This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: These authors have contributed equally to this work.thanks: These authors have contributed equally to this work.

Brilliant circularly polarized γ\gamma-ray sources via single-shot laser plasma interaction

Yu Wang Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Mamutjan Ababekri Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Feng Wan [email protected] Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Qian Zhao Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Chong Lv Department of Nuclear Physics, China Institute of Atomic Energy, P. O. Box 275(7), Beijing 102413, China    Xue-Guang Ren Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Zhong-Feng Xu Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Yong-Tao Zhao Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China    Jian-Xing Li Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
Abstract

Circularly polarized (CP) γ\gamma-ray sources are versatile for broad applications in nuclear physics, high-energy physics and astrophysics. The laser-plasma based particle accelerators provide accessibility for much higher flux γ\gamma-ray sources than conventional approaches, in which, however, the circular polarization properties of emitted γ\gamma-photons are used to be neglected. In this letter, we show that brilliant CP γ\gamma-ray beams can be generated via the combination of laser plasma wakefield acceleration and plasma mirror techniques. In weakly nonlinear Compton scattering scheme with moderate laser intensities, the helicity of the driving laser can be transferred to the emitted γ\gamma-photons, and their average polarization degree can reach about 37%\sim 37\% (21%21\%) with a peak brilliance of 1021\gtrsim 10^{21}~{}photons/(s \cdot mm2{}^{2}\cdot mrad2{}^{2}\cdot 0.1% BW) around 1 MeV (100 MeV). Moreover, our proposed method is easily feasible and robust with respect to the laser and plasma parameters.

The polarization property of the γ\gamma-rays is of great significance to reveal the emission mechanisms in the pulsar [1, 2], magetars and other galactic objects [3]. As an essential tool, γ\gamma-ray beams can be used in researches of nuclear physics [4, 5], high-energy physics [6], industrial applications of medical imaging [7] and object tomography, etc. In particular, circularly polarized (CP) ones have broad applications in, for instances, the generation of longitudinally-polarized positron beams [8, 9], polarization-dependent photo-fission of nucleus in the giant dipole resonance [10] and photo-production of mesons [11]. Conventionally, highly polarized photons can be generated via free electron laser (FEL), Thomson and Compton scattering, bremsstrahlung and synchrotron radiation [12]. However, FEL can only deliver X-ray photons of tens of keV, and the peak brilliance and flux of other high-energy γ\gamma-ray sources are normally limited by the scattering probabilities and flux of the driving electron beam. For instance, the peak flux of state-of-the-art High Intensity Gamma-ray Source (HIγ\gammaS) [5] is about 101010^{10} photonss1\cdot\mathrm{s}^{-1} around 10 MeV with beam diameter of D12D\simeq 12 mm. Recently, rapid developments of ultra-short ultra-intense laser technologies [13, 14] have promoted high-brilliance laser-plasma based particle [15, 16] and radiation sources [17, 18, 19]. When multi-PW lasers interacting with plasmas, MeV-GeV γ\gamma-photons can be produced with ultrahigh brilliance of 102510^{25}-1027photons/(smm2mrad20.1%BW)10^{27}~{}\mathrm{photons/(s\cdot mm^{2}\cdot mrad^{2}\cdot 0.1\%BW)} [20, 21, 22]. However, these produced γ\gamma-photons are either unpolarized or only linearly polarized. And all-optical CP γ\gamma-ray beams can be generated via multi-PW laser pulses colliding with high-energy longitudinally spin-polarized electron beams in strongly nonlinear Compton scattering [11, 23], which faces potential difficulties of spatial and temporal synchronization. Thus, efficient generation of brilliant CP γ\gamma-ray beam is still a great challenge.

Refer to caption
Figure 1: Interaction scenario for all-optical generation of brilliant CP γ\gamma-ray beam via single-shot laser plasma interaction.

In this Letter, we put forward an efficient all-optical method for generating brilliant CP γ\gamma-ray beams via single-shot laser plasma interaction. See the interaction scenario in Fig. 1, which is similar to the setup in Ref. [24], however, here we take into account the helicity transfer in the laser plasma interaction. A moderately intense CP laser incidents into a gas plasma and drives the laser plasma wakefield acceleration (LWFA) to generate high-energy electrons. The CP driving laser pulse is then reflected by the plasma mirror and further collides with accelerated electrons to emit CP γ\gamma-photons via weakly nonlinear Compton scattering (e+nωLe+ωγe+n\omega_{L}\rightarrow e^{\prime}+\omega_{\gamma}). Here we find that the helicities of emitted γ\gamma-photons in the low-energy regime is mainly associated with those of the driving laser photons. While, for high-energy γ\gamma-photons, due to multi-photon absorption, the average helicity will saturate to a constant for unpolarized eletrons or linearly depend on the energies of emitted photons for polarized electrons; see more details in Fig. 3. (By contrast, in strongly nonlinear Compton scattering the circular polarization of emitted γ\gamma-photon is determined by the electron helicity [11].) With a moderately intense CP laser, CP γ\gamma-photon beams with brilliance of 1021photons/(smm2mrad20.1%BW)\gtrsim 10^{21}~{}\mathrm{photons/(s\cdot mm^{2}\cdot mrad^{2}\cdot 0.1\%BW)} can be generated with polarization degree of 37%\simeq 37\%; see more details in Fig. 2. Moreover, the proposed method is robust with respect to the laser and plasma parameters; see more details in Fig. 4.

In our simulations, we use three-dimensional (3D) particle-in-cell (PIC) code EPOCH [25] to simulate the LWFA process, and the Monte Carlo code CAIN [26, 11] to simulate the weakly nonlinear Compton scattering process. As an example, we employ a right-hand CP laser pulse (helicity hL=1h_{L}=-1) propagating along zz direction with wavelength λ0=0.8μm\lambda_{0}=0.8~{}\mu\mathrm{m}, normalized intensity a0eErms/mecωL=2.8a_{0}\equiv eE_{\mathrm{rms}}/m_{e}c\omega_{L}=2.8 [corresponding peak intensity I02.74×1018a02(1μm/λ0)2W/cm23.46×1019W/cm2I_{0}\approx 2.74\times 10^{18}a_{0}^{2}\left(1~{}\mu\mathrm{m}/\lambda_{0}\right)^{2}~{}\mathrm{W/cm^{2}}\approx 3.46\times 10^{19}~{}\mathrm{W/cm^{2}}], and transverse Gaussian profile with focal radius w0=11.5μmw_{0}=11.5~{}\mu\mathrm{m}, where ee and mem_{e} are the charge and mass of the electron, respectively, Erms(E2)1/2E_{\mathrm{rms}}\equiv\langle(E^{2})^{1/2}\rangle, EE and ωL\omega_{L} the root mean square (rms) electric field, electric field and frequency of the laser field, respectively, and cc the light speed in vacuum. The temporal profile is composed by a flat-top part of τflat=6T0\tau_{\mathrm{flat}}=6T_{0} and rising (falling) part of τrising(falling)=12T0\tau_{\mathrm{rising~{}(falling)}}=12T_{0} with Gaussian-like 5th order symmetric polynomial 10t315t4+6t510t^{\prime 3}-15t^{\prime 4}+6t^{\prime 5} (here, tt/T0t^{\prime}\equiv t/T_{0} and T0T_{0} is the laser period) [27]. The number density of the gas plasma is linearly rising from ne=0n_{e}=0 at z=0z=0 to ne=1.5×1018cm3n_{e}=1.5\times 10^{18}~{}\mathrm{cm^{-3}} at z=100μmz=100~{}\mu\mathrm{m} and then distributed uniformly to z=5.515z=5.515~{}mm. The aluminum plasma mirror is placed at z=5.515z=5.515~{}mm with a thickness of l=2μml=2~{}\mu\mathrm{m}, number density ne=451ncn_{e}=451n_{c} and scale length L=λ0L=\lambda_{0} for the preplasma [28], where the critical plasma density is nc=meωL2/4πe2n_{c}=m_{e}\omega_{L}^{2}/4\pi e^{2}. The spatial sizes of the simulation box are z×x×y=127λ0×80λ0×80λ0z\times x\times y=127\lambda_{0}\times 80\lambda_{0}\times 80\lambda_{0} with cell sizes of 4000×256×2564000\times 256\times 256. The numbers of macro-particle per cell are assigned as 2 and 1 for electrons and Helium ions, respectively. Note that the above mentioned spatial sizes are not fine enough to resolve the plasma frequency of the aluminum target, thus the reflection of the laser pulse is recalculated with finer grid sizes of Δz×Δx=λ0200×λ050\Delta z\times\Delta x=\frac{\lambda_{0}}{200}\times\frac{\lambda_{0}}{50} via the two dimensional PIC to efficiently reduce the massive 3D computation time, and, the numbers of macro-particle per cell for electrons and ions are set to 100 and 30, respectively.

Refer to caption
Figure 2: (a) Number density of emitted photons dNγ2/{}^{2}N_{\gamma}/dθx\theta_{x}dεγ\varepsilon_{\gamma} (mrad-1 MeV-1) vs deflection angle θx=pγ,x/pγ,z\theta_{x}=p_{\gamma,x}/p_{\gamma,z} and γ\gamma-photon energy εγ\varepsilon_{\gamma}. (b)-(d) Angle-resolved average helicity h¯γ\overline{h}_{\gamma} of emitted photons with unpolarized electrons (electron helicity he=0h_{e}=0), and, polarized electrons with he=1h_{e}=-1 and +1+1, respectively. In (c) and (d), only photons with εγ100\varepsilon_{\gamma}\geq 100~{}MeV are taken into account. Solid lines indicate the lineout along the deflection angle θy=pγ,y/pγ,z=0\theta_{y}=p_{\gamma,y}/p_{\gamma,z}=0 with Δθy=0.12\Delta\theta_{y}=0.12~{}mrad. (e) Blue lines indicate the emission spectra dNγ/N_{\gamma}/dεγ\varepsilon_{\gamma}~{}(MeV-1) vs εγ\varepsilon_{\gamma}, and black solid, dashed and dotted lines indicate h¯γ\overline{h}_{\gamma} vs εγ\varepsilon_{\gamma} for the cases of he=0h_{e}=0, 1-1 and +1+1, respectively. (f) Relative deviation of energy spectra Δγ=2𝒩pol𝒩unpol𝒩pol+𝒩unpol¯\Delta_{\gamma}=2\frac{\mathcal{N}_{\mathrm{pol}}-\mathcal{N}_{\mathrm{unpol}}}{\overline{\mathcal{N}_{\mathrm{pol}}+\mathcal{N}_{\mathrm{unpol}}}} with 𝒩\mathcal{N}\equiv~{}dNγ/N_{\gamma}/dεγ\varepsilon_{\gamma}, where blue and red lines indicate he=+1h_{e}=+1 and 1-1, respectively; solid lines are from the simulation results, and dash-dotted lines are fitting curves.

Simulation results of emitted CP γ\gamma-ray beam are shown in Fig. 2. The peak intensity of emitted γ\gamma-rays is in the order of 107mrad110^{7}~{}\mathrm{mrad^{-1}} for photon energies εγ5keV\varepsilon_{\gamma}\geq 5~{}\mathrm{keV}. The corresponding brilliances (average helicities h¯γ\overline{h}_{\gamma}) are 4.35×1021(0.37)4.35\times 10^{21}~{}(0.37), 1.37×1022(0.11)1.37\times 10^{22}~{}(-0.11), 5.89×1021(0.20)5.89\times 10^{21}~{}(-0.20) and 1.46×1021(0.21)photons/(smm2mrad20.1%BW)1.46\times 10^{21}~{}(-0.21)~{}\mathrm{photons/(s\cdot mm^{2}\cdot mrad^{2}\cdot 0.1\%BW)} for εγ=\varepsilon_{\gamma}=~{}1 MeV, 10 MeV, 100 MeV and 200 MeV, respectively. Here, the angular spread of the γ\gamma-ray beam Δθγ\Delta\theta_{\gamma} originates from the angular spread of the electron beam Δθe\Delta\theta_{e} and the laser induced transverse momentum pe,=pe,x2+pe,y2a0p_{e,\perp}=\sqrt{p_{e,x}^{2}+p_{e,y}^{2}}\sim a_{0}, i.e., ΔθγΔθe+2pe,/pe,zΔθe+2a0/γ¯e\Delta\theta_{\gamma}\simeq\Delta\theta_{e}+2p_{e,\perp}/p_{e,z}\simeq\Delta\theta_{e}+2a_{0}/\overline{\gamma}_{e}, where γ¯e\overline{\gamma}_{e} is the average Lorentz factor of electrons. Note that here for ultra-relativistic electrons γe1\gamma_{e}\gg 1 the γ\gamma-photons are assumed to be emitted along the electron momentum (due to the emission solid angle 1/γe\sim 1/\gamma_{e}). However, since high-energy electrons (with electron energies εe900\varepsilon_{e}\approx 900~{}MeV and 1400 MeV) are concentrated in a narrow angle of less than 1 mrad, Δθγ2a0/pe,z3\Delta\theta_{\gamma}\approx 2a_{0}/p_{e,z}\approx 3-4 mrad [see Figs. 2(a) and 3(b)]. The average helicity h¯γ\overline{h}_{\gamma} of γ\gamma-photons within a narrow cone of Δθ1\Delta\theta\lesssim 1~{}mrad can reach 0.38-0.38, but for other photons of Δθ3\Delta\theta\gtrsim 3~{}mrad, h¯γ\overline{h}_{\gamma} is in the range of (0.01-0.01, 0.010.01) [see Fig. 2(b)]. The energy-resolved h¯γ\overline{h}_{\gamma} presents quite different feature, and can reach nearly 1.0 at low energies of \sim10 keV. h¯γ\overline{h}_{\gamma} quickly drops to 0.59\sim-0.59 in the vicinity of 20 keV and then rises to 0.37\sim 0.37 around 1 MeV [see Fig. 2(e)]. In the high-energy regime εγ20\varepsilon_{\gamma}\gtrsim 20 MeV, h¯γ\overline{h}_{\gamma} saturates at 0.2\simeq-0.2. When employing polarized electron bunches, the radiation spectra and angular distribution are almost identical to the unpolarized case with an relative deviation of 0.9%, 1.7% and 3.3% around εγ50,100\varepsilon_{\gamma}\approx 50,100 and 200 MeV, respectively [see Fig. 2(f)]. Angle-resolved h¯γ\overline{h}_{\gamma} of polarized cases also show similar patterns to that in Fig. 2(b) and consequently are excluded. For εγ100\varepsilon_{\gamma}\gtrsim 100 MeV, angle-resolved h¯γ\overline{h}_{\gamma} is in the order of 0.31(0.08)-0.31~{}(-0.08) for he=1(+1)h_{e}=-1~{}(+1) [see Figs. 3(c) and (d)]. Especially, in a narrow cone of Δθ1\Delta\theta\leq 1~{}mrad, h¯γ0.42(0.21)\overline{h}_{\gamma}\simeq-0.42~{}(-0.21) for he=1(+1)h_{e}=-1(+1) which means that large numbers of γ\gamma-photons with εγ(20\varepsilon_{\gamma}\simeq(20-40)40)~{}keV are generated with small angular spread [see Figs. 2(c)-(e)]. Besides, for γ\gamma-photons with energies of εγ20\varepsilon_{\gamma}\lesssim 20 MeV, h¯γ\overline{h}_{\gamma} is identical to the unpolarized case. However, in the high-energy part of εγ20\varepsilon_{\gamma}\gtrsim 20 MeV, h¯γ\overline{h}_{\gamma} is linearly rising (falling) as εγ\varepsilon_{\gamma} in the case of he=+1(1h_{e}=+1~{}(-1) and reaches 0.25(0.61)\simeq 0.25~{}(-0.61) at the energy cutoff of εγ500\varepsilon_{\gamma}\simeq 500 MeV [see Fig. 2(e)]. Such brilliant CP γ\gamma-ray beam can be used for polarized lepton creation with εγ1.022MeV(2mec2)\varepsilon_{\gamma}\gtrsim 1.022~{}\mathrm{MeV}~{}(2m_{e}c^{2}) [9] and photo-nuclear physics with εγ10\varepsilon_{\gamma}\simeq 10-100100 MeV [10].

Refer to caption
Figure 3: (a) Number density of accelerated electrons ne/ncn_{e}/n_{c} in zz-yy plane with x=0x=0. The red band denotes the aluminum plasma target. (b) Number distribution of electrons log10[\log_{10}[dNe2/{}^{2}N_{e}/dθx\theta_{x}dεe\varepsilon_{e}] (mrad-1 MeV-1) vs θx\theta_{x} and εe\varepsilon_{e}. (c) Blue and red lines indicate the envelop and helicity of the reflected laser pulse, respectively. (d) Black solid line indicates the emission rate [normalized by W0W_{0} in Eq. (1)] with respect to εγ/εe\varepsilon_{\gamma}/\varepsilon_{e}. Blue solid, dash-dotted and dashed lines indicate hγh_{\gamma} as absorbing 1, 2 and 4 photons, respectively. (e) and (f) h¯γ\overline{h}_{\gamma} vs εγ/εe\varepsilon_{\gamma}/\varepsilon_{e} for different laser intensities and electron helicities, respectively.

The physical reasons of generating the CP γ\gamma-ray beam are analyzed in Fig. 3. In LWFA process, two plasma bubbles are excited and trap electrons [see Fig. 3(a)] to create two isolated quasi-monoenergtic electron bunches with peak energy εe,peak\varepsilon_{e,\mathrm{peak}}\approx 900 MeV and 1.4 GeV, respectively [see Fig. 3(b)] (similar to those in [27]). The total numbers of accelerated electrons are 4.6×1084.6\times 10^{8} (74 pC) with energy spread of 5%5\% at εe,peak\varepsilon_{e,\mathrm{peak}}\approx 900 MeV and 1.8×1091.8\times 10^{9} (288 pC) with energy spread of 10%10\% at εe,peak\varepsilon_{e,\mathrm{peak}}\approx 1.4 GeV, respectively. Angular spread of all electrons is Δθe12mard\Delta\theta_{e}\approx 12~{}\mathrm{mard}, but for high-energy electrons near εe,peak900\varepsilon_{e,\mathrm{peak}}\simeq 900~{}MeV (1.4 GeV), Δθe1\Delta\theta_{e}\simeq 1~{}mrad [see Fig. 3(b)]. Due to the inhomogeneity of the electron density, the driving laser is chirped when propagating in the front of the wakefield [see the yy-component of the reflected laser in Fig. 3(c)]. After reflection, due to the frequency chirping, the helicity of the driving laser is flipped and changes from negative hL=1h_{L}=-1 (right-hand rotation) to positive 0.98\sim 0.98 (left-hand rotation) (the laser helicity is calculated via hL=2Im(ExEy)/|ExEy|h_{L}=2\mathrm{Im}(E_{x}^{*}E_{y})/|E_{x}^{*}E_{y}| [29, 26], where Ex,yE_{x,y} are the complex amplitudes of the electric field in xx and yy directions, respectively, and ExE_{x}^{*} is the complex conjugate of ExE_{x}). Note that the deviation due to the frequency chirping is evaluated via semi-classical calculations [30] and the average relative errors in energy spectra and helicity are both only about 1.3%1.3\%.

When electrons scatter with the reflected CP laser, they may absorb single or multiple low-energy laser photons and then emit a high-energy γ\gamma-photon via nonlinear Compton scattering. In the weakly nonlinear regime (a01a_{0}\gtrsim 1), the polarization-dependent cross section is given by [31, 26]

Wif=W0n=10δn𝑑δ[F1n+hLheF2n+hγ(hLF3n+heF4n)],W_{if}=W_{0}\sum_{n=1}^{\infty}\int_{0}^{\delta_{n}}d\delta[F_{1n}+h_{L}h_{e}F_{2n}+h_{\gamma}(h_{L}F_{3n}+h_{e}F_{4n})], (1)

with the photon helicity

hγ=hLF3n+heF4nF1n+hLheF2n,h_{\gamma}=\frac{h_{L}F_{3n}+h_{e}F_{4n}}{F_{1n}+h_{L}h_{e}F_{2n}}, (2)

where W0W_{0} = αme2a024εeff\frac{\alpha m_{e}^{2}a_{0}^{2}}{4\varepsilon_{\mathrm{eff}}}, α=1/137\alpha=1/137 is the fine structure constant, εeff=εe+a02εL/Λ\varepsilon_{\mathrm{eff}}=\varepsilon_{e}+a_{0}^{2}{\varepsilon}_{L}/\Lambda the effective energy of initial electron in the laser field, δ=(kγkL)/(kLp)\delta=(k_{\gamma}\cdot k_{L})/(k_{L}\cdot p), δn=nΛ/(1+a02+nΛ)\delta_{n}=n\Lambda/(1+a_{0}^{2}+n\Lambda) the cutoff energy fraction of emitted photon absorbing nn laser photons [31], Λ=2(kLp)/me2\Lambda=2(k_{L}\cdot p)/m_{e}^{2} the laser energy parameter, pp, kLk_{L} and kγk_{\gamma} the four-momenta of the initial electron, laser photon and emitted photon, respectively, εL\varepsilon_{L} the energy of the laser photon. FknF_{kn} (k=1,2,3,4k=1,2,3,4) in Eq. (1) are given in detail in Refs. [31, 32]. In strongly nonlinear Compton scattering with a01a_{0}\gg 1, the photon polarization hγh_{\gamma} is mainly determined by the electron helicity heh_{e} [33, 11], however, in the weakly nonlinear regime, hγh_{\gamma} not only depends on the electron helicity heh_{e}, but also on the scattering laser helicity hLh_{L}; see Eq. (2).

For unpolarized electrons (he=0h_{e}=0), the average helicity of emitted γ\gamma-photons via the nn-photon absorption channel is given by h¯γ=nF3nnF1nhL\overline{h}_{\gamma}=\frac{\sum_{n}F_{3n}}{\sum_{n}F_{1n}}h_{L}. As εγ/εeδδ10.0015\varepsilon_{\gamma}/\varepsilon_{e}\sim\delta\ll\delta_{1}\approx 0.0015, the emitted photons are mainly contributed by the one-photon absorption channel (n=1n=1) and h¯γ1\overline{h}_{\gamma}\approx 1, i.e., the helicities of emitted γ\gamma-photons are solely determined by the laser helicity [see Fig. 3(e)]. For 103δ7×10310^{-3}\lesssim\delta\lesssim 7\times 10^{-3}, corresponding to multi-photon absorption with 1n51\leq n\leq 5, h¯γ\overline{h}_{\gamma} is rapidly oscillating due to the competition among different multi-photon absorption channels with significant gaps of (δnδn1\delta_{n}-\delta_{n-1}) for small nn [see hγh_{\gamma} for different channels in Fig. 3(d) and average h¯γ\overline{h}_{\gamma} in Fig. 3(e)]. For 102δ0.410^{-2}\lesssim\delta\lesssim 0.4, h¯γ\overline{h}_{\gamma} saturates to 0.15\sim-0.15 [see Fig. 3(e)]. Above theoretical analysis further confirms our simulation results in Fig. 2. For instance, in the low-energy part (εγ10\varepsilon_{\gamma}\lesssim 10~{}keV) with δ1×105δ1\delta\simeq 1\times 10^{-5}\ll\delta_{1}, one obtains h¯γ1\overline{h}_{\gamma}\approx 1, while in the high-energy part (εγ20\varepsilon_{\gamma}\gtrsim 20~{}MeV) with δ0.014\delta\gtrsim 0.014-0.022δ50.022\gtrsim\delta_{5}, h¯γ\overline{h}_{\gamma} saturates to 0.21\sim-0.21 [see Fig. 2(e)]. Moreover, since the first Compton edge (i.e., the cutoff energy of one-photon absorption channel) occurs at εγ1.3\varepsilon_{\gamma}\simeq 1.3-22 MeV, h¯γ\overline{h}_{\gamma} peaks around εγ1\varepsilon_{\gamma}\approx 1 MeV, and, due to the mixture of h¯γ\overline{h}_{\gamma} derived from εe900\varepsilon_{e}\approx 900 MeV and 1.4 GeV, the valley zone of h¯γ\overline{h}_{\gamma} near 104δδ110^{-4}\lesssim\delta\lesssim\delta_{1} (10 keV εγ\lesssim\varepsilon_{\gamma}\lesssim 1 MeV) is broadened and the fast oscillation near 103δ10210^{-3}\lesssim\delta\lesssim 10^{-2} (1.8 MeV εγ\lesssim\varepsilon_{\gamma}\lesssim 15 MeV) is smoothed [see the comparison between Fig. 2(e) and Fig. 3(e)]. Note that in the high-energy part (εγ20\varepsilon_{\gamma}\gtrsim 20~{}MeV) in Fig. 3(e), h¯γ\overline{h}_{\gamma} saturates to 0.21\sim-0.21 which lies between the analytical saturation values of 0.18-0.18 and 0.28-0.28 for a0=3.2a_{0}=3.2 and 2.0 [see Fig. 2(e) and Fig. 3(e)], and the slight deviation is derived from the finite-pulse effect in our numerical simulation (by comparison, we employ a monochromatic plane wave in the analytical estimation).

Furthermore, when electrons are polarized [34, 35], the impact of the electron helicity heh_{e} on the emitted photon helicity h¯γ\overline{h}_{\gamma} is negligible in the low-energy regime of εγ/εe102\varepsilon_{\gamma}/\varepsilon_{e}\lesssim 10^{-2} [see Fig. 2(e) and Fig. 3(f)]. However, as εγ/εe102\varepsilon_{\gamma}/\varepsilon_{e}\gtrsim 10^{-2}, h¯γ\overline{h}_{\gamma} will linearly increase (decrease) for he=+1(1)h_{e}=+1~{}(-1) [see Fig. 3(f)]. This analytical tendency completely coincides with our numerical results in Fig. 2(e).

Refer to caption
Figure 4: Impact of [(a) and (b)] εe,peak\varepsilon_{e,\mathrm{peak}}, [(c) and (d)] a0a_{0}, [(e) and (f)] laser pulse duration τ\tau on h¯γ\overline{h}_{\gamma}. Other parameters are the follows: for the electrons εe,peak=4\varepsilon_{e,\mathrm{peak}}=4 GeV, energy spread 3%3\%, Δθe=0.2\Delta\theta_{e}=0.2 mrad, transverse beam size σt=2.1μm\sigma_{t}=2.1~{}\mu\mathrm{m}, beam length le=5μml_{e}=5~{}\mu\mathrm{m} and total charge 300 pC; for the driving laser, the spatial profile is Gaussian with a0=3.0a_{0}=3.0, τ=20fs\tau=20~{}\mathrm{fs} and transverse focal radius w0=11μmw_{0}=11~{}\mu\mathrm{m}.

For the experimental feasibility, the impact of the laser and plasma parameters on h¯γ\overline{h}_{\gamma} is analyzed in Fig. 4. In the LWFA process, the peak energy of accelerated electrons εe,peak\varepsilon_{e,\mathrm{peak}} scales with the laser power PP and plasma density nen_{e} via εeP1/3ne2/3λ04/3\varepsilon_{e}\propto P^{1/3}n_{e}^{-2/3}\lambda_{0}^{-4/3} [27]. Thus, in Figs. 4(a) and (b), the impact of nen_{e} is simulated via εene2/3\varepsilon_{e}\propto n_{e}^{-2/3} with εe,peak=2,4\varepsilon_{e,\mathrm{peak}}=2,4, and 8 GeV corresponding to ne=8.8×1017n_{e}=8.8\times 10^{17}, 3.1×10173.1\times 10^{17} and 1.1×1017cm31.1\times 10^{17}~{}\mathrm{cm^{-3}}, respectively. As the emission rate W01/εe,eff.1/εeW_{0}\propto 1/\varepsilon_{e,\mathrm{eff.}}\propto 1/\varepsilon_{e} [see Eq. (1)], lower (higher) energies of incident electrons will induce higher (lower) yields [see Fig. 4(a)]. Since the nn-photon absorption cutoff εγ,cutoff=δnεe\varepsilon_{\gamma,\mathrm{cutoff}}=\delta_{n}\varepsilon_{e} will shift due to the variation of electron energy (but the shift in δn\delta_{n} is quite small), the energy spectra in Fig. 4(a) and h¯γ\overline{h}_{\gamma} in Fig. 4(b) will shift to left (right) as increasing (decreasing) the electron energy. But, the final saturation h¯γ0.2\overline{h}_{\gamma}\simeq-0.2 remains unchanged [see Fig. 4(b)]. The laser intensity a0a_{0} will affect both the emission probability and the nonlinearity of scattering process. As W0a02W_{0}\propto a_{0}^{2}, the radiation intensity will increase (decrease) for smaller (larger) a0a_{0} [see Fig. 4(c)]. For larger a0a_{0}, δn\delta_{n} will be smaller, thus, h¯γ\overline{h}_{\gamma} will shift to left, and vice versa [see Fig. 4(d)]. In addition, increasing (decreasing) the laser pulse τ\tau will yield more (fewer) photons per electron [see Fig. 4(e)]. However, due to short pulse effect (average a0a_{0} will be lower for shorter pulse), |h¯γ||\overline{h}_{\gamma}| is slight higher for τ=10\tau=10 fs than τ=20\tau=20 fs and 30 fs [see Fig. 4(f)].

In conclusion, we put forward an efficient brilliant CP γ\gamma-rays generation method via single-shot laser plasma interaction. We find that in the weakly nonlinear regime of Compton scattering, the helicity of emitted photon is subjected to the interplay of the laser and electron helicities. Our proposed method can generate γ\gamma-photons with peak brilliance of 102110^{21}-1022photons/(smm2mrad20.1%BW)10^{22}~{}\mathrm{photons/(s\cdot mm^{2}\cdot mrad^{2}\cdot 0.1\%BW)} and average polarization degree of 21%\sim 21\%-37%37\% with moderate laser pulses. Moreover, our method is quite stable in a wide range of laser and plasma parameters. With proper selection of γ\gamma-photon energy and (polarized) plasma target, highly CP brilliant γ\gamma-ray sources can be obtained for many applications, such as, photo-nuclear researches, generation of polarized lepton sources, etc.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grants Nos. 11905169, 12022506, 11874295), and the China Postdoctoral Science Foundation (Grant No. 2020M683447).

References

  • Dean et al. [2008] A. J. Dean, D. J. Clark, J. B. Stephen, V. A. McBride, L. Bassani, A. Bazzano, A. J. Bird, A. B. Hill, S. E. Shaw, and P. Ubertini, Polarized gamma-ray emission from the Crab, Science 321, 1183 (2008).
  • Bühler and Blandford [2014] R. Bühler and R. Blandford, The surprising Crab pulsar and its nebula: A review, Rept. Prog. Phys. 77, 066901 (2014)arXiv:1309.7046 [astro-ph.HE] .
  • Orlando and Strong [2013] E. Orlando and A. Strong, Galactic synchrotron emission with cosmic ray propagation models, Mon. Not. Roy. Astron. Soc. 436, 2127 (2013)1309.2947 [astro-ph.GA] .
  • Weller and Ahmed [2003] H. R. Weller and M. W. Ahmed, The HIγ\gammaS Facility: A free-electron laser generated gamma-ray beam for research in nuclear physics, Modern Physics Letters A 18, 1569 (2003).
  • Weller et al. [2009] H. R. Weller, M. W. Ahmed, H. Gao, W. Tornow, Y. K. Wu, M. Gai, and R. Miskimen, Research opportunities at the upgraded hiγ\gammas facility, Progress in Particle and Nuclear Physics 62, 257 (2009).
  • Schoeffel et al. [2021] L. Schoeffel, C. Baldenegro, H. Hamdaoui, S. Hassani, C. Royon, and M. Saimpert, Photon–photon physics at the LHC and laser beam experiments, present and future, Prog. Part. Nucl. Phys. 120, 103889 (2021)arXiv:2010.07855 [hep-ph] .
  • Assmann et al. [2020] R. W. Assmann et al., EuPRAXIA Conceptual Design Report, Eur. Phys. J. ST 229, 3675 (2020), [Erratum: Eur. Phys. J. ST 229, 11–31 (2020)].
  • Omori et al. [2006] T. Omori, M. Fukuda, T. Hirose, Y. Kurihara, R. Kuroda, M. Nomura, A. Ohashi, T. Okugi, K. Sakaue, T. Saito, J. Urakawa, M. Washio, and I. Yamazaki, Efficient propagation of polarization from laser photons to positrons through compton scattering and electron-positron pair creation, Phys. Rev. Lett. 96, 114801 (2006).
  • Moortgat-Pick and et.al. [2008] G. Moortgat-Pick and et.al., Polarized positrons and electrons at the linear collider, Physics Reports 460, 131 (2008).
  • Speth and van der Woude [1981] J. Speth and A. van der Woude, Giant resonances in nuclei, Reports on Progress in Physics 44, 719 (1981).
  • Li et al. [2020] Y.-F. Li, R. Shaisultanov, Y.-Y. Chen, F. Wan, K. Z. Hatsagortsyan, C. H. Keitel, and J.-X. Li, Polarized ultrashort brilliant multi-gev γ\gamma rays via single-shot laser-electron interaction, Phys. Rev. Lett. 124, 014801 (2020).
  • Schaerf [2005] C. Schaerf, Polarized gamma-ray beams, Physics Today 58, 44 (2005), .
  • Danson et al. [2019] C. N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C. F. Chanteloup, E. A. Chowdhury, A. Galvanauskas, L. A. Gizzi, J. Hein, D. I. Hillier, N. W. Hopps, Y. Kato, E. A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C. H. Nam, D. Neely, D. Papadopoulos, R. R. Penman, L. Qian, J. J. Rocca, A. A. Shaykin, C. W. Siders, C. Spindloe, S. Szatmári, R. M. G. M. Trines, J. Zhu, P. Zhu, and J. D. Zuegel, Petawatt and exawatt class lasers worldwide, High Power Laser Sci. Eng. 7, e54 (2019).
  • Yoon et al. [2021] J. W. Yoon, Y. G. Kim, I. W. Choi, J. H. Sung, H. W. Lee, S. K. Lee, and C. H. Nam, Realization of laser intensity over 102310^{23} W/cm2Optica 8, 630 (2021).
  • Esarey et al. [2009] E. Esarey, C. B. Schroeder, and W. P. Leemans, Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys. 81, 1229 (2009).
  • Macchi et al. [2013] A. Macchi, M. Borghesi, and M. Passoni, Ion acceleration by superintense laser-plasma interaction, Rev. Mod. Phys. 85, 751 (2013).
  • Corde et al. [2013] S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, and E. Lefebvre, Femtosecond x rays from laser-plasma accelerators, Rev. Mod. Phys. 85, 1 (2013).
  • Sarri et al. [2014] G. Sarri, D. J. Corvan, W. Schumaker, J. M. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C. H. Keitel, K. Krushelnick, S. P. D. Mangles, Z. Najmudin, D. Symes, A. G. R. Thomas, M. Yeung, Z. Zhao, and M. Zepf, Ultrahigh brilliance multi-mev γ\gamma-ray beams from nonlinear relativistic thomson scattering, Phys. Rev. Lett. 113, 224801 (2014).
  • Yan et al. [2017] W. Yan, C. Fruhling, G. Golovin, D. Haden, J. Luo, P. Zhang, B. Zhao, J. Zhang, C. Liu, M. Chen, S. Chen, S. Banerjee, and D. Umstadter, High-order multiphoton thomson scattering, Nature Photonics 11, 514 (2017).
  • Ridgers et al. [2012] C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett, T. D. Arber, A. P. L. Robinson, and A. R. Bell, Dense electron-positron plasmas and ultraintense γ\gamma rays from laser-irradiated solids, Phys. Rev. Lett. 108, 165006 (2012).
  • Zhu et al. [2020] X.-L. Zhu, M. Chen, S.-M. Weng, T.-P. Yu, W.-M. Wang, F. He, Z.-M. Sheng, P. McKenna, D. A. Jaroszynski, and J. Zhang, Extremely brilliant gev γ\gamma-rays from a two-stage laser-plasma accelerator, Science Advances 6, eaaz7240 (2020), .
  • Xue et al. [2020] K. Xue, Z.-K. Dou, F. Wan, T.-P. Yu, W.-M. Wang, J.-R. Ren, Q. Zhao, Y.-T. Zhao, Z.-F. Xu, and J.-X. Li, Generation of highly-polarized high-energy brilliant γ\gamma-rays via laser-plasma interaction, Matter and Radiation at Extremes 5, 054402 (2020).
  • King and Tang [2020] B. King and S. Tang, Nonlinear compton scattering of polarized photons in plane-wave backgrounds, Phys. Rev. A 102, 022809 (2020).
  • Phuoc et al. [2012] K. T. Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J. P. Goddet, R. C. Shah, S. Sebban, and A. Rousse, All-optical compton gamma-ray source, Nat. Photonics 6, 308 (2012).
  • Arber et al. [2015] T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-Douglas, M. G. Ramsay, N. J. Sircombe, P. Gillies, R. G. Evans, H. Schmitz, A. R. Bell, and C. P. Ridgers, Contemporary particle-in-cell approach to laser-plasma modelling, Plasma Phys. Control. Fusion 57, 113001 (2015).
  • [26] K. Yokoya, CAIN 2.42 User Manual.
  • Lu et al. [2007] W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca, and L. O. Silva, Generating multi-gev electron bunches using single stage laser wakefield acceleration in a 3d nonlinear regime, Phys. Rev. ST Accel. Beams 10, 061301 (2007).
  • Esirkepov et al. [2014] T. Z. Esirkepov, J. K. Koga, A. Sunahara, T. Morita, M. Nishikino, K. Kageyama, H. Nagatomo, K. Nishihara, A. Sagisaka, H. Kotaki, T. Nakamura, Y. Fukuda, H. Okada, A. S. Pirozhkov, A. Yogo, M. Nishiuchi, H. Kiriyama, K. Kondo, M. Kando, and S. V. Bulanov, Prepulse and amplified spontaneous emission effects on the interaction of a petawatt class laser with thin solid targets, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 745, 150 (2014).
  • Saleh and Teich [1991] B. E. A. Saleh and M. C. Teich,  Fundamentals of Photonics (Wiley, 1991).
  • Wistisen and Di Piazza [2019] T. N. Wistisen and A. Di Piazza, Numerical approach to the semiclassical method of radiation emission for arbitrary electron spin and photon polarization, Phys. Rev. D 100, 116001 (2019).
  • Tsai [1993] Y. S. Tsai, Laser+eγ+e\mathrm{Laser}+{e}^{-}\rightarrow\gamma+{e}^{-} and laser+γe++e\mathrm{laser}+\gamma\rightarrow{e}^{+}+{e}^{-} as sources of producing circularly polarized γ\gamma and e±{e}^{\pm{}} beams, Phys. Rev. D 48, 96 (1993).
  • Ivanov et al. [2004] D. Y. Ivanov, G. L. Kotkin, and V. G. Serbo, Complete description of polarization effects in emission of a photon by an electron in the field of a strong laser wave, Eur. Phys. J. C 36, 127 (2004).
  • Baier et al. [1998] V. N. Baier, V. M. Katkov, and V. M. Strakhovenko,  Electromagnetic Processes at High Energies in Oriented Single Crystals (World Scientific, Singapore, 1998).
  • Wen et al. [2019] M. Wen, M. Tamburini, and C. H. Keitel, Polarized laser-wakefield-accelerated kiloampere electron beams, Phys. Rev. Lett. 122, 214801 (2019).
  • Nie et al. [2021] Z. Nie, F. Li, F. Morales, S. Patchkovskii, O. Smirnova, W. An, N. Nambu, D. Matteo, K. A. Marsh, F. Tsung, W. B. Mori, and C. Joshi, In situ generation of high-energy spin-polarized electrons in a beam-driven plasma wakefield accelerator, Phys. Rev. Lett. 126, 054801 (2021).