This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Bs0μ+μB_{s}^{0}\rightarrow\mu^{+}\mu^{-} in a flavor violating extension of MSSM

Kai-Kai Meng1,2,111[email protected], Hai-Bin Zhang1,2,3,4,222[email protected], Jin-Lei Yang1,2,3333[email protected] 1Department of Physics, Hebei University, Baoding, 071002, China
2Hebei Key Laboratory of High-precision Computation and Application of Quantum Field Theory, Baoding, 071002, China
3Hebei Research Center of the Basic Discipline for Computational Physics, Baoding, 071002, China
4Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
Abstract

BB meson rare decays play a crucial role in exploring new physics beyond the standard model. In this study, we explore the rare decay process Bs0μ+μB_{s}^{0}\rightarrow\mu^{+}\mu^{-} in a flavor violating extension of the Minimal Supersymmetric Standard Model (MSSM), namely the μ\mu-from-ν\nu SSM (μν\mu\nuSSM). Combined with the decay B¯Xsγ\bar{B}\rightarrow X_{s}\gamma, the numerical results indicate that the μν\mu\nuSSM can successfully accommodate the experimental data for Bs0μ+μB_{s}^{0}\rightarrow\mu^{+}\mu^{-} and additionally narrow down the parameter space.

Rare decay, μν\mu\nuSSM, B physics
pacs:
12.60.Jv, 14.80.Da

I Introduction

While the Standard Model (SM) has achieved great success in describing known phenomena, it is still believed to require improvement or expansion to describe physics at higher energy scales. Beyond the SM, supersymmetry is regarded as one of the most credible candidates. In supersymmetric(SUSY) theory, novel TeV-scale particles can feature in competing diagrams, inducing detectable effects on the rate or other attributes of the bsb\to s decay process. The examinations of rare BB decays offer a means to identify new physics beyond the SM as they are less susceptible to uncertainties stemming from nonperturbative QCD effects. Recently, the average experimental data on the branching ratios of B¯Xsγ\bar{B}\to X_{s}\gamma and Bs0μ+μB_{s}^{0}\to\mu^{+}\mu^{-} are reported as follows HFLAV:2022esi ; ParticleDataGroup:2024cfk ; ATLAS:2018cur ; CMS:2019bbr ; LHCb:2021vsc ; CMS:2022mgd

Br(B¯Xsγ)=(3.49±0.19)×104,\displaystyle Br(\bar{B}\rightarrow X_{s}\gamma)=(3.49\pm 0.19)\times 10^{-4},
Br(Bs0μ+μ)=(3.34±0.27)×109.\displaystyle Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-})=(3.34\pm 0.27)\times 10^{-9}. (1)

The SM predicts the branching ratios for B¯Xsγ\bar{B}\to X_{s}\gamma recently as Misiak:2020vlo

Br(B¯Xsγ)=(3.40±0.17)×104.\displaystyle Br(\bar{B}\rightarrow X_{s}\gamma)=(3.40\pm 0.17)\times 10^{-4}. (2)

The SM prediction for Bs0μ+μB_{s}^{0}\to\mu^{+}\mu^{-} including power-enhanced QED correction is Beneke:2017vpq ; Beneke:2019slt ; Czaja:2024the

Br(Bs0μ+μ)=(3.64±0.12)×109.\displaystyle Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-})=(3.64\pm 0.12)\times 10^{-9}. (3)

These SM predictions align well with the experimental results, indicating that the precise measurements of rare BB decay processes impose stringent constraints on new physics beyond the SM. The primary objective of investigating BB decays is to seek evidence of new physics and define its parameter space.

Indeed, the analyses of constraints on extensions of the SM are widely discussed in the literature. The calculation of the rate inclusive decay B¯Xsγ\bar{B}\to X_{s}\gamma is detailed by the authors of Refs. Ciuchini1 ; Ciafaloni ; Borzumati1 within the framework of the Two-Higgs doublet model (THDM). The impact of supersymmetry on B¯Xsγ\bar{B}\to X_{s}\gamma is deliberated in Refs. NPB4 ; NPB5 ; NPB6 ; NPB8 ; NPB7 ; Zhang1 ; Feng1 , while the next-to-leading order (NLO) QCD corrections are provided in Ref. NPB9 . The branching ratio for Bs0l+lB^{0}_{s}\to l^{+}l^{-} in the THDM and SUSY extensions of the SM has been calculated in Refs. He:1988tf ; Skiba:1992mg ; Choudhury:1998ze ; Huang:2000sm ; Feng2 ; Feng3 . Additionally, Ref. NPB11 delves into hadronic BB decays, while CP-violation in these processes is discussed in Ref. NPB12 . Ref. NPB13 explores the potential for observing SUSY effects in rare decays B¯Xsγ\bar{B}\to X_{s}\gamma and BXsl+lB\to X_{s}l^{+}l^{-} at the B-factory. The investigation of SUSY effects on these processes is highly intriguing, and research on them could illuminate the fundamental features of the SUSY model. The pertinent reviews can be found in Refs. NPB16 ; NPB17 .

In the context of the Supersymmetric Standard Model with a neutrino Yukawa sector (μν\mu\nuSSM)ref2 ; ref3 ; ref4 ,the model addresses the μ\mu problem ref5 that arises in the MSSM ref6 ; ref7 ; ref8 . This resolution is facilitated through the inclusion of lepton number-breaking couplings between the right-handed neutrino superfields and the Higgs fields ϵabλiν~icH~daH~ub\epsilon_{ab}\lambda_{i}\tilde{\nu}_{i}^{c}\tilde{H}_{d}^{a}\tilde{H}_{u}^{b} in the superpotential. The μ\mu term is spontaneously generated through the vacuum expectation values (VEVs) of the right-handed neutrino superfields, denoted as μ=λiν~ic\mu=\lambda_{i}\langle\tilde{\nu}_{i}^{c}\rangle, upon the breaking of the electroweak symmetry (EWSB).

In our previous work, we have investigated the decay B¯Xsγ\bar{B}\rightarrow X_{s}\gamma in the μν\mu\nuSSM Zhang1 . In this paper, we investigate the flavor changing neutral current (FCNC) processes Bs0μ+μB_{s}^{0}\rightarrow\mu^{+}\mu^{-} within the framework of the μν\mu\nuSSM using a minimal flavor-violating scenario for the soft breaking terms, combined with the decay B¯Xsγ\bar{B}\rightarrow X_{s}\gamma. Our presentation is structured as follows: Section II provides a brief summary of the key components of the μν\mu\nuSSM, encompassing the superpotential and general soft breaking terms. Section III presents the effective Hamiltonian for Bs0μ+μB_{s}^{0}\to\mu^{+}\mu^{-}. The numerical analyses are detailed in Section IV, with Section V offering a summary. Appendix contains the detailed formulas.

II the μν\mu\nuSSM

Compared to the MSSM, the μνSSM\mu\nu\mathrm{SSM} includes three right-handed sneutrino superfields ν~ic\widetilde{\nu}_{i}^{c} (where i=1,2,3i=1,2,3) with non-zero VEVs. The superpotential of the μνSSM\mu\nu\mathrm{SSM} can be expressed as ref2 :

W=ϵab(YuijH^ubQ^iau^jc+YdijH^daQ^ibd^jc+YeijH^daL^ibe^jc\displaystyle W={\epsilon_{ab}}({Y_{{u_{ij}}}}\hat{H}_{u}^{b}\hat{Q}_{i}^{a}\hat{u}_{j}^{c}+{Y_{{d_{ij}}}}\hat{H}_{d}^{a}\hat{Q}_{i}^{b}\hat{d}_{j}^{c}+{Y_{{e_{ij}}}}\hat{H}_{d}^{a}\hat{L}_{i}^{b}\hat{e}_{j}^{c}
+YνijH^ubL^iaν^jc)ϵabλiν^icH^daH^ub+13κijkν^icν^jcν^kc.\displaystyle\qquad+{Y_{{\nu_{ij}}}}\hat{H}_{u}^{b}\hat{L}_{i}^{a}\hat{\nu}_{j}^{c})-{\epsilon_{ab}}{\lambda_{i}}\hat{\nu}_{i}^{c}\hat{H}_{d}^{a}\hat{H}_{u}^{b}+\frac{1}{3}{\kappa_{ijk}}\hat{\nu}_{i}^{c}\hat{\nu}_{j}^{c}\hat{\nu}_{k}^{c}\;. (4)

where ϵab\epsilon_{ab} represents the antisymmetric tensor. H^dT=(H^d0,H^d)\hat{H}_{d}^{T}=\left(\hat{H}_{d}^{0},\hat{H}_{d}^{-}\right), H^uT=(H^u+,H^u0)\hat{H}_{u}^{T}=\left(\hat{H}_{u}^{+},\hat{H}_{u}^{0}\right), Q^iT=(u^i,d^i)\hat{Q}_{i}^{T}=\left(\hat{u}_{i},\hat{d}_{i}\right), and L^iT=(ν^i,e^i)\hat{L}_{i}^{T}=\left(\hat{\nu}_{i},\hat{e}_{i}\right) represent SU(2)SU(2) doublet superfields. The symbols d^jc\hat{d}_{j}^{c}, u^jc\hat{u}_{j}^{c}, and e^jc\hat{e}_{j}^{c} denote the singlet superfields corresponding to the down-type quark, up-type quark, and lepton, respectively. Furthermore, YY, λ\lambda, and κ\kappa are dimensionless matrices, a vector, and a totally symmetric tensor. The indices aa, b=1,2b=1,2 are SU(2)SU(2) indices, while ii, jj, k=1,2,3k=1,2,3 represent generation indices.

In Eq. (4), the initial three terms mirror those found in the MSSM. Following the EWSB, the subsequent terms can generate effective bilinear expressions such as ϵabεiH^buL^ai\epsilon_{ab}\varepsilon_{i}\hat{H}_{b}^{u}\hat{L}_{a}^{i} and ϵabμH^daH^bu\epsilon_{ab}\mu\hat{H}_{d}^{a}\hat{H}_{b}^{u}, where εi=Yνijν~jc\varepsilon_{i}=Y_{\nu_{ij}}\langle\tilde{\nu}_{j}^{c}\rangle and μ=λiν~ic\mu=\lambda_{i}\langle\tilde{\nu}_{i}^{c}\rangle. The final two terms explicitly break lepton number and R-parity, with the last term capable of generating effective Majorana masses for neutrinos at the electroweak scale. Throughout this paper, the summation convention is assumed for repeated indices.

In the μν\mu\nuSSM, the general soft SUSY-breaking terms are as follows:

soft=mQ~ij2Q~Q~jaia+mu~ijc2u~u~jcic+md~ijc2d~d~jcic+mL~ij2L~iaL~ja\displaystyle-\mathcal{L}_{soft}\>=\>m_{{{\tilde{Q}}_{ij}}}^{\rm{2}}\tilde{Q}{{}_{i}^{a\ast}}\tilde{Q}_{j}^{a}+m_{\tilde{u}_{ij}^{c}}^{\rm{2}}\tilde{u}{{}_{i}^{c\ast}}\tilde{u}_{j}^{c}+m_{\tilde{d}_{ij}^{c}}^{2}\tilde{d}{{}_{i}^{c\ast}}\tilde{d}_{j}^{c}+m_{{{\tilde{L}}_{ij}}}^{2}\tilde{L}_{i}^{a\ast}\tilde{L}_{j}^{a}
+me~ijc2e~e~jcic+mHd2HdaHda+mHu2HHuaua+mν~ijc2ν~ν~jcic\displaystyle\hskip 51.21504pt+\>m_{\tilde{e}_{ij}^{c}}^{2}\tilde{e}{{}_{i}^{c\ast}}\tilde{e}_{j}^{c}+m_{{H_{d}}}^{\rm{2}}H_{d}^{a\ast}H_{d}^{a}+m_{{H_{u}}}^{2}H{{}_{u}^{a\ast}}H_{u}^{a}+m_{\tilde{\nu}_{ij}^{c}}^{2}\tilde{\nu}{{}_{i}^{c\ast}}\tilde{\nu}_{j}^{c}
+ϵab[(AuYu)ijHubQ~iau~jc+(AdYd)ijHdaQ~ibd~jc+(AeYe)ijHdaL~ibe~jc+H.c.]\displaystyle\hskip 51.21504pt+\>\epsilon_{ab}{\left[{{({A_{u}}{Y_{u}})}_{ij}}H_{u}^{b}\tilde{Q}_{i}^{a}\tilde{u}_{j}^{c}+{{({A_{d}}{Y_{d}})}_{ij}}H_{d}^{a}\tilde{Q}_{i}^{b}\tilde{d}_{j}^{c}+{{({A_{e}}{Y_{e}})}_{ij}}H_{d}^{a}\tilde{L}_{i}^{b}\tilde{e}_{j}^{c}+{\rm{H.c.}}\right]}
+[ϵab(AνYν)ijHubL~iaν~jcϵab(Aλλ)iν~icHdaHub+13(Aκκ)ijkν~icν~jcν~kc+H.c.]\displaystyle\hskip 51.21504pt+\left[{\epsilon_{ab}}{{({A_{\nu}}{Y_{\nu}})}_{ij}}H_{u}^{b}\tilde{L}_{i}^{a}\tilde{\nu}_{j}^{c}-{\epsilon_{ab}}{{({A_{\lambda}}\lambda)}_{i}}\tilde{\nu}_{i}^{c}H_{d}^{a}H_{u}^{b}+\frac{1}{3}{{({A_{\kappa}}\kappa)}_{ijk}}\tilde{\nu}_{i}^{c}\tilde{\nu}_{j}^{c}\tilde{\nu}_{k}^{c}+{\rm{H.c.}}\right]
12(M3λ~3λ~3+M2λ~2λ~2+M1λ~1λ~1+H.c.).\displaystyle\hskip 51.21504pt-\>\frac{1}{2}\left({M_{3}}{{\tilde{\lambda}}_{3}}{{\tilde{\lambda}}_{3}}+{M_{2}}{{\tilde{\lambda}}_{2}}{{\tilde{\lambda}}_{2}}+{M_{1}}{{\tilde{\lambda}}_{1}}{{\tilde{\lambda}}_{1}}+{\rm{H.c.}}\right). (5)

Here, the first two lines feature mass-squared terms of squarks, sleptons, and Higgs bosons. The following two lines encompass the trilinear scalar couplings. The final line specifies the Majorana masses for gauginos λ~3\tilde{\lambda}_{3}, λ~2\tilde{\lambda}_{2}, and λ~1\tilde{\lambda}_{1} denoted as M3M_{3}, M2M_{2}, and M1M_{1} respectively. Besides the terms from soft\mathcal{L}_{\text{soft}}, the tree-level scalar potential also receives the typical contributions from DD and FF terms ref3 .

After spontaneous breaking of the electroweak symmetry, the neutral scalars typically acquire VEVs:

Hd0=υd,Hu0=υu,ν~i=υνi,ν~ic=υνic.\displaystyle\langle H_{d}^{0}\rangle=\upsilon_{d},\qquad\langle H_{u}^{0}\rangle=\upsilon_{u},\qquad\langle\tilde{\nu}_{i}\rangle=\upsilon_{\nu_{i}},\qquad\langle\tilde{\nu}_{i}^{c}\rangle=\upsilon_{\nu_{i}^{c}}. (6)

One has the option to characterize the neutral scalars as

Hd0=hd+iPd2+υd,ν~i=(ν~i)+i(ν~i)2+υνi,\displaystyle H_{d}^{0}=\frac{h_{d}+iP_{d}}{\sqrt{2}}+\upsilon_{d},\qquad\;\tilde{\nu}_{i}=\frac{(\tilde{\nu}_{i})^{\Re}+i(\tilde{\nu}_{i})^{\Im}}{\sqrt{2}}+\upsilon_{\nu_{i}},
Hu0=hu+iPu2+υu,ν~ic=(ν~ic)+i(ν~ic)2+υνic,\displaystyle H_{u}^{0}=\frac{h_{u}+iP_{u}}{\sqrt{2}}+\upsilon_{u},\qquad\tilde{\nu}_{i}^{c}=\frac{(\tilde{\nu}_{i}^{c})^{\Re}+i(\tilde{\nu}_{i}^{c})^{\Im}}{\sqrt{2}}+\upsilon_{\nu_{i}^{c}}, (7)

and

tanβ=υuυd2+υνiυνi.\displaystyle\tan\beta={\upsilon_{u}\over\sqrt{\upsilon_{d}^{2}+\upsilon_{\nu_{i}}\upsilon_{\nu_{i}}}}. (8)

Then, given that υνivd,vu\upsilon_{\nu_{i}}\ll v_{d},v_{u}, we can define the value of tanβ\tan\beta as usual, where tanβ=vuvd\tan\beta=\frac{v_{u}}{v_{d}}.

In the 8×88\times 8 charged scalar mass matrix MS±2M^{2}_{S^{\pm}}, there exist the massless unphysical Goldstone bosons G±G^{\pm} which can be expressed as ref-zhang ; ref15 ; ref-zhang-LFV ; ref-zhang1 :

G±=1υd2+υu2+υνiυνi(υdHd±υuHu±υνie~Li±).\displaystyle G^{\pm}={1\over\sqrt{\upsilon_{d}^{2}+\upsilon_{u}^{2}+\upsilon_{\nu_{i}}\upsilon_{\nu_{i}}}}\Big{(}\upsilon_{d}H_{d}^{\pm}-\upsilon_{u}{H_{u}^{\pm}}-\upsilon_{\nu_{i}}\tilde{e}_{L_{i}}^{\pm}\Big{)}. (9)

In the unitary gauge, these Goldstone bosons G±G^{\pm} are absorbed by the WW-boson and are no longer present in the Lagrangian. Consequently, the mass squared of the WW-boson is given by:

mW2=e22sW2(υu2+υd2+υνiυνi),\displaystyle m_{W}^{2}={e^{2}\over 2s_{{}_{W}}^{2}}\Big{(}\upsilon_{u}^{2}+\upsilon_{d}^{2}+\upsilon_{\nu_{i}}\upsilon_{\nu_{i}}\Big{)}, (10)

where ee represents the electromagnetic coupling constant, sW=sinθWs_{W}=\sin\theta_{W} with θW\theta_{W} being the Weinberg angle.

III Theoretical calculation on Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-})

The effective Hamiltonian for the bsμ+μb\to s\mu^{+}\mu^{-} transition at the hadronic scale can be expressed as bobeth ; bobeth02 :

eff=4GF2(λteff(t)+λueff(u)),{\cal H}_{eff}=-\frac{4\,G_{F}}{\sqrt{2}}\left(\lambda_{t}{\cal H}_{eff}^{(t)}+\lambda_{u}{\cal H}_{eff}^{(u)}\right), (11)

with the CKM combination λi=VibVis\lambda_{i}=V_{ib}V_{is}^{*} and

eff(t)\displaystyle{\cal H}_{eff}^{(t)} =\displaystyle= C1𝒪1c+C2𝒪2c+i=36Ci𝒪i+i=7,8,9,10,P,S(Ci𝒪i+Ci𝒪i),\displaystyle C_{1}\mathcal{O}_{1}^{c}+C_{2}\mathcal{O}_{2}^{c}+\sum_{i=3}^{6}C_{i}\mathcal{O}_{i}+\sum_{i=7,8,9,10,P,S}(C_{i}\mathcal{O}_{i}+C^{\prime}_{i}\mathcal{O}^{\prime}_{i})\,,
eff(u)\displaystyle{\cal H}_{eff}^{(u)} =\displaystyle= C1(𝒪1c𝒪1u)+C2(𝒪2c𝒪2u).\displaystyle C_{1}(\mathcal{O}_{1}^{c}-\mathcal{O}_{1}^{u})+C_{2}(\mathcal{O}_{2}^{c}-\mathcal{O}_{2}^{u})\,. (12)
Refer to caption
Refer to caption
Figure 1: The Feynman diagrams contributing to Bs0μ+μB_{s}^{0}\rightarrow\mu^{+}\mu^{-} from exotic fields in the μν\mu\nuSSM, compared with the SM.

Since the contribution of eff(u){\cal H}_{eff}^{(u)} is doubly Cabibbo-suppressed compared to the contribution of eff(t){\cal H}_{eff}^{(t)}, we can ignore it in the subsequent calculations. The new effective Hamiltonian can be written as:

Heff=4GF2VtsVtb[C1𝒪1c+C2𝒪2c+i=36Ci𝒪i+i=710(Ci𝒪i+Ci𝒪i)\displaystyle H_{eff}=-\frac{4G_{F}}{\sqrt{2}}V_{ts}^{\ast}V_{tb}\Big{[}C_{1}\mathcal{O}^{c}_{1}+C_{2}\mathcal{O}_{2}^{c}+\sum_{i=3}^{6}C_{i}\mathcal{O}_{i}+\sum_{i=7}^{10}(C_{i}\mathcal{O}_{i}+C^{\prime}_{i}\mathcal{O}^{\prime}_{i})
+i=S,P(Ci𝒪i+Ci𝒪i)],\displaystyle\qquad\;\quad\;+\sum_{i=S,P}(C_{i}\mathcal{O}_{i}+C^{\prime}_{i}\mathcal{O}^{\prime}_{i})\Big{]}, (13)

where 𝒪i(i=1,2,,10,S,P)\mathcal{O}_{i}(i=1,2,...,10,S,P) and 𝒪i(i=7,8,,10,S,P)\mathcal{O}^{\prime}_{i}(i=7,8,...,10,S,P) are defined as follows:

𝒪1c=(s¯LγμTacL)(c¯LγμTabL),𝒪2c=(s¯LγμcL)(c¯LγμbL),\displaystyle{\cal O}_{{}_{1}}^{c}=(\bar{s}_{{}_{L}}\gamma_{\mu}T^{a}c_{{}_{L}})(\bar{c}_{{}_{L}}\gamma^{\mu}T^{a}b_{{}_{L}})\;,\;\;{\cal O}_{{}_{2}}^{c}=(\bar{s}_{{}_{L}}\gamma_{\mu}c_{{}_{L}})(\bar{c}_{{}_{L}}\gamma^{\mu}b_{{}_{L}})\;,
𝒪3=(s¯LγμbL)q(q¯γμq),𝒪4=(s¯LγμTabL)q(q¯γμTaq),\displaystyle{\cal O}_{{}_{3}}=(\bar{s}_{{}_{L}}\gamma_{\mu}b_{{}_{L}})\sum\limits_{q}(\bar{q}\gamma^{\mu}q)\;,\;\;{\cal O}_{{}_{4}}=(\bar{s}_{{}_{L}}\gamma_{\mu}T^{a}b_{{}_{L}})\sum\limits_{q}(\bar{q}\gamma^{\mu}T^{a}q)\;,
𝒪5=(s¯LγμγνγρbL)q(q¯γμγνγρq),𝒪6=(s¯LγμγνγρTabL)q(q¯γμγνγρTaq),\displaystyle{\cal O}_{{}_{5}}=(\bar{s}_{{}_{L}}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}b_{{}_{L}})\sum\limits_{q}(\bar{q}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}q)\;,\;\;{\cal O}_{{}_{6}}=(\bar{s}_{{}_{L}}\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}T^{a}b_{{}_{L}})\sum\limits_{q}(\bar{q}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}T^{a}q)\;,
𝒪7=e16π2mb(s¯LσμνbR)Fμν,𝒪7=e16π2mb(s¯RσμνbL)Fμν,\displaystyle{\cal O}_{{}_{7}}={e\over 16\pi^{2}}m_{{}_{b}}(\bar{s}_{{}_{L}}\sigma_{{}_{\mu\nu}}b_{{}_{R}})F^{\mu\nu}\;,\;\;{\cal O}_{{}_{7}}^{\prime}={e\over 16\pi^{2}}m_{{}_{b}}(\bar{s}_{{}_{R}}\sigma_{{}_{\mu\nu}}b_{{}_{L}})F^{\mu\nu}\;,\;\;
𝒪8=gs16π2mb(s¯LσμνTabR)Ga,μν,𝒪8=gs16π2mb(s¯RσμνTabL)Ga,μν,\displaystyle{\cal O}_{{}_{8}}={g_{{}_{s}}\over 16\pi^{2}}m_{{}_{b}}(\bar{s}_{{}_{L}}\sigma_{{}_{\mu\nu}}T^{a}b_{{}_{R}})G^{a,\mu\nu}\;,\;\;{\cal O}_{{}_{8}}^{\prime}={g_{{}_{s}}\over 16\pi^{2}}m_{{}_{b}}(\bar{s}_{{}_{R}}\sigma_{{}_{\mu\nu}}T^{a}b_{{}_{L}})G^{a,\mu\nu}\;,\;\;
𝒪9=e2gs2(s¯LγμbL)l¯γμl,𝒪9=e2gs2(s¯RγμbR)l¯γμl,\displaystyle{\cal O}_{{}_{9}}={e^{2}\over g_{{}_{s}}^{2}}(\bar{s}_{{}_{L}}\gamma_{\mu}b_{{}_{L}})\bar{l}\gamma^{\mu}l\;,\;\;{\cal O}_{{}_{9}}^{\prime}={e^{2}\over g_{{}_{s}}^{2}}(\bar{s}_{{}_{R}}\gamma_{\mu}b_{{}_{R}})\bar{l}\gamma^{\mu}l\;,\;\;
𝒪10=e2gs2(s¯LγμbL)l¯γμγ5l,𝒪10=e2gs2(s¯RγμbR)l¯γμγ5l,\displaystyle{\cal O}_{{}_{10}}={e^{2}\over g_{{}_{s}}^{2}}(\bar{s}_{{}_{L}}\gamma_{\mu}b_{{}_{L}})\bar{l}\gamma^{\mu}\gamma_{5}l\;,\;\;{\cal O}_{{}_{10}}^{\prime}={e^{2}\over g_{{}_{s}}^{2}}(\bar{s}_{{}_{R}}\gamma_{\mu}b_{{}_{R}})\bar{l}\gamma^{\mu}\gamma_{5}l\;,\;\;
𝒪S=e216π2mb(s¯LbR)l¯l,𝒪S=e216π2mb(s¯RbL)l¯l,\displaystyle{\cal O}_{{}_{S}}={e^{2}\over 16\pi^{2}}m_{{}_{b}}(\bar{s}_{{}_{L}}b_{{}_{R}})\bar{l}l\;,\;\;{\cal O}_{{}_{S}}^{\prime}={e^{2}\over 16\pi^{2}}m_{{}_{b}}(\bar{s}_{{}_{R}}b_{{}_{L}})\bar{l}l\;,\;\;
𝒪P=e216π2mb(s¯LbR)l¯γ5l,𝒪P=e216π2mb(s¯RbL)l¯γ5l.\displaystyle{\cal O}_{{}_{P}}={e^{2}\over 16\pi^{2}}m_{{}_{b}}(\bar{s}_{{}_{L}}b_{{}_{R}})\bar{l}\gamma_{5}l\;,\;\;{\cal O}_{{}_{P}}^{\prime}={e^{2}\over 16\pi^{2}}m_{{}_{b}}(\bar{s}_{{}_{R}}b_{{}_{L}})\bar{l}\gamma_{5}l\;. (14)

Here, gsg_{s} represents the strong coupling, FμνF^{\mu\nu} refers to the electromagnetic field strength tensors, GμνG^{\mu\nu} denotes the gluon field strength tensors, and Ta(a=1,,8)T^{a}\,(a=1,...,8) are the generators of SU(3)SU(3).

The primary Feynman diagrams that contribute to the process Bs0μ+μB_{s}^{0}\rightarrow\mu^{+}\mu^{-} in the μνSSM\mu\nu{\rm SSM} are depicted in Fig. 1, where SlS_{l} (l=1,,8l=1,\ldots,8) denote neutral scalars, χl0\chi_{l}^{0} (l=1,,10l=1,\ldots,10) denote neutral fermions, SiS_{i}^{-} (i=2,,8i=2,\ldots,8) denote charged scalars, UiU_{i} (i=1,,6i=1,\ldots,6) denote up-type squarks, uiu_{i} (i=1,2,3i=1,2,3) denote three generation of up-type quarks and χi\chi_{i} (i=1,,5i=1,\ldots,5) denote charged fermions. At the electroweak energy scale μEW\mu_{\text{EW}}, the corresponding Wilson coefficients can be denoted as

CS,NP(μEW)=2sWcW4mbe3VtsVtb[CS,NP(1)(μEW)+CS,NP(2)(μEW)+CS,NP(3)(μEW)+CS,NP(4)(μEW)\displaystyle C_{{}_{S,NP}}(\mu_{{}_{\rm EW}})=\frac{\sqrt{2}s_{{}_{W}}c_{{}_{W}}}{4m_{b}e^{3}V_{ts}^{*}V_{tb}}\Big{[}C_{{}_{S,NP}}^{(1)}(\mu_{{}_{\rm EW}})+C_{{}_{S,NP}}^{(2)}(\mu_{{}_{\rm EW}})+C_{{}_{S,NP}}^{(3)}(\mu_{{}_{\rm EW}})+C_{{}_{S,NP}}^{(4)}(\mu_{{}_{\rm EW}})
+CS,NP(6)(μEW)+CS,NP(9)(μEW)+CS,NP(11)(μEW)],\displaystyle\qquad\;\qquad\;\qquad\;+C_{{}_{S,NP}}^{(6)}(\mu_{{}_{\rm EW}})+C_{{}_{S,NP}}^{(9)}(\mu_{{}_{\rm EW}})+C_{{}_{S,NP}}^{(11)}(\mu_{{}_{\rm EW}})\Big{]},
CS,NP(μEW)=CS,NP(μEW)(LR),\displaystyle C_{{}_{S,NP}}^{\prime}(\mu_{{}_{\rm EW}})=C_{{}_{S,NP}}(\mu_{{}_{\rm EW}})(L\leftrightarrow R),
CP,NP(μEW)=2sWcW4mbe3VtsVtb[CP,NP(1)(μEW)+CP,NP(2)(μEW)+CP,NP(3)(μEW)+CP,NP(4)(μEW)\displaystyle C_{{}_{P,NP}}(\mu_{{}_{\rm EW}})=\frac{\sqrt{2}s_{{}_{W}}c_{{}_{W}}}{4m_{b}e^{3}V_{ts}^{*}V_{tb}}\Big{[}C_{{}_{P,NP}}^{(1)}(\mu_{{}_{\rm EW}})+C_{{}_{P,NP}}^{(2)}(\mu_{{}_{\rm EW}})+C_{{}_{P,NP}}^{(3)}(\mu_{{}_{\rm EW}})+C_{{}_{P,NP}}^{(4)}(\mu_{{}_{\rm EW}})
+CP,NP(6)(μEW)+CP,NP(9)(μEW)+CP,NP(11)(μEW)],\displaystyle\qquad\;\qquad\;\qquad\;+C_{{}_{P,NP}}^{(6)}(\mu_{{}_{\rm EW}})+C_{{}_{P,NP}}^{(9)}(\mu_{{}_{\rm EW}})+C_{{}_{P,NP}}^{(11)}(\mu_{{}_{\rm EW}})\Big{]},
CP,NP(μEW)=CP,NP(μEW)(LR),\displaystyle C_{{}_{P,NP}}^{\prime}(\mu_{{}_{\rm EW}})=-C_{{}_{P,NP}}(\mu_{{}_{\rm EW}})(L\leftrightarrow R),
C9,NP(μEW)=2sWcWgs264π2e3VtsVtb[C9,NP(5)(μEW)+C9,NP(6)(μEW)+C9,NP(7)(μEW)+C9,NP(8)(μEW)\displaystyle C_{{}_{9,NP}}(\mu_{{}_{\rm EW}})=\frac{\sqrt{2}s_{{}_{W}}c_{{}_{W}}g_{{}_{s}}^{2}}{64\pi^{2}e^{3}V_{ts}^{*}V_{tb}}\Big{[}C_{{}_{9,NP}}^{(5)}(\mu_{{}_{\rm EW}})+C_{{}_{9,NP}}^{(6)}(\mu_{{}_{\rm EW}})+C_{{}_{9,NP}}^{(7)}(\mu_{{}_{\rm EW}})+C_{{}_{9,NP}}^{(8)}(\mu_{{}_{\rm EW}})
+C9,NP(9)(μEW)+C9,NP(10)(μEW)],\displaystyle\qquad\;\qquad\;\qquad\;+C_{{}_{9,NP}}^{(9)}(\mu_{{}_{\rm EW}})+C_{{}_{9,NP}}^{(10)}(\mu_{{}_{\rm EW}})\Big{]}\;,
C9,NP(μEW)=C9,NP(μEW)(LR),\displaystyle C_{{}_{9,NP}}^{\prime}(\mu_{{}_{\rm EW}})=C_{{}_{9,NP}}(\mu_{{}_{\rm EW}})(L\leftrightarrow R),
C10,NP(μEW)=2sWcWgs264π2e3VtsVtb[C10,NP(5)(μEW)+C10,NP(6)(μEW)+C10,NP(7)(μEW)+C10,NP(8)(μEW)\displaystyle C_{{}_{10,NP}}(\mu_{{}_{\rm EW}})=\frac{\sqrt{2}s_{{}_{W}}c_{{}_{W}}g_{{}_{s}}^{2}}{64\pi^{2}e^{3}V_{ts}^{*}V_{tb}}\Big{[}C_{{}_{10,NP}}^{(5)}(\mu_{{}_{\rm EW}})+C_{{}_{10,NP}}^{(6)}(\mu_{{}_{\rm EW}})+C_{{}_{10,NP}}^{(7)}(\mu_{{}_{\rm EW}})+C_{{}_{10,NP}}^{(8)}(\mu_{{}_{\rm EW}})
+C10,NP(9)(μEW)+C10,NP(10)(μEW)],\displaystyle\qquad\;\qquad\;\qquad\;+C_{{}_{10,NP}}^{(9)}(\mu_{{}_{\rm EW}})+C_{{}_{10,NP}}^{(10)}(\mu_{{}_{\rm EW}})\Big{]}\;,
C10,NP(μEW)=C10,NP(μEW)(LR).\displaystyle C_{{}_{10,NP}}^{\prime}(\mu_{{}_{\rm EW}})=-C_{{}_{10,NP}}(\mu_{{}_{\rm EW}})(L\leftrightarrow R). (15)

Here, the superscripts (1, …, 11) correspond to the new physics corrections in Fig. 1, and the specific expressions for these Wilson coefficients are detailed in Appendix A. The Wilson coefficients at the hadronic energy scale, ranging from the SM to next-to-next-to-logarithmic (NNLL) accuracy, are presented in Table I Altmannshofer:2008dz .

C7eff,SMC_{{}_{7}}^{eff,SM} C8eff,SMC_{{}_{8}}^{eff,SM} C9eff,SMC_{{}_{9}}^{eff,SM} C10eff,SMC_{{}_{10}}^{eff,SM}
0.304-0.304 0.167-0.167 4.2114.211 4.103-4.103
Table 1: At hadronic scale μmb\mu\sim m_{{}_{b}}, Wilson coefficients from the SM to NNLL accuracy.

Furthermore, the Wilson coefficients in Eqs.(15) are computed at the matching scale μEW\mu_{EW} and subsequently evolved down to the hadronic scale μmb\mu\sim m_{b} through the renormalization group equations:

CNP(μ)=U^(μ,μ0)CNP(μ0)\displaystyle\overrightarrow{C}_{{}_{NP}}(\mu)=\widehat{U}(\mu,\mu_{0})\overrightarrow{C}_{{}_{NP}}(\mu_{0})
CNP(μ)=U^(μ,μ0)CNP(μ0),\displaystyle\overrightarrow{C^{\prime}}_{{}_{NP}}(\mu)=\widehat{U^{\prime}}(\mu,\mu_{0})\overrightarrow{C^{\prime}}_{{}_{NP}}(\mu_{0})\;, (16)

where

CNPT=(C1,NPeff,,C6,NPeff,C7,NPeff,C8,NPeff,C9,NPeff,C10,NPeff),\displaystyle\overrightarrow{C}_{{}_{NP}}^{T}=\Big{(}C_{{}_{1,NP}}^{eff},\;\cdots,\;C_{{}_{6,NP}}^{eff},C_{{}_{7,NP}}^{eff},\;C_{{}_{8,NP}}^{eff},\;C_{{}_{9,NP}}^{eff},\;C_{{}_{10,NP}}^{eff}\Big{)}\;,
CNP,T=(C7,NP,eff,C8,NP,eff,C9,NP,eff,C10,NP,eff).\displaystyle\overrightarrow{C}_{{}_{NP}}^{\prime,\;T}=\Big{(}C_{{}_{7,NP}}^{\prime,\;eff},\;C_{{}_{8,NP}}^{\prime,\;eff},\;C_{{}_{9,NP}}^{\prime,\;eff},\;C_{{}_{10,NP}}^{\prime,\;eff}\Big{)}\;. (17)

According to Ref. Gambino1 , the definitions of CieffC_{i}^{\text{eff}} are as follows:

Cieff(μ)={Ci(μ),for i=16,4παsCi(μ)+j=16yj(i)Cj(μ),for i=78,4παsCi(μ),for i=910.\displaystyle C_{i}^{\text{eff}}(\mu)=\begin{cases}C_{i}(\mu),&\text{for }i=1\text{--}6,\\[10.0pt] \frac{4\pi}{\alpha_{s}}C_{i}(\mu)+\sum_{j=1}^{6}y_{j}^{(i)}C_{j}(\mu),&\text{for }i=7\text{--}8,\\[10.0pt] \frac{4\pi}{\alpha_{s}}C_{i}(\mu),&\text{for $i=9$--$10$}.\end{cases} (18)

where y(7)=(0,0,13,49,203,809)y^{(7)}=(0,0,-\frac{1}{3},-\frac{4}{9},-\frac{20}{3},-\frac{80}{9}) and y(8)=(0,0,1,16,20,103)y^{(8)}=(0,0,1,-\frac{1}{6},20,-\frac{10}{3}). Note that the definition of C9effC_{9}^{\text{eff}} in this work differs slightly from that in Ref. Altmannshofer:2008dz which includes factorisable contributions from the quark loops: Y(q2)Y(q^{2}). Correspondingly, the evolving matrices are approximated as

U^(μ,μ0)1[12β0lnαs(μ)αs(μ0)]γ^eff(0),T,\displaystyle\widehat{U}(\mu,\mu_{0})\simeq 1-\Big{[}{1\over 2\beta_{0}}\ln{\alpha_{{}_{s}}(\mu)\over\alpha_{{}_{s}}(\mu_{0})}\Big{]}\widehat{\gamma}^{{\rm eff}(0),\;T}\;,
U^(μ,μ0)1[12β0lnαs(μ)αs(μ0)]γ^eff(0),T.\displaystyle\widehat{U^{\prime}}(\mu,\mu_{0})\simeq 1-\Big{[}{1\over 2\beta_{0}}\ln{\alpha_{{}_{s}}(\mu)\over\alpha_{{}_{s}}(\mu_{0})}\Big{]}\widehat{\gamma^{\prime}}^{{\rm eff}(0),\;T}\;. (19)

By utilizing the Eq. (30) from Ref. Gambino1 , we can calculate the corresponding anomalous dimension matrices

γ^eff(0)=(48302900208243173162227272901200430041681702719522430000523021768114276752243000409100949561522435871622192729000025630206272816596278403224300025695694092346242434772813785672900000003230000000003292830000000000000000000000),\displaystyle\widehat{\gamma}^{{\rm eff}(0)}=\left(\begin{array}[]{cccccccccc}-4&{8\over 3}&0&-{2\over 9}&0&0&-{208\over 243}&{173\over 162}&-{2272\over 729}&0\\ 12&0&0&{4\over 3}&0&0&{416\over 81}&{70\over 27}&{1952\over 243}&0\\ 0&0&0&-{52\over 3}&0&2&-{176\over 81}&{14\over 27}&-{6752\over 243}&0\\ 0&0&-{40\over 9}&-{100\over 9}&{4\over 9}&{5\over 6}&-{152\over 243}&-{587\over 162}&-{2192\over 729}&0\\ 0&0&0&-{256\over 3}&0&20&-{6272\over 81}&{6596\over 27}&-{84032\over 243}&0\\ 0&0&-{256\over 9}&{56\over 9}&{40\over 9}&-{2\over 3}&{4624\over 243}&{4772\over 81}&-{37856\over 729}&0\\ 0&0&0&0&0&0&{32\over 3}&0&0&0\\ 0&0&0&0&0&0&-{32\over 9}&{28\over 3}&0&0\\ 0&0&0&0&0&0&0&0&0&0\\ 0&0&0&0&0&0&0&0&0&0\\ \end{array}\right)\;, (30)
γ^eff(0)=(3230003292830000000000).\displaystyle\widehat{\gamma^{\prime}}^{{\rm eff}(0)}=\left(\begin{array}[]{cccc}{32\over 3}&0&0&0\\ -{32\over 9}&{28\over 3}&0&0\\ 0&0&0&0\\ 0&0&0&0\\ \end{array}\right)\;. (35)

Then, the squared amplitude can be denoted as

|s|2=16GF2|VtbVts|2MBs02[|FSs|2+|FPs+2mμFAs|2],\displaystyle|\mathcal{M}_{s}|^{2}=16G_{F}^{2}|V_{tb}V_{ts}^{*}|^{2}M_{B_{s}^{0}}^{2}\Big{[}|F_{S}^{s}|^{2}+|F_{P}^{s}+2m_{\mu}F_{A}^{s}|^{2}\Big{]}, (36)

and

FSs=αEW(μb)8πmbMBs02mb+msfBs0(CSCS),\displaystyle F_{S}^{s}=\frac{\alpha_{EW}(\mu_{b})}{8\pi}\frac{m_{b}M_{B_{s}^{0}}^{2}}{m_{b}+m_{s}}f_{B_{s}^{0}}(C_{S}-C_{S}^{\prime}), (37)
FPs=αEW(μb)8πmbMBs02mb+msfBs0(CPCP),\displaystyle F_{P}^{s}=\frac{\alpha_{EW}(\mu_{b})}{8\pi}\frac{m_{b}M_{B_{s}^{0}}^{2}}{m_{b}+m_{s}}f_{B_{s}^{0}}(C_{P}-C_{P}^{\prime}), (38)
FAs=αEW(μb)8πfBs0[C10eff(μb)C10eff(μb)].\displaystyle F_{A}^{s}=\frac{\alpha_{EW}(\mu_{b})}{8\pi}f_{B_{s}^{0}}\Big{[}C_{10}^{eff}(\mu_{b})-C_{10}^{\prime eff}(\mu_{b})\Big{]}. (39)

Here, the decay constant is denoted by fBs0=230.3(1.3)MeVf_{B^{0}_{s}}=230.3\,(1.3)\text{MeV} FlavourLatticeAveragingGroupFLAG:2021npn ; Bazavov:2017lyh ; ETM:2016nbo ; Dowdall:2013tga ; Hughes:2017spc , and the mass of the neutral meson Bs0B_{s}^{0} is represented by MBs0=5366.93(±0.10)MeVM_{B^{0}_{s}}=5366.93\,(\pm 0.10)\text{MeV} ParticleDataGroup:2024cfk .

Ultimately, the branching ratio of Bs0μ+μB_{s}^{0}\rightarrow\mu^{+}\mu^{-} can be expressed as:

Br(Bs0μ+μ)=τBs016π|s|2MBs014mμ2MBs02,\displaystyle Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-})=\frac{\tau_{B_{s}^{0}}}{16\pi}\frac{|\mathcal{M}_{s}|^{2}}{M_{B_{s}^{0}}}\sqrt{1-\frac{4m_{\mu}^{2}}{M_{B_{s}^{0}}^{2}}}, (40)

where τBs0=1.527(±0.011)\tau_{B_{s}^{0}}=1.527\,(\pm 0.011) ps HFLAV:2022esi denotes the lifetime of Bs0B_{s}^{0}.

IV Numerical analysis

In this section, we provide the numerical results of the branching ratios for rare BB meson decays Bs0μ+μB_{s}^{0}\rightarrow\mu^{+}\mu^{-} and B¯Xsγ\bar{B}\rightarrow X_{s}\gamma. We analyzed how individual parameters affect the branching ratios of these two processes. To better understand the impact of these parameters on the branching ratios, we need to first make a reasonable selection of other parameters.

The relevant SM input parameters are presented in Table  2. All other parameters in SM remain unchanged compared to those listed in Table I of Ref. Bobeth:2013uxa , as their modification would have negligible impact on Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) either because they are already measured with high precision or because their influence on Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) is minimal.

Parameter Value Unit Ref.
τBs0\tau_{B^{0}_{s}} 1.527(±0.011)1.527\,(\pm 0.011) ps HFLAV:2022esi
αs(mZ)\alpha_{s}(m_{Z}) 0.1180(9)0.1180\,(9) ParticleDataGroup:2024cfk
αem(mZ)\alpha_{em}(m_{Z}) 1/127.944(14)1/127.944\,(14) ParticleDataGroup:2024cfk
MBs0M_{B^{0}_{s}} 5366.93(±0.10)5366.93\,(\pm 0.10) MeV ParticleDataGroup:2024cfk
fBs0f_{B^{0}_{s}} 230.3(1.3)230.3\,(1.3) MeV FlavourLatticeAveragingGroupFLAG:2021npn ; Bazavov:2017lyh ; ETM:2016nbo ; Dowdall:2013tga ; Hughes:2017spc
|Vcb|×103|V_{cb}|\times 10^{3} 41.97(48)41.97\,(48) Finauri:2023kte
|VtbVts/Vcb||V_{tb}^{\star}V_{ts}/V_{cb}| 0.9820(4)0.9820\,(4) Charles:2004jd
Table 2: Numerical values of the updated input parameters in the SM.

In the SUSY extensions of the SM, there exist numerous free parameters. Given the structure of the soft SUSY-breaking terms, the free parameters in the μνSSM\mu\nu{\rm SSM} are:

λi,κijk,Yνij,mHd2,mHu2,mν~ijc2,mL~ij2,(Aλλ)i,(Aκκ)ijk,(AνYν)ij,\displaystyle\lambda_{i},\,\,\kappa_{ijk},\,\,Y_{\nu ij},\,\,m_{H_{d}}^{2},\,\,m_{H_{u}}^{2},\,\,m_{\tilde{\nu}_{ij}^{c}}^{2},\,\,m_{{{\tilde{L}}_{ij}}}^{2},\,\,({A_{\lambda}}\lambda)_{i},\,\,({A_{\kappa}}\kappa)_{ijk},\,\,(A_{\nu}Y_{\nu})_{ij},
M1,M2,M3,mQ~ij2,mu~ijc2,md~ijc2,me~ijc2,(AuYu)ij,(AdYd)ij,(AeYe)ij.\displaystyle M_{1},M_{2},M_{3},\,\,m_{\tilde{Q}_{ij}}^{2},\,\,m_{\tilde{u}_{ij}^{c}}^{2},\,\,m_{\tilde{d}_{ij}^{c}}^{2},\,\,m_{\tilde{e}_{ij}^{c}}^{2},\,\,(A_{u}Y_{u})_{ij},\,\,(A_{d}Y_{d})_{ij},\,\,({A_{e}}{Y_{e}})_{ij}. (41)

To streamline numerical results, we apply the minimal flavor violation (MFV) assumption to certain parameters in the μνSSM\mu\nu{\rm SSM}. This assumption includes:

λi=λ,κijk=κδijδjk,(Aκκ)ijk=Aκκδijδjk,\displaystyle\lambda_{i}=\lambda,\qquad{\kappa_{ijk}}=\kappa{\delta_{ij}}{\delta_{jk}},\quad{({A_{\kappa}}\kappa)_{ijk}}={A_{\kappa}}\kappa{\delta_{ij}}{\delta_{jk}},
(Aλλ)i=Aλλ,Yνij=Yνiδij,Yeij=Yeiδij,\displaystyle{({A_{\lambda}}\lambda)}_{i}={A_{\lambda}}\lambda,\quad{Y_{{\nu_{ij}}}}={Y_{{\nu_{i}}}}{\delta_{ij}},\qquad{Y_{{e_{ij}}}}={Y_{{e_{i}}}}{\delta_{ij}},
υνic=υνc,(AνYν)ij=aνiδij,(AeYe)ij=AeYeiδij,\displaystyle\upsilon_{\nu_{i}^{c}}=\upsilon_{\nu^{c}},\quad(A_{\nu}Y_{\nu})_{ij}={a_{{\nu_{i}}}}{\delta_{ij}},\quad{({A_{e}}{Y_{e}})_{ij}}={A_{e}}{Y_{{e_{i}}}}{\delta_{ij}},
mL~ij2=mL~2δij,mν~ijc2=mν~ic2δij,me~ijc2=me~c2δij,\displaystyle m_{{{\tilde{L}}_{ij}}}^{2}=m_{\tilde{L}}^{2}{\delta_{ij}},\quad m_{\tilde{\nu}_{ij}^{c}}^{2}=m_{{{\tilde{\nu}_{i}}^{c}}}^{2}{\delta_{ij}},\quad m_{\tilde{e}_{ij}^{c}}^{2}=m_{{{\tilde{e}}^{c}}}^{2}{\delta_{ij}},
mQ~ij2=mQ~i2δij,mu~ijc2=mu~ic2δij,md~ijc2=md~ic2δij.\displaystyle m_{\tilde{Q}_{ij}}^{2}=m_{{{\tilde{Q}}_{i}}}^{2}{\delta_{ij}},\quad m_{\tilde{u}_{ij}^{c}}^{2}=m_{{{{\tilde{u}}_{i}}^{c}}}^{2}{\delta_{ij}},\quad m_{\tilde{d}_{ij}^{c}}^{2}=m_{{{{\tilde{d}}_{i}}^{c}}}^{2}{\delta_{ij}}. (42)

For the relevant parameters for quarks, one can have

(AuYu)ij=AuiYuij,Yuij=YuiVLiju,\displaystyle(A_{u}Y_{u})_{ij}={A_{u_{i}}}{Y_{{u_{ij}}}},\quad{Y_{{u_{ij}}}}={Y_{{u_{i}}}}{V_{L_{ij}}^{u}},
(AdYd)ij=AdiYdij,Ydij=YdiVLijd,\displaystyle(A_{d}Y_{d})_{ij}={A_{d_{i}}}{Y_{{d_{ij}}}},\quad{Y_{{d_{ij}}}}={Y_{{d_{i}}}}{V_{L_{ij}}^{d}}, (43)

where V=VLuVLdV=V_{L}^{u}V_{L}^{d{\dagger}} denotes the CKM matrix CKM1 ; CKM2 . Constrained by the masses of quarks and leptons, approximate relations can be defined: YuimuiυuY_{u_{i}}\approx\frac{m_{u_{i}}}{\upsilon_{u}}, YdimdiυdY_{d_{i}}\approx\frac{m_{d_{i}}}{\upsilon_{d}}, Yei=mliυdY_{e_{i}}=\frac{m_{l_{i}}}{\upsilon_{d}}, where muim_{u_{i}}, mdim_{d_{i}}, and mlim_{l_{i}} denote the masses of up-quarks, down-quarks, and charged leptons, respectively. The specific values are adopted from PDG. ParticleDataGroup:2024cfk . Additionally, the aforementioned soft masses mHd2,mHu2,mν~ijc2m_{H_{d}}^{2},m_{H_{u}}^{2},m_{\tilde{\nu}_{ij}^{c}}^{2} and mL~ij2m_{{{\tilde{L}}_{ij}}}^{2} can be substituted with the VEVs in Eq. (6). By utilizing tanβvuvd\tan\beta\equiv\frac{v_{u}}{v_{d}} and the SM Higgs VEV, v2=vd2+vu2+iυνi2=2mZ2(g12+g22)(174 GeV)2v^{2}=v_{d}^{2}+v_{u}^{2}+\sum_{i}\upsilon_{\nu_{i}}^{2}=\frac{2m_{Z}^{2}}{(g_{1}^{2}+g_{2}^{2})}\approx(174\text{ GeV})^{2} with the electroweak gauge couplings estimated at the mZm_{Z} scale by e=g1cosθW=g2sinθWe=g_{1}\cos\theta_{W}=g_{2}\sin\theta_{W}, one can derive the SUSY Higgs VEVs, vdv_{d} and vuv_{u}. Given that υνivd,vu\upsilon_{\nu_{i}}\ll v_{d},v_{u}, it follows that vdvtan2β+1v_{d}\approx\frac{v}{\sqrt{\tan^{2}\beta+1}}.

In our prior investigation neu-mass6 , we extensively examined how the neutrino oscillation data restrict neutrino Yukawa couplings Yνi𝒪(107)Y_{\nu_{i}}\sim\mathcal{O}(10^{-7}) and left-handed sneutrino VEVs υνi𝒪(104GeV)\upsilon_{\nu_{i}}\sim\mathcal{O}(10^{-4}\,\text{GeV}) within the μν\mu\nuSSM through the TeV-scale seesaw mechanism. As the tiny neutrino masses have minimal impact on Br(B¯Xsγ)Br(\bar{B}\rightarrow X_{s}\gamma) and Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}), we can approximate Yνi=0Y_{\nu_{i}}=0 and υνi=0\upsilon_{\nu_{i}}=0. For the Majorana masses of the gauginos, we will imply the approximate GUT relation M1=α12α22M20.5M2M_{1}=\frac{\alpha_{1}^{2}}{\alpha_{2}^{2}}M_{2}\approx 0.5M_{2} and M3=α32α22M22.7M2M_{3}=\frac{\alpha_{3}^{2}}{\alpha_{2}^{2}}M_{2}\approx 2.7M_{2}. The gluino mass, mg~M3m_{{\tilde{g}}}\approx M_{3}, is larger than about 1.21.2 TeV from the ATLAS and CMS experimental data ATLAS-sg1 ; ATLAS-sg2 ; CMS-sg1 ; CMS-sg2 . So, we conservatively choose M2=1TeVM_{2}=1\;{\rm TeV}. Finally, the free parameters in Eq. (41) have been replaced with the following:

λ,κ,tanβ,υνc,Aλ,Aκ,\displaystyle\lambda,\,\,\kappa,\,\,\tan\beta,\,\,\upsilon_{\nu^{c}},\,\,{A_{\lambda}},\,\,{A_{\kappa}},
mQ~i2,Adi,md~ic2,mu~ic2,me~ic2,Aui,Aei.\displaystyle m_{\tilde{Q}_{i}}^{2},\,\,A_{d_{i}},\,\,m_{\tilde{d}_{i}^{c}}^{2},\,\,m_{\tilde{u}_{i}^{c}}^{2},\,\,m_{\tilde{e}_{i}^{c}}^{2},\,\,A_{u_{i}},\,\,A_{e_{i}}. (44)

Among the parameters in Eq. (44), κ,tanβ,υνc,Aλ\kappa,\tan\beta,\upsilon_{\nu^{c}},A_{\lambda}, and Au3A_{u_{3}} have a significant impact on the results. The remaining parameters of the model are fixed as shown in Table  3.

mQ~1,2=mu~1,2c=md~1,2c=3m_{\tilde{Q}_{1,2}}=m_{\tilde{u}_{1,2}^{c}}=m_{\tilde{d}_{1,2}^{c}}=3 TeV
Yνi=0Y_{\nu_{i}}=0, υνi=0\upsilon_{\nu_{i}}=0
mQ~3=mu~3c=md~3c=2m_{{\tilde{Q}}_{3}}=m_{{\tilde{u}}^{c}_{3}}=m_{{\tilde{d}}^{c}_{3}}=2 TeV
λ=0.05\lambda=0.05, me~1,2,3c=1m_{\tilde{e}_{1,2,3}^{c}}=1 TeV
Au1,2=Ae1,2,3=Ad1,2,3=1A_{u_{1,2}}=A_{e_{1,2,3}}=A_{d_{1,2,3}}=1 TeV
M1=0.5M2M_{1}=0.5M_{2}, M3=2.7M2M_{3}=2.7M_{2}, M2=1M_{2}=1 TeV
Aκ=300A_{\kappa}=-300 GeV
Table 3: This table summarizes the model parameters and values.

For squarks, the first two generations of squarks are strongly constrained by direct searches at the Large Hadron Collider (LHC) ATLAS.PRD ; CMS.JHEP . Therefore, we take mQ~1,2=mu~1,2c=md~1,2c=3TeVm_{{\tilde{Q}}_{1,2}}=m_{{\tilde{u}}^{c}_{1,2}}=m_{{\tilde{d}}^{c}_{1,2}}=3\;{\rm TeV}. The third generation squark masses are not as strictly constrained by the LHC as the first two generations. Additionally, the smaller the mass of the third-generation squarks, the more pronounced the effect of the parameter Au3A_{u_{3}} on Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}). To clearly investigate the impact of Au3A_{u_{3}} on Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}), we have set the mass of the third-generation squarks slightly lower, specifically mQ~3=mu~3c=md~3c=2TeVm_{{\tilde{Q}}_{3}}=m_{{\tilde{u}}^{c}_{3}}=m_{{\tilde{d}}^{c}_{3}}=2\;{\rm TeV}.

The variations in me~ic2m_{\tilde{e}_{i}^{c}}^{2}, AeiA_{e_{i}}, AdiA_{d_{i}}, and Au1,2A_{u_{1,2}} have a negligible impact on the calculation results for Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) and Br(B¯Xsγ)Br(\bar{B}\rightarrow X_{s}\gamma). Based on the parameter space analysis outlined in Ref. ref3 , we can select reasonable values for certain parameters: λ=0.05\lambda=0.05, Ad1,2,3=Ae1,2,3=Au1,2=1TeVA_{d_{1,2,3}}=A_{e_{1,2,3}}=A_{u_{1,2}}=1\,\text{TeV}, and me~ic=1TeVm_{\tilde{e}_{i}^{c}}=1\,\text{TeV} for simplicity in subsequent numerical computations. The parameter Au3=AtA_{u_{3}}=A_{t} is a key factor influencing the subsequent numerical calculations.

In the μνSSM\mu\nu{\rm SSM}, the sneutrino sector may exhibit tachyonic behavior. The squared masses of these tachyons are negative. Therefore, it is necessary to analyze the masses of the sneutrinos. The masses of the left-handed sneutrinos are primarily determined by mL~m_{\tilde{L}}, while the three right-handed sneutrinos are essentially degenerate. The mass squared for the CP-even and CP-odd right-handed sneutrinos can be approximated as follows ref-zhang1 :

mS5+i2(Aκ+4κυνc)κυνc+Aλλυdυu/υνc2λ2(υd2+υu2),\displaystyle m_{S_{5+i}}^{2}\approx(A_{\kappa}+4\kappa\upsilon_{\nu^{c}})\kappa\upsilon_{\nu^{c}}+A_{\lambda}\lambda\upsilon_{d}\upsilon_{u}/\upsilon_{\nu^{c}}-2\lambda^{2}(\upsilon_{d}^{2}+\upsilon_{u}^{2}), (45)
mP5+i23Aκκυνc+(Aλ/υνc+4κ)λυdυu2λ2(υd2+υu2).\displaystyle m_{P_{5+i}}^{2}\approx-3A_{\kappa}\kappa\upsilon_{\nu^{c}}+(A_{\lambda}/\upsilon_{\nu^{c}}+4\kappa)\lambda\upsilon_{d}\upsilon_{u}-2\lambda^{2}(\upsilon_{d}^{2}+\upsilon_{u}^{2}). (46)

In these expressions, the primary contribution to the mass squared comes from the first term when κ\kappa is large, in the limit of υνcυu,d\upsilon_{\nu^{c}}\gg\upsilon_{u,d}. Hence, we can use the approximate relation

4κυνcAκ0,\displaystyle-4\kappa\upsilon_{\nu^{c}}\lesssim A_{\kappa}\lesssim 0, (47)

to prevent the occurrence of tachyons. While AκA_{\kappa} has minimal influence on the computation results, both κ\kappa and υνc\upsilon_{\nu^{c}} are crucial parameters affecting the calculations. In the subsequent analysis, κ\kappa varies between 0.1 and 1, while υνc\upsilon_{\nu^{c}} ranges from 1.5TeV to 2.5TeV. According to Eq. (47), we can conservatively set Aκ=300GeVA_{\kappa}=-300\,\text{GeV} to avoid the emergence of tachyons.

In the limit of υνcυu,d\upsilon_{\nu^{c}}\gg\upsilon_{u,d} ref-limit-MH , the squared mass of the charged Higgs MH±2M_{H^{\pm}}^{2} in the μν\mu\nuSSM can be expressed as:

MH±2MA2+(16sW2λ2e2)mW2,\displaystyle M_{H^{\pm}}^{2}\simeq M_{A}^{2}+(1-\frac{6s_{{}_{W}}^{2}\lambda^{2}}{e^{2}})m_{W}^{2}, (48)

with the squared mass of the neutral pseudoscalar:

MA26λυνc(Aλ+κυνc)sin2β.\displaystyle M_{A}^{2}\simeq\frac{6\lambda\upsilon_{\nu^{c}}(A_{\lambda}+\kappa\upsilon_{\nu^{c}})}{\sin 2\beta}. (49)

In the scenarios of the MSSM and NMSSM Domingo:2007dx , the additional physics contributions to Br(Bs0μ+μ)Br(B_{s}^{0}\to\mu^{+}\mu^{-}) and Br(B¯Xsγ)Br(\bar{B}\to X_{s}\gamma) primarily depend on AtA_{t}, tanβ\tan\beta, and the charged Higgs mass MH±M_{H^{\pm}}. To demonstrate the impacts of AtA_{t} and tanβ\tan\beta on the theoretical evaluations of Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) and Br(B¯Xsγ)Br(\bar{B}\rightarrow X_{s}\gamma) in the μνSSM\mu\nu{\rm SSM}, we temporarily fix the parameters κ\kappa, υνc\upsilon_{\nu^{c}}, and AλA_{\lambda}. Specifically, we set κ=0.5\kappa=0.5, υνc=2TeV\upsilon_{\nu^{c}}=2\;{\rm TeV}, and Aλ=0.5TeVA_{\lambda}=0.5\;{\rm TeV}. The plots in Fig. 2 show Br(Bs0μ+μ)Br(B_{s}^{0}\to\mu^{+}\mu^{-}) and Br(B¯Xsγ)Br(\bar{B}\to X_{s}\gamma) as functions of AtA_{t} for tanβ=30\tan\beta=30 (solid line) and tanβ=15\tan\beta=15 (dashed line).

Additionally, since our calculation method essentially combines the new contributions from SUSY particles with the existing SM contributions to obtain the final result, we can roughly consider the theoretical uncertainty in the SM as the minimum uncertainty for the μνSSM\mu\nu{\rm SSM}. We treat the theoretical uncertainty in the SM from Eq. (2, 3) as the minimum uncertainty in the μνSSM\mu\nu{\rm SSM}, which is then combined with the experimental 1σ1\sigma uncertainty, represented by the gray band in the figure. The central value of the gray band is the experimental central value from Eq. (1). The range of the gray band in Fig. 2(a) is (3.34±0.27±0.12)×109=(3.34±0.39)×109(3.34\pm 0.27\pm 0.12)\times 10^{-9}=(3.34\pm 0.39)\times 10^{-9}, while the range of the gray band in Fig. 2(b) is (3.49±0.19±0.17)×104=(3.49±0.36)×104(3.49\pm 0.19\pm 0.17)\times 10^{-4}=(3.49\pm 0.36)\times 10^{-4}.

Refer to caption
Refer to caption
Figure 2: When κ=0.5\kappa=0.5, υνc=2TeV\upsilon_{\nu^{c}}=2\,\text{TeV}, and Aλ=0.5TeVA_{\lambda}=0.5\,\text{TeV}, (a) Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) and (b) Br(B¯Xsγ)Br(\bar{B}\rightarrow X_{s}\gamma) vary with AtA_{t} for tanβ=30(solid line)\tan\beta=30\,(\text{solid line}) and tanβ=15(dashed line)\tan\beta=15\,(\text{dashed line}).

From Fig. 2, we can see that both Bs0μ+μB_{s}^{0}\rightarrow\mu^{+}\mu^{-} and B¯Xsγ\bar{B}\rightarrow X_{s}\gamma constrain the parameter space of the μνSSM\mu\nu{\rm SSM}. From Fig. 2(a), it is evident that as AtA_{t} increases, Br(Bs0μ+μ)Br(B_{s}^{0}\to\mu^{+}\mu^{-}) will first decrease before increasing. The experimental data on Br(Bs0μ+μ)Br(B_{s}^{0}\to\mu^{+}\mu^{-}) favors AtA_{t} within specific ranges: 8.5TeVAt1.1TeV-8.5\,\text{TeV}\lesssim A_{t}\lesssim-1.1\,\text{TeV} for tanβ=15\tan\beta=15 and 4.5TeVAt0.5TeV-4.5\,\text{TeV}\lesssim A_{t}\lesssim 0.5\,\text{TeV} for tanβ=30\tan\beta=30. From Fig. 2(b), it is evident that Br(B¯Xsγ)Br(\bar{B}\to X_{s}\gamma) decreases with the escalation of AtA_{t}. As the value of tanβ\tan\beta increases, the curve becomes steeper, consequently narrowing the allowed range of AtA_{t}. When tanβ\tan\beta is set to 15, the allowable range for AtA_{t} is At4TeVA_{t}\lesssim 4\,\text{TeV}, and when tanβ\tan\beta is set to 30, the allowable range for AtA_{t} is 7TeVAt2.6TeV-7\,\text{TeV}\lesssim A_{t}\lesssim 2.6\,\text{TeV}. The influence of AtA_{t} on the calculation results mainly comes from its ability to adjust the coupling strengths between the stop quark and other particles in the Feynman diagrams.

Considering the constraint from the SM-like Higgs mass, in the upcoming parameter analysis, we set AtA_{t}=3.6-3.6 TeV with tanβ=15\tan\beta=15 to ensure the SM-like Higgs mass around 125GeV125{\rm GeV}. In addition, υνc\upsilon_{\nu^{c}} is a unique parameter in the μν\mu\nuSSM. To investigate the impact of υνc\upsilon_{\nu^{c}} on the results, we will plot curves for two cases: υνc\upsilon_{\nu^{c}}=1.5 TeV represented by a solid line and υνc\upsilon_{\nu^{c}}=2 TeV represented by a dashed line.

Refer to caption
Refer to caption
Figure 3: When tanβ=15,At=3.6\tan\beta=15,A_{t}=-3.6 TeV, and Aλ=0.5TeVA_{\lambda}=0.5\,\text{TeV}, (a) Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) and (b) Br(B¯Xsγ)Br(\bar{B}\rightarrow X_{s}\gamma) vary with κ\kappa for υνc=1.5\upsilon_{\nu^{c}}=1.5 TeV (solid line), υνc=2\upsilon_{\nu^{c}}=2 TeV (dashed line).

In the MSSM Domingo:2007dx , the theoretical predictions of Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) and Br(B¯Xsγ)Br(\bar{B}\rightarrow X_{s}\gamma) will decrease as MH±M_{H^{\pm}} increases. From Eqs.(48, 49), it can be seen that κ\kappa can influence MH±M_{H^{\pm}} in the μν\mu\nuSSM. Moreover, an increase in κ\kappa leads to an increase in MH±M_{H^{\pm}}. To explore the influences of κ\kappa on Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) and Br(B¯Xsγ)Br(\bar{B}\rightarrow X_{s}\gamma), we plot curves in Fig. 3 showing how Br(B¯Xsγ)Br(\bar{B}\rightarrow X_{s}\gamma) and Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) vary with κ\kappa. From Fig. 3(a), it is evident that Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) gradually decreases as κ\kappa increases, eventually stabilizing within the range that is consistent with the experimental data. When υνc\upsilon_{\nu^{c}} is set to 2 TeV, the experimental data concerning Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) favor κ\kappa lying within the range κ0.18\kappa\gtrsim 0.18. When υνc\upsilon_{\nu^{c}} is set to 1.5 TeV, κ\kappa is required to be approximately greater than 0.55. From Fig. 3(b), it can be observed that the theoretical predictions for Br(B¯Xsγ)Br(\bar{B}\to X_{s}\gamma) are consistent with the experimental results, and as κ\kappa increases, there is a slight decrease in Br(B¯Xsγ)Br(\bar{B}\to X_{s}\gamma). From Fig. 3, we can also observe that both Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) and Br(B¯Xsγ)Br(\bar{B}\rightarrow X_{s}\gamma) decrease as υνc\upsilon_{\nu^{c}} increases. From Eqs.(48, 49), it can be seen that, similar to κ\kappa, an increase in υνc\upsilon_{\nu^{c}} will also lead to an increase in MH±M_{H^{\pm}}. Therefore, both υνc\upsilon_{\nu^{c}} and κ\kappa can influence the theoretical predictions for Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) and Br(B¯Xsγ)Br(\bar{B}\rightarrow X_{s}\gamma) by affecting MH±M_{H^{\pm}}. The parameter λ\lambda also have effects similar to those of the parameter υνc\upsilon_{\nu^{c}}.

From Eqs.(48, 49), it can be seen that an increase in the parameter AλA_{\lambda} will also lead to an increase in MH±M_{H^{\pm}}. Thus, we speculate that the parameter AλA_{\lambda}, like υνc\upsilon_{\nu^{c}} and κ\kappa, can also influence the theoretical predictions for Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) and Br(B¯Xsγ)Br(\bar{B}\rightarrow X_{s}\gamma). To investigate this influence, we set κ\kappa=0.5, and then plot curves in Fig. 4 showing how Br(B¯Xsγ)Br(\bar{B}\rightarrow X_{s}\gamma) and Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) vary with AλA_{\lambda}.

Refer to caption
Refer to caption
Figure 4: When tanβ=15,At=3.6\tan\beta=15,A_{t}=-3.6 TeV, and κ=0.5\kappa=0.5, (a) Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) and (b) Br(B¯Xsγ)Br(\bar{B}\rightarrow X_{s}\gamma) versus AλA_{\lambda} for υνc=1.5\upsilon_{\nu^{c}}=1.5 TeV (solid line), υνc=2\upsilon_{\nu^{c}}=2 TeV (dashed line).

From Fig. 4(a), it is evident that Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) gradually decreases as AλA_{\lambda} increases, eventually stabilizing within the range consistent with the experimental data. The experimental data on Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) limits that Aλ0.58TeVA_{\lambda}\gtrsim 0.58\,\text{TeV} for υνc\upsilon_{\nu^{c}}=1.5 TeV and Aλ0.14TeVA_{\lambda}\gtrsim-0.14\,\text{TeV} for υνc\upsilon_{\nu^{c}}=2 TeV. From Fig. 4(b), the theoretical predictions for Br(B¯Xsγ)Br(\bar{B}\rightarrow X_{s}\gamma) remain consistent with the experimental results. As AλA_{\lambda} increases, Br(B¯Xsγ)Br(\bar{B}\rightarrow X_{s}\gamma) will slightly decrease. Similar to the situation in Fig. 3, an increase of υνc\upsilon_{\nu^{c}} will result in a decrease in both Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) and Br(B¯Xsγ)Br(\bar{B}\rightarrow X_{s}\gamma), with this effect becoming more pronounced as AλA_{\lambda} decreases.

V Summary

In this study, we examine the branching ratio of the rare decay Bs0μ+μB_{s}^{0}\rightarrow\mu^{+}\mu^{-} within the framework of the μν\mu\nuSSM combined with B¯Xsγ\bar{B}\to X_{s}\gamma. Similar to the MSSM and NMSSM, the additional physics contributions to Br(Bs0μ+μ)Br(B_{s}^{0}\rightarrow\mu^{+}\mu^{-}) and Br(B¯Xsγ)Br(\bar{B}\to X_{s}\gamma) in the μν\mu\nuSSM primarily rely on MH±M_{H^{\pm}}, tanβ\tan\beta, and AtA_{t}. This is due to the suppressed mixings between charginos and charged leptons in the mass matrix of the μν\mu\nuSSM, as well as the mixings between charged Higgs bosons and charged sleptons. Additionally, υνc\upsilon_{\nu^{c}}, AλA_{\lambda}, and κ\kappa in the μν\mu\nuSSM can also influence the theoretical predictions of Br(Bs0μ+μ)Br(B_{s}^{0}\to\mu^{+}\mu^{-}) and Br(B¯Xsγ)Br(\bar{B}\to X_{s}\gamma) by affecting MH±M_{H^{\pm}}. Subject to the constraint of a SM-like Higgs boson with a mass approximately at 125 GeV, the numerical findings indicate that the new physics can align with the experimental data for BB meson rare decays and consequently narrow down the parameter space. In addition to Bs0μ+μB_{s}^{0}\rightarrow\mu^{+}\mu^{-} and BXsγB\to X_{s}\gamma, the μν\mu\nuSSM also contributes to C9C_{9}. This contribution may lead to other bsb\to s observables, such as the ”BB-anomalies”, which we will investigate in detail elsewhere.

Acknowledgements.
The work has been supported by the National Natural Science Foundation of China (NNSFC) with Grants No. 12075074, No. 12235008, Hebei Natural Science Foundation with Grants No. A2022201017, No. A2023201041, and the youth top-notch talent support program of the Hebei Province.

Appendix A The Wilson coefficients of the process Bs0μ+μB_{s}^{0}\rightarrow\mu^{+}\mu^{-} in the μν\mu\nuSSM.

In our previous work Bsmumu:2018 , we have calculated the Wilson coefficients of the process Bs0μ+μB_{s}^{0}\rightarrow\mu^{+}\mu^{-} in the B-LSSM. Because the SUSY particles contained in the B-LSSM and the μν\mu\nuSSM are different, the Feynman diagrams involving SUSY particles will vary when calculating the amplitude for the same process Bs0μ+μB_{s}^{0}\rightarrow\mu^{+}\mu^{-}. Through the previous work, the Wilson coefficients corresponding to bsμ+μb\rightarrow s\mu^{+}\mu^{-} in the μν\mu\nuSSM can be written as

CS,NP(1)(μEW)=Ui,χj,χk,SlCμSlμ+L+CμSlμ+R2(mb2mSl2)[CUis¯χjRCχjSlχkLCχksUiRG2(xUi,xχj,xχk)\displaystyle C_{{}_{S,NP}}^{(1)}(\mu_{{}_{\rm EW}})=\sum_{{}_{U_{i},\chi_{j},\chi_{k},S_{l}}}\frac{C_{\mu^{-}S_{l}\mu^{+}}^{L}+C_{\mu^{-}S_{l}\mu^{+}}^{R}}{2(m_{b}^{2}-m^{2}_{S_{l}})}\Big{[}C_{U_{i}\bar{s}\chi_{j}}^{R}C_{\chi_{j}S_{l}\chi_{k}}^{L}C_{\chi_{k}sU_{i}}^{R}G_{2}(x_{U_{i}},x_{\chi_{j}},x_{\chi_{k}})
+mχjmχkCUis¯χjRCχjSlχkRCχksUiRG1(xUi,xχj,xχk)]\displaystyle\qquad\qquad\qquad+m_{\chi_{j}}m_{\chi_{k}}C_{U_{i}\bar{s}\chi_{j}}^{R}C_{\chi_{j}S_{l}\chi_{k}}^{R}C_{\chi_{k}sU_{i}}^{R}G_{1}(x_{U_{i}},x_{\chi_{j}},x_{\chi_{k}})\Big{]}
+Si,uj,uk,SlCμSlμ+L+CμSlμ+R2(mb2mSl2)[CSis¯ujRCu¯jSlukLCu¯kbSiRG2(xSi,xuj,xuk)\displaystyle\qquad\qquad\qquad+\sum_{{}_{S^{-}_{i},u_{j},u_{k},S_{l}}}\frac{C_{\mu^{-}S_{l}\mu^{+}}^{L}+C_{\mu^{-}S_{l}\mu^{+}}^{R}}{2(m_{b}^{2}-m^{2}_{S_{l}})}\Big{[}C_{S^{-}_{i}\bar{s}u_{j}}^{R}C_{\bar{u}_{j}S_{l}u_{k}}^{L}C_{\bar{u}_{k}bS^{-}_{i}}^{R}G_{2}(x_{S^{-}_{i}},x_{u_{j}},x_{u_{k}})
+mujmukCSis¯ujRCu¯jSlukRCu¯kbSiRG1(xSi,xuj,xuk)],\displaystyle\qquad\qquad\qquad+m_{u_{j}}m_{u_{k}}C_{S^{-}_{i}\bar{s}u_{j}}^{R}C_{\bar{u}_{j}S_{l}u_{k}}^{R}C_{\bar{u}_{k}bS^{-}_{i}}^{R}G_{1}(x_{S^{-}_{i}},x_{u_{j}},x_{u_{k}})\Big{]},
CP,NP(1)(μEW)=Ui,χj,χk,SlCμSlμ+L+CμSlμ+R2(mb2mSl2)[CUis¯χjRCχjSlχkLCχksUiRG2(xUi,xχj,xχk)\displaystyle C_{{}_{P,NP}}^{(1)}(\mu_{{}_{\rm EW}})=\sum_{{}_{U_{i},\chi_{j},\chi_{k},S_{l}}}\frac{-C_{\mu^{-}S_{l}\mu^{+}}^{L}+C_{\mu^{-}S_{l}\mu^{+}}^{R}}{2(m_{b}^{2}-m^{2}_{S_{l}})}\Big{[}C_{U_{i}\bar{s}\chi_{j}}^{R}C_{\chi_{j}S_{l}\chi_{k}}^{L}C_{\chi_{k}sU_{i}}^{R}G_{2}(x_{U_{i}},x_{\chi_{j}},x_{\chi_{k}})
+mχjmχkCUis¯χjRCχjSlχkRCχksUiRG1(xUi,xχj,xχk)]\displaystyle\qquad\qquad\qquad+m_{\chi_{j}}m_{\chi_{k}}C_{U_{i}\bar{s}\chi_{j}}^{R}C_{\chi_{j}S_{l}\chi_{k}}^{R}C_{\chi_{k}sU_{i}}^{R}G_{1}(x_{U_{i}},x_{\chi_{j}},x_{\chi_{k}})\Big{]}
+Si,uj,uk,SlCμSlμ+L+CμSlμ+R2(mb2mSl2)[CSis¯ujRCu¯jSlukLCu¯kbSiRG2(xSi,xuj,xuk)\displaystyle\qquad\qquad\qquad+\sum_{{}_{S^{-}_{i},u_{j},u_{k},S_{l}}}\frac{-C_{\mu^{-}S_{l}\mu^{+}}^{L}+C_{\mu^{-}S_{l}\mu^{+}}^{R}}{2(m_{b}^{2}-m^{2}_{S_{l}})}\Big{[}C_{S^{-}_{i}\bar{s}u_{j}}^{R}C_{\bar{u}_{j}S_{l}u_{k}}^{L}C_{\bar{u}_{k}bS^{-}_{i}}^{R}G_{2}(x_{S^{-}_{i}},x_{u_{j}},x_{u_{k}})
+mujmukCSis¯ujRCu¯jSlukRCu¯kbSiRG1(xSi,xuj,xuk)],\displaystyle\qquad\qquad\qquad+m_{u_{j}}m_{u_{k}}C_{S^{-}_{i}\bar{s}u_{j}}^{R}C_{\bar{u}_{j}S_{l}u_{k}}^{R}C_{\bar{u}_{k}bS^{-}_{i}}^{R}G_{1}(x_{S^{-}_{i}},x_{u_{j}},x_{u_{k}})\Big{]}, (50)
CS,NP(2)(μEW)=ui,Sj,Sk,Sl12(mb2mSl2)muiCs¯uiSjRCu¯ibSkRCSlSjSkG1(xui,xSj,xSk)\displaystyle C_{{}_{S,NP}}^{(2)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},S^{-}_{j},S^{-}_{k},S_{l}}\frac{1}{2(m_{b}^{2}-m^{2}_{S_{l}})}m_{u_{i}}C_{\bar{s}u_{i}S^{-}_{j}}^{R}C_{\bar{u}_{i}bS^{-}_{k}}^{R}C_{S_{l}S^{-}_{j}S^{-}_{k}}G_{1}(x_{u_{i}},x_{S^{-}_{j}},x_{S^{-}_{k}})
(CμSlμ+L+CμSlμ+R)\displaystyle\qquad\qquad\qquad(C_{\mu^{-}S_{l}\mu^{+}}^{L}+C_{\mu^{-}S_{l}\mu^{+}}^{R})
+χi,Uj,Uk,Sl12(mb2mSl2)mχiCs¯χiUjRCχibUkRCSlUjUkG1(xχi,xUj,xUk)\displaystyle\qquad\qquad\qquad+\sum_{\chi_{i},U_{j},U_{k},S_{l}}\frac{1}{2(m_{b}^{2}-m^{2}_{S_{l}})}m_{\chi_{i}}C_{\bar{s}\chi_{i}U_{j}}^{R}C_{\chi_{i}bU_{k}}^{R}C_{S_{l}U_{j}U_{k}}G_{1}(x_{\chi_{i}},x_{U_{j}},x_{U_{k}})
(CμSlμ+L+CμSlμ+R),\displaystyle\qquad\qquad\qquad(C_{\mu^{-}S_{l}\mu^{+}}^{L}+C_{\mu^{-}S_{l}\mu^{+}}^{R}),
Cp,NP(2)(μEW)=ui,Sj,Sk,Sl12(mb2mSl2)muiCs¯uiSjRCu¯ibSkRCSlSjSkG1(xui,xSj,xSk)\displaystyle C_{{}_{p,NP}}^{(2)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},S^{-}_{j},S^{-}_{k},S_{l}}\frac{1}{2(m_{b}^{2}-m^{2}_{S_{l}})}m_{u_{i}}C_{\bar{s}u_{i}S^{-}_{j}}^{R}C_{\bar{u}_{i}bS^{-}_{k}}^{R}C_{S_{l}S^{-}_{j}S^{-}_{k}}G_{1}(x_{u_{i}},x_{S^{-}_{j}},x_{S^{-}_{k}})
(CμSlμ+L+CμSlμ+R)\displaystyle\qquad\qquad\qquad(-C_{\mu^{-}S_{l}\mu^{+}}^{L}+C_{\mu^{-}S_{l}\mu^{+}}^{R})
+χi,Uj,Uk,Sl12(mb2mSl2)mχiCs¯χiUjRCχibUkRCSlUjUkG1(xχi,xUj,xUk)\displaystyle\qquad\qquad\qquad+\sum_{\chi_{i},U_{j},U_{k},S_{l}}\frac{1}{2(m_{b}^{2}-m^{2}_{S_{l}})}m_{\chi_{i}}C_{\bar{s}\chi_{i}U_{j}}^{R}C_{\chi_{i}bU_{k}}^{R}C_{S_{l}U_{j}U_{k}}G_{1}(x_{\chi_{i}},x_{U_{j}},x_{U_{k}})
(CμSlμ+L+CμSlμ+R),\displaystyle\qquad\qquad\qquad(-C_{\mu^{-}S_{l}\mu^{+}}^{L}+C_{\mu^{-}S_{l}\mu^{+}}^{R}), (51)
CS,NP(3)(μEW)=ui,Sk,SlCWSlSk2(mb2mSl2)[Cs¯WuiLCu¯iSkbRG2(xui,1,xSk)2mbmuiCs¯WuiL\displaystyle C_{{}_{S,NP}}^{(3)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},S^{-}_{k},S_{l}}\frac{-C_{W^{-}S_{l}S^{-}_{k}}}{2(m_{b}^{2}-m^{2}_{S_{l}})}\Big{[}C_{\bar{s}W^{-}u_{i}}^{L}C_{\bar{u}_{i}S^{-}_{k}b}^{R}G_{2}(x_{u_{i}},1,x_{S^{-}_{k}})-2m_{b}m_{u_{i}}C_{\bar{s}W^{-}u_{i}}^{L}
Cu¯iSkbLG1(xui,1,xSk)](CμSlμ+L+CμSlμ+R),\displaystyle\qquad\qquad\qquad C_{\bar{u}_{i}S^{-}_{k}b}^{L}G_{1}(x_{u_{i}},1,x_{S^{-}_{k}})\Big{]}(C_{\mu^{-}S_{l}\mu^{+}}^{L}+C_{\mu^{-}S_{l}\mu^{+}}^{R}),
CP,NP(3)(μEW)=ui,Sk,SlCWSlSk2(mb2mSl2)[Cs¯WuiLCu¯iSkbRG2(xui,1,xSk)2mbmuiCs¯WuiL\displaystyle C_{{}_{P,NP}}^{(3)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},S^{-}_{k},S_{l}}\frac{-C_{W^{-}S_{l}S^{-}_{k}}}{2(m_{b}^{2}-m^{2}_{S_{l}})}\Big{[}C_{\bar{s}W^{-}u_{i}}^{L}C_{\bar{u}_{i}S^{-}_{k}b}^{R}G_{2}(x_{u_{i}},1,x_{S^{-}_{k}})-2m_{b}m_{u_{i}}C_{\bar{s}W^{-}u_{i}}^{L}
Cu¯iSkbLG1(xui,1,xSk)](CμSlμ+L+CμSlμ+R),\displaystyle\qquad\qquad\qquad C_{\bar{u}_{i}S^{-}_{k}b}^{L}G_{1}(x_{u_{i}},1,x_{S^{-}_{k}})\Big{]}(-C_{\mu^{-}S_{l}\mu^{+}}^{L}+C_{\mu^{-}S_{l}\mu^{+}}^{R}), (52)
CS,NP(4)(μEW)=ui,Sj,SlCWSlSj2(mb2mSl2)Cs¯SjuiRCu¯iWbRG2(xui,xSj,1)(CμSlμ+L+CμSlμ+R),\displaystyle C_{{}_{S,NP}}^{(4)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},S^{-}_{j},S_{l}}\frac{-C_{W^{-}S_{l}S^{-}_{j}}}{2(m_{b}^{2}-m^{2}_{S_{l}})}C_{\bar{s}S^{-}_{j}u_{i}}^{R}C_{\bar{u}_{i}W^{-}b}^{R}G_{2}(x_{u_{i}},x_{S^{-}_{j}},1)(C_{\mu^{-}S_{l}\mu^{+}}^{L}+C_{\mu^{-}S_{l}\mu^{+}}^{R}),
CS,NP(4)(μEW)=ui,Sj,SlCWSlSj2(mb2mSl2)Cs¯SjuiRCu¯iWbRG2(xui,xSj,1)(CμSlμ+L+CμSlμ+R),\displaystyle C_{{}_{S,NP}}^{(4)}(\mu_{{}_{\rm EW}})=\sum_{u_{i},S^{-}_{j},S_{l}}\frac{-C_{W^{-}S_{l}S^{-}_{j}}}{2(m_{b}^{2}-m^{2}_{S_{l}})}C_{\bar{s}S^{-}_{j}u_{i}}^{R}C_{\bar{u}_{i}W^{-}b}^{R}G_{2}(x_{u_{i}},x_{S^{-}_{j}},1)(-C_{\mu^{-}S_{l}\mu^{+}}^{L}+C_{\mu^{-}S_{l}\mu^{+}}^{R}),
C9,NP(5)(μEW)=Ui,χj,χk,VCμVμ+L+CμVμ+R2(mb2mV2)[12CUis¯χjRCχjVχkRCχksUiLG2(xUi,xχj,xχk)\displaystyle C_{{}_{9,NP}}^{(5)}(\mu_{{}_{\rm EW}})=\sum_{{}_{U_{i},\chi_{j},\chi_{k},V}}\frac{C_{\mu^{-}V\mu^{+}}^{L}+C_{\mu^{-}V\mu^{+}}^{R}}{-2(m_{b}^{2}-m_{V}^{2})}\Big{[}-\frac{1}{2}C_{U_{i}\bar{s}\chi_{j}}^{R}C_{\chi_{j}V\chi_{k}}^{R}C_{\chi_{k}sU_{i}}^{L}G_{2}(x_{U_{i}},x_{\chi_{j}},x_{\chi_{k}})
+mχjmχkCUis¯χjRCχjVχkLCχksUiLG1(xUi,xχj,xχk)]\displaystyle\qquad\qquad\qquad+m_{\chi_{j}}m_{\chi_{k}}C_{U_{i}\bar{s}\chi_{j}}^{R}C_{\chi_{j}V\chi_{k}}^{L}C_{\chi_{k}sU_{i}}^{L}G_{1}(x_{U_{i}},x_{\chi_{j}},x_{\chi_{k}})\Big{]}
+Si,uj,uk,VCμVμ+L+CμVμ+R2(mb2mV2)[12CSis¯ujRCu¯jVukRCuksSiLG2(xSi,xuj,xuk)\displaystyle\qquad\qquad\qquad+\sum_{{}_{S^{-}_{i},u_{j},u_{k},V}}\frac{C_{\mu^{-}V\mu^{+}}^{L}+C_{\mu^{-}V\mu^{+}}^{R}}{-2(m_{b}^{2}-m_{V}^{2})}\Big{[}-\frac{1}{2}C_{S^{-}_{i}\bar{s}u_{j}}^{R}C_{\bar{u}_{j}Vu_{k}}^{R}C_{u_{k}sS^{-}_{i}}^{L}G_{2}(x_{S^{-}_{i}},x_{u_{j}},x_{u_{k}})
+mujmukCSis¯ujRCu¯jVukLCu¯ksSiLG1(xSi,xuj,xuk)],\displaystyle\qquad\qquad\qquad+m_{u_{j}}m_{u_{k}}C_{S^{-}_{i}\bar{s}u_{j}}^{R}C_{\bar{u}_{j}Vu_{k}}^{L}C_{\bar{u}_{k}sS^{-}_{i}}^{L}G_{1}(x_{S^{-}_{i}},x_{u_{j}},x_{u_{k}})\Big{]},
C10,NP(5)(μEW)=Ui,χj,χk,VCμVμ+L+CμVμ+R2(mb2mV2)[12CUis¯χjRCχjVχkRCχksUiLG2(xUi,xχj,xχk)\displaystyle C_{{}_{10,NP}}^{(5)}(\mu_{{}_{\rm EW}})=\sum_{{}_{U_{i},\chi_{j},\chi_{k},V}}\frac{-C_{\mu^{-}V\mu^{+}}^{L}+C_{\mu^{-}V\mu^{+}}^{R}}{-2(m_{b}^{2}-m_{V}^{2})}\Big{[}-\frac{1}{2}C_{U_{i}\bar{s}\chi_{j}}^{R}C_{\chi_{j}V\chi_{k}}^{R}C_{\chi_{k}sU_{i}}^{L}G_{2}(x_{U_{i}},x_{\chi_{j}},x_{\chi_{k}})
+mχjmχkCUis¯χjRCχjVχkLCχksUiLG1(xUi,xχj,xχk)]\displaystyle\qquad\qquad\qquad+m_{\chi_{j}}m_{\chi_{k}}C_{U_{i}\bar{s}\chi_{j}}^{R}C_{\chi_{j}V\chi_{k}}^{L}C_{\chi_{k}sU_{i}}^{L}G_{1}(x_{U_{i}},x_{\chi_{j}},x_{\chi_{k}})\Big{]}
+S~i,uj,uk,VCμVμ+L+CμVμ+R2(mb2mV2)[12CSis¯ujRCu¯jVukRCuksSiLG2(xSi,xuj,xuk)\displaystyle\qquad\qquad\qquad+\sum_{{}_{\tilde{S}^{-}_{i},u_{j},u_{k},V}}\frac{-C_{\mu^{-}V\mu^{+}}^{L}+C_{\mu^{-}V\mu^{+}}^{R}}{-2(m_{b}^{2}-m_{V}^{2})}\Big{[}-\frac{1}{2}C_{S^{-}_{i}\bar{s}u_{j}}^{R}C_{\bar{u}_{j}Vu_{k}}^{R}C_{u_{k}sS^{-}_{i}}^{L}G_{2}(x_{S^{-}_{i}},x_{u_{j}},x_{u_{k}})
+mujmukCSis¯ujRCu¯jVukLCu¯ksSiLG1(xSi,xuj,xuk)],\displaystyle\qquad\qquad\qquad+m_{u_{j}}m_{u_{k}}C_{S^{-}_{i}\bar{s}u_{j}}^{R}C_{\bar{u}_{j}Vu_{k}}^{L}C_{\bar{u}_{k}sS^{-}_{i}}^{L}G_{1}(x_{S^{-}_{i}},x_{u_{j}},x_{u_{k}})\Big{]}, (54)
C9,NP(6)(μEW)=ui,Sj,Sk,VCμVμ+L+CμVμ+R4(mb2mV2)Cs¯uiSjRCu¯ibSkLCVSjSkG2(xui,xSj,xSk)\displaystyle C_{{}_{9,NP}}^{(6)}(\mu_{{}_{\rm EW}})=\sum_{{}_{u_{i},S^{-}_{j},S^{-}_{k},V}}\frac{C_{\mu^{-}V\mu^{+}}^{L}+C_{\mu^{-}V\mu^{+}}^{R}}{4(m_{b}^{2}-m_{V}^{2})}C_{\bar{s}u_{i}S^{-}_{j}}^{R}C_{\bar{u}_{i}bS^{-}_{k}}^{L}C_{VS^{-}_{j}S^{-}_{k}}G_{2}(x_{u_{i}},x_{S^{-}_{j}},x_{S^{-}_{k}})
+χi,Uj,Uk,VCμVμ+L+CμVμ+R4(mb2mV2)Cs¯χiUjRCχibUkLCVUjUkG2(xχi,xUj,xUk),\displaystyle\qquad\qquad\qquad+\sum_{{}_{\chi_{i},U_{j},U_{k},V}}\frac{C_{\mu^{-}V\mu^{+}}^{L}+C_{\mu^{-}V\mu^{+}}^{R}}{4(m_{b}^{2}-m_{V}^{2})}C_{\bar{s}\chi_{i}U_{j}}^{R}C_{\chi_{i}bU_{k}}^{L}C_{VU_{j}U_{k}}G_{2}(x_{\chi_{i}},x_{U_{j}},x_{U_{k}}),
C10,NP(6)(μEW)=ui,Sj,Sk,VCμVμ+L+CμVμ+R4(mb2mV2)Cs¯uiSjRCu¯ibSkLCVSjSkG2(xui,xSj,xSk)\displaystyle C_{{}_{10,NP}}^{(6)}(\mu_{{}_{\rm EW}})=\sum_{{}_{u_{i},S^{-}_{j},S^{-}_{k},V}}\frac{-C_{\mu^{-}V\mu^{+}}^{L}+C_{\mu^{-}V\mu^{+}}^{R}}{4(m_{b}^{2}-m_{V}^{2})}C_{\bar{s}u_{i}S^{-}_{j}}^{R}C_{\bar{u}_{i}bS^{-}_{k}}^{L}C_{VS^{-}_{j}S^{-}_{k}}G_{2}(x_{u_{i}},x_{S^{-}_{j}},x_{S^{-}_{k}})
+χi,Uj,Uk,VCμVμ+L+CμVμ+R4(mb2mV2)Cs¯χiUjRCχibUkLCVUjUkG2(xχi,xUj,xUk),\displaystyle\qquad\qquad\qquad+\sum_{{}_{\chi_{i},U_{j},U_{k},V}}\frac{-C_{\mu^{-}V\mu^{+}}^{L}+C_{\mu^{-}V\mu^{+}}^{R}}{4(m_{b}^{2}-m_{V}^{2})}C_{\bar{s}\chi_{i}U_{j}}^{R}C_{\chi_{i}bU_{k}}^{L}C_{VU_{j}U_{k}}G_{2}(x_{\chi_{i}},x_{U_{j}},x_{U_{k}}),
CS,NP(6)(μEW)=ui,Sj,Sk,VCμVμ+L+CμVμ+R2(mb2mV2)mbmuiCs¯uiSjRCu¯ibSkRCVSjSkG1(xui,xSj,xSk)\displaystyle C_{{}_{S,NP}}^{(6)}(\mu_{{}_{\rm EW}})=\sum_{{}_{u_{i},S^{-}_{j},S^{-}_{k},V}}\frac{C_{\mu^{-}V\mu^{+}}^{L}+C_{\mu^{-}V\mu^{+}}^{R}}{-2(m_{b}^{2}-m_{V}^{2})}m_{b}m_{u_{i}}C_{\bar{s}u_{i}S^{-}_{j}}^{R}C_{\bar{u}_{i}bS^{-}_{k}}^{R}C_{VS^{-}_{j}S^{-}_{k}}G_{1}(x_{u_{i}},x_{S^{-}_{j}},x_{S^{-}_{k}})
+χi,Uj,Uk,VCμVμ+L+CμVμ+R2(mb2mV2)mbmχiCs¯χiUjRCχibUkRCVUjUkG1(xχi,xUj,xUk),\displaystyle\qquad\qquad\qquad+\sum_{{}_{\chi_{i},U_{j},U_{k},V}}\frac{C_{\mu^{-}V\mu^{+}}^{L}+C_{\mu^{-}V\mu^{+}}^{R}}{-2(m_{b}^{2}-m_{V}^{2})}m_{b}m_{\chi_{i}}C_{\bar{s}\chi_{i}U_{j}}^{R}C_{\chi_{i}bU_{k}}^{R}C_{VU_{j}U_{k}}G_{1}(x_{\chi_{i}},x_{U_{j}},x_{U_{k}}),
CP,NP(6)(μEW)=ui,Sj,Sk,VCμVμ+LCμVμ+R2(mb2mV2)mbmuiCs¯uiSjRCu¯ibSkRCVSjSkG1(xui,xSj,xSk)\displaystyle C_{{}_{P,NP}}^{(6)}(\mu_{{}_{\rm EW}})=\sum_{{}_{u_{i},S^{-}_{j},S^{-}_{k},V}}\frac{C_{\mu^{-}V\mu^{+}}^{L}-C_{\mu^{-}V\mu^{+}}^{R}}{-2(m_{b}^{2}-m_{V}^{2})}m_{b}m_{u_{i}}C_{\bar{s}u_{i}S^{-}_{j}}^{R}C_{\bar{u}_{i}bS^{-}_{k}}^{R}C_{VS^{-}_{j}S^{-}_{k}}G_{1}(x_{u_{i}},x_{S^{-}_{j}},x_{S^{-}_{k}})
+χi,Uj,Uk,VCμVμ+LCμVμ+R2(mb2mV2)mbmχiCs¯χiUjRCχibUkRCVUjUkG1(xχi,xUj,xUk),\displaystyle\qquad\qquad\qquad+\sum_{{}_{\chi_{i},U_{j},U_{k},V}}\frac{C_{\mu^{-}V\mu^{+}}^{L}-C_{\mu^{-}V\mu^{+}}^{R}}{-2(m_{b}^{2}-m_{V}^{2})}m_{b}m_{\chi_{i}}C_{\bar{s}\chi_{i}U_{j}}^{R}C_{\chi_{i}bU_{k}}^{R}C_{VU_{j}U_{k}}G_{1}(x_{\chi_{i}},x_{U_{j}},x_{U_{k}}),
C9,NP(7)(μEW)=ui,Sk,VCμVμ+L+CμVμ+R2(mb2mV2)muiCs¯uiWLCu¯ibSkLCVWSkG1(xui,xW,xSk),\displaystyle C_{{}_{9,NP}}^{(7)}(\mu_{{}_{\rm EW}})=\sum_{{}_{u_{i},S^{-}_{k},V}}\frac{C_{\mu^{-}V\mu^{+}}^{L}+C_{\mu^{-}V\mu^{+}}^{R}}{2(m_{b}^{2}-m_{V}^{2})}m_{u_{i}}C_{\bar{s}u_{i}W^{-}}^{L}C_{\bar{u}_{i}bS^{-}_{k}}^{L}C_{VW^{-}S^{-}_{k}}G_{1}(x_{u_{i}},x_{W},x_{S^{-}_{k}}),
C10,NP(7)(μEW)=ui,Sk,VCμVμ+L+CμVμ+R2(mb2mV2)muiCs¯uiWLCu¯ibSkLCVWSkG1(xui,xW,xSk),\displaystyle C_{{}_{10,NP}}^{(7)}(\mu_{{}_{\rm EW}})=\sum_{{}_{u_{i},S^{-}_{k},V}}\frac{-C_{\mu^{-}V\mu^{+}}^{L}+C_{\mu^{-}V\mu^{+}}^{R}}{2(m_{b}^{2}-m_{V}^{2})}m_{u_{i}}C_{\bar{s}u_{i}W^{-}}^{L}C_{\bar{u}_{i}bS^{-}_{k}}^{L}C_{VW^{-}S^{-}_{k}}G_{1}(x_{u_{i}},x_{W},x_{S^{-}_{k}}),
C9,NP(8)(μEW)=ui,Sj,VCμVμ+L+CμVμ+R2(mb2mV2)muiCs¯uiSjRCu¯ibWLCVWSkG1(xui,xSj,xW),\displaystyle C_{{}_{9,NP}}^{(8)}(\mu_{{}_{\rm EW}})=\sum_{{}_{u_{i},S^{-}_{j},V}}\frac{C_{\mu^{-}V\mu^{+}}^{L}+C_{\mu^{-}V\mu^{+}}^{R}}{2(m_{b}^{2}-m_{V}^{2})}m_{u_{i}}C_{\bar{s}u_{i}S^{-}_{j}}^{R}C_{\bar{u}_{i}bW^{-}}^{L}C_{VW^{-}S^{-}_{k}}G_{1}(x_{u_{i}},x_{S^{-}_{j}},x_{W}),
C10,NP(8)(μEW)=ui,Sj,VCμVμ+L+CμVμ+R2(mb2mV2)muiCs¯uiSjRCu¯ibWLCVWSkG1(xui,xSj,xW),\displaystyle C_{{}_{10,NP}}^{(8)}(\mu_{{}_{\rm EW}})=\sum_{{}_{u_{i},S^{-}_{j},V}}\frac{-C_{\mu^{-}V\mu^{+}}^{L}+C_{\mu^{-}V\mu^{+}}^{R}}{2(m_{b}^{2}-m_{V}^{2})}m_{u_{i}}C_{\bar{s}u_{i}S^{-}_{j}}^{R}C_{\bar{u}_{i}bW^{-}}^{L}C_{VW^{-}S^{-}_{k}}G_{1}(x_{u_{i}},x_{S^{-}_{j}},x_{W}),
C9,NP(9)(μEW)=Ui,χj,χk,Sl18Cs¯UiχjRCχ¯jμ+SlL(Cμ¯SlχkLCχ¯kUibR+Cμ¯SlχkRCχ¯kUibL)\displaystyle C_{{}_{9,NP}}^{(9)}(\mu_{{}_{\rm EW}})=\sum_{{}_{U_{i},\chi_{j},\chi_{k},S_{l}}}-\frac{1}{8}C_{\bar{s}U_{i}\chi_{j}}^{R}C_{\bar{\chi}_{j}\mu^{+}S_{l}}^{L}(C_{\bar{\mu}^{-}S_{l}\chi_{k}}^{L}C_{\bar{\chi}_{k}U_{i}b}^{R}+C_{\bar{\mu}^{-}S_{l}\chi_{k}}^{R}C_{\bar{\chi}_{k}U_{i}b}^{L})
G4(xUi,xχj,xχk,xχl0),\displaystyle\qquad\qquad\qquad G_{4}(x_{U_{i}},x_{\chi_{j}},x_{\chi_{k}},x_{\chi^{0}_{l}}),
C10,NP(9)(μEW)=Ui,χj,χk,Sl18Cs¯UiχjRCχ¯jμ+SlL(Cμ¯SlχkLCχ¯kUibRCμ¯SlχkRCχ¯kUibL)\displaystyle C_{{}_{10,NP}}^{(9)}(\mu_{{}_{\rm EW}})=\sum_{{}_{U_{i},\chi_{j},\chi_{k},S_{l}}}-\frac{1}{8}C_{\bar{s}U_{i}\chi_{j}}^{R}C_{\bar{\chi}_{j}\mu^{+}S_{l}}^{L}(C_{\bar{\mu}^{-}S_{l}\chi_{k}}^{L}C_{\bar{\chi}_{k}U_{i}b}^{R}-C_{\bar{\mu}^{-}S_{l}\chi_{k}}^{R}C_{\bar{\chi}_{k}U_{i}b}^{L})
G4(xUi,xχj,xχk,xχl0),\displaystyle\qquad\qquad\qquad G_{4}(x_{U_{i}},x_{\chi_{j}},x_{\chi_{k}},x_{\chi^{0}_{l}}),
CS,NP(9)(μEW)=Ui,χj,χk,Sl12mχjmχkCs¯UiχjRCχ¯jμ+SlR(Cμ¯SlχkLCχ¯kUibL+Cμ¯SlχkRCχ¯kUibR)\displaystyle C_{{}_{S,NP}}^{(9)}(\mu_{{}_{\rm EW}})=\sum_{{}_{U_{i},\chi_{j},\chi_{k},S_{l}}}-\frac{1}{2}m_{\chi_{j}}m_{\chi_{k}}C_{\bar{s}U_{i}\chi_{j}}^{R}C_{\bar{\chi}_{j}\mu^{+}S_{l}}^{R}(C_{\bar{\mu}^{-}S_{l}\chi_{k}}^{L}C_{\bar{\chi}_{k}U_{i}b}^{L}+C_{\bar{\mu}^{-}S_{l}\chi_{k}}^{R}C_{\bar{\chi}_{k}U_{i}b}^{R})
G3(xUi,xχj,xχk,xχl0),\displaystyle\qquad\qquad\qquad G_{3}(x_{U_{i}},x_{\chi_{j}},x_{\chi_{k}},x_{\chi^{0}_{l}}),
CP,NP(9)(μEW)=Ui,χj,χk,Sl12mχjmχkCs¯UiχjRCχ¯jμ+SlR(Cμ¯SlχkLCχ¯kUibL+Cμ¯SlχkRCχ¯kUibR)\displaystyle C_{{}_{P,NP}}^{(9)}(\mu_{{}_{\rm EW}})=\sum_{{}_{U_{i},\chi_{j},\chi_{k},S_{l}}}-\frac{1}{2}m_{\chi_{j}}m_{\chi_{k}}C_{\bar{s}U_{i}\chi_{j}}^{R}C_{\bar{\chi}_{j}\mu^{+}S_{l}}^{R}(-C_{\bar{\mu}^{-}S_{l}\chi_{k}}^{L}C_{\bar{\chi}_{k}U_{i}b}^{L}+C_{\bar{\mu}^{-}S_{l}\chi_{k}}^{R}C_{\bar{\chi}_{k}U_{i}b}^{R})
G3(xUi,xχj,xχk,xχl0),\displaystyle\qquad\qquad\qquad G_{3}(x_{U_{i}},x_{\chi_{j}},x_{\chi_{k}},x_{\chi^{0}_{l}}), (60)
C9,NP(10)(μEW)=ui,Sj,Sk,Sl18Cs¯uiSjRCu¯ibSkL(Cμ¯Skχl0LCS¯lSjμ+R+Cμ¯Skχl0RCS¯lSjμ+L)\displaystyle C_{{}_{9,NP}}^{(10)}(\mu_{{}_{\rm EW}})=\sum_{{}_{u_{i},S^{-}_{j},S^{-}_{k},S_{l}}}\frac{1}{8}C_{\bar{s}u_{i}S^{-}_{j}}^{R}C_{\bar{u}_{i}bS^{-}_{k}}^{L}(C_{\bar{\mu}^{-}S^{-}_{k}\chi^{0}_{l}}^{L}C_{\bar{S}_{l}S^{-}_{j}\mu^{+}}^{R}+C_{\bar{\mu}^{-}S^{-}_{k}\chi^{0}_{l}}^{R}C_{\bar{S}_{l}S^{-}_{j}\mu^{+}}^{L})
G4(xui,xSj,xSk,xχl0),\displaystyle\qquad\qquad\qquad G_{4}(x_{u_{i}},x_{S^{-}_{j}},x_{S^{-}_{k}},x_{\chi^{0}_{l}}),
C10,NP(10)(μEW)=ui,Sj,Sk,Sl18Cs¯uiSjRCu¯ibSkL(Cμ¯Skχl0LCS¯lSjμ+RCμ¯Skχl0RCS¯lSjμ+L)\displaystyle C_{{}_{10,NP}}^{(10)}(\mu_{{}_{\rm EW}})=\sum_{{}_{u_{i},S^{-}_{j},S^{-}_{k},S_{l}}}\frac{1}{8}C_{\bar{s}u_{i}S^{-}_{j}}^{R}C_{\bar{u}_{i}bS^{-}_{k}}^{L}(C_{\bar{\mu}^{-}S^{-}_{k}\chi^{0}_{l}}^{L}C_{\bar{S}_{l}S^{-}_{j}\mu^{+}}^{R}-C_{\bar{\mu}^{-}S^{-}_{k}\chi^{0}_{l}}^{R}C_{\bar{S}_{l}S^{-}_{j}\mu^{+}}^{L})
G4(xui,xSj,xSk,xχl0),\displaystyle\qquad\qquad\qquad G_{4}(x_{u_{i}},x_{S^{-}_{j}},x_{S^{-}_{k}},x_{\chi^{0}_{l}}), (61)
CS,NP(11)(μEW)=ui,Sj,χl012Cs¯uiSjRCu¯ibWRCμ¯Wχl0RCS¯lSjμ+LG4(xui,xSj,xW,xχl0),\displaystyle C_{{}_{S,NP}}^{(11)}(\mu_{{}_{\rm EW}})=-\sum_{{}_{u_{i},S^{-}_{j},\chi^{0}_{l}}}\frac{1}{2}C_{\bar{s}u_{i}S^{-}_{j}}^{R}C_{\bar{u}_{i}bW^{-}}^{R}C_{\bar{\mu}^{-}W^{-}\chi^{0}_{l}}^{R}C_{\bar{S}_{l}S^{-}_{j}\mu^{+}}^{L}G_{4}(x_{u_{i}},x_{S^{-}_{j}},x_{W},x_{\chi^{0}_{l}}),
CP,NP(11)(μEW)=ui,Sj,χl012Cs¯uiSjRCu¯ibWRCμ¯Wχl0RCS¯lSjμ+LG4(xui,xSj,xW,xχl0),\displaystyle C_{{}_{P,NP}}^{(11)}(\mu_{{}_{\rm EW}})=-\sum_{{}_{u_{i},S^{-}_{j},\chi^{0}_{l}}}\frac{1}{2}C_{\bar{s}u_{i}S^{-}_{j}}^{R}C_{\bar{u}_{i}bW^{-}}^{R}C_{\bar{\mu}^{-}W^{-}\chi^{0}_{l}}^{R}C_{\bar{S}_{l}S^{-}_{j}\mu^{+}}^{L}G_{4}(x_{u_{i}},x_{S^{-}_{j}},x_{W},x_{\chi^{0}_{l}}), (62)

where CabcL,RC_{abc}^{L,R} denotes the constant parts of the interaction vertex about abcabc, and a,b,ca,b,c denote the interactional particles, VV denotes photon γ\gamma and ZZ boson. LL and RR in superscript denote the left-hand part and right-hand part.

Denoting xi=mi2mW2x_{i}=\frac{m_{i}^{2}}{m_{W}^{2}}, the concrete expressions for Gk(k=1,,4)G_{k}(k=1,...,4) can be given as:

G1(x1,x2,x3)=1mW2[x1lnx1(x2x1)(x3x1)+x2lnx2(x1x2)(x3x2)+x3lnx3(x1x3)(x2x3)],\displaystyle G_{1}(x_{1},x_{2},x_{3})=\frac{-1}{m_{W}^{2}}\Big{[}\frac{x_{1}{\rm ln}x_{1}}{(x_{2}-x_{1})(x_{3}-x_{1})}+\frac{x_{2}{\rm ln}x_{2}}{(x_{1}-x_{2})(x_{3}-x_{2})}+\frac{x_{3}{\rm ln}x_{3}}{(x_{1}-x_{3})(x_{2}-x_{3})}\Big{]},
G2(x1,x2,x3)=x12lnx1(x2x1)(x3x1)x22lnx2(x1x2)(x3x2)x32lnx3(x1x3)(x2x3),\displaystyle G_{2}(x_{1},x_{2},x_{3})=-\frac{x_{1}^{2}{\rm ln}x_{1}}{(x_{2}-x_{1})(x_{3}-x_{1})}-\frac{x_{2}^{2}{\rm ln}x_{2}}{(x_{1}-x_{2})(x_{3}-x_{2})}-\frac{x_{3}^{2}{\rm ln}x_{3}}{(x_{1}-x_{3})(x_{2}-x_{3})},
G3(x1,x2,x3,x4)=1mW4[x1lnx1(x2x1)(x3x1)(x4x1)+x2lnx2(x1x2)(x3x2)(x4x2)+\displaystyle G_{3}(x_{1},x_{2},x_{3},x_{4})=\frac{1}{m_{W}^{4}}\Big{[}\frac{x_{1}{\rm ln}x_{1}}{(x_{2}-x_{1})(x_{3}-x_{1})(x_{4}-x_{1})}+\frac{x_{2}{\rm ln}x_{2}}{(x_{1}-x_{2})(x_{3}-x_{2})(x_{4}-x_{2})}+
x3lnx3(x1x3)(x2x3)(x4x3)x4lnx4(x1x4)(x2x4)(x3x4)],\displaystyle\qquad\qquad\qquad\qquad\frac{x_{3}{\rm ln}x_{3}}{(x_{1}-x_{3})(x_{2}-x_{3})(x_{4}-x_{3})}\frac{x_{4}{\rm ln}x_{4}}{(x_{1}-x_{4})(x_{2}-x_{4})(x_{3}-x_{4})}\Big{]},
G4(x1,x2,x3,x4)=1mW2[x12lnx1(x2x1)(x3x1)(x4x1)+x22lnx2(x1x2)(x3x2)(x4x2)+\displaystyle G_{4}(x_{1},x_{2},x_{3},x_{4})=\frac{1}{m_{W}^{2}}\Big{[}\frac{x_{1}^{2}{\rm ln}x_{1}}{(x_{2}-x_{1})(x_{3}-x_{1})(x_{4}-x_{1})}+\frac{x_{2}^{2}{\rm ln}x_{2}}{(x_{1}-x_{2})(x_{3}-x_{2})(x_{4}-x_{2})}+
x32lnx3(x1x3)(x2x3)(x4x3)x42lnx4(x1x4)(x2x4)(x3x4)].\displaystyle\qquad\qquad\qquad\qquad\frac{x_{3}^{2}{\rm ln}x_{3}}{(x_{1}-x_{3})(x_{2}-x_{3})(x_{4}-x_{3})}\frac{x_{4}^{2}{\rm ln}x_{4}}{(x_{1}-x_{4})(x_{2}-x_{4})(x_{3}-x_{4})}\Big{]}.

References

  • (1) Y. S. Amhis et al. [HFLAV], Phys. Rev. D 107, no.5, 052008 (2023) [arXiv:2206.07501 [hep-ex]].
  • (2) S. Navas et al. [Particle Data Group], Phys. Rev. D 110, 030001 (2024).
  • (3) M. Aaboud et al. [ATLAS], JHEP 04, 098 (2019) [arXiv:1812.03017 [hep-ex]].
  • (4) A. M. Sirunyan et al. [CMS], JHEP 04, 188 (2020) [arXiv:1910.12127 [hep-ex]].
  • (5) R. Aaij et al. [LHCb], Phys. Rev. Lett. 128, no.4, 041801 (2022) [arXiv:2108.09284 [hep-ex]].
  • (6) A. Tumasyan et al. [CMS], Phys. Lett. B 842, 137955 (2023) [arXiv:2212.10311 [hep-ex]].
  • (7) M. Misiak, A. Rehman and M. Steinhauser, JHEP 06, 175 (2020) [arXiv:2002.01548 [hep-ph]].
  • (8) M. Beneke, C. Bobeth and R. Szafron, Phys. Rev. Lett. 120, no.1, 011801 (2018) [arXiv:1708.09152 [hep-ph]].
  • (9) M. Beneke, C. Bobeth and R. Szafron, JHEP 10, 232 (2019) [erratum: JHEP 11, 099 (2022)] [arXiv:1908.07011 [hep-ph]].
  • (10) M. Czaja and M. Misiak, Symmetry 16, no.7, 917 (2024) [arXiv:2407.03810 [hep-ph]].
  • (11) P. Ciafaloni, A. Romanino and A. Strumia, Nucl. Phys. B 524 (1998) 361.
  • (12) F. M. Borzumati and C. Greub, Phys. Rev. D 58 (1998) 074004.
  • (13) M. Ciuchini, G. Degrassi, P. Gambino and G. F. Giudice, Nucl. Phys. B 527 (1998) 21.
  • (14) S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Nucl. Phys. B 353, 591 (1991).
  • (15) R. Barbieri and G. F. Giudice, Phys. Lett. B 309, 86 (1993).
  • (16) F. Borzumati, C. Greub, T. Hurth and D. Wyler, Phys. Rev. D 62, 075005 (2000).
  • (17) S. Prelovsek and D. Wyler, Phys. Lett. B 500, 304 (2001).
  • (18) M. Causse and J. Orloff, Eur. Phys. J. C 23, 749 (2002).
  • (19) H.-B. Zhang, G.-H. Luo, T.-F. Feng, S.-M. Zhao, T.-J. Gao and K.-S. Sun, Mod. Phys. Lett. A 29, 1450196 (2014) [arXiv:1409.6837 [hep-ph]].
  • (20) T.-F. Feng, Y.-L. Yan, H.-B. Zhang and S.-M. Zhao, Phys. Rev. D 92, 055024 (2015).
  • (21) M. Ciuchini, G. Degrassi, P. Gambino and G. F. Giudice, Nucl. Phys. B 534, 3 (1998).
  • (22) X. G. He, T. D. Nguyen and R. R. Volkas, Phys. Rev. D 38, 814 (1988).
  • (23) W. Skiba and J. Kalinowski, Nucl. Phys. B 404, 3 (1993).
  • (24) S. R. Choudhury and N. Gaur, Phys. Lett. B 451, 86 (1999) [hep-ph/9810307].
  • (25) C. S. Huang, W. Liao, Q. S. Yan and S. H. Zhu, Phys. Rev. D 63, 114021 (2001) [Erratum-ibid. D 64, 059902 (2001)] [hep-ph/0006250].
  • (26) T.-F. Feng, Y.-L. Yan, H.-B. Zhang and S.-M. Zhao, Int. J. Mod. Phys. A 31, 1650092 (2016) [arXiv:1603.07578 [hep-ph]].
  • (27) T.-F. Feng, J.-L. Yang, H.-B. Zhang, S.-M. Zhao and R.-F. Zhu, Phys. Rev. D 94, 115034 (2016) [arXiv:1612.02094 [hep-ph]].
  • (28) W. N. Cottingham, H. Mehrban and I. B. Whittingham, Phys. Rev. D 60, 114029 (1999).
  • (29) G. Barenboim and M. Raidal, Phys. Lett. B 457, 109 (1999).
  • (30) J. L. Hewett and J. D. Wells, Phys. Rev. D 55, 5549 (1997).
  • (31) A. Masiero and L. Silvestrini, B Physics and CP Violation, Honolulu, p. 172, (1997) [arXiv:hep-ph/9709244].
  • (32) A. Masiero and L. Silvestrini, Highlights of Subnuclear Physics, Erice, p. 404, (1997) [arXiv:hep-ph/9711401] .
  • (33) D. E. López-Fogliani, C. Muñoz, Phys. Rev. Lett. 97 (2006) 041801.
  • (34) N. Escudero, D. E. López-Fogliani, C. Muñoz, R. Ruiz de Austri, JHEP 12 (2008) 099.
  • (35) J. Fidalgo, D. E. López-Fogliani, C. Muñoz, R. Ruiz de Austri, JHEP 10 (2011) 020.
  • (36) J. E. Kim, H. P. Nilles, Phys. Lett. B 138 (1984) 150.
  • (37) H. P. Nilles, Phys. Rept. 110 (1984) 1.
  • (38) H. E. Haber, G. L. Kane, Phys. Rept. 117 (1985) 75.
  • (39) J. Rosiek, Phys. Rev. D 41 (1990) 3464.
  • (40) H.-B. Zhang, T.-F. Feng, G.-F. Luo, Z.-F. Ge and S.-M. Zhao, JHEP 07 (2013) 069 [Erratum ibid. JHEP 10 (2013) 173].
  • (41) H.-B. Zhang, T.-F. Feng, S.-M. Zhao, T.-J. Gao, Nucl. Phys. B 873 (2013) 300.
  • (42) H.-B. Zhang, T.-F. Feng, S.-M. Zhao, Fei Sun, Int. J. Mod. Phys. A 29 (2014) 1450123.
  • (43) H.-B. Zhang, T.-F. Feng, F. Sun, K.-S. Sun, J.-B. Chen and S.-M. Zhao, Phys. Rev. D 89 (2014) 115007.
  • (44) C. Bobeth, M. Misiak and J. Urban, Nucl. Phys.  B 574 (2000) 291 [arXiv:hep-ph/9910220].
  • (45) C. Bobeth, A. J. Buras, F. Krüger and J. Urban, Nucl. Phys.  B 630 (2002) 87 [arXiv:hep-ph/0112305].
  • (46) W. Altmannshofer, P. Ball, A. Bharucha, A. J. Buras, D. M. Straub and M. Wick, JHEP 01, 019 (2009) [arXiv:0811.1214 [hep-ph]].
  • (47) P. Gambino, M. Gorbahn and U. Haisch, Nucl. Phys. B 673, 238 (2003).
  • (48) A. Bazavov, C. Bernard, N. Brown, C. Detar, A. X. El-Khadra, E. Gámiz, S. Gottlieb, U. M. Heller, J. Komijani and A. S. Kronfeld, et al. Phys. Rev. D 98 (2018) 074512 [arXiv:1712.09262].
  • (49) A. Bussone et al. [ETM], Phys. Rev. D 93 (2016) 114505 [arXiv:1603.04306].
  • (50) R. J. Dowdall et al. [HPQCD], Phys. Rev. Lett. 110 (2013) 222003 [arXiv:1302.2644].
  • (51) C. Hughes, C. T. H. Davies and C. J. Monahan, Phys. Rev. D 97 (2018) 054509 [arXiv:1711.09981].
  • (52) Y. Aoki et al. [Flavour Lattice Averaging Group (FLAG)], Eur. Phys. J. C 82 (2022) 869 [arXiv:2111.09849], and updates at http://flag.unibe.ch.
  • (53) G. Finauri and P. Gambino, JHEP 02 (2024) 206 [arXiv:2310.20324].
  • (54) J. Charles et al. (CKMfitter Group), Eur. Phys. J. C 41, 1 (2005) [hep-ph/0406184]; updates at http://ckmfitter.in2p3.fr .
  • (55) C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou and M. Steinhauser, Phys. Rev. Lett. 112 (2014) 101801 [arXiv:1311.0903].
  • (56) N. Cabibbo, Phys. Rev. Lett. 10 (1963) 531.
  • (57) M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49 (1973) 652.
  • (58) H.-B. Zhang, T.-F. Feng, L.-N. Kou and S.-M. Zhao, Int. J. Mod. Phys. A 28 (2013) 1350117, arXiv:1307.6284.
  • (59) ATLAS Collaboration, Phys. Rev. D 86 (2012) 092002.
  • (60) ATLAS Collaboration, JHEP 1310 (2013) 130.
  • (61) CMS Collaboration, JHEP 1301 (2013) 077.
  • (62) CMS Collaboration, JHEP 1307 (2013) 122.
  • (63) ATLAS Collab., Phys. Rev. D 87, 012008 (2013).
  • (64) CMS Collab., JHEP 1210, 018 (2012).
  • (65) J. Ellis, J.F. Gunion, H.E. Haber, L. Roszkowski, F. Zwirner, Phys. Rev. D 39 (1989) 844.
  • (66) F. Domingo and U. Ellwanger, JHEP 12, 090 (2007) [arXiv:0710.3714 [hep-ph]].
  • (67) J. L. Yang, T. F. Feng, S. M. Zhao, R. F. Zhu, X. Y. Yang and H. B. Zhang, Eur. Phys. J. C 78, no.9, 714 (2018) [arXiv:1803.09904 [hep-ph]].