x)=\mu^{-\frac{n-2}{2}}U\left(\frac{x-\xi}{\mu}\right) (1.9)

where U(y)U(y) is the standard bubble soliton

U(y)=αn(11+|y|2)n22,αn=[n(n2)]n24.\displaystyle U(y)=\alpha_{n}\left(\frac{1}{1+|y|^{2}}\right)^{\frac{n-2}{2}},\quad\alpha_{n}=[n(n-2)]^{\frac{n-2}{4}}. (1.10)

This family of solitons are also called Aubin-Talenti ground state solitary wave of the energy functional JJ. Collot et al. [2] classified the ancient solutions near the ground states.

Theorem 1.3 ([2]).

Let n7n\geq 7 and p=pSp=p_{S}. There exist two strictly positive, CC^{\infty} radial solutions of (1.1), Q+Q^{+} and QQ^{-} such that limtQ±UH˙1=0\lim_{t\to-\infty}\|Q^{\pm}-U\|_{\dot{H}^{1}}=0. Conversely, there exists 0<δ10<\delta\ll 1 such that if uu is a solution of (1.1) with

supt0infμ>0,ξnu(t)Uμ,ξH˙1δ,\sup_{t\leq 0}\inf_{\mu>0,\xi\in\mathbb{R}^{n}}\|u(t)-U_{\mu,\xi}\|_{\dot{H}^{1}}\leq\delta,

then u=Q±u=Q^{\pm} or u=Uu=U up to the symmetry of the flow.

They also pointed out the forward behavior: Q+Q^{+} explodes according to type I blow-up in finite time, and QQ^{-} is global and dissipates Q0Q^{-}\to 0 as tt\to\infty in H˙1(n)\dot{H}^{1}(\mathbb{R}^{n}).

A natural question is whether we have multiple Aubin-Talenti solitons in the backward limit. In the forward direction, Del Pino et al. [9] constructed an initial condition u0u_{0} such that (1.3) blows up in infinite time exactly at the origin. The solutions constructed in [9] consist of sign-changing bubbling towers in the forward limit t+t\to+\infty. In this paper, we investigate the possibility of such phenomenon in the backward direction.

Recall that for any Palais-Smale sequence {u(x,tn)}n=10\{u(x,t_{n})\}_{n=1}^{\infty}\geq 0 of the energy functional JJ, Struwe’s profile decomposition [31] tells us that passing to a subsequence, there are positive scalars {μj(tn)}j=1k\{\mu_{j}(t_{n})\}_{j=1}^{k} and points {ξj(tn)}j=1k\{\xi_{j}(t_{n})\}_{j=1}^{k} such that

μi(tn)μj(tn)+μj(tn)μi(tn)+|ξiξj|2μiμj(tn)as n\displaystyle\frac{\mu_{i}(t_{n})}{\mu_{j}(t_{n})}+\frac{\mu_{j}(t_{n})}{\mu_{i}(t_{n})}+\frac{|\xi_{i}-\xi_{j}|^{2}}{\mu_{i}\mu_{j}}(t_{n})\to\infty\quad\text{as }n\to\infty (1.11)

and

u(x,tn)=j=1k1μj(tn)n22U(xξj(tn)μj(tn))+o(1) as nu(x,t_{n})=\sum_{j=1}^{k}\frac{1}{\mu_{j}(t_{n})^{\frac{n-2}{2}}}U\left(\frac{x-\xi_{j}(t_{n})}{\mu_{j}(t_{n})}\right)+o(1)\quad\text{ as }\quad n\rightarrow\infty (1.12)

where (after some permutation) μk(t)μ1(t)\mu_{k}(t)\leq\cdots\leq\mu_{1}(t). Our main result is the following existence of bubbling-tower solution in the backward limit tt\to-\infty:

Theorem 1.4.

Let n7n\geq 7, k2k\geq 2. There exists a radially smooth positive solution of (1.1) that blows up backward in infinite time exactly at 0 with a profile of the form

u(x,t)=(1+O(|t|ϵ))j=1kμj(t)n22U(xμj(t)) for all tt0u(x,t)=\left(1+O(|t|^{-\epsilon})\right)\sum_{j=1}^{k}\mu_{j}(t)^{-\frac{n-2}{2}}U\left(\frac{x}{\mu_{j}(t)}\right)\quad\text{ for all }\quad t\leq t_{0} (1.13)

where O(|t|ϵ)O(|t|^{-\epsilon}) denotes some function g(x,t)g(x,t) satisfying g(,t)L(n)|t|ϵ\|g(\cdot,t)\|_{L^{\infty}({{\mathbb{R}}}^{n})}\lesssim|t|^{-\epsilon}. Furthermore, we have

u(x,t)j=1kμj(t)n22U(xμj(t))H1(n)|t|ϵ for all tt0.\|u(x,t)-\sum_{j=1}^{k}\mu_{j}(t)^{-\frac{n-2}{2}}U\left(\frac{x}{\mu_{j}(t)}\right)\|_{H^{1}({{\mathbb{R}}}^{n})}\lesssim|t|^{-\epsilon}\quad\text{ for all }\quad t\leq t_{0}. (1.14)

Here ϵ>0\epsilon>0 is small,

μj(t)=βj(t)αj(1+O(|t|σ)),αj=12(n2n6)j112,j=1,,k,\mu_{j}(t)=\beta_{j}(-t)^{-\alpha_{j}}(1+O(|t|^{-\sigma})),\quad\alpha_{j}=\frac{1}{2}\left(\frac{n-2}{n-6}\right)^{j-1}-\frac{1}{2},\quad j=1,\ldots,k,

where βj\beta_{j}, σ\sigma are certain positive constants.

One interesting question is the forward behavior of the ancient solution we construct. Either u(x,t)u(x,t) is an eternal solution, or it will blow up in type I in some later time.

There are some other related results. [5] studied the ancient solution in Allen-Cahn equation. Daskalopoulos et al. [4] constructed the ancient bubbling-tower solution for Yamabe flow. For construction of radially symmetric bubbling-towers in NLS and energy-critical wave equations, we refer to [21, 23, 22].

1.2. Sketch of the proof

The method of this paper is close in spirit to the analysis in the works [3, 9], where the inner-outer gluing method is employed. That approach consists of reducing the original problem to solving a basically uncoupled system, which depends in subtle ways on the parameter choices (which are governed by relatively simple ODE systems).

We start with the ansatz solution U¯=j=1kUj=j=1kμj(t)n22U(x/μj(t))\bar{U}=\sum_{j=1}^{k}U_{j}=\sum_{j=1}^{k}\mu_{j}(t)^{-\frac{n-2}{2}}U(x/\mu_{j}(t)) and search for φ(x,t)\varphi(x,t) such that U¯+φ\bar{U}+\varphi is a solution for

S[u]:=ut+Δu+|u|p1u=0 in n×(,t0).\displaystyle S[u]:=-u_{t}+\Delta u+|u|^{p-1}u=0\quad\text{ in }\mathbb{R}^{n}\times\left(-\infty,t_{0}\right). (1.15)

Because of the specific form of U¯\bar{U}, we anticipate φj=1kμjn22ϕ(x/μj(t))χj\varphi\approx\sum_{j=1}^{k}\mu_{j}^{-\frac{n-2}{2}}\phi(x/\mu_{j}(t))\chi_{j} with some cut-off function χj\chi_{j} supporting in the region where UjU_{j} dominates other UlU_{l}, ljl\neq j. Plugging in U¯+φ\bar{U}+\varphi, we found that in the support of χj\chi_{j}, the linearized operator of φ\varphi is Δ+pUjp1\Delta+pU^{p-1}_{j} and the leading error is tUj+pUjp1Uj1(0)-\partial_{t}U_{j}+pU_{j}^{p-1}U_{j-1}(0). Making a change of variable y=x/μj(t)y=x/\mu_{j}(t), we will choose the ϕ\phi satisfying

Δyϕ+pU(y)p1ϕ+hj(y,t)=0 in n,ϕ(y)0 as |y|\Delta_{y}\phi+pU(y)^{p-1}\phi+h_{j}(y,t)=0\quad\text{ in }\mathbb{R}^{n},\quad\phi(y)\rightarrow 0\mbox{ \ as \ }|y|\rightarrow\infty (1.16)

where

hj(y,t)=μjμ˙jZn+1(y)+pU(y)p1(μjμj1)n22U(0).h_{j}(y,t)=\mu_{j}\dot{\mu}_{j}Z_{n+1}(y)+pU(y)^{p-1}\left(\frac{\mu_{j}}{\mu_{j-1}}\right)^{\frac{n-2}{2}}U(0). (1.17)

One knows that (1.16) is solvable if and only if nhj(y,t)Zn+1(y)𝑑y=0\int_{\mathbb{R}^{n}}h_{j}(y,t)Z_{n+1}(y)dy=0. Using the above expression of hjh_{j}, it implies that μjμ˙j=c(μj/μj1)n22\mu_{j}\dot{\mu}_{j}=c_{*}(\mu_{j}/\mu_{j-1})^{\frac{n-2}{2}} (see (2.17)). This implies μj(t)=βj(t)αj\mu_{j}(t)=\beta_{j}(-t)^{-\alpha_{j}}. We will denote it as μ0j\mu_{0j}, because the above process is the first approximation.

Next we will start with u=U¯+j=1kμ0j(t)n22ϕ0j(x/μ0j(t))χju_{*}=\bar{U}+\sum_{j=1}^{k}\mu_{0j}(t)^{-\frac{n-2}{2}}\phi_{0j}(x/\mu_{0j}(t))\chi_{j} and search for φ\varphi with the form

φ=j=1kμjn22ϕj(xμj(t),t)ηj+Ψ(x,t)\varphi=\sum_{j=1}^{k}\mu_{j}^{-\frac{n-2}{2}}\phi_{j}(\frac{x}{\mu_{j}(t)},t)\eta_{j}+\Psi(x,t)

such that u+φu_{*}+\varphi is a solution of (1.15) and μj(t)=μ0j(t)+μ1j(t)\mu_{j}(t)=\mu_{0j}(t)+\mu_{1j}(t). Plugging in u+φu_{*}+\varphi to (1.15) can deduce the following equations of ϕj\phi_{j} and Ψ\Psi

μj2tϕj=Δyϕj+pU(y)p1ϕj+j[Ψ,μ1](y,t) in B8R×(,t0),j=1,,k,\displaystyle\mu_{j}^{2}\partial_{t}\phi_{j}=\Delta_{y}\phi_{j}+pU(y)^{p-1}\phi_{j}+{{\mathcal{H}}}_{j}[\Psi,\vec{\mu}_{1}](y,t)\mbox{ \ \ in \ }B_{8R}\times(-\infty,t_{0}),\quad j=1,\dots,k, (1.18)
tΨ=ΔxΨ+𝒢[ϕ,Ψ,μ1](x,t) in n×(,t0),\displaystyle{\partial}_{t}\Psi=\Delta_{x}\Psi+{\mathcal{G}}[\vec{\phi},\Psi,\vec{\mu}_{1}](x,t)\mbox{ \ \ in \ }{{\mathbb{R}}}^{n}\times(-\infty,t_{0}), (1.19)

where j\mathcal{H}_{j} is defined in (3.17) and 𝒢{\mathcal{G}} is defined in (3.18), μ1(t)=(μ11,,μ1k)\vec{\mu}_{1}(t)=(\mu_{11},\cdots,\mu_{1k}) and ϕ=(ϕ1,,ϕk)\vec{\phi}=(\phi_{1},\cdots,\phi_{k}). (1.18) is the so-called inner problem and (1.19) is the so-called outer problem. One will see that these two problems are weakly coupled in the sense that the dependence of j\mathcal{H}_{j} on Ψ\Psi and 𝒢{\mathcal{G}} on ϕ\vec{\phi} is small in appropriate norm. The strategy to solve (1.18) and (1.19) is: for each fixed ϕ\vec{\phi} and μ1\vec{\mu}_{1}, one can solve (1.19) for Ψ=Ψ[ϕ,μ1]\Psi=\Psi[\vec{\phi},\vec{\mu}_{1}]. Next, inserting such Ψ\Psi to (1.18) and using fixed point theorem to find ϕ\vec{\phi} and μ1\vec{\mu}_{1}.

The foundation of this process lies on a clear understanding of the linearized problem of (1.18) and (1.19) respectively. The study to linearized equation of inner problem (1.18) has been done in [3] for the forward direction. For the backward direction, one encounters new difficulty when taking subsequences. We establish a uniqueness statement to make sure that different subsequences will give the same limit function. The linearized equation of the outer problem (1.19) occupies the bulk of this paper. Notice (1.19) actually can be thought of nonhomogenous heat equation, we leverage the Duhamel’s formula to get a solution Ψ\Psi. The main difficulty is to find a suitable topology for the outer problem due to bubble tower phenomenon. We spend a great deal of effort to find a good space to put 𝒢{\mathcal{G}}. Check Remark 4.3.1 and 4.7.1 for further explanation. Having set up the right space, we apply the Schauder fixed point theorem to prove the existence of ancient solution of (1.1).

Here is the structure of the paper. In Section 2, we derive first approximation from the ansatz solution. Section 3 is devoted to splitting the flow equation to a system of inner problem and outer problem. In Section 4, we study the linear problem of the inner one and outer one respectively. We put off some tedious computations to Appendix A and B. Section 5 is used to derive the orthogonal equations μ1\vec{\mu}_{1} should satisfy. In the last section, we put everything together and solve the problem by using Schauder’s fixed point theorem.

1.3. Notations

Throughout this paper, we denote aba\lesssim b if aCba\leq Cb for some positive constant CC. Denote aba\approx b if abaa\lesssim b\lesssim a. χ(s)\chi(s) denotes a smooth cut-off function such that 0χ(s)10\leq\chi(s)\leq 1,

χ(s)={1 if s1,0 if s2.\chi(s)=\left\{\begin{array}[]{ll}1&\text{ if }s\leq 1,\\ 0&\text{ if }s\geq 2.\end{array}\right.

For a set Ωn,𝟏Ω\Omega\subset\mathbb{R}^{n},\mathbf{1}_{\Omega} denotes the characteristic function defined as

𝟏Ω(x)={1 if xΩ,0 if xn\Ω.\mathbf{1}_{\Omega}(x)=\left\{\begin{array}[]{ll}1&\text{ if }x\in\Omega,\\ 0&\text{ if }x\in\mathbb{R}^{n}\backslash\Omega.\end{array}\right.

For j=1,,kj=1,\dots,k, μj\mu_{j}, μ0j\mu_{0j} are some positive functions about tt. We will use the notation

μ=(μ1,,μk),U¯:=j=1kUj\displaystyle\vec{\mu}=\left(\mu_{1},\ldots,\mu_{k}\right),\quad\bar{U}:=\ \sum_{j=1}^{k}U_{j} (1.20)

where

Uj(x,t)=μj(t)n22U(xμj(t))U_{j}(x,t)={\mu_{j}(t)^{-\frac{n-2}{2}}}U\left(\frac{x}{\mu_{j}(t)}\right) (1.21)

and U(y)U(y) is given by (1.10). We denote

μ¯j:=μjμj1,μ¯0j:=μ0jμ0,j1,j=2,,k\displaystyle\bar{\mu}_{j}:=\sqrt{\mu_{j}\mu_{j-1}},\quad\bar{\mu}_{0j}:=\sqrt{\mu_{0j}\mu_{0,j-1}},\quad j=2,\cdots,k (1.22)

and make the convention that

μ¯1=μ¯01=(t)δ,μ¯k+1=μ¯0,k+1=0.\displaystyle\bar{\mu}_{1}=\bar{\mu}_{01}=(-t)^{\delta},\quad\bar{\mu}_{k+1}=\bar{\mu}_{0,k+1}=0. (1.23)

where δ>0\delta>0 is a small constant. We write x=1+x2\langle x\rangle=\sqrt{1+x^{2}}.

2. A first approximation and the ansatz

Problem (1.1) is equivalent to

S[u]:=ut+Δu+|u|p1u=0 in n×(,t0)S[u]:=-u_{t}+\Delta u+|u|^{p-1}u=0\quad\text{ in }\mathbb{R}^{n}\times\left(-\infty,t_{0}\right) (2.1)

where t0t_{0} is a very negative constant. After some translation in time, we can assume the solution lives up to t=0t=0.

For any integer k2k\geq 2, let us consider kk positive functions

μk(t)<μk1(t)<<μ1(t) in (,t0)\mu_{k}(t)<\mu_{k-1}(t)<\cdots<\mu_{1}(t)\quad\text{ in }\left(-\infty,t_{0}\right)

which will be chosen later, such that as tt\rightarrow-\infty,

μ1(t)1,μj+1(t)μj(t)0 for all j=1,,k1.\mu_{1}(t)\rightarrow 1,\quad\frac{\mu_{j+1}(t)}{\mu_{j}(t)}\rightarrow 0\quad\text{ for all }\quad j=1,\ldots,k-1. (2.2)

We assume that for j=1,,kj=1,\dots,k, μ0j\mu_{0j} is the leading order of μj\mu_{j} and has the similar property of μj\mu_{j} above. μ0j\mu_{0j} will be determined later. We will get an accurate first approximation to a solution of (2.1) of the form U¯+φ0\bar{U}+\varphi_{0} that reduces the part of the error S[U¯]S[\bar{U}] created by the interaction of the bubbles UjU_{j} and Uj1U_{j-1}, j=2,,kj=2,\cdots,k. To get the correction φ0\varphi_{0}, we will need to fix the parameters μj\mu_{j} at main order around certain explicit values.

Let us introduce the cut-off functions

χj(x,t)={χ(2|x|/μ¯0j)χ(2|x|/μ¯0,j+1)j=2,,k1,χ(2|x|/μ¯0k)j=k.\displaystyle\chi_{j}(x,t)=\begin{cases}\displaystyle\chi\left({2\left|x\right|}/{\bar{\mu}_{0j}}\right)-\chi\left(2{\left|x\right|}/{\bar{\mu}_{0,j+1}}\right)&j=2,\ldots,k-1,\\ \displaystyle\chi\left({2\left|x\right|}/{\bar{\mu}_{0k}}\right)&j=k.\end{cases} (2.3)

One readily sees that

χj(x,t)={0 if |x|12μ¯0,j+1,1 if μ¯0,j+1|x|12μ¯0j,0 if |x|μ¯0j.\displaystyle\chi_{j}(x,t)=\begin{cases}0&\text{ if }\left|x\right|\leq\frac{1}{2}\bar{\mu}_{0,j+1},\\ 1&\text{ if }\bar{\mu}_{0,j+1}\leq\left|x\right|\leq\frac{1}{2}\bar{\mu}_{0j},\\ 0&\text{ if }\left|x\right|\geq\bar{\mu}_{0j}.\end{cases} (2.4)

We define our approximate solution to be given by

u=U¯+φ0.u_{*}={\bar{U}}+\varphi_{0}. (2.5)

The correction φ0\varphi_{0} has the form

φ0=j=2kφ0jχj\varphi_{0}=\sum_{j=2}^{k}\varphi_{0j}\chi_{j} (2.6)

where

φ0j(x,t)=μj(t)n22ϕ0j(xμj(t),t)\displaystyle\varphi_{0j}(x,t)={\mu_{j}(t)^{-\frac{n-2}{2}}}\phi_{0j}\left(\frac{x}{\mu_{j}(t)},t\right) (2.7)

for certain functions ϕ0j(y,t)\phi_{0j}(y,t) defined in entire yny\in\mathbb{R}^{n} which we will suitably determine. Let us write

S(u)=E¯1+U¯[φ0]+NU¯[φ0]\displaystyle S\left(u_{*}\right)=\bar{E}_{1}+\mathcal{L}_{{{\bar{U}}}}\left[\varphi_{0}\right]+N_{{{\bar{U}}}}\left[\varphi_{0}\right] (2.8)

where

U¯[φ0]\displaystyle\mathcal{L}_{{\bar{U}}}\left[\varphi_{0}\right] =tφ0+Δxφ0+pU¯p1φ0,\displaystyle=-\partial_{t}\varphi_{0}+\Delta_{x}\varphi_{0}+p{\bar{U}}^{p-1}\varphi_{0}, (2.9)
NU¯[φ0]\displaystyle N_{{\bar{U}}}\left[\varphi_{0}\right] =|U¯+φ0|p1(U¯+φ0)pU¯p1φ0U¯p,\displaystyle=\left|{\bar{U}}+\varphi_{0}\right|^{p-1}\left({\bar{U}}+\varphi_{0}\right)-p{\bar{U}}^{p-1}\varphi_{0}-{\bar{U}}^{p}, (2.10)
E¯1\displaystyle\bar{E}_{1} =j=1ktUj+U¯pj=1kUjp.\displaystyle=-\sum_{j=1}^{k}\partial_{t}U_{j}+{\bar{U}}^{p}-\sum_{j=1}^{k}U_{j}^{p}. (2.11)

Next we write U¯[φ0]\mathcal{L}_{{\bar{U}}}\left[\varphi_{0}\right] using the form of φ0\varphi_{0} in (2.6) as follows

U¯[φ0]=\displaystyle\mathcal{L}_{{\bar{U}}}\left[\varphi_{0}\right]= j=2k(Δxφ0j+pUjp1φ0j)χj+j=2kp(U¯p1Ujp1)φ0jχj\displaystyle\sum_{j=2}^{k}\left(\Delta_{x}\varphi_{0j}+pU_{j}^{p-1}\varphi_{0j}\right)\chi_{j}+\sum_{j=2}^{k}p\left(\bar{U}^{p-1}-U_{j}^{p-1}\right)\varphi_{0j}\chi_{j}
+j=2k(2xφ0jxχj+Δx(χj)φ0j)j=2kt(φ0jχj).\displaystyle+\sum_{j=2}^{k}\left(2\nabla_{x}\varphi_{0j}\cdot\nabla_{x}\chi_{j}+\Delta_{x}\left(\chi_{j}\right)\varphi_{0j}\right)-\sum_{j=2}^{k}\partial_{t}\left(\varphi_{0j}\chi_{j}\right).

In the end, we have the error expansion

S(u)=tU1+j=2k(Δxφ0j+pUjp1φ0jtUj+pUjp1Uj1(0))χj+E¯11+j=2kp(U¯p1Ujp1)φ0jχj+j=2k(2xφ0jxχj+Δxχjφ0j)j=2kt(φ0jχj)+NU¯[φ0]\begin{split}S\left(u_{*}\right)=&-\partial_{t}U_{1}+\sum_{j=2}^{k}\left(\Delta_{x}\varphi_{0j}+pU_{j}^{p-1}\varphi_{0j}-\partial_{t}U_{j}+pU_{j}^{p-1}U_{j-1}(0)\right)\chi_{j}\\ &+\bar{E}_{11}+\sum_{j=2}^{k}p\left({\bar{U}}^{p-1}-U_{j}^{p-1}\right)\varphi_{0j}\chi_{j}\\ &+\sum_{j=2}^{k}\left(2\nabla_{x}\varphi_{0j}\cdot\nabla_{x}\chi_{j}+\Delta_{x}\chi_{j}\varphi_{0j}\right)-\sum_{j=2}^{k}\partial_{t}\left(\varphi_{0j}\chi_{j}\right)+N_{{\bar{U}}}\left[\varphi_{0}\right]\end{split} (2.12)

where

E¯11=U¯pj=1kUjpj=2kpUjp1Uj1(0)χjj=2k(1χj)tUj.\begin{split}\bar{E}_{11}={\bar{U}}^{p}-\sum_{j=1}^{k}U_{j}^{p}-\sum_{j=2}^{k}pU_{j}^{p-1}U_{j-1}(0)\chi_{j}-\sum_{j=2}^{k}(1-\chi_{j})\partial_{t}U_{j}.\end{split} (2.13)

The function φ0j\varphi_{0j} is chosen to eliminate at main order the terms in the first line of (2.12), after conveniently restricting the range of variation of μ\vec{\mu},

Ej[φ0j,μ]:=Δxφ0j+pUjp1φ0jtUj+pUjp1Uj1(0)=μjn+22[Δyϕ0j+pU(y)p1ϕ0j+μjμ˙jZn+1(y)+pUp1(y)(μjμj1)n22U(0)]y=xμj\begin{split}&E_{j}[\varphi_{0j},\vec{\mu}]:=\Delta_{x}\varphi_{0j}+pU_{j}^{p-1}\varphi_{0j}-\partial_{t}U_{j}+pU_{j}^{p-1}U_{j-1}(0)\\ =&\mu_{j}^{-\frac{n+2}{2}}\left[\Delta_{y}\phi_{0j}+pU(y)^{p-1}\phi_{0j}+\mu_{j}\dot{\mu}_{j}Z_{n+1}(y)\right.+pU^{p-1}(y)\left(\frac{\mu_{j}}{\mu_{j-1}}\right)^{\frac{n-2}{2}}U(0)\big{]}_{y=\frac{x}{\mu_{j}}}\end{split} (2.14)

where Zn+1(y)=n22U(y)+yU(y)Z_{n+1}(y)=\frac{n-2}{2}U(y)+y\cdot\nabla U(y). The elliptic equation (for a radially symmetric function ϕ(y))\phi(y))

Δyϕ+pU(y)p1ϕ+hj(y,t)=0 in n\Delta_{y}\phi+pU(y)^{p-1}\phi+h_{j}(y,t)=0\quad\text{ in }\mathbb{R}^{n} (2.15)

where

hj(y,t)=μjμ˙jZn+1(y)+pU(y)p1(μjμj1)n22U(0)h_{j}(y,t)=\mu_{j}\dot{\mu}_{j}Z_{n+1}(y)+pU(y)^{p-1}\left(\frac{\mu_{j}}{\mu_{j-1}}\right)^{\frac{n-2}{2}}U(0) (2.16)

has a solution with ϕ(y)0\phi(y)\rightarrow 0 as |y||y|\rightarrow\infty if and only if hjh_{j} satisfies the solvability condition

nhj(y,t)Zn+1(y)𝑑y=0.\int_{\mathbb{R}^{n}}h_{j}(y,t)Z_{n+1}(y)dy=0.

The latter conditions hold if the parameters μj(t)\mu_{j}(t) satisfy the following relations:

μ1=1,μjμ˙j=cλjn22,λj=μjμj1 for all j=2,,k\mu_{1}=1,\quad\mu_{j}\dot{\mu}_{j}=c_{*}\lambda_{j}^{\frac{n-2}{2}},\quad\lambda_{j}=\frac{\mu_{j}}{\mu_{j-1}}\quad\text{ for all }\quad j=2,\ldots,k (2.17)

where

c=U(0)pnUp1Zn+1𝑑ynZn+12𝑑y=U(0)n22nUp𝑑ynZn+12𝑑y>0.\displaystyle c_{*}=-U(0)\frac{p\int_{\mathbb{R}^{n}}U^{p-1}Z_{n+1}dy}{\int_{\mathbb{R}^{n}}Z_{n+1}^{2}dy}=U(0)\frac{n-2}{2}\frac{\int_{\mathbb{R}^{n}}U^{p}dy}{\int_{\mathbb{R}^{n}}Z_{n+1}^{2}dy}>0. (2.18)

Let μ0=(μ01,μ0k)\vec{\mu}_{0}=\left(\mu_{01},\ldots\mu_{0k}\right) be the solution of (2.17) in (,t0)(-\infty,t_{0}) given by

μ0j(t)=βj(t)αj,t(,t0)\mu_{0j}(t)=\beta_{j}(-t)^{-\alpha_{j}},\quad t\in\left(-\infty,t_{0}\right) (2.19)

where

αj=12(n2n6)j112,j=1,,k\alpha_{j}=\frac{1}{2}\left(\frac{n-2}{n-6}\right)^{j-1}-\frac{1}{2},\quad j=1,\ldots,k

and the numbers βj\beta_{j} are determined by the recursive relations

β1=1,βj=(αjc1)2n6βj1n2n6.\displaystyle\beta_{1}=1,\quad\beta_{j}=(\alpha_{j}c_{*}^{-1})^{\frac{2}{n-6}}\beta_{j-1}^{\frac{n-2}{n-6}}. (2.20)

From (2.17)\eqref{W-2.15}, we set

λ0j(t)=μ0jμ0,j1(t).\displaystyle\lambda_{0j}(t)=\frac{\mu_{0j}}{\mu_{0,j-1}}(t). (2.21)

We have

hj(y,t)=λ0jn22h¯(y),h¯(y)=h¯(|y|)=pU(0)U(y)p1+cZn+1(y).h_{j}\left(y,t\right)=\lambda_{0j}^{\frac{n-2}{2}}\bar{h}(y),\quad\bar{h}(y)=\bar{h}(|y|)=pU(0)U(y)^{p-1}+c_{*}Z_{n+1}(y).

Since nh¯Zn+1𝑑y=0,\int_{\mathbb{R}^{n}}\bar{h}Z_{n+1}dy=0, there exists a radially symmetric solution ϕ¯(y)\bar{\phi}(y) to the equation

Δϕ¯+pU(y)p1ϕ¯+h¯(|y|)=0 in n\Delta\bar{\phi}+pU(y)^{p-1}\bar{\phi}+\bar{h}(|y|)=0\quad\text{ in }\quad\mathbb{R}^{n}

such that ϕ¯(y)=O(|y|2)\bar{\phi}(y)=O(|y|^{-2}) as |y|+|y|\to+\infty.

Then we define ϕ0j(y,t)\phi_{0j}(y,t) as

ϕ0j(y,t)=λ0jn22ϕ¯(y).\phi_{0j}(y,t)=\lambda_{0j}^{\frac{n-2}{2}}\bar{\phi}(y). (2.22)

In what follows we let the parameters μj(t)\mu_{j}(t) in (2.2) have the form μ=μ0+μ1\vec{\mu}=\vec{\mu}_{0}+\vec{\mu}_{1}, namely

μj(t)=μ0j(t)+μ1j(t),\mu_{j}(t)=\mu_{0j}(t)+\mu_{1j}(t), (2.23)

where the parameters μ1j(t)\mu_{1j}(t) to be determined satisfy

|μ1j(t)|μ0j(t)(t)σ\left|\mu_{1j}(t)\right|\lesssim\mu_{0j}(t)(-t)^{-\sigma} (2.24)

for some small and fixed constant 0<σ<10<\sigma<1. We ansatz 34|μj||μ0j|43\frac{3}{4}\leq\frac{|\mu_{j}|}{|\mu_{0j}|}\leq\frac{4}{3} for j=1,,kj=1,\dots,k.

We observe that for some positive number cjc_{j} we have

λ0j(t)=cj(t)2n6(n2n6)j2.\lambda_{0j}(t)=c_{j}(-t)^{-\frac{2}{n-6}\left(\frac{n-2}{n-6}\right)^{j-2}}.

With these choices, the expression Ej[φ0j;μ]E_{j}[\varphi_{0j};\vec{\mu}] in (2.14) can be decomposed as

Ej[φ0j,μ0+μ1]\displaystyle E_{j}[\varphi_{0j},\vec{\mu}_{0}+\vec{\mu}_{1}] =μjn+22[(μjμ˙jμ0jμ˙0j)Zn+1(yj)+(λjn22λ0jn22)pUp1(yj)U(0)]\displaystyle=\mu_{j}^{-\frac{n+2}{2}}\left[\left(\mu_{j}\dot{\mu}_{j}-\mu_{0j}\dot{\mu}_{0j}\right)Z_{n+1}\left(y_{j}\right)+\left(\lambda_{j}^{\frac{n-2}{2}}-\lambda_{0j}^{\frac{n-2}{2}}\right)pU^{p-1}\left(y_{j}\right)U(0)\right]
=μjn+22Dj[μ1](yj,t)+μjn+22Θj[μ1](yj,t),yj=xμj(t)\displaystyle=\mu_{j}^{-\frac{n+2}{2}}D_{j}\left[\vec{\mu}_{1}\right](y_{j},t)+\mu_{j}^{-\frac{n+2}{2}}\Theta_{j}\left[\vec{\mu}_{1}\right](y_{j},t),\quad y_{j}=\frac{x}{\mu_{j}(t)}

where j=2,,kj=2,\cdots,k and

Dj[μ1](yj,t)=(μ˙0jμ1j+μ0jμ˙1j)Zn+1(yj)+n22pUp1(yj)U(0)λ0jn22(μ1jμ0jμ1,j1μ0,j1),Θj[μ1](yj,t)=μ1jμ˙1jZn+1(yj)+pUp1(yj)λ0jn22O(|μ1j|μ0j+|μ1,j1|μ0,j1)2.\begin{split}D_{j}[\vec{\mu}_{1}](y_{j},t)=&\left(\dot{\mu}_{0j}\mu_{1j}+\mu_{0j}\dot{\mu}_{1j}\right)Z_{n+1}\left(y_{j}\right)+\frac{n-2}{2}pU^{p-1}\left(y_{j}\right)U(0)\lambda_{0j}^{\frac{n-2}{2}}\left(\frac{\mu_{1j}}{\mu_{0j}}-\frac{\mu_{1,j-1}}{\mu_{0,j-1}}\right),\\ \Theta_{j}[\vec{\mu}_{1}](y_{j},t)=&\mu_{1j}\dot{\mu}_{1j}Z_{n+1}\left(y_{j}\right)+pU^{p-1}\left(y_{j}\right)\lambda_{0j}^{\frac{n-2}{2}}O\left(\frac{|\mu_{1j}|}{\mu_{0j}}+\frac{|\mu_{1,j-1}|}{\mu_{0,j-1}}\right)^{2}.\end{split} (2.25)

Here we have used the fact that

λjn22λ0jn22=\displaystyle\lambda_{j}^{\frac{n-2}{2}}-\lambda_{0j}^{\frac{n-2}{2}}= n22λ0jn22(μ1jμ0jμ1,j1μ0,j1)+λ0jn22O(|μ1j|μ0j+|μ1,j1|μ0,j1)2.\displaystyle\frac{n-2}{2}\lambda_{0j}^{\frac{n-2}{2}}\left(\frac{\mu_{1j}}{\mu_{0j}}-\frac{\mu_{1,j-1}}{\mu_{0,j-1}}\right)+\lambda_{0j}^{\frac{n-2}{2}}O\left(\frac{|\mu_{1j}|}{\mu_{0j}}+\frac{|\mu_{1,j-1}|}{\mu_{0,j-1}}\right)^{2}. (2.26)

We also introduce the notation

D1[μ1](y1,t)=(1+μ11)μ˙11Zn+1(y1),y1=xμ1,D_{1}[\vec{\mu}_{1}](y_{1},t)=(1+\mu_{11})\dot{\mu}_{11}Z_{n+1}\left(y_{1}\right),\quad y_{1}=\frac{x}{\mu_{1}}, (2.27)

which is derived from

tU1=μ1n+22D1[μ1].\displaystyle-\partial_{t}U_{1}=\mu_{1}^{-\frac{n+2}{2}}D_{1}[\vec{\mu}_{1}]. (2.28)

3. The inner-outer gluing system

We consider the approximation u=u[μ1]u_{*}=u_{*}[\vec{\mu}_{1}] in (2.5) built in the previous section and want to find a solution of equation (2.1) in the form u=u+φ.u=u_{*}+\varphi. By Lemma A.2, we have u>0u_{*}>0 when t0t_{0} is very negative. The problem becomes

S[u+φ]=φt+Δφ+pup1φ+Nu[φ]+S[u]=0 in n×(,t0)S\left[u_{*}+\varphi\right]=-\varphi_{t}+\Delta\varphi+pu_{*}^{p-1}\varphi+N_{u_{*}}[\varphi]+S\left[u_{*}\right]=0\quad\text{ in }\mathbb{R}^{n}\times\left(-\infty,t_{0}\right) (3.1)

where

Nu[φ]=|u+φ|p1(u+φ)uppup1φ.N_{u_{*}}[\varphi]=\left|u_{*}+\varphi\right|^{p-1}\left(u_{*}+\varphi\right)-u_{*}^{p}-pu_{*}^{p-1}\varphi.

We consider the cut-off functions ηj,ζj,j=1,,k,\eta_{j},\zeta_{j},j=1,\ldots,k, defined as

ηj(x,t)\displaystyle\eta_{j}(x,t) =χ(|x|2Rμ0j(t))\displaystyle=\chi\left(\frac{\left|x\right|}{2R\mu_{0j}(t)}\right) (3.2)

and

ζj(x,t)\displaystyle\zeta_{j}(x,t) ={χ(|x|Rμ0j(t))χ(R|x|μ0j(t))j=1,,k1,χ(|x|Rμ0k(t))j=k.\displaystyle=\begin{dcases}\chi\left(\frac{\left|x\right|}{R\mu_{0j}(t)}\right)-\chi\left(\frac{R\left|x\right|}{\mu_{0j}(t)}\right)\quad&j=1,\cdots,k-1,\\ \chi\left(\frac{|x|}{R\mu_{0k}(t)}\right)\quad&j=k.\end{dcases} (3.3)

We observe that ηiζi=ζi\eta_{i}\zeta_{i}=\zeta_{i}, because

ηj(x,t)={1 for |x|2Rμ0j(t),0 for |x|4Rμ0j(t).\eta_{j}(x,t)=\left\{\begin{array}[]{ll}1&\text{ for }\left|x\right|\leq 2R\mu_{0j}(t),\\ 0&\text{ for }\left|x\right|\geq 4R\mu_{0j}(t).\end{array}\right.

and

ζj(x,t)\displaystyle\zeta_{j}(x,t) ={1 for 2R1μ0j(t)|x|Rμ0j(t),0 for |x|2Rμ0j(t) or |x|R1μ0j(t).j=1,,k1.\displaystyle=\left\{\begin{array}[]{ll}1&\text{ for }\quad 2R^{-1}\mu_{0j}(t)\leq\left|x\right|\leq R\mu_{0j}(t),\\ 0&\text{ for }\quad|x|\geq 2R\mu_{0j}(t)\text{ or }\left|x\right|\leq R^{-1}\mu_{0j}(t).\end{array}\right.j=1,\dots,k-1. (3.6)
ζk(x,t)\displaystyle\zeta_{k}(x,t) ={1 for |x|Rμ0k(t),0 for |x|2Rμ0k(t).\displaystyle=\left\{\begin{array}[]{ll}1&\text{ for }\quad\left|x\right|\leq R\mu_{0k}(t),\\ 0&\text{ for }\quad|x|\geq 2R\mu_{0k}(t).\end{array}\right. (3.9)

Here RR is a large constant to be determined later. In fact, we fix RR first, then take t0t_{0} very negative.

We consider functions ϕj(y,t)\phi_{j}(y,t), j=1,,kj=1,\cdots,k defined in B8R×(,t0)B_{8R}\times(-\infty,t_{0}) and a function Ψ(x,t)\Psi(x,t) defined in n×(,t0)\mathbb{R}^{n}\times\left(-\infty,t_{0}\right). We look for the φ(x,t)\varphi(x,t) in (3.1) of the form

φ(x,t)=j=1kφjηj(x,t)+Ψ(x,t)\varphi(x,t)=\sum_{j=1}^{k}\varphi_{j}\eta_{j}(x,t)+\Psi(x,t) (3.10)

where

φj(x,t)=μjn22ϕj(xμj(t),t).\displaystyle\varphi_{j}(x,t)={\mu_{j}^{-\frac{n-2}{2}}}\phi_{j}\left(\frac{x}{\mu_{j}(t)},t\right). (3.11)

Let us substitute φ\varphi given by (3.10) into equation (3.1). We get

S[u+φ]=\displaystyle S\left[u_{*}+\varphi\right]= j=1kηjμjn+22(μj2tϕj(yj,t)+Δyϕj(yj,t)+pU(yj)p1ϕj(yj,t)\displaystyle\sum_{j=1}^{k}\eta_{j}\mu_{j}^{-\frac{n+2}{2}}\Big{(}-\mu_{j}^{2}\partial_{t}\phi_{j}(y_{j},t)+\Delta_{y}\phi_{j}(y_{j},t)+pU(y_{j})^{p-1}\phi_{j}(y_{j},t)
+μjn22ζjpU(yj)p1Ψ+Dj[μ1])\displaystyle+\mu_{j}^{\frac{n-2}{2}}\zeta_{j}pU(y_{j})^{p-1}\Psi+D_{j}[\vec{\mu}_{1}]\Big{)}
Ψt+ΔxΨ+VΨ+B[ϕ]+𝒩[ϕ,Ψ,μ1]+Eout.\displaystyle-\Psi_{t}+\Delta_{x}\Psi+V\Psi+B[\vec{\phi}]+\mathcal{N}[\vec{\phi},\Psi,\vec{\mu}_{1}]+E^{out}.

Here we denote for ϕ=(ϕ1,,ϕk)\vec{\phi}=\left(\phi_{1},\ldots,\phi_{k}\right), μ=(μ1,,μk)\vec{\mu}=\left(\mu_{1},\ldots,\mu_{k}\right) and

B[ϕ]=j=1k2xηjxφj+(tηj+Δxηj)φj+p(up1Ujp1)φjηjμ˙jμjφjηj,\displaystyle B[\vec{\phi}]=\sum_{j=1}^{k}2\nabla_{x}\eta_{j}\cdot\nabla_{x}\varphi_{j}+\left(-\partial_{t}\eta_{j}+\Delta_{x}\eta_{j}\right)\varphi_{j}+p\left(u_{*}^{p-1}-U_{j}^{p-1}\right)\varphi_{j}\eta_{j}-\dot{\mu}_{j}\frac{\partial}{\partial\mu_{j}}\varphi_{j}\eta_{j}, (3.12)
𝒩[ϕ,Ψ,μ1]=Nu(j=1kφjηj+Ψ),V=pup1j=1kζjpUjp1,\displaystyle\mathcal{N}[\vec{\phi},\Psi,\vec{\mu}_{1}]=N_{u_{*}}\left(\sum_{j=1}^{k}\varphi_{j}\eta_{j}+\Psi\right),\quad V=pu_{*}^{p-1}-\sum_{j=1}^{k}\zeta_{j}pU_{j}^{p-1}, (3.13)
Eout=S[u]j=1kμjn+22Dj[μ1]ηj,\displaystyle E^{out}=S\left[u_{*}\right]-\sum_{j=1}^{k}\mu_{j}^{-\frac{n+2}{2}}D_{j}[\vec{\mu}_{1}]\eta_{j}, (3.14)

where Dj[μ1]D_{j}[\vec{\mu}_{1}] are defined in (2.25) and (2.27). We will have that S[u+φ]=0S\left[u_{*}+\varphi\right]=0 if the following system of k+1k+1 equations are satisfied.

μj2tϕj=Δyϕj+pU(y)p1ϕj+j[Ψ,μ1](y,t) in B8R×(,t0),j=1,,k,\displaystyle\mu_{j}^{2}\partial_{t}\phi_{j}=\Delta_{y}\phi_{j}+pU(y)^{p-1}\phi_{j}+{{\mathcal{H}}}_{j}[\Psi,\vec{\mu}_{1}](y,t)\mbox{ \ \ in \ }B_{8R}\times(-\infty,t_{0}),\quad j=1,\dots,k, (3.15)
tΨ=ΔxΨ+𝒢[ϕ,Ψ,μ1](x,t) in n×(,t0),\displaystyle{\partial}_{t}\Psi=\Delta_{x}\Psi+{\mathcal{G}}[\vec{\phi},\Psi,\vec{\mu}_{1}](x,t)\mbox{ \ \ in \ }{{\mathbb{R}}}^{n}\times(-\infty,t_{0}), (3.16)

where

j[Ψ,μ1](y,t)=\displaystyle{{\mathcal{H}}}_{j}[\Psi,\vec{\mu}_{1}](y,t)=\ μjn22ζj(μjy)pU(y)p1Ψ(μjy,t)+Dj[μ1](y,t),\displaystyle\mu_{j}^{\frac{n-2}{2}}\zeta_{j}(\mu_{j}y)pU(y)^{p-1}\Psi(\mu_{j}y,t)+D_{j}[\vec{\mu}_{1}](y,t), (3.17)
𝒢[ϕ,Ψ,μ1](x,t)=\displaystyle{\mathcal{G}}[\vec{\phi},\Psi,\vec{\mu}_{1}](x,t)=\ VΨ+B[ϕ]+𝒩[ϕ,Ψ,μ1]+Eout.\displaystyle V\Psi+B[\vec{\phi}]+\mathcal{N}[\vec{\phi},\Psi,\vec{\mu}_{1}]+E^{out}. (3.18)

In the next sections we will solve this system in a well-designed topology with suitable choice of parameters μ1\vec{\mu}_{1}.

4. The linear equations

In order to solve the system (3.15)-(3.16), we need to study their linear equations respectively. The linear estimates of this section are crucial to the fixed point argument.

4.1. The linear inner problem

First, we consider the linear theory of (3.15).

μj(t)2tϕ=Δyϕ+pU(y)p1ϕ+h(y,t),B8R×(,t0).\displaystyle\mu_{j}(t)^{2}\partial_{t}\phi=\Delta_{y}\phi+pU(y)^{p-1}\phi+h(y,t),\quad B_{8R}\times(-\infty,t_{0}). (4.1)

where μj(t)(t)αj\mu_{j}(t)\approx(-t)^{-\alpha_{j}} and RR is a sufficiently large constant. We aim to solve (4.1) by finding a linear mapping ϕ=ϕ[h]\phi=\phi[h] that keeps the spatial decay property of hh, provided that certain solvability condition for hh is satisfied. Making change of variables

τ(t)=τ0+t0tμj(s)2𝑑s(t)2αj+1,\tau(t)=\tau_{0}+\int_{t_{0}}^{t}\mu_{j}(s)^{-2}ds\approx-(-t)^{2\alpha_{j}+1},

where τ0\tau_{0} is a suitably chosen that τ0(t0)2αj+1\tau_{0}\approx-(-t_{0})^{2\alpha_{j}+1}, transforms (4.1) into

τϕ=Δyϕ+pU(y)p1ϕ+h(y,τ),B8R×(,τ0).\displaystyle\partial_{\tau}\phi=\Delta_{y}\phi+pU(y)^{p-1}\phi+h(y,\tau),\quad B_{8R}\times(-\infty,\tau_{0}). (4.2)

In order to solve this equation, we need to know the space h(y,τ)h(y,\tau) belongs to. This amounts to examining the decay of j\mathcal{H}_{j} in (3.17). Inspired by the estimate of |j(y,t)||\mathcal{H}_{j}(y,t)| in Lemma 6.1, we define the following norms

hν(τ),2+ain:=sups<τ0supyB8Rν1(s)y2+a|h(y,s)|,\displaystyle\|h\|_{\nu(\tau),2+a}^{in}:=\sup_{s<\tau_{0}}\sup_{y\in B_{8R}}\nu^{-1}(s)\langle y\rangle^{2+a}|h(y,s)|, (4.3)
ϕν(τ),ain,:=sups<τ0supyB8RR(n+1a)ν1(s)yn+1|ϕ(y,s)|.\|\phi\|_{\nu(\tau),a}^{in,*}:=\sup_{s<\tau_{0}}\sup_{y\in B_{8R}}R^{-(n+1-a)}\nu^{-1}(s)\langle y\rangle^{n+1}|\phi(y,s)|. (4.4)

where 0<a<10<a<1 and ν(τ):(,τ0)+\nu(\tau):(-\infty,\tau_{0})\to\mathbb{R}_{+} is a positive C1C^{1} function satisfying

limτν(τ)=0,andτνν(τ)τ for ττ0.\displaystyle\lim_{\tau\to-\infty}\nu(\tau)=0,\quad\text{and}\quad\partial_{\tau}\nu\approx\frac{\nu(\tau)}{-\tau}\quad\text{ for }\tau\leq\tau_{0}. (4.5)
Lemma 4.1.

Consider

τϕ=Δϕ+pUp1ϕ+h(y,τ) in B8R×(,τ0).\displaystyle\partial_{\tau}\phi=\Delta\phi+pU^{p-1}\phi+h(y,\tau)\quad\text{ in }B_{8R}\times(-\infty,\tau_{0}). (4.6)

For all sufficiently large R>0R>0, if τ0=τ0(R)\tau_{0}=\tau_{0}(R) is very negative, hν(τ),2+ain<+\|h\|_{\nu(\tau),2+a}^{in}<+\infty, and h(y,τ)h(y,\tau) satisfies

B8Rh(y,τ)Zj(y)𝑑y=0 for all τ(,τ0)\displaystyle\int_{B_{8R}}h(y,\tau)Z_{j}(y)dy=0\quad\text{ for all }\quad\tau\in\left(-\infty,\tau_{0}\right) (4.7)

j=1,,n+1j=1,\ldots,n+1, where Zj(y)=yjU(y)Z_{j}(y)=\partial_{y_{j}}U(y) and Zn+1(y)=n22U(y)+yU(y)Z_{n+1}(y)=\frac{n-2}{2}U(y)+y\cdot\nabla U(y). Then there exists a linear mapping

ϕ=𝒯ν(τ)in[h]\displaystyle\phi=\mathcal{T}^{in}_{\nu(\tau)}[h] (4.8)

which solves (4.6) and satisfies the estimate

yyϕν(τ),ain,+ϕν(τ),ain,Cν(τ),ainhν(τ),2+ain,\displaystyle\|\langle y\rangle\nabla_{y}\phi\|_{\nu(\tau),a}^{in,*}+\|\phi\|_{\nu(\tau),a}^{in,*}\leq C^{in}_{\nu(\tau),a}\|h\|_{\nu(\tau),2+a}^{in}, (4.9)

where Cν(τ),ainC^{in}_{\nu(\tau),a} is a constant depending on ν(τ)\nu(\tau) and aa.

Remark 4.1.1.

Since we consider radial scheme throughout this paper, B8Rh(y,τ)Zj(y)𝑑y=0\int_{B_{8R}}h(y,\tau)Z_{j}(y)dy=0, j=1,,nj=1,\dots,n, are satisfied automatically.

The proof inherits the spirit of [3]. First, we consider the linear problem (4.6) in a finite time region (s,τ0)(s,\tau_{0}) and get a uniform estimate independent of the initial time ss. Second, we make ss go to -\infty and get an ancient solution by the compaction argument, like [4]. We need to use some Liouville type theorem to guarantee the uniqueness of the ancient solution derived from this operation, which deduces the existence of the desired linear mapping.

Since the proof is very similar to the linear theory in [3], we only stress the difference due to taking subsequence as ss\rightarrow-\infty. We have to prove no matter what convergent subsequence we choose, the limit function is the same.

First we need the following preparation lemma.

Lemma 4.2.

Given L(u)=Δu+c(x)uL(u)=\Delta u+c(x)u defined in a bounded domain Ω\Omega, if LL has a positive supersolution wC2(Ω)C(Ω¯)w\in C^{2}(\Omega)\cap C(\bar{\Omega}), that is L(w)0L(w)\leq 0 in Ω\Omega and w>0w>0 in Ω¯\bar{\Omega}, then for all ϕC2(Ω)C(Ω¯)\phi\in C^{2}(\Omega)\cap C(\bar{\Omega}) with ϕ=0\phi=0 on Ω{\partial}\Omega, the corresponding energy

Q(ϕ,ϕ):=Ω(|ϕ|2c(x)ϕ2)dy0.Q(\phi,\phi):=\int_{\Omega}\left(|\nabla\phi|^{2}-c(x)\phi^{2}\right)\,\mathrm{d}y\geq 0.
Proof.

Since w>0w>0 in Ω¯\bar{\Omega}, ψC2(Ω)C0(Ω¯)\exists\,\psi\in C^{2}(\Omega)\cap C^{0}(\bar{\Omega}) such that ϕ=wψ\phi=w\psi. Then

Q(ϕ,ϕ)=Ω(wψ2Δw2wψwψw2ψΔψc(x)w2ψ2)dy=Ω[(Δw+c(x)w)wψ22wψwψw2ψΔψ]dy.\displaystyle\begin{split}Q(\phi,\phi)&=\int_{\Omega}\left(-w\psi^{2}\Delta w-2w\psi\nabla w\cdot\nabla\psi-w^{2}\psi\Delta\psi-c(x)w^{2}\psi^{2}\right)\,\mathrm{d}y\\ &=\int_{\Omega}\left[-\left(\Delta w+c(x)w\right)w\psi^{2}-2w\psi\nabla w\cdot\nabla\psi-w^{2}\psi\Delta\psi\right]\,\mathrm{d}y.\end{split} (4.10)

Using the assumption Lw0Lw\leq 0 and w>0w>0, we have

Q(ϕ,ϕ)\displaystyle Q(\phi,\phi) Ω(2wψwψw2ψΔψ)dy\displaystyle\geq\int_{\Omega}\left(-2w\psi\nabla w\cdot\nabla\psi-w^{2}\psi\Delta\psi\right)\,\mathrm{d}y
=Ω[2wψwψ+ψ(w2ψ)]dy=Ω|ψ|2w2dy0.\displaystyle=\int_{\Omega}\left[-2w\psi\nabla w\cdot\nabla\psi+\nabla\psi\cdot\nabla(w^{2}\psi)\right]\,\mathrm{d}y=\int_{\Omega}|\nabla\psi|^{2}w^{2}\,\mathrm{d}y\geq 0.

We take the following typical lemma, whose counterpart is given in Lemma 7.37.3 in [3], to illustrate the difference with the linear theory in [3] due to taking subsequence. Define χM(y)=χ(|y|M)\chi_{M}(y)=\chi(|y|-M).

Lemma 4.3.

Consider

{ϕτ=Δϕ+pUp1(1χM)ϕ+h(y,τ) in B8R×(,τ0),ϕ=0 on B8R×(,τ0),\begin{cases}\phi_{\tau}=\Delta\phi+pU^{p-1}(1-\chi_{M})\phi+h(y,\tau)\mbox{\ \ in \ }B_{8R}\times(-\infty,\tau_{0}),\\ \phi=0\mbox{ \ \ on \ }{\partial}B_{8R}\times(-\infty,\tau_{0}),\end{cases} (4.11)

where hν,a<+\|h\|_{\nu,a}<+\infty, 0a<n0\leq a<n. If MM is a large constant, there exists a very negative constant τ~0\tilde{\tau}_{0}. If τ0τ~0\tau_{0}\leq\tilde{\tau}_{0}, there exists a linear map ϕ[h]\phi_{*}[h] satisfying (4.11) and the following estimate:

|ϕ[h]|Mν(τ)ΘRa0(|y|)hν,a,|\phi_{*}[h]|\lesssim_{M}\nu(\tau)\Theta_{Ra}^{0}(|y|)\|h\|_{\nu,a}, (4.12)

where

ΘRa0(r)={(1+r)2a if 2<a<nlnR if a=2R2a if 0a<2.\Theta_{Ra}^{0}(r)=\begin{cases}(1+r)^{2-a}&\mbox{\ \ if \ }2<a<n\\ \ln R&\mbox{\ \ if \ }a=2\\ R^{2-a}&\mbox{\ \ if \ }0\leq a<2.\end{cases}
Proof.

First we consider

{ϕτs=Δϕs+pUp1(1χM)ϕs+h(y,τ) in B8R×(,τ0),ϕs=0 on B8R×(,τ0),ϕs(,s)=0 in B8R.\begin{cases}\phi_{\tau}^{s}=\Delta\phi^{s}+pU^{p-1}(1-\chi_{M})\phi^{s}+h(y,\tau)\mbox{\ \ in \ }B_{8R}\times(-\infty,\tau_{0}),\\ \phi^{s}=0\mbox{ \ \ on \ }{\partial}B_{8R}\times(-\infty,\tau_{0}),\\ \phi^{s}(\cdot,s)=0\mbox{ \ \ in \ }B_{8R}.\end{cases}

By the same method in Lemma 7.3 in [3], we have

|ϕs[h]|Mν(τ)ΘRa0(|y|)hν,a.|\phi_{*}^{s}[h]|\lesssim_{M}\nu(\tau)\Theta_{Ra}^{0}(|y|)\|h\|_{\nu,a}. (4.13)

Notice this estimate is independent of ss. By parabolic estimate, Arzelà-Ascoli theorem and diagonalization argument, taking ss\rightarrow-\infty, we find a weak solution ϕ[h]\phi_{*}[h] to (4.11) with the following estimate

|ϕ[h]|Mν(τ)ΘRa0(|y|)hν,a.|\phi_{*}[h]|\lesssim_{M}\nu(\tau)\Theta_{Ra}^{0}(|y|)\|h\|_{\nu,a}. (4.14)

Next, we need to demonstrate this operation is really a mapping. That is, if the operation gives two functions ϕ1[h]\phi_{*}^{1}[h], ϕ2[h]\phi_{*}^{2}[h] due to the different choices of subsequences, we need to prove ϕ1[h]=ϕ2[h]\phi_{*}^{1}[h]=\phi_{*}^{2}[h]. In fact, set Φ=ϕ1[h]ϕ2[h]\Phi_{*}=\phi_{*}^{1}[h]-\phi_{*}^{2}[h]. By (4.11), (4.14), Φ\Phi_{*} satisfies

{τΦ=ΔΦ+pUp1(1χM)Φ in B8R×(,τ0),Φ=0 on B8R×(,τ0),|Φ|Mν(τ)ΘRa0(|y|)hν,a.\begin{cases}{\partial}_{\tau}\Phi_{*}=\Delta\Phi_{*}+pU^{p-1}(1-\chi_{M})\Phi_{*}\mbox{\ \ in \ }B_{8R}\times(-\infty,\tau_{0}),\\ \Phi_{*}=0\mbox{ \ \ on \ }{\partial}B_{8R}\times(-\infty,\tau_{0}),\\ |\Phi_{*}|\lesssim_{M}\nu(\tau)\Theta_{Ra}^{0}(|y|)\|h\|_{\nu,a}.\end{cases} (4.15)

By parabolic regularity theory, Φ\Phi_{*} is smooth. Multiplying Φ\Phi_{*} for both sides and integrating by part, we have

12τB8R|Φ|2dx=B8R[|Φ|2+pUp1(1χM)Φ2]dx0.\frac{1}{2}{\partial}_{\tau}\int_{B_{8R}}|\Phi_{*}|^{2}\,\mathrm{d}x=\int_{B_{8R}}\left[-|\nabla\Phi_{*}|^{2}+pU^{p-1}(1-\chi_{M})\Phi_{*}^{2}\right]\,\mathrm{d}x\leq 0. (4.16)

The inequality is due to Lemma 4.2 since LM(ϕ)=Δϕ+pUp1(y)(1χM)ϕL_{M}(\phi)=\Delta\phi+pU^{p-1}(y)(1-\chi_{M})\phi has a positive kernel g2(|y|)g_{2}(|y|) given in Lemma 7.3 of [3].

By the upper bound of |Φ||\Phi_{*}|,

B8R|Φ|2dxhν,a2ν2(τ)Rn{1 if 2<a<n,ln2(R) if a=2,R42a if 0a<2.\int_{B_{8R}}|\Phi_{*}|^{2}\,\mathrm{d}x\lesssim\|h\|_{\nu,a}^{2}\nu^{2}(\tau)R^{n}\begin{cases}1&\mbox{\ \ if \ }2<a<n,\\ \ln^{2}(R)&\mbox{\ \ if \ }a=2,\\ R^{4-2a}&\mbox{\ \ if \ }0\leq a<2.\end{cases}

Thus

B8R|Φ|2dx0 as τ,\int_{B_{8R}}|\Phi_{*}|^{2}\,\mathrm{d}x\rightarrow 0\mbox{ \ \ as \ }\tau\rightarrow-\infty, (4.17)

we have B8R|Φ|2dx0\int_{B_{8R}}|\Phi_{*}|^{2}\,\mathrm{d}x\equiv 0, which implies Φ0\Phi_{*}\equiv 0.

By the same argument, we can prove that ϕ[h]\phi_{*}[h] is a linear mapping. That is, for all functions ff, gg satisfying fν,a\|f\|_{\nu,a}, gν,a<\|g\|_{\nu,a}<\infty, we have ϕ[f+g]=ϕ[f]+ϕ[g]\phi_{*}[f+g]=\phi_{*}[f]+\phi_{*}[g]. ∎

Since we aim to find ancient solutions. The initial value given in the linear theory of [3] will disappear as ss\rightarrow-\infty.

4.2. The linear outer problem

We consider the solution of

ψt=Δxψ+g(x,t),in n×(,t0).\displaystyle\psi_{t}=\Delta_{x}\psi+g(x,t),\quad\text{in }{{\mathbb{R}}}^{n}\times(-\infty,t_{0}). (4.18)

It is well-known that the above equation has a solution which is given by Duhamel’s formula

ψ(x,t)=𝒯out[g](x,t):=1(4π)n2tds(ts)n2ne|xy|24(ts)g(y,s)𝑑y\displaystyle\psi(x,t)=\mathcal{T}^{out}[g](x,t):=\frac{1}{(4\pi)^{\frac{n}{2}}}\int_{-\infty}^{t}\frac{ds}{(t-s)^{\frac{n}{2}}}\int_{\mathbb{R}^{n}}e^{-\frac{|x-y|^{2}}{4(t-s)}}g(y,s)dy (4.19)

whenever the integral is well-defined.

In order to design a topology to solve the outer problem (3.16), we define three types of weights.

w11(x,t)\displaystyle w_{11}(x,t) =|t|1σ1+|x|2+α𝟏{|x|μ¯01}+|t|1σμ¯01n2α|x|1n𝟏{μ¯01|x||t|12}\displaystyle=\frac{|t|^{-1-\sigma}}{1+|x|^{2+\alpha}}\mathbf{1}_{\{|x|\leq\bar{\mu}_{01}\}}+|t|^{-1-\sigma}\bar{\mu}_{01}^{n-2-\alpha}|x|^{-1-n}\mathbf{1}_{\{\bar{\mu}_{01}\leq|x|\leq|t|^{\frac{1}{2}}\}} (4.20)
|t|γ1𝟏{|x|1}+|t|γ1|x|2α𝟏{1|x|μ¯01}+|t|γ1μ¯01n2α|x|1n𝟏{μ¯01|x||t|12},\displaystyle\approx|t|^{\gamma_{1}}\mathbf{1}_{\{|x|\leq 1\}}+|t|^{\gamma_{1}}|x|^{-2-\alpha}\mathbf{1}_{\{1\leq|x|\leq\bar{\mu}_{01}\}}+|t|^{\gamma_{1}}\bar{\mu}_{01}^{n-2-\alpha}|x|^{-1-n}\mathbf{1}_{\{\bar{\mu}_{01}\leq|x|\leq|t|^{\frac{1}{2}}\}},
w1j(x,t)\displaystyle w_{1j}(x,t) =|t|σμ0jn+22λ0jn221+(|x|μ0j)2+α𝟏{|x|μ¯0j}\displaystyle=\frac{|t|^{-\sigma}}{\mu_{0j}^{\frac{n+2}{2}}}\frac{\lambda_{0j}^{\frac{n-2}{2}}}{1+(\frac{|x|}{\mu_{0j}})^{2+\alpha}}\mathbf{1}_{\{|x|\leq\bar{\mu}_{0j}\}}
μ0j2|t|γj𝟏{|x|μ0j}+μ0jα|t|γj|x|2α𝟏{μ0j|x|μ¯0j},\displaystyle\approx\mu_{0j}^{-2}|t|^{\gamma_{j}}\mathbf{1}_{\{|x|\leq\mu_{0j}\}}+\mu_{0j}^{\alpha}|t|^{\gamma_{j}}|x|^{-2-\alpha}\mathbf{1}_{\{\mu_{0j}\leq|x|\leq\bar{\mu}_{0j}\}},

where γ1=1σ\gamma_{1}=-1-\sigma and γj=n22αj1σ\gamma_{j}=\frac{n-2}{2}\alpha_{j-1}-\sigma for j=2,,kj=2,\dots,k.

w21(x,t)=\displaystyle w_{21}(x,t)= |t|2σμ02n22μ011|x|2n𝟏{μ¯02|x|1},\displaystyle|t|^{-2\sigma}\mu_{02}^{\frac{n}{2}-2}\mu_{01}^{-1}|x|^{2-n}\mathbf{1}_{\{\bar{\mu}_{02}\leq|x|\leq 1\}}, (4.21)
w2j(x,t)=\displaystyle w_{2j}(x,t)= |t|2σμ0,j+1n22μ0j1|x|2n𝟏{μ¯0,j+1|x|μ¯0j}, for j=2,,k1.\displaystyle|t|^{-2\sigma}\mu_{0,j+1}^{\frac{n}{2}-2}\mu_{0j}^{-1}|x|^{2-n}\mathbf{1}_{\{\bar{\mu}_{0,j+1}\leq|x|\leq\bar{\mu}_{0j}\}},\mbox{ \ \ for \ }j=2,\dots,k-1.

and

w3(x,t)=R|t|1σ|x|2n𝟏{|x|μ¯01},w_{3}(x,t)=R|t|^{-1-\sigma}|x|^{2-n}\mathbf{1}_{\{|x|\geq\bar{\mu}_{01}\}}, (4.22)

where δ>0\delta>0 is a small constant.

Remark 4.3.1.

These ad hoc weights are used to control the behavior of 𝒢{\mathcal{G}} in (3.18). There are four terms in 𝒢{\mathcal{G}}, namely B[ϕ]B[\vec{\phi}] (the influence of inner problem), VΨV\Psi (linear term on Ψ\Psi), EoutE^{out} (error comes from ansatz U¯\bar{U} and mainly depends on μ1\vec{\mu}_{1}), 𝒩\mathcal{N} (higher order nonlinear term). Roughly speaking, w1jw_{1j} will be used to control B[ϕ]B[\vec{\phi}] in the support of χj\chi_{j}. Specially, w11w_{11} is also designed to control the influence of w11w_{11}^{*} in {|x|μ¯01}\{|x|\geq\bar{\mu}_{01}\}. The regions between the support of χj\chi_{j} of B[ϕ]B[\vec{\phi}] is controlled by w2jw_{2j}. Also notice the support of B[ϕ]B[\vec{\phi}] is contained in {|x|4Rμ01}\{|x|\leq 4R\mu_{01}\}. w3w_{3} is designed for controlling EoutE^{out} in {|x|μ¯01}\{|x|\geq\bar{\mu}_{01}\}. See Remark 4.7.1 how to control the other three terms.

Lemma 4.4.

For j=1,,kj=1,\dots,k, we have the following estimate:

𝒯out[w1j]w1j:={|t|γjif |x|μ0j,|t|γjμ0jα|x|αif μ0j|x|μ¯0j,|t|γjμ0jαμ¯0jn2α|x|2nif μ¯0j|x||t|12,|x|2γj+2nif |x||t|12.\displaystyle\mathcal{T}^{out}\left[w_{1j}\right]\lesssim w_{1j}^{*}:=\begin{cases}|t|^{\gamma_{j}}&\text{if }|x|\leq\mu_{0j},\\ |t|^{\gamma_{j}}\mu_{0j}^{\alpha}|x|^{-\alpha}&\text{if }\mu_{0j}\leq|x|\leq\bar{\mu}_{0j},\\ |t|^{\gamma_{j}}\mu_{0j}^{\alpha}\bar{\mu}_{0j}^{n-2-\alpha}|x|^{2-n}&\text{if }\bar{\mu}_{0j}\leq|x|\leq|t|^{\frac{1}{2}},\\ |x|^{2\gamma_{j}^{*}+2-n}&\text{if }|x|\geq|t|^{\frac{1}{2}}.\end{cases} (4.23)

where γj=(1n2)αjα2(αjαj1)σ\gamma_{j}^{*}=(1-\frac{n}{2})\alpha_{j}-\frac{\alpha}{2}(\alpha_{j}-\alpha_{j-1})-\sigma for j=2,,kj=2,\dots,k and γ1=γ1+(n2α)δ\gamma_{1}^{*}=\gamma_{1}+(n-2-\alpha)\delta.

Here γj\gamma_{j}^{*} satisfies |t|γjμ0jαμ¯0jn2α|t|γj|t|^{\gamma_{j}}\mu_{0j}^{\alpha}\bar{\mu}_{0j}^{n-2-\alpha}\approx|t|^{\gamma_{j}^{*}} for simplicity. Approximately, w1jw_{1j}^{*} is like a radially non-increasing function about |x||x| for every fixed tt up to a constant multiplicity, that is

w1jmin{|t|γj,|t|γjααj|x|α,|t|γj|x|2n,|x|2γj+2n}.\displaystyle w_{1j}^{*}\approx\min\{|t|^{\gamma_{j}},|t|^{\gamma_{j}-\alpha\alpha_{j}}|x|^{-\alpha},|t|^{\gamma_{j}^{*}}|x|^{2-n},|x|^{2\gamma_{j}^{*}+2-n}\}. (4.24)

Similarly, we have the following fact.

Lemma 4.5.

We have the following estimates:

𝒯out[w21]w21:={|t|2σif |x|μ¯02,|t|2σμ¯02n4|x|4nif μ¯02|x|1,|t|2σμ¯02n4|x|2nif 1|x||t|12,(|x|2)2σ(n22)α2|x|2nif |x||t|12.\displaystyle\mathcal{T}^{out}[w_{21}]\lesssim w_{21}^{*}:=\begin{cases}|t|^{-2\sigma}&\text{if }|x|\leq\bar{\mu}_{02},\\ |t|^{-2\sigma}\bar{\mu}_{02}^{n-4}|x|^{4-n}&\text{if }\bar{\mu}_{02}\leq|x|\leq 1,\\ |t|^{-2\sigma}\bar{\mu}_{02}^{n-4}|x|^{2-n}&\text{if }1\leq|x|\leq|t|^{\frac{1}{2}},\\ (|x|^{2})^{-2\sigma-(\frac{n}{2}-2)\alpha_{2}}|x|^{2-n}&\text{if }|x|\geq|t|^{\frac{1}{2}}.\end{cases} (4.25)

and for j=2,,k1j=2,\dots,k-1,

𝒯out[w2j]w2j:={|t|2σμ0j1n2 if |x|μ¯0,j+1,|t|2σμ0,j+1n22μ0j1|x|4n if μ¯0,j+1|x|μ¯0j,|t|2σμ0,j+1n22μ0,j1|x|2n if μ¯0j|x||t|12,(|x|2)2σ(n22)αj+1αj1|x|2n if |x||t|12.\displaystyle\mathcal{T}^{out}[w_{2j}]\lesssim w_{2j}^{*}:=\begin{dcases}|t|^{-2\sigma}\mu_{0j}^{1-\frac{n}{2}}&\mbox{ \ \ if \ }|x|\leq\bar{\mu}_{0,j+1},\\ |t|^{-2\sigma}\mu_{0,j+1}^{\frac{n}{2}-2}\mu_{0j}^{-1}|x|^{4-n}&\mbox{ \ \ if \ }\bar{\mu}_{0,j+1}\leq|x|\leq\bar{\mu}_{0j},\\ |t|^{-2\sigma}\mu_{0,j+1}^{\frac{n}{2}-2}\mu_{0,j-1}|x|^{2-n}&\mbox{ \ \ if \ }\bar{\mu}_{0j}\leq|x|\leq|t|^{\frac{1}{2}},\\ (|x|^{2})^{-2\sigma-(\frac{n}{2}-2)\alpha_{j+1}-\alpha_{j-1}}|x|^{2-n}&\mbox{ \ \ if \ }|x|\geq|t|^{\frac{1}{2}}.\end{dcases} (4.26)
Lemma 4.6.

For δ12\delta\leq\frac{1}{2}, we have the following estimate:

𝒯out[w3]w3:=R{|t|1σμ¯014n if |x|μ¯01,|t|1σ|x|4n if μ¯01|x||t|12,|t|σ|x|2n if |x||t|12.{\mathcal{T}}^{out}[w_{3}]\lesssim w_{3}^{*}:=R\begin{cases}|t|^{-1-\sigma}\bar{\mu}_{01}^{4-n}&\mbox{ \ \ if \ }|x|\leq\bar{\mu}_{01},\\ |t|^{-1-\sigma}|x|^{4-n}&\mbox{ \ \ if \ }\bar{\mu}_{01}\leq|x|\leq|t|^{\frac{1}{2}},\\ |t|^{-\sigma}|x|^{2-n}&\mbox{ \ \ if \ }|x|\geq|t|^{\frac{1}{2}}.\end{cases} (4.27)
Remark 4.6.1.

Just like (4.24), w2jw_{2j}^{*}, j=1,,k1j=1,\dots,k-1, w3w_{3}^{*} are approximate to some non-increasing functions about |x||x| for every fixed tt.

The proofs of Lemma 4.4, 4.5 and 4.6 are deferred to subsection B.2 in the appendix.

For a function h=h(x,t)h=h(x,t), we define the weighted LL^{\infty} norm hα,σout\|h\|^{out}_{\alpha,\sigma}, hα,σout,\|h\|^{out,*}_{\alpha,\sigma} as the following form respectively.

hα,σout:=inf{K||h(x,t)|K(j=1kw1j+j=1k1w2j+w3)(x,t),n×(,t0)}.\displaystyle\|h\|^{out}_{\alpha,\sigma}:=\inf\left\{K\ \Big{|}\ |h(x,t)|\leq K\left(\sum_{j=1}^{k}w_{1j}+\sum_{j=1}^{k-1}w_{2j}+w_{3}\right)(x,t),\quad\mathbb{R}^{n}\times(-\infty,t_{0})\right\}. (4.28)
hα,σout,:=inf{K||h(x,t)|K(j=1kw1j+j=1k1w2j+w3)(x,t),n×(,t0)}.\displaystyle\|h\|^{out,*}_{\alpha,\sigma}:=\inf\left\{K\ \Big{|}\ |h(x,t)|\leq K\left(\sum_{j=1}^{k}w^{*}_{1j}+\sum_{j=1}^{k-1}w^{*}_{2j}+w^{*}_{3}\right)(x,t),\quad\mathbb{R}^{n}\times(-\infty,t_{0})\right\}. (4.29)

Using Lemma 4.4, 4.5 4.6 and Lemma A.3-A.8, we get the following proposition:

Proposition 4.7.

Suppose that σ,ϵ>0\sigma,\epsilon>0 is chosen small enough, μ1σ1\|\vec{\mu}_{1}\|_{\sigma}\leq 1 and t0t_{0} is negative enough. Then there exists a constant Cout>0C^{out}>0, independent of RR and t0t_{0}, such that tψ=Δxψ+𝒢[ϕ,Ψ,μ1]\partial_{t}\psi=\Delta_{x}\psi+{\mathcal{G}}[\vec{\phi},\Psi,\vec{\mu}_{1}] has a solution 𝒯out[𝒢[ϕ,Ψ,μ1]]\mathcal{T}^{out}[{\mathcal{G}}[\vec{\phi},\Psi,\vec{\mu}_{1}]] in n×(,t0)\mathbb{R}^{n}\times(-\infty,t_{0}) satisfying

𝒯out[𝒢[ϕ,Ψ,μ1]]α,σout,CoutRαa(1+ϕa,σin,+Ψα,σout,+(ϕa,σin,)p+(Ψα,σout,)p)\displaystyle\|\mathcal{T}^{out}[{\mathcal{G}}[\vec{\phi},\Psi,\vec{\mu}_{1}]]\|^{out,*}_{\alpha,\sigma}\leq C^{out}R^{\alpha-a}\left(1+\|\vec{\phi}\|^{in,*}_{a,\sigma}+\|\Psi\|^{out,*}_{\alpha,\sigma}+(\|\vec{\phi}\|^{in,*}_{a,\sigma})^{p}+(\|\Psi\|^{out,*}_{\alpha,\sigma})^{p}\right)

where 𝒢{\mathcal{G}} is defined in (3.18) and 𝒯out[g]\mathcal{T}^{out}[g] is given by (4.19).

Remark 4.7.1.

There are some subtlety to bound VΨV\Psi. Some term in VΨV\Psi can not be much smaller than w1jw_{1j} in the sense of LL^{\infty}(see (A.37)). Thanks to its narrow support, we could still get the smallness when applying 𝒯out\mathcal{T}^{out} to it. The estimate of 𝒩\mathcal{N} and EoutE^{out} are straightforward.

5. Orthogonal equations

In this section, we deal with the orthogonal equations

B8Rj[Ψ,μ1](y,t)Zn+1(y)𝑑y=0, for j=1,,k.\int_{B_{8R}}{{\mathcal{H}}}_{j}[\Psi,\vec{\mu}_{1}](y,t)Z_{n+1}(y)dy=0,\mbox{ \ \ for \ }j=1,\dots,k. (5.1)
Lemma 5.1.

(5.1) is equivalent to

{μ˙11=M1[Ψ,μ1](t),μ˙1j+n42αjtμ1jn22αjtλ0jμ1,j1=Mj[Ψ,μ1](t), for j=2,,k,\begin{cases}\dot{\mu}_{11}=M_{1}[\Psi,\vec{\mu}_{1}](t),\\ \dot{\mu}_{1j}+\frac{n-4}{2}\frac{\alpha_{j}}{t}\mu_{1j}-\frac{n-2}{2}\frac{\alpha_{j}}{t}\lambda_{0j}\mu_{1,j-1}=M_{j}[\Psi,\vec{\mu}_{1}](t),\mbox{ \ \ for \ }j=2,\dots,k,\end{cases} (5.2)

where MjM_{j} are given in (5.4) and (5.7).

Proof.

For j=1j=1, using (3.17) and (2.27), (5.1) is equivalent to

μ˙11=M1[Ψ,μ1](t),\dot{\mu}_{11}=M_{1}[\Psi,\vec{\mu}_{1}](t), (5.3)

where

M1[Ψ,μ1](t)=μ1n221+μ11B8Rζ1(μ1y)pU(y)p1Zn+1(y)Ψ(μ1y,t)𝑑yB8RZn+12(y)𝑑y.M_{1}[\Psi,\vec{\mu}_{1}](t)=-\frac{\mu_{1}^{\frac{n-2}{2}}}{1+\mu_{11}}\frac{\int_{B_{8R}}\zeta_{1}(\mu_{1}y)pU(y)^{p-1}Z_{n+1}(y)\Psi(\mu_{1}y,t)dy}{\int_{B_{8R}}Z_{n+1}^{2}(y)dy}. (5.4)

For j=2,,kj=2,\dots,k, by (3.17) and (2.25), (5.1) is equivalent to

μ˙0jμ1j(t)+μ0jμ˙1j(t)+n22U(0)B8RpUp1(y)Zn+1(y)𝑑yB8RZn+12(y)𝑑yλ0jn22(μ1jμ0jμ1,j1μ0,j1)\displaystyle\dot{\mu}_{0j}\mu_{1j}(t)+\mu_{0j}\dot{\mu}_{1j}(t)+\frac{n-2}{2}\frac{U(0)\int_{B_{8R}}pU^{p-1}(y)Z_{n+1}(y)dy}{\int_{B_{8R}}Z_{n+1}^{2}(y)dy}\lambda_{0j}^{\frac{n-2}{2}}\left(\frac{\mu_{1j}}{\mu_{0j}}-\frac{\mu_{1,j-1}}{\mu_{0,j-1}}\right)
=μjn22B8Rζj(μjy)pU(y)p1Zn+1(y)Ψ(μjy,t)dyB8RZn+12(y)dy.\displaystyle=\ -\frac{\mu_{j}^{\frac{n-2}{2}}\int_{B_{8R}}\zeta_{j}(\mu_{j}y)pU(y)^{p-1}Z_{n+1}(y)\Psi(\mu_{j}y,t)\,\mathrm{d}y}{\int_{B_{8R}}Z_{n+1}^{2}(y)\,\mathrm{d}y}. (5.5)

Since |Zn+1(y)|y2n|Z_{n+1}(y)|\lesssim\langle y\rangle^{2-n},

B8RpUp1(y)Zn+1(y)𝑑y\displaystyle\int_{B_{8R}}pU^{p-1}(y)Z_{n+1}(y)dy =npUp1(y)Zn+1(y)𝑑y+O(R2),\displaystyle=\int_{\mathbb{R}^{n}}pU^{p-1}(y)Z_{n+1}(y)dy+O\left(R^{-2}\right),
B8RZn+12(y)𝑑y\displaystyle\int_{B_{8R}}Z_{n+1}^{2}(y)dy =nZn+12(y)𝑑y+O(R4n).\displaystyle=\int_{\mathbb{R}^{n}}Z_{n+1}^{2}(y)dy+O\left(R^{4-n}\right).

It follows that

U(0)B8RpUp1(y)Zn+1(y)𝑑yB8RZn+12(y)𝑑y=c+O(R2),-\frac{U(0)\int_{B_{8R}}pU^{p-1}(y)Z_{n+1}(y)dy}{\int_{B_{8R}}Z_{n+1}^{2}(y)dy}=c_{*}+O\left(R^{-2}\right),

where cc_{*} is the positive constant defined in (2.18). Notice the fact that

μ˙0jμ0j=αjt,cλ0jn22μ0j2=μ˙0jμ0j for j=2,,k.\frac{\dot{\mu}_{0j}}{\mu_{0j}}=\frac{\alpha_{j}}{-t},\quad\frac{c_{*}\lambda_{0j}^{\frac{n-2}{2}}}{\mu_{0j}^{2}}=\frac{\dot{\mu}_{0j}}{\mu_{0j}}\text{ \ \ for \ }j=2,\dots,k.

We can simplify (5.5) to

μ˙1j+n42αjtμ1jn22αjtλ0jμ1,j1=Mj[Ψ,μ1](t),\dot{\mu}_{1j}+\frac{n-4}{2}\frac{\alpha_{j}}{t}\mu_{1j}-\frac{n-2}{2}\frac{\alpha_{j}}{t}\lambda_{0j}\mu_{1,j-1}=M_{j}[\Psi,\vec{\mu}_{1}](t), (5.6)

where

Mj[Ψ,μ1](t)=μjn22μ0jB8Rζj(μjy)pU(y)p1Zn+1(y)Ψ(μjy,t)dyB8RZn+12(y)dy+μ˙0j(μ1jμ0jμ1,j1μ0,j1)O(R2).M_{j}[\Psi,\vec{\mu}_{1}](t)=-\frac{\mu_{j}^{\frac{n-2}{2}}}{\mu_{0j}}\frac{\int_{B_{8R}}\zeta_{j}(\mu_{j}y)pU(y)^{p-1}Z_{n+1}(y)\Psi(\mu_{j}y,t)\,\mathrm{d}y}{\int_{B_{8R}}Z_{n+1}^{2}(y)\,\mathrm{d}y}+\dot{\mu}_{0j}\left(\frac{\mu_{1j}}{\mu_{0j}}-\frac{\mu_{1,j-1}}{\mu_{0,j-1}}\right)O(R^{-2}). (5.7)

In order to solve (5.2) by the fixed point theorem, we reformulate (5.2) as the following mapping. Let us define 𝒮[Ψ,μ1]=(𝒮1[Ψ,μ1],,𝒮k[Ψ,μ1])\vec{\mathcal{S}}[\Psi,\vec{\mu}_{1}]=(\mathcal{S}_{1}[\Psi,\vec{\mu}_{1}],\dots,\mathcal{S}_{k}[\Psi,\vec{\mu}_{1}]) where and

𝒮1[Ψ,μ1](t)\displaystyle\mathcal{S}_{1}[\Psi,\vec{\mu}_{1}](t) =tM1[Ψ,μ1](s)ds,\displaystyle=\int_{-\infty}^{t}M_{1}[\Psi,\vec{\mu}_{1}](s)\,\mathrm{d}s, (5.8)
𝒮j[Ψ,μ1](t)\displaystyle\mathcal{S}_{j}[\Psi,\vec{\mu}_{1}](t) =(t)n42αjt0t(s)n42αj(n22αjsλ0j(s)𝒮j1[Ψ,μ1](s)+Mj[Ψ,μ1](s))ds,\displaystyle=(-t)^{-\frac{n-4}{2}\alpha_{j}}\int_{t_{0}}^{t}(-s)^{\frac{n-4}{2}\alpha_{j}}\left(\frac{n-2}{2}\frac{\alpha_{j}}{s}\lambda_{0j}(s)\mathcal{S}_{j-1}[\Psi,\vec{\mu}_{1}](s)+M_{j}[\Psi,\vec{\mu}_{1}](s)\right)\,\mathrm{d}s,

for j=2,,kj=2,\dots,k.

For a constant bb and a function g(t)g(t), we define

gb#:=suptt0|(t)bg(t)|.\displaystyle\|g\|_{b}^{\#}:=\sup\limits_{t\leq t_{0}}|(-t)^{b}g(t)|. (5.9)

We introduce the norm about μ1\vec{\mu}_{1}:

μ1σ:=i=1k(μ˙1i1+αi+σ#+μ1iαi+σ#),\|\vec{\mu}_{1}\|_{\sigma}:=\sum\limits_{i=1}^{k}\left(\|\dot{\mu}_{1i}\|_{1+\alpha_{i}+\sigma}^{\#}+\|\mu_{1i}\|_{\alpha_{i}+\sigma}^{\#}\right), (5.10)

where σ>0\sigma>0.

Lemma 5.2.

Suppose Ψ\Psi and μ1\vec{\mu}_{1} satisfy Ψα,σout,<\|\Psi\|_{\alpha,\sigma}^{out,*}<\infty, μ1σ1\|\vec{\mu}_{1}\|_{\sigma}\leq 1, 0<σ<10<\sigma<1 respectively, when t0t_{0} is very negative, there exists C𝒮C^{\mathcal{S}} such that

𝒮[Ψ,μ1]σC𝒮(Ψα,σout,+O(R2)).\|\vec{\mathcal{S}}[\Psi,\vec{\mu}_{1}]\|_{\sigma}\leq C^{\mathcal{S}}(\|\Psi\|_{\alpha,\sigma}^{out,*}+O(R^{-2})). (5.11)
Proof.

Note that the support of ζ1\zeta_{1} is contained in {R1μ01|x|2Rμ01}\{R^{-1}\mu_{01}\leq|x|\leq 2R\mu_{01}\}. By Lemma A.5 and A.6, we have |Ψ|(w11+w12+w21)Ψα,σout,|t|1σΨα,σout,|\Psi|\lesssim(w_{11}^{*}+w_{12}^{*}+w_{21}^{*})\|\Psi\|_{\alpha,\sigma}^{out,*}\lesssim|t|^{-1-\sigma}\|\Psi\|_{\alpha,\sigma}^{out,*}. Then using (5.4), we have

|M1[Ψ,μ1]||t|1σΨα,σout,.\displaystyle|M_{1}[\Psi,\vec{\mu}_{1}]|\lesssim|t|^{-1-\sigma}\|\Psi\|_{\alpha,\sigma}^{out,*}. (5.12)

By (5.8), we have

𝒮˙1[Ψ,μ1]1+σ#+𝒮1[Ψ,μ1]σ#Ψα,σout,.\displaystyle\|\dot{\mathcal{S}}_{1}[\Psi,\vec{\mu}_{1}]\|_{1+\sigma}^{\#}+\|\mathcal{S}_{1}[\Psi,\vec{\mu}_{1}]\|_{\sigma}^{\#}\lesssim\|\Psi\|_{\alpha,\sigma}^{out,*}. (5.13)

Similarly, for j=2,,kj=2,\dots,k, the support of ζj\zeta_{j} is contained in {R1μ0j|x|2Rμ0j}\{R^{-1}\mu_{0j}\leq|x|\leq 2R\mu_{0j}\}. By Lemma A.5 and A.6, we have

|Ψ|(w1j+w1,j+1+w2j+w2,j1)Ψα,σout,|t|γjΨα,σout,,|\Psi|\lesssim(w_{1j}^{*}+w_{1,j+1}^{*}+w_{2j}^{*}+w_{2,j-1}^{*})\|\Psi\|_{\alpha,\sigma}^{out,*}\lesssim|t|^{\gamma_{j}}\|\Psi\|_{\alpha,\sigma}^{out,*},

where w1,j+1w_{1,j+1}^{*}, w2jw_{2j}^{*} are vacuum if j=kj=k.

Then using (5.7), we have

|Mj[Ψ,μ1]||t|σμ0j1λ0jn22Ψα,σout,+|t|1αjσO(R2)|t|αj1σ(Ψα,σout,+O(R2)),|M_{j}[\Psi,\vec{\mu}_{1}]|\lesssim|t|^{-\sigma}\mu_{0j}^{-1}\lambda_{0j}^{\frac{n-2}{2}}\|\Psi\|_{\alpha,\sigma}^{out,*}+|t|^{-1-\alpha_{j}-\sigma}O(R^{-2})\lesssim|t|^{-\alpha_{j}-1-\sigma}(\|\Psi\|_{\alpha,\sigma}^{out,*}+O(R^{-2})), (5.14)

where we have used that μ0jμ˙0j=cλ0jn22\mu_{0j}\dot{\mu}_{0j}=c_{*}\lambda_{0j}^{\frac{n-2}{2}}.

We will prove

𝒮˙j[Ψ,μ1]1+αj+σ#+𝒮j[Ψ,μ1]αj+σ#Ψα,σout,+O(R2),\|\dot{\mathcal{S}}_{j}[\Psi,\vec{\mu}_{1}]\|_{1+\alpha_{j}+\sigma}^{\#}+\|\mathcal{S}_{j}[\Psi,\vec{\mu}_{1}]\|_{\alpha_{j}+\sigma}^{\#}\lesssim\|\Psi\|_{\alpha,\sigma}^{out,*}+O(R^{-2}), (5.15)

by induction. The case j=1j=1 has been proved.

Suppose we have proved 𝒮˙j1[Ψ,μ1]1+αj1+σ#+𝒮j1[Ψ,μ1]αj1+σ#Ψα,σout,+O(R2)\|\dot{\mathcal{S}}_{j-1}[\Psi,\vec{\mu}_{1}]\|_{1+\alpha_{j-1}+\sigma}^{\#}+\|\mathcal{S}_{j-1}[\Psi,\vec{\mu}_{1}]\|_{\alpha_{j-1}+\sigma}^{\#}\lesssim\|\Psi\|_{\alpha,\sigma}^{out,*}+O(R^{-2}) by induction. Consequently |s1λ0j(s)𝒮j1(s)|(s)αj1σ(Ψα,σout,+O(R2))\left|s^{-1}\lambda_{0j}(s)\mathcal{S}_{j-1}(s)\right|\lesssim(-s)^{-\alpha_{j}-1-\sigma}\left(\|\Psi\|_{\alpha,\sigma}^{out,*}+O(R^{-2})\right). Now using (5.8) and (5.14),

|𝒮j[Ψ,μ1]|\displaystyle|\mathcal{S}_{j}[\Psi,\vec{\mu}_{1}]|\lesssim (t)n42αjt0t(s)n42αj(s)αj1σ𝑑s(Ψα,σout,+O(R2))\displaystyle(-t)^{-\frac{n-4}{2}\alpha_{j}}\int_{t_{0}}^{t}(-s)^{\frac{n-4}{2}\alpha_{j}}(-s)^{-\alpha_{j}-1-\sigma}ds(\|\Psi\|_{\alpha,\sigma}^{out,*}+O(R^{-2})) (5.16)
\displaystyle\lesssim (t)αjσ(Ψα,σout,+O(R2)),\displaystyle(-t)^{-\alpha_{j}-\sigma}(\|\Psi\|_{\alpha,\sigma}^{out,*}+O(R^{-2})),

where we have used σ<1=min2jk{n62αj}\sigma<1=\min_{2\leq j\leq k}\{\frac{n-6}{2}\alpha_{j}\}. Similarly, we can get

|𝒮˙j[Ψ,μ1]|(t)1αjσ(Ψα,σout,+O(R2)).|\dot{\mathcal{S}}_{j}[\Psi,\vec{\mu}_{1}]|\lesssim(-t)^{-1-\alpha_{j}-\sigma}(\|\Psi\|_{\alpha,\sigma}^{out,*}+O(R^{-2})).

This completes the induction. ∎

6. The Schauder fixed point argument

In this section, we will solve the system (3.15)-(3.16) by fixed point argument. We need to set up appropriate topology and operators. Recall (4.4), (4.3) and (4.8) in the previous section. When ν(τ)=(t)γjμ0jn22\nu(\tau)=(-t)^{\gamma_{j}}\mu_{0j}^{\frac{n-2}{2}}, we write

yϕν(τ),ain,+ϕν(τ),ain,=ϕj,a,σin,,hν(τ),ain=hj,a,σin,𝒯ν(τ)in=𝒯jin\displaystyle\|\langle y\rangle\nabla\phi\|_{\nu(\tau),a}^{in,*}+\|\phi\|_{\nu(\tau),a}^{in,*}=\|\phi\|_{j,a,\sigma}^{in,*},\quad\|h\|_{\nu(\tau),a}^{in}=\|h\|_{j,a,\sigma}^{in},\quad\mathcal{T}_{\nu(\tau)}^{in}=\mathcal{T}_{j}^{in} (6.1)

for short, where 0<a<10<a<1, γ1=1σ\gamma_{1}=-1-\sigma and γj=n22αj1σ\gamma_{j}=\frac{n-2}{2}\alpha_{j-1}-\sigma, j=2,,kj=2,\dots,k.

Now we state precisely the topology we are going to use. Suppose σ\sigma is small enough and 0<α<a<10<\alpha<a<1. Define

ϕa,σin,:=j=1kϕjj,a,σin,.\displaystyle\|\vec{\phi}\|_{a,\sigma}^{in,*}:=\sum_{j=1}^{k}\|\phi_{j}\|_{j,a,\sigma}^{in,*}. (6.2)

We will cope with ϕ\vec{\phi}, Ψ\Psi, μ1\vec{\mu}_{1} in the topology (6.2), (4.29) and (5.10) respectively.

The following lemma justifies why we choose ν(τ)=(t)γjμ0jn22\nu(\tau)=(-t)^{\gamma_{j}}\mu_{0j}^{\frac{n-2}{2}}.

Lemma 6.1.

For any R>0R>0 large, there exists t0t_{0} negative enough such that for t<t0t<t_{0} one has

|j(x,t)|\displaystyle|\mathcal{H}_{j}(x,t)| Cμ0jn22(t)γjyj4(μ1σ+Ψα,aout,),j=1,,k.\displaystyle\leq C^{\mathcal{H}}\mu_{0j}^{\frac{n-2}{2}}(-t)^{\gamma_{j}}\langle y_{j}\rangle^{-4}(\|\vec{\mu}_{1}\|_{\sigma}+\|\Psi\|_{\alpha,a}^{out,*}),\quad j=1,\cdots,k. (6.3)
Proof.

By (5.10), we have

|D1[μ1]||μ˙11Zn+1(y1)|(t)γ1y12nμ1σ,|Dj[μ1]|λj(t)n22(t)σ(|Zn+1(yj)|+yj4)μ1σμ0jn22(t)γjyj4μ1σ,\displaystyle\begin{split}|D_{1}[\vec{\mu}_{1}]|\lesssim&|\dot{\mu}_{11}Z_{n+1}(y_{1})|\lesssim(-t)^{\gamma_{1}}\langle y_{1}\rangle^{2-n}\|\vec{\mu}_{1}\|_{\sigma},\\ |D_{j}[\vec{\mu}_{1}]|\lesssim&\lambda_{j}(t)^{\frac{n-2}{2}}(-t)^{-\sigma}(|Z_{n+1}(y_{j})|+\langle y_{j}\rangle^{-4})\|\vec{\mu}_{1}\|_{\sigma}\lesssim\mu_{0j}^{\frac{n-2}{2}}(-t)^{\gamma_{j}}\langle y_{j}\rangle^{-4}\|\vec{\mu}_{1}\|_{\sigma},\end{split} (6.4)

for j=2,,kj=2,\dots,k. By the same estimate in Lemma 5.2, we have

|ζjU(yj)p1μjn22Ψ|μ0jn22(t)γjyj4Ψα,aout,,j=1,,k.\displaystyle|\zeta_{j}U(y_{j})^{p-1}\mu_{j}^{\frac{n-2}{2}}\Psi|\lesssim\mu_{0j}^{\frac{n-2}{2}}(-t)^{\gamma_{j}}\langle y_{j}\rangle^{-4}\|\Psi\|_{\alpha,a}^{out,*},\quad j=1,\dots,k. (6.5)

We reformulate the inner-outer gluing system and the orthogonal equation into the mapping T\vec{T}:

(ϕ,Ψ,μ1)=T[ϕ,Ψ,μ1],(\vec{\phi},\Psi,\vec{\mu}_{1})=\vec{T}[\vec{\phi},\Psi,\vec{\mu}_{1}], (6.6)

where T=(T1,T2,T3)\vec{T}=(\vec{T}^{1},T^{2},\vec{T}^{3}), T1=(T11,,Tk1)\vec{T}^{1}=(\vec{T}^{1}_{1},\dots,\vec{T}^{1}_{k}), T3=(T13,,Tk3)\vec{T}^{3}=(\vec{T}^{3}_{1},\dots,\vec{T}^{3}_{k}), with the following expressions,

Tj1[Ψ,μ1]=\displaystyle\vec{T}^{1}_{j}[\Psi,\vec{\mu}_{1}]=\ 𝒯jin[j[Ψ,μ1]cj[Ψ,μ1]Zn+1],j=1,,k,\displaystyle{\mathcal{T}}^{in}_{j}[{{\mathcal{H}}}_{j}[\Psi,\vec{\mu}_{1}]-c_{j}\left[\Psi,\vec{\mu}_{1}\right]Z_{n+1}],\quad j=1,\ldots,k, (6.7)
T2[ϕ,Ψ,μ1]=\displaystyle T^{2}[\vec{\phi},\Psi,\vec{\mu}_{1}]=\ 𝒯out[𝒢[ϕ,Ψ,μ1]],\displaystyle{\mathcal{T}}^{out}[{\mathcal{G}}[\vec{\phi},\Psi,\vec{\mu}_{1}]], (6.8)
Tj3[Ψ,μ1]=\displaystyle\vec{T}^{3}_{j}[\Psi,\vec{\mu}_{1}]=\ 𝒮j[Ψ,μ1],j=1,,k.\displaystyle\mathcal{S}_{j}[\Psi,\vec{\mu}_{1}],\quad j=1,\ldots,k. (6.9)

where cj[Ψ,μ1](t)=Zn+1L2(B8R)2B8Rj[Ψ,μ1](y,t)Zn+1(y)dyc_{j}\left[\Psi,\vec{\mu}_{1}\right](t)=\|Z_{n+1}\|_{L^{2}(B_{8R})}^{-2}\int_{B_{8R}}{{\mathcal{H}}}_{j}\left[\Psi,\vec{\mu}_{1}\right](y,t)Z_{n+1}(y)\,\mathrm{d}y. Here 𝒯jin{\mathcal{T}}^{in}_{j} in (6.7) is obtained from (4.8). It is well-defined because jcjZn+1\mathcal{H}_{j}-c_{j}Z_{n+1} satisfies (4.7). Denote

out={Ψ|Ψα,σout,R2ρ},in={ϕ|ϕa,σin,1},mu={μ1|μ1σRρ},\mathcal{B}_{out}=\{\Psi\ |\ \|\Psi\|^{out,*}_{\alpha,\sigma}\leq R^{-2\rho}\},\quad\mathcal{B}_{in}=\{\vec{\phi}\ |\ \|\vec{\phi}\|_{a,\sigma}^{in,*}\leq 1\},\quad\mathcal{B}_{mu}=\{\vec{\mu}_{1}\ |\ \|\vec{\mu}_{1}\|_{\sigma}\leq R^{-\rho}\}, (6.10)

where 0<2ρaα20<2\rho\leq\frac{a-\alpha}{2} is a small constant.

Proof of Theorem 1.4:.

\bullet Existence part. Fix 0<α<a<10<\alpha<a<1. We choose σ,ϵ>0\sigma,\epsilon>0 small enough such that Proposition 4.7 holds. Let =in×out×mu\mathcal{B}=\mathcal{B}_{in}\times\mathcal{B}_{out}\times\mathcal{B}_{mu}, then we claim that T\vec{T} maps \mathcal{B} to \mathcal{B} provided taking RR large enough and t0t_{0} negative enough.

First, for any fixed Ψout\Psi\in\mathcal{B}_{out}, μ1mu\vec{\mu}_{1}\in\mathcal{B}_{mu}. Applying (4.9) with h=jh=\mathcal{H}_{j} and ν(τ)=(t)γjμ0jn22\nu(\tau)=(-t)^{\gamma_{j}}\mu_{0j}^{\frac{n-2}{2}}, Lemma 6.1 implies that

T1[Ψ,μ1]a,σin,j=1kCj,ainC(Rρ+R2ρ)1\displaystyle\|\vec{T}^{1}[\Psi,\vec{\mu}_{1}]\|_{a,\sigma}^{in,*}\leq\sum\limits_{j=1}^{k}C_{j,a}^{in}C^{\mathcal{H}}(R^{-\rho}+R^{-2\rho})\leq 1 (6.11)

provided taking RR large enough.

Second, for any fixed ϕin,\vec{\phi}\in\mathcal{B}_{in}, μ1mu\vec{\mu}_{1}\in\mathcal{B}_{mu}, by Proposition 4.7, there exists t0=t0(R)t_{0}=t_{0}(R) negative enough such that

T2[ϕ,Ψ,μ1]α,σout,CoutRαa(3+2eρ)R2ρ.\|T^{2}[\vec{\phi},\Psi,\vec{\mu}_{1}]\|^{out,*}_{\alpha,\sigma}\leq C^{out}R^{\alpha-a}(3+2e^{-\rho})\leq R^{-2\rho}.

Third, for any fixed ϕin\vec{\phi}\in\mathcal{B}_{in}, Ψout\Psi\in\mathcal{B}_{out}. It follows from Lemma 5.2 that

T3[Ψ,μ1]σC𝒮(R2ρ+O(R2))Rρ.\displaystyle\|\vec{T}^{3}[\Psi,\vec{\mu}_{1}]\|_{\sigma}\leq C^{\mathcal{S}}(R^{-2\rho}+O(R^{-2}))\leq R^{-\rho}. (6.12)

Therefore T:\vec{T}:\mathcal{B}\to\mathcal{B}.

Next we need to show T\vec{T} is a compact mapping. Thus for any sequence (ϕm,Ψm,μ1m)(\vec{\phi}^{m},\Psi^{m},\vec{\mu}_{1}^{m})\in\mathcal{B}, where ϕm=(ϕ1m,,ϕkm)\vec{\phi}^{m}=(\phi^{m}_{1},\dots,\phi^{m}_{k}), μ1m=(μ1m,,μkm)\vec{\mu}_{1}^{m}=(\mu^{m}_{1},\dots,\mu^{m}_{k}), we have to show T[ϕm,Ψm,μ1m]\vec{T}[\vec{\phi}^{m},\Psi^{m},\vec{\mu}_{1}^{m}] has a convergent subsequence. Let us consider first the sequence ϕ~jm=𝒯jin[j[Ψm,μ1m]cj[Ψm,μ1m]Zn+1]\tilde{\phi}_{j}^{m}={\mathcal{T}}^{in}_{j}[{{\mathcal{H}}}_{j}[\Psi^{m},\vec{\mu}_{1}^{m}]-c_{j}\left[\Psi^{m},\vec{\mu}_{1}^{m}\right]Z_{n+1}]. It satisfies

τϕ~jm=Δyϕ~jm+hjm(y,τ),hjm=j[Ψm,μ1m]cj[Ψm,μ1m]Zn+1.\partial_{\tau}\tilde{\phi}_{j}^{m}=\Delta_{y}\tilde{\phi}_{j}^{m}+h_{j}^{m}(y,\tau),\quad h_{j}^{m}={{\mathcal{H}}}_{j}[\Psi^{m},\vec{\mu}_{1}^{m}]-c_{j}\left[\Psi^{m},\vec{\mu}_{1}^{m}\right]Z_{n+1}.

Using Lemma 6.1 and interior estimate of parabolic equations, we get that in any compact set KB8R×(,t0)K\subset B_{8R}\times(-\infty,t_{0}), we have ϕ~jmC1+γ,1+γ2\tilde{\phi}_{j}^{m}\in C^{1+\gamma,\frac{1+\gamma}{2}} in KK for each fixed γ(0,1)\gamma\in(0,1). Thus ϕ~jm\tilde{\phi}_{j}^{m} and yϕ~jm\nabla_{y}\tilde{\phi}_{j}^{m} are equi-continuous in KK. By Arzelà-Ascoli theorem, going to a subsequence if necessary, ϕ~jm\tilde{\phi}_{j}^{m} will converge uniformly in compact sets of B8R×(,t0)B_{8R}\times(-\infty,t_{0}). Since ϕ~jmin\tilde{\phi}_{j}^{m}\in\mathcal{B}_{in}, then the limit will also belong to in\mathcal{B}_{in}.

Second, consider Ψ~m=𝒯out[𝒢[ϕm,Ψm,μ1m]]\tilde{\Psi}^{m}=\mathcal{T}^{out}[{\mathcal{G}}[\vec{\phi}^{m},\Psi^{m},\vec{\mu}_{1}^{m}]]. Since 𝒢[ϕm,Ψm,μ1m]{\mathcal{G}}[\vec{\phi}^{m},\Psi^{m},\vec{\mu}_{1}^{m}] are uniformly bounded, Ψ~m\tilde{\Psi}^{m} have a uniform C1+γ,1+γ2C^{1+\gamma,\frac{1+\gamma}{2}} bound in compact sets of n×(,t0)\mathbb{R}^{n}\times(-\infty,t_{0}). By Arzelà-Ascoli theorem, Ψ~m\tilde{\Psi}^{m} (up to a subsequence) converges uniformly to a function Ψ~out\tilde{\Psi}\in\mathcal{B}_{out}.

Third, consider 𝒮[Ψm,μ1m]\mathcal{S}[\Psi^{m},\vec{\mu}_{1}^{m}]. Note that (5.4) and (5.7) imply M1[Ψm,μ1m]M_{1}[\Psi^{m},\vec{\mu}_{1}^{m}] and Mj[Ψm,μ1m]M_{j}[\Psi^{m},\vec{\mu}_{1}^{m}] are C1(,t0)C^{1}(-\infty,t_{0}). Thus 𝒮[Ψm,μ1m]C2(,t0)\mathcal{S}[\Psi^{m},\vec{\mu}_{1}^{m}]\in C^{2}(-\infty,t_{0}). Consequently 𝒮[Ψm,μ1m]\mathcal{S}[\Psi^{m},\vec{\mu}_{1}^{m}] has a convergent subsequence in mu\mathcal{B}_{mu}.

By Schauder’s fixed point theorem, T:\vec{T}:\mathcal{B}\to\mathcal{B} has a fixed point (ϕ,Ψ,μ1)(\vec{\phi},\Psi,\vec{\mu}_{1}). Then (6.9) implies cj[Ψ,μ1]=0c_{j}[\Psi,\vec{\mu}_{1}]=0 and consequently (ϕ,Ψ,μ1)(\vec{\phi},\Psi,\vec{\mu}_{1}) makes (3.15) and (3.16) hold.

We have constructed a bubble tower solution for (1.1). Recall that u=U¯+φ0+j=1kφjηj+Ψu=\bar{U}+\varphi_{0}+\sum_{j=1}^{k}\varphi_{j}\eta_{j}+\Psi. One can see (1.20), (2.6) and (3.10) for their respective definitions. We shall prove that U¯\bar{U} dominates in the sum in the sense of LL^{\infty} and H1H^{1} when t0t_{0} is negative enough.

\bullet Convergence in L(n)L^{\infty}(\mathbb{R}^{n}) and positiveness. It is easy to see the first approximation and inner solutions are smaller than U¯\bar{U}. Namely, by Lemma A.2, we know |φ0||t|ϵU¯|\varphi_{0}|\lesssim|t|^{-\epsilon}\bar{U}. For j=1,,kj=1,\dots,k, by (A.12) and (6.10),

|μjn22ϕj(xμj,t)ηj|\displaystyle\left|\mu_{j}^{-\frac{n-2}{2}}\phi_{j}(\frac{x}{\mu_{j}},t)\eta_{j}\right| |t|γjRn+1ayjn1𝟏{|x|4Rμ0j}\displaystyle\lesssim|t|^{\gamma_{j}}R^{n+1-a}\langle y_{j}\rangle^{-n-1}\mathbf{1}_{\{|x|\leq 4R\mu_{0j}\}}
μjn22|t|γjRn+1ayj3𝟏{|x|4Rμ0j}Uj(x,t)|t|σUj(x,t).\displaystyle\approx\mu_{j}^{\frac{n-2}{2}}|t|^{\gamma_{j}}R^{n+1-a}\langle y_{j}\rangle^{-3}\mathbf{1}_{\{|x|\leq 4R\mu_{0j}\}}U_{j}(x,t)\lesssim|t|^{-\sigma}U_{j}(x,t).

The solution Ψ\Psi in the outer problem is more involved to estimate. First, by (6.10), we have

|Ψ|j=1kw1j+j=1k1w2j+w3.|\Psi|\lesssim\sum\limits_{j=1}^{k}w_{1j}^{*}+\sum\limits_{j=1}^{k-1}w_{2j}^{*}+w_{3}^{*}.

We will estimate it in several regions. We will use Lemma A.5 and A.6 repeatedly in the following argument.

In {|x|μ¯0k}\{|x|\leq\bar{\mu}_{0k}\}, we have

|Ψ|w1k+w2,k1|t|γk|t|γkμkn22ykn2Uk(x,t)|t|σUk(x,t).|\Psi|\lesssim w_{1k}^{*}+w_{2,k-1}^{*}\lesssim|t|^{\gamma_{k}}\approx|t|^{\gamma_{k}}\mu_{k}^{\frac{n-2}{2}}\langle y_{k}\rangle^{n-2}U_{k}(x,t)\lesssim|t|^{-\sigma}U_{k}(x,t).

In {μ¯0,i+1|x|μ¯0i}\{\bar{\mu}_{0,i+1}\leq|x|\leq\bar{\mu}_{0i}\}, i=2,k1i=2,\dots k-1, we have

|Ψ|\displaystyle|\Psi| w1i+w1,i+1+w2i+w2,i1\displaystyle\lesssim w_{1i}^{*}+w_{1,i+1}^{*}+w_{2i}^{*}+w_{2,i-1}^{*}
(w1i+w1,i+1+w2i+w2,i1)μin22yin2Ui(x,t)|t|σUi(x,t).\displaystyle\approx(w_{1i}^{*}+w_{1,i+1}^{*}+w_{2i}^{*}+w_{2,i-1}^{*})\mu_{i}^{\frac{n-2}{2}}\langle y_{i}\rangle^{n-2}U_{i}(x,t)\lesssim|t|^{-\sigma}U_{i}(x,t).

This is because

w1iμin22yin2\displaystyle w_{1i}^{*}\mu_{i}^{\frac{n-2}{2}}\langle y_{i}\rangle^{n-2} |t|γiμin22(μ¯0iμi)n2|t|σ,\displaystyle\lesssim|t|^{\gamma_{i}}\mu_{i}^{\frac{n-2}{2}}(\frac{\bar{\mu}_{0i}}{\mu_{i}})^{n-2}\lesssim|t|^{-\sigma},
w1,i+1μin22yin2\displaystyle w_{1,i+1}^{*}\mu_{i}^{\frac{n-2}{2}}\langle y_{i}\rangle^{n-2} |t|γi+1μ¯i+1n2|x|2nμin22yin2|t|γi+1μ¯i+1n2μin22μ¯0,i+12n|t|σ,\displaystyle\lesssim|t|^{\gamma_{i+1}}\bar{\mu}_{i+1}^{n-2}|x|^{2-n}\mu_{i}^{\frac{n-2}{2}}\langle y_{i}\rangle^{n-2}\lesssim|t|^{\gamma_{i+1}}\bar{\mu}_{i+1}^{n-2}\mu_{i}^{\frac{n-2}{2}}\bar{\mu}_{0,i+1}^{2-n}\lesssim|t|^{-\sigma},
w2iμin22yin2\displaystyle w_{2i}^{*}\mu_{i}^{\frac{n-2}{2}}\langle y_{i}\rangle^{n-2} |t|2σμi+1n22μin22|x|4nyin2\displaystyle\approx|t|^{-2\sigma}\mu_{i+1}^{\frac{n}{2}-2}\mu_{i}^{\frac{n}{2}-2}|x|^{4-n}\langle y_{i}\rangle^{n-2}
|t|2σμi+1n22μin22(μ¯0,i+14n+μ¯0i2μi2n)|t|2σ,\displaystyle\lesssim|t|^{-2\sigma}\mu_{i+1}^{\frac{n}{2}-2}\mu_{i}^{\frac{n}{2}-2}\left(\bar{\mu}_{0,i+1}^{4-n}+\bar{\mu}_{0i}^{2}\mu_{i}^{2-n}\right)\lesssim|t|^{-2\sigma},
w2,i1μin22yin2\displaystyle w_{2,i-1}^{*}\mu_{i}^{\frac{n-2}{2}}\langle y_{i}\rangle^{n-2} |t|2σμi11n2μin22(μ¯0iμi)n2|t|2σ.\displaystyle\lesssim|t|^{-2\sigma}\mu_{i-1}^{1-\frac{n}{2}}\mu_{i}^{\frac{n-2}{2}}(\frac{\bar{\mu}_{0i}}{\mu_{i}})^{n-2}\lesssim|t|^{-2\sigma}.

In {μ¯02|x|μ¯01}\{\bar{\mu}_{02}\leq|x|\leq\bar{\mu}_{01}\}, similarly, we have

|Ψ|(w11+w12+w21)(1+|x|)n2U1(x,t)|t|σU1(x,t),|\Psi|\lesssim(w_{11}^{*}+w_{12}^{*}+w_{21}^{*})(1+|x|)^{n-2}U_{1}(x,t)\lesssim|t|^{-\sigma}U_{1}(x,t),

since for δ(n2α)1\delta\leq(n-2-\alpha)^{-1},

w11(1+|x|)n2\displaystyle w_{11}^{*}(1+|x|)^{n-2} |t|γ1xα(1+|x|)n2|t|γ1|t|δ(n2α)=|t|σ,\displaystyle\lesssim|t|^{\gamma_{1}}\langle x\rangle^{-\alpha}(1+|x|)^{n-2}\lesssim|t|^{\gamma_{1}}|t|^{\delta(n-2-\alpha)}=|t|^{-\sigma},
w12(1+|x|)n2\displaystyle w_{12}^{*}(1+|x|)^{n-2} |t|γ2μ¯2n2|x|2n(1+|x|)n2|t|σ,\displaystyle\lesssim|t|^{\gamma_{2}}\bar{\mu}_{2}^{n-2}|x|^{2-n}(1+|x|)^{n-2}\lesssim|t|^{-\sigma},
w21(1+|x|)n2\displaystyle w_{21}^{*}(1+|x|)^{n-2} |t|2σμ¯2n4|x|2nmin{1,|x|2}(1+|x|)n2|t|2σ.\displaystyle\lesssim|t|^{-2\sigma}\bar{\mu}_{2}^{n-4}|x|^{2-n}\min\{1,|x|^{2}\}(1+|x|)^{n-2}\lesssim|t|^{-2\sigma}.

In {μ¯01|x||t|12}\{\bar{\mu}_{01}\leq|x|\leq|t|^{\frac{1}{2}}\},

|Ψ|w11+w3|t|σ2U1(x,t).|\Psi|\lesssim w_{11}^{*}+w_{3}^{*}\lesssim|t|^{-\frac{\sigma}{2}}U_{1}(x,t).

In {|x||t|12}\{|x|\geq|t|^{\frac{1}{2}}\},

|Ψ|w3|t|σ2U1(x,t).|\Psi|\lesssim w_{3}^{*}\lesssim|t|^{-\frac{\sigma}{2}}U_{1}(x,t).

Therefore |Ψ||t|σ2U¯|\Psi|\lesssim|t|^{-\frac{\sigma}{2}}\bar{U}.

Combining the above analysis, we have u=U¯(1+O(|t|ϵ))>0u=\bar{U}(1+O(|t|^{-\epsilon}))>0. By the parabolic regularity theory, we improve the regularity of uu to be smooth.

\bullet Convergence in H1(n)H^{1}(\mathbb{R}^{n}). The solution we construct is u=U¯+φ0+φu=\bar{U}+\varphi_{0}+\varphi, where φ0\varphi_{0} is from (2.6) and φ\varphi is from (3.10). Set φ¯=φ0+φ\bar{\varphi}=\varphi_{0}+\varphi. We have already proved |φ¯||t|ϵU¯|\bar{\varphi}|\lesssim|t|^{-\epsilon}\bar{U}. Formally, we can expect |xφ¯||t|ϵ|xU¯||\nabla_{x}\bar{\varphi}|\lesssim|t|^{-\epsilon}|\nabla_{x}\bar{U}|. Note that φ¯\bar{\varphi} satisfies

tφ¯=Δxφ¯+f(x,t){\partial}_{t}\bar{\varphi}=\Delta_{x}\bar{\varphi}+f(x,t) (6.13)

where f(x,t)=(U¯+φ¯)pj=1kUjpj=1ktUjf(x,t)=\left(\bar{U}+\bar{\varphi}\right)^{p}-\sum_{j=1}^{k}U_{j}^{p}-\sum_{j=1}^{k}\partial_{t}U_{j}. It follows that

|f(x,t)|\displaystyle|f(x,t)|\lesssim {|t|ϵμ0kn+22y0kn2+μ0kn2|μ˙0k|y0k2n if |x|μ¯0k,|t|ϵμ0jn+22y0jn2+μ0jn2|μ˙0j|y0j2n if μ¯0,j+1|x|μ¯0j,j=2,,k1,|t|ϵxn2+|t|1σx2n if |x|μ¯02,\displaystyle\begin{cases}|t|^{-\epsilon}\mu_{0k}^{-\frac{n+2}{2}}\langle y_{0k}\rangle^{-n-2}+\mu_{0k}^{-\frac{n}{2}}|\dot{\mu}_{0k}|\langle y_{0k}\rangle^{2-n}&\mbox{ \ \ if \ }|x|\leq\bar{\mu}_{0k},\\ |t|^{-\epsilon}\mu_{0j}^{-\frac{n+2}{2}}\langle y_{0j}\rangle^{-n-2}+\mu_{0j}^{-\frac{n}{2}}|\dot{\mu}_{0j}|\langle y_{0j}\rangle^{2-n}&\mbox{ \ \ if \ }\bar{\mu}_{0,j+1}\leq|x|\leq\bar{\mu}_{0j},\quad j=2,\dots,k-1,\\ |t|^{-\epsilon}\langle x\rangle^{-n-2}+|t|^{-1-\sigma}\langle x\rangle^{2-n}&\mbox{ \ \ if \ }|x|\geq\bar{\mu}_{02},\end{cases}
\displaystyle\approx {|t|ϵμ0kn+22 if |x|μ0k,|t|ϵμ0jn+22 if μ¯0,j+1|x|μ0j,j=2,,k1,|t|ϵμ0jn+22|x|n2 if μ0j|x|μ¯0j,j=2,,k,|t|ϵ if μ¯02|x|1,|t|ϵ|x|n2+|t|1σ|x|2n if 1|x|.\displaystyle\begin{cases}|t|^{-\epsilon}\mu_{0k}^{-\frac{n+2}{2}}&\mbox{ \ \ if \ }|x|\leq\mu_{0k},\\ |t|^{-\epsilon}\mu_{0j}^{-\frac{n+2}{2}}&\mbox{ \ \ if \ }\bar{\mu}_{0,j+1}\leq|x|\leq\mu_{0j},\quad j=2,\dots,k-1,\\ |t|^{-\epsilon}\mu_{0j}^{\frac{n+2}{2}}|x|^{-n-2}&\mbox{ \ \ if \ }\mu_{0j}\leq|x|\leq\bar{\mu}_{0j},\quad j=2,\dots,k,\\ |t|^{-\epsilon}&\mbox{ \ \ if \ }\bar{\mu}_{02}\leq|x|\leq 1,\\ |t|^{-\epsilon}|x|^{-n-2}+|t|^{-1-\sigma}|x|^{2-n}&\mbox{ \ \ if \ }1\leq|x|.\end{cases}

since |t|ϵμ0jn+22y0jn2μ0jn2|μ˙0j|y0j2n|t|^{-\epsilon}\mu_{0j}^{-\frac{n+2}{2}}\langle y_{0j}\rangle^{-n-2}\gtrsim\mu_{0j}^{-\frac{n}{2}}|\dot{\mu}_{0j}|\langle y_{0j}\rangle^{2-n} in {μ¯0,j+1|x|μ¯0j}\{\bar{\mu}_{0,j+1}\leq|x|\leq\bar{\mu}_{0j}\}, j=2,,kj=2,\dots,k when ϵ\epsilon is small.

By the similar argument about uniqueness in Corollary 4.3, we know

φ¯=𝒯out[f].\bar{\varphi}={\mathcal{T}}^{out}[f].

Then

|xφ¯|𝒯d[|f|],\displaystyle|\nabla_{x}\bar{\varphi}|\lesssim{\mathcal{T}}^{d}[|f|], (6.14)

where

𝒯d[g]:=tds(ts)n2+1ne|xy|24(ts)|xy|g(y,s)dyds.{\mathcal{T}}^{d}[g]:=\int_{-\infty}^{t}\frac{ds}{(t-s)^{\frac{n}{2}+1}}\int_{\mathbb{R}^{n}}e^{-\frac{|x-y|^{2}}{4(t-s)}}|x-y|g(y,s)\,\mathrm{d}y\,\mathrm{d}s.

Claim:

|xφ¯||t|ϵj=1nμ0jn2y0j1n.|\nabla_{x}\bar{\varphi}|\lesssim|t|^{-\epsilon}\sum\limits_{j=1}^{n}\mu_{0j}^{-\frac{n}{2}}\langle y_{0j}\rangle^{1-n}. (6.15)

Notice μ0jn2y0j1n\mu_{0j}^{-\frac{n}{2}}\langle y_{0j}\rangle^{1-n} is approximate to |xUj(x,t)||\nabla_{x}U_{j}(x,t)|. Once we complete the proof of (6.15), it is straightforward to have u(,t)U¯H1(n)=O(|t|ϵ)\|u(\cdot,t)-\bar{U}\|_{H^{1}({{\mathbb{R}}}^{n})}=O(|t|^{-\epsilon}).

By Lemma B.6, for j=2,,k1j=2,\dots,k-1, we get

𝒯d[|t|ϵμ0jn+22𝟏{μ¯0,j+1|x|μ0j}]\displaystyle{\mathcal{T}}^{d}[|t|^{-\epsilon}\mu_{0j}^{-\frac{n+2}{2}}\mathbf{1}_{\{\bar{\mu}_{0,j+1}\leq|x|\leq\mu_{0j}\}}]\lesssim {|t|ϵμ0jn2 if |x|μ0j,|t|ϵμ0jn21|x|1n if μ0j|x||t|12,(|x|2)ϵαj(n21)|x|1n if |t|12|x|.\displaystyle\begin{cases}|t|^{-\epsilon}\mu_{0j}^{-\frac{n}{2}}&\mbox{ \ \ if \ }|x|\leq\mu_{0j},\\ |t|^{-\epsilon}\mu_{0j}^{\frac{n}{2}-1}|x|^{1-n}&\mbox{ \ \ if \ }\mu_{0j}\leq|x|\leq|t|^{\frac{1}{2}},\\ (|x|^{2})^{-\epsilon-\alpha_{j}(\frac{n}{2}-1)}|x|^{1-n}&\mbox{ \ \ if \ }|t|^{\frac{1}{2}}\leq|x|.\end{cases}
\displaystyle\lesssim |t|ϵμ0jn2y0j1n.\displaystyle|t|^{-\epsilon}\mu_{0j}^{-\frac{n}{2}}\langle y_{0j}\rangle^{1-n}.

Similarly,

𝒯d[|t|ϵμ0kn+22𝟏{|x|μ0k}]\displaystyle{\mathcal{T}}^{d}[|t|^{-\epsilon}\mu_{0k}^{-\frac{n+2}{2}}\mathbf{1}_{\{|x|\leq\mu_{0k}\}}]\lesssim |t|ϵμ0kn2y0k1n,\displaystyle|t|^{-\epsilon}\mu_{0k}^{-\frac{n}{2}}\langle y_{0k}\rangle^{1-n},
𝒯d[|t|ϵ𝟏{μ¯02|x|1}]\displaystyle{\mathcal{T}}^{d}[|t|^{-\epsilon}\mathbf{1}_{\{\bar{\mu}_{02}\leq|x|\leq 1\}}]\lesssim |t|ϵμ01n2y011n.\displaystyle|t|^{-\epsilon}\mu_{01}^{-\frac{n}{2}}\langle y_{01}\rangle^{1-n}.

For j=2,,k,j=2,\dots,k,

𝒯d[|t|ϵμ0jn+22|x|n2𝟏{μ0j|x|μ¯0j}]\displaystyle{\mathcal{T}}^{d}[|t|^{-\epsilon}\mu_{0j}^{\frac{n+2}{2}}|x|^{-n-2}\mathbf{1}_{\{\mu_{0j}\leq|x|\leq\bar{\mu}_{0j}\}}]\lesssim {|t|ϵμ0jn2 if |x|μ0j,|t|ϵμ0jn21|x|1n if μ0j|x||t|12,(|x|2)ϵαj(n21)|x|1n if |x||t|12,\displaystyle\begin{cases}|t|^{-\epsilon}\mu_{0j}^{-\frac{n}{2}}&\mbox{ \ \ if \ }|x|\leq\mu_{0j},\\ |t|^{-\epsilon}\mu_{0j}^{\frac{n}{2}-1}|x|^{1-n}&\mbox{ \ \ if \ }\mu_{0j}\leq|x|\leq|t|^{\frac{1}{2}},\\ (|x|^{2})^{-\epsilon-\alpha_{j}(\frac{n}{2}-1)}|x|^{1-n}&\mbox{ \ \ if \ }|x|\geq|t|^{\frac{1}{2}},\end{cases}
\displaystyle\lesssim |t|ϵμ0jn2y0j1n.\displaystyle|t|^{-\epsilon}\mu_{0j}^{-\frac{n}{2}}\langle y_{0j}\rangle^{1-n}.

Similarly,

𝒯d[|t|ϵ|x|n2𝟏{1|x||t|12}]|t|ϵμ01n2y011n.{\mathcal{T}}^{d}[|t|^{-\epsilon}|x|^{-n-2}\mathbf{1}_{\{1\leq|x|\leq|t|^{\frac{1}{2}}\}}]\lesssim|t|^{-\epsilon}\mu_{01}^{-\frac{n}{2}}\langle y_{01}\rangle^{1-n}.

The left part can be transformed into the estimate in Appendix.

𝒯d[[|t|ϵ|x|n2𝟏{|t|12|x|}+|t|1σ|x|2n𝟏{1|x|}]]\displaystyle{\mathcal{T}}^{d}[\left[|t|^{-\epsilon}|x|^{-n-2}\mathbf{1}_{\{|t|^{\frac{1}{2}}\leq|x|\}}+|t|^{-1-\sigma}|x|^{2-n}\mathbf{1}_{\{1\leq|x|\}}\right]]
\displaystyle\lesssim tds(ts)n+12ne|xy|28(ts)[(s)ϵ|y|n3𝟏{(s)12|y|}+(s)1σ|y|1n𝟏{1|y|}]|y|𝑑yds\displaystyle\int_{-\infty}^{t}\frac{ds}{(t-s)^{\frac{n+1}{2}}}\int_{\mathbb{R}^{n}}e^{-\frac{|x-y|^{2}}{8(t-s)}}\left[(-s)^{-\epsilon}|y|^{-n-3}\mathbf{1}_{\{(-s)^{\frac{1}{2}}\leq|y|\}}+(-s)^{-1-\sigma}|y|^{1-n}\mathbf{1}_{\{1\leq|y|\}}\right]|y|dy\,\mathrm{d}s
\displaystyle\lesssim (|t|1ϵ+|t|σ)μ01n2y011n,\displaystyle\left(|t|^{-1-\epsilon}+|t|^{-\sigma}\right)\mu_{01}^{-\frac{n}{2}}\langle y_{01}\rangle^{1-n},

whose estimate process is similar to the convolution of Gaussian kernel in n+1{{\mathbb{R}}}^{n+1}.

This completes the proof of (6.15). ∎

Acknowledgement

The research of L. Sun and J. Wei is partially supported by NSERC of Canada.

Appendix A Estimates for the data in the outer problem

We will prove Proposition 4.7 in this section. Throughout this section, we assume Ψα,σout,+ϕa,σin,<\|\Psi\|_{\alpha,\sigma}^{out,*}+\|\vec{\phi}\|_{a,\sigma}^{in,*}<\infty, μ1σ1\|\vec{\mu}_{1}\|_{\sigma}\leq 1.

The parameters are determined in the following order. First, we choose RR as a large fixed positive constant. Second, we choose σ>0\sigma>0 small. Third, we choose δ>0\delta>0 small. Fourth, we choose ϵ>0\epsilon>0 small. Finally, we take t0t_{0} very negative such that μjμ0j\mu_{j}\approx\mu_{0j}, for j=1,,kj=1,\dots,k, μ˙jμ˙0j\dot{\mu}_{j}\approx\dot{\mu}_{0j} for j=2,,kj=2,\dots,k.

We introduce the notation yj=x/μjy_{j}=x/\mu_{j}, y¯j=x/μ¯j\bar{y}_{j}=x/\bar{\mu}_{j}, y0j=x/μ0jy_{0j}=x/\mu_{0j}, y¯0j=x/μ¯0j\bar{y}_{0j}=x/\bar{\mu}_{0j} for j=1,,kj=1,\dots,k. One readily sees that |yj||y0j||y_{j}|\approx|y_{0j}|, |y¯j||y¯0j||\bar{y}_{j}|\approx|\bar{y}_{0j}| for j=1,,kj=1,\dots,k.

Lemma A.1.

Consider the UjU_{j} defined in (1.21). For j=1,,k1j=1,\cdots,k-1, one has

Uj<Uj+1 in {|x|<μ¯j+1} and Uj>Uj+1 in {|x|>μ¯j+1}.\displaystyle U_{j}<U_{j+1}\text{ in }\{|x|<\bar{\mu}_{j+1}\}\text{ and }U_{j}>U_{j+1}\text{ in }\{|x|>\bar{\mu}_{j+1}\}. (A.1)

In {|x|μ¯0k}\{|x|\leq\bar{\mu}_{0k}\},

UkUk1>Uk2>>U1.U_{k}\gtrsim U_{k-1}>U_{k-2}>\dots>U_{1}. (A.2)

In {|x|μ¯02}\{|x|\geq\bar{\mu}_{02}\},

U1U2>U3>>Uk.U_{1}\gtrsim U_{2}>U_{3}>\dots>U_{k}. (A.3)

In {μ¯0,j+1|x|μ¯0j}\{\bar{\mu}_{0,j+1}\leq|x|\leq\bar{\mu}_{0j}\}, j=2,,k1j=2,\dots,k-1,

UjUj+1>Uj+2>>Uk,UjUj1>Uj2>>U1.U_{j}\gtrsim U_{j+1}>U_{j+2}>\dots>U_{k},\quad U_{j}\gtrsim U_{j-1}>U_{j-2}>\dots>U_{1}. (A.4)

Moreover

Uj+1Uj\displaystyle\frac{U_{j+1}}{U_{j}} λj+1n22yj+1(n2)𝟏{|x|μ0j}+λj+1n22𝟏{|x|>μ0j} for j=1,,k1,\displaystyle\approx\lambda_{j+1}^{-\frac{n-2}{2}}\langle y_{j+1}\rangle^{-(n-2)}\mathbf{1}_{\{|x|\leq\mu_{0j}\}}+\lambda_{j+1}^{\frac{n-2}{2}}\mathbf{1}_{\{|x|>\mu_{0j}\}}\mbox{ \ \ for \ }j=1,\dots,k-1, (A.5)
Uj1Uj\displaystyle\frac{U_{j-1}}{U_{j}} λjn22yjn2𝟏{|x|μ0,j1}+λjn22𝟏{|x|>μ0,j1} for j=2,,k.\displaystyle\approx\lambda_{j}^{\frac{n-2}{2}}\langle y_{j}\rangle^{n-2}\mathbf{1}_{\{|x|\leq\mu_{0,j-1}\}}+\lambda_{j}^{-\frac{n-2}{2}}\mathbf{1}_{\{|x|>\mu_{0,j-1}\}}\mbox{ \ \ for \ }j=2,\dots,k. (A.6)
Proof.

(A.1)-(A.4) follow from that Uj+1Uj\frac{U_{j+1}}{U_{j}} is strictly decreasing about |x||x| and Uj+1Uj(μ¯j+1)=1\frac{U_{j+1}}{U_{j}}(\bar{\mu}_{j+1})=1, (see Figure 1). Up to a multiplicity of the constant αn\alpha_{n}, Uj=μj2n2(1+|yj|2)2n2U_{j}=\mu_{j}^{\frac{2-n}{2}}(1+|y_{j}|^{2})^{\frac{2-n}{2}} and

Uj+1=μj+1n22(μj+12+|x|2)n22=μj+1n22μj2n(λj+12+|yj|2)n22,\displaystyle U_{j+1}=\frac{\mu_{j+1}^{\frac{n-2}{2}}}{(\mu_{j+1}^{2}+|x|^{2})^{\frac{n-2}{2}}}=\frac{\mu_{j+1}^{\frac{n-2}{2}}\mu_{j}^{2-n}}{(\lambda_{j+1}^{2}+|y_{j}|^{2})^{\frac{n-2}{2}}}, (A.7)

then

Uj+1Uj=λj+1n22(1+|yj|2)n22(λj+12+|yj|2)n22λj+1n22yj+1(n2)𝟏{|x|μ0j}+λj+1n22𝟏{|x|>μ0j},\frac{U_{j+1}}{U_{j}}=\lambda_{j+1}^{\frac{n-2}{2}}\frac{(1+|y_{j}|^{2})^{\frac{n-2}{2}}}{(\lambda_{j+1}^{2}+|y_{j}|^{2})^{\frac{n-2}{2}}}\approx\lambda_{j+1}^{-\frac{n-2}{2}}\langle y_{j+1}\rangle^{-(n-2)}\mathbf{1}_{\{|x|\leq\mu_{0j}\}}+\lambda_{j+1}^{\frac{n-2}{2}}\mathbf{1}_{\{|x|>\mu_{0j}\}}, (A.8)

for j=1,,k1j=1,\dots,k-1. This finishes the proof of (A.5). Similarly,

Uj1Uj=λjn22(λj2+|yj1|2)n22(1+|yj1|2)n22λjn22yjn2𝟏{|x|μ0,j1}+λjn22𝟏{|x|>μ0,j1}\displaystyle\frac{U_{j-1}}{U_{j}}=\lambda_{j}^{-\frac{n-2}{2}}\frac{(\lambda_{j}^{2}+|y_{j-1}|^{2})^{\frac{n-2}{2}}}{(1+|y_{j-1}|^{2})^{\frac{n-2}{2}}}\approx\lambda_{j}^{\frac{n-2}{2}}\langle y_{j}\rangle^{n-2}\mathbf{1}_{\{|x|\leq\mu_{0,j-1}\}}+\lambda_{j}^{-\frac{n-2}{2}}\mathbf{1}_{\{|x|>\mu_{0,j-1}\}} (A.9)

for j=2,,kj=2,\dots,k. Then (A.6) holds. ∎

Refer to caption
Figure 1. Relation for three bubbles.
Lemma A.2.

Consider φ0\varphi_{0} defined in (2.6). One has |φ0|i=2kλiUiχi|\varphi_{0}|\lesssim\sum\limits_{i=2}^{k}\lambda_{i}U_{i}\chi_{i}.

Proof.

By (2.6) and (2.22), we have

|φ0|i=2kμi1n22yi2χi.\displaystyle|\varphi_{0}|\lesssim\sum_{i=2}^{k}\mu_{i-1}^{-\frac{n-2}{2}}\langle y_{i}\rangle^{-2}\chi_{i}. (A.10)

It follows from (2.4) that the support of χi\chi_{i} are disjoint. More precisely, the support of χi\chi_{i} is contained in {λi+112|yi|λi12}\{\lambda_{i+1}^{\frac{1}{2}}\leq|y_{i}|\leq\lambda_{i}^{-\frac{1}{2}}\}. It is easy to verify that μi1n22yi2λiUi\mu_{i-1}^{-\frac{n-2}{2}}\langle y_{i}\rangle^{-2}\lesssim\lambda_{i}U_{i} in this set. ∎

Lemma A.3.

For 0<α<a<10<\alpha<a<1, there exists RR large enough and t0t_{0} negative enough such that B[ϕ]B[\vec{\phi}] defined in (3.12) satisfies

B[ϕ]α,σoutRαaϕa,σin,\displaystyle\begin{split}\|B[\vec{\phi}\,]\|^{out}_{\alpha,\sigma}\lesssim R^{\alpha-a}\|\vec{\phi}\|^{in,*}_{a,\sigma}\end{split} (A.11)
Proof.

By the definition (6.1) and (4.4),

yj|yjϕj(yj,t)|+|ϕj(yj,t)||t|γjμ0jn22Rn+1ayjn1ϕjj,a,σin,.\langle y_{j}\rangle|\nabla_{y_{j}}\phi_{j}(y_{j},t)|+|\phi_{j}(y_{j},t)|\lesssim|t|^{\gamma_{j}}\mu_{0j}^{\frac{n-2}{2}}R^{n+1-a}\langle y_{j}\rangle^{-n-1}\|\phi_{j}\|^{in,*}_{j,a,\sigma}. (A.12)

\bullet First, using (3.11)

|μ˙jφjμjηj|=|μ˙jμjn2(n22ϕj(yj,t)+yjyjϕj(yj,t))ηj||μ˙j|μj1(t)γjRn+1ayjn1ηjϕjj,a,σin,|t0|ϵRn+1aw1jϕjj,a,σin,.\displaystyle\begin{split}|\dot{\mu}_{j}\frac{\partial\varphi_{j}}{\partial\mu_{j}}\eta_{j}|=\ &\left|\dot{\mu}_{j}\mu_{j}^{-\frac{n}{2}}\left(\frac{n-2}{2}\phi_{j}(y_{j},t)+y_{j}\cdot\nabla_{y_{j}}\phi_{j}(y_{j},t)\right)\eta_{j}\right|\\ \lesssim\ &|\dot{\mu}_{j}|\mu_{j}^{-1}(-t)^{\gamma_{j}}R^{n+1-a}\langle y_{j}\rangle^{-n-1}\eta_{j}\|\phi_{j}\|^{in,*}_{j,a,\sigma}\\ \lesssim\ &|t_{0}|^{-\epsilon}R^{n+1-a}w_{1j}\|\phi_{j}\|^{in,*}_{j,a,\sigma}.\end{split} (A.13)

Here we choose ϵ\epsilon small such that |μ˙jμj||t|ϵ|\dot{\mu}_{j}\mu_{j}|\lesssim|t|^{-\epsilon} for j=1,,kj=1,\dots,k. We have used (4.20) in the last step.

\bullet Second, (A.12) implies that

|φj(x,t)||t|γjRaϕjj,a,σin, for 2R|yj|4R.\displaystyle|\varphi_{j}(x,t)|\lesssim|t|^{\gamma_{j}}R^{-a}\|\phi_{j}\|_{j,a,\sigma}^{in,*}\mbox{ \ \ for \ }2R\leq|y_{j}|\leq 4R. (A.14)

Using (3.2), we obtain

|Δηjφj|(Rμj)2|t|γjRaϕjj,a,σin,𝟏{2R|yj|4R}Rαaw1jϕjj,a,σin,.\displaystyle|\Delta\eta_{j}\varphi_{j}|\lesssim(R\mu_{j})^{-2}|t|^{\gamma_{j}}R^{-a}\|\phi_{j}\|^{in,*}_{j,a,\sigma}\mathbf{1}_{\{2R\leq|y_{j}|\leq 4R\}}\lesssim R^{\alpha-a}w_{1j}\|\phi_{j}\|^{in,*}_{j,a,\sigma}. (A.15)

Similarly, we have

|xηjxφj|R1μj1|t|γjμj1R1aϕjj,a,σin,𝟏{2Rμj|x|4Rμj}Rαaw1jϕjj,a,σin,\displaystyle\begin{split}|\nabla_{x}\eta_{j}\cdot\nabla_{x}\varphi_{j}|\lesssim&\ R^{-1}\mu_{j}^{-1}|t|^{\gamma_{j}}\mu_{j}^{-1}R^{-1-a}\|\phi_{j}\|_{j,a,\sigma}^{in,*}\mathbf{1}_{\{2R\mu_{j}\leq|x|\leq 4R\mu_{j}\}}\lesssim R^{\alpha-a}w_{1j}\|\phi_{j}\|^{in,*}_{j,a,\sigma}\end{split} (A.16)

and

|tηjφj|R1μj2|μ˙j||t|γjRaϕjj,a,σin,𝟏{2R|yj|4R}R1+αa|μ˙j|w1jϕjj,a,σin,R1+αa|t0|ϵw1jϕjj,a,σin,,\displaystyle\begin{split}|\partial_{t}\eta_{j}\varphi_{j}|&\lesssim R^{-1}\mu_{j}^{-2}|\dot{\mu}_{j}||t|^{\gamma_{j}}R^{-a}\|\phi_{j}\|^{in,*}_{j,a,\sigma}\mathbf{1}_{\{2R\leq|y_{j}|\leq 4R\}}\lesssim R^{1+\alpha-a}|\dot{\mu}_{j}|w_{1j}\|\phi_{j}\|^{in,*}_{j,a,\sigma}\\ &\lesssim R^{1+\alpha-a}|t_{0}|^{-\epsilon}w_{1j}\|\phi_{j}\|^{in,*}_{j,a,\sigma},\end{split} (A.17)

when |μ˙j||t|ϵ|\dot{\mu}_{j}|\lesssim|t|^{-\epsilon} for j=1,,kj=1,\dots,k.

\bullet Third, to estimate |p(up1Ujp1)φjηj|\left|p(u_{*}^{p-1}-U_{j}^{p-1})\varphi_{j}\eta_{j}\right|. We only give calculation details for j=2,,k1j=2,\dots,k-1 since the case j=1j=1 and j=kj=k can be dealt with similarly. Consider it in {μ¯0,j+1|x|4Rμ0j}\{\bar{\mu}_{0,j+1}\leq|x|\leq 4R\mu_{0j}\}. By Lemma A.1 and Lemma A.2,

Uj1(ijUi+φ0)21Uj1(ijUi)λj12>12,U_{j}^{-1}\left(\sum\limits_{i\neq j}U_{i}+\varphi_{0}\right)\geq 2^{-1}U_{j}^{-1}\left(\sum\limits_{i\neq j}U_{i}\right)-\lambda_{j}^{\frac{1}{2}}>-\frac{1}{2},

when t0t_{0} is very negative. Consequently u>12Uju_{*}>\frac{1}{2}U_{j}. Thus by the mean value theorem and (A.5) and (A.6),

|up1Ujp1|Ujp1(Uj+1Uj+Uj1Uj+λj)μj2yj4(λj+1n22yj+12n𝟏{μ¯0,j+1|x|μ0j}+λj+1n22+λjn22yjn2+λj).\displaystyle\begin{split}&|u_{*}^{p-1}-U_{j}^{p-1}|\lesssim U_{j}^{p-1}\left(\frac{U_{j+1}}{U_{j}}+\frac{U_{j-1}}{U_{j}}+\lambda_{j}\right)\\ \lesssim\ &\mu_{j}^{-2}\langle y_{j}\rangle^{-4}\left(\lambda_{j+1}^{-\frac{n-2}{2}}\langle y_{j+1}\rangle^{2-n}\mathbf{1}_{\{\bar{\mu}_{0,j+1}\leq|x|\leq\mu_{0j}\}}+\lambda_{j+1}^{\frac{n-2}{2}}+\lambda_{j}^{\frac{n-2}{2}}\langle y_{j}\rangle^{n-2}+\lambda_{j}\right).\end{split} (A.18)

Therefore, using |φj||t|γjRn+1aϕjj,a,σin,|\varphi_{j}|\lesssim|t|^{\gamma_{j}}R^{n+1-a}\|\phi_{j}\|_{j,a,\sigma}^{in,*},

|p(up1Ujp1)φjηj|𝟏{μ¯0,j+1|x|4Rμj}\displaystyle\left|p(u_{*}^{p-1}-U_{j}^{p-1})\varphi_{j}\eta_{j}\right|\mathbf{1}_{\{\bar{\mu}_{0,j+1}\leq|x|\leq 4R\mu_{j}\}} (A.19)
\displaystyle\lesssim Rn+1aμj2|t|γjλj+1n22yj+12n𝟏{μ¯0,j+1|x|μ0j}ϕjj,a,σin,\displaystyle\ R^{n+1-a}\mu_{j}^{-2}|t|^{\gamma_{j}}\lambda_{j+1}^{-\frac{n-2}{2}}\langle y_{j+1}\rangle^{2-n}\mathbf{1}_{\{\bar{\mu}_{0,j+1}\leq|x|\leq\mu_{0j}\}}\|\phi_{j}\|^{in,*}_{j,a,\sigma}
+Rn+1a(λj+1n22+λjn22Rn2+λj)w1jϕjj,a,σin,\displaystyle\ +R^{n+1-a}(\lambda_{j+1}^{\frac{n-2}{2}}+\lambda_{j}^{\frac{n-2}{2}}R^{n-2}+\lambda_{j})w_{1j}\|\phi_{j}\|^{in,*}_{j,a,\sigma}
\displaystyle\lesssim Rn+1a|t0|ϵ(w2j+w1j)ϕjj,a,σin,.\displaystyle\ R^{n+1-a}|t_{0}|^{-\epsilon}(w_{2j}+w_{1j})\|\phi_{j}\|^{in,*}_{j,a,\sigma}.

Here we have used the following fact.

Rn+1aμj2|t|γjλj+1n22yj+12n𝟏{μ¯0,j+1|x|μ0j}\displaystyle R^{n+1-a}\mu_{j}^{-2}|t|^{\gamma_{j}}\lambda_{j+1}^{-\frac{n-2}{2}}\langle y_{j+1}\rangle^{2-n}\mathbf{1}_{\{\bar{\mu}_{0,j+1}\leq|x|\leq\mu_{0j}\}}
\displaystyle\approx Rn+1aλj+1λjn21|t|σ|t|2σμj+1n22μj1|x|2n𝟏{μ¯0,j+1|x|μ0j}\displaystyle R^{n+1-a}\lambda_{j+1}\lambda_{j}^{\frac{n}{2}-1}|t|^{\sigma}|t|^{-2\sigma}\mu_{j+1}^{\frac{n}{2}-2}\mu_{j}^{-1}|x|^{2-n}\mathbf{1}_{\{\bar{\mu}_{0,j+1}\leq|x|\leq\mu_{0j}\}}
\displaystyle\lesssim Rn+1a|t0|ϵw2j.\displaystyle R^{n+1-a}|t_{0}|^{-\epsilon}w_{2j}.

In {μ¯0,m+1|x|μ¯0m}\{\bar{\mu}_{0,m+1}\leq|x|\leq\bar{\mu}_{0m}\}, m=j+1,,km=j+1,\cdots,k, one has |up1Ujp1|Ump1μm2ym4|u_{*}^{p-1}-U_{j}^{p-1}|\lesssim U_{m}^{p-1}\approx\mu_{m}^{-2}\langle y_{m}\rangle^{-4} and |φj|(t)γjRn+1aϕjj,a,σin,|\varphi_{j}|\lesssim(-t)^{\gamma_{j}}R^{n+1-a}\|\phi_{j}\|_{j,a,\sigma}^{in,*}. Then it is easy to see

|p(up1Ujp1)φjηj|Rn+1a|t|γjγmw1mϕjj,a,σin,Rn+1a|t0|ϵw1mϕjj,a,σin,.\displaystyle\left|p(u_{*}^{p-1}-U_{j}^{p-1})\varphi_{j}\eta_{j}\right|\lesssim R^{n+1-a}|t|^{\gamma_{j}-\gamma_{m}}w_{1m}\|\phi_{j}\|^{in,*}_{j,a,\sigma}\lesssim R^{n+1-a}|t_{0}|^{-\epsilon}w_{1m}\|\phi_{j}\|^{in,*}_{j,a,\sigma}.

Taking t0t_{0} very negative such that |t0|ϵ<Rαn1|t_{0}|^{-\epsilon}<R^{\alpha-n-1}, we obtain (A.11). ∎

Recall EoutE^{out} defined in (3.14). We reorganize the terms as the following.

Eout=E¯11+E¯2+E¯3+E¯4+E¯5\displaystyle E^{out}=\bar{E}_{11}+\bar{E}_{2}+\bar{E}_{3}+\bar{E}_{4}+\bar{E}_{5} (A.20)

where E¯11\bar{E}_{11} is defined in (2.13), and

E¯2=\displaystyle\bar{E}_{2}= μ1n+22D1[μ1](1η1)+j=2kμjn+22Dj[μ1](χjηj)+j=2kμjn+22Θj[μ1]χj\displaystyle\mu_{1}^{-\frac{n+2}{2}}D_{1}[\vec{\mu}_{1}](1-\eta_{1})+\sum_{j=2}^{k}\mu_{j}^{-\frac{n+2}{2}}D_{j}[\vec{\mu}_{1}](\chi_{j}-\eta_{j})+\sum_{j=2}^{k}\mu_{j}^{-\frac{n+2}{2}}\Theta_{j}[\vec{\mu}_{1}]\chi_{j} (A.21)
E¯3=\displaystyle\bar{E}_{3}= j=2kp(U¯p1Ujp1)φ0jχj\displaystyle\sum_{j=2}^{k}p(\bar{U}^{p-1}-U_{j}^{p-1})\varphi_{0j}\chi_{j} (A.22)
E¯4=\displaystyle\bar{E}_{4}= j=2k(2xφ0jxχj+Δxχjφ0j)j=2kt(φ0jχj)\displaystyle\sum_{j=2}^{k}\left(2\nabla_{x}\varphi_{0j}\cdot\nabla_{x}\chi_{j}+\Delta_{x}\chi_{j}\varphi_{0j}\right)-\sum_{j=2}^{k}\partial_{t}\left(\varphi_{0j}\chi_{j}\right) (A.23)
E¯5=\displaystyle\bar{E}_{5}= NU¯[φ0].\displaystyle N_{\bar{U}}[\varphi_{0}]. (A.24)
Lemma A.4.

There exist σ,ϵ>0\sigma,\epsilon>0 small and t0t_{0} negative enough, such that

EoutR1(j=1kw1j+j=1k1w2j+w3).E^{out}\lesssim R^{-1}\left(\sum_{j=1}^{k}w_{1j}+\sum_{j=1}^{k-1}w_{2j}+w_{3}\right).
Proof.

\bullet Estimate of E¯2\bar{E}_{2}. Consider the first term in E¯2\bar{E}_{2}. The support of 1η11-\eta_{1} is {|y01|2R}\{|y_{01}|\geq 2R\}. Since we assume μσ<1\|\vec{\mu}\|_{\sigma}<1, one has |μ˙11|μ1σ|t|1σ|t|1σ|\dot{\mu}_{11}|\leq\|\vec{\mu}_{1}\|_{\sigma}|t|^{-1-\sigma}\leq|t|^{-1-\sigma}. Then using (2.27)

|μ1n22D1[μ1](1η1)||t|1σ|x|2n𝟏{|x|2R}R4+αnw11+R1w3R1(w11+w3).|\mu_{1}^{-\frac{n-2}{2}}D_{1}[\vec{\mu}_{1}](1-\eta_{1})|\lesssim|t|^{-1-\sigma}|x|^{2-n}\mathbf{1}_{\{|x|\geq 2R\}}\lesssim R^{4+\alpha-n}w_{11}+R^{-1}w_{3}\lesssim R^{-1}\left(w_{11}+w_{3}\right).

For j2j\geq 2, the support of χjηj\chi_{j}-\eta_{j} is contained in {|x|μ¯0,j+1}{2Rμ0j|x|μ¯0j}\{|x|\leq\bar{\mu}_{0,j+1}\}\cup\{2R\mu_{0j}\leq|x|\leq\bar{\mu}_{0j}\}. In the first set (it is vacuum if j=kj=k), one has |χjηj|χ(2y¯0,j+1)|\chi_{j}-\eta_{j}|\leq\chi(2\bar{y}_{0,j+1}) and y0j1\langle y_{0j}\rangle\approx 1. It follows from (6.4) that

|μjn+22Dj[μ1](χjηj)|μj2|t|γjχ(2y¯0,j+1)|t|ϵw1,j+1.\left|\mu_{j}^{-\frac{n+2}{2}}D_{j}[\vec{\mu}_{1}](\chi_{j}-\eta_{j})\right|\lesssim\mu_{j}^{-2}|t|^{\gamma_{j}}\chi(2\bar{y}_{0,j+1})\lesssim|t|^{-\epsilon}w_{1,j+1}.

In the second set, since |y0j|2R|y_{0j}|\geq 2R, then

|μjn+22Dj[μ1](χjηj)|μj2|t|γj|yj|4R1w1j.\left|\mu_{j}^{-\frac{n+2}{2}}D_{j}[\vec{\mu}_{1}](\chi_{j}-\eta_{j})\right|\lesssim\mu_{j}^{-2}|t|^{\gamma_{j}}|y_{j}|^{-4}\lesssim R^{-1}w_{1j}.

It is straightforward to have

|μjn+22Θj[μ1]χj||t|σμj2|t|γjyj4χj|t|σw1j.|\mu_{j}^{-\frac{n+2}{2}}\Theta_{j}[\vec{\mu}_{1}]\chi_{j}|\lesssim|t|^{-\sigma}\mu_{j}^{-2}|t|^{\gamma_{j}}\langle y_{j}\rangle^{-4}\chi_{j}\lesssim|t|^{-\sigma}w_{1j}.

\bullet Estimate of E¯3\bar{E}_{3}. In the support of χj\chi_{j}, by Lemma (A.1), we have

|U¯p1Ujp1|Ujp1(Uj+1Uj+Uj1Uj).|\bar{U}^{p-1}-U_{j}^{p-1}|\lesssim U_{j}^{p-1}(\frac{U_{j+1}}{U_{j}}+\frac{U_{j-1}}{U_{j}}).

It follows from (2.7) and (2.22) that φ0j|t|γj+σyi2\varphi_{0j}\leq|t|^{\gamma_{j}+\sigma}\langle y_{i}\rangle^{-2}. Using (LABEL:u*-U), similar to (A.19), we get

|E¯3|j=2kλjn22|t|σw1j+j=1k1λj+1λjn22|t|2σw2j|t0|ϵ(j=2kw1j+j=1k1w2j).|\bar{E}_{3}|\lesssim\sum\limits_{j=2}^{k}\lambda_{j}^{\frac{n-2}{2}}|t|^{\sigma}w_{1j}+\sum\limits_{j=1}^{k-1}\lambda_{j+1}\lambda_{j}^{\frac{n-2}{2}}|t|^{2\sigma}w_{2j}\lesssim|t_{0}|^{-\epsilon}(\sum\limits_{j=2}^{k}w_{1j}+\sum\limits_{j=1}^{k-1}w_{2j}).

\bullet Estimate of E¯4\bar{E}_{4}. Notice

|xχj|μ¯0j1𝟏{12μ¯0j<|x|<μ¯0j}+μ¯0,j+11𝟏{12μ¯0,j+1<|x|<μ¯0,j+1}.\displaystyle\left|\nabla_{x}\chi_{j}\right|\lesssim\bar{\mu}_{0j}^{-1}\mathbf{1}_{\left\{\frac{1}{2}\bar{\mu}_{0j}<\left|x\right|<\bar{\mu}_{0j}\right\}}+\bar{\mu}_{0,j+1}^{-1}\mathbf{1}_{\left\{\frac{1}{2}\bar{\mu}_{0,j+1}<\left|x\right|<\bar{\mu}_{0,j+1}\right\}}.
|Δxχj|μ¯0j2𝟏{12μ¯0j<|x|<μ¯0j}+μ¯0,j+12𝟏{12μ¯0,j+1<|x|<μ¯0,j+1}.\displaystyle\left|\Delta_{x}\chi_{j}\right|\lesssim\bar{\mu}_{0j}^{-2}\mathbf{1}_{\left\{\frac{1}{2}\bar{\mu}_{0j}<\left|x\right|<\bar{\mu}_{0j}\right\}}+\bar{\mu}_{0,j+1}^{-2}\mathbf{1}_{\left\{\frac{1}{2}\bar{\mu}_{0,j+1}<\left|x\right|<\bar{\mu}_{0,j+1}\right\}}.

By (2.22), one has |φ0j||t|γj+σyj2|\varphi_{0j}|\lesssim|t|^{\gamma_{j}+\sigma}\langle y_{j}\rangle^{-2}, |xφ0j|λ0jn22μjn2yj3μj1|t|γj+σyj3|\nabla_{x}\varphi_{0j}|\lesssim\lambda_{0j}^{\frac{n-2}{2}}\mu_{j}^{-\frac{n}{2}}\langle y_{j}\rangle^{-3}\approx\mu_{j}^{-1}|t|^{\gamma_{j}+\sigma}\langle y_{j}\rangle^{-3}, then

|xφ0jxχj||t|σμjμ¯jw1j+|t|γjγj+1+σ(μj+1μj)1α2w1,j+1|t0|ϵ(w1j+w1,j+1).\displaystyle|\nabla_{x}\varphi_{0j}\cdot\nabla_{x}\chi_{j}|\lesssim|t|^{\sigma}\frac{\mu_{j}}{\bar{\mu}_{j}}w_{1j}+|t|^{\gamma_{j}-\gamma_{j+1}+\sigma}\left(\frac{\mu_{j+1}}{\mu_{j}}\right)^{\frac{1-\alpha}{2}}w_{1,j+1}\lesssim|t_{0}|^{-\epsilon}(w_{1j}+w_{1,j+1}).
|φ0jΔxχj||t|σμjμ¯jw1j+|t|n22(αj1αj)+α2(αj+1αj)+σw1,j+1|t0|ϵ(w1j+w1,j+1).\displaystyle|\varphi_{0j}\Delta_{x}\chi_{j}|\lesssim|t|^{\sigma}\frac{\mu_{j}}{\bar{\mu}_{j}}w_{1j}+|t|^{\frac{n-2}{2}(\alpha_{j-1}-\alpha_{j})+\frac{\alpha}{2}(\alpha_{j+1}-\alpha_{j})+\sigma}w_{1,j+1}\lesssim|t_{0}|^{-\epsilon}(w_{1j}+w_{1,j+1}).

where we have used that n22(αj1αj)+α2(αj+1αj)=(αn61)(n2n6)j1αn61\frac{n-2}{2}(\alpha_{j-1}-\alpha_{j})+\frac{\alpha}{2}(\alpha_{j+1}-\alpha_{j})=(\frac{\alpha}{n-6}-1)\left(\frac{n-2}{n-6}\right)^{j-1}\leq\frac{\alpha}{n-6}-1.

For t(φ0jχj)\partial_{t}(\varphi_{0j}\chi_{j}), we have

|t(φ0j)χj|+|φ0jtχj||t|γj+σ1yj2(χj+|xχj|)|t|σ1μj2α2μj1α2w1j|t0|ϵw1j.\displaystyle|\partial_{t}(\varphi_{0j})\chi_{j}|+|\varphi_{0j}\partial_{t}\chi_{j}|\lesssim|t|^{\gamma_{j}+\sigma-1}\langle y_{j}\rangle^{-2}\left(\chi_{j}+|\nabla_{x}\chi_{j}|\right)\lesssim|t|^{\sigma-1}\mu_{j}^{2-\frac{\alpha}{2}}\mu_{j-1}^{\frac{\alpha}{2}}w_{1j}\lesssim|t_{0}|^{-\epsilon}w_{1j}.

\bullet Estimate of E¯5\bar{E}_{5}. It follows from (2.10), (A.10) and p(1,2)p\in(1,2) that

|NU¯[φ0]||φ0|pj=2k|t|(γj+σ)pyj2pχjpj=2k|t|2(αj1αj)+σyj2+α2pμj2|t|γjyj2αχjp.\displaystyle|N_{\bar{U}}[\varphi_{0}]|\lesssim|\varphi_{0}|^{p}\lesssim\sum_{j=2}^{k}|t|^{(\gamma_{j}+\sigma)p}\langle y_{j}\rangle^{-2p}\chi_{j}^{p}\approx\sum_{j=2}^{k}|t|^{2(\alpha_{j-1}-\alpha_{j})+\sigma}\langle y_{j}\rangle^{2+\alpha-2p}\mu_{j}^{-2}|t|^{\gamma_{j}}\langle y_{j}\rangle^{-2-\alpha}\chi_{j}^{p}.

If 2p2+α2p\geq 2+\alpha, it is easy to see |NU¯[φ0]||t0|ϵj=2kw1j.|N_{\bar{U}}[\varphi_{0}]|\lesssim|t_{0}|^{-\epsilon}\sum_{j=2}^{k}w_{1j}.

If 2p<2+α2p<2+\alpha,

|NU¯[φ0]|j=2k|t|2α+2p2(αj1αj)+σμj2|t|γjyj2αχjp|t0|ϵj=2kw1j.|N_{\bar{U}}[\varphi_{0}]|\lesssim\sum_{j=2}^{k}|t|^{\frac{2-\alpha+2p}{2}(\alpha_{j-1}-\alpha_{j})+\sigma}\mu_{j}^{-2}|t|^{\gamma_{j}}\langle y_{j}\rangle^{-2-\alpha}\chi_{j}^{p}\lesssim|t_{0}|^{-\epsilon}\sum_{j=2}^{k}w_{1j}.

\bullet Estimate of E¯11\bar{E}_{11}. Regrouping the terms in (2.13), one obtain

E¯11=j=2kpUjp1[ljUlUj1(0)]χj+j=2k[U¯pi=1kUippUjp1ljUl]χj+(j=2k(1χj)tUj)+[U¯pj=1kUjp](1i=2kχi):=J1+J2+J3+J4.\begin{split}\bar{E}_{11}=&\sum_{j=2}^{k}pU_{j}^{p-1}\left[\sum_{l\neq j}U_{l}-U_{j-1}(0)\right]\chi_{j}+\sum_{j=2}^{k}\left[{\bar{U}}^{p}-\sum_{i=1}^{k}U_{i}^{p}-pU_{j}^{p-1}\sum_{l\neq j}U_{l}\right]\chi_{j}\\ &+\left(-\sum_{j=2}^{k}(1-\chi_{j})\partial_{t}U_{j}\right)+\left[{\bar{U}}^{p}-\sum_{j=1}^{k}U_{j}^{p}\right]\left(1-\sum_{i=2}^{k}\chi_{i}\right)\\ :=&J_{1}+J_{2}+J_{3}+J_{4}.\end{split} (A.25)

Claim:

E¯11(x,t)|t0|ϵ(j=1kw1j+j=1k1w2j+w3).\bar{E}_{11}(x,t)\lesssim|t_{0}|^{-\epsilon}\left(\sum_{j=1}^{k}w_{1j}+\sum_{j=1}^{k-1}w_{2j}+w_{3}\right).
  1. (1)

    Estimate of J1J_{1}.

    J1=j=2kpUjp1(lj,j1Ul)χj+j=2kpUjp1(Uj1Uj1(0))χj.J_{1}=\sum_{j=2}^{k}pU_{j}^{p-1}\left(\sum_{l\neq j,j-1}U_{l}\right)\chi_{j}+\sum_{j=2}^{k}pU_{j}^{p-1}(U_{j-1}-U_{j-1}(0))\chi_{j}.

    We will bound each term in the above equation. Fix j2j\geq 2. If ij2i\leq j-2,

    |pUjp1Uiχj|μj2yj4μj2n22χj|t|ϵw1j.|pU_{j}^{p-1}U_{i}\chi_{j}|\lesssim\mu_{j}^{-2}\langle y_{j}\rangle^{-4}\mu_{j-2}^{-\frac{n-2}{2}}\chi_{j}\lesssim|t|^{-\epsilon}w_{1j}.

    If ij+1i\geq j+1, by Lemma A.1

    |pUjp1Uiχj|UjpUj+1Ujχjμjn+22yjn2(λj+1n22yj+12n𝟏{μ¯0,j+1|x|μ0j}+λj+1n22)χjμj+1n22μj2|x|2n𝟏{μ¯0,j+1|x|μ0j}+(λj+1λj)n22|t|σw1j|t|ϵ(w2j+w1j)\displaystyle\begin{split}&|pU_{j}^{p-1}U_{i}\chi_{j}|\lesssim U_{j}^{p}\frac{U_{j+1}}{U_{j}}\chi_{j}\\ \lesssim&\ \mu_{j}^{-\frac{n+2}{2}}\langle y_{j}\rangle^{-n-2}\left(\lambda_{j+1}^{-\frac{n-2}{2}}\langle y_{j+1}\rangle^{2-n}\mathbf{1}_{\{\bar{\mu}_{0,j+1}\leq|x|\leq\mu_{0j}\}}+\lambda_{j+1}^{\frac{n-2}{2}}\right)\chi_{j}\\ \lesssim&\ \mu_{j+1}^{\frac{n-2}{2}}\mu_{j}^{-2}|x|^{2-n}\mathbf{1}_{\{\bar{\mu}_{0,j+1}\leq|x|\leq\mu_{0j}\}}+(\frac{\lambda_{j+1}}{\lambda_{j}})^{\frac{n-2}{2}}|t|^{\sigma}w_{1j}\\ \lesssim&\ |t|^{-\epsilon}(w_{2j}+w_{1j})\end{split} (A.26)

    when we choose σ\sigma small first and then chose ϵ\epsilon small enough. Using |Uj1Uj1(0)|χjμj1n22λj|U_{j-1}-U_{j-1}(0)|\chi_{j}\lesssim\mu_{j-1}^{-\frac{n-2}{2}}\lambda_{j}, we have

    |pUjp1(Uj1Uj1(0))χj|μj2yj4μj1n22λjχj|t|ϵw1j.\displaystyle|pU_{j}^{p-1}(U_{j-1}-U_{j-1}(0))\chi_{j}|\lesssim\mu_{j}^{-2}\langle y_{j}\rangle^{-4}\mu_{j-1}^{-\frac{n-2}{2}}\lambda_{j}\chi_{j}\lesssim|t|^{-\epsilon}w_{1j}. (A.27)
  2. (2)

    Estimate of J2J_{2}. By Lemma (A.1), we have

    |U¯pi=1kUippUjp1ljUl|χj(Uj1p+Uj+1p)χj.\left|{\bar{U}}^{p}-\sum_{i=1}^{k}U_{i}^{p}-pU_{j}^{p-1}\sum_{l\neq j}U_{l}\right|\chi_{j}\lesssim\left(U_{j-1}^{p}+U_{j+1}^{p}\right)\chi_{j}.

    Therein,

    Uj1pχj\displaystyle U_{j-1}^{p}\chi_{j} |t|n+22αj1χj|t|n+22αj1μj2|t|γj(μ¯jμj)2+αw1jχj\displaystyle\approx|t|^{\frac{n+2}{2}\alpha_{j-1}}\chi_{j}\lesssim|t|^{\frac{n+2}{2}\alpha_{j-1}}\mu_{j}^{2}|t|^{-\gamma_{j}}(\frac{\bar{\mu}_{j}}{\mu_{j}})^{2+\alpha}w_{1j}\chi_{j}
    (μjμj1)2α2|t|σw1jχj|t|ϵw1j,\displaystyle\approx(\frac{\mu_{j}}{\mu_{j-1}})^{\frac{2-\alpha}{2}}|t|^{\sigma}w_{1j}\chi_{j}\lesssim|t|^{-\epsilon}w_{1j},

    and

    Uj+1pχjμj+1n+22|x|2nχj|t|2σμj+13μj|x|4w2jχj|t|ϵw2j,U_{j+1}^{p}\chi_{j}\approx\mu_{j+1}^{\frac{n+2}{2}}|x|^{-2-n}\chi_{j}\lesssim|t|^{2\sigma}\mu_{j+1}^{3}\mu_{j}|x|^{-4}w_{2j}\chi_{j}\lesssim|t|^{-\epsilon}w_{2j},

    when we take σ\sigma small first and then take ϵ\epsilon small enough.

  3. (3)

    Estimate of J3J_{3}. For j=2,,kj=2,\dots,k, notice that

    |tUj|=|μ˙jμjn2Zn+1(yj)|μj2μj1n22yj2n.\displaystyle|\partial_{t}U_{j}|=|\dot{\mu}_{j}\mu_{j}^{-\frac{n}{2}}Z_{n+1}(y_{j})|\lesssim\mu_{j}^{-2}\mu_{j-1}^{-\frac{n-2}{2}}\langle y_{j}\rangle^{2-n}. (A.28)

    The support of 1χj1-\chi_{j} is contained in {|x|μ¯0,j+1}{12μ¯0j|x|<μ¯0j}{μ¯0j|x|}\{|x|\leq\bar{\mu}_{0,j+1}\}\cup\{\frac{1}{2}\bar{\mu}_{0j}\leq|x|<\bar{\mu}_{0j}\}\cup\{\bar{\mu}_{0j}\leq|x|\}. In the first set, it is easy to see 1χj=χ(2|x|/μ¯0,j+1)1-\chi_{j}=\chi(2|x|/\bar{\mu}_{0,j+1}), then

    |(1χj)tUj|(μj+1μj)2α2(μjμj1)n22|t|σw1,j+1χ(2|x|/μ¯0,j+1)|t|ϵw1,j+1.\displaystyle|(1-\chi_{j})\partial_{t}U_{j}|\lesssim(\frac{\mu_{j+1}}{\mu_{j}})^{\frac{2-\alpha}{2}}(\frac{\mu_{j}}{\mu_{j-1}})^{\frac{n-2}{2}}|t|^{\sigma}w_{1,j+1}\chi(2|x|/\bar{\mu}_{0,j+1})\lesssim|t|^{-\epsilon}w_{1,j+1}.

    In the second set,

    |tUj|𝟏{12μ¯0j|x|<μ¯0j}(μjμj1)n4α2|t|σw1j𝟏{12μ¯0j|x|<μ¯0j}|t0|ϵw1j.|\partial_{t}U_{j}|\mathbf{1}_{\{\frac{1}{2}\bar{\mu}_{0j}\leq|x|<\bar{\mu}_{0j}\}}\lesssim\left(\frac{\mu_{j}}{\mu_{j-1}}\right)^{\frac{n-4-\alpha}{2}}|t|^{\sigma}w_{1j}\mathbf{1}_{\{\frac{1}{2}\bar{\mu}_{0j}\leq|x|<\bar{\mu}_{0j}\}}\lesssim|t_{0}|^{-\epsilon}w_{1j}.

    In the third set, we split it further to be {μ¯0j|x|}=m=2j{μ¯0m|x|μ¯0,m1}{μ¯01|x|}\{\bar{\mu}_{0j}\leq|x|\}=\cup_{m=2}^{j}\{\bar{\mu}_{0m}\leq|x|\leq\bar{\mu}_{0,m-1}\}\cup\{\bar{\mu}_{01}\leq|x|\}.

    Since |yj||y_{j}| is very large in the third set, (A.28) implies |tUj||\partial_{t}U_{j}|\lesssim μjn4μj1n22|x|2n\mu_{j}^{n-4}\mu_{j-1}^{-\frac{n-2}{2}}|x|^{2-n}. Note that μjn4μj1n22\mu_{j}^{n-4}\mu_{j-1}^{-\frac{n-2}{2}} decreases about jj up to some constant multiplicity. Then in {μ¯0m|x|μ¯0,m1}\{\bar{\mu}_{0m}\leq|x|\leq\bar{\mu}_{0,m-1}\}, m=2,jm=2\dots,j,

    |tUj|μmn4μm1n22|x|2n|t|ϵw2,m1.|\partial_{t}U_{j}|\lesssim\mu_{m}^{n-4}\mu_{m-1}^{-\frac{n-2}{2}}|x|^{2-n}\lesssim|t|^{-\epsilon}w_{2,m-1}.

    In {μ¯01|x|}\{\bar{\mu}_{01}\leq|x|\}, we have

    |tUj|μ2n4|x|2n|t|ϵw3.|\partial_{t}U_{j}|\lesssim\mu_{2}^{n-4}|x|^{2-n}\lesssim|t|^{-\epsilon}w_{3}.
  4. (4)

    Estimate of J4J_{4}. Recall the definition of χi\chi_{i} in (2.4), we have the support of J4J_{4} is contained in the set m=3k{12μ¯0m|x|μ¯0m}{12μ¯02|x|}\cup_{m=3}^{k}\{\frac{1}{2}\bar{\mu}_{0m}\leq|x|\leq\bar{\mu}_{0m}\}\cup\{\frac{1}{2}\bar{\mu}_{02}\leq|x|\}.

    In {12μ¯0m|x|μ¯0m}\{\frac{1}{2}\bar{\mu}_{0m}\leq|x|\leq\bar{\mu}_{0m}\}, for m=3,,km=3,\dots,k, by Lemma A.1, one has UmUm1μm1n22UiU_{m}\approx U_{m-1}\approx\mu_{m-1}^{-\frac{n-2}{2}}\gg U_{i} for im,m1i\neq m,m-1. Therefore

    |J4|𝟏{12μ¯0m|x|μ¯0m}μm1n+22𝟏{12μ¯0m|x|μ¯0m}(μm1μm)α22|t|σw1m|t0|ϵw1m.|J_{4}|\mathbf{1}_{\{\frac{1}{2}\bar{\mu}_{0m}\leq|x|\leq\bar{\mu}_{0m}\}}\lesssim\mu_{m-1}^{-\frac{n+2}{2}}\mathbf{1}_{\{\frac{1}{2}\bar{\mu}_{0m}\leq|x|\leq\bar{\mu}_{0m}\}}\lesssim(\frac{\mu_{m-1}}{\mu_{m}})^{\frac{\alpha-2}{2}}|t|^{\sigma}w_{1m}\lesssim|t_{0}|^{-\epsilon}w_{1m}.

    In {12μ¯02|x|}\{\frac{1}{2}\bar{\mu}_{02}\leq|x|\}, by Lemma A.1, when σ<(n6)1\sigma<(n-6)^{-1},

    |J4|U1p1U2\displaystyle|J_{4}|\lesssim U_{1}^{p-1}U_{2}
    \displaystyle\approx μ2n22(|x|2n𝟏{12μ¯02|x|μ¯02}+|x|2n𝟏{μ¯02|x|1}+|x|2n𝟏{1|x|μ¯01}+|x|2n𝟏{μ¯01|x|})\displaystyle\mu_{2}^{\frac{n-2}{2}}\left(|x|^{2-n}\mathbf{1}_{\{\frac{1}{2}\bar{\mu}_{02}\leq|x|\leq\bar{\mu}_{02}\}}+|x|^{2-n}\mathbf{1}_{\{\bar{\mu}_{02}\leq|x|\leq 1\}}+|x|^{-2-n}\mathbf{1}_{\{1\leq|x|\leq\bar{\mu}_{01}\}}+|x|^{-2-n}\mathbf{1}_{\{\bar{\mu}_{01}\leq|x|\}}\right)
    \displaystyle\lesssim |t0|ϵ(w12+w21+w11+w3).\displaystyle|t_{0}|^{-\epsilon}\left(w_{12}+w_{21}+w_{11}+w_{3}\right).

Lemma A.5.

There exist σ>0\sigma>0 small enough and t0t_{0} negative enough, such that for t<t0t<t_{0},

  1. (1)

    In {|x|μ¯0i}\{|x|\leq\bar{\mu}_{0i}\}, i=1,,ki=1,\dots,k, we have w1jw1iw_{1j}^{*}\lesssim w_{1i}^{*} for j=1,,i1j=1,\dots,i-1 (it is vacuum if i=1i=1)

  2. (2)

    In {μ¯0i|x|}\{\bar{\mu}_{0i}\leq|x|\}, i=1,,ki=1,\dots,k, we have w1jw1iw_{1j}^{*}\lesssim w_{1i}^{*} for j=i+1,,kj=i+1,\dots,k (it is vacuum if i=ki=k).

  3. (3)

    In {|x|μ¯0j}\{|x|\leq\bar{\mu}_{0j}\}, w3w1jw_{3}^{*}\lesssim w_{1j}^{*} for j=1,,kj=1,\dots,k. In {|x||t|12}\{|x|\geq|t|^{\frac{1}{2}}\}, w3w1jw_{3}^{*}\gtrsim w_{1j}^{*} for j=1,,kj=1,\dots,k when δ(n2α)1\delta\leq(n-2-\alpha)^{-1}.

Consequently,

j=1kw1j+w3{w1kif |x|μ¯0k,w1i+w1,i+1if μ¯0,i+1|x|μ¯0i,i=1,,k1,w11+w3if μ¯01|x||t|12,w3if |x||t|12.\displaystyle\sum_{j=1}^{k}w_{1j}^{*}+w_{3}^{*}\lesssim\begin{cases}w_{1k}^{*}&\text{if }|x|\leq\bar{\mu}_{0k},\\ w_{1i}^{*}+w_{1,i+1}^{*}&\text{if }\bar{\mu}_{0,i+1}\leq|x|\leq\bar{\mu}_{0i},i=1,\cdots,k-1,\\ w_{11}^{*}+w_{3}^{*}&\text{if }\bar{\mu}_{01}\leq|x|\leq|t|^{\frac{1}{2}},\\ w_{3}^{*}&\text{if }|x|\geq|t|^{\frac{1}{2}}.\end{cases} (A.29)
Proof.

(1) For j=1,,i1j=1,\dots,i-1, in {|x|μ¯0i}\{|x|\leq\bar{\mu}_{0i}\}, we have w1j(x,t)=|t|γj|t|γi1w^{*}_{1j}(x,t)=|t|^{\gamma_{j}}\leq|t|^{\gamma_{i-1}} and w1i|t|γiμiαμ¯iαw^{*}_{1i}\geq|t|^{\gamma_{i}}\mu_{i}^{\alpha}\bar{\mu}_{i}^{-\alpha}. It is easy to verify |t|γi1|t|γiμiαμ¯iα|t|^{\gamma_{i-1}}\lesssim|t|^{\gamma_{i}}\mu_{i}^{\alpha}\bar{\mu}_{i}^{-\alpha} if α<n6\alpha<n-6.

(2) For j=i+1,,kj=i+1,\dots,k, in {μ¯0i|x||t|12}\{\bar{\mu}_{0i}\leq|x|\leq|t|^{\frac{1}{2}}\}, w1j(x,t)=|t|γjμjαμ¯jn2α|x|2n|t|γj|x|2n|t|γi|x|2nw1i(x,t)w_{1j}^{*}(x,t)=|t|^{\gamma_{j}}\mu_{j}^{\alpha}\bar{\mu}_{j}^{n-2-\alpha}|x|^{2-n}\approx|t|^{\gamma_{j}^{*}}|x|^{2-n}\leq|t|^{\gamma_{i}^{*}}|x|^{2-n}\approx w_{1i}^{*}(x,t), because γj\gamma_{j}^{*} is strictly decreasing on jj, i.e.

γ1>γ2>>γk.\gamma_{1}^{*}>\gamma_{2}^{*}>\cdots>\gamma_{k}^{*}.

In {|x||t|12}\{|x|\geq|t|^{\frac{1}{2}}\}, we have w1jw1iw_{1j}^{*}\lesssim w_{1i}^{*} by the same reason.

(3) Due to (1)(1), we only need to check w3w11w_{3}^{*}\lesssim w_{11}^{*} in {|x|μ¯01}\{|x|\leq\bar{\mu}_{01}\}. It is straightforward to have R|t|1σ+δ(4n)|t|1σxαR|t|^{-1-\sigma+\delta(4-n)}\lesssim|t|^{-1-\sigma}\langle x\rangle^{-\alpha} in {|x|μ¯01}\{|x|\leq\bar{\mu}_{01}\}. Due to (2)(2), in {|x||t|12}\{|x|\geq|t|^{\frac{1}{2}}\}, we only need to check w3w11w_{3}^{*}\gtrsim w_{11}^{*}, which is easy to get when δ(n2α)1\delta\leq(n-2-\alpha)^{-1}. ∎

Lemma A.6.

There exists t0t_{0} negative enough such that

  1. (1)

    In {μ¯0,i+1|x|}\{\bar{\mu}_{0,i+1}\leq|x|\}, we have w2jw2iw^{*}_{2j}\lesssim w^{*}_{2i} for j=i+1,,k1j=i+1,\dots,k-1 (it is vacuum if i=k,k1i=k,k-1). In {|x|μ¯0i}\{|x|\leq\bar{\mu}_{0i}\}, we have w2,i1w2jw_{2,i-1}^{*}\gtrsim w_{2j}^{*} for j=1,,i2j=1,\dots,i-2 (it is vacuum if i=1,2i=1,2).

  2. (2)

    In {|x|μ¯01}\{|x|\geq\bar{\mu}_{01}\}, w2jw3w_{2j}^{*}\lesssim w_{3}^{*} for j=1,,k1j=1,\dots,k-1.

Consequently

j=1k1w2j{w2,k1if |x|μ¯0k,w2i+w2,i1if μ¯0,i+1|x|μ¯0i, for i=2,,k1,w21if μ¯02|x|μ¯01,w3if |x|μ¯01.\displaystyle\sum_{j=1}^{k-1}w_{2j}^{*}\lesssim\begin{cases}w_{2,k-1}^{*}&\text{if }|x|\leq\bar{\mu}_{0k},\\ w_{2i}^{*}+w_{2,i-1}^{*}&\text{if }\bar{\mu}_{0,i+1}\leq|x|\leq\bar{\mu}_{0i},\mbox{ \ for \ }i=2,\dots,k-1,\\ w_{21}^{*}&\text{if }\bar{\mu}_{02}\leq|x|\leq\bar{\mu}_{01},\\ w_{3}^{*}&\text{if }|x|\geq\bar{\mu}_{01}.\end{cases} (A.30)
Proof.

(1) In {μ¯0,i+1|x|μ¯0i}\{\bar{\mu}_{0,i+1}\leq|x|\leq\bar{\mu}_{0i}\}, it follows from (4.26) that w2j=|t|2σμ0,j+1n22μ0,j1|x|2nw_{2j}^{*}=|t|^{-2\sigma}\mu_{0,j+1}^{\frac{n}{2}-2}\mu_{0,j-1}|x|^{2-n} for j=i+1,,k1j=i+1,\dots,k-1 and w2i=|t|2σμ0,i+1n22μ0i1|x|4nw_{2i}^{*}=|t|^{-2\sigma}\mu_{0,i+1}^{\frac{n}{2}-2}\mu_{0i}^{-1}|x|^{4-n}.

w2iw2j(μ0,i+1μ0,i+2)n22μ0,i+1μ0i|t|(n22)(αi+2αi+1)(αi+1αi)1\frac{w_{2i}^{*}}{w_{2j}^{*}}\gtrsim(\frac{\mu_{0,i+1}}{\mu_{0,i+2}})^{\frac{n}{2}-2}\frac{\mu_{0,i+1}}{\mu_{0i}}\approx|t|^{(\frac{n}{2}-2)(\alpha_{i+2}-\alpha_{i+1})-(\alpha_{i+1}-\alpha_{i})}\gtrsim 1

where we have used that (n22)(αi+2αi+1)(αi+1αi)=(n4)2+4(n6)2(n2n6)i1(\frac{n}{2}-2)(\alpha_{i+2}-\alpha_{i+1})-(\alpha_{i+1}-\alpha_{i})=\frac{(n-4)^{2}+4}{(n-6)^{2}}(\frac{n-2}{n-6})^{i-1}. Thus w2jw2iw_{2j}^{*}\lesssim w_{2i}^{*}. It is easy to see that w2jw2iw_{2j}^{*}\lesssim w_{2i}^{*} also holds in {|x|>μ¯0i}\{|x|>\bar{\mu}_{0i}\}. This deduces the first part. The second parts holds obviously by (4.26).

(2) In {μ¯01|x||t|12}\{\bar{\mu}_{01}\leq|x|\leq|t|^{\frac{1}{2}}\}, by the definition (4.26) and (4.27), it is easy to see that w2jw3w_{2j}^{*}\lesssim w_{3}^{*} for j=1,,k1j=1,\dots,k-1 since w2jw_{2j^{*}} have more time decay than w3w_{3}^{*}. In {|x||t|12}\{|x|\geq|t|^{\frac{1}{2}}\}, we have w2jw3w_{2j}^{*}\lesssim w_{3}^{*} by the similar reason. ∎

Remark A.6.1.

Lemma A.5 and A.6 help us consider much less terms in the topology of the outer problem in some special domains.

Lemma A.7.

There exist σ,ϵ>0\sigma,\epsilon>0 small and t0t_{0} negative enough such that

𝒯out[VΨ]α,σout,R1Ψα,σout,.\|{\mathcal{T}}^{out}[V\Psi]\|_{\alpha,\sigma}^{out,*}\lesssim R^{-1}\|\Psi\|_{\alpha,\sigma}^{out,*}. (A.31)
Proof.

Without loss of generality, we assume Ψα,σout,=1\|\Psi\|_{\alpha,\sigma}^{out,*}=1. By (3.13), we rewrite VV as

V=pup1(1j=1kζj)+j=1kζjp(up1Ujp1).\displaystyle V=pu_{*}^{p-1}(1-\sum_{j=1}^{k}\zeta_{j})+\sum_{j=1}^{k}\zeta_{j}p(u_{*}^{p-1}-U_{j}^{p-1}). (A.32)

We shall handle terms respectively.

Consider the first term in (A.32). Using (3.3), the support of 1j=1kζj1-\sum_{j=1}^{k}\zeta_{j} is i=2k{Rμ0i|x|2R1μ0,i1}{Rμ01|x|}\cup_{i=2}^{k}\{R\mu_{0i}\leq|x|\leq 2R^{-1}\mu_{0,i-1}\}\cup\{R\mu_{01}\leq|x|\}.

\bullet In {Rμ01|x|}\{R\mu_{01}\leq|x|\}, we have pup1μ12|x|4R1|x|3pu_{*}^{p-1}\lesssim\mu_{1}^{2}|x|^{-4}\leq R^{-1}|x|^{-3} by Lemma A.1 and A.2. Split the region into {Rμ01|x|μ¯01}{μ¯01|x||t|12}{|x||t|12}\{R\mu_{01}\leq|x|\leq\bar{\mu}_{01}\}\cup\{\bar{\mu}_{01}\leq|x|\leq|t|^{\frac{1}{2}}\}\cup\{|x|\geq|t|^{\frac{1}{2}}\}. In the first set, one has |Ψ|w11+w12+w21|\Psi|\lesssim w_{11}^{*}+w_{12}^{*}+w_{21}^{*} by (A.29) and (A.30). Notice w12+w21w11w_{12}^{*}+w_{21}^{*}\lesssim w_{11}^{*} in {Rμ01|x|μ¯01}\{R\mu_{01}\leq|x|\leq\bar{\mu}_{01}\}. Therefore

|pup1(1j=1kζj)Ψ|R1|x|3w11R1w11.\big{|}pu_{*}^{p-1}(1-\sum_{j=1}^{k}\zeta_{j})\Psi\big{|}\lesssim R^{-1}|x|^{-3}w_{11}^{*}\lesssim R^{-1}w_{11}. (A.33)

In the second set, by (A.29) and (A.30), one has |Ψ|w11+w3|\Psi|\lesssim w_{11}^{*}+w_{3}^{*}. Then

|pup1(1j=1kζj)Ψ|R1|x|3(w11+w3)R1(w11+w3).\big{|}pu_{*}^{p-1}(1-\sum_{j=1}^{k}\zeta_{j})\Psi\big{|}\lesssim\ R^{-1}|x|^{-3}(w_{11}^{*}+w_{3}^{*})\lesssim\ R^{-1}(w_{11}+w_{3}). (A.34)

In the third set, similarly we have

|pup1(1j=1kζj)Ψ|R1|x|3w3R1w3.\big{|}pu_{*}^{p-1}(1-\sum_{j=1}^{k}\zeta_{j})\Psi\big{|}\lesssim R^{-1}|x|^{-3}w_{3}^{*}\lesssim\ R^{-1}w_{3}. (A.35)

\bullet Consider the region {Rμ0i|x|2R1μ0,i1}\{R\mu_{0i}\leq|x|\leq 2R^{-1}\mu_{0,i-1}\}, i=2,,ki=2,\dots,k. We divide it further into two parts, {Rμ0i|x|μ¯0i}{μ¯0i|x|2R1μ0,i1}\{R\mu_{0i}\leq|x|\leq\bar{\mu}_{0i}\}\cup\{\bar{\mu}_{0i}\leq|x|\leq 2R^{-1}\mu_{0,i-1}\}. In {Rμ0i|x|μ¯0i}\{R\mu_{0i}\leq|x|\leq\bar{\mu}_{0i}\}, we have pup1μi2|x|4pu_{*}^{p-1}\lesssim\mu_{i}^{2}|x|^{-4} by Lemma A.1 and A.2. Moreover, one has |Ψ|w1i+w1,i+1+w2,i1+w2i|\Psi|\leq w_{1i}^{*}+w_{1,i+1}^{*}+w_{2,i-1}^{*}+w_{2i}^{*} by Lemma A.5 and A.6. One readily has w1,i+1w1iw_{1,i+1}^{*}\lesssim w_{1i}^{*} in {Rμ0i|x|μ¯0i}\{R\mu_{0i}\leq|x|\leq\bar{\mu}_{0i}\}. Thus

|pup1(1j=1kζj)Ψ|\displaystyle\big{|}pu_{*}^{p-1}(1-\sum_{j=1}^{k}\zeta_{j})\Psi\big{|}\lesssim μi2|x|4(w1i+w1,i+1+w2,i1+w2i)\displaystyle\mu_{i}^{2}|x|^{-4}\left(w_{1i}^{*}+w_{1,i+1}^{*}+w_{2,i-1}^{*}+w_{2i}^{*}\right) (A.36)
\displaystyle\lesssim μi2|x|4(w1i+w2,i1+w2i)\displaystyle\mu_{i}^{2}|x|^{-4}\left(w_{1i}^{*}+w_{2,i-1}^{*}+w_{2i}^{*}\right)
\displaystyle\lesssim R1(w1i+w2i),\displaystyle R^{-1}\left(w_{1i}+w_{2i}\right),

where we have used the fact that in {Rμ0i|x|μ¯0i}\{R\mu_{0i}\leq|x|\leq\bar{\mu}_{0i}\},

μi2|x|4w1i|t|γiμi2+α|x|4αR2w1i,\displaystyle\mu_{i}^{2}|x|^{-4}w_{1i}^{*}\lesssim|t|^{\gamma_{i}}\mu_{i}^{2+\alpha}|x|^{-4-\alpha}\lesssim R^{-2}w_{1i},
μi2|x|4w2,i1μi2|x|4|t|2σμi11n2Rα2|t|σw1i,\displaystyle\mu_{i}^{2}|x|^{-4}w_{2,i-1}^{*}\lesssim\mu_{i}^{2}|x|^{-4}|t|^{-2\sigma}\mu_{i-1}^{1-\frac{n}{2}}\lesssim R^{\alpha-2}|t|^{-\sigma}w_{1i},
μi2|x|4w2,iμi2|x|4|t|2σμi+1n22μi1|x|4nR2w2i.\displaystyle\mu_{i}^{2}|x|^{-4}w_{2,i}^{*}\lesssim\mu_{i}^{2}|x|^{-4}|t|^{-2\sigma}\mu_{i+1}^{\frac{n}{2}-2}\mu_{i}^{-1}|x|^{4-n}\lesssim R^{-2}w_{2i}.

In the other part {μ¯0i|x|2R1μ0,i1}\{\bar{\mu}_{0i}\leq|x|\leq 2R^{-1}\mu_{0,i-1}\}, we have pup1Ui1p1μi12pu_{*}^{p-1}\lesssim U_{i-1}^{p-1}\lesssim\mu_{i-1}^{-2} and w2,i2w1,i1w_{2,i-2}^{*}\lesssim w_{1,i-1}^{*} (which is vacuum if i=2i=2). Then

|pup1(1j=1kζj)Ψ|\displaystyle\big{|}pu_{*}^{p-1}(1-\sum_{j=1}^{k}\zeta_{j})\Psi\big{|}\lesssim μi12(w1,i1+w1i+w2,i2+w2,i1)\displaystyle\mu_{i-1}^{-2}\left(w_{1,i-1}^{*}+w_{1i}^{*}+w_{2,i-2}^{*}+w_{2,i-1}^{*}\right) (A.37)
\displaystyle\lesssim μi12(w1,i1+w1i+w2,i1)\displaystyle\mu_{i-1}^{-2}\left(w_{1,i-1}^{*}+w_{1i}^{*}+w_{2,i-1}^{*}\right)
\displaystyle\lesssim (μi12|t|γi1𝟏{|x|2R1μi1}+R2w2,i1),\displaystyle\left(\mu_{i-1}^{-2}|t|^{\gamma_{i-1}}\mathbf{1}_{\{|x|\leq 2R^{-1}\mu_{i-1}\}}+R^{-2}w_{2,i-1}\right),

where we have used the fact that in {μ¯0i|x|2R1μ0,i1}\{\bar{\mu}_{0i}\leq|x|\leq 2R^{-1}\mu_{0,i-1}\},

μi12w2,i1μi12|t|2σμin22μi11|x|4nR2|t|2σμin22μi11|x|2nR2w2,i1,\displaystyle\mu_{i-1}^{-2}w_{2,i-1}^{*}\lesssim\mu_{i-1}^{-2}|t|^{-2\sigma}\mu_{i}^{\frac{n}{2}-2}\mu_{i-1}^{-1}|x|^{4-n}\lesssim R^{-2}|t|^{-2\sigma}\mu_{i}^{\frac{n}{2}-2}\mu_{i-1}^{-1}|x|^{2-n}\lesssim R^{-2}w_{2,i-1},
μi12w1iμi12|t|γiμiαμ¯in2α|x|2n|t|γi+2σμiα2+1μi1n4α2w2,i1|t|ϵw2,i1.\displaystyle\mu_{i-1}^{-2}w_{1i}^{*}\leq\mu_{i-1}^{-2}|t|^{\gamma_{i}}\mu_{i}^{\alpha}\bar{\mu}_{i}^{n-2-\alpha}|x|^{2-n}\lesssim|t|^{\gamma_{i}+2\sigma}\mu_{i}^{\frac{\alpha}{2}+1}\mu_{i-1}^{\frac{n-4-\alpha}{2}}w_{2,i-1}\lesssim|t|^{-\epsilon}w_{2,i-1}.

By Lemma B.2,

𝒯out[μi12|t|γi1𝟏{|x|2R1μ0,i1}]\displaystyle{\mathcal{T}}^{out}[\mu_{i-1}^{-2}|t|^{\gamma_{i-1}}\mathbf{1}_{\{|x|\leq 2R^{-1}\mu_{0,i-1}\}}] (A.38)
\displaystyle\lesssim {|t|γi1R2 if |x|R1μ0,i1,μi12|t|γi1(R1μi1)n|x|2n if R1μ0,i1|x||t|12,Rn(|x|2)(2n)αi1+γi1|x|2n if |x||t|12.\displaystyle\begin{cases}|t|^{\gamma_{i-1}}R^{-2}&\mbox{ \ \ if \ }|x|\leq R^{-1}\mu_{0,i-1},\\ \mu_{i-1}^{-2}|t|^{\gamma_{i-1}}(R^{-1}\mu_{i-1})^{n}|x|^{2-n}&\mbox{ \ \ if \ }R^{-1}\mu_{0,i-1}\leq|x|\leq|t|^{\frac{1}{2}},\\ R^{-n}(|x|^{2})^{(2-n)\alpha_{i-1}+\gamma_{i-1}}|x|^{2-n}&\mbox{ \ \ if \ }|x|\geq|t|^{\frac{1}{2}}.\end{cases}
\displaystyle\lesssim R1w1,i1.\displaystyle R^{-1}w_{1,i-1}^{*}.

Next we consider the second term in (A.32). Recall the support of ζj\zeta_{j} (3.6) is contained in {R1μ0j|x|2Rμ0j}\{R^{-1}\mu_{0j}\leq|x|\leq 2R\mu_{0j}\}, which are mutually disjoint.

\bullet For j=1j=1, we have |ζ1(up1U1p1)|U2p1ζ1μ22|x|4𝟏{R1μ01|x|2Rμ01}|\zeta_{1}(u_{*}^{p-1}-U_{1}^{p-1})|\lesssim U_{2}^{p-1}\zeta_{1}\lesssim\mu_{2}^{2}|x|^{-4}\mathbf{1}_{\{R^{-1}\mu_{01}\leq|x|\leq 2R\mu_{01}\}} since φ0=0\varphi_{0}=0 in the support of ζ1\zeta_{1}. Then

|ζ1(up1Ujp1)Ψ|μ22|x|4𝟏{R1μ01|x|2Rμ01}(w11+w12+w21)|t|ϵw11,\left|\zeta_{1}(u_{*}^{p-1}-U_{j}^{p-1})\Psi\right|\lesssim\mu_{2}^{2}|x|^{-4}\mathbf{1}_{\{R^{-1}\mu_{01}\leq|x|\leq 2R\mu_{01}\}}\left(w_{11}^{*}+w_{12}^{*}+w_{21}^{*}\right)\lesssim|t|^{-\epsilon}w_{11}, (A.39)

where we have used the fact that in {R1μ01|x|2Rμ01}\{R^{-1}\mu_{01}\leq|x|\leq 2R\mu_{01}\},

μ22|x|4w11μ22|x|4|t|γ1(1+|x|)αR4μ22w11R4|t|2ϵw11,\displaystyle\mu_{2}^{2}|x|^{-4}w_{11}^{*}\lesssim\mu_{2}^{2}|x|^{-4}|t|^{\gamma_{1}}(1+|x|)^{-\alpha}\leq R^{4}\mu_{2}^{2}w_{11}\leq R^{4}|t|^{-2\epsilon}w_{11},
μ22|x|4w21μ22|x|4|t|2σμ2n22|x|2nRn+2|t|2ϵw11,\displaystyle\mu_{2}^{2}|x|^{-4}w_{21}^{*}\lesssim\mu_{2}^{2}|x|^{-4}|t|^{-2\sigma}\mu_{2}^{\frac{n}{2}-2}|x|^{2-n}\lesssim R^{n+2}|t|^{-2\epsilon}w_{11},
μ22|x|4w12μ22|x|4|t|γ2μ2αμ¯2n2α|x|2nRn+2|t|2ϵw11.\displaystyle\mu_{2}^{2}|x|^{-4}w_{12}^{*}\lesssim\mu_{2}^{2}|x|^{-4}|t|^{\gamma_{2}}\mu_{2}^{\alpha}\bar{\mu}_{2}^{n-2-\alpha}|x|^{2-n}\lesssim R^{n+2}|t|^{-2\epsilon}w_{11}.

\bullet For j=2,,kj=2,\dots,k, we have |ζj(up1Ujp1)|(Uj1p1+Uj+1p1+φ0jp1)|ζj|μj12|ζj||\zeta_{j}(u_{*}^{p-1}-U_{j}^{p-1})|\lesssim(U_{j-1}^{p-1}+U_{j+1}^{p-1}+\varphi_{0j}^{p-1})|\zeta_{j}|\lesssim\mu_{j-1}^{-2}|\zeta_{j}| where we have used the fact that φ0=φ0jχj\varphi_{0}=\varphi_{0j}\chi_{j} in {R1μ0j|x|2Rμ0j}\{R^{-1}\mu_{0j}\leq|x|\leq 2R\mu_{0j}\} and Uj+1U_{j+1} is vacuum if j=kj=k. Then

|ζj(up1Ujp1)Ψ|μj12(w1j+w1,j+1+w2,j1+w2j)|ζj||t|ϵ(w1j+w2j),\left|\zeta_{j}(u_{*}^{p-1}-U_{j}^{p-1})\Psi\right|\lesssim\mu_{j-1}^{-2}\left(w_{1j}^{*}+w_{1,j+1}^{*}+w_{2,j-1}^{*}+w_{2j}^{*}\right)|\zeta_{j}|\lesssim|t|^{-\epsilon}\left(w_{1j}+w_{2j}\right), (A.40)

where we have used the fact that in {R1μ0j|x|2Rμ0j}\{R^{-1}\mu_{0j}\leq|x|\leq 2R\mu_{0j}\}, w2,j1w1jw_{2,j-1}^{*}\lesssim w_{1j}^{*} and

μj12w1jμj12|t|γjλj2yj2+αw1jR2+α|t|2ϵw1j,\displaystyle\mu_{j-1}^{-2}w_{1j}^{*}\lesssim\mu_{j-1}^{-2}|t|^{\gamma_{j}}\lesssim\lambda_{j}^{2}\langle y_{j}\rangle^{2+\alpha}w_{1j}\lesssim R^{2+\alpha}|t|^{-2\epsilon}w_{1j},
μj12w1,j+1μj12|t|γj+1μj+1αμ¯j+1n2α|x|2nμj12μj1α2μj+11+α2|t|σw2j|t|ϵw2j,\displaystyle\mu_{j-1}^{-2}w_{1,j+1}^{*}\lesssim\mu_{j-1}^{-2}|t|^{\gamma_{j+1}}\mu_{j+1}^{\alpha}\bar{\mu}_{j+1}^{n-2-\alpha}|x|^{2-n}\lesssim\mu_{j-1}^{-2}\mu_{j}^{1-\frac{\alpha}{2}}\mu_{j+1}^{1+\frac{\alpha}{2}}|t|^{\sigma}w_{2j}\lesssim|t|^{-\epsilon}w_{2j},
μj12w2jμj12|t|2σμj+1n22μj1|x|4nμj12(Rμi)2w2jR2|t|2ϵw2j.\displaystyle\mu_{j-1}^{-2}w_{2j}^{*}\lesssim\mu_{j-1}^{-2}|t|^{-2\sigma}\mu_{j+1}^{\frac{n}{2}-2}\mu_{j}^{-1}|x|^{4-n}\lesssim\mu_{j-1}^{-2}(R\mu_{i})^{2}w_{2j}\lesssim R^{2}|t|^{-2\epsilon}w_{2j}.

Combining the above calculations of the two terms in (A.32), we get the conclusion. ∎

Lemma A.8.

There exist σ,ϵ>0\sigma,\epsilon>0 small and t0t_{0} negative enough such that

𝒩[ϕ,Ψ,μ1]α,σout|t0|ϵ(ϕa,σin,+Ψα,σout,)p.\|\mathcal{N}[\vec{\phi},\Psi,\vec{\mu}_{1}]\|^{out}_{\alpha,\sigma}\lesssim|t_{0}|^{-\epsilon}\left(\|\vec{\phi}\|^{in,*}_{a,\sigma}+\|\Psi\|^{out,*}_{\alpha,\sigma}\right)^{p}.
Proof.

By (3.13) and some elementary inequality

|𝒩[ϕ,Ψ,μ1]|j=1kμjn+22|ϕj|pηj+|Ψ|p.\displaystyle|\mathcal{N}[\vec{\phi},\Psi,\vec{\mu}_{1}]|\lesssim\sum_{j=1}^{k}\mu_{j}^{-\frac{n+2}{2}}|\phi_{j}|^{p}\eta_{j}+|\Psi|^{p}. (A.41)

For the first part on the RHS, recalling (A.12), we obtain

μjn+22|ϕj|pηj\displaystyle\mu_{j}^{-\frac{n+2}{2}}|\phi_{j}|^{p}\eta_{j}\lesssim |t|γjpR(n+1a)pyj(n+1)p𝟏{|x|4Rμ0j}(ϕjj,a,σin,)pR(n+1a)p|t|2ϵw1j(ϕjj,a,σin,)p.\displaystyle|t|^{\gamma_{j}p}\frac{R^{(n+1-a)p}}{\langle y_{j}\rangle^{(n+1)p}}\mathbf{1}_{\{|x|\leq 4R\mu_{0j}\}}\left(\|\phi_{j}\|^{in,*}_{j,a,\sigma}\right)^{p}\lesssim R^{(n+1-a)p}|t|^{-2\epsilon}w_{1j}\left(\|\phi_{j}\|^{in,*}_{j,a,\sigma}\right)^{p}. (A.42)

For the second part on the RHS of (A.41),

\bullet In {|x|μ¯01}\{|x|\geq\bar{\mu}_{01}\}, by (A.29), we have |Ψ|(w11+w3)Ψα,σout,|\Psi|\lesssim(w_{11}^{*}+w_{3}^{*})\|\Psi\|^{out,*}_{\alpha,\sigma} in {μ¯01|x||t|12}\{\bar{\mu}_{01}\leq|x|\leq|t|^{\frac{1}{2}}\} and |Ψ|w3Ψα,σout,|\Psi|\lesssim w_{3}^{*}\|\Psi\|^{out,*}_{\alpha,\sigma} in {|x|>|t|12}\{|x|>|t|^{\frac{1}{2}}\}. Notice

(w3)p=\displaystyle(w_{3}^{*})^{p}= Rp1|t|1+(1p)σ|x|4w3|t|1w3 if |x|>|t|12,\displaystyle R^{p-1}|t|^{1+(1-p)\sigma}|x|^{-4}w_{3}\lesssim|t|^{-1}w_{3}\mbox{ \ \ if \ }|x|>|t|^{\frac{1}{2}},
(w3)p=\displaystyle(w_{3}^{*})^{p}= Rp1|t|(1+σ)(p1)|x|2n12n2w3|t|ϵw3 if μ¯01|x||t|12,\displaystyle R^{p-1}|t|^{-(1+\sigma)(p-1)}|x|^{-\frac{2n-12}{n-2}}w_{3}\lesssim|t|^{-\epsilon}w_{3}\mbox{ \ \ if \ }\bar{\mu}_{01}\leq|x|\leq|t|^{\frac{1}{2}},
(w11)p=\displaystyle(w_{11}^{*})^{p}= R1|t|4n2(1+σ)+δ(n2pα)w3|t|ϵw3 if μ¯01|x||t|12,\displaystyle R^{-1}|t|^{-\frac{4}{n-2}(1+\sigma)+\delta(n-2-p\alpha)}w_{3}\lesssim|t|^{-\epsilon}w_{3}\mbox{ \ \ if \ }\bar{\mu}_{01}\leq|x|\leq|t|^{\frac{1}{2}},

where we take δ2(n2)2\delta\leq 2(n-2)^{-2} in the last formula. Thus

|Ψ|p|t|ϵw3(Ψα,σout,)p.\displaystyle|\Psi|^{p}\lesssim\ |t|^{-\epsilon}w_{3}\left(\|\Psi\|^{out,*}_{\alpha,\sigma}\right)^{p}. (A.43)

\bullet In {1|x|μ¯01}\{1\leq|x|\leq\bar{\mu}_{01}\}, we have |Ψ|(w11+w12+w21)Ψα,σout,w11Ψα,σout,|\Psi|\lesssim(w_{11}^{*}+w_{12}^{*}+w_{21}^{*})\|\Psi\|^{out,*}_{\alpha,\sigma}\lesssim w_{11}^{*}\|\Psi\|^{out,*}_{\alpha,\sigma} since (w12+w21)𝟏{1|x|μ¯01}w11\left(w_{12}^{*}+w_{21}^{*}\right)\mathbf{1}_{\{1\leq|x|\leq\bar{\mu}_{01}\}}\lesssim w_{11}^{*}. Therefore

|Ψ|p(w11)p(Ψα,σout,)p|t|(1+σ)4n2+2δw11(Ψα,σout,)p|t|ϵw11(Ψα,σout,)p,|\Psi|^{p}\lesssim\ \left(w_{11}^{*}\right)^{p}\left(\|\Psi\|^{out,*}_{\alpha,\sigma}\right)^{p}\lesssim|t|^{-(1+\sigma)\frac{4}{n-2}+2\delta}w_{11}\left(\|\Psi\|^{out,*}_{\alpha,\sigma}\right)^{p}\lesssim|t|^{-\epsilon}w_{11}\left(\|\Psi\|^{out,*}_{\alpha,\sigma}\right)^{p}, (A.44)

for δ(n2)1\delta\leq(n-2)^{-1}.

\bullet In {μ¯02|x|1}\{\bar{\mu}_{02}\leq|x|\leq 1\}, we have

(w11)p|t|(1+σ)p|t|ϵw11,\displaystyle(w_{11}^{*})^{p}\lesssim|t|^{-(1+\sigma)p}\lesssim|t|^{-\epsilon}w_{11},
(w12)p|t|γ2pμ¯2n+2|x|n2|t|γ2pμ¯2n2|x|2n|t|ϵw21,\displaystyle(w_{12}^{*})^{p}\lesssim|t|^{\gamma_{2}p}\bar{\mu}_{2}^{n+2}|x|^{-n-2}\lesssim|t|^{\gamma_{2}p}\bar{\mu}_{2}^{n-2}|x|^{2-n}\lesssim|t|^{-\epsilon}w_{21},
(w21)p|t|2σpμ2(n22)p|x|(4n)p|t|2σpμ2n21|x|2n|t|ϵw21,\displaystyle(w_{21}^{*})^{p}\lesssim|t|^{-2\sigma p}\mu_{2}^{(\frac{n}{2}-2)p}|x|^{(4-n)p}\lesssim|t|^{-2\sigma p}\mu_{2}^{\frac{n}{2}-1}|x|^{2-n}\lesssim|t|^{-\epsilon}w_{21},

where we have used n2(n4)pn-2\leq(n-4)p when n6n\geq 6 in the last inequality. Then

|Ψ|p[(w11)p+(w12)p+(w21)p](Ψα,σout,)p|t|ϵ(w11+w21)(Ψα,σout,)p.\displaystyle|\Psi|^{p}\lesssim[(w_{11}^{*})^{p}+(w_{12}^{*})^{p}+(w_{21}^{*})^{p}](\|\Psi\|^{out,*}_{\alpha,\sigma})^{p}\lesssim|t|^{-\epsilon}(w_{11}+w_{21})(\|\Psi\|^{out,*}_{\alpha,\sigma})^{p}. (A.45)

\bullet In {μ¯0,i+1|x|μ¯0i}\{\bar{\mu}_{0,i+1}\leq|x|\leq\bar{\mu}_{0i}\}, i=2,,ki=2,\dots,k, we have

(w1i)p\displaystyle(w_{1i}^{*})^{p}\lesssim\ |t|γipyiαpμi2|t|γi(p1)yi2+ααpw1i|t|σ(p1)μiμi11w1i|t|ϵw1i\displaystyle|t|^{\gamma_{i}p}\langle y_{i}\rangle^{-\alpha p}\lesssim\mu_{i}^{2}|t|^{\gamma_{i}(p-1)}\langle y_{i}\rangle^{2+\alpha-\alpha p}w_{1i}\lesssim|t|^{-\sigma(p-1)}\mu_{i}\mu_{i-1}^{-1}w_{1i}\lesssim|t|^{-\epsilon}w_{1i}

provided ϵ<2n6\epsilon<\frac{2}{n-6}.

(w1,i+1)p\displaystyle(w_{1,i+1}^{*})^{p}\lesssim |t|pγi+1μ¯i+1n+2|x|n2μin+22|t|σpμ¯i+1n2|x|2n\displaystyle\ |t|^{p\gamma_{i+1}}\bar{\mu}_{i+1}^{n+2}|x|^{-n-2}\lesssim\mu_{i}^{-\frac{n+2}{2}}|t|^{-\sigma p}\bar{\mu}_{i+1}^{n-2}|x|^{2-n}
\displaystyle\approx λi+1μi+1n22μi1|t|σp|x|2n|t|ϵw2i\displaystyle\ \lambda_{i+1}\mu_{i+1}^{\frac{n}{2}-2}\mu^{-1}_{i}|t|^{-\sigma p}|x|^{2-n}\lesssim|t|^{-\epsilon}w_{2i}

provided ϵ<2σ+σp+2n6\epsilon<-2\sigma+\sigma p+\frac{2}{n-6}.

(w2,i1)p\displaystyle(w_{2,i-1}^{*})^{p}\lesssim |t|2σpμi1n+22|t|2σpμi1n+22(μ¯iμi)2+αyi2α\displaystyle\ |t|^{-2\sigma p}\mu_{i-1}^{-\frac{n+2}{2}}\lesssim|t|^{-2\sigma p}\mu_{i-1}^{-\frac{n+2}{2}}(\frac{\bar{\mu}_{i}}{\mu_{i}})^{2+\alpha}\langle y_{i}\rangle^{-2-\alpha} (A.46)
\displaystyle\lesssim |t|2σp(μiμi1)1α2μi2μi11n2yi2α|t|ϵw1i\displaystyle\ |t|^{-2\sigma p}(\frac{\mu_{i}}{\mu_{i-1}})^{1-\frac{\alpha}{2}}\mu_{i}^{-2}\mu_{i-1}^{1-\frac{n}{2}}\langle y_{i}\rangle^{-2-\alpha}\lesssim|t|^{-\epsilon}w_{1i} (A.47)

provided ϵ<1n6\epsilon<\frac{1}{n-6}.

(w2i)p\displaystyle(w_{2i}^{*})^{p}\lesssim |t|2σpμi+1(n22)pμip|x|(4n)p|t|2σpμi+1(n22)pμip|x|2nμ¯i+1(4n)p(2n)\displaystyle\ |t|^{-2\sigma p}\mu_{i+1}^{(\frac{n}{2}-2)p}\mu_{i}^{-p}|x|^{(4-n)p}\lesssim|t|^{-2\sigma p}\mu_{i+1}^{(\frac{n}{2}-2)p}\mu_{i}^{-p}|x|^{2-n}\bar{\mu}_{i+1}^{(4-n)p-(2-n)} (A.48)
\displaystyle\approx λj+1|t|2σpμi+1n22μi1|x|2n|t|ϵw2i\displaystyle\ \lambda_{j+1}|t|^{-2\sigma p}\mu_{i+1}^{\frac{n}{2}-2}\mu_{i}^{-1}|x|^{2-n}\lesssim|t|^{-\epsilon}w_{2i} (A.49)

provide ϵ<2n6\epsilon<\frac{2}{n-6}. Here we have used (4n)p(2n)0(4-n)p-(2-n)\leq 0 when n6n\geq 6.

Therefore, for i=2,,ki=2,\dots,k,

|Ψ|p\displaystyle|\Psi|^{p}\lesssim (w1i+w1,i+1+w2,i1+w2i)p(Ψα,σout,)p|t|ϵ(w1i+w2i)(Ψα,σout,)p,\displaystyle\left(w_{1i}^{*}+w_{1,i+1}^{*}+w_{2,i-1}^{*}+w_{2i}^{*}\right)^{p}\left(\|\Psi\|^{out,*}_{\alpha,\sigma}\right)^{p}\lesssim|t|^{-\epsilon}\left(w_{1i}+w_{2i}\right)\left(\|\Psi\|^{out,*}_{\alpha,\sigma}\right)^{p},

where w1,i+1,w2iw_{1,i+1}^{*},w_{2i}^{*} are vacuum if i=ki=k and w1,i+1w_{1,i+1}^{*} are vacuum if i=k,k1i=k,k-1. ∎

Proof of Proposition 4.7.

This is a combination of results in Lemma A.3, A.4, A.7, A.8 and Lemma 4.4, 4.5 4.6. ∎

Appendix B Some estimates for the outer problem

B.1. Basic estimates

Let G(x,t)G(x,t) denote the standard heat kernel on n\mathbb{R}^{n}, that is

G(x,t)=1(4πt)n/2e|x|24t.\displaystyle G(x,t)=\frac{1}{(4\pi t)^{n/2}}e^{-\frac{|x|^{2}}{4t}}. (B.1)

Recall the 𝒯out[g](x,t){\mathcal{T}}^{out}[g](x,t) defined by (4.19).

Lemma B.1.

Suppose n>2n>2, a0a\geq 0, d1d212d_{1}\leq d_{2}\leq\frac{1}{2} and bb satisfies

{n2b+d2(an)>1 if a<n,n2b+d1(an)>1 if an,\begin{cases}\frac{n}{2}-b+d_{2}(a-n)>1&\mbox{ \ \ if \ }a<n,\\ \frac{n}{2}-b+d_{1}(a-n)>1&\mbox{ \ \ if \ }a\geq n,\end{cases} (B.2)

0c1,c2c0\leq c_{1},c_{2}\leq c_{**}. Then there exists CC depending on n,a,b,d1,d2,cn,a,b,d_{1},d_{2},c_{**} such that for t<1t<-1

𝒯out[|t|b|x|a𝟏{c1|t|d1|x|c2|t|d2}](0,t)C{|t|b(c1|t|d1)2aif a(2,),|t|bln(c2|t|d2/(c1|t|d1))if a=2,|t|b(c2|t|d2)2aif a[0,2).{\mathcal{T}}^{out}\left[\frac{|t|^{b}}{|x|^{a}}\mathbf{1}_{\{c_{1}|t|^{d_{1}}\leq|x|\leq c_{2}|t|^{d_{2}}\}}\right](0,t)\leq C\begin{cases}|t|^{b}(c_{1}|t|^{d_{1}})^{2-a}&\text{if }a\in(2,\infty),\\ |t|^{b}\ln(c_{2}|t|^{d_{2}}/(c_{1}|t|^{d_{1}}))&\text{if }a=2,\\ |t|^{b}(c_{2}|t|^{d_{2}})^{2-a}&\text{if }a\in[0,2).\end{cases}
Proof.

Using (B.1), we obtain

tn1(ts)n/2e|y|24(ts)|s|b|y|a𝟏{c1|s|d1|y|c2|s|d2}𝑑y𝑑s\displaystyle\int_{-\infty}^{t}\int_{\mathbb{R}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|y|^{2}}{4(t-s)}}\frac{|s|^{b}}{|y|^{a}}\mathbf{1}_{\{c_{1}|s|^{d_{1}}\leq|y|\leq c_{2}|s|^{d_{2}}\}}dyds
\displaystyle\approx tc1|s|d1c2|s|d2|s|b(ts)n/2er24(ts)rn1a𝑑r𝑑stc12|s|2d14(ts)c22|s|2d24(ts)ezzna22|s|b(ts)a/2𝑑z𝑑s\displaystyle\int_{-\infty}^{t}\int_{c_{1}|s|^{d_{1}}}^{c_{2}|s|^{d_{2}}}\frac{|s|^{b}}{(t-s)^{n/2}}e^{-\frac{r^{2}}{4(t-s)}}r^{n-1-a}drds\approx\int_{-\infty}^{t}\int_{\frac{c_{1}^{2}|s|^{2d_{1}}}{4(t-s)}}^{\frac{c_{2}^{2}|s|^{2d_{2}}}{4(t-s)}}e^{-z}z^{\frac{n-a-2}{2}}\frac{|s|^{b}}{(t-s)^{a/2}}dzds
=\displaystyle= t|s|b(ts)a/2F(c12|s|2d14(ts),c22|s|2d24(ts))𝑑s,\displaystyle\int_{-\infty}^{t}\frac{|s|^{b}}{(t-s)^{a/2}}F\left(\frac{c_{1}^{2}|s|^{2d_{1}}}{4(t-s)},\frac{c_{2}^{2}|s|^{2d_{2}}}{4(t-s)}\right)ds, (B.3)

where

F(A,B):=ABezzna22𝑑z.F(A,B):=\int_{A}^{B}e^{-z}z^{\frac{n-a-2}{2}}dz.

We shall split (B.3) into four integrals J1,J2,J3,J4J_{1},J_{2},J_{3},J_{4} according to the regions of ss. First, in the region s[tc12|t|2d1,t]s\in[t-c_{1}^{2}|t|^{2d_{1}},t], one has |st|c12|t||s-t|\leq c_{1}^{2}|t| when t<1t<-1. Therefore

J1=\displaystyle J_{1}= tc12|t|2d1t|s|b(ts)a/2F(c12|s|2d14(ts),c22|s|2d24(ts))𝑑s\displaystyle\int_{t-c_{1}^{2}|t|^{2d_{1}}}^{t}\frac{|s|^{b}}{(t-s)^{a/2}}F\left(\frac{c_{1}^{2}|s|^{2d_{1}}}{4(t-s)},\frac{c_{2}^{2}|s|^{2d_{2}}}{4(t-s)}\right)ds
\displaystyle\lesssim |t|btc12|t|2d1t1(ts)a/2ec12|t|2d14(ts)(1+c2)2(d1)𝑑s\displaystyle\ |t|^{b}\int_{t-c_{1}^{2}|t|^{2d_{1}}}^{t}\frac{1}{(t-s)^{a/2}}e^{-\frac{c_{1}^{2}|t|^{2d_{1}}}{4(t-s)}(1+c_{**}^{2})^{2(d_{1})^{-}}}ds
\displaystyle\approx c12a|t|b+d1(2a)(1+c2)2(d1)4es~s~a22𝑑s~c12a|t|b+d1(2a),\displaystyle\ c_{1}^{2-a}|t|^{b+d_{1}(2-a)}\int_{\frac{(1+c_{**}^{2})^{2(d_{1})^{-}}}{4}}^{\infty}e^{-\tilde{s}}\tilde{s}^{\frac{a}{2}-2}d\tilde{s}\lesssim c_{1}^{2-a}|t|^{b+d_{1}(2-a)},

where (d1)=min{0,d1}(d_{1})^{-}=\min\{0,d_{1}\}.

Second, in the region s[tc22|t|2d2,tc12|t|2d1]s\in[t-c_{2}^{2}|t|^{2d_{2}},t-c_{1}^{2}|t|^{2d_{1}}],

J2=\displaystyle J_{2}= tc22|t|2d2tc12|t|2d1|s|b(ts)a/2F(c12|s|2d14(ts),c22|s|2d24(ts))𝑑s\displaystyle\int_{t-c_{2}^{2}|t|^{2d_{2}}}^{t-c_{1}^{2}|t|^{2d_{1}}}\frac{|s|^{b}}{(t-s)^{a/2}}F\left(\frac{c_{1}^{2}|s|^{2d_{1}}}{4(t-s)},\frac{c_{2}^{2}|s|^{2d_{2}}}{4(t-s)}\right)ds (B.4)
\displaystyle\lesssim tc22|t|2d2tc12|t|2d1|s|b(ts)a/2F(c12|t|2d1(1+c2)2(d1)4(ts),c22|t|2d2(1+c2)2(d2)+4(ts))𝑑s\displaystyle\int_{t-c_{2}^{2}|t|^{2d_{2}}}^{t-c_{1}^{2}|t|^{2d_{1}}}\frac{|s|^{b}}{(t-s)^{a/2}}F\left(\frac{c_{1}^{2}|t|^{2d_{1}}(1+c_{**}^{2})^{2(d_{1})^{-}}}{4(t-s)},\frac{c_{2}^{2}|t|^{2d_{2}}(1+c_{**}^{2})^{2(d_{2})^{+}}}{4(t-s)}\right)ds
\displaystyle\lesssim tc22|t|2d2tc12|t|2d1|t|b(ts)a/2{1 if a<n,|ln(c12|t|2d1(1+c2)2(d1)4(ts))| if a=n,(c12|t|2d1ts)na2 if a>n,𝑑s\displaystyle\int_{t-c_{2}^{2}|t|^{2d_{2}}}^{t-c_{1}^{2}|t|^{2d_{1}}}\frac{|t|^{b}}{(t-s)^{a/2}}\begin{cases}1&\mbox{ \ \ if \ }a<n,\\ \left|\ln\left(\frac{c_{1}^{2}|t|^{2d_{1}}(1+c_{**}^{2})^{2(d_{1})^{-}}}{4(t-s)}\right)\right|&\mbox{ \ \ if \ }a=n,\\ \left(\frac{c_{1}^{2}|t|^{2d_{1}}}{t-s}\right)^{\frac{n-a}{2}}&\mbox{ \ \ if \ }a>n,\end{cases}ds
\displaystyle\lesssim {c12a|t|b+d1(2a)if 2<a,|t|blog(c2/c1|t|2(d2d1))if a=2,c22a|t|b+d2(2a)if 0a<2,\displaystyle\begin{cases}c_{1}^{2-a}|t|^{b+d_{1}(2-a)}&\text{if }2<a,\\ |t|^{b}\log(c_{2}/c_{1}|t|^{2(d_{2}-d_{1})})&\text{if }a=2,\\ c_{2}^{2-a}|t|^{b+d_{2}(2-a)}&\text{if }0\leq a<2,\end{cases}

where (d2)+=max{0,d2}(d_{2})^{+}=\max\{0,d_{2}\}.

Third, when s[2tc22|t|2d2,tc22|t|2d2]s\in[2t-c_{2}^{2}|t|^{2d_{2}},t-c_{2}^{2}|t|^{2d_{2}}],

J3=\displaystyle J_{3}= 2tc22|t|2d2tc22|t|2d2|s|b(ts)a/2F(c12|s|2d14(ts),c22|s|2d24(ts))𝑑s\displaystyle\int_{2t-c_{2}^{2}|t|^{2d_{2}}}^{t-c_{2}^{2}|t|^{2d_{2}}}\frac{|s|^{b}}{(t-s)^{a/2}}F\left(\frac{c_{1}^{2}|s|^{2d_{1}}}{4(t-s)},\frac{c_{2}^{2}|s|^{2d_{2}}}{4(t-s)}\right)ds (B.5)
\displaystyle\lesssim 2tc22|t|2d2tc22|t|2d2|t|b(ts)a/2F(c12|t|2d1(2+c2)2(d2)4(ts),c22|t|2d2(2+c2)2(d2)+4(ts))𝑑s\displaystyle\int_{2t-c_{2}^{2}|t|^{2d_{2}}}^{t-c_{2}^{2}|t|^{2d_{2}}}\frac{|t|^{b}}{(t-s)^{a/2}}F\left(\frac{c_{1}^{2}|t|^{2d_{1}}(2+c_{**}^{2})^{2(d_{2})^{-}}}{4(t-s)},\frac{c_{2}^{2}|t|^{2d_{2}}(2+c_{**}^{2})^{2(d_{2})^{+}}}{4(t-s)}\right)ds
\displaystyle\lesssim 2tc22|t|2d2tc22|t|2d2|t|b(ts)a/2{(c22|t|2d2ts)na2 if a<n,ln(c22|t|2d2(2+c2)2(d2)+c12|t|2d1(2+c2)2(d2)) if a=n,(c12|t|2d1ts)na2 if a>n,𝑑s\displaystyle\int_{2t-c_{2}^{2}|t|^{2d_{2}}}^{t-c_{2}^{2}|t|^{2d_{2}}}\frac{|t|^{b}}{(t-s)^{a/2}}\begin{cases}\left(\frac{c_{2}^{2}|t|^{2d_{2}}}{t-s}\right)^{\frac{n-a}{2}}&\mbox{ \ \ if \ }a<n,\\ \ln\left(\frac{c_{2}^{2}|t|^{2d_{2}}(2+c_{**}^{2})^{2(d_{2})^{+}}}{c_{1}^{2}|t|^{2d_{1}}(2+c_{**}^{2})^{2(d_{2})^{-}}}\right)&\mbox{ \ \ if \ }a=n,\\ \left(\frac{c_{1}^{2}|t|^{2d_{1}}}{t-s}\right)^{\frac{n-a}{2}}&\mbox{ \ \ if \ }a>n,\end{cases}ds
\displaystyle\lesssim {c22a|t|b+d2(2a) if a<n,c22n|t|b+d2(2n)ln(c22|t|2d2(2+c2)2(d2)+c12|t|2d1(2+c2)2(d2)) if a=n,|t|bc1na|t|d1(na)c22n|t|d2(2n) if a>n.\displaystyle\begin{cases}c_{2}^{2-a}|t|^{b+d_{2}(2-a)}&\mbox{ \ \ if \ }a<n,\\ c_{2}^{2-n}|t|^{b+d_{2}(2-n)}\ln\left(\frac{c_{2}^{2}|t|^{2d_{2}}(2+c_{**}^{2})^{2(d_{2})^{+}}}{c_{1}^{2}|t|^{2d_{1}}(2+c_{**}^{2})^{2(d_{2})^{-}}}\right)&\mbox{ \ \ if \ }a=n,\\ |t|^{b}c_{1}^{n-a}|t|^{d_{1}(n-a)}c_{2}^{2-n}|t|^{d_{2}(2-n)}&\mbox{ \ \ if \ }a>n.\end{cases}

Fourth, when s(,2tc22|t|2d2]s\in(-\infty,2t-c_{2}^{2}|t|^{2d_{2}}], we have s2tss\frac{-s}{2}\leq t-s\leq-s. For a<na<n,

J4=\displaystyle J_{4}= 2tc22|t|2d2|s|b(ts)a/2F(c12|s|2d14(ts),c22|s|2d24(ts))𝑑s\displaystyle\int_{-\infty}^{2t-c_{2}^{2}|t|^{2d_{2}}}\frac{|s|^{b}}{(t-s)^{a/2}}F\left(\frac{c_{1}^{2}|s|^{2d_{1}}}{4(t-s)},\frac{c_{2}^{2}|s|^{2d_{2}}}{4(t-s)}\right)ds
\displaystyle\lesssim 2tc22|t|2d2|s|ba2F(c12|s|2d14|s|,c22|s|2d22|s|)𝑑s\displaystyle\int_{-\infty}^{2t-c_{2}^{2}|t|^{2d_{2}}}|s|^{b-\frac{a}{2}}F\left(\frac{c_{1}^{2}|s|^{2d_{1}}}{4|s|},\frac{c_{2}^{2}|s|^{2d_{2}}}{2|s|}\right)ds
\displaystyle\lesssim 2tc22|t|2d2|s|ba2c2na|s|(2d21)na2𝑑s\displaystyle\int_{-\infty}^{2t-c_{2}^{2}|t|^{2d_{2}}}|s|^{b-\frac{a}{2}}c_{2}^{n-a}|s|^{(2d_{2}-1)\frac{n-a}{2}}ds
\displaystyle\lesssim c2na|t|b+d2(na)n2+1c22a|t|b+d2(2a),\displaystyle c_{2}^{n-a}|t|^{b+d_{2}(n-a)-\frac{n}{2}+1}\lesssim c_{2}^{2-a}|t|^{b+d_{2}(2-a)},

where (B.2) is needed to guarantee the integrability and the last step is using d21/2d_{2}\leq 1/2, c2cc_{2}\leq c_{**} and n>2n>2. For ana\geq n, similarly we have

J4\displaystyle J_{4}\lesssim {c1na|t|b+d1(na)+1n2 if a>n,|t|b+1a2ln(2c2|t|d2c1|t|d1) if a=n,\displaystyle\begin{cases}c_{1}^{n-a}|t|^{b+d_{1}(n-a)+1-\frac{n}{2}}&\mbox{ \ \ if \ }a>n,\\ |t|^{b+1-\frac{a}{2}}\ln\left(\frac{2c_{2}|t|^{d_{2}}}{c_{1}|t|^{d_{1}}}\right)&\mbox{ \ \ if \ }a=n,\end{cases}
\displaystyle\lesssim c12a|t|b+d1(2a).\displaystyle c_{1}^{2-a}|t|^{b+d_{1}(2-a)}.

Collecting the estimates of J1J_{1} to J4J_{4}, we get the conclusion. ∎

Remark B.1.1.

After close examination of the proof, only (B.4) needs the comparison between aa and 2. In fact, if a<2a<2, one can let c1=0c_{1}=0 to get

𝒯out[|t|b|x|a𝟏{|x|c2|t|d2}](0,t)Cc22a|t|b+d2(2a).{\mathcal{T}}^{out}\left[\frac{|t|^{b}}{|x|^{a}}\mathbf{1}_{\{|x|\leq c_{2}|t|^{d_{2}}\}}\right](0,t)\leq Cc_{2}^{2-a}|t|^{b+d_{2}(2-a)}.
Lemma B.2.

Suppose n>2n>2, a0a\geq 0, d1d212d_{1}\leq d_{2}\leq\frac{1}{2} and bb satisfies (B.2), 0c1,c2c0\leq c_{1},c_{2}\leq c_{**}. Denote

u(x,t)=𝒯out[|t|b|x|a𝟏{c1|t|d1|x|c2|t|d2}](x,t).u(x,t)=\mathcal{T}^{out}\left[\frac{|t|^{b}}{|x|^{a}}\mathbf{1}_{\{c_{1}|t|^{d_{1}}\leq|x|\leq c_{2}|t|^{d_{2}}\}}\right](x,t).

Then there exists CC depending on n,a,b,d1,d2,cn,a,b,d_{1},d_{2},c_{**} such that for t<1t<-1

u(x,t)C{c12a|t|b+d1(2a)if a(2,),c22a|t|b+d2(2a)if a[0,2).\displaystyle u(x,t)\leq C\begin{cases}c_{1}^{2-a}|t|^{b+d_{1}(2-a)}&\text{if }a\in(2,\infty),\\ c_{2}^{2-a}|t|^{b+d_{2}(2-a)}&\text{if }a\in[0,2).\end{cases} (B.6)

Moreover, when |x|>2c2|2t|d2|x|>2c_{2}|2t|^{d_{2}}, a<na<n,

u(x,t)Cc2na{|t|b+d2(na)|x|2nif 2c2|2t|d2|x||t|12,|x|2b+2d2(na)+2nif |x||t|12.\displaystyle u(x,t)\leq Cc_{2}^{n-a}\begin{cases}|t|^{b+d_{2}(n-a)}|x|^{2-n}&\text{if }2c_{2}|2t|^{d_{2}}\leq|x|\leq|t|^{\frac{1}{2}},\\ |x|^{2b+2d_{2}(n-a)+2-n}&\text{if }|x|\geq|t|^{\frac{1}{2}}.\end{cases} (B.7)

When |x|2c1|2t|d1|x|\geq 2c_{1}|2t|^{d_{1}}, a>na>n,

u(x,t)Cc1na{|t|b+d1(na)|x|2n if 2c1|2t|d1|x||t|12,|x|2b+2d1(na)|x|2n if |x||t|12.u(x,t)\leq Cc_{1}^{n-a}\begin{cases}|t|^{b+d_{1}(n-a)}|x|^{2-n}&\mbox{ \ \ if \ }2c_{1}|2t|^{d_{1}}\leq|x|\leq|t|^{\frac{1}{2}},\\ |x|^{2b+2d_{1}(n-a)}|x|^{2-n}&\mbox{ \ \ if \ }|x|\geq|t|^{\frac{1}{2}}.\end{cases} (B.8)
Proof.

\bullet Since

|t|b|x|a𝟏{c1|t|d1|x|c2|t|d2}|t|bmin{1c1a|t|d1a,1|x|a}𝟏{|x|c2|t|d2}=f(x,t),\frac{|t|^{b}}{|x|^{a}}\mathbf{1}_{\{c_{1}|t|^{d_{1}}\leq|x|\leq c_{2}|t|^{d_{2}}\}}\leq|t|^{b}\min\left\{\frac{1}{c_{1}^{a}|t|^{d_{1}a}},\frac{1}{|x|^{a}}\right\}\mathbf{1}_{\{|x|\leq c_{2}|t|^{d_{2}}\}}=f(x,t),

then

u(x,t)tnG(xy,ts)f(y,s)𝑑y𝑑s.\displaystyle u(x,t)\lesssim\int_{-\infty}^{t}\int_{\mathbb{R}^{n}}G(x-y,t-s)f(y,s)dyds.

Since GG and ff are both decreasing functions for each time slice, using Hardy-Littlewood rearrangement inequality, then

u(x,t)u(0,t)=J1+J2,u(x,t)\leq u(0,t)=J_{1}+J_{2},

where

J1=\displaystyle J_{1}= tnG(y,ts)|s|bmin{1c1a|s|d1a,1|y|a}𝟏{|y|c1|s|d1}𝑑y𝑑s,\displaystyle\int_{-\infty}^{t}\int_{\mathbb{R}^{n}}G(y,t-s)|s|^{b}\min\left\{\frac{1}{c_{1}^{a}|s|^{d_{1}a}},\frac{1}{|y|^{a}}\right\}\mathbf{1}_{\{|y|\leq c_{1}|s|^{d_{1}}\}}dyds, (B.9)
J2=\displaystyle J_{2}= tnG(y,ts)|s|bmin{1c1a|s|d1a,1|y|a}𝟏{c1|s|d1|y|c2|s|d2}𝑑y𝑑s.\displaystyle\int_{-\infty}^{t}\int_{\mathbb{R}^{n}}G(y,t-s)|s|^{b}\min\left\{\frac{1}{c_{1}^{a}|s|^{d_{1}a}},\frac{1}{|y|^{a}}\right\}\mathbf{1}_{\{c_{1}|s|^{d_{1}}\leq|y|\leq c_{2}|s|^{d_{2}}\}}dyds. (B.10)

Applying Lemma B.1 and Remark B.1.1, we obtain

J1c12a|t|b+d1(2a),J2{c12a|t|b+d1(2a)if a(2,),c22a|t|b+d2(2a)if a(0,2).\displaystyle J_{1}\lesssim c_{1}^{2-a}|t|^{b+d_{1}(2-a)},\quad J_{2}\lesssim\begin{cases}c_{1}^{2-a}|t|^{b+d_{1}(2-a)}&\text{if }a\in(2,\infty),\\ c_{2}^{2-a}|t|^{b+d_{2}(2-a)}&\text{if }a\in(0,2).\end{cases}

Therefore (B.6) is established.

\bullet Next we will establish (B.7) when d20d_{2}\leq 0. In this case, for x>2c2|t|d2x>2c_{2}|t|^{d_{2}}, one has

12|x||xy|2|x| for y with |y||s|d2 and st.\displaystyle\frac{1}{2}|x|\leq|x-y|\leq 2|x|\text{ for }y\text{ with }|y|\leq|s|^{d_{2}}\text{ and }s\leq t. (B.11)

Then

u(x,t)\displaystyle u(x,t)\lesssim tn1(ts)n/2e|x|216(ts)|s|b|y|a𝟏{c1|s|d1|y|c2|s|d2}𝑑y𝑑s\displaystyle\int_{-\infty}^{t}\int_{\mathbb{R}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^{2}}{16(t-s)}}\frac{|s|^{b}}{|y|^{a}}\mathbf{1}_{\{c_{1}|s|^{d_{1}}\leq|y|\leq c_{2}|s|^{d_{2}}\}}dyds
\displaystyle\approx tc1|s|d1c2|s|d21(ts)n/2e|x|216(ts)|s|brn1a𝑑r𝑑s\displaystyle\int^{t}_{-\infty}\int_{c_{1}|s|^{d_{1}}}^{c_{2}|s|^{d_{2}}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^{2}}{16(t-s)}}|s|^{b}r^{n-1-a}drds
\displaystyle\lesssim c2nat1(ts)n/2e|x|216(ts)|s|b+d2(na)𝑑sc2na(max{|t|,|x|2})b+d2(na)|x|2n.\displaystyle c_{2}^{n-a}\int^{t}_{-\infty}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^{2}}{16(t-s)}}|s|^{b+d_{2}(n-a)}ds\leq c_{2}^{n-a}\left(\max\{|t|,|x|^{2}\}\right)^{b+d_{2}(n-a)}|x|^{2-n}.

The last step follows from the following two facts

2tt1(ts)n/2e|x|216(ts)|s|b+d2(na)𝑑s|t|b+d2(na)2tt1(ts)n/2e|x|216(ts)𝑑s\displaystyle\int_{2t}^{t}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^{2}}{16(t-s)}}|s|^{b+d_{2}(n-a)}ds\approx|t|^{b+d_{2}(n-a)}\int_{2t}^{t}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^{2}}{16(t-s)}}ds
\displaystyle\approx |t|b+d2(na)|x|2n|x|216|t|ezzn22𝑑z{|t|b+d2(na)|x|2nif |x|<|t|12,|t|b+d2(na)|x|216|t|ezzn22𝑑zif |x||t|12.\displaystyle|t|^{b+d_{2}(n-a)}|x|^{2-n}\int_{\frac{|x|^{2}}{16|t|}}^{\infty}e^{-z}z^{\frac{n}{2}-2}dz\lesssim\begin{cases}|t|^{b+d_{2}(n-a)}|x|^{2-n}&\text{if }|x|<|t|^{\frac{1}{2}},\\ |t|^{b+d_{2}(n-a)}\int_{\frac{|x|^{2}}{16|t|}}^{\infty}e^{-z}z^{\frac{n}{2}-2}dz&\text{if }|x|\geq|t|^{\frac{1}{2}}.\end{cases}

and

2t1(ts)n/2e|x|216(ts)|s|b+d2(na)𝑑s2te|x|216|s||s|b+d2(na)n2𝑑s\displaystyle\int_{-\infty}^{2t}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^{2}}{16(t-s)}}|s|^{b+d_{2}(n-a)}ds\approx\int_{-\infty}^{2t}e^{-\frac{|x|^{2}}{16|s|}}|s|^{b+d_{2}(n-a)-\frac{n}{2}}ds
\displaystyle\approx |x|2b+2d2(na)n+20|x|232|t|ezzbd2(na)+n22𝑑z{|t|b+d2(na)n2+1if |x|<|t|12,|x|2b+2d2(na)n+2if |x||t|12,\displaystyle|x|^{2b+2d_{2}(n-a)-n+2}\int_{0}^{\frac{|x|^{2}}{32|t|}}e^{-z}z^{-b-d_{2}(n-a)+\frac{n}{2}-2}dz\approx\begin{cases}|t|^{b+d_{2}(n-a)-\frac{n}{2}+1}&\text{if }|x|<|t|^{\frac{1}{2}},\\ |x|^{2b+2d_{2}(n-a)-n+2}&\text{if }|x|\geq|t|^{\frac{1}{2}},\end{cases}

where bd2(na)+n22>1-b-d_{2}(n-a)+\frac{n}{2}-2>-1 is needed to guarantee the integrability. Thus (B.7) is established.

\bullet Next we will establish (B.7) when d2>0d_{2}>0. We do not have (B.11) anymore. In this case, |x|2c2|2t|d2|x|\geq 2c_{2}|2t|^{d_{2}} is equivalent to (|x|2c2)1/d22t-(\frac{|x|}{2c_{2}})^{1/d_{2}}\leq 2t. We write

(,t)=((|x|2c2)1/d2,t)((2|x|c2)1/d2,(|x|2c2)1/d2)(,(2|x|c2)1/d2)(-\infty,t)=(-(\frac{|x|}{2c_{2}})^{1/d_{2}},t)\cup(-(\frac{2|x|}{c_{2}})^{1/d_{2}},-(\frac{|x|}{2c_{2}})^{1/d_{2}})\cup(-\infty,-(\frac{2|x|}{c_{2}})^{1/d_{2}})

and thus

utn1(ts)n/2e|xy|24(ts)|s|b|y|a𝟏{|y|c2|s|d2}𝑑y𝑑s=u1+u2+u3\displaystyle u\lesssim\int_{-\infty}^{t}\int_{\mathbb{R}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^{2}}{4(t-s)}}\frac{|s|^{b}}{|y|^{a}}\mathbf{1}_{\{|y|\leq c_{2}|s|^{d_{2}}\}}dyds=u_{1}+u_{2}+u_{3} (B.12)

where u1,u2,u3u_{1},u_{2},u_{3} are the integrations according to the three intervals respectively. We shall verify that u1,u2,u3u_{1},u_{2},u_{3} all satisfy (B.7). For u1u_{1}, one has c2|s|d2|x|/2c_{2}|s|^{d_{2}}\leq|x|/2 for such ss. Then

u1=\displaystyle u_{1}= (|x|/2c2)1/d2tn1(ts)n/2e|xy|24(ts)|s|b|y|a𝟏{|y|c2|s|d2}𝑑y𝑑s\displaystyle\int^{t}_{-(|x|/2c_{2})^{1/d_{2}}}\int_{\mathbb{R}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^{2}}{4(t-s)}}\frac{|s|^{b}}{|y|^{a}}\mathbf{1}_{\{|y|\leq c_{2}|s|^{d_{2}}\}}dyds
\displaystyle\lesssim (|x|/2c2)1/d2tn1(ts)n/2e|x|216(ts)|s|b|y|a𝟏{|y|c2|s|d2}𝑑y𝑑s\displaystyle\int^{t}_{-(|x|/2c_{2})^{1/d_{2}}}\int_{\mathbb{R}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^{2}}{16(t-s)}}\frac{|s|^{b}}{|y|^{a}}\mathbf{1}_{\{|y|\leq c_{2}|s|^{d_{2}}\}}dyds
\displaystyle\lesssim (2tt+(|x|/2c2)1/d22t)n1(ts)n/2e|x|216(ts)|s|b|y|a𝟏{|y|c2|s|d2}𝑑y𝑑s\displaystyle\left(\int_{2t}^{t}+\int^{2t}_{-(|x|/2c_{2})^{1/d_{2}}}\right)\int_{\mathbb{R}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^{2}}{16(t-s)}}\frac{|s|^{b}}{|y|^{a}}\mathbf{1}_{\{|y|\leq c_{2}|s|^{d_{2}}\}}dyds
\displaystyle\lesssim c2na(max{|t|,|x|2})b+d2(na)|x|2n.\displaystyle c_{2}^{n-a}\left(\max\{|t|,|x|^{2}\}\right)^{b+d_{2}(n-a)}|x|^{2-n}.

The last step follows from some easy integration which has been done many times in this section. For u2u_{2},

u2\displaystyle u_{2}\lesssim (2|x|/c2)1/d2(|x|/2c2)1/d2n1(ts)n/2e|xy|24(ts)|s|b|y|a𝟏{|y|c2|s|d2}𝑑y𝑑s\displaystyle\int_{-(2|x|/c_{2})^{1/d_{2}}}^{-(|x|/2c_{2})^{1/d_{2}}}\int_{\mathbb{R}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^{2}}{4(t-s)}}\frac{|s|^{b}}{|y|^{a}}\mathbf{1}_{\{|y|\leq c_{2}|s|^{d_{2}}\}}dyds
\displaystyle\lesssim (|x|/c2)b/d2(2|x|/c2)1/d2(|x|/2c2)1/d2n1(ts)n/2e|xy|24(ts)1|y|a𝟏{|y|2|x|}𝑑y𝑑s\displaystyle(|x|/c_{2})^{b/d_{2}}\int_{-(2|x|/c_{2})^{1/d_{2}}}^{-(|x|/2c_{2})^{1/d_{2}}}\int_{\mathbb{R}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^{2}}{4(t-s)}}\frac{1}{|y|^{a}}\mathbf{1}_{\{|y|\leq 2|x|\}}dyds
\displaystyle\lesssim c2b/d2|x|b/d2+na(2|x|/c2)1/d2(|x|/2c2)1/d21(ts)n/2𝑑sc2(b+n21)/d2(|x|1/d2)b+d2(na)+1n2\displaystyle c_{2}^{-b/d_{2}}|x|^{b/d_{2}+n-a}\int_{-(2|x|/c_{2})^{1/d_{2}}}^{-(|x|/2c_{2})^{1/d_{2}}}\frac{1}{(t-s)^{n/2}}ds\lesssim c_{2}^{(-b+\frac{n}{2}-1)/d_{2}}(|x|^{1/d_{2}})^{b+d_{2}(n-a)+1-\frac{n}{2}}
\displaystyle\lesssim c2na{|t|b+d2(na)|x|2nif 2c2|2t|d2|x|<|t|12,|x|2b+2d2(na)+2nif |x||t|12.\displaystyle c_{2}^{n-a}\begin{cases}|t|^{b+d_{2}(n-a)}|x|^{2-n}&\text{if }2c_{2}|2t|^{d_{2}}\leq|x|<|t|^{\frac{1}{2}},\\ |x|^{2b+2d_{2}(n-a)+2-n}&\text{if }|x|\geq|t|^{\frac{1}{2}}.\end{cases}

The last step follows from 0<d2120<d_{2}\leq\frac{1}{2} and b+d2(na)+1n2<0b+d_{2}(n-a)+1-\frac{n}{2}<0. Similarly, for u3u_{3},

u3\displaystyle u_{3}\lesssim (2|x|/c2)1/d2n1(ts)n/2e|xy|24(ts)|s|b|y|a𝟏{|y|c2|s|d2}𝑑y𝑑s\displaystyle\int^{-(2|x|/c_{2})^{1/d_{2}}}_{-\infty}\int_{\mathbb{R}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^{2}}{4(t-s)}}\frac{|s|^{b}}{|y|^{a}}\mathbf{1}_{\{|y|\leq c_{2}|s|^{d_{2}}\}}dyds
\displaystyle\lesssim (|x|/c2)(b+1n2)/d2|x|na+(2|x|)1/d21|s|n2e|y|216(ts)|s|a|y|b𝟏{2|x||y|c2|s|d2}𝑑y𝑑s\displaystyle(|x|/c_{2})^{(b+1-\frac{n}{2})/d_{2}}|x|^{n-a}+\int^{-(2|x|)^{1/d_{2}}}_{-\infty}\frac{1}{|s|^{\frac{n}{2}}}e^{-\frac{|y|^{2}}{16(t-s)}}\frac{|s|^{a}}{|y|^{b}}\mathbf{1}_{\{2|x|\leq|y|\leq c_{2}|s|^{d_{2}}\}}dyds
\displaystyle\lesssim c2(b+n21)/d2(|x|1/d2)b+d2(na)+1n2\displaystyle c_{2}^{(-b+\frac{n}{2}-1)/d_{2}}(|x|^{1/d_{2}})^{b+d_{2}(n-a)+1-\frac{n}{2}}
\displaystyle\lesssim c2na{|t|b+d2(na)|x|2nif 2c2|2t|d2|x|<|t|12,|x|2b+2d2(na)+2nif |x||t|12.\displaystyle c_{2}^{n-a}\begin{cases}|t|^{b+d_{2}(n-a)}|x|^{2-n}&\text{if }2c_{2}|2t|^{d_{2}}\leq|x|<|t|^{\frac{1}{2}},\\ |x|^{2b+2d_{2}(n-a)+2-n}&\text{if }|x|\geq|t|^{\frac{1}{2}}.\end{cases}

Collecting the results of u1,u2,u3u_{1},u_{2},u_{3}, we can get (B.7).

\bullet By the similar calculation like (B.7), we will get (B.8). ∎

Lemma B.3.

Suppose 2<a<n2<a<n, 0d2120\leq d_{2}\leq\frac{1}{2}, n2b>1\frac{n}{2}-b>1 and 0<c2c0<c_{2}\leq c_{**}. Then there exists CC depending on n,a,b,d2,cn,a,b,d_{2},c_{**} such that for t<1t<-1,

𝒯out[|t|b|x|a𝟏{|x|c2|t|d2}]C|t|b|x|2afor |x|<c2|t|d2.\displaystyle\mathcal{T}^{out}\left[\frac{|t|^{b}}{|x|^{a}}\mathbf{1}_{\{|x|\leq c_{2}|t|^{d_{2}}\}}\right]\leq C|t|^{b}|x|^{2-a}\quad\text{for }|x|<c_{2}|t|^{d_{2}}. (B.13)
Proof.

We divide uu into three parts

u(x,t)=tnG(xy,ts)|s|b|y|a𝟏{|y|c2|s|d2}𝑑y𝑑s=u1+u2+u3,\displaystyle u(x,t)=\int_{-\infty}^{t}\int_{\mathbb{R}^{n}}G(x-y,t-s)\frac{|s|^{b}}{|y|^{a}}\mathbf{1}_{\{|y|\leq c_{2}|s|^{d_{2}}\}}dyds=u_{1}+u_{2}+u_{3},

where u1u_{1} is the term with 𝟏{|y|12|x|}\mathbf{1}_{\{|y|\leq\frac{1}{2}|x|\}} inside the integrand, u2u_{2} is the one with 𝟏{12|x||y|2|x|}\mathbf{1}_{\{\frac{1}{2}|x|\leq|y|\leq 2|x|\}} and u3u_{3} is the one with {2|x||y|c2|s|d2}\{2|x|\leq|y|\leq c_{2}|s|^{d_{2}}\}. Since most of the calculation are similar to the proof of the previous lemma. We omit some details here. For u1u_{1}, we proceed as

u1\displaystyle u_{1}\lesssim tn1(ts)n/2e|x|216(ts)|s|b|y|a𝟏{|y|12|x|}𝑑y𝑑s\displaystyle\int_{-\infty}^{t}\int_{\mathbb{R}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^{2}}{16(t-s)}}\frac{|s|^{b}}{|y|^{a}}\mathbf{1}_{\{|y|\leq\frac{1}{2}|x|\}}dyds
\displaystyle\approx\, |x|nat1(ts)n/2e|x|216(ts)|s|b𝑑s\displaystyle|x|^{n-a}\int_{-\infty}^{t}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^{2}}{16(t-s)}}|s|^{b}ds
\displaystyle\lesssim |t|b|x|2a|x|216(t)ezzn22𝑑z+|x|2b+2a0|x|232(t)ezzb+n22𝑑z\displaystyle\,|t|^{b}|x|^{2-a}\int_{\frac{|x|^{2}}{16(-t)}}^{\infty}e^{-z}z^{\frac{n}{2}-2}dz+|x|^{2b+2-a}\int_{0}^{\frac{|x|^{2}}{32(-t)}}e^{-z}z^{-b+\frac{n}{2}-2}dz
\displaystyle\lesssim |t|b|x|2a+|x|na|t|1n2+b,\displaystyle|t|^{b}|x|^{2-a}+|x|^{n-a}|t|^{1-\frac{n}{2}+b},

where we have used the fact that n2b>1\frac{n}{2}-b>1. For u2u_{2}, we have

u2\displaystyle u_{2}\lesssim tn1(ts)n/2e|xy|24(ts)|s|b|y|a𝟏{12|x||y|2|x|}𝑑y𝑑s\displaystyle\int_{-\infty}^{t}\int_{\mathbb{R}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^{2}}{4(t-s)}}\frac{|s|^{b}}{|y|^{a}}\mathbf{1}_{\{\frac{1}{2}|x|\leq|y|\leq 2|x|\}}dyds
\displaystyle\lesssim |x|atn1(ts)n/2e|xy|24(ts)|s|b𝟏{|xy|3|x|}𝑑y𝑑x\displaystyle|x|^{-a}\int_{-\infty}^{t}\int_{\mathbb{R}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^{2}}{4(t-s)}}|s|^{b}\mathbf{1}_{\{|x-y|\leq 3|x|\}}dydx
\displaystyle\approx |x|at03|x|1(ts)n/2er24(ts)|s|brn1𝑑y𝑑s|x|at09|x|24(ts)|s|bezzn21𝑑z𝑑s\displaystyle|x|^{-a}\int_{-\infty}^{t}\int_{0}^{3|x|}\frac{1}{(t-s)^{n/2}}e^{-\frac{r^{2}}{4(t-s)}}|s|^{b}r^{n-1}dyds\approx|x|^{-a}\int_{-\infty}^{t}\int_{0}^{\frac{9|x|^{2}}{4(t-s)}}|s|^{b}e^{-z}z^{\frac{n}{2}-1}dzds
\displaystyle\approx |x|at|s|bmin{1,(|x|2ts)n2}𝑑s|t|b|x|2a+|t|1+bn2|x|na.\displaystyle|x|^{-a}\int_{-\infty}^{t}|s|^{b}\min\left\{1,\left(\frac{|x|^{2}}{t-s}\right)^{\frac{n}{2}}\right\}ds\approx|t|^{b}|x|^{2-a}+|t|^{1+b-\frac{n}{2}}|x|^{n-a}.

For u3u_{3}, we have

u3\displaystyle u_{3}\lesssim tn1(ts)n/2e|xy|24(ts)|s|b|y|a𝟏{2|x||y|c2|s|d2}𝑑y𝑑s\displaystyle\int_{-\infty}^{t}\int_{\mathbb{R}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^{2}}{4(t-s)}}\frac{|s|^{b}}{|y|^{a}}\mathbf{1}_{\{2|x|\leq|y|\leq c_{2}|s|^{d_{2}}\}}dyds
\displaystyle\lesssim tn1(ts)n/2e|y|216(ts)|s|b|y|a𝟏{2|x||y|c2|s|d2}𝑑y𝑑s\displaystyle\int_{-\infty}^{t}\int_{\mathbb{R}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|y|^{2}}{16(t-s)}}\frac{|s|^{b}}{|y|^{a}}\mathbf{1}_{\{2|x|\leq|y|\leq c_{2}|s|^{d_{2}}\}}dyds
\displaystyle\approx t2|x|c2|s|d21(ts)n/2er216(ts)|s|brn1a𝑑r𝑑s\displaystyle\int_{-\infty}^{t}\int_{2|x|}^{c_{2}|s|^{d_{2}}}\frac{1}{(t-s)^{n/2}}e^{-\frac{r^{2}}{16(t-s)}}|s|^{b}r^{n-1-a}drds
\displaystyle\approx t|x|24(ts)c2|s|d216(ts)(ts)a2|s|bezzna21𝑑z𝑑s|t|b|x|2a.\displaystyle\int_{-\infty}^{t}\int^{\frac{c_{2}|s|^{d_{2}}}{16(t-s)}}_{\frac{|x|^{2}}{4(t-s)}}(t-s)^{-\frac{a}{2}}|s|^{b}e^{-z}z^{\frac{n-a}{2}-1}dzds\lesssim|t|^{b}|x|^{2-a}.

Combining the estimate of u1,u2,u3u_{1},u_{2},u_{3} and using the fact that |x|na|t|1n2+b|t|b|x|2a|x|^{n-a}|t|^{1-\frac{n}{2}+b}\leq|t|^{b}|x|^{2-a} because |x|c2|t|d2|x|\leq c_{2}|t|^{d_{2}}, we get (B.13). ∎

Corollary B.4.

Suppose that n>2n>2, d1d212d_{1}\leq d_{2}\leq\frac{1}{2}, bb satisfies (B.2), 0c1,c2c0\leq c_{1},c_{2}\leq c_{**}. Denote

u(x,t)=𝒯out[|t|b|x|a𝟏{c1|t|d1|x|c2|t|d2}].u(x,t)=\mathcal{T}^{out}\left[|t|^{b}|x|^{-a}\mathbf{1}_{\{c_{1}|t|^{d_{1}}\leq|x|\leq c_{2}|t|^{d_{2}}\}}\right].

Then there exists CC depending on n,a,b,d1,d2,cn,a,b,d_{1},d_{2},c_{**} such that for t<1t<-1,
if 0a<20\leq a<2,

u(x,t)C{c22a|t|b+d2(2a)if |x|c2|t|d2,c2na|t|b+d2(na)|x|2nif c2|t|d2|x||t|12,c2na|x|2b+2d2(na)+2nif |x||t|12.u(x,t)\leq C\begin{cases}c_{2}^{2-a}|t|^{b+d_{2}(2-a)}&\text{if }|x|\leq c_{2}|t|^{d_{2}},\\ c_{2}^{n-a}|t|^{b+d_{2}(n-a)}|x|^{2-n}&\text{if }c_{2}|t|^{d_{2}}\leq|x|\leq|t|^{\frac{1}{2}},\\ c_{2}^{n-a}|x|^{2b+2d_{2}(n-a)+2-n}&\text{if }|x|\geq|t|^{\frac{1}{2}}.\end{cases} (B.14)

If 2<a<n2<a<n,

u(x,t)C{c12a|t|b+d1(2a)if |x|c1|t|d1,|t|b|x|2aif c1|t|d1|x|c2|t|d2,c2na|t|b+d2(na)|x|2nif c2|t|d2|x||t|12,c2na|x|2b+2d2(na)+2nif |x||t|12.u(x,t)\leq C\begin{cases}c_{1}^{2-a}|t|^{b+d_{1}(2-a)}&\text{if }|x|\leq c_{1}|t|^{d_{1}},\\ |t|^{b}|x|^{2-a}&\text{if }c_{1}|t|^{d_{1}}\leq|x|\leq c_{2}|t|^{d_{2}},\\ c_{2}^{n-a}|t|^{b+d_{2}(n-a)}|x|^{2-n}&\text{if }c_{2}|t|^{d_{2}}\leq|x|\leq|t|^{\frac{1}{2}},\\ c_{2}^{n-a}|x|^{2b+2d_{2}(n-a)+2-n}&\text{if }|x|\geq|t|^{\frac{1}{2}}.\end{cases} (B.15)

If a>na>n,

u(x,t)C{c12a|t|b+d1(2a)if |x|c1|t|d1,c1na|t|b+d1(na)|x|2nif c1|t|d1|x||t|12,c1na|x|2b+2d1(na)+2nif |x||t|12.u(x,t)\leq C\begin{cases}c_{1}^{2-a}|t|^{b+d_{1}(2-a)}&\text{if }|x|\leq c_{1}|t|^{d_{1}},\\ c_{1}^{n-a}|t|^{b+d_{1}(n-a)}|x|^{2-n}&\text{if }c_{1}|t|^{d_{1}}\leq|x|\leq|t|^{\frac{1}{2}},\\ c_{1}^{n-a}|x|^{2b+2d_{1}(n-a)+2-n}&\text{if }|x|\geq|t|^{\frac{1}{2}}.\end{cases} (B.16)
Proof.

(B.14) and (B.16) follow Lemma B.2 directly. (B.15) follows from (B.7) and (B.13). ∎

Lemma B.5.

Suppose that a2b>1\frac{a}{2}-b>1. Then

𝒯out[|t|b|x|a𝟏{|x||t|12}]\displaystyle{\mathcal{T}}^{out}\left[|t|^{b}|x|^{-a}\mathbf{1}_{\{|x|\geq|t|^{\frac{1}{2}}\}}\right] (B.17)
\displaystyle\lesssim |t|1+ba2𝟏{|x||t|12}+𝟏{|x||t|12}|x|a{|t|1+b, if b<1,1+ln(|x|2|t|) if b=1,|x|2+2b if b>1.\displaystyle|t|^{1+b-\frac{a}{2}}\mathbf{1}_{\{|x|\leq|t|^{\frac{1}{2}}\}}+\mathbf{1}_{\{|x|\geq|t|^{\frac{1}{2}}\}}|x|^{-a}\begin{cases}|t|^{1+b},&\mbox{ \ \ if \ }b<-1,\\ 1+\ln\left(\frac{|x|^{2}}{|t|}\right)&\mbox{ \ \ if \ }b=-1,\\ |x|^{2+2b}&\mbox{ \ \ if \ }b>-1.\end{cases}
Proof.

Denote u(x,t)=𝒯out[|t|b|x|a𝟏[|x||t|12]]u(x,t)={\mathcal{T}}^{out}\left[|t|^{b}|x|^{-a}\mathbf{1}_{[|x|\geq|t|^{\frac{1}{2}}]}\right].

\bullet For |x|12|t|12|x|\leq\frac{1}{2}|t|^{\frac{1}{2}}, we have |xy|12|y||x-y|\geq\frac{1}{2}|y| for |y||s|12|t|12|y|\geq|s|^{\frac{1}{2}}\geq|t|^{\frac{1}{2}}. Then

u(x,t)\displaystyle u(x,t)\lesssim tn1(ts)n/2e|y|216(ts)|s|b|y|a𝟏{|y||s|12}dξds\displaystyle\int_{-\infty}^{t}\int_{{{\mathbb{R}}}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|y|^{2}}{16(t-s)}}|s|^{b}|y|^{-a}\mathbf{1}_{\{|y|\geq|s|^{\frac{1}{2}}\}}\,\mathrm{d}\xi\,\mathrm{d}s (B.18)
\displaystyle\lesssim (2t+2tt)|s|b(ts)a/2e(s)32(ts)ds|t|1+ba2,\displaystyle\left(\int_{-\infty}^{2t}+\int_{2t}^{t}\right)|s|^{b}(t-s)^{-a/2}e^{-\frac{(-s)}{32(t-s)}}\,\mathrm{d}s\lesssim\ |t|^{1+b-\frac{a}{2}},

where a2b>1\frac{a}{2}-b>1 is used to guarantee the integrability in the last step.

\bullet Consider |x|4|t|12|x|\geq 4|t|^{\frac{1}{2}}. We make the following decomposition.

u(x,t)=\displaystyle u(x,t)=\ (14|x|2t+4|x|214|x|2+4|x|2)n1(ts)n/2e|xy|24(ts)|s|b|y|a𝟏{|y||s|12}dyds\displaystyle\left(\int_{-\frac{1}{4}|x|^{2}}^{t}+\int_{-4|x|^{2}}^{-\frac{1}{4}|x|^{2}}+\int^{-4|x|^{2}}_{-\infty}\right)\int_{\mathbb{R}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^{2}}{4(t-s)}}|s|^{b}|y|^{-a}\mathbf{1}_{\{|y|\geq|s|^{\frac{1}{2}}\}}\,\mathrm{d}y\,\mathrm{d}s
:=\displaystyle:=\ P1+P2+P3.\displaystyle P_{1}+P_{2}+P_{3}.

For P1P_{1}, we divide it further to be

P1=14|x|2tn1(ts)n/2e|xy|24(ts)|s|b|y|a𝟏{|y||s|12}𝑑y𝑑s=P11+P12+P13\displaystyle P_{1}=\int_{-\frac{1}{4}|x|^{2}}^{t}\int_{\mathbb{R}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^{2}}{4(t-s)}}|s|^{b}|y|^{-a}\mathbf{1}_{\{|y|\geq|s|^{\frac{1}{2}}\}}dyds=P_{11}+P_{12}+P_{13}

where P11P_{11} is the term with 𝟏{|s|12|y|12|x|}\mathbf{1}_{\{|s|^{\frac{1}{2}}\leq|y|\leq\frac{1}{2}|x|\}} in the integrand, P12P_{12} is the one with 𝟏{12|x||y|2|x|}\mathbf{1}_{\{\frac{1}{2}|x|\leq|y|\leq 2|x|\}} and P13P_{13} is the one with 𝟏{2|x||y|}\mathbf{1}_{\{2|x|\leq|y|\}}. For P11P_{11}, when a<na<n,

P11\displaystyle P_{11}\lesssim 14|x|2tn1(ts)n/2e|x|216(ts)|s|b|y|a𝟏{|s|12|y||x|2}dyds\displaystyle\int_{-\frac{1}{4}|x|^{2}}^{t}\int_{{{\mathbb{R}}}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^{2}}{16(t-s)}}|s|^{b}|y|^{-a}\mathbf{1}_{\{|s|^{\frac{1}{2}}\leq|y|\leq\frac{|x|}{2}\}}\,\mathrm{d}y\,\mathrm{d}s (B.19)
\displaystyle\lesssim 14|x|2t1(ts)n/2e|x|216(ts)|s|b|x|nads\displaystyle\int_{-\frac{1}{4}|x|^{2}}^{t}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^{2}}{16(t-s)}}|s|^{b}|x|^{n-a}\,\mathrm{d}s
=\displaystyle= |x|na14|x|2t1(ts)n/2e|x|216(ts)|s|bds|x|2a+2b.\displaystyle|x|^{n-a}\int_{-\frac{1}{4}|x|^{2}}^{t}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^{2}}{16(t-s)}}|s|^{b}\,\mathrm{d}s\lesssim\ |x|^{2-a+2b}.

When ana\geq n, by similar calculation, P11|x|2a+2bP_{11}\lesssim|x|^{2-a+2b} still holds.

For P12P_{12},

P12\displaystyle P_{12}\lesssim |x|a14|x|2tn1(ts)n/2e|xy|24(ts)|s|b𝟏{|x|2|y|2|x|}dyds\displaystyle|x|^{-a}\int_{-\frac{1}{4}|x|^{2}}^{t}\int_{{{\mathbb{R}}}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^{2}}{4(t-s)}}|s|^{b}\mathbf{1}_{\{\frac{|x|}{2}\leq|y|\leq 2|x|\}}\,\mathrm{d}y\,\mathrm{d}s (B.20)
\displaystyle\lesssim |x|a(2tt+14|x|22t)03|x|1(ts)n/2er24(ts)|s|brn1drds\displaystyle|x|^{-a}\left(\int_{2t}^{t}+\int_{-\frac{1}{4}|x|^{2}}^{2t}\right)\int_{0}^{3|x|}\frac{1}{(t-s)^{n/2}}e^{-\frac{r^{2}}{4(t-s)}}|s|^{b}r^{n-1}\,\mathrm{d}r\,\mathrm{d}s
\displaystyle\lesssim |x|a|t|1+b+|x|a{|t|1+b if b<1,1+ln(|x|2t) if b=1,(|x|2)1+b if b>1.\displaystyle|x|^{-a}|t|^{1+b}+|x|^{-a}\begin{cases}|t|^{1+b}&\mbox{ \ \ if \ }b<-1,\\ 1+\ln\left(\frac{|x|^{2}}{-t}\right)&\mbox{ \ \ if \ }b=-1,\\ (|x|^{2})^{1+b}&\mbox{ \ \ if \ }b>-1.\end{cases}

For P13P_{13},

P13\displaystyle P_{13}\lesssim 14|x|2tn1(ts)n/2e|y|216(ts)|s|b|y|a𝟏{2|x||y|}dyds\displaystyle\int_{-\frac{1}{4}|x|^{2}}^{t}\int_{{{\mathbb{R}}}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|y|^{2}}{16(t-s)}}|s|^{b}|y|^{-a}\mathbf{1}_{\{2|x|\leq|y|\}}\,\mathrm{d}y\,\mathrm{d}s (B.21)
\displaystyle\approx 14|x|2t2|x|(s)b(ts)n/2er216(ts)rn1adrds\displaystyle\int_{-\frac{1}{4}|x|^{2}}^{t}\int_{2|x|}^{\infty}\frac{(-s)^{b}}{(t-s)^{n/2}}e^{-\frac{r^{2}}{16(t-s)}}r^{n-1-a}\,\mathrm{d}r\,\mathrm{d}s
=\displaystyle= (2tt+14|x|22t)2|x|(s)b(ts)n/2er216(ts)rn1adrds\displaystyle\left(\int_{2t}^{t}+\int_{-\frac{1}{4}|x|^{2}}^{2t}\right)\int_{2|x|}^{\infty}\frac{(-s)^{b}}{(t-s)^{n/2}}e^{-\frac{r^{2}}{16(t-s)}}r^{n-1-a}\,\mathrm{d}r\,\mathrm{d}s
\displaystyle\lesssim (t)b|x|2ae|x|216(t)+|x|2+2ba.\displaystyle(-t)^{b}|x|^{2-a}e^{-\frac{|x|^{2}}{16(-t)}}+|x|^{2+2b-a}.

For P2P_{2}, since 14|x|24t-\frac{1}{4}|x|^{2}\leq 4t in this case,

P2\displaystyle P_{2}\lesssim 4|x|214|x|2n1|s|n/2e|xy|24(s)|s|b|y|a𝟏{|y||x|2}dyds\displaystyle\int_{-4|x|^{2}}^{-\frac{1}{4}|x|^{2}}\int_{{{\mathbb{R}}}^{n}}\frac{1}{|s|^{n/2}}e^{-\frac{|x-y|^{2}}{4(-s)}}|s|^{b}|y|^{-a}\mathbf{1}_{\{|y|\geq\frac{|x|}{2}\}}\,\mathrm{d}y\,\mathrm{d}s (B.22)
\displaystyle\approx |x|n+2b4|x|214|x|2ne|xy|24(s)|y|a(𝟏{|x|2|y|2|x|}+𝟏{2|x||y|})dyds\displaystyle|x|^{-n+2b}\int_{-4|x|^{2}}^{-\frac{1}{4}|x|^{2}}\int_{{{\mathbb{R}}}^{n}}e^{-\frac{|x-y|^{2}}{4(-s)}}|y|^{-a}\left(\mathbf{1}_{\{\frac{|x|}{2}\leq|y|\leq 2|x|\}}+\mathbf{1}_{\{2|x|\leq|y|\}}\right)\,\mathrm{d}y\,\mathrm{d}s
\displaystyle\lesssim |x|2+2ba.\displaystyle|x|^{2+2b-a}.

For P3P_{3}, in this case, |x|12|s|12|x|\leq\frac{1}{2}|s|^{\frac{1}{2}},

P3\displaystyle P_{3}\lesssim 4|x|2n1(ts)n/2e|y|216(ts)|s|b|y|a𝟏{|y||s|12}dyds\displaystyle\int_{-\infty}^{-4|x|^{2}}\int_{{{\mathbb{R}}}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|y|^{2}}{16(t-s)}}|s|^{b}|y|^{-a}\mathbf{1}_{\{|y|\geq|s|^{\frac{1}{2}}\}}\,\mathrm{d}y\,\mathrm{d}s (B.23)
\displaystyle\lesssim 4|x|2n(s)bn2e|y|216(s)|y|a𝟏{|y||s|12}dyds|x|2+2ba,\displaystyle\int_{-\infty}^{-4|x|^{2}}\int_{{{\mathbb{R}}}^{n}}(-s)^{b-\frac{n}{2}}e^{-\frac{|y|^{2}}{16(-s)}}|y|^{-a}\mathbf{1}_{\{|y|\geq|s|^{\frac{1}{2}}\}}\,\mathrm{d}y\,\mathrm{d}s\lesssim\ |x|^{2+2b-a},

where a2b>1\frac{a}{2}-b>1 is required to guarantee the integrability. Combining the above estimates of P1P_{1}, P2P_{2} and P3P_{3}, we get, when |x|4|t|12|x|\geq 4|t|^{\frac{1}{2}}

u(x,t)|x|a{|t|1+b if b<1,1+ln(|x|2t) if b=1,|x|2+2b if b>1.u(x,t)\lesssim|x|^{-a}\begin{cases}|t|^{1+b}&\mbox{ \ \ if \ }b<-1,\\ 1+\ln\left(\frac{|x|^{2}}{-t}\right)&\mbox{ \ \ if \ }b=-1,\\ |x|^{2+2b}&\mbox{ \ \ if \ }b>-1.\end{cases} (B.24)

\bullet Consider the case 12|t|12|x|4|t|12\frac{1}{2}|t|^{\frac{1}{2}}\leq|x|\leq 4|t|^{\frac{1}{2}},

u(x,t)=\displaystyle u(x,t)= tn1(4π(ts))n/2e|xy|24(ts)|s|b|y|a𝟏[|y||s|12]dyds\displaystyle\int_{-\infty}^{t}\int_{{{\mathbb{R}}}^{n}}\frac{1}{(4\pi(t-s))^{n/2}}e^{-\frac{|x-y|^{2}}{4(t-s)}}|s|^{b}|y|^{-a}\mathbf{1}_{[|y|\geq|s|^{\frac{1}{2}}]}\,\mathrm{d}y\,\mathrm{d}s (B.25)
\displaystyle\lesssim (64tt+64t)n1(ts)n/2e|xy|24(ts)|s|b|y|a𝟏{|y||s|12}dyds\displaystyle\left(\int_{64t}^{t}+\int_{-\infty}^{64t}\right)\int_{{{\mathbb{R}}}^{n}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^{2}}{4(t-s)}}|s|^{b}|y|^{-a}\mathbf{1}_{\{|y|\geq|s|^{\frac{1}{2}}\}}\,\mathrm{d}y\,\mathrm{d}s
\displaystyle\lesssim |t|1+ba2.\displaystyle|t|^{1+b-\frac{a}{2}}.

In order to get the gradient estimate of φ¯\bar{\varphi}, we need the following lemma.

Lemma B.6.

For d1d212d_{1}\leq d_{2}\leq\frac{1}{2}, n2bd2n>0\frac{n}{2}-b-d_{2}n>0, c1,c21c_{1},c_{2}\approx 1, we have

𝒯d[|t|b𝟏[c1|t|d1|x|c2|t|d2]]{|t|b+d2 if |x||t|d2,|t|b+d2n|x|1n if |t|d2|x||t|12,(|x|2)b+d2n|x|1n if |x||t|12.{\mathcal{T}}^{d}[|t|^{b}\mathbf{1}_{[c_{1}|t|^{d_{1}}\leq|x|\leq c_{2}|t|^{d_{2}}]}]\lesssim\begin{cases}|t|^{b+d_{2}}&\mbox{ \ \ if \ }|x|\leq|t|^{d_{2}},\\ |t|^{b+d_{2}n}|x|^{1-n}&\mbox{ \ \ if \ }|t|^{d_{2}}\leq|x|\leq|t|^{\frac{1}{2}},\\ (|x|^{2})^{b+d_{2}n}|x|^{1-n}&\mbox{ \ \ if \ }|x|\geq|t|^{\frac{1}{2}}.\end{cases} (B.26)

For d1d212d_{1}\leq d_{2}\leq\frac{1}{2}, a>na>n, n2bd1(na)>0\frac{n}{2}-b-d_{1}(n-a)>0, c1,c21c_{1},c_{2}\approx 1, we have

𝒯d[|t|b|x|a𝟏[c1|t|d1|x|c2|t|d2]]{|t|b+d1(1a) if |x||t|d1,|t|b+d1(na)|x|1n if |t|d1|x||t|12,(|x|2)b+d1(na)|x|1n if |x||t|12.{\mathcal{T}}^{d}[\frac{|t|^{b}}{|x|^{a}}\mathbf{1}_{[c_{1}|t|^{d_{1}}\leq|x|\leq c_{2}|t|^{d_{2}}]}]\lesssim\begin{cases}|t|^{b+d_{1}(1-a)}&\mbox{ \ \ if \ }|x|\leq|t|^{d_{1}},\\ |t|^{b+d_{1}(n-a)}|x|^{1-n}&\mbox{ \ \ if \ }|t|^{d_{1}}\leq|x|\leq|t|^{\frac{1}{2}},\\ (|x|^{2})^{b+d_{1}(n-a)}|x|^{1-n}&\mbox{ \ \ if \ }|x|\geq|t|^{\frac{1}{2}}.\end{cases} (B.27)

We omit the proof since it relies splitting integral domain like above.

B.2. Proofs of three lemmas in the outer problem

Proof of Lemma 4.4.

For j=2,,kj=2,\dots,k, by Corollary B.4,

𝒯out[μ0j2(t)|t|γj𝟏{|x|μ0j}]{|t|γj if |x|μ0j,|t|γjμ0jn2|x|2n if μ0j|x||t|12,|x|2γj+(42n)αj+2n if |x||t|12,{\mathcal{T}}^{out}[\mu_{0j}^{-2}(t)|t|^{\gamma_{j}}\mathbf{1}_{\{|x|\leq\mu_{0j}\}}]\lesssim\begin{cases}|t|^{\gamma_{j}}&\mbox{ \ \ if \ }|x|\leq\mu_{0j},\\ |t|^{\gamma_{j}}\mu_{0j}^{n-2}|x|^{2-n}&\mbox{ \ \ if \ }\mu_{0j}\leq|x|\leq|t|^{\frac{1}{2}},\\ |x|^{2\gamma_{j}+(4-2n)\alpha_{j}+2-n}&\mbox{ \ \ if \ }|x|\geq|t|^{\frac{1}{2}},\end{cases}
𝒯out[μ0jα(t)|t|γj|x|2α𝟏{μ0j|x|μ¯0j}]{|t|γj if |x|μ0j,|t|γjμ0jα|x|α if μ0j|x|μ¯0j,|t|γjμ0jαμ¯0jn2α|x|2n if μ¯0j|x||t|12,|x|2γj+2n if |x||t|12.{\mathcal{T}}^{out}[\mu_{0j}^{\alpha}(t)|t|^{\gamma_{j}}|x|^{-2-\alpha}\mathbf{1}_{\{\mu_{0j}\leq|x|\leq\bar{\mu}_{0j}\}}]\lesssim\begin{cases}|t|^{\gamma_{j}}&\mbox{ \ \ if \ }|x|\leq\mu_{0j},\\ |t|^{\gamma_{j}}\mu_{0j}^{\alpha}|x|^{-\alpha}&\mbox{ \ \ if \ }\mu_{0j}\leq|x|\leq\bar{\mu}_{0j},\\ |t|^{\gamma_{j}}\mu_{0j}^{\alpha}\bar{\mu}_{0j}^{n-2-\alpha}|x|^{2-n}&\mbox{ \ \ if \ }\bar{\mu}_{0j}\leq|x|\leq|t|^{\frac{1}{2}},\\ |x|^{2\gamma_{j}^{*}+2-n}&\mbox{ \ \ if \ }|x|\geq|t|^{\frac{1}{2}}.\end{cases}

Thus 𝒯out[w1j]w1j{\mathcal{T}}^{out}[w_{1j}]\lesssim w_{1j}^{*}.

For j=1j=1, the first part of w11w_{11} can be dealt with by the same method above. For the rest part, by Corollary B.4,

𝒯out[|t|γ1μ¯01n2α|x|1n𝟏{μ¯01|x||t|12}]\displaystyle{\mathcal{T}}^{out}[|t|^{\gamma_{1}}\bar{\mu}_{01}^{n-2-\alpha}|x|^{-1-n}\mathbf{1}_{\{\bar{\mu}_{01}\leq|x|\leq|t|^{\frac{1}{2}}\}}]\lesssim {|t|γ1μ¯011α if |x|μ¯01,|t|γ1μ¯01n3α|x|2n if μ¯01|x||t|12,|x|2(γ1+δ(n3α))+2n if |x||t|12.\displaystyle\begin{cases}|t|^{\gamma_{1}}\bar{\mu}_{01}^{-1-\alpha}&\mbox{ \ \ if \ }|x|\leq\bar{\mu}_{01},\\ |t|^{\gamma_{1}}\bar{\mu}_{01}^{n-3-\alpha}|x|^{2-n}&\mbox{ \ \ if \ }\bar{\mu}_{01}\leq|x|\leq|t|^{\frac{1}{2}},\\ |x|^{2(\gamma_{1}+\delta(n-3-\alpha))+2-n}&\mbox{ \ \ if \ }|x|\geq|t|^{\frac{1}{2}}.\end{cases}
\displaystyle\lesssim w11.\displaystyle w_{11}^{*}.

Proof of Lemma 4.5.

This just follows from (B.15). b=2σ(n22)αj+1+αjb=-2\sigma-(\frac{n}{2}-2)\alpha_{j+1}+\alpha_{j}, d2=12(αj+αj1)d_{2}=-\frac{1}{2}(\alpha_{j}+\alpha_{j-1}), a=n2a=n-2. ∎

Proof of Lemma 4.6.

By Corollary B.4, we have

𝒯out[|t|1σ|x|2n𝟏{μ¯01|x||t|12}]{|t|1σμ¯014n if |x|μ¯01,|t|1σ|x|4n if μ¯01|x||t|12,|x|22σn if |x||t|12.{\mathcal{T}}^{out}[|t|^{-1-\sigma}|x|^{2-n}\mathbf{1}_{\{\bar{\mu}_{01}\leq|x|\leq|t|^{\frac{1}{2}}\}}]\lesssim\begin{cases}|t|^{-1-\sigma}\bar{\mu}_{01}^{4-n}&\mbox{ \ \ if \ }|x|\leq\bar{\mu}_{01},\\ |t|^{-1-\sigma}|x|^{4-n}&\mbox{ \ \ if \ }\bar{\mu}_{01}\leq|x|\leq|t|^{\frac{1}{2}},\\ |x|^{2-2\sigma-n}&\mbox{ \ \ if \ }|x|\geq|t|^{\frac{1}{2}}.\end{cases}

By Lemma B.5, we have

𝒯out[|t|1σ|x|2n𝟏{|x||t|12}]{|t|1σn2 if |x||t|12,|t|σ|x|2n if |x||t|12.{\mathcal{T}}^{out}[|t|^{-1-\sigma}|x|^{2-n}\mathbf{1}_{\{|x|\geq|t|^{\frac{1}{2}}\}}]\lesssim\begin{cases}|t|^{1-\sigma-\frac{n}{2}}&\mbox{ \ \ if \ }|x|\leq|t|^{\frac{1}{2}},\\ |t|^{-\sigma}|x|^{2-n}&\mbox{ \ \ if \ }|x|\geq|t|^{\frac{1}{2}}.\end{cases}

Then (4.27) follows when δ12\delta\leq\frac{1}{2}. ∎

References

  • Aubin [1976] Thierry Aubin. Problemes isopérimétriques et espaces de sobolev. Journal of differential geometry, 11(4):573–598, 1976.
  • Collot et al. [2017] Charles Collot, Frank Merle, and Pierre Raphaël. Dynamics near the ground state for the energy critical nonlinear heat equation in large dimensions. Communications in Mathematical Physics, 352(1):215–285, 2017.
  • Cortazar et al. [2019] Carmen Cortazar, Manuel del Pino, and Monica Musso. Green’s function and infinite-time bubbling in the critical nonlinear heat equation. Journal of the European Mathematical Society, 22(1):283–344, 2019.
  • Daskalopoulos et al. [2018] Panagiota Daskalopoulos, Manuel Del Pino, and Natasa Sesum. Type II ancient compact solutions to the Yamabe flow. Journal für die reine und angewandte Mathematik, 2018(738):1–71, 2018.
  • Del Pino and Gkikas [2018] Manuel Del Pino and Konstantinos T Gkikas. Ancient multiple-layer solutions to the Allen–Cahn equation. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 148(6):1165–1199, 2018.
  • del Pino et al. [2019] Manuel del Pino, Monica Musso, and Jun Cheng Wei. Type II blow-up in the 5-dimensional energy critical heat equation. Acta Mathematica Sinica, English Series, 35(6):1027–1042, 2019.
  • Del Pino et al. [2020] Manuel Del Pino, Monica Musso, and Juncheng Wei. Infinite time blow-up for the 3-dimensional energy critical heat equation. Analysis & PDE, 13(1):215–274, 2020.
  • del Pino et al. [2020] Manuel del Pino, Monica Musso, Juncheng Wei, and Yifu Zhou. Type II finite time blow-up for the energy critical heat equation in 4\mathbb{R}^{4}. Discrete & Continuous Dynamical Systems-A, 40(6):3327, 2020.
  • Del Pino et al. [2021] Manuel Del Pino, Monica Musso, and Juncheng Wei. Existence and stability of infinite time bubble towers in the energy critical heat equation. Analysis & PDE,to appear, 2021.
  • Fila and Yanagida [2011] Marek Fila and Eiji Yanagida. Homoclinic and heteroclinic orbits for a semilinear parabolic equation. Tohoku Mathematical Journal, 63(4):561–579, 2011.
  • Filippas and Kohn [1992] Stathis Filippas and Robert V Kohn. Refined asymptotics for the blowup of utΔu=upu_{t}-\Delta u=u^{p}. Communications on pure and applied mathematics, 45(7):821–869, 1992.
  • Filippas et al. [2000] Stathis Filippas, Miguel A Herrero, and Juan JL Velázquez. Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 456(2004):2957–2982, 2000.
  • Gidas et al. [1979] Basilis Gidas, Wei-Ming Ni, and Louis Nirenberg. Symmetry and related properties via the maximum principle. Communications in Mathematical Physics, 68(3):209–243, 1979.
  • Giga and Kohn [1985] Yoshikazu Giga and Robert V Kohn. Asymptotically self-similar blow-up of semilinear heat equations. Communications on pure and applied mathematics, 38(3):297–319, 1985.
  • Giga and Kohn [1987] Yoshikazu Giga and Robert V Kohn. Characterizing blowup using similarity variables. Indiana University Mathematics Journal, 36(1):1–40, 1987.
  • Giga et al. [2004] Yoshikazu Giga, Shin’ya Matsui, and Satoshi Sasayama. Blow up rate for semilinear heat equations with subcritical nonlinearity. Indiana University mathematics journal, pages 483–514, 2004.
  • Harada [2020a] Junichi Harada. A higher speed type II blowup for the five dimensional energy critical heat equation. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 37(2):309–341, 2020a.
  • Harada [2020b] Junichi Harada. A type II blowup for the six dimensional energy critical heat equation. Annals of PDE, 6(2):1–63, 2020b.
  • Herrero and Velázquez [1993] Miguel A Herrero and Juan JL Velázquez. Blow-up behaviour of one-dimensional semilinear parabolic equations. Annales de l’Institut Henri Poincare (C) Non Linear Analysis, 10(2):131–189, 1993.
  • Herrero and Velázquez [1994] Miguel A Herrero and Juan JL Velázquez. Explosion de solutions d’équations paraboliques semilinéaires supercritiques. Comptes Rendus de l’Académie des Sciences. Série I. Mathématique, 319(2):141–145, 1994.
  • Jendrej [2017] Jacek Jendrej. Construction of two-bubble solutions for the energy-critical NLS. Anal. PDE, 10(8):1923–1959, 2017. ISSN 2157-5045.
  • Jendrej [2019] Jacek Jendrej. Construction of two-bubble solutions for energy-critical wave equations. Amer. J. Math., 141(1):55–118, 2019. ISSN 0002-9327.
  • Jendrej and Lawrie [2018] Jacek Jendrej and Andrew Lawrie. Two-bubble dynamics for threshold solutions to the wave maps equation. Invent. Math., 213(3):1249–1325, 2018. ISSN 0020-9910.
  • Merle and Zaag [1998] Frank Merle and Hatem Zaag. Optimal estimates for blowup rate and behavior for nonlinear heat equations. Communications on pure and applied mathematics, 51(2):139–196, 1998.
  • Mizoguchi [2004] Noriko Mizoguchi. Type-II blowup for a semilinear heat equation. Advances in Differential Equations, 9(11-12):1279–1316, 2004.
  • Poláčik and Yanagida [2005] P Poláčik and E Yanagida. A liouville property and quasiconvergence for a semilinear heat equation. Journal of Differential Equations, 208(1):194–214, 2005.
  • Poláčik and Quittner [2021] Peter Poláčik and Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems, 41(1):413–438, 2021.
  • Quittner [1999] Pavol Quittner. A priori bounds for global solutions of a semilinear parabolic problem. Acta Math. Univ. Comenianae, 68(2):195–203, 1999.
  • Quittner and Souplet [2019] Pavol Quittner and Philippe Souplet. Superlinear parabolic problems. Springer, 2019.
  • Schweyer [2012] Rémi Schweyer. Type II blow-up for the four dimensional energy critical semi linear heat equation. Journal of Functional Analysis, 263(12):3922–3983, 2012.
  • Struwe [1984] Michael Struwe. A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Mathematische Zeitschrift, 187(4):511–517, 1984.
  • Talenti [1976] Giorgio Talenti. Best constant in sobolev inequality. Annali di Matematica pura ed Applicata, 110(1):353–372, 1976.
  • Velázquez [1992] JJL Velázquez. Higher dimensional blow up for semilinear parabolic equations. Communications in partial differential equations, 17(9-10):1567–1596, 1992.
  • Wang and Wei [2021] Kelei Wang and Juncheng Wei. Refined blowup analysis and nonexistence of type ii blowups for an energy critical nonlinear heat equation. arXiv preprint arXiv:2101.07186, 2021.
  • Wang [1993] Xuefeng Wang. On the cauchy problem for reaction-diffusion equations. Transactions of the American Mathematical society, 337(2):549–590, 1993.