This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

thanks: These authors contributed equally to this workthanks: These authors contributed equally to this work

Breaking the Rate-Loss Bound of Quantum Key Distribution with Asynchronous Two-Photon Interference

Yuan-Mei Xie    Yu-Shuo Lu    Chen-Xun Weng    Xiao-Yu Cao    Zhao-Ying Jia    Yu Bao    Yang Wang National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.    Yao Fu MatricTime Digital Technology Co. Ltd., Nanjing 211899, China    Hua-Lei Yin [email protected] National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.    Zeng-Bing Chen [email protected] National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China. MatricTime Digital Technology Co. Ltd., Nanjing 211899, China
Abstract

Twin-field quantum key distribution can overcome the secret key capacity of repeaterless quantum key distribution via single-photon interference. However, to compensate for the channel fluctuations and lock the laser fluctuations, the techniques of phase tracking and phase locking are indispensable in experiment, which drastically increase experimental complexity and hinder free-space realization. We herein present an asynchronous measurement-device-independent quantum key distribution protocol that can surpass the secret key capacity even without phase tracking and phase locking. Leveraging the concept of time multiplexing, asynchronous two-photon Bell-state measurement is realized by postmatching two interference detection events. For a 1 GHz system, the new protocol reaches a transmission distance of 450 km without phase tracking. After further removing phase locking, our protocol is still capable of breaking the capacity at 270 km. Intriguingly, when using the same experimental techniques, our protocol has a higher key rate than the phase-matching-type twin-field protocol. In the presence of imperfect intensity modulation, it also has a significant advantage in terms of the transmission distance over the sending-or-not-sending type twin-field protocol. With high key rates and accessible technology, our work provides a promising candidate for practical scalable quantum communication networks.

I Introduction

Quantum key distribution (QKD) [1, 2] allows the distribution of information-theoretically secure keys guaranteed by quantum mechanical limits. However, experimental implementations of QKD always deviate from the theoretical assumptions used in security proofs, leading to various quantum hacking attacks [3, 4, 5, 6, 7]. Fortunately, all security loopholes on the detection side are closed by measurement-device-independent QKD (MDIQKD) [8], which introduces an untrusted third party, Charlie, to perform two-photon Bell-state measurement in the intermediate node. Thus far, MDIQKD has made many theoretical and experimental breakthroughs [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].

However, because a significant number of photons are inevitably lost in the channel, the key rate of most QKD protocols, including MDIQKD, is rigorously limited by the secret key capacity of repeaterless QKD [26, 27, 28, 29, 30], more precisely, the Pirandola–Laurenza–Ottaviani–Banchi (PLOB) bound R=log2(1η)R=-\log_{2}(1-\eta) [28], where RR is the secret key rate and η\eta is the total channel transmittance between the two users. Utilizing single-photon interference, twin-field QKD (TFQKD) [31] and its variants [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43], such as sending-or-not-sending QKD (SNSQKD) [33] and phase-matching QKD (PMQKD) [32, 40], have been proposed to increase the key rate to O(η)O(\sqrt{\eta}), overcoming the PLOB bound. Since then, they have aroused widespread concern. For example, remarkable progress has been made in the theory of finite key analysis [44, 45, 46, 47]. Additionally, some notable experimental implementations have been reported [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]. The longest transmission distance of more than 830 km was recently achieved in the laboratory through optical fibers  [60].

Because the phase evolution of the twin fields is sensitive to both channel length drift and frequency difference between two user lasers, phase-tracking and phase-locking techniques are vital for twin-field-type protocols. Phase tracking is used to compensate for the phase fluctuation on the channels connecting the users to Charlie, where bright reference light pulses are sent to measure the phase fluctuation. However, the performance of the system is severely affected because the bright light causes scattering noise and occupies the time of the quantum signal [48, 50, 51, 52, 53, 54, 56]. Phase tracking also imposes a high counting requirement on the detectors. Phase locking is utilized to lock the frequency and the phase of the two users’ lasers. There are several types of phase-locking techniques, including laser injection [17], optical phase-locked loop [61, 62], and time-frequency dissemination technology [51, 63]. However, they all require additional channels between users to transfer the reference light. In addition, laser injection may introduce security risks [64, 65], and the optical phase-locked loop and the time-frequency dissemination technology both require complicated feedback systems. An ingenious replacement for phase locking and phase tracking in TFQKD experiments [49, 55] is the plug-and-play type construction [34], but it is susceptible to Trojan horse attacks [66, 67, 68, 69]. Furthermore, free-space realization of QKD in various types of channels, including the atmosphere [70, 71], seawater [72], and satellite-to-ground channels [73, 74, 75, 76], is essential to establishing a global-scale quantum networks [77, 78]. However, deploying phase-tracking and phase-locking techniques in free space faces some technical challenges. For example, phase locking requires additional channels between the two users. In summary, these technical requirements increase experimental complexity, may incur security risks, and hinder the implementation of TFQKD in commerce and free space.

In this work, we propose an asynchronous-MDIQKD protocol to remove these requirements. It has a simple hardware implementation while enjoying a high key rate. Recall that in the conventional time-bin encoding MDIQKD scheme [79], coincidence detection of two neighboring time bins is required, resulting in the O(η)O({\eta}) scaling of the key rate [30]. Intriguingly, we observe that the two neighboring time bins can actually be decoupled. Specifically, the requirement for coincidence detection of two neighboring time bins is unnecessary. By utilizing time multiplexing, we match two detected time bins that are phase-correlated to establish an asynchronous two-photon Bell state, and the key rate is enhanced to O(η)O(\sqrt{\eta}). This can be regarded as breaking the recently proposed linear boundary of dual-rail protocols [30]. We highlight the intrinsic differences between time-bin encoding MDIQKD and polarization encoding MDIQKD—time multiplexing is possible solely for time-bin encoding, where there are infinite time modes. For polarization encoding, only two orthogonal modes exist.

Because the differential phase evolution of each time bin is approximately equal in a short time interval, we can postmatch two phase-related time bins without the phase-tracking and phase-locking techniques at the cost of a slight increase in the interference error rate. We show that after removing these techniques, the misalignment angle between the two users is approximately 0.1π0.1\pi within 1 μ\mus with simple commercially available instruments, giving rise to an interference error rate of approximately 2.4%2.4\%. In this case, our protocol can beat the PLOB bound at a distance of approximately 270 km, achieving a reasonable trade-off between practicality and performance. By circumventing the need for phase locking and phase tracking, our protocol can directly utilize techniques derived from free-space MDIQKD [70], thereby facilitating QKD to break the secret key capacity in free space. Moreover, when the imperfection in light intensity modulation is considered  [80], our protocol achieves a longer transmission distance and higher key rates compared with SNSQKD with actively odd-parity pairing (AOPP)  [81, 82] and PMQKD [40] when using the same experimental techniques.

Refer to caption
Figure 1: Basic idea of the adaptive MDIQKD scheme [83] and this work. (a) In the adaptive MDIQKD scheme, Alice and Bob send mm single-photon pulses to Charlie using spatial multiplexing. Charlie applies quantum nondemolition measurement (QND) to confirm the arrival of pulses, matches the arriving pulses using optical switches (SW), and performs two-photon Bell measurements (BM) on the pairs. (b) In our asynchronous-MDIQKD protocol, Alice and Bob send NN pulses to Charlie to perform single-photon interference (SPI), and a two-photon Bell state is obtained by postmatching two successful SPI events.

II asynchronous-MDIQKD protocol

In this section, we first introduce the basic idea of the asynchronous-MDIQKD protocol and then present a detailed protocol description.

II.1 Protocol topology

Our proposal is motivated by the adaptive MDIQKD scheme [83], as shown in Fig. 1(a). In this scheme, the idea of spatial multiplexing is leveraged, where mm optical pulses in single-photon states pass through mm channels. When mη1m\sqrt{\eta}\geq 1, one or more single photons arrive at Charlie from Alice and Bob each, with unitary probability, resulting in O(η)O(\sqrt{\eta}) scaling with the key rate.

In the time-bin encoding MDIQKD [79], the information is encoded in the relative phase between the optical modes in two separate time bins ii, jj, with i=2t1i=2t-1, j=2tj=2t, where tt is an integer. Let |1,0ij=|1i|0j{\lvert 1,0\rangle}^{ij}={\lvert 1\rangle}^{i}{\lvert 0\rangle}^{j} denote the quantum state, where there is one photon in time bin ii and zero photon in time bin jj. Alice and Bob prepare quantum states |+z=|1,0i,j{\lvert+z\rangle}={\lvert 1,0\rangle}^{i,j}, |z=|0,1i,j{\lvert-z\rangle}={\lvert 0,1\rangle}^{i,j}, and |±x=(|1,0i,j±|0,1i,j)/2{\lvert\pm x\rangle}=({\lvert 1,0\rangle}^{i,j}\pm{\lvert 0,1\rangle}^{i,j})/\sqrt{2}, and send them to Charlie for Bell-state measurement, where |±z{\lvert\pm z\rangle} are the eigenstates in the ZZ basis, and |±x{\lvert\pm x\rangle} are the eigenstates in the XX basis. Note that for the Bell states announced by Charlie, |ψ±=1/2(|1,0ai,j|0,1bi,j±|0,1ai,j|1,0bi,j){\lvert\psi^{\pm}\rangle}=1/\sqrt{2}({\lvert 1,0\rangle}^{i,j}_{a}{\lvert 0,1\rangle}^{i,j}_{b}\pm{\lvert 0,1\rangle}^{i,j}_{a}{\lvert 1,0\rangle}^{i,j}_{b}), where subscript aa represents mode “Alice” and bb represents mode “Bob”, we can decouple ii and jj as two independent variables [84], making time multiplexing possible.

The basic idea of our asynchronous-MDIQKD protocol is illustrated in Fig. 1(b). NN pairs of optical pulses are sent in NN time bins. In each time bin, single-photon interference is performed, and nNηn\approx N\sqrt{\eta} successful detection events are obtained. By time multiplexing, Alice and Bob can postmatch successful detection events of two time bins that are phase-correlated to establish two-photon entangled states |ψ±{\lvert\psi^{\pm}\rangle}, leading to the O(η)O(\sqrt{\eta}) decay of the key rate.

Refer to caption
Figure 2: Schematic of 𝑐𝑎𝑠𝑒1\mathit{case~{}1} and 𝑐𝑎𝑠𝑒2\mathit{case~{}2}. Each time bin is represented by a lattice, and detection events are painted in deep purple. 𝑐𝑎𝑠𝑒1\mathit{case~{}1}: a detection event around which other detection events can be found within TcT_{c}; 𝑐𝑎𝑠𝑒2\mathit{case~{}2}: a detection event around which there are no other detection events within TcT_{c}. NTN_{T} is the total number of pulses sent within TcT_{c}, which is proportional to the system repetition rate.

We consider the case in which Alice and Bob always match two successful detection events within a short time interval TcT_{c}, where TcT_{c} is on the order of microseconds. Hereafter, we abbreviate a successful detection event to a detection event for simplicity. As shown in Fig. 2, the detection events can be classified into two cases: 𝑐𝑎𝑠𝑒1\mathit{case~{}1} and 𝑐𝑎𝑠𝑒2\mathit{case~{}2}. The 𝑐𝑎𝑠𝑒1\mathit{case~{}1} event indicates that other detection events can be found around it within TcT_{c}, and the differential phase evolution of detection events in TcT_{c} are unknown but almost the same. The 𝑐𝑎𝑠𝑒2\mathit{case~{}2} event indicates that there are no other detection events around it within TcT_{c}. After removing phase tracking and phase locking, the differential phase evolution of each 𝑐𝑎𝑠𝑒2\mathit{case~{}2} event becomes indeterminate. This means that 𝑐𝑎𝑠𝑒2\mathit{case~{}2} events have no phase correlations with each other. These events should be carefully handled to ensure security. For example, Charlie can know the total photon number in each optical pulse pair sent by Alice and Bob via quantum nondemolition measurements, and Charlie always lets the joint single-photon be detected as 𝑐𝑎𝑠𝑒2\mathit{case~{}2} events. Charlie’s operation would not be found by Alice and Bob. If Alice and Bob discard 𝑐𝑎𝑠𝑒2\mathit{case~{}2} events, the single-photon pairs cannot be reasonably estimated using the conventional decoy-state method. Fortunately, a sufficiently small number (one on average) of 𝑐𝑎𝑠𝑒2\mathit{case~{}2} events will not affect the security of the protocol.

Refer to caption
Figure 3: Schematic of the setup for the asynchronous-MDIQKD protocol. Alice and Bob utilize a narrow-linewidth continuous-wave laser, intensity modulator (IM), phase modulator (PM), and attenuator (ATT) to prepare phase-randomized weak coherent pulses with different intensities and phases. Charlie performs interference measurement with a beam splitter (BS) and single-photon detectors. Charlie announces the detection events where only the detector 𝐋\mathbf{L} or 𝐑\mathbf{R} clicks.

II.2 Protocol description

The schematic of the asynchronous-MDIQKD setup is shown in Fig. 3, and the details of the protocol are presented as follows.

1. Preparation. Alice and Bob repeat the first two steps for NN rounds to obtain sufficient data. At each time bin i{1,2,,N}i\in\{1,2,\ldots,N\}, both phase θai\theta_{a}^{i} [0,2π)\in[0,2\pi) and classical bit rai{0,1}r_{a}^{i}\in\{0,1\} are randomly chosen by Alice. Alice then prepares a weak coherent pulse |ei(θai+raiπ)kai{\lvert e^{\textbf{i}(\theta_{a}^{i}+r_{a}^{i}\pi)}\sqrt{k_{a}^{i}}\rangle} with probability pkap_{k_{a}}, where kai{μa,νa,𝐨a,𝐨^a}k_{a}^{i}\in\{\mu_{a},~{}\nu_{a},~{}\mathbf{o}_{a},~{}\hat{\mathbf{o}}_{a}\} corresponds to the signal, decoy, preserve-vacuum, and declare-vacuum intensities, respectively (μa>νa>𝐨a=𝐨^a=0\mu_{a}>\nu_{a}>\mathbf{o}_{a}=\hat{\mathbf{o}}_{a}=0). Similarly, Bob prepares a phase-randomized weak coherent pulse. Alice and Bob send the corresponding pulses |ei(θai+raiπ)kai{\lvert e^{\textbf{i}(\theta_{a}^{i}+r_{a}^{i}\pi)}\sqrt{k_{a}^{i}}\rangle} and |ei(θbi+rbiπ)kbi{\lvert e^{\textbf{i}(\theta_{b}^{i}+r_{b}^{i}\pi)}\sqrt{k_{b}^{i}}\rangle} (kbi{μb,νb,𝐨b,𝐨^b}k_{b}^{i}\in\{\mu_{b},~{}\nu_{b},~{}\mathbf{o}_{b},~{}\hat{\mathbf{o}}_{b}\}) to Charlie via insecure quantum channels.

2. Measurement. For each time bin ii, Charlie performs interference measurement on the two received pulses. Charlie obtains a detection event when only one detector clicks. He publicly announces whether a detection event is obtained and which detector clicked. In the following description, we define {ka,kb}\{k_{a},~{}k_{b}\} as a detection event when Alice sends intensity kak_{a}, and Bob sends kbk_{b}. The compressed notation {kaikaj,kbikbj}\{k_{a}^{i}k_{a}^{j},~{}k_{b}^{i}k_{b}^{j}\} indicates that{kai,kbi}\{k_{a}^{i},~{}k_{b}^{i}\} and {kaj,kbj}\{k_{a}^{j},~{}k_{b}^{j}\} are matched, the first label referring to time bin ii, and the second to time bin jj.

3. Sifting. Alice and Bob first check the number of 𝑐𝑎𝑠𝑒2\mathit{case~{}2} events. If the number of occurrences of 𝑐𝑎𝑠𝑒2\mathit{case~{}2} is smaller than or equal to Λ\Lambda, the data of 𝑐𝑎𝑠𝑒2\mathit{case~{}2} can be discarded, where Λ\Lambda is a preset threshold; otherwise, they abort the protocol. For 𝑐𝑎𝑠𝑒1\mathit{case~{}1} events, when at least either Alice or Bob chooses a decoy or declare-vacuum intensity, they announce their intensities and phase information through authenticated channels. They then use the following rules to randomly match two 𝑐𝑎𝑠𝑒1\mathit{case~{}1} events with a time interval of less than TcT_{c}.

The unannounced detection events {μa,𝐨b}\{\mu_{a},~{}\mathbf{o}_{b}\}, {μa,μb}\{\mu_{a},~{}\mu_{b}\}, {𝐨a,μb}\{\mathbf{o}_{a},~{}\mu_{b}\}, and {𝐨a,𝐨b}\{\mathbf{o}_{a},~{}\mathbf{o}_{b}\} are used to form data in the ZZ basis. For these events, Alice randomly matches a time bin ii of intensity μa\mu_{a} with another time bin jj of intensity 𝐨a\mathbf{o}_{a}. Alice and Bob discard detection events that cannot find a matchable peer. Then, Alice sets her bit value to 0 (1) if i<j(i>j)i<j~{}(i>j) and informs Bob of the serial numbers ii and jj. In the corresponding time bins, if Bob chooses intensities kbmin{i,j}=μbk_{b}^{\min\{i,j\}}=\mu_{b} (𝐨b)(\mathbf{o}_{b}) and kbmax{i,j}=𝐨bk_{b}^{\max\{i,j\}}=\mathbf{o}_{b} (μb)(\mu_{b}), the bit value is set to 0 (1). Bob announces an event where kbik_{b}^{i} == kbj=𝐨bk_{b}^{j}=\mathbf{o}_{b} or μb\mu_{b}. Thus, the valid events in the ZZ basis are {μa𝐨a,𝐨bμb}\{\mu_{a}\mathbf{o}_{a},~{}\mathbf{o}_{b}\mu_{b}\}, {μa𝐨a,μb𝐨b}\{\mu_{a}\mathbf{o}_{a},~{}\mu_{b}\mathbf{o}_{b}\}, {𝐨aμa,𝐨bμb}\{\mathbf{o}_{a}\mu_{a},~{}\mathbf{o}_{b}\mu_{b}\}, and {𝐨aμa,μb𝐨b}\{\mathbf{o}_{a}\mu_{a},~{}\mu_{b}\mathbf{o}_{b}\}.

The detection events {νa,νb}\{\nu_{a},~{}\nu_{b}\}, {oa,νb}\{o_{a},~{}\nu_{b}\}, {νa,ob}\{\nu_{a},~{}o_{b}\}, {𝐨^a,ob}\{\hat{\mathbf{o}}_{a},o_{b}\}, and {𝐨a,𝐨^b}\{\mathbf{o}_{a},~{}\hat{\mathbf{o}}_{b}\} are used to form data in the XX basis, where oa(b){𝐨a(b),𝐨^a(b)}o_{a(b)}\in\{\mathbf{o}_{a(b)},~{}\hat{\mathbf{o}}_{a(b)}\}. The global phase of Alice (Bob) at time bin ii is defined as φa(b)i:=θa(b)i+ϕa(b)i\varphi^{i}_{a(b)}:=\theta^{i}_{a(b)}+\phi^{i}_{a(b)}, where ϕa(b)i\phi^{i}_{a(b)} is the phase evolution from the channel. The global phase difference between Alice and Bob at time bin ii is φi=φaiφbi\varphi^{i}=\varphi_{a}^{i}-\varphi_{b}^{i}. Alice and Bob randomly choose two detection events that satisfy kai=kajk_{a}^{i}=k_{a}^{j}, kbi=kbjk_{b}^{i}=k_{b}^{j} and |φiφj|=0\left|\varphi^{i}-\varphi^{j}\right|=0 or π\pi (experimental techniques for quantifying |φiφj|\left|\varphi^{i}-\varphi^{j}\right| are discussed later in Sec. III). They then match the two events as {kaikaj,kbikbj}\{k_{a}^{i}k_{a}^{j},~{}k_{b}^{i}k_{b}^{j}\}. By calculating the classical bits rairajr_{a}^{i}\oplus r_{a}^{j} and rbirbjr_{b}^{i}\oplus r_{b}^{j}, Alice and Bob obtain a bit value in the XX basis, respectively. Afterwards, in the ZZ basis, Bob always flips his bit. In the XX basis, Bob flips part of his bits to correctly correlate them with Alice’s (see Table. 1).

4. Parameter estimation. Alice and Bob exploit the random bits from the ZZ basis to form the nzn^{z}-length raw key bit. The remaining bits in the ZZ basis are used to calculate the bit error rate EzE^{z}. They reveal all bit values in the XX basis to obtain the total number of errors. The decoy-state method [85, 86] is utilized to estimate the number of vacuum events in the ZZ basis s0μbzs_{0\mu_{b}}^{z}, number of single-photon pairs s11zs_{11}^{z}, bit error rate in the XX basis e11xe_{11}^{x}, and phase error rate of single-photon pairs ϕ11z\phi_{11}^{z} in the ZZ basis (see Appendix A for details).

Note: To estimate the single-photon component gain of each postmatching interval, we assume that the single-photon distributions in all detection events are independent and identical.

5. Postprocessing. Alice and Bob distill the final keys by using the error correction algorithm with εcor\varepsilon_{\rm{cor}}-correct, and the privacy amplification algorithm with εsec\varepsilon_{\rm{sec}} -secret. Similar to Ref. [15], the length of the final secret key \ell with total security εAMDI=εsec+εcor\varepsilon_{\rm{AMDI}}=\varepsilon_{\rm{sec}}+\varepsilon_{\rm{cor}} can be given by

=\displaystyle\ell= s¯0μbz+s¯11z[1H2(ϕ¯11z)]λEC\displaystyle\underline{s}_{0\mu_{b}}^{z}+\underline{s}_{11}^{z}\left[1-H_{2}(\overline{\phi}_{11}^{z})\right]-\lambda_{\rm{EC}} (1)
log22εcor2log22εε^2log212εPA,\displaystyle-\log_{2}\frac{2}{\varepsilon_{\rm cor}}-2\log_{2}\frac{2}{\varepsilon^{\prime}\hat{\varepsilon}}-2\log_{2}\frac{1}{2\varepsilon_{\rm PA}},

where x¯\underline{x} and x¯\overline{x} denote the lower and upper bounds of the observed value xx, respectively. λEC=nzfH2(Ez)\lambda_{\rm{EC}}=n^{z}fH_{2}(E^{z}) is the amount of information leaked during error correction, where ff is the error correction efficiency, and H2(x)=xlog2x(1x)log2(1x)H_{2}(x)=-x\log_{2}x-(1-x)\log_{2}(1-x) is the binary Shannon entropy function. εcor\varepsilon_{\rm cor} is the failure probability of error verification, and εPA\varepsilon_{\rm PA} refers to the failure probability of privacy amplification. ε\varepsilon^{\prime} and ε^\hat{\varepsilon} represent the coefficients when using the chain rules of smooth min-entropy and max-entropy, respectively. εsec=2(ε+ε^+2εe)+εβ+ε0+ε1+εPA\varepsilon_{\rm sec}=2(\varepsilon^{\prime}+\hat{\varepsilon}+2\varepsilon_{e})+\varepsilon_{\beta}+\varepsilon_{0}+\varepsilon_{1}+\varepsilon_{\rm PA}, where ε0\varepsilon_{0}, ε1\varepsilon_{1} and εe\varepsilon_{e} are the failure probabilities of estimating the terms s0μbzs_{0\mu_{b}}^{z}, s11zs_{11}^{z}, and ϕ11z\phi_{11}^{z}, respectively.

Table 1: Postprocessing of bit in the sifting step. In the XX basis, Bob decides whether to implement a bit flip to guarantee correct correlations, depending on the clicking detectors announced by Charles and the global phase difference between two matching time bins. Here, 𝐑𝐋\mathbf{RL} (𝐋𝐑\mathbf{LR}) denotes the detectors 𝐑\mathbf{R} (𝐋\mathbf{L}) and 𝐋\mathbf{L} (𝐑\mathbf{R}) clicks at time bins ii and jj, respectively. 𝐑𝐑\mathbf{RR} (𝐋𝐋\mathbf{LL}) denotes that the detector 𝐑\mathbf{R} (𝐋\mathbf{L}) clicks at time bins ii and jj.
Measurement results of Charlie
Global phase difference     𝐑𝐋\mathbf{RL}  (𝐋𝐑\mathbf{LR}) 𝐑𝐑\mathbf{RR} (𝐋𝐋\mathbf{LL})
    |φiφj|=0|\varphi^{i}-\varphi^{j}|=0       Bit flip No bit flip
    |φiφj|=π|\varphi^{i}-\varphi^{j}|=\pi     No bit flip Bit flip

III Experimental Discussion

In the asynchronous-MDIQKD protocol, the information in the interference mode is encoded in the phase difference of two matched time bins. One may regard the latter as the reference mode and the former as the signal mode, which is the same as the time-bin encoding MDIQKD [79]. In the XX basis, Alice and Bob postmatch pulses of two time bins ii and jj with phase relation |φiφj|=0\left|\varphi^{i}-\varphi^{j}\right|=0 or π\pi, where φi(j)=θai(j)θbi(j)+ϕi(j)\varphi^{i(j)}=\theta_{a}^{i(j)}-\theta_{b}^{i(j)}+\phi^{i(j)} is the global phase difference at time bin i(j)i~{}(j). θai(j)\theta_{a}^{i(j)} and θbi(j)\theta_{b}^{i(j)} are random phases known to Alice and Bob. ϕi(j)=ϕai(j)ϕbi(j)\phi^{i(j)}=\phi^{i(j)}_{a}-\phi^{i(j)}_{b} is the differential phase evolution at time bin i(j)i~{}(j), which is determined by the frequency difference between the two users’ lasers and the fluctuation of the fiber channels. When the two pulses sent by Alice and Bob reach Charlie, the phase evolutions of the two pulses are ϕai=2πvai(tilai/s)\phi_{a}^{i}=2\pi v_{a}^{i}(t^{i}-l^{i}_{a}/s) and ϕbi=2πvbi(tilbi/s)\phi_{b}^{i}=2\pi v_{b}^{i}(t^{i}-l^{i}_{b}/s), respectively, where tit^{i} is the time of the time bin ii, va(b)iv_{a(b)}^{i} is the laser frequency, ss is the speed of light in the fiber, and la(b)il_{a(b)}^{i} is the fiber length between Alice (Bob) and Charlie at time bin ii. In symmetric channels, the differential phase evolution between Alice and Bob can be expressed as

ϕi=ϕaiϕbi=2πδviti2πs(δvili+viδli),\displaystyle\phi^{i}=\phi_{a}^{i}-\phi_{b}^{i}=2\pi\delta v^{i}t^{i}-\frac{2\pi}{s}(\delta v^{i}l^{i}+v^{i}\delta l^{i}), (2)

where δvi=vaivbi\delta v^{i}=v_{a}^{i}-v_{b}^{i}, δli=lailbi\delta l^{i}=l_{a}^{i}-l_{b}^{i}, li=(lai+lbi)/2l^{i}=(l^{i}_{a}+l^{i}_{b})/2 and vi=(vai+vbi)/2v^{i}=(v^{i}_{a}+v^{i}_{b})/2. Ensuring the phase correlation between time bins ii and jj is essential for postmatching. In the experiment, when the time interval for postmatching TcT_{c} is large, the phase correlation can be maintained by using phase-tracking and phase-locking techniques to measure differential phase evolution in each time bin. Fortunately, when TcT_{c} is small, the phase correlation naturally exists, that is, the differential phase evolution is approximately constant within TcT_{c} because the fiber length drift rate and relative phase drift rate between lasers are relatively small. Therefore, our protocol can discard phase-tracking and phase-locking techniques at the cost of a slight increase in the interference error rate.

III.1 Removing phase tracking

Assuming that the frequencies of the two user lasers are synchronized with phase-locking techniques, vai(j)=vbi(j)=vi(j)v_{a}^{i(j)}=v_{b}^{i(j)}=v^{i(j)}, we have

ϕjϕi=2πs(vjδljviδli).\displaystyle\phi^{j}-\phi^{i}=\frac{2\pi}{s}\left(v^{j}\delta l^{j}-v^{i}\delta l^{i}\right). (3)

When TcT_{c} is on the order of tens of microseconds, say 50 μ\mus, the frequency drift is small for typical commercially available narrow-linewidth lasers. Hence, ϕjϕi\phi^{j}-\phi^{i} is mainly determined by the relative phase drift caused by the fiber length drift, which was measured to be approximately 88 rad/ms @@ 402402 km [52], corresponding to a phase drift of 0.4 rad per 50μs50~{}\rm{\mu s}. Note that two time bins ii and jj are randomly and uniformly distributed within the time interval TcT_{c}; therefore, the mean phase drift between the two time bins is half of the maximum value. Consequently, there will be an intrinsic interference error rate of approximately (1cos0.2)/21%(1-\cos{0.2})/2\approx 1\%.

Refer to caption
Figure 4: HOM visibility and error rate as a function of frequency difference between two lasers δv\delta v. We set the time interval of two consecutive time bins τ=1μ\tau=1~{}\mus. The blue line is the HOM visibility, and the orange dotted line is the interference error rate.

This indicates that our protocol with short-term matching can be experimentally implemented without phase tracking when the matching interval TcT_{c} is on the order of tens of microseconds. Note that sufficient detection counts should be accumulated per TcT_{c} for postmatching. The detection count per TcT_{c} can be approximated as TcF(1eμ¯ηdηch)T_{c}F(1-e^{-\overline{\mu}\eta_{d}\sqrt{\eta_{\rm{ch}}}}), where FF is the system frequency, ηch\eta_{\rm{ch}} is the channel transmittance between Alice and Bob, ηd\eta_{d} is the detection efficiency, and μ¯\overline{\mu} is the total mean photon number of Alice and Bob. At 400 km, by using a 1 GHz system with ηd=70%\eta_{d}=70\% and ultra-low loss fiber, there will be approximately 9.3 detection events per TcT_{c} if we set μ¯=0.5\bar{\mu}=0.5, which is sufficient for postmatching.

III.2 Removing phase tracking and phase locking

We consider the case in which neither phase-tracking nor phase-locking techniques are applied. When TcT_{c} is on the order of a few tens of microseconds, the fiber length drift is also negligible. The relative phase drift between time bins ii and jj is mainly determined by the frequency difference between the two independent lasers, which can be expressed as

ϕjϕi=2πδv(tjti).\displaystyle\phi^{j}-\phi^{i}=2\pi\delta v(t^{j}-t^{i}). (4)

In practice, δv\delta v is the sum of stable laser frequency difference between the two users and laser frequency random drift. The former can be a relatively large value (up to tens of megahertz) known to Alice and Bob. The latter is an unknown small value (tens of kilohertz). For simplicity, below we discuss the case where the two users try to adjust their lasers to nearly the same frequency, leaving only an unknown small δv\delta v. In this case, there is an intrinsic phase misalignment πδvTc\pi\delta vT_{c} on average during TcT_{c}. If δv\delta v is controlled to 100 kHz, for Tc=T_{c}= 1 μs\rm{\mu s}, ϕiϕj0.1π\phi^{i}-\phi^{j}\approx 0.1\pi, resulting in an interference error rate of 2.4%\%. By using an experimental setup with F=10F=10 GHz (which is feasible under current technology [87, 88]) and ηd=70%\eta_{d}=70\%, at 300300 km, there will be approximately 11.711.7 detection events per microsecond if we set μ¯=0.5\overline{\mu}=0.5.

Refer to caption
Figure 5: Test results of the frequency difference between two independent lasers , which are obtained by manually adjusting the temperature. (a) Frequency difference between two NKT lasers for 60 s. (b) Histogram of the frequency difference distribution between the two NKT lasers. The mean frequency difference is 145 kHz. (c) Frequency difference between two RIO Orion lasers of 60 s. (d) Histogram of the frequency difference distribution between two RIO Orion lasers, where the mean value is 92.5 kHz. Note that if using automatic feedback systems, the frequency difference can be further reduced.

The experimental requirement of the asynchronous-MDIQKD protocol without phase tracking and phase locking is similar to that of the previous phase encoding MDIQKD, in which the information is encoded in the relative phase of the two time bins with time interval τ\tau. The frequency difference between the two users will inevitably misalign the phase basis, leading to intrinsic phase misalignment δϕ=2πδvτ\delta\phi=2\pi\delta v\tau [22]. In experimental demonstrations in Refs. [18] and [22], the time delays are 6.37 ns and 0.5 ns, respectively. The maximum frequency difference is 37.5 MHz and 30 MHz, respectively, which introduce phase misalignments of 0.47 π\pi and 0.03 π\pi, respectively. For our protocol with short time matching, τ\tau is on the order of microseconds, and the frequency difference is approximately tens of kilohertz.

In a real setup, to suppress the frequency difference between two independent lasers within 100100 kHz, Alice and Bob can periodically enter the calibration process to calibrate the frequency of their lasers. There are several approaches available for frequency calibration. The most straightforward way is to measure the beat note of two lasers. Alice and Bob can also locally calibrate the frequency with a frequency standard [70]. In addition, they can measure the Hong–Ou–Mandel (HOM) interference and utilize the interference visibility as the feedback signal [25] to minimize the frequency difference. These are mature techniques in time-bin MDIQKD.

We briefly describe the method of frequency calibration using HOM interference [25] as follows. Consider the HOM interference of two weak coherent pulses with the same time, polarization and spatial mode, but different frequencies. The HOM interference visibility is related to the time interval of two consecutive time bins τ\tau and the frequency difference δv\delta v. As shown in Fig. 4, we simulate the interference visibility VV and interference error rate E=(1V)/2E=(1-V)/2 as a function of δv\delta v, where τ=1μ\tau=1~{}\mus. The visibility reaches the maximum value of approximately 0.5 when the frequency difference is 0, and decreases rapidly as the frequency difference increases. The minimum error rate of approximately 25%25\% is obtained when δv=0\delta v=0. When δv\delta v increases to 100 kHz, the error rate increases to 29.7%\%. In experiment, one can adjust the laser frequency to minimize the error rate. When the observed error rate is close to 25%\%, the frequencies of the two users’ lasers are calibrated. By increasing τ\tau, the error rate becomes more sensitive to δv\delta v.

Refer to caption
Figure 6: The bit error rate in the XX basis as a function of the matching time interval TcT_{c}, where both phase tracking and phase locking are not adopted. The distance between Alice and Bob is 300300 km and the system repetition rate is F=4F=4 GHz. The frequency difference δv\delta v is set to 10, 50 and 100 kHz.

To demonstrate the feasibility of the experimental setup without phase-tracking and phase-locking techniques, we measured the frequency difference between two independent lasers. Two narrow-linewidth lasers working at 1550.12 nm emit continuous light. The continuous light passes through fiber, interferes at a beam splitter, and is detected by a photoelectric detector. The beat note was recorded using an oscilloscope. Fig. 5 (a) shows the beat frequencies of the two NKT lasers (Koheras BASIK E15). These lasers support fine piezoelectric tuning with a minimum tuning frequency on the order of kHz. During the test time of 60 s, we manually adjusted the frequency of one of the lasers every few seconds to minimize the observed beat frequency. A histogram of the recorded data is presented in Fig. 5(b), and the mean value is 145 kHz. We also measured the frequency difference between the two independent Rio lasers (Rio ORION). They were first tuned to the same frequency and kept free running during the 60 s test time. The collected data are shown in Fig. 5(c), and the histogram is shown in Fig. 5(d), with an average of 92.5 kHz. In a real setup, if using the RIO laser or the NKT laser, the frequency needs to be adjusted every few seconds. We stress that the frequency difference can be further reduced by utilizing automatic feedback systems and improving the stability of the experimental environment.

Additionally, we simulate the bit error rate in the X basis as a function of the time interval TcT_{c} in Fig. 6, which is calculated under the optimal key rate. The distance between Alice and Bob is 300 km and the system repetition rate is F=4F=4 GHz. The experimental parameters were set to the typical values given in Table. 2. With a fixed frequency difference, the error rate in the X basis increases as the time bin interval increases. When the frequency difference δv=10\delta v=10 kHz, the error rate increases slowly, indicating that a relatively low system repetition rate is sufficient for the experiment.

Refer to caption
Figure 7: Secret key rates of the asynchronous-MDIQKD with short time matching as a function of the distance when implemented without phase tracking. Here, we set the matching time interval Tc=50μT_{c}=50~{}\mus, the system repetition rate is F=1F=1 GHz and the angle of misalignment in the XX basis σ=π/10\sigma=\pi/10. Our protocol can break the PLOB bound at a distance of approximately 280 km with N=1012N=10^{12}, and the transmission distance reaches 450 km.
Table 2: Simulation parameters. ηd\eta_{d} and pdp_{d} are the detector efficiency and dark count rate, respectively. α\alpha is the attenuation coefficient of the fiber and ff denotes the error correction efficiency. ϵ\epsilon is the failure probability considered in the error verification and finite data analysis.
ηd\eta_{d} pdp_{d} α\alpha ff ϵ\epsilon
\addstackgap[.5]0 70%70\% 10810^{-8} 0.1650.165 dB/km 1.11.1 36/23×101036/23\times 10^{-10}

IV Performance and discussion

We numerically simulate the key rate R=/NR=\ell/N of our asynchronous-MDIQKD protocol in finite-size cases. We set the threshold Λ=10\Lambda=10. The genetic algorithm is exploited to globally search for the optimal value of light intensities and their corresponding probabilities. When optimizing the key rate, we set an additional condition in which the mean number of 𝑐𝑎𝑠𝑒2\mathit{case~{}2} events N¯c21\bar{N}^{c_{2}}\leq 1. Assuming that the distribution of the number of events in 𝑐𝑎𝑠𝑒2\mathit{case~{}2} follows a Poisson distribution, the probability that the observed number of 𝑐𝑎𝑠𝑒2\mathit{case~{}2} events in the experiment exceeds Λ\Lambda is 1k=010ςjj!eς1×1081-\sum_{k=0}^{10}\frac{\varsigma^{j}}{j!}e^{-\varsigma}\approx 1\times 10^{-8}, where ς=N¯c2\varsigma=\bar{N}^{c_{2}}. This reveals the robustness of our protocol, which will only fail once in 100 million rounds of experiments.

The experimental parameters were set to the typical values given in Table. 2. We set the failure parameters ε\varepsilon^{\prime}, ε^\hat{\varepsilon}, εe\varepsilon_{e}, εβ\varepsilon_{\beta}, and εPA\varepsilon_{\rm PA} to be the same ϵ\epsilon. We denote the distance between Alice (Bob) and Charlie as lal_{a} (lbl_{b}). In the symmetric case, that is, la=lb=l/2l_{a}=l_{b}=l/2, we have ε0+ε1=14ϵ\varepsilon_{0}+\varepsilon_{1}=14\epsilon because the Chernoff bound [89, 90] is used 14 times to estimate s0μbzs_{0\mu_{b}}^{z}, s11zs_{11}^{z}, and e11xe_{11}^{x}. The corresponding security bound is εasyn=2.4×109\varepsilon_{\rm{asyn}}=2.4\times 10^{-9}. Similarly, in the asymmetric case, we have ε0+ε1=13ϵ\varepsilon_{0}+\varepsilon_{1}=13\epsilon and εasyn=2.3×109\varepsilon_{\rm{asyn}}=2.3\times 10^{-9}.

Refer to caption
Figure 8: Secret key rates of our protocol with short-term matching as a function of the distance where both phase tracking and phase locking are not adopted. Different system repetition rates FF, matching time intervals TcT_{c} and frequency differences δv\delta v are taken into consideration. Red line: F=10F=10 GHz, Tc=1μT_{c}=1~{}\mus, δv=100\delta v=100 kHz; blue line: F=4F=4 GHz, Tc=10μT_{c}=10~{}\mus, δv=10\delta v=10 kHz; yellow line: F=1F=1 GHz, Tc=20μT_{c}=20~{}\mus, δv=3\delta v=3 kHz. Our protocol can overcome the PLOB bound at 270 km with a key rate of 2×1052\times 10^{-5}.

First, we calculate the key rates of the asynchronous-MDIQKD protocol with a short time interval TcT_{c}. The detailed formulas for simulating our protocol are presented in Appendix B. The statistical fluctuation analysis formulas are presented in Appendix C. Fig. 7 shows a scenario in which phase tracking is removed. The time interval Tc=50T_{c}=50 μs\rm{\mu s}, and the system repetition rate is F=1F=1 GHz. We assume that the angle of misalignment in the XX basis σ=π/10\sigma=\pi/10. The key rate beats the PLOB bound at 280 km under the condition where the data size is N=1012N=10^{12} and the transmission distance reaches 450 km. One can also transmit over more than 420 km and overcome the PLOB even with a data size of N=1011N=10^{11}.

The key rate in the case where neither phase-tracking nor phase-locking techniques are employed is shown in Fig. 8. Here, we consider the frequency differences of 3, 10 and 100 kHz. Correspondingly, the system repetition rates are 1 GHz, 4 GHz (which has been employed in the experiments in Ref. [60]) and 10 GHz. Note that when Tc=20μT_{c}=20~{}\mus, the phase misalignment caused by fiber phase drift is considered. The simulation results show that the proposed protocol can overcome the PLOB bound at 270 km. For the frequency difference δv=100\delta v=100 kHz, by applying a 10 GHz system and setting the matching time interval Tc=1μT_{c}=1~{}\mus, the secure transmission distance can still exceed 380 km. The corresponding loss is 62 dB. In free space, if the Micius satellite [73] is used as the intermediate station Charlie, the key distribution between two ground nodes with a distance of approximately 1000 km can be realized. At an intercity distance of 300 km, the key rate is 0.15 Mbps, which is sufficient to perform a variety of tasks, including audio and video encryption.

Refer to caption
Figure 9: Comparison of the secret key rates of the asynchronous-MDIQKD with arbitrary-time matching, PMQKD [40] and AOPP [81] in symmetric channels. The numerical results here show that our protocol has a notable advantage and is able to achieve a long transmission distance of 620 km.

We remark that by circumventing the need for phase tracking, the asynchronous-MDIQKD protocol has a noteworthy advantage over TFQKD at intercity distance. Typically, the maximum counting rate of a commercially available SNSPD is approximately 2 MHz per channel. For TFQKD, using strong reference light to execute phase-tracking usually consumes a count rate of about 4 MHz per channel [50] (sometimes 40 MHz peak count rate [51]), and dedicated high-performance detectors are needed. In Ref. [51], the two-parallel-nanowire serial-connected configuration is developed to address the high count rate issue. In contrast, asynchronous-MDIQKD does not impose a strict count rate requirement on the detector, and all detector count rates are usable for quantum signals. Assuming the maximum counting rate is 5 MHz per channel, at 230 km, with a 4 GHz repetition rate, the count rate of the quantum signal will be approximately 4.4 MHz per channel, which can be used for key generation in our protocol. The key rate is 350 kbps when δv=10\delta v=10 kHz and Tc=10μT_{c}=10~{}\mus. However, for TFQKD, the available count rate is only 1 MHz per channel, resulting in a key rate of approximately 20 kbps [51]. In this case, the key rate of our protocol is one order of magnitude higher than that of TFQKD.

For a large time interval TcT_{c}, say 11 s, the phase correlation between two time bins fades. With the same experimental complexity as TFQKD, that is, using phase locking and phase tracking, one can postmatch time bins with arbitrary time interval and achieve better performance. Here, we simulate the key rates of asynchronous-MDIQKD with arbitrary time matching and compare it with those of PMQKD (PMQKD) [40] and SNSQKD with the help of actively AOPP. We set the total number of pulses as N=1011N=10^{11} and 101310^{13}, the misalignment in the XX basis as σ=π/36\sigma=\pi/36, and the security bounds as εAMDI=εAOPP=3.6×109\varepsilon_{\rm{AMDI}}=\varepsilon_{\rm{AOPP}}=3.6\times 10^{-9} and εPM=O(109)\varepsilon_{\rm{PM}}=O(10^{-9}). The detailed formulas for simulating our protocol are presented in Appendix B.

Refer to caption
Figure 10: Comparison of secret key rates of our protocol with arbitrary time matching, PMQKD, and AOPP versus transmission distance in asymmetric channels. Our protocol exhibits a decent performance in asymmetric channels.

Because our protocol is an MDI-type protocol, the density matrix of the single-photon pair component is always identical in the X and Z bases for each user, regardless of the asymmetric source parameters chosen. This makes it possible for a dynamic quantum network to add or delete new user nodes without considering the source parameters of existing users. In contrast, to guarantee that the density matrix of the two users’ joint single-photon state in the X basis is the same as that in the Z basis for SNSQKD protocols, the transmission probability and intensity of the coherent state must follow strict mathematical constraint  [33, 39]. However, this constraint is difficult to realize in practice, especially in networks where users are added and deleted over time, which greatly degrades their performance. By exploiting the quantum coin concept [91, 92], a recent study provided a security proof for the SNSQKD protocol when the constraint is not satisfied [80]. When comparing the key rates, we considered that the intensity of the coherent state in AOPP does not satisfy the mathematical constraint (which is often the case in practice) with a modulation deviation of decoy state νb\nu_{b} to 5%5\%, and the other parameters have no deviation. The key rates in symmetric channels are shown in Fig. 9. The simulation results show that the key rate of asynchronous-MDIQKD is always higher than that of PMQKD and AOPP. At 500 km, for N=1013N=10^{13}, the secret key rate of our protocol is 150%150\% higher than that of PMQKD, and the transmission distance is 240 km longer than that of AOPP. For N=1011N=10^{11}, our protocol transmits over a distance of more than 500 km. Fig. 10 shows the key rate in the asymmetric channels, where lb=la+100l_{b}=l_{a}+100 km. Notably, our protocol also performs well in asymmetric channels. At 500 km, for N=1013N=10^{13}, the key rate of our protocol is 400%400\% higher than that of PMQKD, and the transmission distance is 150 km longer than that of AOPP. Similarly, when N=1011N=10^{11}, the transmission distance of the asynchronous-MDIQKD protocol is 50 km higher.

In summary, the asynchronous-MDIQKD protocol does not require complicated phase-locking and phase-tracking techniques, and it is resistant to imperfect intensity modulation. Therefore, an intercity quantum network is possible, where users can dynamically access and freely choose to perform asynchronous-MDIQKD with short time matching or arbitrary time matching.

V conclusion

In this work, we presented an asynchronous-MDIQKD protocol through time multiplexing. We realized O(η)O(\sqrt{\eta}) scaling of the key rate with asynchronous two-photon interference, thus surpassing the PLOB bound. By removing phase locking and phase tracking, our protocol greatly simplifies the hardware requirement with a small sacrifice in performance. When using the same experimental techniques as TFQKD, our protocol is secure against coherent attacks, and shows longer transmission and higher key rate than PMQKD and SNSQKD (AOPP), considering imperfect intensity modulation. Our work also suggests a practical method of overcoming the linear bound of dual-rail protocols [30] without challenging technologies. In addition, our protocol can also exploit the six-state encoding [93] due to random phase modulation. Therefore, if applying single photon sources in the ZZ basis, our protocol can be made secure up to higher error rate by establishing the non-trivial mutual information between the bit-flip and phase error patterns [93, 94], thereby achieving a higher key rate. This work exhibits remarkable superiority in intercity quantum network deployment for balancing performance and technical complexity. We believe the key contributions of this work will produce exciting opportunities for the widespread deployment of global quantum networks beyond quantum key distribution, ranging from quantum repeaters to quantum entanglement distribution.

ACKNOWLEDGMENTS

We gratefully acknowledge the support from the National Natural Science Foundation of China (No. 61801420), the Natural Science Foundation of Jiangsu Province (No. BK20211145), the Fundamental Research Funds for the Central Universities (No. 020414380182), the Key Research and Development Program of Nanjing Jiangbei New Aera (No. ZDYD20210101), the Key-Area Research and Development Program of Guangdong Province (No. 2020B0303040001), and the China Postdoctoral Science Foundation (No. 2021M691536).

Note added— During the peer review of our work, we became aware of a similar work by Zeng et al. [95], who consider a mode-pairing MDI-QKD scheme that matches the adjacent detection pulses to extract the key information. By assuming infinite decoy states, they calculated the key rate in the asymptotic regime, which can break the rate-loss bound. In this work, we use the three-intensity decoy-state method to calculate the key rate in the finite-size regime and show its ability to break the rate-loss bound.

Appendix A Simulation formulas

In this section, we calculate the parameters in Eq. (1) to estimate the secret key rate. In the following description, let xx^{*} be the expected value of xx. We denote the number of {ka,kb}\{k_{a},~{}k_{b}\} as xkakbx_{k_{a}k_{b}}. We denote the number and error number of events {kaikaj,kbikbj}\{k_{a}^{i}k_{a}^{j},~{}k_{b}^{i}k_{b}^{j}\} after postmatching as nkaikaj,kbikbjn_{k_{a}^{i}k_{a}^{j},~{}k_{b}^{i}k_{b}^{j}} and mkaikaj,kbikbjm_{k_{a}^{i}k_{a}^{j},~{}k_{b}^{i}k_{b}^{j}}, respectively. For simplicity, we abbreviate kaikaj,kaikajk_{a}^{i}k_{a}^{j},k_{a}^{i}k_{a}^{j} as 2ka,2kb2k_{a},2k_{b} when kai=kajk_{a}^{i}=k_{a}^{j} and kbi=kbjk_{b}^{i}=k_{b}^{j}.

1. s¯11z\underline{s}_{11}^{z}. s11zs_{11}^{z} corresponds to the number of successful detection events where Alice and Bob each emit a single photon in different time bins in the ZZ basis. We define z10z_{10} (z01z_{01}) as the number of events in which Alice (Bob) emits a single photon and Bob (Alice) emits a vacuum state in {μa,𝐨b}\{\mu_{a},\mathbf{o}_{b}\} ({𝐨a,μb}\{\mathbf{o}_{a},\mu_{b}\}) event. The lower bounds of their expected values are z¯10=Npμap𝐨bμaeμay10¯\underline{z}_{10}^{*}=Np_{\mu_{a}}p_{\mathbf{o}_{b}}\mu_{a}e^{-\mu_{a}}\underline{y^{*}_{10}} and z¯01=Np𝐨apμbμbeμby01¯\underline{z}^{*}_{01}=Np_{\mathbf{o}_{a}}p_{\mu_{b}}\mu_{b}e^{-\mu_{b}}\underline{y^{*}_{01}}, where the yields y¯10\underline{y}_{10}^{*} and y¯01\underline{y}_{01}^{*} are the corresponding yields. These can be estimated using the decoy-state method:

y¯01\displaystyle\underline{y}_{01}^{*}\geq μbN(μbνbνb2)(eνbx¯oaνbpoapνb\displaystyle\frac{\mu_{b}}{N(\mu_{b}\nu_{b}-\nu_{b}^{2})}\left(\frac{e^{\nu_{b}}\underline{x}_{o_{a}\nu_{b}}^{*}}{p_{o_{a}}p_{\nu_{b}}}\right.
νb2μb2eμbx¯𝐨^aμbp𝐨^apμbμb2νb2μb2x¯oodpoaobd),\displaystyle\left.-\frac{\nu_{b}^{2}}{\mu_{b}^{2}}\frac{e^{\mu_{b}}\overline{x}_{\hat{\mathbf{o}}_{a}\mu_{b}}^{*}}{p_{\hat{\mathbf{o}}_{a}}p_{\mu_{b}}}-\frac{\mu_{b}^{2}-\nu_{b}^{2}}{\mu_{b}^{2}}\frac{\overline{x}_{oo}^{d*}}{p_{o_{a}o_{b}}^{d}}\right), (5)
y¯10\displaystyle\underline{y}_{10}^{*}\geq μaN(μaνaνa2)(eνax¯νaobpνapob\displaystyle\frac{\mu_{a}}{N(\mu_{a}\nu_{a}-\nu_{a}^{2})}\left(\frac{e^{\nu_{a}}\underline{x}_{\nu_{a}o_{b}}^{*}}{p_{\nu_{a}}p_{o_{b}}}\right.
νa2μa2eμax¯μa𝐨^bpμap𝐨^bμa2νa2μa2x¯oodpoaobd),\displaystyle\left.-\frac{\nu_{a}^{2}}{\mu_{a}^{2}}\frac{e^{\mu_{a}}\overline{x}_{\mu_{a}\hat{\mathbf{o}}_{b}}^{*}}{p_{\mu_{a}}p_{\hat{\mathbf{o}}_{b}}}-\frac{\mu_{a}^{2}-\nu_{a}^{2}}{\mu_{a}^{2}}\frac{\overline{x}_{oo}^{d*}}{p_{o_{a}o_{b}}^{d}}\right), (6)

where xood=x𝐨^a𝐨^b+x𝐨^a𝐨b+x𝐨a𝐨^bx_{oo}^{d}=x_{\hat{\mathbf{o}}_{a}\hat{\mathbf{o}}_{b}}+x_{\hat{\mathbf{o}}_{a}\mathbf{o}_{b}}+x_{\mathbf{o}_{a}\hat{\mathbf{o}}_{b}} represents the number of events where at least one user chooses the declare-vacuum state and pood=p𝐨^a𝐨^b+p𝐨^a𝐨b+p𝐨a𝐨^bp_{oo}^{d}=p_{\hat{\mathbf{o}}_{a}\hat{\mathbf{o}}_{b}}+p_{\hat{\mathbf{o}}_{a}\mathbf{o}_{b}}+p_{\mathbf{o}_{a}\hat{\mathbf{o}}_{b}} refers to the corresponding probability. Thus, the lower bound of s11zs_{11}^{z*} can be given by

s¯11z=nCzz¯10xμa𝐨bz¯01x𝐨aμb=z¯10z¯01xmax.\displaystyle\underline{s}_{11}^{z*}=n_{C}^{z}\frac{\underline{z}_{10}^{*}}{x_{\mu_{a}\mathbf{o}_{b}}}\frac{\underline{z}_{01}^{*}}{x_{\mathbf{o}_{a}\mu_{b}}}=\frac{\underline{z}_{10}^{*}\underline{z}_{01}^{*}}{x_{\max}}. (7)

where x0=x𝐨aμb+x𝐨a𝐨bx_{0}=x_{\mathbf{o}_{a}\mu_{b}}+x_{\mathbf{o}_{a}\mathbf{o}_{b}}, x1=xμa𝐨b+xμaμbx_{1}=x_{\mu_{a}\mathbf{o}_{b}}+x_{\mu_{a}\mu_{b}} and xmax=max{x0,x1}x_{\max}=\max\{x_{0},x_{1}\}.

2. s¯0μbz\underline{s}_{0\mu_{b}}^{z}. s0μbzs_{0\mu_{b}}^{z} represents the number of events in the ZZ basis, Alice emits a zero-photon state in the two matched time bins, and the total intensity of Bob’s pulses is μb\mu_{b}. We define z00z_{00} (z0μbz_{0\mu_{b}}) as the number of detection events where the state sent by Alice collapses to the vacuum state in the {μa,𝐨b}\{\mu_{a},\mathbf{o}_{b}\} ({μa,μb}\{\mu_{a},\mu_{b}\}) event. The lower bounds of the expected values are z¯00=pμap𝐨beμax¯ood/pood\underline{z}_{00}^{*}={p_{\mu_{a}}p_{\mathbf{o}_{b}}e^{-\mu_{a}}\underline{x}_{oo}^{d*}}/{p_{oo}^{d}} and z¯0μb=pμapμbeμax¯𝐨aμb/p𝐨apμb~{}\underline{z}_{0\mu_{b}}^{*}={p_{\mu_{a}}p_{\mu_{b}}e^{-\mu_{a}}\underline{x}_{\mathbf{o}_{a}\mu_{b}}^{*}}/{p_{\mathbf{o}_{a}}p_{\mu_{b}}}, respectively. In this study, we employed the relation between the expected value x¯𝐨aμb=p𝐨ax¯𝐨^aμb/p𝐨^a\underline{x}_{\mathbf{o}_{a}\mu_{b}}^{*}={p_{\mathbf{o}_{a}}\underline{x}_{\hat{\mathbf{o}}_{a}\mu_{b}}^{*}}/{p_{\hat{\mathbf{o}}_{a}}}, and x¯𝐨a𝐨b=p𝐨ap𝐨bx¯ood/pood~{}\underline{x}_{\mathbf{o}_{a}\mathbf{o}_{b}}^{*}={p_{\mathbf{o}_{a}}p_{\mathbf{o}_{b}}\underline{x}_{oo}^{d*}}/{p_{oo}^{d}}. The lower bound of s0μbzs_{0\mu_{b}}^{z*} can be written as

s¯0μbz=\displaystyle\underline{s}_{0\mu_{b}}^{z*}= nCzz¯00xμa𝐨b+nEzz¯0μbxμaμb,\displaystyle n_{C}^{z*}\frac{\underline{z}_{00}^{*}}{x_{\mu_{a}\mathbf{o}_{b}}^{*}}+n_{E}^{z*}\frac{\underline{z}_{0\mu_{b}}^{*}}{x_{\mu_{a}\mu_{b}}^{*}}, (8)

3. s¯11x\underline{s}_{11}^{x}. The phase difference between Alice and Bob is defined as φ=θaθb+ϕ\varphi=\theta_{a}-\theta_{b}+\phi and the corresponding number in the {ka,kb}\{k_{a},~{}k_{b}\} event as xkakbφx_{k_{a}k_{b}}^{\varphi}. In the post-matching step, two time bins are matched if they have the same phase difference φ\varphi, and all {2νa,2νb}\{2\nu_{a},~{}2\nu_{b}\} events can be grouped according to the phase difference φ\varphi. We denote the number of {2νa,2νb}\{2\nu_{a},~{}2\nu_{b}\} events with phase difference φ\varphi as n2νa,2νbφ=xνaνbφ/2n_{2\nu_{a},2\nu_{b}}^{\varphi}=x_{\nu_{a}\nu_{b}}^{\varphi}/2. Similar to the time-bin MDIQKD, the expected yields of single-photon pairs in the XX and ZZ bases satisfy the following relation:

Y11x\displaystyle Y_{11}^{x*} =Y11z=14(y01y10+y10y01+y00y11+y11y00)\displaystyle=Y_{11}^{z*}=\frac{1}{4}(y_{01}^{*}y_{10}^{*}+y_{10}^{*}y_{01}^{*}+y_{00}^{*}y_{11}^{*}+y_{11}^{*}y_{00}^{*}) (9)
12y10y01.\displaystyle\geq\frac{1}{2}y_{10}^{*}y_{01}^{*}.

Suppose the global phase difference φ\varphi is a randomly and uniformly distributed value. The expected number of single-photon pairs can be given by

s11x\displaystyle s_{11}^{x*} =12π02πn2νa,2νbφ×4νaνbe2νa2νbqνaνbφqνaνbφy11x𝑑φ\displaystyle=\frac{1}{2\pi}\int_{0}^{2\pi}n_{2\nu_{a},2\nu_{b}}^{\varphi}\times\frac{4\nu_{a}\nu_{b}e^{-2\nu_{a}-2\nu_{b}}}{q_{\nu_{a}\nu_{b}}^{\varphi}q_{\nu_{a}\nu_{b}}^{\varphi}}y_{11}^{x*}d\varphi (10)
12π02πn2νa,2νbφ×νaνbe2νa2νbqνaνbφqνaνbφ2y¯10y¯01𝑑φ\displaystyle\geq\frac{1}{2\pi}\int_{0}^{2\pi}n_{2\nu_{a},2\nu_{b}}^{\varphi}\times\frac{\nu_{a}\nu_{b}e^{-2\nu_{a}-2\nu_{b}}}{q_{\nu_{a}\nu_{b}}^{\varphi}q_{\nu_{a}\nu_{b}}^{\varphi}}2\underline{y}_{10}^{*}\underline{y}_{01}^{*}d\varphi
=Npνapνbνaνbe2(νa+νb)y¯10y¯0102π12πqνaνbφ𝑑φ,\displaystyle=Np_{\nu_{a}}p_{\nu_{b}}\nu_{a}\nu_{b}e^{-2(\nu_{a}+\nu_{b})}\underline{y}_{10}^{*}\underline{y}_{01}^{*}\int_{0}^{2\pi}\frac{1}{2\pi q_{\nu_{a}\nu_{b}}^{\varphi}}d\varphi,

where the coefficient 4 on the first line of the formula corresponds to the four modes of single-photon pairs in the XX basis, qνaνbφq_{\nu_{a}\nu_{b}}^{\varphi} is the gain when Alice chooses intensity νa\nu_{a}, and Bob chooses intensity νb\nu_{b} with phase difference φ\varphi and n2νa,2νbφn_{2\nu_{a},2\nu_{b}}^{\varphi}==Npνapνbqνaνbφ/2Np_{\nu_{a}}p_{\nu_{b}}q_{\nu_{a}\nu_{b}}^{\varphi}/2. We define qkakbq_{k_{a}k_{b}}==1/(2π)02πqkakbφ𝑑φ1/(2\pi)\int_{0}^{2\pi}q_{k_{a}k_{b}}^{\varphi}d\varphi as the average gain, given that Alice chooses intensity kak_{a}, and Bob chooses intensity kbk_{b}. When νa\nu_{a} and νb0\nu_{b}\approx 0, there is an approximation relation 02π1/(2πqνaνbφ)𝑑φ1/qνaνb\int_{0}^{2\pi}1/(2\pi q_{\nu_{a}\nu_{b}}^{\varphi})d\varphi\approx 1/q_{\nu_{a}\nu_{b}}.

In the discrete case, the phase difference φ\varphi is divided into MM slices {δm}\{\delta_{m}\} for 1mM1\leq m\leq M, where mm is an integer, where δm=[2π(m1)/M,2πm/M)\delta_{m}=[2\pi(m-1)/M,2\pi m/M). The expected number of single-photon pairs is given by

s¯11x\displaystyle\underline{s}_{11}^{x*} m=1Mn2νa,2νbm×2νaeνaνby¯10qνaνbmνbeνaνby¯01qνaνbm,\displaystyle\geq\sum_{m=1}^{M}n_{2\nu_{a},2\nu_{b}}^{m}\times 2\frac{\nu_{a}e^{-\nu_{a}-\nu_{b}}\underline{y}_{10}^{*}}{q_{\nu_{a}\nu_{b}}^{m}}\frac{\nu_{b}e^{-\nu_{a}-\nu_{b}}\underline{y}_{01}^{*}}{q_{\nu_{a}\nu_{b}}^{m}}, (11)

where n2νa,2νbmn_{2\nu_{a},2\nu_{b}}^{m} is the number of {2νa,2νb}\{2\nu_{a},2\nu_{b}\} events with phase difference φ\varphi falling into slice δm\delta_{m}. qνaνbmq_{\nu_{a}\nu_{b}}^{m} is the corresponding gain.

4. e¯11x\overline{e}_{11}^{x}. For single-photon pairs, the expected value of the phase error rate in the ZZ basis equals the expected value of the bit error rate in the XX basis, and the error rate e¯11x=t¯11x/s¯11x\overline{e}_{11}^{x}={\overline{t}_{11}^{x}}/{\underline{s}_{11}^{x}}. Therefore, we first calculate the number of errors of the single-photon pairs in the XX basis t11x{t_{11}^{x}}. The upper bound of t11x{t_{11}^{x}} can be expressed as

t11x¯\displaystyle\overline{t_{11}^{x}}\leq m2νa,2νb(m0,2νb+m2νa,0¯)+m¯0,0,\displaystyle m_{2\nu_{a},2\nu_{b}}-(\underline{m_{0,2\nu_{b}}+m_{2\nu_{a},0}})+\overline{m}_{0,0}, (12)

where m0,2νbm_{0,2\nu_{b}} (m2νa,0m_{2\nu_{a},0}) is the error count when the state sent by Alice (Bob) collapses to the vacuum state in events {2νa,2νb}\{2\nu_{a},2\nu_{b}\}, and m0,0m_{0,0} corresponds to the event where the states sent by Alice and Bob both collapse to vacuum states in events {2νa,2νb}\{2\nu_{a},2\nu_{b}\}. The expected error counts m0,2νbm_{0,2\nu_{b}}^{*} and m2νa,0m_{2\nu_{a},0}^{*} can be expressed as follows:

m0,2νb\displaystyle m_{0,2\nu_{b}}^{*} =eo12π02πn2νa,2νbφeνaq0νbqνaνbφeνaq0νbqνaνbφ𝑑φ\displaystyle=e_{o}\frac{1}{2\pi}\int_{0}^{2\pi}n_{2\nu_{a},2\nu_{b}}^{\varphi}\frac{e^{-\nu_{a}}q_{0\nu_{b}}^{*}}{q_{\nu_{a}\nu_{b}}^{\varphi}}\frac{e^{-\nu_{a}}q_{0\nu_{b}}^{*}}{q_{\nu_{a}\nu_{b}}^{\varphi}}d\varphi (13)
=eoNpνapνbe2νaq0νb214π02π1qνaνbφ𝑑φ,\displaystyle=e_{o}Np_{\nu_{a}}p_{\nu_{b}}e^{-2\nu_{a}}q_{0\nu_{b}}^{*2}\frac{1}{4\pi}\int_{0}^{2\pi}\frac{1}{q_{\nu_{a}\nu_{b}}^{\varphi}}d\varphi,
m2νa,0\displaystyle m_{2\nu_{a},0}^{*} =eo12π02πn2νa,2νbφeνbqνa0qνaνbφeνbqνa0qνaνbφ𝑑φ\displaystyle=e_{o}\frac{1}{2\pi}\int_{0}^{2\pi}n_{2\nu_{a},2\nu_{b}}^{\varphi}\frac{e^{-\nu_{b}}q_{\nu_{a}0}^{*}}{q_{\nu_{a}\nu_{b}}^{\varphi}}\frac{e^{-\nu_{b}}q_{\nu_{a}0}^{*}}{q_{\nu_{a}\nu_{b}}^{\varphi}}d\varphi
=eoNpνapνbe2νbqνa0214π02π1qνaνbφ𝑑φ,\displaystyle=e_{o}Np_{\nu_{a}}p_{\nu_{b}}e^{-2\nu_{b}}q_{\nu_{a}0}^{*2}\frac{1}{4\pi}\int_{0}^{2\pi}\frac{1}{q_{\nu_{a}\nu_{b}}^{\varphi}}d\varphi,

respectively, where eo=1/2e_{o}=1/2 is the error rate of the background noise.

In the symmetric case, νa=νb\nu_{a}=\nu_{b}, poa=pobp_{o_{a}}=p_{o_{b}}, and pνa=pνb~{}p_{\nu_{a}}=p_{\nu_{b}}. In this case, we have qνao=qoνb=(xoaνb+xνaob)/(2Npoapνb)q_{\nu_{a}o}^{*}=q_{o\nu_{b}}^{*}=(x_{o_{a}\nu_{b}}+x_{\nu_{a}o_{b}})^{*}/(2Np_{o_{a}}p_{\nu_{b}}). In the asymmetric case, qνao=xνaob/(Npνapob)q_{\nu_{a}o}^{*}=x_{\nu_{a}o_{b}}^{*}/(Np_{\nu_{a}}p_{o_{b}}) and qoνb=xoaνb/(Npoapνb)q_{o\nu_{b}}^{*}=x_{o_{a}\nu_{b}}^{*}/(Np_{o_{a}}p_{\nu_{b}}). Then, the lower bound of the observed value of m0,2νb+m2νa,0m_{0,2\nu_{b}}+m_{2\nu_{a},0} can be written as

m0,2νb+m2νa0¯=\displaystyle\underline{m_{0,2\nu_{b}}+m_{2\nu_{a}0}}= φL(m¯0,2νb+m¯2νa,0,ϵ).\displaystyle\varphi^{L}(\underline{m}_{0,2\nu_{b}}^{*}+\underline{m}_{2\nu_{a},0}^{*},\epsilon). (14)

where φL(x)\varphi^{L}(x) is the lower bounds when using Chernoff bound to estimate the real values according to the expected values and is defined in Eq. 22. The expected value of m0,0{m}_{0,0} can be given by

m0,0=\displaystyle{m}_{0,0}^{*}= eo12π02πn2νa,2νbφeνaνbq00qνaνbφeνaνbq00qνaνbφ𝑑φ\displaystyle e_{o}\frac{1}{2\pi}\int_{0}^{2\pi}n_{2\nu_{a},2\nu_{b}}^{\varphi}\frac{e^{-\nu_{a}-\nu_{b}}q_{00}^{*}}{q_{\nu_{a}\nu_{b}}^{\varphi}}\frac{e^{-\nu_{a}-\nu_{b}}q_{00}^{*}}{q_{\nu_{a}\nu_{b}}^{\varphi}}d\varphi (15)
=eoNpνapνbe2(νa+νb)q00214π02π1qνaνbφ𝑑φ.\displaystyle=e_{o}Np_{\nu_{a}}p_{\nu_{b}}e^{-2(\nu_{a}+\nu_{b})}q_{00}^{*2}\frac{1}{4\pi}\int_{0}^{2\pi}\frac{1}{q_{\nu_{a}\nu_{b}}^{\varphi}}d\varphi.

The upper bound of q00q_{00}^{*} can be obtained from q¯00=m¯ood/(Npood)\overline{q}_{00}^{*}=\overline{m}_{oo}^{d*}/(Np_{oo}^{d}). The upper bound of m0,0m_{0,0} can be obtained by m¯0,0=φU(m¯0,0,ϵ)\overline{m}_{0,0}=\varphi^{U}(\overline{m}_{0,0}^{*},\epsilon), where φU(x)\varphi^{U}(x) is the upper bound while using the Chernoff bound to estimate the observed values according to the expected values and is defined in Eq. 23.

5. ϕ¯11z\overline{\phi}_{11}^{z}. Finally, for a failure probability ε\varepsilon, the upper bound of the phase error rate ϕ¯11z\overline{\phi}_{11}^{z} can be obtained by using random sampling without replacement in Eq. (26)

ϕ¯11z\displaystyle\overline{\phi}_{11}^{z}\leq e¯11x+γ(s¯11z,s¯11x,e¯11x,ε).\displaystyle\overline{e}_{11}^{x}+\gamma\left(\underline{s}_{11}^{z},\underline{s}_{11}^{x},\overline{e}_{11}^{x},\varepsilon\right). (16)

Appendix B Simulation details

B.1 Asynchronous-MDIQKD protocol for arbitrary-time matching

Similar to the time-bin encoding MDIQKD, the valid events after postmatching in the ZZ basis can be divided into correct events {μa𝐨a,𝐨bμb}\{\mu_{a}\mathbf{o}_{a},~{}\mathbf{o}_{b}\mu_{b}\}, {𝐨aμa,μb𝐨b}\{\mathbf{o}_{a}\mu_{a},~{}\mu_{b}\mathbf{o}_{b}\}, and incorrect events {μa𝐨a,μb𝐨b}\{\mu_{a}\mathbf{o}_{a},~{}\mu_{b}\mathbf{o}_{b}\}, {𝐨aμa,𝐨bμb}\{\mathbf{o}_{a}\mu_{a},~{}\mathbf{o}_{b}\mu_{b}\}. The corresponding numbers are denoted as nCzn_{C}^{z} and nEzn_{E}^{z}, respectively, which can be written as

nCz=xminx𝐨aμbx0xμa𝐨bx1=x𝐨aμbxμa𝐨bxmax,\displaystyle n_{C}^{z}=x_{\min}\frac{x_{\mathbf{o}_{a}\mu_{b}}}{x_{0}}\frac{x_{\mu_{a}\mathbf{o}_{b}}}{x_{1}}=\frac{x_{\mathbf{o}_{a}\mu_{b}}x_{\mu_{a}\mathbf{o}_{b}}}{x_{\max}},

and

nEz=xminx𝐨a𝐨bx0xμaμbx1=x𝐨a𝐨bxμaμbxmax,\displaystyle n_{E}^{z}=x_{\min}\frac{x_{\mathbf{o}_{a}\mathbf{o}_{b}}}{x_{0}}\frac{x_{\mu_{a}\mu_{b}}}{x_{1}}=\frac{x_{\mathbf{o}_{a}\mathbf{o}_{b}}x_{\mu_{a}\mu_{b}}}{x_{\max}},

where xmin=min{x0,x1}x_{\min}=\min\{x_{0},x_{1}\}. The overall number of events in the ZZ basis is nz=nCz+nEzn^{z}=n^{z}_{C}+n^{z}_{E} and the bit error rate in the ZZ basis is Ez=nEz/nzE^{z}={n^{z}_{E}}/{n^{z}}.

In the XX basis, the data are composed of events {2νa,2νb}\{2\nu_{a},~{}2\nu_{b}\}, {2oa,2νb}\{2o_{a},~{}2\nu_{b}\}, {2νa,2ob}\{2\nu_{a},~{}2o_{b}\}, {2𝐨^a,2ob}\{2\hat{\mathbf{o}}_{a},2o_{b}\}, and {2𝐨a,2𝐨^b}\{2\mathbf{o}_{a},~{}2\hat{\mathbf{o}}_{b}\}. Without loss of generality, we consider the case in which all matched events satisfy θaiθaj(θbiθbj)+(ϕiϕj)=0\theta_{a}^{i}-\theta_{a}^{j}-(\theta_{b}^{i}-\theta_{b}^{j})+(\phi^{i}-\phi^{j})=0. In this case, when rairajrbirbj=0r_{a}^{i}\oplus r_{a}^{j}\oplus r_{b}^{i}\oplus r_{b}^{j}=0 (1), the {νaiνaj,νbiνbj}\{\nu_{a}^{i}\nu_{a}^{j},~{}\nu_{b}^{i}\nu_{b}^{j}\} event is considered to be an error event when different detectors (the same detector) click at time bins ii and jj.

When Alice and Bob send intensities kak_{a} and kbk_{b} with phase difference φ\varphi, the gain corresponding to only one detector click is

qkakbLφ=\displaystyle q_{k_{a}k_{b}}^{L\varphi}= ykakb[eωkakbcosφykakb],\displaystyle y_{k_{a}k_{b}}\left[e^{\omega_{k_{a}k_{b}}\cos\varphi}-y_{k_{a}k_{b}}\right], (17)
qkakbRφ=\displaystyle q_{k_{a}k_{b}}^{R\varphi}= ykakb[eωkakbcosφykakb].\displaystyle y_{k_{a}k_{b}}\left[e^{-\omega_{k_{a}k_{b}}\cos\varphi}-y_{k_{a}k_{b}}\right].

where ykakb:=e(ηaka+ηbkb)2(1pd)y_{k_{a}k_{b}}:=e^{\frac{-(\eta_{a}k_{a}+\eta_{b}k_{b})}{2}}(1-p_{d}), ωkakb\omega_{k_{a}k_{b}}:=:=ηakaηbkb\sqrt{\eta_{a}k_{a}\eta_{b}k_{b}}, ηa=ηd10αla/10\eta_{a}=\eta_{d}10^{-\alpha l_{a}/10} and ηb=ηd10αlb/10\eta_{b}=\eta_{d}10^{-\alpha l_{b}/10}. The overall gain can be given by qkakb=1/2π02πqkakbφ𝑑φ=1/2π02π(qkakbLφ+qkakbRφ)𝑑φ=2ykakb[I0(ωkakb)ykakb]q_{k_{a}k_{b}}=1/2\pi\int_{0}^{2\pi}q_{k_{a}k_{b}}^{\varphi}d\varphi=1/2\pi\int_{0}^{2\pi}(q_{k_{a}k_{b}}^{L\varphi}+q_{k_{a}k_{b}}^{R\varphi})d\varphi=2y_{k_{a}k_{b}}[I_{0}(\omega_{k_{a}k_{b}})-y_{k_{a}k_{b}}], where I0(x)I_{0}(x) represents the zero-order modified Bessel function of the first kind. The total number of {ka,kb}\{k_{a},k_{b}\} is xkakb=Npkapkbqkakbx_{k_{a}k_{b}}=Np_{k_{a}}p_{k_{b}}q_{k_{a}k_{b}}.

The overall error count in the XX basis can be given as

m2νa,2νb\displaystyle m_{2\nu_{a},2\nu_{b}} =12π02πn2νa2νbφ[qνaνbLφqνaνbR(φ+σ)+qνaνbRφqνaνbL(φ+σ)qνaνbφqνaνbφ+σ]𝑑φ\displaystyle=\frac{1}{2\pi}\int_{0}^{2\pi}n_{2\nu_{a}2\nu_{b}}^{\varphi}\left[\frac{q_{\nu_{a}\nu_{b}}^{L\varphi}q_{\nu_{a}\nu_{b}}^{R({\varphi+\sigma})}+q_{\nu_{a}\nu_{b}}^{R\varphi}q_{\nu_{a}\nu_{b}}^{L({\varphi+\sigma})}}{q_{\nu_{a}\nu_{b}}^{\varphi}q_{\nu_{a}\nu_{b}}^{\varphi+\sigma}}\right]d\varphi (18)
=Npνapνb14π02πqνaνbLφqνaνbR(φ+σ)+qνaνbRφqνaνbL(φ+σ)qνaνbφ+σ𝑑φ.\displaystyle=Np_{\nu_{a}}p_{\nu_{b}}\frac{1}{4\pi}\int_{0}^{2\pi}\frac{q_{\nu_{a}\nu_{b}}^{L\varphi}q_{\nu_{a}\nu_{b}}^{R({\varphi+\sigma})}+q_{\nu_{a}\nu_{b}}^{R\varphi}q_{\nu_{a}\nu_{b}}^{L({\varphi+\sigma})}}{q_{\nu_{a}\nu_{b}}^{\varphi+\sigma}}d\varphi.

where σ\sigma refers to the angle of misalignment in the XX basis.

B.2 Asynchronous-MDIQKD protocol for short-term matching

The total number of time bins per TcT_{c} is NTc=TcFN_{T_{c}}=T_{c}F. For each detection event, the probability that it belongs to 𝑐𝑎𝑠𝑒1\mathit{case~{}1} is pc1=1(1p¯)2NTc2p_{c_{1}}=1-(1-\bar{p})^{2N_{T_{c}}-2} and the probability of belonging to 𝑐𝑎𝑠𝑒2\mathit{case~{}2} is pc2=(1p¯)2NTc2p_{c_{2}}=(1-\bar{p})^{2N_{T_{c}}-2}, where p¯=ka,kbpkapkbqkakb\bar{p}=\sum_{k_{a},k_{b}}p_{k_{a}}p_{k_{b}}q_{k_{a}k_{b}} is the average detection probability, and 2NTc22N_{T_{c}}-2 is the total number of time bins neighboring the given detection event. The mean number of 𝑐𝑎𝑠𝑒2\mathit{case~{}2} events is N¯c2=Npc2p¯\bar{N}^{c_{2}}=Np_{c_{2}}\bar{p}.

For simplicity, we divide the post-matching window into dd windows with a time length of TcT_{c}, where d=N/NTcd=N/N_{T_{c}}. In the ZZ basis, given that Alice sends kak_{a} and Bob sends kbk_{b}, the detection count in the ii-th window and the total detection count are xkakbi=NTcpc1pkapkbqkakbx_{k_{a}k_{b}}^{i}=N_{T_{c}}p_{c_{1}}p_{k_{a}}p_{k_{b}}q_{k_{a}k_{b}} and xkakb=Npc1pkapkbqkakbx_{k_{a}k_{b}}=Np_{c_{1}}p_{k_{a}}p_{k_{b}}q_{k_{a}k_{b}}, respectively. After postmatching, the number of correct and incorrect events in the ZZ basis is

nCz=i=1dxminix𝐨aμbix0ixμa𝐨bix1i=i=1dxμa𝐨bix𝐨aμbixmaxi,\displaystyle n^{z}_{C}=\sum^{d}_{i=1}x^{i}_{\min}\frac{x^{i}_{\mathbf{o}_{a}\mu_{b}}}{x^{i}_{0}}\frac{x^{i}_{\mu_{a}\mathbf{o}_{b}}}{x^{i}_{1}}=\sum^{d}_{i=1}\frac{x^{i}_{\mu_{a}\mathbf{o}_{b}}x^{i}_{\mathbf{o}_{a}\mu_{b}}}{x^{i}_{\max}}, (19)
nEz=i=1dxminix𝐨a𝐨bix0c1xμaμbix1i=i=1dx𝐨a𝐨bixμaμbixmaxi,\displaystyle n^{z}_{E}=\sum^{d}_{i=1}x^{i}_{\min}\frac{x^{i}_{\mathbf{o}_{a}\mathbf{o}_{b}}}{x_{0}^{c_{1}}}\frac{x_{\mu_{a}\mu_{b}}^{i}}{x_{1}^{i}}=\sum^{d}_{i=1}\frac{x_{\mathbf{o}_{a}\mathbf{o}_{b}}^{i}x_{\mu_{a}\mu_{b}}^{i}}{x^{i}_{\max}},

respectively, where x0i=x𝐨aμbi+x𝐨a𝐨bix^{i}_{0}=x^{i}_{\mathbf{o}_{a}\mu_{b}}+x^{i}_{\mathbf{o}_{a}\mathbf{o}_{b}}, x1i=xμa𝐨bi+xμaμbix^{i}_{1}=x^{i}_{\mu_{a}\mathbf{o}_{b}}+x^{i}_{\mu_{a}\mu_{b}}, xmini=min{x0i,x1i}x^{i}_{\min}=\min\{x^{i}_{0},x^{i}_{1}\}, xmaxi=max{x0i,x1i}x^{i}_{\max}=\max\{x^{i}_{0},x^{i}_{1}\}. The overall number of events in the ZZ basis is nz=nCz+nEzn^{z}=n^{z}_{C}+n^{z}_{E}, and the bit error rate in the ZZ basis is Ez=nEz/nzE^{z}={n^{z}_{E}}/{n^{z}}.

In our simulation, we set M=16M=16. Assuming that xνaνbmx_{\nu_{a}\nu_{b}}^{m}, the detection count of {νa,νb}\{\nu_{a},~{}\nu_{b}\} events in slice δm\delta_{m} follows the Poisson distribution Pr(xνaνbm=j)=λjj!eλP_{r}(x_{\nu_{a}\nu_{b}}^{m}=j)=\frac{\lambda^{j}}{j!}e^{-\lambda}, where λ=x¯νaνbi\lambda=\bar{x}_{\nu_{a}\nu_{b}}^{i} is the mean value of xνaνbmx_{\nu_{a}\nu_{b}}^{m}. In the postmatching step, if xνaνbmx_{\nu_{a}\nu_{b}}^{m} is even, all {νa,νb}\{\nu_{a},~{}\nu_{b}\} events within the mm-th TcT_{c} will be utilized. If xνaνbmx_{\nu_{a}\nu_{b}}^{m} is odd, there will be a redundant {νa,νb}\{\nu_{a},~{}\nu_{b}\} event to be aborted. Therefore, the mean number of {2νa,2νb}\{2\nu_{a},~{}2\nu_{b}\} events per TcT_{c} is

n2νa,2νbi\displaystyle n_{2\nu_{a},2\nu_{b}}^{i} =2M[kNTc12kPr(2k)+kPr(2k+1)]\displaystyle=\frac{2}{M}\left[\sum_{k}^{\left\lfloor\frac{N_{T_{c}}-1}{2}\right\rfloor}kP_{r}(2k)+kP_{r}(2k+1)\right] (20)
=1M[λ1e2λ2].\displaystyle=\frac{1}{M}\left[\lambda-\frac{1-e^{-2\lambda}}{2}\right].

The overall error count in the XX basis can be given as

m2νa,2νbi\displaystyle m_{2\nu_{a},2\nu_{b}}^{i} =n2νa,2νbim=0M21[2MqνaνbLφmqνaνbR(φm+σ)+qνaνbRφmqνaνbL(φm+σ)qνaνbφmqνaνbφm+σ],\displaystyle=n_{2\nu_{a},2\nu_{b}}^{i}\sum_{m=0}^{\frac{M}{2}-1}\left[\frac{2}{M}\frac{q_{\nu_{a}\nu_{b}}^{L\varphi_{m}}q_{\nu_{a}\nu_{b}}^{R(\varphi_{m}+\sigma)}+q_{\nu_{a}\nu_{b}}^{R\varphi_{m}}q_{\nu_{a}\nu_{b}}^{L({\varphi_{m}+\sigma})}}{q_{\nu_{a}\nu_{b}}^{\varphi_{m}}q_{\nu_{a}\nu_{b}}^{\varphi_{m}+\sigma}}\right], (21)

where φm=2πm/M\varphi_{m}=2\pi m/M.

Appendix C Statistical fluctuation analysis

In this Appendix, we introduce the statistical fluctuation analysis method [90] used in the simulation.

Chernoff bound. Let xx^{*} be the expected value of xx. For a given expected value xx^{*}, the Chernoff bound can be used to obtain the upper and lower bounds of the observed value.

x¯\displaystyle\overline{x} =φU(x)=x+β2+2βx+β24,\displaystyle=\varphi^{U}(x^{*})=x^{*}+\frac{\beta}{2}+\sqrt{2\beta x^{*}+\frac{\beta^{2}}{4}}, (22)

and

x¯\displaystyle\underline{x} =φL(x)=x2βx,\displaystyle=\varphi^{L}(x^{*})=x^{*}-\sqrt{2\beta x^{*}}, (23)

where β=lnϵ1\beta=\ln{\epsilon^{-1}}.

Variant of Chernoff bound. For a given observed value xx and failure probability ε\varepsilon, the upper and lower bounds of xx^{*} can be acquired by the variant of the Chernoff bound

x¯\displaystyle\overline{x}^{*} =x+β+2βx+β2,\displaystyle=x+\beta+\sqrt{2\beta x+\beta^{2}}, (24)

and

x¯\displaystyle\underline{x}^{*} =max{xβ22βx+β24,0}.\displaystyle=\max\left\{x-\frac{\beta}{2}-\sqrt{2\beta x+\frac{\beta^{2}}{4}},~{}0\right\}. (25)

Random sampling without replacement. Let Xn+k:={x1,x2,,xn+k}X_{n+k}:=\{x_{1},x_{2},\dots,x_{n+k}\} be a string of binary bits of size n+kn+k, where the number of bits is unknown. Let XkX_{k} be a random sample (without replacement) bit string with kk is picked from Xn+kX_{n+k} . Let λ\lambda be the probability of a bit value 1 observed in XkX_{k}. Let XnX_{n} be the remaining bit string, where the probability of bit value 1 observed in XnX_{n} is χ\chi. The upper bound of χ\chi can be expressed as

χ¯\displaystyle\overline{\chi}\leq λ+γU(n,k,λ,ϵ),\displaystyle\lambda+\gamma^{U}(n,k,\lambda,\epsilon), (26)

where

γU(n,k,λ,ϵ)=(12λ)AGn+k+A2G2(n+k)2+4λ(1λ)G2+2A2G(n+k)2,\gamma^{U}(n,k,\lambda,\epsilon)=\frac{\frac{(1-2\lambda)AG}{n+k}+\sqrt{\frac{A^{2}G^{2}}{(n+k)^{2}}+4\lambda(1-\lambda)G}}{2+2\frac{A^{2}G}{(n+k)^{2}}}, (27)

with A=max{n,k}A=\max\{n,k\} and G=n+knklnn+k2πnkλ(1λ)ϵ2G=\frac{n+k}{nk}\ln{\frac{n+k}{2\pi nk\lambda(1-\lambda)\epsilon^{2}}}.

References

  • Bennett and Brassard [2014] C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Theor. Comput. Sci. 560, 7 (2014).
  • Ekert [1991] A. K. Ekert, Quantum cryptography based on bell’s theorem, Phys. Rev. Lett. 67, 661 (1991).
  • Zhao et al. [2008] Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems, Phys. Rev. A 78, 042333 (2008).
  • Lydersen et al. [2010] L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Hacking commercial quantum cryptography systems by tailored bright illumination, Nat. Photonics 4, 686 (2010).
  • Tang et al. [2013] Y.-L. Tang, H.-L. Yin, X. Ma, C.-H. F. Fung, Y. Liu, H.-L. Yong, T.-Y. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Source attack of decoy-state quantum key distribution using phase information, Phys. Rev. A 88, 022308 (2013).
  • Xu et al. [2020a] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, Secure quantum key distribution with realistic devices, Rev. Mod. Phys. 92, 025002 (2020a).
  • Pirandola et al. [2020] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, et al., Advances in quantum cryptography, Adv. Opt. Photon. 12, 1012 (2020).
  • Lo et al. [2012] H.-K. Lo, M. Curty, and B. Qi, Measurement-device-independent quantum key distribution, Phys. Rev. Lett. 108, 130503 (2012).
  • Braunstein and Pirandola [2012] S. L. Braunstein and S. Pirandola, Side-channel-free quantum key distribution, Phys. Rev. Lett. 108, 130502 (2012).
  • Liu et al. [2013] Y. Liu, T.-Y. Chen, L.-J. Wang, H. Liang, G.-L. Shentu, J. Wang, K. Cui, H.-L. Yin, N.-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C.-Z. Peng, Q. Zhang, and J.-W. Pan, Experimental measurement-device-independent quantum key distribution, Phys. Rev. Lett. 111, 130502 (2013).
  • Rubenok et al. [2013] A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks, Phys. Rev. Lett. 111, 130501 (2013).
  • Zhou et al. [2016] Y.-H. Zhou, Z.-W. Yu, and X.-B. Wang, Making the decoy-state measurement-device-independent quantum key distribution practically useful, Phys. Rev. A 93, 042324 (2016).
  • Tang et al. [2014] Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H.-K. Lo, Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution, Phys. Rev. Lett. 112, 190503 (2014).
  • Fu et al. [2015] Y. Fu, H.-L. Yin, T.-Y. Chen, and Z.-B. Chen, Long-distance measurement-device-independent multiparty quantum communication, Phys. Rev. Lett. 114, 090501 (2015).
  • Curty et al. [2014] M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, and H.-K. Lo, Finite-key analysis for measurement-device-independent quantum key distribution, Nat. Commun. 5, 3732 (2014).
  • Yin et al. [2014] H.-L. Yin, W.-F. Cao, Y. Fu, Y.-L. Tang, Y. Liu, T.-Y. Chen, and Z.-B. Chen, Long-distance measurement-device-independent quantum key distribution with coherent-state superpositions, Opt. Lett. 39, 5451 (2014).
  • Comandar et al. [2016] L. Comandar, M. Lucamarini, B. Fröhlich, J. Dynes, A. Sharpe, S.-B. Tam, Z. Yuan, R. Penty, and A. Shields, Quantum key distribution without detector vulnerabilities using optically seeded lasers, Nat. Photonics 10, 312 (2016).
  • Yin et al. [2016a] H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, and J.-W. Pan, Measurement-device-independent quantum key distribution over a 404 km optical fiber, Phys. Rev. Lett. 117, 190501 (2016a).
  • Semenenko et al. [2020] H. Semenenko, P. Sibson, A. Hart, M. G. Thompson, J. G. Rarity, and C. Erven, Chip-based measurement-device-independent quantum key distribution, Optica 7, 238 (2020).
  • Yin et al. [2017] H.-L. Yin, W.-L. Wang, Y.-L. Tang, Q. Zhao, H. Liu, X.-X. Sun, W.-J. Zhang, H. Li, I. V. Puthoor, L.-X. You, et al., Experimental measurement-device-independent quantum digital signatures over a metropolitan network, Phys. Rev. A 95, 042338 (2017).
  • Wei et al. [2020] K. Wei, W. Li, H. Tan, Y. Li, H. Min, W.-J. Zhang, H. Li, L. You, Z. Wang, X. Jiang, T.-Y. Chen, S.-K. Liao, C.-Z. Peng, F. Xu, and J.-W. Pan, High-speed measurement-device-independent quantum key distribution with integrated silicon photonics, Phys. Rev. X 10, 031030 (2020).
  • Woodward et al. [2021] R. I. Woodward, Y. Lo, M. Pittaluga, M. Minder, T. Paraïso, M. Lucamarini, Z. Yuan, and A. Shields, Gigahertz measurement-device-independent quantum key distribution using directly modulated lasers, npj Quantum Inf. 7, 58 (2021).
  • Wang et al. [2017] C. Wang, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, Measurement-device-independent quantum key distribution robust against environmental disturbances, Optica 4, 1016 (2017).
  • Zheng et al. [2021] X. Zheng, P. Zhang, R. Ge, L. Lu, G. He, Q. Chen, F. Qu, L. Zhang, X. Cai, Y. Lu, S. Zhu, P. Wu, and X.-S. Ma, Heterogeneously integrated, superconducting silicon-photonic platform for measurement-device-independent quantum key distribution, Adv. Photonics 3, 055002 (2021).
  • Tang et al. [2016] Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, and J.-W. Pan, Measurement-device-independent quantum key distribution over untrustful metropolitan network, Phys. Rev. X 6, 011024 (2016).
  • Pirandola et al. [2009] S. Pirandola, R. García-Patrón, S. L. Braunstein, and S. Lloyd, Direct and reverse secret-key capacities of a quantum channel, Phys. Rev. Lett. 102, 050503 (2009).
  • Takeoka et al. [2014] M. Takeoka, S. Guha, and M. M. Wilde, Fundamental rate-loss tradeoff for optical quantum key distribution, Nat. Commun. 5, 5235 (2014).
  • Pirandola et al. [2017] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Fundamental limits of repeaterless quantum communications, Nat. Commun. 8, 15043 (2017).
  • Pirandola [2019] S. Pirandola, End-to-end capacities of a quantum communication network, Commun. Phys. 2, 51 (2019).
  • Das et al. [2021] S. Das, S. Bäuml, M. Winczewski, and K. Horodecki, Universal limitations on quantum key distribution over a network, Phys. Rev. X 11, 041016 (2021).
  • Lucamarini et al. [2018] M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields, Overcoming the rate–distance limit of quantum key distribution without quantum repeaters, Nature 557, 400 (2018).
  • Ma et al. [2018] X. Ma, P. Zeng, and H. Zhou, Phase-matching quantum key distribution, Phys. Rev. X 8, 031043 (2018).
  • Wang et al. [2018] X.-B. Wang, Z.-W. Yu, and X.-L. Hu, Twin-field quantum key distribution with large misalignment error, Phys. Rev. A 98, 062323 (2018).
  • Yin and Fu [2019] H.-L. Yin and Y. Fu, Measurement-device-independent twin-field quantum key distribution, Sci. Rep. 9, 3045 (2019).
  • Lin and Lütkenhaus [2018] J. Lin and N. Lütkenhaus, Simple security analysis of phase-matching measurement-device-independent quantum key distribution, Phys. Rev. A 98, 042332 (2018).
  • Curty et al. [2019] M. Curty, K. Azuma, and H.-K. Lo, Simple security proof of twin-field type quantum key distribution protocol, npj Quantum Inf. 5, 64 (2019).
  • Cui et al. [2019] C. Cui, Z.-Q. Yin, R. Wang, W. Chen, S. Wang, G.-C. Guo, and Z.-F. Han, Twin-field quantum key distribution without phase postselection, Phys. Rev. Applied 11, 034053 (2019).
  • Yin and Chen [2019a] H.-L. Yin and Z.-B. Chen, Coherent-state-based twin-field quantum key distribution, Sci. Rep. 9, 14918 (2019a).
  • Hu et al. [2019] X.-L. Hu, C. Jiang, Z.-W. Yu, and X.-B. Wang, Sending-or-not-sending twin-field protocol for quantum key distribution with asymmetric source parameters, Phys. Rev. A 100, 062337 (2019).
  • Zeng et al. [2020] P. Zeng, W. Wu, and X. Ma, Symmetry-protected privacy: beating the rate-distance linear bound over a noisy channel, Phys. Rev. Applied 13, 064013 (2020).
  • Xie et al. [2021a] Y.-M. Xie, B.-H. Li, Y.-S. Lu, X.-Y. Cao, W.-B. Liu, H.-L. Yin, and Z.-B. Chen, Overcoming the rate–distance limit of device-independent quantum key distribution, Opt. Lett. 46, 1632 (2021a).
  • Wang et al. [2020] R. Wang, Z.-Q. Yin, F.-Y. Lu, S. Wang, W. Chen, C.-M. Zhang, W. Huang, B.-J. Xu, G.-C. Guo, and Z.-F. Han, Optimized protocol for twin-field quantum key distribution, Commun. Phys. 3, 149 (2020).
  • Li et al. [2021] B.-H. Li, Y.-M. Xie, Z. Li, C.-X. Weng, C.-L. Li, H.-L. Yin, and Z.-B. Chen, Long-distance twin-field quantum key distribution with entangled sources, Opt. Lett. 46, 5529 (2021).
  • Maeda et al. [2019] K. Maeda, T. Sasaki, and M. Koashi, Repeaterless quantum key distribution with efficient finite-key analysis overcoming the rate-distance limit, Nat. Commun. 10, 3140 (2019).
  • Yin and Chen [2019b] H.-L. Yin and Z.-B. Chen, Finite-key analysis for twin-field quantum key distribution with composable security, Sci. Rep. 9, 17113 (2019b).
  • Jiang et al. [2019] C. Jiang, Z.-W. Yu, X.-L. Hu, and X.-B. Wang, Unconditional security of sending or not sending twin-field quantum key distribution with finite pulses, Phys. Rev. Applied 12, 024061 (2019).
  • Currás-Lorenzo et al. [2021] G. Currás-Lorenzo, Á. Navarrete, K. Azuma, G. Kato, M. Curty, and M. Razavi, Tight finite-key security for twin-field quantum key distribution, npj Quantum Inf. 7, 22 (2021).
  • Minder et al. [2019] M. Minder, M. Pittaluga, G. Roberts, M. Lucamarini, J. Dynes, Z. Yuan, and A. Shields, Experimental quantum key distribution beyond the repeaterless secret key capacity, Nat. Photonics 13, 334 (2019).
  • Zhong et al. [2019] X. Zhong, J. Hu, M. Curty, L. Qian, and H.-K. Lo, Proof-of-principle experimental demonstration of twin-field type quantum key distribution, Phys. Rev. Lett. 123, 100506 (2019).
  • Wang et al. [2019] S. Wang, D.-Y. He, Z.-Q. Yin, F.-Y. Lu, C.-H. Cui, W. Chen, Z. Zhou, G.-C. Guo, and Z.-F. Han, Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system, Phys. Rev. X 9, 021046 (2019).
  • Liu et al. [2019] Y. Liu, Z.-W. Yu, W. Zhang, J.-Y. Guan, J.-P. Chen, C. Zhang, X.-L. Hu, H. Li, C. Jiang, J. Lin, T.-Y. Chen, L. You, Z. Wang, X.-B. Wang, Q. Zhang, and J.-W. Pan, Experimental twin-field quantum key distribution through sending or not sending, Phys. Rev. Lett. 123, 100505 (2019).
  • Fang et al. [2020] X.-T. Fang, P. Zeng, H. Liu, M. Zou, W. Wu, Y.-L. Tang, Y.-J. Sheng, Y. Xiang, W. Zhang, H. Li, Z. Wang, L. You, M.-J. Li, H. Chen, Y.-A. Chen, Q. Zhang, C.-Z. Peng, X. Ma, T.-Y. Chen, and J.-W. Pan, Implementation of quantum key distribution surpassing the linear rate-transmittance bound, Nat. Photonics 14, 422 (2020).
  • Chen et al. [2020] J.-P. Chen, C. Zhang, Y. Liu, C. Jiang, W. Zhang, X.-L. Hu, J.-Y. Guan, Z.-W. Yu, H. Xu, J. Lin, M.-J. Li, H. Chen, H. Li, L. You, Z. Wang, X.-B. Wang, Q. Zhang, and J.-W. Pan, Sending-or-not-sending with independent lasers: Secure twin-field quantum key distribution over 509 km, Phys. Rev. Lett. 124, 070501 (2020).
  • Liu et al. [2021a] H. Liu, C. Jiang, H.-T. Zhu, M. Zou, Z.-W. Yu, X.-L. Hu, H. Xu, S. Ma, Z. Han, J.-P. Chen, Y. Dai, S.-B. Tang, W. Zhang, H. Li, L. You, Z. Wang, Y. Hua, H. Hu, H. Zhang, F. Zhou, Q. Zhang, X.-B. Wang, T.-Y. Chen, and J.-W. Pan, Field test of twin-field quantum key distribution through sending-or-not-sending over 428 km, Phys. Rev. Lett. 126, 250502 (2021a).
  • Zhong et al. [2021] X. Zhong, W. Wang, L. Qian, and H.-K. Lo, Proof-of-principle experimental demonstration of twin-field quantum key distribution over optical channels with asymmetric losses, npj Quantum Inf. 7, 8 (2021).
  • Chen et al. [2021a] J.-P. Chen, C. Zhang, C. Liu, Yang Jiang, W.-J. Zhang, Z.-Y. Han, S.-Z. Ma, X.-L. Hu, Y.-H. Li, F. Liu, Hui Zhou, H.-F. Jiang, H. Chen, Teng-Yun Li, L.-X. You, Z. Wang, X.-B. Wang, Q. Zhang, and J.-W. Pan, Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas, Nat. Photonics 15, 570 (2021a).
  • Clivati et al. [2022] C. Clivati, A. Meda, S. Donadello, S. Virzì, M. Genovese, F. Levi, A. Mura, M. Pittaluga, Z. Yuan, A. J. Shields, M. Lucamarini, I. P. Degiovanni, and D. Calonico, Coherent phase transfer for real-world twin-field quantum key distribution, Nat. Commun. 13, 157 (2022).
  • Pittaluga et al. [2021] M. Pittaluga, M. Minder, M. Lucamarini, M. Sanzaro, R. I. Woodward, M.-J. Li, Z. Yuan, and A. J. Shields, 600-km repeater-like quantum communications with dual-band stabilization, Nat. Photonics 15, 530 (2021).
  • Chen et al. [2021b] J.-P. Chen, C. Zhang, Y. Liu, C. Jiang, D.-F. Zhao, W.-J. Zhang, F.-X. Chen, H. Li, L.-X. You, Z. Wang, Y. Chen, X.-B. Wang, Q. Zhang, and J.-W. Pan, Quantum key distribution over 658 km fiber with distributed vibration sensing, arXiv preprint arXiv:2110.11671  (2021b).
  • Wang et al. [2022] S. Wang, Z.-Q. Yin, D.-Y. He, W. Chen, R.-Q. Wang, P. Ye, Y. Zhou, G.-J. Fan-Yuan, F.-X. Wang, W. Chen, Y.-G. Zhu, P. V. Morozov, A. V. Divochiy, Z. Zhou, G.-C. Guo, and Z.-F. Han, Twin-field quantum key distribution over 830-km fibre, Nat. Photonics 16, 154 (2022).
  • Kazovsky [1986] L. Kazovsky, Balanced phase-locked loops for optical homodyne receivers: performance analysis, design considerations, and laser linewidth requirements, J. Light. Technol. 4, 182 (1986).
  • Kazovsky and Atlas [1990] L. G. Kazovsky and D. A. Atlas, A 1320-nm experimental optical phase-locked loop: performance investigation and psk homodyne experiments at 140 mb/s and 2 gb/s, J. Light. Technol. 8, 1414 (1990).
  • Predehl et al. [2012] K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place, Science 336, 441 (2012).
  • Huang et al. [2019] A. Huang, A. Navarrete, S.-H. Sun, P. Chaiwongkhot, M. Curty, and V. Makarov, Laser-seeding attack in quantum key distribution, Phys. Rev. Applied 12, 064043 (2019).
  • Pang et al. [2020] X.-L. Pang, A.-L. Yang, C.-N. Zhang, J.-P. Dou, H. Li, J. Gao, and X.-M. Jin, Hacking quantum key distribution via injection locking, Phys. Rev. Applied 13, 034008 (2020).
  • Lucamarini et al. [2015] M. Lucamarini, I. Choi, M. B. Ward, J. F. Dynes, Z. L. Yuan, and A. J. Shields, Practical security bounds against the trojan-horse attack in quantum key distribution, Phys. Rev. X 5, 031030 (2015).
  • Sajeed et al. [2016] S. Sajeed, A. Huang, S. Sun, F. Xu, V. Makarov, and M. Curty, Insecurity of detector-device-independent quantum key distribution, Phys. Rev. Lett. 117, 250505 (2016).
  • Zhang et al. [2021] G. Zhang, I. W. Primaatmaja, J. Y. Haw, X. Gong, C. Wang, and C. C. W. Lim, Securing practical quantum communication systems with optical power limiters, PRX Quantum 2, 030304 (2021).
  • Bozzio et al. [2021] M. Bozzio, A. Cavaillès, E. Diamanti, A. Kent, and D. Pitalúa-García, Multiphoton and side-channel attacks in mistrustful quantum cryptography, PRX Quantum 2, 030338 (2021).
  • Cao et al. [2020] Y. Cao, Y.-H. Li, K.-X. Yang, Y.-F. Jiang, S.-L. Li, X.-L. Hu, M. Abulizi, C.-L. Li, W. Zhang, Q.-C. Sun, W.-Y. Liu, X. Jiang, S.-K. Liao, J.-G. Ren, H. Li, L. You, Z. Wang, J. Yin, C.-Y. Lu, X.-B. Wang, Q. Zhang, C.-Z. Peng, and J.-W. Pan, Long-distance free-space measurement-device-independent quantum key distribution, Phys. Rev. Lett. 125, 260503 (2020).
  • Liu et al. [2021b] H.-Y. Liu, X.-H. Tian, C. Gu, P. Fan, X. Ni, R. Yang, J.-N. Zhang, M. Hu, J. Guo, X. Cao, X. Hu, G. Zhao, Y.-Q. Lu, Y.-X. Gong, Z. Xie, and S.-N. Zhu, Optical-relayed entanglement distribution using drones as mobile nodes, Phys. Rev. Lett. 126, 020503 (2021b).
  • Hu et al. [2021] C.-Q. Hu, Z.-Q. Yan, J. Gao, Z.-M. Li, H. Zhou, J.-P. Dou, and X.-M. Jin, Decoy-state quantum key distribution over a long-distance high-loss air-water channel, Phys. Rev. Applied 15, 024060 (2021).
  • Chen et al. [2021c] Y.-A. Chen, Q. Zhang, T.-Y. Chen, W.-Q. Cai, S.-K. Liao, J. K. Chen, J. Yin, J.-G. Ren, Z. Chen, S.-L. Han, Q. Yu, K. Liang, F. Zhou, X. Yuan, M.-S. Zhao, T.-Y. Wang, X. Jiang, L. Zhang, W.-Y. Liu, Y. Li, Q. Shen, Y. Cao, C.-Y. Lu, R. Shu, J.-Y. Wang, L. Li, N.-L. Liu, F. Xu, X.-B. Wang, C.-Z. Peng, and J.-W. Pan, An integrated space-to-ground quantum communication network over 4,600 kilometres, Nature 589, 214 (2021c).
  • Dequal et al. [2021] D. Dequal, L. T. Vidarte, V. R. Rodriguez, G. Vallone, P. Villoresi, A. Leverrier, and E. Diamanti, Feasibility of satellite-to-ground continuous-variable quantum key distribution, npj Quantum Inf. 7, 3 (2021).
  • Yin et al. [2020a] J. Yin, Y.-H. Li, S.-K. Liao, M. Yang, Y. Cao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, S.-L. Li, et al., Entanglement-based secure quantum cryptography over 1,120 kilometres, Nature 582, 501 (2020a).
  • Takenaka et al. [2017] H. Takenaka, A. Carrasco-Casado, M. Fujiwara, M. Kitamura, M. Sasaki, and M. Toyoshima, Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite, Nat. Photonics 11, 502 (2017).
  • Wehner et al. [2018] S. Wehner, D. Elkouss, and R. Hanson, Quantum internet: A vision for the road ahead, Science 362, eaam9288 (2018).
  • Sidhu et al. [2021] J. S. Sidhu, S. K. Joshi, M. Gündoğan, T. Brougham, D. Lowndes, L. Mazzarella, M. Krutzik, S. Mohapatra, D. Dequal, G. Vallone, P. Villoresi, A. Ling, T. Jennewein, M. Mohageg, J. G. Rarity, I. Fuentes, S. Pirandola, and D. K. L. Oi, Advances in space quantum communications, IET Quantum Commun. 2, 182 (2021).
  • Ma and Razavi [2012] X. Ma and M. Razavi, Alternative schemes for measurement-device-independent quantum key distribution, Phys. Rev. A 86, 062319 (2012).
  • Xie et al. [2021b] Y.-M. Xie, C.-X. Weng, Y.-S. Lu, Y. Fu, Y. Wang, H.-L. Yin, and Z.-B. Chen, Scalable high-rate twin-field quantum key distribution networks without constraint of probability and intensity, arXiv preprint arXiv:2112.11165  (2021b).
  • Xu et al. [2020b] H. Xu, Z.-W. Yu, C. Jiang, X.-L. Hu, and X.-B. Wang, Sending-or-not-sending twin-field quantum key distribution: Breaking the direct transmission key rate, Phys. Rev. A 101, 042330 (2020b).
  • Jiang et al. [2020] C. Jiang, X.-L. Hu, H. Xu, Z.-W. Yu, and X.-B. Wang, Zigzag approach to higher key rate of sending-or-not-sending twin field quantum key distribution with finite-key effects, New J. Phys. 22, 053048 (2020).
  • Azuma et al. [2015] K. Azuma, K. Tamaki, and W. J. Munro, All-photonic intercity quantum key distribution, Nat. Commun. 6, 10171 (2015).
  • Bose and Home [2013] S. Bose and D. Home, Duality in entanglement enabling a test of quantum indistinguishability unaffected by interactions, Phys. Rev. Lett. 110, 140404 (2013).
  • Lo et al. [2005] H.-K. Lo, X. Ma, and K. Chen, Decoy state quantum key distribution, Phys. Rev. Lett. 94, 230504 (2005).
  • Wang [2005] X.-B. Wang, Beating the photon-number-splitting attack in practical quantum cryptography, Phys. Rev. Lett. 94, 230503 (2005).
  • Takesue et al. [2007] H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, Quantum key distribution over a 40-db channel loss using superconducting single-photon detectors, Nat. Photonics 1, 343 (2007).
  • Islam et al. [2017] N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier, Provably secure and high-rate quantum key distribution with time-bin qudits, Sci. Adv. 3, e1701491 (2017).
  • Chernoff [1952] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Stat. 23, 493 (1952).
  • Yin et al. [2020b] H.-L. Yin, M.-G. Zhou, J. Gu, Y.-M. Xie, Y.-S. Lu, and Z.-B. Chen, Tight security bounds for decoy-state quantum key distribution, Sci. Rep. 10, 14312 (2020b).
  • Lo and Preskill [2007] H.-K. Lo and J. Preskill, Security of quantum key distribution using weak coherent states with nonrandom phases, Quantum Inf. Comput. 7, 431 (2007).
  • Koashi [2009] M. Koashi, Simple security proof of quantum key distribution based on complementarity, New J. Phys. 11, 045018 (2009).
  • Lo [2001] H.-K. Lo, Proof of unconditional security of six-state quatum key distribution scheme, Quantum Inf. Comput. 1, 81 (2001).
  • Yin et al. [2016b] H.-L. Yin, Y. Fu, Y. Mao, and Z.-B. Chen, Security of quantum key distribution with multiphoton components, Sci. Rep. 6, 29482 (2016b).
  • Zeng et al. [2022] P. Zeng, H. Zhou, W. Wu, and X. Ma, Quantum key distribution surpassing the repeaterless rate-transmittance bound without global phase locking, arXiv preprint arXiv:2201.04300  (2022).