This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Brauer Spaces of Spectral Algebraic Stacks

Chang-Yeon Chough Center for Geometry and Physics, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea [email protected]
Abstract.

We study the question of whether the Brauer group is isomorphic to the cohomological one in spectral algebraic geometry. For this, we prove the compact generation of the derived category of twisted sheaves for quasi-compact spectral algebraic stacks with quasi-affine diagonal, which admit a quasi-finite presentation; in particular, we obtain the compact generation of the unbounded derived category of quasi-coherent sheaves and the existence of compact perfect complexes with prescribed support for such stacks. We also study the relationship between derived and spectral algebraic stacks, so that our results can be extended to the setting of derived algebraic geometry.

1. Introduction

1.1.

The purpose of this paper is to formulate and prove the following question addressed by Grothendieck in the setting of spectral algebraic geometry: given a scheme XX, is the canonical map δ:Br(X)He´t2(X,𝔾m)\delta:\operatorname{Br}(X)\rightarrow\operatorname{H}^{2}_{\mathrm{\acute{e}t}}(X,\mathbb{G}_{m}) an isomorphism of abelian groups? Recall from [6, 1.2] that an Azumaya algebra is a sheaf of 𝒪X\operatorname{\mathcal{O}}_{X}-algebra which is locally isomorphic to a matrix algebra and that the Brauer group Br(X)\operatorname{Br}(X) classifies Azumaya algebras up to Morita equivalence. The map δ\delta is injective, and its image lies in the torsion subgroup if XX is quasi-compact by virtue of [6, 1.4, p.205]. Note that δ\delta needs not be an isomorphism in general. In the positive direction, we have many important results which include that δ\delta is surjective for noetherian schemes XX of dimension 1\leq 1 or of dimension 22 when XX is also regular by Grothendieck [7, 2.2] and that the image of δ\delta is the torsion subgroup of He´t2(X,𝔾m)\operatorname{H}^{2}_{\mathrm{\acute{e}t}}(X,\mathbb{G}_{m}) for quasi-compact and separated schemes which admit an ample line bundle by Gabber (and the proof of de Jong [3, 1.1]). Toën established a more general result for quasi-compact and quasi-separated (derived) schemes by introducing the notion of derived Azumaya algebra of [19, 2.1], which is a “dg-enhancement of Azumaya algebras”; see [19, 5.1]. In fact, Toën addressed the question regarding the map δ\delta by investigating the compact generation of α\alpha-twisted derived dg-category Lα(X)\mathrm{L}_{\alpha}(X) (see [19, 4.1]) for each element αHe´t2(X,𝔾m)\alpha\in\operatorname{H}^{2}_{\mathrm{\acute{e}t}}(X,\mathbb{G}_{m}): the endomorphism algebra of a compact generator of Lα(X)\mathrm{L}_{\alpha}(X) is a derived Azumaya algebra whose associated element of He´t2(X,𝔾m)\operatorname{H}^{2}_{\mathrm{\acute{e}t}}(X,\mathbb{G}_{m}) is α\alpha; see [19, 4.6]. Extending this idea to the spectral setting, Antieau–Gepner obtained a similar result for quasi-compact quasi-separated spectral schemes [1, 7.2]. This paper originated from the desire to extend these results to algebraic stacks in the derived and spectral settings.

The main result of this paper is the following:

Theorem 1.2.

Let XX be a quasi-geometric spectral algebraic stack which admits a quasi-finite presentation. Then each element of Br(X)\operatorname{Br}^{\dagger}(X) has the form [𝒜][\operatorname{\mathcal{A}}] for some Azumaya algebra 𝒜\operatorname{\mathcal{A}} on XX.

Remark 1.3.

Here the quasi-geometric spectral algebraic stacks of 2.6 are a formulation of quasi-compact algebraic stacks with quasi-affine diagonal in spectral algebraic geometry. We will say that a quasi-geometric spectral algebraic stack XX admits a quasi-finite presentation if there exist an 𝔼\operatorname{\mathbb{E}}_{\infty}-ring AA and a morphism SpecAX\operatorname{Spec}A\rightarrow X which is locally quasi-finite, faithfully flat, and locally almost of finite presentation (see [14, 4.2.0.1]). The extended Brauer group Br(X)\operatorname{Br}^{\dagger}(X) is the set of connected components of the extended Brauer space r(X)\operatorname{\mathscr{B}r}^{\dagger}(X) of [14, 11.5.2.1]. Given an Azumaya algebra 𝒜\operatorname{\mathcal{A}} of [14, 11.5.3.7], the extended Brauer class [𝒜][\operatorname{\mathcal{A}}] is defined as in [14, 11.5.3.9].

Remark 1.4.

1.2 recovers the following results from classical, derived, and spectral algebraic geometry:

  1. (i)

    The cases of quasi-compact quasi-separated spectral schemes and spectral algebraic spaces by Antieau–Gepner [1, 7.2] and Lurie [14, 11.5.3.10], respectively. Also, the case of quasi-compact spectral Deligne-Mumford stacks with quasi-affine diagonal by Hall–Rydh [8, 9.4].

  2. (ii)

    Let RR be a commutative ring. Then 1.2 can be applied to the underlying quasi-geometric spectral algebraic stacks of quasi-geometric derived algebraic stacks over RR which admit a quasi-finite presentation (see 2.31). In particular, we obtain the cases of ordinary quasi-compact algebraic stacks with quasi-finite and separated diagonal, and of quasi-compact derived Deligne-Mumford stacks with quasi-affine diagonal by Hall–Rydh [8, 9.3, 9.4] (hence of quasi-compact quasi-separated derived schemes by Toën [19, 5.1]).

Example 1.5.

Let pp be a prime number. Let 𝔽p\mathbb{F}_{p} denote a finite field of order pp, and let μp\mu_{p} denote the ordinary group scheme of pp-th roots of unity over Spec𝔽p\operatorname{Spec}\mathbb{F}_{p}. Let XX be a quasi-affine spectral Deligne-Mumford stack over 𝔽p\mathbb{F}_{p}. Then 1.2 can be applied to the classifying stack of μp\mu_{p} over XX, in which case our result is new.

1.6.

Our approach to 1.2 is based on Lurie’s reformulation of the work of Antieau–Gepner in terms of the theory of quasi-coherent stacks developed in [14, 10.1.1]. Given a quasi-geometric spectral algebraic stack XX and an object 𝒞\operatorname{\mathcal{C}} of the \infty-category QStkPSt(X)\operatorname{QStk}^{\operatorname{PSt}}(X) of prestable quasi-coherent stacks (see [14, 10.1.2.4]), the \infty-category QCoh(X;𝒞)\operatorname{QCoh}(X;\operatorname{\mathcal{C}}) of global sections (see [14, 10.4.1.1]) is a spectral analogue of the twisted derived dg-category of Toën. This perspective leads to the following central definition of interest:

Definition 1.7.

A quasi-geometric spectral algebraic stack XX is of twisted compact generation if it satisfies the following condition:

  • ()(\ast)

    For each compactly generated stable quasi-coherent stack 𝒞\operatorname{\mathcal{C}} on XX, the stable \infty-category QCoh(X;𝒞)\operatorname{QCoh}(X;\operatorname{\mathcal{C}}) is compactly generated.

Remark 1.8.

Our definition of twisted compact generation 1.7 is related to the β\beta-Thomason condition on ordinary algebraic stacks of [8, 8.1]. Let β\beta be a regular cardinal and consider the following straightforward generalization which we refer to as the β\beta-Thomason condition on a quasi-geometric spectral algebraic stack XX:

  1. (i)

    The \infty-category QCoh(X)\operatorname{QCoh}(X) is compactly generated by a set of cardinality at most β\beta.

  2. (ii)

    For every quasi-compact open subset 𝒰|X|\operatorname{\mathcal{U}}\subseteq|X|, there exists a compact object FF of QCoh(X)\operatorname{QCoh}(X) with support |X|𝒰|X|-\operatorname{\mathcal{U}}.

In the special case of ordinary quasi-compact quasi-separated algebraic stacks, the β\beta-Thomason condition is equivalent to the following condition: for each quasi-compact open immersion UXU\rightarrow X, the full subcategory QCohXU(X)QCoh(X)\operatorname{QCoh}_{X-U}(X)\subseteq\operatorname{QCoh}(X) spanned by those objects which are supported on |X||U||X|-|U| (see 5.12) is compactly generated by a set of cardinality at most β\beta. Although its spectral analogue is not evident (the author does not know if [8, 4.10] is true in the spectral setting), we will see in 5.16 and 5.18 that if a quasi-geometric spectral algebraic stack XX is of twisted compact generation, then it not only satisfies the β\beta-Thomason condition for some β\beta, but also the aforementioned condition on QCohXU(X)\operatorname{QCoh}_{X-U}(X).

1.9.

The main ingredient in our proof of 1.2 is the following result, which is closely related to [19, 4.8] (which asserts that for each quasi-compact quasi-separated derived scheme XX and each element αHe´t2(X,𝔾m)\alpha\in\operatorname{H}^{2}_{\mathrm{\acute{e}t}}(X,\mathbb{G}_{m}), the α\alpha-twisted derived dg-category Lα(X)\mathrm{L}_{\alpha}(X) admits a compact generator):

Theorem 1.10.

Let XX be a quasi-geometric spectral algebraic stack which admits a quasi-finite presentation. Then XX is of twisted compact generation. In particular, for each quasi-compact open subset 𝒰|X|\operatorname{\mathcal{U}}\subseteq|X|, there exists a compact object FF of QCoh(X)\operatorname{QCoh}(X) with support |X|𝒰|X|-\operatorname{\mathcal{U}}.

Remark 1.11.
  1. (i)

    According to [14, 10.3.2.1], if 𝖷\operatorname{\mathsf{X}} is a quasi-compact quasi-separated spectral algebraic space and 𝒞\operatorname{\mathcal{C}} is a compactly generated prestable quasi-coherent stack on 𝖷\operatorname{\mathsf{X}}, then the \infty-category QCoh(𝖷;𝒞)\operatorname{QCoh}(\operatorname{\mathsf{X}};\operatorname{\mathcal{C}}) is compactly generated. In the case where 𝒞\operatorname{\mathcal{C}} is stable, we can deduce the statement from 1.10.

  2. (ii)

    Let XX be an ordinary quasi-compact algebraic stack with quasi-finite and separated diagonal. Then [8, Theorem A] shows that for each quasi-compact open subset 𝒰|X|\operatorname{\mathcal{U}}\subseteq|X|, there exists a compact complex FDqc(X)F\in\mathrm{D}_{\mathrm{qc}}(X) with support |X|𝒰|X|-\operatorname{\mathcal{U}} (cf. 5.3). This can be viewed as a special case of 1.10.

  3. (iii)

    If 𝖷\operatorname{\mathsf{X}} is a quasi-compact quasi-separated spectral algebraic space and 𝒰|𝖷|\operatorname{\mathcal{U}}\subseteq|\operatorname{\mathsf{X}}| is a quasi-compact open subset, then [14, 11.1.2.1] guarantees that there exists a perfect object FQCoh(X)F\in\operatorname{QCoh}(X) with support |𝖷|𝒰|\operatorname{\mathsf{X}}|-\operatorname{\mathcal{U}}. This can be obtained from 1.10.

1.12.

The main difficulty in the proof of 1.10 is that we do not know if the compact generation of RR-linear \infty-categories (see [14, D.1.2.1]), where RR is an 𝔼\operatorname{\mathbb{E}}_{\infty}-ring, is local for the fpqc topology. On the other hand, in the setting of derived algebraic geometry, [19, 4.13] (which asserts that the existence of a compact generator of a locally presentable dg-category over a simplicial commutative ring is local for the fppf topology) is essential to the proof of [19, 4.8]. As Antieau–Gepner mentioned in [1, p.1215], Toën’s proof of [19, 4.13] makes use of quotients of simplicial commutative rings, and therefore it cannot be carried out in the spectral setting due to the lack of quotient construction of 𝔼\operatorname{\mathbb{E}}_{\infty}-rings. Nonetheless, Antieau–Gepner showed that the existence of a compact generator of an RR-linear \infty-category, where RR is an 𝔼\operatorname{\mathbb{E}}_{\infty}-ring, is local for the étale topology (see [1, 6.16]), and attributed the idea of the proof to Lurie of [16, 6.1] in which the key ingredient is that the compact generation of RR-linear \infty-category satisfies descent for the Nisnevich topology. Moreover, the notion of scallop decomposition of [14, 2.5.3.1], which is closely related to the Nisnevich topology, plays a crucial role in the proof of [14, 10.3.2.1]: a scallop decomposition of a spectral Deligne-Mumford stack 𝖷\operatorname{\mathsf{X}} consists of a sequence of open immersions 𝖴0𝖴1𝖴n𝖷\emptyset\simeq\operatorname{\mathsf{U}}_{0}\rightarrow\operatorname{\mathsf{U}}_{1}\rightarrow\cdots\rightarrow\operatorname{\mathsf{U}}_{n}\simeq\operatorname{\mathsf{X}} such that for every 1in1\leq i\leq n, there exists an excision square of spectral Deligne-Mumford stacks

𝖵\textstyle{\operatorname{\mathsf{V}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖸\textstyle{\operatorname{\mathsf{Y}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖴i1\textstyle{\operatorname{\mathsf{U}}_{i-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖴i\textstyle{\operatorname{\mathsf{U}}_{i}}

where 𝖸\operatorname{\mathsf{Y}} is affine and 𝖵\operatorname{\mathsf{V}} is quasi-compact. However, the essential difficulty in extending [14, 10.3.2.1] from quasi-compact quasi-separated spectral algebraic spaces to quasi-geometric spectral algebraic stacks is that the notion of scallop decomposition is designed to accommodate spectral algebraic spaces: more concretely, if a spectral Deligne-Mumford admits a scallop decomposition, then it must be a quasi-compact quasi-separated spectral algebraic space (see [14, 3.4.2.1]). To address this difficulty, we develop a theory of the underlying topological space of quasi-geometric spectral algebraic stacks (see 3.1), so that we can extend the definitions of an excision square and a scallop decomposition to those stacks, without imposing the requirement that 𝖸\operatorname{\mathsf{Y}} appearing in the excision square above is affine (see 4.1 and 4.4). We will then prove 1.10 by generalizing the “induction principle” for ordinary algebraic stacks by Hall–Rydh [9, Theorem E] to quasi-geometric spectral algebraic stacks. More precisely, we show the representability of the spectral Hilbert functor to provide a special presentation of quasi-geometric spectral algebraic stacks (which is an analogue of [9, 4.1] in the spectral setting; see 4.12), from which we are reduced to proving that the property of being of twisted compact generation satisfies descent for finite morphisms and excision squares of quasi-geometric spectral algebraic stacks (see 5.28 and 5.33).

Remark 1.13.

As a consequence of our proof of 1.10, we will see in 5.36 that for stable RR-linear \infty-categories, where RR is a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring, the property of being compactly generated satisfies descent with respect to the maps which are quasi-finite, faithfully flat, and almost of finite presentation. This is a generalization of [14, D.5.3.1] in the stable case, which asserts that the property is local for the étale topology.

1.14. Outline of the paper

In Section 2, we formulate quasi-compact algebraic stacks with quasi-affine diagonal in the setting of derived and spectral algebraic geometry, and study the relationship between them. In Section 3, we define the underlying topological space of quasi-geometric stacks and establish some of its basic properties. In Section 4, we first introduce excision squares, stacky scallop decompositions, and Nisnevich coverings of quasi-geometric spectral algebraic stacks. We then show the representability of the Hilbert functor in the spectral setting to provide a special presentation of those stacks. Section 5 is devoted to introducing the notion of twisted compact generation for quasi-geometric spectral algebraic stacks and developing some descent results. In Section 6, we study the extended Brauer groups and Azumaya algebras in spectral algebraic geometry.

1.15. Conventions

We will follow the set-theoretic convention of [13].

1.16. Acknowledgements

The author is grateful to Benjamin Antieau, Jack Hall, and Bertrand Toën for helpful comments and conversations. This work was supported by IBS-R003-D1.

2. Spectral Algebraic Stacks

In this section, we introduce the basic objects of study in this paper: quasi-geometric spectral algebraic stacks. We also investigate the relationship between derived algebraic geometry and spectral algebraic geometry, so that we can incorporate quasi-geometric derived algebraic stacks (which are defined similarly) into our study.

2.1.

For an 𝔼\operatorname{\mathbb{E}}_{\infty}-ring RR, let CAlgR\operatorname{CAlg}_{R} denote the \infty-category 𝔼\operatorname{\mathbb{E}}_{\infty}-algebras over RR (see [17, 7.1.3.8]). The following big étale topology on the opposite \infty-category CAlgRop\operatorname{CAlg}_{R}^{\operatorname{op}} (whose existence is evident from the small étale topology [14, B.6.2.1]) is ubiquitous in [14], but not mentioned explicitly. We record it here for reference:

Lemma 2.2.

Let RR be an 𝔼\operatorname{\mathbb{E}}_{\infty}-ring. Then there exits a Grothendieck topology on the \infty-category CAlgRop\operatorname{CAlg}_{R}^{\operatorname{op}} which can be characterized as follows: if AA is an 𝔼\operatorname{\mathbb{E}}_{\infty}-algebra over RR, then a sieve 𝒞(CAlgRop)/ACAlgAop\operatorname{\mathcal{C}}\subset(\operatorname{CAlg}_{R}^{\operatorname{op}})_{/A}\simeq\operatorname{CAlg}_{A}^{\operatorname{op}} is a covering if and only if it contains a finite collection of maps {AAi}1in\{A\rightarrow A_{i}\}_{1\leq i\leq n} for which the induced map A1inAiA\rightarrow\prod_{1\leq i\leq n}A_{i} is faithfully flat and étale.

Remark 2.3.

In the case where RR is connective, the same proof provides an apparent analogue for the \infty-category CAlgRcn\operatorname{CAlg}^{\operatorname{cn}}_{R} of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-algebras over RR. Let 𝒮hv^e´t(CAlgRcn)Fun(CAlgRcn,𝒮^)\widehat{\operatorname{\mathcal{S}hv}}_{\mathrm{\acute{e}t}}(\operatorname{CAlg}^{\operatorname{cn}}_{R})\subseteq\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}}_{R},\widehat{\operatorname{\mathcal{S}}}) denote the full subcategory spanned by the étale sheaves (here 𝒮^\widehat{\operatorname{\mathcal{S}}} denotes the \infty-category of (not necessarily small) spaces; see [13, 1.2.16.4]).

2.4.

Let RR be a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring. We say that a morphism XYX\rightarrow Y in Fun(CAlgRcn,𝒮^)\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}}_{R},\widehat{\operatorname{\mathcal{S}}}) is representable if, for every connective RR-algebra RR^{\prime} and every morphism SpecRY\operatorname{Spec}R^{\prime}\rightarrow Y, the fiber product X×YSpecRX\times_{Y}\operatorname{Spec}R^{\prime} is representable by a spectral Deligne-Mumford stack over SpecR\operatorname{Spec}R (cf. [14, 6.3.2.1]). Let PP be a property of morphism of spectral Deligne-Mumford stacks which is local on the target with respect to the étale topology [14, 6.3.1.1] and stable under base change [14, 6.3.3.1]. We say that a representable morphism XYX\rightarrow Y has the property P if, for every connective 𝔼\operatorname{\mathbb{E}}_{\infty}-algebra RR^{\prime} over RR and every morphism SpecRY\operatorname{Spec}R^{\prime}\rightarrow Y, the projection X×YSpecRSpecRX\times_{Y}\operatorname{Spec}R^{\prime}\rightarrow\operatorname{Spec}R^{\prime}, which can be identified with a morphism of spectral Deligne-Mumford stacks, has the property PP (cf. [14, 6.3.3.3]).

2.5.

According to [14, 9.1.0.1], a quasi-geometric stack is a functor X:CAlgcn𝒮^X:\operatorname{CAlg}^{\operatorname{cn}}\rightarrow\widehat{\operatorname{\mathcal{S}}} satisfying the following conditions:

  1. (i)

    The functor XX is a sheaf for the fpqc topology of [14, B.6.1.3].

  2. (ii)

    The diagonal Δ:XX×X\Delta:X\rightarrow X\times X is representable and quasi-affine (see [14, 6.3.3.6]).

  3. (iii)

    There exists a faithfully flat morphism SpecAX\operatorname{Spec}A\rightarrow X, where AA is a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring; see [14, 6.3.3.7].

We now introduce a special class of quasi-geometric stacks, called quasi-geometric spectral algebraic stacks. This collection of quasi-geometric stacks admits a “smooth covering”. There are at least two different ways to construct a suitable “smoothness” in the setting of spectral algebraic geometry: for example, fiber smoothness and differentially smoothness (see [14, 11.2.5.5]). Fiber smooth morphisms are closely related to smooth morphisms in the classical algebraic geometry (see 2.10), and we adopt the fiber smoothness in our definition of quasi-geometric spectral algebraic stacks (the terminology is not standard):

Definition 2.6.

Let RR be a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring. A quasi-geometric spectral algebraic stack over RR is a functor X:CAlgRcn𝒮^X:\operatorname{CAlg}^{\operatorname{cn}}_{R}\rightarrow\widehat{\operatorname{\mathcal{S}}} which satisfies the following conditions:

  1. (i)

    The functor XX is a sheaf for the fpqc topology.

  2. (ii)

    The diagonal morphism Δ:XX×X\Delta:X\rightarrow X\times X is representable and quasi-affine.

  3. (iii)

    There exist a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-algebra AA over RR and a morphism SpecAX\operatorname{Spec}A\rightarrow X which is fiber smooth and surjective.

In the special case where RR is the sphere spectrum (that is, an initial object of CAlgcn\operatorname{CAlg}^{\operatorname{cn}}), we simply say that XX is a quasi-geometric spectral algebraic stack. In other words, a quasi-geometric spectral algebraic stack is a quasi-geometric stack which satisfies condition (iii).

Remark 2.7.

Let Fun(CAlgcn,𝒮^)/R\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}})_{/R} denote the slice \infty-category Fun(CAlgcn,𝒮^)/SpecR\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}})_{/\operatorname{Spec}R}. Let X:CAlgRcn𝒮^X^{\prime}:\operatorname{CAlg}^{\operatorname{cn}}_{R}\rightarrow\widehat{\operatorname{\mathcal{S}}} be the image of an object (XSpecR)Fun(CAlgcn,𝒮^)/R(X\rightarrow\operatorname{Spec}R)\in\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}})_{/R} under the equivalence of \infty-categories Fun(CAlgcn,𝒮^)/RFun(CAlgRcn,𝒮^)\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}})_{/R}\simeq\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}}_{R},\widehat{\operatorname{\mathcal{S}}}). Then XX^{\prime} is a quasi-geometric spectral algebraic stack over RR if and only if the functor XX is a quasi-geometric spectral algebraic stack (over the sphere spectrum).

Example 2.8.

Quasi-geometric spectral algebraic stacks exist in abundance:

  1. (i)

    Every quasi-geometric spectral Deligne-Mumford stack is a quasi-geometric spectral algebraic stack because every étale morphism is fiber smooth [14, 11.2.3.2].

  2. (ii)

    Let RR be a commutative ring. We will see in 2.30 that for each quasi-geometric derived algebraic stack over RR, there is an underlying quasi-geometric spectral algebraic stack over RR; in particular, each ordinary quasi-compact algebraic stack over RR with quasi-affine diagonal can be regarded as a quasi-geometric spectral algebraic stack over RR.

2.9.

Our choice of “smooth coverings” in the definition of quasi-geometric spectral algebraic stacks 2.6 is motivated by the following characterization of fiber smoothness in terms of the 0-truncations of [14, 1.4.6.5]:

Lemma 2.10.

Let f:𝖷𝖸f:\operatorname{\mathsf{X}}\rightarrow\operatorname{\mathsf{Y}} be a morphism of spectral algebraic spaces. Then ff is fiber smooth if and only if it is flat and the underlying morphism of ordinary algebraic spaces τ0(f)\tau_{\leq 0}(f) is smooth.

Proof.

The assertion is étale-local on 𝖷\operatorname{\mathsf{X}} and 𝖸\operatorname{\mathsf{Y}}, so we may assume that 𝖷\operatorname{\mathsf{X}} and 𝖸\operatorname{\mathsf{Y}} are affine. In this case, the desired result is an immediate consequence of [14, 11.2.3.5] and [14, 11.2.4.1]. ∎

2.11.

In classical algebraic geometry, the big smooth topology does not play as significant role as the big étale topology. This is in part due to the fact that a smooth surjection of ordinary schemes étale-locally admits a section (see [5, 17.16.3]), and therefore the topoi induced by these topologies are equivalent. In the spectral setting, an analogous statement holds for differentially smooth morphisms by virtue of [1, 4.47]. The following topology defined by fiber smooth maps (whose existence can be proven in the same way as [14, B.6.1.3]) is nevertheless of interest to us in this paper:

Lemma 2.12.

Let RR be a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring. Then there exists a Grothendieck topology on the \infty-category (CAlgRcn)op(\operatorname{CAlg}^{\operatorname{cn}}_{R})^{\operatorname{op}} which can be described as follows: if AA is a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-algebra over RR, then a sieve 𝒞(CAlgRop)/ACAlgAop\operatorname{\mathcal{C}}\subset(\operatorname{CAlg}_{R}^{\operatorname{op}})_{/A}\simeq\operatorname{CAlg}_{A}^{\operatorname{op}} is a covering if and only if it contains a finite collection of maps {AAi}1in\{A\rightarrow A_{i}\}_{1\leq i\leq n} for which the induced map A1inAiA\rightarrow\prod_{1\leq i\leq n}A_{i} is faithfully flat and fiber smooth.

Remark 2.13.

We refer to the Grothendieck topology of 2.12 as the fiber smooth topology on (CAlgRcn)op(\operatorname{CAlg}^{\operatorname{cn}}_{R})^{\operatorname{op}}. We will see later in 5.8 that it has the virtue of connecting quasi-coherent stacks in derived algebraic geometry and spectral algebraic geometry. Let 𝒮hv^fsm(CAlgRcn)Fun(CAlgRcn,𝒮^)\widehat{\operatorname{\mathcal{S}hv}}_{\operatorname{fsm}}(\operatorname{CAlg}^{\operatorname{cn}}_{R})\subseteq\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}}_{R},\widehat{\operatorname{\mathcal{S}}}) denote the full subcategory spanned by the fiber smooth sheaves.

Remark 2.14.

In the situation of 2.6, we can replace (i) by the apparently weaker condition that XX is a sheaf for the fiber smooth topology. Indeed, if XX satisfies this condition along with conditions (ii) and (iii) of 2.6, then XX is a (hypercomplete) sheaf with respect to the fpqc topology; this can be established by mimicking the proof of [14, 9.1.4.3].

2.15.

For the rest of this section, we study how to deal with derived stacks in the context of spectral algebraic geometry. In particular, we will see in 2.30 that one can associate a quasi-geometric spectral algebraic stack to each quasi-geometric derived algebraic stack. This connection has the virtue of allowing us to apply our main theorems 1.2 and 1.10—which are described in terms of quasi-geometric spectral algebraic stacks—to quasi-geometric derived algebraic stacks as well.

2.16.

Let RR be a commutative ring. Let CAlgRΔ\operatorname{CAlg}^{\Delta}_{R} denote the \infty-category of simplicial commutative RR-algebras (see, for example, [14, 25.1.1.1]). It follows from [14, 25.1.2.1] that there is a forgetful functor

ΘR:CAlgRΔCAlgRcn.\Theta_{R}:\operatorname{CAlg}^{\Delta}_{R}\rightarrow\operatorname{CAlg}^{\operatorname{cn}}_{R}.

We denote the image of ACAlgRΔA\in\operatorname{CAlg}^{\Delta}_{R} under ΘR\Theta_{R} by AA^{\circ} and refer to it as the underlying 𝔼\operatorname{\mathbb{E}}_{\infty}-algebra of AA. By virtue of [13, 4.3.3.7], the restriction functor ΘR:Fun(CAlgRcn,𝒮^)Fun(CAlgRΔ,𝒮^)\Theta_{R}^{\ast}:\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}}_{R},\widehat{\operatorname{\mathcal{S}}})\rightarrow\operatorname{Fun}(\operatorname{CAlg}^{\Delta}_{R},\widehat{\operatorname{\mathcal{S}}}) admits a left adjoint ΘR!{\Theta_{R}}_{!} which carries each functor X:CAlgRΔ𝒮^X:\operatorname{CAlg}^{\Delta}_{R}\rightarrow\widehat{\operatorname{\mathcal{S}}} to its left Kan extension along ΘR\Theta_{R}.

Remark 2.17.

There are evident analogues of the étale and fpqc topologies (see 2.2 and [14, B.6.1.3]) for the \infty-category (CAlgRΔ)op(\operatorname{CAlg}^{\Delta}_{R})^{\operatorname{op}}.

2.18.

Let Θ̊:CAlgΔCAlgcn\mathring{\Theta}:\operatorname{CAlg}^{\Delta}\rightarrow\operatorname{CAlg}^{\operatorname{cn}} denote the composition of Θ\Theta_{\mathbb{Z}} with the forgetful functor CAlgcnCAlgcn\operatorname{CAlg}^{\operatorname{cn}}_{\mathbb{Z}}\rightarrow\operatorname{CAlg}^{\operatorname{cn}}. To every derived Deligne-Mumford stack 𝖷=(𝒳,𝒪𝒳)\operatorname{\mathsf{X}}=(\operatorname{\mathcal{X}},\operatorname{\mathcal{O}}_{\operatorname{\mathcal{X}}}) (which can be defined as in [14, 1.4.4.2], using CAlgΔ\operatorname{CAlg}^{\Delta} in place of CAlgcn\operatorname{CAlg}^{\operatorname{cn}}), one can associate a spectral Deligne-Mumford stack (𝒳,Θ̊𝒪𝒳)(\operatorname{\mathcal{X}},\mathring{\Theta}\circ\operatorname{\mathcal{O}}_{\operatorname{\mathcal{X}}}), which we denote by 𝖷\operatorname{\mathsf{X}}^{\circ} and refer to as the underlying spectral Deligne-Mumford stack of 𝖷\operatorname{\mathsf{X}}. We can regard this construction as a functor from the \infty-category DerDM\operatorname{DerDM} of derived Deligne-Mumford stacks to the \infty-category SpDM\operatorname{SpDM} of spectral Deligne-Mumford stacks; it carries the affine spectrum of a simplicial commutative ring AA to the affine spectrum of the underlying 𝔼\operatorname{\mathbb{E}}_{\infty}-ring AA^{\circ}. Let DerDM/R\operatorname{DerDM}_{/R} and SpDM/R\operatorname{SpDM}_{/R} denote the slice \infty-categories DerDM/SpecR\operatorname{DerDM}_{/\operatorname{Spec}R} and SpDM/SpecR\operatorname{SpDM}_{/\operatorname{Spec}R}, respectively. We then have a functor

DerDM/RSpDM/R\operatorname{DerDM}_{/R}\rightarrow\operatorname{SpDM}_{/R}

which carries a derived Deligne-Mumford stack 𝖷\operatorname{\mathsf{X}} over RR to its underlying spectral Deligne-Mumford stack 𝖷\operatorname{\mathsf{X}}^{\circ} over RR. Let Le´t:Fun(CAlgRcn,𝒮^)𝒮hv^e´t(CAlgRcn)L_{\mathrm{\acute{e}t}}:\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}}_{R},\widehat{\operatorname{\mathcal{S}}})\rightarrow\widehat{\operatorname{\mathcal{S}hv}}_{\mathrm{\acute{e}t}}(\operatorname{CAlg}^{\operatorname{cn}}_{R}) denote a left adjoint to the inclusion (see 2.3). To extend the construction 𝖷𝖷\operatorname{\mathsf{X}}\mapsto\operatorname{\mathsf{X}}^{\circ} to derived (algebraic) stacks, we need the following “functor of points” perspective (cf. [15, 9.27]):

Lemma 2.19.

Let RR be a commutative ring. Then the composite functor

Le´tΘR!:Fun(CAlgRΔ,𝒮^)Fun(CAlgRcn,𝒮^)𝒮hv^e´t(CAlgRcn)L_{\mathrm{\acute{e}t}}\circ{\Theta_{R}}_{!}:\operatorname{Fun}(\operatorname{CAlg}^{\Delta}_{R},\widehat{\operatorname{\mathcal{S}}})\rightarrow\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}}_{R},\widehat{\operatorname{\mathcal{S}}})\rightarrow\widehat{\operatorname{\mathcal{S}hv}}_{\mathrm{\acute{e}t}}(\operatorname{CAlg}^{\operatorname{cn}}_{R})

restricts to the functor DerDM/RSpDM/R\operatorname{DerDM}_{/R}\rightarrow\operatorname{SpDM}_{/R}.

Proof.

Suppose we are given a derived Deligne-Mumford stack 𝖷=(𝒳,𝒪𝒳)\operatorname{\mathsf{X}}=(\operatorname{\mathcal{X}},\operatorname{\mathcal{O}}_{\operatorname{\mathcal{X}}}) over RR. Let h𝖷:CAlgRΔ𝒮^h_{\operatorname{\mathsf{X}}}:\operatorname{CAlg}^{\Delta}_{R}\rightarrow\widehat{\operatorname{\mathcal{S}}} denote the functor represented by 𝖷\operatorname{\mathsf{X}} (given by the formula h𝖷(A)=MapDerDM/R(SpecA,𝖷)h_{\operatorname{\mathsf{X}}}(A)=\operatorname{Map}_{\operatorname{DerDM}_{/R}}(\operatorname{Spec}A,\operatorname{\mathsf{X}})), and define h𝖷h_{\operatorname{\mathsf{X}}^{\circ}} similarly. We wish to show that the natural morphism of functors

(X):Le´t(ΘR!h𝖷)h𝖷(\ast_{X}):L_{\mathrm{\acute{e}t}}({\Theta_{R}}_{!}h_{\operatorname{\mathsf{X}}})\rightarrow h_{\operatorname{\mathsf{X}}^{\circ}}

is an equivalence (note that h𝖷h_{\operatorname{\mathsf{X}}^{\circ}} is a sheaf for the étale topology). Let 𝒳0\operatorname{\mathcal{X}}_{0} be the full subcategory of 𝒳\operatorname{\mathcal{X}} spanned by those objects U𝒳U\in\operatorname{\mathcal{X}} for which (XU)(\ast_{X_{U}}) is an equivalence, where XU:CAlgRΔ𝒮^X_{U}:\operatorname{CAlg}^{\Delta}_{R}\rightarrow\widehat{\operatorname{\mathcal{S}}} denotes the functor represented by the derived Deligne-Mumford stack 𝖷U=(𝒳/U,𝒪𝒳|U)\operatorname{\mathsf{X}}_{U}=(\operatorname{\mathcal{X}}_{/U},{\operatorname{\mathcal{O}}_{\operatorname{\mathcal{X}}}}|_{U}) over RR. It follows immediately that 𝒳0\operatorname{\mathcal{X}}_{0} contains all affine objects U𝒳U\in\operatorname{\mathcal{X}}. By virtue of [14, 1.4.7.9], it will suffice to show that 𝒳0\operatorname{\mathcal{X}}_{0} is closed under small colimits in 𝒳\operatorname{\mathcal{X}}. To prove this, suppose we are given a small diagram {Uα}\{U_{\alpha}\} in 𝒳0\operatorname{\mathcal{X}}_{0} having a colimit U𝒳U\in\operatorname{\mathcal{X}}. We then have a commutative diagram in 𝒮hv^e´t(CAlgRcn)\widehat{\operatorname{\mathcal{S}hv}}_{\mathrm{\acute{e}t}}(\operatorname{CAlg}^{\operatorname{cn}}_{R})

colimLe´tΘR!h𝖷Uα\textstyle{\operatorname*{colim}L_{\mathrm{\acute{e}t}}{\Theta_{R}}_{!}h_{\operatorname{\mathsf{X}}_{U_{\alpha}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}colimh𝖷Uα\textstyle{\operatorname*{colim}h_{\operatorname{\mathsf{X}}_{U_{\alpha}}^{\circ}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Le´tΘR!h𝖷U\textstyle{L_{\mathrm{\acute{e}t}}{\Theta_{R}}_{!}h_{\operatorname{\mathsf{X}}_{U}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h𝖷U.\textstyle{h_{\operatorname{\mathsf{X}}_{U}^{\circ}}.}

Since the transition morphisms in the diagram {𝖷Uα}\{\operatorname{\mathsf{X}}_{U_{\alpha}}^{\circ}\} are étale, the right vertical arrow is an equivalence. Combing the analogous equivalence for the diagram {𝖷Uα}\{\operatorname{\mathsf{X}}_{U_{\alpha}}\} of derived Deligne-Mumford stacks with the fact that the composition Le´tΘR!L_{\mathrm{\acute{e}t}}\circ{\Theta_{R}}_{!} commutes with small colimits, we see that the left vertical arrow is also an equivalence, thereby completing the proof. ∎

Remark 2.20.

Let us say that a derived Deligne-Mumford stack 𝖷\operatorname{\mathsf{X}} is quasi-geometric if it is quasi-compact and the diagonal Δ𝖷:𝖷𝖷×𝖷\Delta_{\operatorname{\mathsf{X}}}:\operatorname{\mathsf{X}}\rightarrow\operatorname{\mathsf{X}}\times\operatorname{\mathsf{X}} is quasi-affine. In this case, the underlying spectral Deligne-Mumford stack 𝖷\operatorname{\mathsf{X}}^{\circ} is quasi-geometric (see [14, 9.1.4.1]), so that the functor h𝖷h_{\operatorname{\mathsf{X}}^{\circ}} that it represents is a (hypercomplete) sheaf with respect to the fpqc topology by virtue of [14, 9.1.4.3]; in particular, it satisfies descent for the fiber smooth topology.

Let Lfsm:Fun(CAlgRcn,𝒮^)𝒮hv^fsm(CAlgRcn)L_{\operatorname{fsm}}:\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}}_{R},\widehat{\operatorname{\mathcal{S}}})\rightarrow\widehat{\operatorname{\mathcal{S}hv}}_{\operatorname{fsm}}(\operatorname{CAlg}^{\operatorname{cn}}_{R}) denote a left adjoint to the inclusion functor (see 2.13). Arguing as in the proof of 2.19 (using Lfsmh𝖷UαL_{\operatorname{fsm}}h_{\operatorname{\mathsf{X}}_{U_{\alpha}}^{\circ}} and Lfsmh𝖷UL_{\operatorname{fsm}}h_{\operatorname{\mathsf{X}}_{U}^{\circ}} in place of h𝖷Uαh_{\operatorname{\mathsf{X}}_{U_{\alpha}}^{\circ}} and h𝖷Uh_{\operatorname{\mathsf{X}}_{U}^{\circ}}, respectively), we deduce that the composite functor

LfsmΘR!:Fun(CAlgRΔ,𝒮^)Fun(CAlgRcn,𝒮^)𝒮hv^fsm(CAlgRcn)L_{\operatorname{fsm}}\circ{\Theta_{R}}_{!}:\operatorname{Fun}(\operatorname{CAlg}^{\Delta}_{R},\widehat{\operatorname{\mathcal{S}}})\rightarrow\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}}_{R},\widehat{\operatorname{\mathcal{S}}})\rightarrow\widehat{\operatorname{\mathcal{S}hv}}_{\operatorname{fsm}}(\operatorname{CAlg}^{\operatorname{cn}}_{R})

carries a quasi-geometric derived Deligne-Mumford stack 𝖷\operatorname{\mathsf{X}} over RR to its underlying quasi-geometric spectral Deligne-Mumford stack 𝖷\operatorname{\mathsf{X}}^{\circ} over RR.

2.21.

According to [12, 3.4.7], a morphism ABA\rightarrow B in CAlgΔ\operatorname{CAlg}^{\Delta} is smooth if the relative algebraic cotangent complex LB/AalgL^{\mathrm{alg}}_{B/A} (see [12, 3.2.14] and [14, 25.3.2.1]) is a dual of connective and perfect object of ModB\operatorname{Mod}_{B} and almost of finite presentation (see [12, 3.1.5]). The following observation shows a close relationship between smooth maps in the derived setting and fiber smooth maps in the spectral setting:

Lemma 2.22.

Let f:ABf:A\rightarrow B be a morphism of simplicial commutative rings. Then ff is smooth if and only if the underlying morphism of 𝔼\operatorname{\mathbb{E}}_{\infty}-rings f:ABf^{\circ}:A^{\circ}\rightarrow B^{\circ} is fiber smooth.

Proof.

By virtue of [12, 3.4.9], ff is smooth if and only if it is flat and π0(f)\pi_{0}(f) is a smooth map of commutative rings, so the desired result follows from 2.10. ∎

Remark 2.23.

There is an analogue of the fiber smooth topology of 2.12 for the \infty-category (CAlgRΔ)op(\operatorname{CAlg}^{\Delta}_{R})^{\operatorname{op}} by replacing “fiber smooth” with “smooth” in 2.12. We refer to this Grothendieck topology as the smooth topology on (CAlgRΔ)op(\operatorname{CAlg}^{\Delta}_{R})^{\operatorname{op}}. Let 𝒮hv^sm(CAlgRΔ)Fun(CAlgRΔ,𝒮^)\widehat{\operatorname{\mathcal{S}hv}}_{\operatorname{sm}}(\operatorname{CAlg}^{\Delta}_{R})\subseteq\operatorname{Fun}(\operatorname{CAlg}^{\Delta}_{R},\widehat{\operatorname{\mathcal{S}}}) denote the full subcategory spanned by the smooth sheaves.

2.24.

Using an evident analogue of 2.4, we introduce a variant of 2.6 in the derived setting:

Definition 2.25.

Let RR be a commutative ring. A quasi-geometric derived algebraic stack over RR is a functor X:CAlgRΔ𝒮^X:\operatorname{CAlg}^{\Delta}_{R}\rightarrow\widehat{\operatorname{\mathcal{S}}} which satisfies the following conditions:

  1. (i)

    The functor XX is a sheaf for the fpqc topology of 2.17.

  2. (ii)

    The diagonal morphism Δ:XX×X\Delta:X\rightarrow X\times X is representable and quasi-affine.

  3. (iii)

    There exists a simplicial commutative algebra AA over RR and a morphism SpecAX\operatorname{Spec}A\rightarrow X which is smooth and surjective.

Remark 2.26.

Arguing as in the proof of [1, 4.47], we see that a smooth morphism of derived Deligne-Mumford stacks étale-locally admits a section. Using this observation, a minor modification of the proof of [14, 9.1.4.3] guarantees that an étale sheaf satisfying conditions (ii) and (iii) of 2.25 is a sheaf for the fpqc topology. In the situation of 2.25, one can therefore replace (i) by the weaker condition that XX is a sheaf for the étale topology.

2.27.

In order to extend 2.19 from derived Deligne-Mumford stacks to (quasi-geometric) derived algebraic stacks, we need to understand if the functor Le´tΘR!L_{\mathrm{\acute{e}t}}\circ{\Theta_{R}}_{!} carries representable morphisms in Fun(CAlgRΔ,𝒮^)\operatorname{Fun}(\operatorname{CAlg}^{\Delta}_{R},\widehat{\operatorname{\mathcal{S}}}) to representable morphisms in 𝒮hv^e´t(CAlgRcn)\widehat{\operatorname{\mathcal{S}hv}}_{\mathrm{\acute{e}t}}(\operatorname{CAlg}^{\operatorname{cn}}_{R}); however, this is not straightforward at all. We will circumvent this difficulty by using the following lemmas:

Lemma 2.28.

Let f:XYf:X\rightarrow Y be a representable morphism in the \infty-category of étale sheaves on (CAlgRΔ)op(\operatorname{CAlg}^{\Delta}_{R})^{\operatorname{op}}. If ff is a smooth surjection, then ff is an effective epimorphism and (LfsmΘR!)(f)(L_{\operatorname{fsm}}\circ{\Theta_{R}}_{!})(f) is an effective epimorphism of fiber smooth sheaves on (CAlgRcn)op(\operatorname{CAlg}^{\operatorname{cn}}_{R})^{\operatorname{op}}.

Proof.

The forgetful functor ΘR:CAlgRΔCAlgRcn\Theta_{R}:\operatorname{CAlg}^{\Delta}_{R}\rightarrow\operatorname{CAlg}^{\operatorname{cn}}_{R} is left exact (see [14, 25.1.2.2]) and carries smooth coverings to fiber smooth coverings (see 2.22). In particular, the restriction functor ΘR\Theta_{R}^{\ast} restricts to a morphism of \infty-topoi 𝒮hv^fsm(CAlgRcn)𝒮hv^sm(CAlgRΔ)\widehat{\operatorname{\mathcal{S}hv}}_{\operatorname{fsm}}(\operatorname{CAlg}^{\operatorname{cn}}_{R})\rightarrow\widehat{\operatorname{\mathcal{S}hv}}_{\operatorname{sm}}(\operatorname{CAlg}^{\Delta}_{R}) (see 2.23), whose left adjoint is given by the composition of the inclusion 𝒮hv^sm(CAlgRΔ)Fun(CAlgRΔ,𝒮^)\widehat{\operatorname{\mathcal{S}hv}}_{\operatorname{sm}}(\operatorname{CAlg}^{\Delta}_{R})\subseteq\operatorname{Fun}(\operatorname{CAlg}^{\Delta}_{R},\widehat{\operatorname{\mathcal{S}}}) with LfsmΘR!L_{\operatorname{fsm}}\circ{\Theta_{R}}_{!}. Since a left adjoint of a geometric morphism of \infty-topoi preserves effective epimorphisms [13, 6.2.3.6], it will suffice to show that ff is an effective epimorphism in 𝒮hv^sm(CAlgRΔ)\widehat{\operatorname{\mathcal{S}hv}}_{\operatorname{sm}}(\operatorname{CAlg}^{\Delta}_{R}). By virtue of [12, 3.4.4], a smooth surjective morphism f:𝖷𝖸f:\operatorname{\mathsf{X}}\rightarrow\operatorname{\mathsf{Y}} of derived Deligne-Mumford stacks satisfies an infinitesimal lifting criterion. Using the argument of [1, 4.47], we deduce that ff is an effective epimorphism of étale sheaves, which implies the desired result. ∎

2.29.

We are now ready to prove the main result of this section:

Proposition 2.30.

Let RR be a commutative ring. Let XX be a quasi-geometric derived algebraic stack over RR. Then the functor (LfsmΘR!)(X):CAlgRcn𝒮^(L_{\operatorname{fsm}}\circ{\Theta_{R}}_{!})(X):\operatorname{CAlg}^{\operatorname{cn}}_{R}\rightarrow\widehat{\operatorname{\mathcal{S}}} is a quasi-geometric spectral algebraic stack over RR.

Proof.

Choose a smooth surjection p:SpecAXp:\operatorname{Spec}A\rightarrow X where AA is a simplicial commutative RR-algebra. Let 𝖸\operatorname{\mathsf{Y}} be a derived Deligne-Mumford stack representing the fiber product SpecA×XSpecA\operatorname{Spec}A\times_{X}\operatorname{Spec}A (note that 𝖸\operatorname{\mathsf{Y}} is quasi-affine), so that it fits into a pullback square of fpqc sheaves

𝖸\textstyle{\operatorname{\mathsf{Y}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}q\scriptstyle{q}SpecA\textstyle{\operatorname{Spec}A\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}SpecA\textstyle{\operatorname{Spec}A\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}X.\textstyle{X.}

Using 2.20 and the fact that the functor LfsmΘR!L_{\operatorname{fsm}}\circ{\Theta_{R}}_{!} is left exact (see the proof of 2.28), the above diagram induces a pullback square of fiber smooth sheaves on (CAlgRcn)op(\operatorname{CAlg}^{\operatorname{cn}}_{R})^{\operatorname{op}}

𝖸\textstyle{\operatorname{\mathsf{Y}}^{\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}q\scriptstyle{q^{\circ}}SpecA\textstyle{\operatorname{Spec}A^{\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p^{\circ}}SpecA\textstyle{\operatorname{Spec}A^{\circ}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p^{\circ}}Lfsm(ΘR!(X)).\textstyle{L_{\operatorname{fsm}}({\Theta_{R}}_{!}(X)).}

Since q:𝖸SpecAq:\operatorname{\mathsf{Y}}\rightarrow\operatorname{Spec}A is quasi-affine, so is its underlying morphism qq^{\circ} of spectral Deligne-Mumford stacks. By virtue of 2.28, the map p:SpecALfsm(ΘR!(X))p^{\circ}:\operatorname{Spec}A^{\circ}\rightarrow L_{\operatorname{fsm}}({\Theta_{R}}_{!}(X)) is an effective epimorphism, so that a relative version of [14, 9.1.1.3] with the fiber smooth topology in place of the fpqc topology (which can be proven by exactly the same argument) guarantees that pp^{\circ} is representable quasi-affine. Since qq is a smooth surjection, it follows from 2.22 that qq^{\circ} is fiber smooth and surjective. Consequently, the representable morphism pp^{\circ} is also a fiber smooth surjection because the property of being a fiber smooth morphism is local on the target with respect to the flat topology (see [14, 11.2.5.9]). Applying a variant of [14, 9.1.1.2] which uses fiber smooth morphisms in place of flat morphisms to Lfsm(ΘR!(X))L_{\operatorname{fsm}}({\Theta_{R}}_{!}(X)) and pp^{\circ}, we deduce that the diagonal of Lfsm(ΘR!(X))L_{\operatorname{fsm}}({\Theta_{R}}_{!}(X)) is representable quasi-affine. Invoking 2.14, we conclude that Lfsm(ΘR!(X))L_{\operatorname{fsm}}({\Theta_{R}}_{!}(X)) is a quasi-geometric spectral algebraic stack over RR. ∎

Remark 2.31.

Let XX be a quasi-geometric derived algebraic stack XX over RR. Let XX^{\circ} denote its image under the functor LfsmΘR!L_{\operatorname{fsm}}\circ{\Theta_{R}}_{!}; we refer to XX^{\circ} as the underlying quasi-geometric spectral algebraic stack over RR of XX.

3. Points of Quasi-geometric Spectral Algebraic Stacks

In this section, we define the notion of points of quasi-geometric spectral algebraic stacks in such a way that the points of ordinary algebraic stacks are defined (see [11, 5.2]) and establish some of their basic properties.

Definition 3.1.

Let X:CAlgcn𝒮^X:\operatorname{CAlg}^{\operatorname{cn}}\rightarrow\widehat{\operatorname{\mathcal{S}}} be a functor satisfying the following condition:

  • ()(\ast)

    There exist a quasi-separated spectral algebraic space 𝖷0\operatorname{\mathsf{X}}_{0} and a relative spectral algebraic space π:𝖷0X\pi:\operatorname{\mathsf{X}}_{0}\rightarrow X in Fun(CAlgcn,𝒮^)\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}}) which is quasi-separated, faithfully flat, and locally almost of finite presentation.

A point of XX is a morphism SpecκX\operatorname{Spec}\kappa\rightarrow X, where κ\kappa is a field. We define an equivalence relation on the (not necessarily small) set of points of XX as follows: given two points p:SpecκXp:\operatorname{Spec}\kappa\rightarrow X and p:SpecκXp^{\prime}:\operatorname{Spec}\kappa^{\prime}\rightarrow X, we will write ppp\sim p^{\prime} if there exists a field κ′′\kappa^{\prime\prime} and a commutative diagram

Specκ′′\textstyle{\operatorname{Spec}\kappa^{\prime\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Specκ\textstyle{\operatorname{Spec}\kappa^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p^{\prime}}Specκ\textstyle{\operatorname{Spec}\kappa\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p}X\textstyle{X}

in Fun(CAlgcn,𝒮^)\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}}); let |X||X| denote the set of equivalence classes. We endow |X||X| with the topology generated by the sets |U||U|, where UU ranges over all representable open j:UXj:U\rightarrow X in Fun(CAlgcn,𝒮^)\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}}) (here we identify |U||U| with its image under the natural map of sets |j|:|U||X||j|:|U|\rightarrow|X| which is injective).

Remark 3.2.

In the special case where the functor XX is representable by a quasi-separated spectral algebraic space, it follows from [14, 3.6.3.1] that the topological space |X||X| defined above is homeomorphic to the topological space associated to XX in the sense of [14, 3.6.1.1].

3.3.

For later reference, we record some observations whose proofs are immediate:

Lemma 3.4.

Let f:XYf:X\rightarrow Y be a morphism in Fun(CAlgcn,𝒮^)\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}}), where XX and YY satisfy condition ()(\ast) of 3.1. Then:

  1. (i)(i)

    The induced map of sets |f|:|X||Y||f|:|X|\rightarrow|Y| is continuous.

  2. (ii)(ii)

    If ff is representable, then it is surjective if and only if the induced map |f||f| is surjective.

  3. (iii)(iii)

    Suppose we are given a pullback diagram

    X\textstyle{X^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Y\textstyle{Y^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Y\textstyle{Y}

    of functors satisfying condition ()(\ast) of 3.1. Then the induced map |X||X|×|Y||Y||X^{\prime}|\rightarrow|X|\times_{|Y|}|Y^{\prime}| is a surjection of topological spaces.

3.5.

The rest of this section is devoted to investigating some properties of the “underlying topological spaces” of 3.1.

Lemma 3.6.

Let π:𝖷0X\pi:\operatorname{\mathsf{X}}_{0}\rightarrow X be a morphism of functors appearing in condition ()(\ast) of 3.1. Then the induced map of topological spaces |π|:|𝖷0||X||\pi|:|\operatorname{\mathsf{X}}_{0}|\rightarrow|X| is open. In particular, |π||\pi| is a quotient map.

Proof.

Let U|𝖷0|U\subseteq|\operatorname{\mathsf{X}}_{0}| be an open subset; we wish to show that its image under |π||\pi| is open. Let XUX_{U} be the subfunctor of XX which carries each object ACAlgcnA\in\operatorname{CAlg}^{\operatorname{cn}} to the summand of X(A)X(A) spanned by those ηX(A)\eta\in X(A) for which the induced map |η|:|SpecA||X||\eta|:|\operatorname{Spec}A|\rightarrow|X| factors through |π|(U)|\pi|(U). We claim that the inclusion j:XUXj:X_{U}\rightarrow X is representable open. For this, let η:SpecAX\eta:\operatorname{Spec}A\rightarrow X be a point and consider a pullback diagram of functors

SpecA×X𝖷0\textstyle{\operatorname{Spec}A\times_{X}\operatorname{\mathsf{X}}_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η\scriptstyle{\eta^{\prime}}π\scriptstyle{\pi^{\prime}}𝖷0\textstyle{\operatorname{\mathsf{X}}_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}π\scriptstyle{\pi}SpecA\textstyle{\operatorname{Spec}A\ignorespaces\ignorespaces\ignorespaces\ignorespaces}η\scriptstyle{\eta}X.\textstyle{X.}

Using 3.4, we can identify |η|1(|π|(U))|\eta|^{-1}(|\pi|(U)) with |π|(|η|1U)|\pi^{\prime}|(|\eta^{\prime}|^{-1}U); in particular, it is an open subset of |SpecA||\operatorname{Spec}A| because |π||\pi^{\prime}| is an open map by virtue of a refinement of [14, 4.3.4.3] without the quasi-compact assumption (which can be proven with little additional effort). Then [14, 19.2.4.1] guarantees that jj is representable open. By construction, we have that |j|(|XU|)=|π|(U)|j|(|X_{U}|)=|\pi|(U), thereby completing the proof. ∎

Lemma 3.7.

Let X:CAlgcn𝒮^X:\operatorname{CAlg}^{\operatorname{cn}}\rightarrow\widehat{\operatorname{\mathcal{S}}} be a functor satisfying condition ()(\ast) of 3.1 and let η:SpecAX\eta:\operatorname{Spec}A\rightarrow X be a representable morphism which is flat and locally almost of finite presentation. Then |η|(|SpecA|)|X||\eta|(|\operatorname{Spec}A|)\subseteq|X| is open.

Proof.

By virtue of 3.6, |π||\pi| is a quotient map. Then the desired result follows by combining 3.4 with the variant of [14, 4.3.4.3] mentioned in the proof of 3.6. ∎

Lemma 3.8.

Let X:CAlgcn𝒮^X:\operatorname{CAlg}^{\operatorname{cn}}\rightarrow\widehat{\operatorname{\mathcal{S}}} be a functor satisfying condition ()(\ast) of 3.1. Then the underlying topological space |X||X| has a basis consisting of quasi-compact open subsets of the form |η|(|SpecA|)|\eta|(|\operatorname{Spec}A|), where AA is a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring and η:SpecAX\eta:\operatorname{Spec}A\rightarrow X is a relative spectral algebraic space which is flat and locally almost of finite presentation.

Proof.

Using 3.6 and 3.7, we can reduce to the case where XX is a quasi-separated spectral algebraic space, in which case the desired result follows from (the proof of) [14, 3.6.3.3]. ∎

3.9.

Combining 3.7 with 3.8, we immediately deduce the following generalization of 3.7:

Lemma 3.10.

Let f:XXf:X^{\prime}\rightarrow X be a morphism in Fun(CAlgcn,𝒮^)\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}}), where XX^{\prime} and XX satisfy condition ()(\ast) of 3.1. If ff is representable flat and locally almost of finite presentation, then the induced map of topological spaces |X||X||X^{\prime}|\rightarrow|X| is open.

3.11.

Let XX be a functor which satisfies condition ()(\ast) of 3.1. Under mild hypotheses, giving an open subset of |X||X| is equivalent to giving an open immersion UXU\rightarrow X:

Lemma 3.12.

Let X:CAlgcn𝒮^X:\operatorname{CAlg}^{\operatorname{cn}}\rightarrow\widehat{\operatorname{\mathcal{S}}} be a functor which satisfies condition ()(\ast) of 3.1 and descent for the fpqc topology. Let π:𝖷0X\pi:\operatorname{\mathsf{X}}_{0}\rightarrow X be a morphism as in condition ()(\ast) of 3.1. Assume that the diagonal of XX is representable quasi-affine. If 𝒰|X|\operatorname{\mathcal{U}}\subseteq|X| is a quasi-compact open subset, then there exist a quasi-geometric stack UU and a representable open immersion j:UXj:U\rightarrow X such that |j|(|U|)=𝒰|j|(|U|)=\operatorname{\mathcal{U}}.

Proof.

Let UU be the subfunctor of XX which carries an object ACAlgcnA\in\operatorname{CAlg}^{\operatorname{cn}} to the summand of X(A)X(A) spanned by those ηX(A)\eta\in X(A) for which the induced map of topological spaces |η|:|SpecA||X||\eta|:|\operatorname{Spec}A|\rightarrow|X| factors through 𝒰\operatorname{\mathcal{U}}. It follows immediately that the inclusion j:UXj:U\rightarrow X is representable open and that |j|(|U|)=𝒰|j|(|U|)=\operatorname{\mathcal{U}} (note that UU satisfies condition ()(\ast) of 3.1). Using [14, 6.3.3.8], we see that UU is a sheaf for the fpqc topology. Since the diagonal of XX is quasi-affine, so is the diagonal of UU. By virtue of 3.10, |U||U| is homeomorphic to 𝒰\operatorname{\mathcal{U}}, hence quasi-compact. Then 3.8 guarantees that there exists a relative spectral algebraic space SpecAU\operatorname{Spec}A\rightarrow U which is faithfully flat (and locally almost of finite presentation), which completes the proof. ∎

3.13.

We now extend the relationship between reduced closed substacks of a (quasi-geometric) spectral Deligne-Mumford stack 𝖷\operatorname{\mathsf{X}} and open subsets of |𝖷||\operatorname{\mathsf{X}}| to quasi-geometric spectral algebraic stacks; see [14, 3.1.6.3].

Lemma 3.14.

Let XX be a quasi-geometric spectral algebraic stack. The following conditions are equivalent:

  1. (i)(i)

    For every fiber smooth morphism f:SpecAXf:\operatorname{Spec}A\rightarrow X, the 𝔼\operatorname{\mathbb{E}}_{\infty}-ring AA is discrete and reduced.

  2. (ii)(ii)

    There exists a fiber smooth surjection SpecAX\operatorname{Spec}A\rightarrow X, where the 𝔼\operatorname{\mathbb{E}}_{\infty}-ring AA is discrete and reduced.

Proof.

According to [14, 2.8.3.9], the property of being a 0-truncated spectral Deligne-Mumford stack is local with respect to the flat topology, so the desired equivalence follows from the fact that for ordinary algebraic spaces, the property of being reduced is local with respect to the smooth topology (see, for example, [18, Tag 034E]). ∎

Definition 3.15.

Let XX be a quasi-geometric spectral algebraic stack. Let us say that XX is reduced if it satisfies the equivalent conditions of 3.14.

Proposition 3.16.

Let j:UXj:U\rightarrow X be a representable open immersion of quasi-geometric spectral algebraic stacks. Then there exist a reduced quasi-geometric spectral algebraic stack KK and a representable closed immersion i:KXi:K\rightarrow X such that |i||K|=|X||j||U||i||K|=|X|-|j||U|.

Proof.

Choose a fiber smooth surjection f:𝖷0Xf:\operatorname{\mathsf{X}}_{0}\rightarrow X, where 𝖷0\operatorname{\mathsf{X}}_{0} is affine. Let 𝖷\operatorname{\mathsf{X}}_{\bullet} denote the Čech nerve of the morphism ff, which is a simplicial object of the \infty-category SpDM\operatorname{SpDM} of spectral Deligne-Mumford stacks. The projections U×X𝖷n𝖷nU\times_{X}\operatorname{\mathsf{X}}_{n}\rightarrow\operatorname{\mathsf{X}}_{n} are open immersions of spectral Deligne-Mumford stacks, so that there is a simplicial object 𝖪\operatorname{\mathsf{K}}_{\bullet} of SpDM\operatorname{SpDM}, where each 𝖪n\operatorname{\mathsf{K}}_{n} is the reduced closed substack complementary to U×X𝖷nU\times_{X}\operatorname{\mathsf{X}}_{n}, and is quasi-geometric. Let KK denote the geometric realization of 𝖪\operatorname{\mathsf{K}}_{\bullet} in the \infty-category of fpqc sheaves; it is a quasi-geometric stack by virtue of [14, 9.1.1.5]. By construction, the diagram of fpqc sheaves

𝖪0\textstyle{\operatorname{\mathsf{K}}_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖷0\textstyle{\operatorname{\mathsf{X}}_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}K\textstyle{K\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X\textstyle{X}

is a pullback square, from which it follows immediately that KK is a reduced quasi-geometric spectral algebraic stack. Applying [14, 9.1.1.3] to the diagram above, we deduce that the canonical morphism KXK\rightarrow X is representable quasi-affine, thereby a closed immersion with the property that |K||K| is complementary to |U||U| (regarded as subsets of |X||X|). ∎

4. Excision Squares

Our goal in this section is to supply a special presentation of quasi-geometric spectral algebraic stacks in the spirit of “induction principle” for ordinary algebraic stacks; see [9, 4.1] and [9, Theorem E]. For this, we introduce excision squares and stacky scallop decompositions of such stacks.

Definition 4.1.

A diagram of quasi-geometric spectral algebraic stacks σ:\sigma:

U\textstyle{U^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X\textstyle{X^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}U\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j}X\textstyle{X}

is an excision square if it satisfies the following conditions:

  1. (i)

    The diagram σ\sigma is a pullback square.

  2. (ii)

    The morphism jj is a representable open immersion.

  3. (iii)

    The morphism ff is representable étale.

  4. (iv)

    The projection K×XXKK\times_{X}X^{\prime}\rightarrow K is an equivalence (here KK denotes the reduced closed substack of XX complementary to UU; see 3.16).

Remark 4.2.

According to [14, p.321], a diagram of spectral Deligne-Mumford stacks

𝖴\textstyle{\operatorname{\mathsf{U}}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{\prime}}f\scriptstyle{f^{\prime}}𝖷\textstyle{\operatorname{\mathsf{X}}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖴\textstyle{\operatorname{\mathsf{U}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖷\textstyle{\operatorname{\mathsf{X}}}

is an excision square if it is a pushout square, jj^{\prime} is an open immersion, and ff^{\prime} is étale. If it is a diagram of quasi-geometric spectral Deligne-Mumford stacks, then it is an excision square in the sense of [14, p.321] if and only if the associated square of quasi-geometric stacks is an excision square in the sense of 4.1 (see also [14, 9.1.4.4]).

4.3.

Let 𝖷\operatorname{\mathsf{X}} be a spectral Deligne-Mumford stack. According to [14, 2.5.3.1], a scallop decomposition of 𝖷\operatorname{\mathsf{X}} consists of a sequence of open immersions 𝖴0𝖴1𝖴n𝖷\emptyset\simeq\operatorname{\mathsf{U}}_{0}\rightarrow\operatorname{\mathsf{U}}_{1}\rightarrow\cdots\rightarrow\operatorname{\mathsf{U}}_{n}\simeq\operatorname{\mathsf{X}} such that for each 1in1\leq i\leq n, there exists an excision square of spectral Deligne-Mumford stacks

𝖵\textstyle{\operatorname{\mathsf{V}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖸\textstyle{\operatorname{\mathsf{Y}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖴i1\textstyle{\operatorname{\mathsf{U}}_{i-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝖴i,\textstyle{\operatorname{\mathsf{U}}_{i},}

where 𝖸\operatorname{\mathsf{Y}} is affine and 𝖵\operatorname{\mathsf{V}} is quasi-compact. This is a useful device for proving many basic results in the theory of spectral algebraic geometry by reducing to the affine case. However, a spectral Deligne-Mumford stack admits a scallop decomposition if and only if it is a quasi-compact quasi-separated spectral algebraic space (see [14, 3.4.2.1]), so that the concept of a scallop decomposition is not adequate for spectral Deligne-Mumford stacks which are not spectral algebraic spaces. To incorporate a wider class of spectral algebro-geometric objects, we should relax the requirement that 𝖸\operatorname{\mathsf{Y}} is affine in the diagram above; we therefore allow 𝖸\operatorname{\mathsf{Y}} to be quasi-geometric spectral algebraic stacks, which is sufficient for our needs in this paper:

Definition 4.4.

Let XX be a quasi-geometric spectral algebraic stack. A stacky scallop decomposition of XX consists of a sequence of representable open immersions of quasi-geometric spectral algebraic stacks

U0U1UnX\emptyset\simeq U_{0}\rightarrow U_{1}\rightarrow\cdots\rightarrow U_{n}\simeq X

satisfying the following condition: for each 1in1\leq i\leq n, there exists an excision square

V\textstyle{V\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}W\textstyle{W\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ui1\textstyle{U_{i-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ui\textstyle{U_{i}}

of quasi-geometric spectral algebraic stacks (see 4.1).

4.5.

The notion of Nisnevich covering of quasi-compact quasi-separated spectral algebraic space (see [14, 3.7.1.1]) admits a straightforward extension to quasi-geometric spectral algebraic stacks:

Definition 4.6.

Let XX be a quasi-geometric spectral algebraic stack. Let {pα:WαX}\{p_{\alpha}:W_{\alpha}\rightarrow X\} be a collection of representable étale morphisms of quasi-geometric spectral algebraic stacks. We say that {pα}\{p_{\alpha}\} is a Nisnevich covering of XX if there exists a sequence of open immersions of quasi-geometric spectral algebraic stacks

Un+1U0X\emptyset\simeq U_{n+1}\hookrightarrow\cdots\hookrightarrow U_{0}\simeq X

satisfying the following condition: for each 0in0\leq i\leq n, let KiK_{i} denote the reduced closed substack of UiU_{i} which is complementary to Ui+1U_{i+1} (see 3.16). Then the composition KiUiXK_{i}\rightarrow U_{i}\rightarrow X factors through some pαp_{\alpha}.

Lemma 4.7.

Let p:WXp:W\rightarrow X be a Nisnevich covering of quasi-geometric spectral algebraic stacks. Then pp induces a stacky scallop decomposition of XX.

Proof.

In the situation of 4.6, for each 0mn0\leq m\leq n, consider a subset of |Um×XW||U_{m}\times_{X}W| which is complementary to |im|(|Km×XW||sm||Km|)|i_{m}|(|K_{m}\times_{X}W|-|s_{m}||K_{m}|), where im:Km×XWUm×XWi_{m}:K_{m}\times_{X}W\rightarrow U_{m}\times_{X}W is the closed immersion determined by KmUmK_{m}\rightarrow U_{m} and sms_{m} is a section of the projection Km×XWKmK_{m}\times_{X}W\rightarrow K_{m} (note that pp is a Nisnevich covering). Since sms_{m} is an open immersion, this subset is open. Moreover, it is quasi-compact because it can be written as a disjoint union of the image of the map |imsm||i_{m}\circ s_{m}| and |Um+1×XW||U_{m+1}\times_{X}W|. According to 3.12, this quasi-compact open subset determines a representable open immersion WmUm×XWW_{m}\rightarrow U_{m}\times_{X}W of quasi-geometric spectral algebraic stacks. Composing this with the projection to UmU_{m}, we obtain a representable étale morphism WmUmW_{m}\rightarrow U_{m}. Note that the composition imsmi_{m}\circ s_{m} factors through WmW_{m}, inducing a section of the projection Km×UmWmKmK_{m}\times_{U_{m}}W_{m}\rightarrow K_{m}. By construction, this section is a surjective open immersion, hence an equivalence. Consequently, the pullback square of quasi-geometric spectral algebraic stacks

Um+1×UmWm\textstyle{U_{m+1}\times_{U_{m}}W_{m}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Wm\textstyle{W_{m}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Um+1\textstyle{U_{m+1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Um\textstyle{U_{m}}

is an excision square, thereby completing the proof. ∎

4.8.

Our primary goal in this section is to produce some presentation of quasi-geometric algebraic stacks, which allows us to apply some dévissage method for the study of those stacks. To obtain such a presentation, we will make use of the Hilbert functors in the setting of spectral algebraic geometry. Note that [12, 8.3.3] shows the representability of the Hilbert functors in the derived setting; we will prove a similar result for the spectral Hilbert functors. We begin by defining the Hilbert functors in the spectral setting. Let p:XSp:X\rightarrow S be a representable morphism in Fun(CAlgcn,𝒮^)\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}}). Let π:CAlgScnCAlgcn\pi:\operatorname{CAlg}^{\operatorname{cn}}_{S}\rightarrow\operatorname{CAlg}^{\operatorname{cn}} be a left fibration classified by SS (see [13, 3.3.2.2]). Let us identify objects of CAlgScn\operatorname{CAlg}^{\operatorname{cn}}_{S} with pairs (A,η)(A,\eta), where AA is a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring and ηS(A)\eta\in S(A) is an AA-valued point of SS. Note that the opposite of CAlgScn\operatorname{CAlg}^{\operatorname{cn}}_{S} can be identified with the fiber product (CAlgcn)op×Fun(CAlgcn,𝒮^)Fun(CAlgcn,𝒮^)/S(\operatorname{CAlg}^{\operatorname{cn}})^{\operatorname{op}}\times_{\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}})}\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}})_{/S}, where (CAlgcn)opFun(CAlgcn,𝒮)(\operatorname{CAlg}^{\operatorname{cn}})^{\operatorname{op}}\rightarrow\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\operatorname{\mathcal{S}}) is the Yoneda embedding. Consider the composition

(CAlgScn)opFun(CAlgcn,𝒮^)/SFun(CAlgcn,𝒮^)/XFun(CAlgcn,𝒮^),(\operatorname{CAlg}^{\operatorname{cn}}_{S})^{\operatorname{op}}\subseteq\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}})_{/S}\rightarrow\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}})_{/X}\rightarrow\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}}),

where the middle arrow is the base change functor SS×SXS^{\prime}\mapsto S^{\prime}\times_{S}X and the last is the forgetful functor. This composition can be described more informally as follows: to each pair (A,η)(A,\eta), it assigns the fiber product SpecA×SX\operatorname{Spec}A\times_{S}X, where SpecAS\operatorname{Spec}A\rightarrow S is determined by η\eta. We also consider the composition Fun(Δ1,SpDM)Fun({1},SpDM)Fun(CAlgcn,𝒮^)\operatorname{Fun}(\Delta^{1},\operatorname{SpDM})\rightarrow\operatorname{Fun}(\{1\},\operatorname{SpDM})\rightarrow\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}}), where the first map is an evaluation at {1}Δ1\{1\}\subseteq\Delta^{1} and the second is the fully faithful embedding. Let 𝒞\operatorname{\mathcal{C}} denote the full subcategory of the fiber product

(CAlgScn)op×Fun(CAlgcn,𝒮^)Fun(Δ1,SpDM)(\operatorname{CAlg}^{\operatorname{cn}}_{S})^{\operatorname{op}}\times_{\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}})}\operatorname{Fun}(\Delta^{1},\operatorname{SpDM})

spanned by those morphisms f:𝖸SpecA×SXf:\operatorname{\mathsf{Y}}\rightarrow\operatorname{Spec}A\times_{S}X, where 𝖸\operatorname{\mathsf{Y}} is a spectral Deligne-Mumford stack, ff is a closed immersion, and the composition of ff with the projection SpecA×SXSpecA\operatorname{Spec}A\times_{S}X\rightarrow\operatorname{Spec}A is proper, flat, and locally almost of finite presentation. Let Hilb^X/S:CAlgcn𝒞at^\widehat{\operatorname{Hilb}}_{X/S}:\operatorname{CAlg}^{\operatorname{cn}}\rightarrow\widehat{\operatorname{\mathcal{C}at}}_{\infty} denote the functor classifying the Cartesian fibration 𝒞(CAlgScn)opπop(CAlgcn)op\operatorname{\mathcal{C}}\rightarrow(\operatorname{CAlg}^{\operatorname{cn}}_{S})^{\operatorname{op}}\stackrel{{\scriptstyle\pi^{\operatorname{op}}}}{{\rightarrow}}(\operatorname{CAlg}^{\operatorname{cn}})^{\operatorname{op}} (here 𝒞at^\widehat{\operatorname{\mathcal{C}at}}_{\infty} denotes the \infty-category of (not necessarily small) \infty-categories; see [13, 3.0.0.5]). Let HilbX/S:CAlgcn𝒮^\operatorname{Hilb}_{X/S}:\operatorname{CAlg}^{\operatorname{cn}}\rightarrow\widehat{\operatorname{\mathcal{S}}} be the functor given by the formula HilbX/S(A)=Hilb^X/S(A)\operatorname{Hilb}_{X/S}(A)=\widehat{\operatorname{Hilb}}_{X/S}(A)^{\simeq}, where Hilb^X/S(A)\widehat{\operatorname{Hilb}}_{X/S}(A)^{\simeq} denotes the largest Kan complex contained in Hilb^X/S(A)\widehat{\operatorname{Hilb}}_{X/S}(A). Note that there is a canonical morphism of functors HilbX/SS\operatorname{Hilb}_{X/S}\rightarrow S.

Theorem 4.9.

Let p:XSp:X\rightarrow S be a morphism in Fun(CAlgcn,𝒮^)\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}}) which is representable, separated, and locally almost of finite presentation. Then the canonical morphism HilbX/SS\operatorname{Hilb}_{X/S}\rightarrow S is a relative spectral algebraic space which is locally almost of finite presentation.

Proof.

We will use the criterion for representability supplied by [14, 18.1.0.2]. The canonical morphism HilbX/SS\operatorname{Hilb}_{X/S}\rightarrow S is infinitesimally cohesive and nilcomplete (see [14, 17.3.7.1]) by virtue of [14, 16.3.0.1, 16.3.2.1] and [14, 19.4.1.2, 19.4.2.3], respectively.

We next show that the morphism HilbX/SS\operatorname{Hilb}_{X/S}\rightarrow S admits a relative cotangent complex of [14, 17.2.4.2]. We will prove this by verifying conditions (a)(a) and (b)(b) of [14, 17.2.4.3]. Let AA be a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring and let ηHilbX/S(A)\eta\in\operatorname{Hilb}_{X/S}(A) be a point corresponding to a pair (ζ,i:𝖸X×SSpecA)(\zeta,i:\operatorname{\mathsf{Y}}\rightarrow X\times_{S}\operatorname{Spec}A), where ζS(A)\zeta\in S(A) is a point and i:𝖸X×SSpecAi:\operatorname{\mathsf{Y}}\rightarrow X\times_{S}\operatorname{Spec}A is a closed immersion of spectral Deligne-Mumford stacks for which the composition f:𝖸SpecA×SXSpecAf:\operatorname{\mathsf{Y}}\rightarrow\operatorname{Spec}A\times_{S}X\rightarrow\operatorname{Spec}A is proper, flat, and locally almost of finite presentation. Let F:ModAcn𝒮F:\operatorname{Mod}^{\operatorname{cn}}_{A}\rightarrow\operatorname{\mathcal{S}} be the functor defined by the formula

F(M)=fib(HilbX/S(AM)HilbX/S(A)×S(A)S(AM)),F(M)=\operatorname{fib}(\operatorname{Hilb}_{X/S}(A\oplus M)\rightarrow\operatorname{Hilb}_{X/S}(A)\times_{S(A)}S(A\oplus M)),

where the fiber is taken over the point of HilbX/S(A)×S(A)S(AM)\operatorname{Hilb}_{X/S}(A)\times_{S(A)}S(A\oplus M) determined by η\eta. We wish to show that FF is corepresented by an almost connective AA-module. According to [14, 19.4.3.1], the fiber is canonically equivalent to MapQCoh(𝖸)(L𝖸/X×SSpecA,ΣfM)\operatorname{Map}_{\operatorname{QCoh}(\operatorname{\mathsf{Y}})}(L_{\operatorname{\mathsf{Y}}/X\times_{S}\operatorname{Spec}A},\Sigma f^{\ast}M). By virtue of [14, 6.4.5.3], f:QCoh(SpecA)QCoh(Y)f^{\ast}:\operatorname{QCoh}(\operatorname{Spec}A)\rightarrow\operatorname{QCoh}(Y) admits a left adjoint f+f_{+}, so that F(M)F(M) is corepresented by an AA-module Σ1f+L𝖸/X×SSpecA\Sigma^{-1}f_{+}L_{\operatorname{\mathsf{Y}}/X\times_{S}\operatorname{Spec}A}. Since ii is a closed immersion, it follows from [14, 17.1.4.3] that L𝖸/X×SSpecAL_{\operatorname{\mathsf{Y}}/X\times_{S}\operatorname{Spec}A} is 11-connective, so the AA-module Σ1f+L𝖸/X×SSpecA\Sigma^{-1}f_{+}L_{\operatorname{\mathsf{Y}}/X\times_{S}\operatorname{Spec}A} is connective as desired (here we use the fact that ff is flat). Condition (b)(b) is an immediate consequence of [14, 6.4.5.4]. We note that L𝖸/X×SSpecAL_{\operatorname{\mathsf{Y}}/X\times_{S}\operatorname{Spec}A} is almost perfect because ii is locally almost of finite presentation (see [14, 17.1.5.1]), so that Σ1f+L𝖸/X×SSpecA\Sigma^{-1}f_{+}L_{\operatorname{\mathsf{Y}}/X\times_{S}\operatorname{Spec}A} is almost perfect by virtue of [14, 6.4.5.2] and [17, 7.2.4.11]. We conclude that the relative cotangent complex LHilbX/S/SL_{\operatorname{Hilb}_{X/S}/S} is not only connective, but also almost perfect.

We now show that HilbX/SS\operatorname{Hilb}_{X/S}\rightarrow S is a relative spectral algebraic space. Since the formation of Hilbert functors is compatible with base change, we may assume that SS is an affine spectral Deligne-Mumford stack. We wish to show that HilbX/S\operatorname{Hilb}_{X/S} is representable by a spectral algebraic space. Let CAlg\operatorname{CAlg}^{\heartsuit} denote the \infty-category of discrete 𝔼\operatorname{\mathbb{E}}_{\infty}-rings, which can be identified with the nerve of the category of commutative rings; see [17, 7.1.0.3]. The restriction of HilbX/S\operatorname{Hilb}_{X/S} to CAlg\operatorname{CAlg}^{\heartsuit} is equivalent to the ordinary Hilbert functor associated to the morphism of ordinary algebraic spaces τ0Xτ0S\tau_{\leq 0}X\rightarrow\tau_{\leq 0}S (here we use the fact that pp is a relative spectral algebraic space; see [14, 3.2.1.1]), which is representable by an ordinary algebraic space; see [2, 6.2]. Since SS is assumed to be representable, it admits a cotangent complex, infinitesimally cohesive, and nilcomplete by virtue of [14, 17.2.5.4, 17.3.1.2, 17.3.2.3]. Combining [14, 17.3.7.3] and [14, 17.3.9.1] with the above discussion, we deduce that HilbX/S\operatorname{Hilb}_{X/S} satisfies the hypothesis of [14, 18.1.0.2], and is therefore representable by a spectral algebraic space as desired.

It remains to prove that the morphism HilbX/SS\operatorname{Hilb}_{X/S}\rightarrow S is locally almost of finite presentation. We may assume that SS is affine. Using [14, 19.4.2.3], we may further assume that SS is 0-truncated. We have already seen that HilbX/SS\operatorname{Hilb}_{X/S}\rightarrow S is infinitesimally cohesive and admits a relative cotangent complex which is almost perfect. By virtue of [14, 17.4.2.2], it will suffice to check condition ()(\ast) of [14, 17.4.2.1]: for every filtered diagram {Aα}\{A_{\alpha}\} of commutative rings having colimit AA, the canonical map

colimHilbX/S(Aα)colimS(Aα)×S(A)HilbX/S(A)\operatorname*{colim}\operatorname{Hilb}_{X/S}(A_{\alpha})\rightarrow\operatorname*{colim}S(A_{\alpha})\times_{S(A)}\operatorname{Hilb}_{X/S}(A)

is an equivalence. Since the restrictions of HilbX/S\operatorname{Hilb}_{X/S} and Hilbτ0X/S\operatorname{Hilb}_{\tau_{\leq 0}X/S} to CAlg\operatorname{CAlg}^{\heartsuit} are equivalent, we can reduce to the case where p:XSp:X\to S is a morphism of ordinary algebraic spaces, in which case the desired result follows from its classical counterpart (see [2, 6.2] and [4, 8.14.2]). ∎

Remark 4.10.

Let HilbX/Se´tHilbX/S\operatorname{Hilb}_{X/S}^{\mathrm{\acute{e}t}}\subseteq\operatorname{Hilb}_{X/S} be the subfunctor which carries an 𝔼\operatorname{\mathbb{E}}_{\infty}-ring AA to the summand of HilbX/S(A)\operatorname{Hilb}_{X/S}(A) spanned by those pairs (A,i:𝖸SpecA×SX)(A,i:\operatorname{\mathsf{Y}}\rightarrow\operatorname{Spec}A\times_{S}X) for which ii is étale. Under the additional assumption that the morphism p:XSp:X\rightarrow S is flat, a similar argument shows that the canonical morphism HilbX/Se´tS\operatorname{Hilb}_{X/S}^{\mathrm{\acute{e}t}}\rightarrow S is a relative spectral algebraic space which is locally almost of finite presentation; moreover, it is étale by construction (here we use the fact that a morphism of spectral Deligne-Mumford stacks which is locally almost of finite presentation is étale if and only if its relative cotangent complex vanishes; see [14, 17.1.5.1]) and is separated by reducing to its classical counterpart (see [2, 6.1]).

4.11.

Our proof of 4.12 will make use of the notion of degree of fibers defined as follows: let f:XYf:X\rightarrow Y be a representable flat, quasi-compact, separated, and locally quasi-finite morphism in Fun(CAlgcn,𝒮^)\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}}), where XX and YY satisfy condition ()(\ast) of 3.1. Suppose we are given a point η:SpecκY\eta:\operatorname{Spec}\kappa\rightarrow Y which represents some y|Y|y\in|Y|. The projection Specκ×YXSpecκ\operatorname{Spec}\kappa\times_{Y}X\rightarrow\operatorname{Spec}\kappa, which can be identified with a morphism of ordinary schemes, is finite flat of degree dd for some d0d\geq 0; this integer does not depend on the choice of η\eta. We therefore obtain a well-defined map nX/Y:|Y|0n_{X/Y}:|Y|\rightarrow\mathbb{Z}_{\geq 0} which carries y|Y|y\in|Y| to the degree of finite flat morphism Specκ×YXSpecκ\operatorname{Spec}\kappa\times_{Y}X\rightarrow\operatorname{Spec}\kappa determined by any point SpecκY\operatorname{Spec}\kappa\rightarrow Y representing yy.

We are now ready to prove an analogue of [9, 4.1] in spectral algebraic geometry:

Theorem 4.12.

Let X:CAlgcn𝒮^X:\operatorname{CAlg}^{\operatorname{cn}}\rightarrow\widehat{\operatorname{\mathcal{S}}} be a quasi-geometric spectral algebraic stack which admits a quasi-finite presentation (see 1.3). Then there exist morphisms of quasi-geometric spectral algebraic stacks p:WXp:W\rightarrow X and q:𝖵Wq:\operatorname{\mathsf{V}}\rightarrow W such that pp is a separated Nisnevich covering, 𝖵\operatorname{\mathsf{V}} is a quasi-affine spectral Deligne-Mumford stack, and qq is representable finite, faithfully flat, and locally almost of finite presentation.

Proof.

Using our assumption that XX admits a quasi-finite presentation, we can choose a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring AA and a morphism f:SpecAXf:\operatorname{Spec}A\rightarrow X which is locally quasi-finite, faithfully flat, and locally almost of finite presentation. Choose a fiber smooth surjection g:𝖸Xg:\operatorname{\mathsf{Y}}\rightarrow X, where 𝖸\operatorname{\mathsf{Y}} is an affine spectral Deligne-Mumford stack. Consider a pullback square of quasi-geometric spectral algebraic stacks

𝖸\textstyle{\operatorname{\mathsf{Y}}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g^{\prime}}f\scriptstyle{f^{\prime}}SpecA\textstyle{\operatorname{Spec}A\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}𝖸\textstyle{\operatorname{\mathsf{Y}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}X.\textstyle{X.}

The underlying morphism τ0f:τ0𝖸τ0𝖸\tau_{\leq 0}f^{\prime}:\tau_{\leq 0}\operatorname{\mathsf{Y}}^{\prime}\rightarrow\tau_{\leq 0}\operatorname{\mathsf{Y}} of ordinary of algebraic spaces is quasi-affine, locally quasi-finite, faithfully flat, and locally of finite presentation. Combining [18, Tag 07RZ] with [18, Tag 03JA], we deduce that there exists a sequence of quasi-compact open immersions of spectral algebraic spaces

𝖵n+1𝖵0𝖸\emptyset\simeq\operatorname{\mathsf{V}}_{n+1}\hookrightarrow\cdots\hookrightarrow\operatorname{\mathsf{V}}_{0}\simeq\operatorname{\mathsf{Y}}

with the following properties:

  1. (i)

    For every 0in+10\leq i\leq n+1, we have |𝖵i|={y|Y|:nY/Y(y)i}|\operatorname{\mathsf{V}}_{i}|=\{y\in|Y|:n_{Y^{\prime}/Y}(y)\geq i\} (see 4.11).

  2. (ii)

    For each 0in0\leq i\leq n, let 𝖪i\operatorname{\mathsf{K}}_{i} denote the reduced closed substack of 𝖵i\operatorname{\mathsf{V}}_{i} complementary to 𝖵i+1\operatorname{\mathsf{V}}_{i+1} (see [14, 3.1.6.3]). Then the projection 𝖪i×𝖸𝖸𝖪i\operatorname{\mathsf{K}}_{i}\times_{\operatorname{\mathsf{Y}}}\operatorname{\mathsf{Y}}^{\prime}\rightarrow\operatorname{\mathsf{K}}_{i} is finite flat of degree ii.

Since gg is flat and locally almost of finite presentation, 3.10 guarantees that for each ii, the image of |𝖵i||\operatorname{\mathsf{V}}_{i}| under |g||g| is quasi-compact open, and therefore gives rise to an open immersion UiXU_{i}\rightarrow X of quasi-geometric spectral algebraic stacks (see 3.12). We claim that the sequence of open immersions of quasi-geometric spectral algebraic stacks

Un+1U0X\emptyset\simeq U_{n+1}\hookrightarrow\cdots\hookrightarrow U_{0}\simeq X

gives a stacky scallop decomposition of XX. Let KiK^{\prime}_{i} denote the reduced closed substack of UiU_{i} complementary to Ui+1U_{i+1}; see 3.16. Using the description of |𝖵i||\operatorname{\mathsf{V}}_{i}|, we see that the canonical morphism 𝖵iUi×X𝖸\operatorname{\mathsf{V}}_{i}\rightarrow U_{i}\times_{X}\operatorname{\mathsf{Y}} is an equivalence. In particular, the induced morphism 𝖪iKi\operatorname{\mathsf{K}}_{i}\rightarrow K^{\prime}_{i} can be identified with a pullback of 𝖵iUi\operatorname{\mathsf{V}}_{i}\rightarrow U_{i}, and therefore is a flat covering of [14, 2.8.3.1]. It then follows from [14, 5.2.3.5] that the projection Ki×XSpecAKiK^{\prime}_{i}\times_{X}\operatorname{Spec}A\rightarrow K^{\prime}_{i} is finite flat of degree ii, so that the identity morphism on Ki×XSpecAK^{\prime}_{i}\times_{X}\operatorname{Spec}A induces a factorization of the immersion KiXK^{\prime}_{i}\rightarrow X through the subfunctor HilbSpecA/Xe´tHilbSpecA/X\operatorname{Hilb}_{\operatorname{Spec}A/X}^{\mathrm{\acute{e}t}}\subseteq\operatorname{Hilb}_{\operatorname{Spec}A/X} of 4.10. Using 3.8, we can choose a quasi-compact open subset 𝒲|HilbSpecA/Xe´t|\operatorname{\mathcal{W}}^{\prime}\subseteq|\operatorname{Hilb}_{\operatorname{Spec}A/X}^{\mathrm{\acute{e}t}}| which contains the image of |Ki||K^{\prime}_{i}| in |HilbSpecA/Xe´t||\operatorname{Hilb}_{\operatorname{Spec}A/X}^{\mathrm{\acute{e}t}}| for all ii. Let j:WHilbSpecA/Xe´tj:W^{\prime}\rightarrow\operatorname{Hilb}_{\operatorname{Spec}A/X}^{\mathrm{\acute{e}t}} be a representable open immersion such that |j||W|=𝒲|j||W^{\prime}|=\operatorname{\mathcal{W}}^{\prime} (see the proof of 3.12). Let pp^{\prime} denote the composition WHilbSpecA/Xe´tXW^{\prime}\rightarrow\operatorname{Hilb}_{\operatorname{Spec}A/X}^{\mathrm{\acute{e}t}}\rightarrow X. Note that 4.10 guarantees that pp^{\prime} is representable. Combining this observation with [14, 6.3.3.8], we see that WW^{\prime} is a sheaf for the fpqc topology. Since the projection 𝖸×XWW\operatorname{\mathsf{Y}}\times_{X}W^{\prime}\rightarrow W^{\prime} is a fiber smooth surjection and |W||W^{\prime}| is quasi-compact, 3.8 (and its proof) supplies a fiber smooth surjection π:SpecBW\pi:\operatorname{Spec}B\rightarrow W^{\prime}, where BB is a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring. Note that π\pi is quasi-affine because pp^{\prime} is separated and the composition pπp^{\prime}\circ\pi is quasi-affine (here we use the fact that the diagonal of XX is quasi-affine), so that the diagonal of WW^{\prime} is representable quasi-affine by virtue of [14, 9.1.1.2]. Consequently, we conclude that WW^{\prime} is a quasi-geometric spectral algebraic stack. In particular, pp^{\prime} is quasi-compact. Combining this observation with the fact that pp^{\prime} is étale and separated (see 4.10), we deduce that it is quasi-affine by virtue of [14, 3.3.0.2]. Let i:VW×XSpecAi:V\rightarrow W^{\prime}\times_{X}\operatorname{Spec}A denote the clopen immersion of quasi-geometric spectral algebraic stacks (see [14, 3.1.7.2]) determined by the inclusion WHilbSpecA/Xe´tW^{\prime}\rightarrow\operatorname{Hilb}_{\operatorname{Spec}A/X}^{\mathrm{\acute{e}t}}. Let qq^{\prime} denote the composition of ii with the projection W×XSpecAWW^{\prime}\times_{X}\operatorname{Spec}A\rightarrow W^{\prime}. Since qq^{\prime} is flat and locally almost of finite presentation, 3.10 guarantees that the image of |V||V| under |q||q^{\prime}| is quasi-compact open, and therefore induces an open immersion WWW\rightarrow W^{\prime} of quasi-geometric spectral algebraic stacks by virtue of 3.12. Shrinking |W||W^{\prime}| to the image of |q||q^{\prime}|, we obtain a surjection q:VWq:V\rightarrow W of quasi-geometric spectral algebraic stacks. Combining the fact that ii is clopen immersion with [14, 21.4.6.4] and [14, 2.5.7.4], we observe that qq is flat, locally almost of finite presentation, and quasi-affine. Since qq^{\prime} is proper, qq is also proper, hence finite by virtue of [14, 5.2.1.1]. Invoking quasi-affineness of pp^{\prime}, we conclude that VV is representable by a quasi-affine Deligne-Mumford stack. Let pp denote the composition of the inclusion WWW\subseteq W^{\prime} with pp^{\prime}. We will complete the proof by showing that pp is a separated Nisnevich covering. Since each KiK^{\prime}_{i} factors through WW^{\prime}, it will suffice to show that the image of |Ki||K^{\prime}_{i}| in |W||W^{\prime}| is contained in |q||V||q^{\prime}||V|. By construction, the projection Ki×XSpecAKiK_{i}^{\prime}\times_{X}\operatorname{Spec}A\rightarrow K_{i}^{\prime} is a pullback of qq^{\prime}, so the desired result follows by combining this observation with the fact that ff is surjective. ∎

5. Twisted Compact Generations

In this section, we prove that quasi-geometric spectral algebraic stacks which admit a quasi-finite presentation are of twisted compact generation. This result will play a central role in our proof of 1.2.

5.1.

To formulate the main definition of interest to us in this section (that is, 1.7), we recall a bit of terminology. According to [13, 5.5.7.1], an \infty-category 𝒞\operatorname{\mathcal{C}} is compactly generated if it is presentable and ω\omega-accessible, or equivalently if the inclusion Ind(𝒞ω)𝒞\operatorname{Ind}(\operatorname{\mathcal{C}}^{\omega})\rightarrow\operatorname{\mathcal{C}} is an equivalence of \infty-categories, where 𝒞ω𝒞\operatorname{\mathcal{C}}^{\omega}\subseteq\operatorname{\mathcal{C}} is the full subcategory spanned by the compact objects of 𝒞\operatorname{\mathcal{C}} (here Ind(𝒞ω)\operatorname{Ind}(\operatorname{\mathcal{C}}^{\omega}) denotes the \infty-category of Ind-objects of 𝒞ω\operatorname{\mathcal{C}}^{\omega}; see [13, 5.3.5.1]).

Now let 𝒞\operatorname{\mathcal{C}} be a presentable stable \infty-category, and let {Ci}iI\{C_{i}\}_{i\in I} be a collection of compact objects of 𝒞\operatorname{\mathcal{C}}. We say that the collection {Ci}\{C_{i}\} is a set of compact generators for 𝒞\operatorname{\mathcal{C}} if it satisfies the following condition: an object C𝒞C\in\operatorname{\mathcal{C}} is equivalent to 0 if the graded abelian group Ext𝒞(Ci,C)\operatorname{Ext}^{\ast}_{\operatorname{\mathcal{C}}}(C_{i},C) is zero for all iIi\in I. Note that if 𝒞\operatorname{\mathcal{C}} is compactly generated, the collection of compact objects of 𝒞\operatorname{\mathcal{C}} forms a set of compact generators.

5.2.

Suppose we are given an adjunction L:𝒞\textstyle{L:\operatorname{\mathcal{C}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝒟:R\textstyle{\operatorname{\mathcal{D}}:R\ignorespaces\ignorespaces\ignorespaces\ignorespaces} between presentable \infty-categories, where the right adjoint RR is conservative and preserves small filtered colimits. It follows from [16, 6.2] that if 𝒞\operatorname{\mathcal{C}} is compactly generated, then so is 𝒟\operatorname{\mathcal{D}}. Note that in the special case where 𝒞\operatorname{\mathcal{C}} and 𝒟\operatorname{\mathcal{D}} are presentable stable \infty-categories, if {Ci}iI\{C_{i}\}_{i\in I} is a set of compact generators for 𝒞\operatorname{\mathcal{C}}, then {L(Ci)}\{L(C_{i})\} is a set of compact generators for 𝒟\operatorname{\mathcal{D}}.

5.3.

Let X:CAlgcn𝒮^X:\operatorname{CAlg}^{\operatorname{cn}}\rightarrow\widehat{\operatorname{\mathcal{S}}} be a functor and let QCoh(X)\operatorname{QCoh}(X) denote the \infty-category of quasi-coherent sheaves on XX of [14, 6.2.2.1]. More informally, we can think of an object FQCoh(X)F\in\operatorname{QCoh}(X) as a rule which assigns to each connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring RR and each point ηX(R)\eta\in X(R) an RR-module FηModRF_{\eta}\in\operatorname{Mod}_{R}, which depends functorially on RR and η\eta (see [14, 6.2.2.7]). According to [14, 6.2.6], the \infty-category QCoh(X)\operatorname{QCoh}(X) can be equipped with a symmetric monoidal structure, where the tensor product is given informally by the formula (FF)ηFηRFη(F\otimes F^{\prime})_{\eta}\simeq F_{\eta}\otimes_{R}F^{\prime}_{\eta} for each point ηX(R)\eta\in X(R); let 𝒪X\operatorname{\mathcal{O}}_{X} denote the unit object of QCoh(X)\operatorname{QCoh}(X). In the special case where XX is representable by an ordinary Deligne-Mumford stack (𝒳,𝒪)(\operatorname{\mathcal{X}},\operatorname{\mathcal{O}}), let D(X)\mathrm{D}(X) denote the derived \infty-category of the Grothendieck abelian category Mod𝒪\operatorname{Mod}_{\operatorname{\mathcal{O}}} of 𝒪\operatorname{\mathcal{O}}-modules; see [17, 1.3.5.8]. It then follows from [14, 2.2.6.2] that there is a canonical equivalence QCoh(X)Dqc(𝒳)\operatorname{QCoh}(X)\simeq\mathrm{D}_{\mathrm{qc}}(\operatorname{\mathcal{X}}), where Dqc(𝒳)D(X)\mathrm{D}_{\mathrm{qc}}(\operatorname{\mathcal{X}})\subseteq\mathrm{D}(X) is the full subcategory spanned by those chain complexes of 𝒪\operatorname{\mathcal{O}}-modules whose homologies are quasi-coherent.

Remark 5.4.

If X:CAlgRΔ𝒮^X^{\prime}:\operatorname{CAlg}^{\Delta}_{R}\rightarrow\widehat{\operatorname{\mathcal{S}}} is a functor, we define the \infty-category QCoh(X)\operatorname{QCoh}(X^{\prime}) of quasi-coherent sheaves on XX^{\prime} to be the \infty-category QCoh(ΘR!X)\operatorname{QCoh}({\Theta_{R}}_{!}X^{\prime}) (here we regard ΘR!X{\Theta_{R}}_{!}X^{\prime} as an object of the slice \infty-category Fun(CAlgcn,𝒮^)/R\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}})_{/R}). A slight variant of [14, 6.2.3.1] (using the fiber smooth topology in place of the fpqc topology) guarantees that for every quasi-geometric derived algebraic stack XX over RR, the canonical map QCoh(X)QCoh(X)\operatorname{QCoh}(X^{\circ})\rightarrow\operatorname{QCoh}(X) is an equivalence of \infty-categories (here XX^{\circ} is regarded as an object of Fun(CAlgcn,𝒮^)/R\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}})_{/R}).

5.5.

In [14], Lurie develops the theory of quasi-coherent stacks, which plays an analogous role of the categories of twisted sheaves in the setting of spectral algebraic geometry. In this analogy, the \infty-category of global sections of quasi-coherent stacks is an analogue of the derived category of twisted sheaves. We now give a quick review of some basic definitions and notations. Let LinCatPSt\operatorname{LinCat}^{\operatorname{PSt}} denote the \infty-category whose objects are pairs (R,𝒞)(R,\operatorname{\mathcal{C}}), where RR is a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring and 𝒞\operatorname{\mathcal{C}} is a prestable RR-linear \infty-category of [14, D.1.4.1]. Let QStkPSt:Fun(CAlgcn,𝒮^)op𝒞at^\operatorname{QStk}^{\operatorname{PSt}}:\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}})^{\operatorname{op}}\rightarrow\widehat{\operatorname{\mathcal{C}at}}_{\infty} denote the functor obtained by applying [14, 6.2.1.11] to the projection q:LinCatPStCAlgcnq:\operatorname{LinCat}^{\operatorname{PSt}}\rightarrow\operatorname{CAlg}^{\operatorname{cn}}. Let X:CAlgcn𝒮^X:\operatorname{CAlg}^{\operatorname{cn}}\rightarrow\widehat{\operatorname{\mathcal{S}}} be a functor. We refer to QStkPSt(X)\operatorname{QStk}^{\operatorname{PSt}}(X) as the \infty-category of prestable quasi-coherent stacks on XX; see [14, 10.1.2.4]. More informally, an object 𝒞QStkPSt(X)\operatorname{\mathcal{C}}\in\operatorname{QStk}^{\operatorname{PSt}}(X) is a rule which assigns to each connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring RR and each point ηX(R)\eta\in X(R) a prestable RR-linear \infty-category 𝒞η\operatorname{\mathcal{C}}_{\eta}, depending functorially on the pair (R,η)(R,\eta) (see [14, 10.1.1.3] for more details).

5.6.

Let QStkRPSt:Fun(CAlgRcn,𝒮^)op𝒞at^\operatorname{QStk}^{\operatorname{PSt}}_{R}:\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}}_{R},\widehat{\operatorname{\mathcal{S}}})^{\operatorname{op}}\rightarrow\widehat{\operatorname{\mathcal{C}at}}_{\infty} denote the functor obtained by applying [14, 6.2.1.11] to the projection qR:CAlgRcn×CAlgcnLinCatPStCAlgRcnq_{R}:\operatorname{CAlg}^{\operatorname{cn}}_{R}\times_{\operatorname{CAlg}^{\operatorname{cn}}}\operatorname{LinCat}^{\operatorname{PSt}}\rightarrow\operatorname{CAlg}^{\operatorname{cn}}_{R}. Note that if XX is an image of XX^{\prime} under the equivalence Fun(CAlgRcn,𝒮^)Fun(CAlgcn,𝒮^)/R\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}}_{R},\widehat{\operatorname{\mathcal{S}}})\rightarrow\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\widehat{\operatorname{\mathcal{S}}})_{/R} of 2.7, the canonical map QStkPSt(X)QStkRPSt(X)\operatorname{QStk}^{\operatorname{PSt}}(X)\rightarrow\operatorname{QStk}^{\operatorname{PSt}}_{R}(X^{\prime}) is an equivalence of \infty-categories by construction.

Remark 5.7.

Let QStkRPSt:Fun(CAlgRΔ,𝒮^)op𝒞at^{\operatorname{QStk}^{\prime}}^{\operatorname{PSt}}_{R}:\operatorname{Fun}(\operatorname{CAlg}^{\Delta}_{R},\widehat{\operatorname{\mathcal{S}}})^{\operatorname{op}}\rightarrow\widehat{\operatorname{\mathcal{C}at}}_{\infty} denote the functor obtained by applying [14, 6.2.1.11] to the projection qR:CAlgRΔ×CAlgcnLinCatPStCAlgRΔq^{\prime}_{R}:\operatorname{CAlg}^{\Delta}_{R}\times_{\operatorname{CAlg}^{\operatorname{cn}}}\operatorname{LinCat}^{\operatorname{PSt}}\rightarrow\operatorname{CAlg}^{\Delta}_{R}. By construction, the canonical map QStkRPStΘR!opQStkRPSt\operatorname{QStk}^{\operatorname{PSt}}_{R}\circ\Theta_{R!}^{\operatorname{op}}\rightarrow{\operatorname{QStk}^{\prime}}^{\operatorname{PSt}}_{R} is an equivalence of functors. According to [14, D.4.1.6], the functor χR:CAlgRcn𝒞at^\chi_{R}:\operatorname{CAlg}^{\operatorname{cn}}_{R}\rightarrow\widehat{\operatorname{\mathcal{C}at}}_{\infty} classifying the coCartesian fibration qRq_{R} is a sheaf for the flat universal descent topology of [14, D.4.1.4], and therefore also a sheaf for the fiber smooth topology of 2.12 by virtue of [14, 11.2.3.3]. Using [14, 1.3.1.7], we deduce that the canonical map QStkRPStLfsmopQStkRPSt\operatorname{QStk}^{\operatorname{PSt}}_{R}\circ L_{\operatorname{fsm}}^{\operatorname{op}}\rightarrow\operatorname{QStk}^{\operatorname{PSt}}_{R} is an equivalence of functors from Fun(CAlgRcn,𝒮^)op\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}}_{R},\widehat{\operatorname{\mathcal{S}}})^{\operatorname{op}} to 𝒞at^\widehat{\operatorname{\mathcal{C}at}}_{\infty}. We conclude that for each quasi-geometric derived algebraic stack XX over RR, the canonical map QStkRPSt(X)QStkRPSt(X)\operatorname{QStk}^{\operatorname{PSt}}_{R}(X^{\circ})\rightarrow{\operatorname{QStk}^{\prime}}^{\operatorname{PSt}}_{R}(X) is an equivalence of \infty-categories.

Remark 5.8.

Our choice of the fiber smooth topology over the fpqc topology for the underlying quasi-geometric spectral algebraic stacks of quasi-geometric derived algebraic stacks (see 2.30) is motivated by 5.7. Indeed, we do not know if the functor χR\chi_{R} satisfies fpqc descent.

5.9.

Let XX be a quasi-geometric stack which satisfies the following condition:

  • ()(\ast)

    There exists a morphism of quasi-geometric stacks 𝖷0X\operatorname{\mathsf{X}}_{0}\rightarrow X which is faithfully flat and locally almost of finite presentation, where 𝖷0\operatorname{\mathsf{X}}_{0} is affine.

Let 𝖦𝗋𝗈𝗍𝗁\operatorname{\mathsf{Groth}}_{\infty} denote the \infty-category of Grothendieck prestable \infty-categories (see [14, C.3.0.5]). Let SS denote the sphere spectrum and let q:XSpecSq:X\rightarrow\operatorname{Spec}S be the projection. It follows from [14, 10.4.1.1] that the pullback functor q:𝖦𝗋𝗈𝗍𝗁QStkPSt(X)q^{\ast}:\operatorname{\mathsf{Groth}}_{\infty}\rightarrow\operatorname{QStk}^{\operatorname{PSt}}(X) induced by qq (note that there is a canonical equivalence QStkPSt(SpecS)𝖦𝗋𝗈𝗍𝗁\operatorname{QStk}^{\operatorname{PSt}}(\operatorname{Spec}S)\simeq\operatorname{\mathsf{Groth}}_{\infty}) admits a right adjoint

QCoh(X;):QStkPSt(X)𝖦𝗋𝗈𝗍𝗁\operatorname{QCoh}(X;\bullet):\operatorname{QStk}^{\operatorname{PSt}}(X)\rightarrow\operatorname{\mathsf{Groth}}_{\infty}

which we refer to as the global section functor on XX. For each prestable quasi-coherent stack 𝒞\operatorname{\mathcal{C}} on XX, we refer to QCoh(X;𝒞)\operatorname{QCoh}(X;\operatorname{\mathcal{C}}) as the \infty-category of global sections of 𝒞\operatorname{\mathcal{C}}.

Remark 5.10.

Let f0:Y0Xf_{0}:Y_{0}\rightarrow X be a morphism between quasi-geometric stacks satisfying condition ()(\ast) of 5.9. Assume that f0f_{0} is representable faithfully flat and locally almost of finite presentation. Applying the argument of [14, 10.4.1.4] to f0f_{0}, we deduce that the canonical morphism QCoh(X;𝒞)lim[n]ΔQCoh(Yn;fn𝒞)\operatorname{QCoh}(X;\operatorname{\mathcal{C}})\rightarrow\lim\limits_{[n]\in\Delta}\operatorname{QCoh}(Y_{n};f_{n}^{\ast}\operatorname{\mathcal{C}}) is an equivalence in 𝖦𝗋𝗈𝗍𝗁\operatorname{\mathsf{Groth}}_{\infty} (here YY_{\bullet} denotes the Čech nerve of ff and each fn:YnXf_{n}:Y_{n}\rightarrow X denotes the projection).

Remark 5.11.

Let Δs\Delta_{s} denote the subcategory of Δ\Delta having the same objects but the morphisms are given by injective order-preserving maps (see [13, 6.5.3.6]). Let 𝖦𝗋𝗈𝗍𝗁lex\operatorname{\mathsf{Groth}}_{\infty}^{\operatorname{lex}} denote the subcategory of 𝒞at^\widehat{\operatorname{\mathcal{C}at}}_{\infty} whose objects are Grothendieck prestable \infty-categories and whose morphisms are functors preserving small colimits and finite limits; see [14, C.3.2.3]. By virtue of [14, C.3.2.4], 𝖦𝗋𝗈𝗍𝗁lex\operatorname{\mathsf{Groth}}_{\infty}^{\operatorname{lex}} admits small limits and the inclusion 𝖦𝗋𝗈𝗍𝗁lex𝖦𝗋𝗈𝗍𝗁\operatorname{\mathsf{Groth}}_{\infty}^{\operatorname{lex}}\subseteq\operatorname{\mathsf{Groth}}_{\infty} preserves small limits. In the situation of 5.10, the existence of the limit lim[n]ΔQCoh(Yn;fn𝒞)\lim\limits_{[n]\in\Delta}\operatorname{QCoh}(Y_{n};f_{n}^{\ast}\operatorname{\mathcal{C}}) is supplied by the right cofinality of the inclusion ΔsΔ\Delta_{s}\subseteq\Delta (see [13, 6.5.3.7]) and our assumption that f0f_{0} is flat. Indeed, the limit is given by lim[n]ΔsQCoh(Yn;fn𝒞)\lim\limits_{[n]\in\Delta_{s}}\operatorname{QCoh}(Y_{n};f_{n}^{\ast}\operatorname{\mathcal{C}}), where the flatness assumption guarantees that the construction [n]QCoh(Yn;fn𝒞)[n]\mapsto\operatorname{QCoh}(Y_{n};f_{n}^{\ast}\operatorname{\mathcal{C}}) determines a functor Δs𝖦𝗋𝗈𝗍𝗁lex\Delta_{s}\rightarrow\operatorname{\mathsf{Groth}}_{\infty}^{\operatorname{lex}} (cf. [14, 10.1.7.10]). Let 𝒫rL\operatorname{\mathcal{P}r^{L}} denote the subcategory of 𝒞at^\widehat{\operatorname{\mathcal{C}at}}_{\infty} whose objects are presentable \infty-categories and whose morphisms are functors which preserve small colimits; see [13, 5.5.3.1]. In the special case where 𝒞\operatorname{\mathcal{C}} is stable, combining [14, 10.3.1.8] with [17, 4.8.2.18] (which asserts that the full subcategory PrSt𝒫rL\Pr^{\operatorname{St}}\subseteq\operatorname{\mathcal{P}r^{L}} spanned by the presentable stable \infty-categories is closed under small limits), we deduce that QCoh(X;𝒞)\operatorname{QCoh}(X;\operatorname{\mathcal{C}}) is stable.

5.12.

Let f:XYf:X\rightarrow Y be a representable morphism between quasi-geometric stacks satisfying condition ()(\ast) of 5.9. It follows from [14, 10.1.4.1] that the pullback functor f:QStkPSt(Y)QStkPSt(X)f^{\ast}:\operatorname{QStk}^{\operatorname{PSt}}(Y)\rightarrow\operatorname{QStk}^{\operatorname{PSt}}(X) admits a right adjoint ff_{\ast}. Let 𝒞\operatorname{\mathcal{C}} be a prestable quasi-coherent stack on YY. Applying the global section functor on YY (see 5.9) to the unit morphism 𝒞ff𝒞\operatorname{\mathcal{C}}\rightarrow f_{\ast}f^{\ast}\operatorname{\mathcal{C}}, we obtain a functor QCoh(Y;𝒞)QCoh(X;f𝒞)\operatorname{QCoh}(Y;\operatorname{\mathcal{C}})\rightarrow\operatorname{QCoh}(X;f^{\ast}\operatorname{\mathcal{C}}) which we refer to as the pullback along ff and denote by ff^{\ast} (see [14, 10.1.7.5]).

Let j:UXj:U\rightarrow X be an open immersion of quasi-geometric stacks satisfying condition ()(\ast) of 5.9. For each object 𝒞QStkPSt(X)\operatorname{\mathcal{C}}\in\operatorname{QStk}^{\operatorname{PSt}}(X), we let QCohXU(X;𝒞)QCoh(X;𝒞)\operatorname{QCoh}_{X-U}(X;\operatorname{\mathcal{C}})\subseteq\operatorname{QCoh}(X;\operatorname{\mathcal{C}}) denote the full subcategory spanned by those objects MM such that jMQCoh(U;j𝒞)j^{\ast}M\in\operatorname{QCoh}(U;j^{\ast}\operatorname{\mathcal{C}}) is equivalent to 0.

5.13.

Let XX be a quasi-geometric stack satisfying condition ()(\ast) of 5.9. Let QStkSt(X)QStkPSt(X)\operatorname{QStk}^{\operatorname{St}}(X)\subseteq\operatorname{QStk}^{\operatorname{PSt}}(X) denote the full subcategory spanned by the stable quasi-coherent stacks (see [14, 10.1.2.1]). Let 𝒬X\operatorname{\mathcal{Q}}_{X} denote the unit object of QStkSt(X)\operatorname{QStk}^{\operatorname{St}}(X) (with respect to the symmetric monoidal structure described in [14, 10.1.6.4]). More informally, it assigns to each point ηX(R)\eta\in X(R) the stable RR-linear \infty-category ModR\operatorname{Mod}_{R}. Note that 𝒬X\operatorname{\mathcal{Q}}_{X} is compactly generated (see [17, 7.2.4.2]) and that there is a canonical equivalence of \infty-categories QCoh(X;𝒬X)QCoh(X)\operatorname{QCoh}(X;\operatorname{\mathcal{Q}}_{X})\simeq\operatorname{QCoh}(X). More generally, let j:UXj:U\rightarrow X be a representable open immersion. Repeating the argument of [14, 10.1.7.3], we obtain a stable quasi-coherent stack 𝒬XU\operatorname{\mathcal{Q}}_{X-U} on XX, which is given informally by the formula (𝒬XU)η=ModRNil(Iη)(\operatorname{\mathcal{Q}}_{X-U})_{\eta}=\operatorname{Mod}_{R}^{\mathrm{Nil}(I_{\eta})} for each point ηX(R)\eta\in X(R) (here Iηπ0RI_{\eta}\subseteq\pi_{0}R is a finitely generated ideal whose vanishing locus is complementary to the open subset |SpecR×XU||SpecR||\operatorname{Spec}R\times_{X}U|\subseteq|\operatorname{Spec}R| and ModRNil(Iη)ModR\operatorname{Mod}_{R}^{\mathrm{Nil}(I_{\eta})}\subseteq\operatorname{Mod}_{R} denotes the full subcategory spanned by the IηI_{\eta}-nilpotent objects of [14, 7.1.1.6]). For each stable quasi-coherent stack 𝒞\operatorname{\mathcal{C}} on XX, let 𝒞XU\operatorname{\mathcal{C}}_{X-U} denote the tensor product 𝒞𝒬XU\operatorname{\mathcal{C}}\otimes\operatorname{\mathcal{Q}}_{X-U} in the symmetric monoidal \infty-category QStkSt(X)\operatorname{QStk}^{\operatorname{St}}(X). For an alternative description, let ηX(R)\eta\in X(R) be a point and let (𝒞η)Nil(Iη)𝒞η(\operatorname{\mathcal{C}}_{\eta})^{\mathrm{Nil}(I_{\eta})}\subseteq\operatorname{\mathcal{C}}_{\eta} denote the full subcategory spanned by the IηI_{\eta}-nilpotent objects. It then follows from [14, 7.1.2.11] (and its proof) that 𝒞XU\operatorname{\mathcal{C}}_{X-U} is equivalent to the stable quasi-coherent stack determined by the construction (ηX(R))(𝒞η)Nil(Iη)(\eta\in X(R))\mapsto(\operatorname{\mathcal{C}}_{\eta})^{\mathrm{Nil}(I_{\eta})}; in particular, [14, 7.1.1.12] guarantees that if 𝒞\operatorname{\mathcal{C}} is compactly generated, then so is 𝒞XU\operatorname{\mathcal{C}}_{X-U}. We have the following observation:

Lemma 5.14.

Let j:UXj:U\rightarrow X be a representable open immersion of quasi-geometric stacks satisfying condition ()(\ast) of 5.9. Let 𝒞\operatorname{\mathcal{C}} be a stable quasi-coherent stack on XX and let 𝒞XU\operatorname{\mathcal{C}}_{X-U} be as in 5.13. Then the canonical morphism QCoh(X;𝒞XU)QCoh(X;𝒞)\operatorname{QCoh}(X;\operatorname{\mathcal{C}}_{X-U})\rightarrow\operatorname{QCoh}(X;\operatorname{\mathcal{C}}) induces an equivalence of \infty-categories QCoh(X;𝒞XU)QCohXU(X;𝒞)\operatorname{QCoh}(X;\operatorname{\mathcal{C}}_{X-U})\rightarrow\operatorname{QCoh}_{X-U}(X;\operatorname{\mathcal{C}}) (see 5.12).

Proof.

By virtue of 5.10, we are reduced to the case where XX is a quasi-geometric spectral Deligne-Mumford stack. Using the proof of [14, 10.1.4.1], we can reduce further to the case where XX is affine, in which case the desired result follows immediately from the definition of the \infty-category 𝒞Nil(I)\operatorname{\mathcal{C}}^{\mathrm{Nil}(I)} appearing in [14, 7.1.1.6]. ∎

5.15.

The following pair of results asserts that if a quasi-geometric spectral algebraic stack is of twisted compact generation, then it satisfies a spectral analogue of the β\beta-Thomason condition of [8, 8.1] for some regular cardinal β\beta (see 1.8):

Lemma 5.16.

Let XX be a quasi-geometric spectral algebraic stack which is of twisted compact generation. Then for each representable open immersion j:UXj:U\rightarrow X of quasi-geometric spectral algebraic stacks, the \infty-category QCohXU(X)\operatorname{QCoh}_{X-U}(X) is compactly generated. In particular, QCoh(X)\operatorname{QCoh}(X) is compactly generated.

Proof.

It follows from [14, 7.1.1.12] that 𝒬XU\operatorname{\mathcal{Q}}_{X-U} is compactly generated and stable, so the desired result follows immediately by applying 5.14 to 𝒞=𝒬X\operatorname{\mathcal{C}}=\operatorname{\mathcal{Q}}_{X}

5.17.

Before stating our next result, we introduce some terminology. Let X:CAlgcn𝒮^X:\operatorname{CAlg}^{\operatorname{cn}}\rightarrow\widehat{\operatorname{\mathcal{S}}} be a functor which satisfies condition ()(\ast) of 3.1. Suppose we are given a perfect object FF of QCoh(X)\operatorname{QCoh}(X). Let SuppF\operatorname{Supp}F denote the subset of |X||X| consisting of those elements x|X|x\in|X| such that for any point η:SpecκX\eta:\operatorname{Spec}\kappa\rightarrow X representing xx, ηF0\eta^{\ast}F\neq 0. This set is well-defined; we refer to it as the support of FF. In the special case where XX is representable by a quasi-separated spectral algebraic space, it follows from [14, 7.1.5.5] that our definition of support is compatible with the definition of support in the sense of [14, 7.1.5.4].

Lemma 5.18.

Let XX be a quasi-geometric spectral algebraic stack which is of twisted compact generation. Then for each quasi-compact open subset 𝒰|X|\operatorname{\mathcal{U}}\subseteq|X|, there exists a compact object FF of QCoh(X)\operatorname{QCoh}(X) with support |X|𝒰|X|-\operatorname{\mathcal{U}}.

Proof.

3.12 shows that there exist a quasi-geometric spectral algebraic stack UU and a representable open immersion j:UXj:U\rightarrow X such that |j|(|U|)=𝒰|j|(|U|)=\operatorname{\mathcal{U}}. Then 5.16 supplies a set of compact generators {Fi}iI\{F_{i}\}_{i\in I} for QCohXU(X)\operatorname{QCoh}_{X-U}(X). Using [14, 6.3.4.1], we observe that j:QCoh(X)QCoh(U)j^{\ast}:\operatorname{QCoh}(X)\rightarrow\operatorname{QCoh}(U) admits a fully faithful right adjoint jj_{\ast}. It then follows from [14, 7.2.1.7] that the pair of subcategories (QCohXU(X),QCoh(U))(\operatorname{QCoh}_{X-U}(X),\operatorname{QCoh}(U)) determine a semi-orthogonal decomposition of QCoh(X)\operatorname{QCoh}(X) (see [14, 7.2.0.1]). Using [14, 7.2.1.4], we see that the inclusion QCohXU(X)QCoh(X)\operatorname{QCoh}_{X-U}(X)\subseteq\operatorname{QCoh}(X) admits a right adjoint which we denote by RR. According to [14, 7.2.0.2], there is a fiber sequence R(P)PjjPR(P)\rightarrow P\rightarrow j_{\ast}j^{\ast}P for each PQCoh(X)P\in\operatorname{QCoh}(X). Since jj_{\ast} preserves small colimits [14, 6.3.4.3] (and QCoh(X)\operatorname{QCoh}(X) is stable), RR preserves filtered colimits, and therefore each FiF_{i} is also compact as an object of QCoh(X)\operatorname{QCoh}(X) (see [13, 5.5.7.2]). In particular, every FiQCoh(X)F_{i}\in\operatorname{QCoh}(X) is perfect by virtue of [14, 9.1.5.2]. We now proceed as in the proof of [8, 4.10]. We first claim that the |X|𝒰|X|-\operatorname{\mathcal{U}} can be identified with the union of the supports {SuppFi}\{\operatorname{Supp}F_{i}\}. For this, it suffices to prove that |X|𝒰|X|-\operatorname{\mathcal{U}} belongs to the union of {SuppFi}\{\operatorname{Supp}F_{i}\}. Let x|X|𝒰x\in|X|-\operatorname{\mathcal{U}} and choose a point η:SpecκX\eta:\operatorname{Spec}\kappa\rightarrow X representing xx. Then [14, 6.3.4.1] guarantees that η𝒪SpecκQCohXU(X)\eta_{\ast}\operatorname{\mathcal{O}}_{\operatorname{Spec}\kappa}\in\operatorname{QCoh}_{X-U}(X). Since {Fi}\{F_{i}\} is a set compact generators for QCohXU(X)\operatorname{QCoh}_{X-U}(X) and η𝒪Specκ\eta_{\ast}\operatorname{\mathcal{O}}_{\operatorname{Spec}\kappa} is nonzero, we conclude that ηFi\eta^{\ast}F_{i} is not equivalent to 0 for some ii, so that xSuppFix\in\operatorname{Supp}F_{i} as desired. To complete the proof, it will suffice to show that |X|𝒰|X|-\operatorname{\mathcal{U}} can be covered by finitely many supports SuppFi\operatorname{Supp}F_{i}. Choose a fiber smooth surjection f:𝖷0Xf:\operatorname{\mathsf{X}}_{0}\rightarrow X, where 𝖷0\operatorname{\mathsf{X}}_{0} is affine. Replacing XX by 𝖷0\operatorname{\mathsf{X}}_{0}, we are reduced to the case where XX is affine. In this case, [14, 3.6.3.4] guarantees that |X||X| is a coherent topological space (see also 3.2). Using [14, 7.1.5.5], we see that each SuppFi\operatorname{Supp}F_{i} is a closed subset of |X||X| complementary to a quasi-compact open subset. Consequently, every SuppFi\operatorname{Supp}F_{i} and |X|𝒰|X|-\operatorname{\mathcal{U}} are constructible, so that the desired result follows by using the constructible topology on |X||X| of [14, 4.3.1.5]. ∎

5.19.

It is a tautology that the class of quasi-geometric spectral algebraic stacks which are of twisted compact generation includes the basic building blocks of spectral algebraic geometry:

Lemma 5.20.

Let 𝖷\operatorname{\mathsf{X}} be an affine spectral Deligne-Mumford stack. Then 𝖷\operatorname{\mathsf{X}} is of twisted compact generation.

5.21.

Our goal in this section is to prove that quasi-geometric spectral algebraic stacks which admit a quasi-finite presentation are of twisted compact generation 1.10. We begin by establishing some preliminaries.

Lemma 5.22.

Suppose we are given a pullback diagram of quasi-geometric stacks satisfying condition ()(\ast) of 5.9:

X\textstyle{X^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f^{\prime}}g\scriptstyle{g^{\prime}}Y\textstyle{Y^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{g}X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}Y.\textstyle{Y.}

Let 𝒞\operatorname{\mathcal{C}} be a prestable quasi-coherent stack on YY. If ff is a relative spectral algebraic space which is quasi-compact quasi-separated and gg is representable flat, then the commutative diagram of \infty-categories

QCoh(Y;𝒞)\textstyle{\operatorname{QCoh}(Y;\operatorname{\mathcal{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f^{\ast}}g\scriptstyle{g^{\ast}}QCoh(X;f𝒞)\textstyle{\operatorname{QCoh}(X;f^{\ast}\operatorname{\mathcal{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}g\scriptstyle{{g^{\prime}}^{\ast}}QCoh(Y;g𝒞)\textstyle{\operatorname{QCoh}(Y^{\prime};g^{\ast}\operatorname{\mathcal{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{{f^{\prime}}^{\ast}}QCoh(X;gf𝒞)\textstyle{\operatorname{QCoh}(X^{\prime};{g^{\prime}}^{\ast}f^{\ast}\operatorname{\mathcal{C}})}

is right adjointable.

Proof.

This follows by combining [14, 10.1.7.9] with an extension of [14, 10.1.7.13] to quasi-geometric stacks satisfying condition ()(\ast) of 5.9 (which can be achieved by using [17, 4.7.4.18]). ∎

Lemma 5.23.

Let f:XYf:X\rightarrow Y be a relative spectral algebraic space which is quasi-compact quasi-separated morphism of quasi-geometric stacks satisfying condition ()(\ast) of 5.9. Let 𝒞\operatorname{\mathcal{C}} be a prestable quasi-coherent stack on YY. Then the pullback functor f:QCoh(Y;𝒞)QCoh(X;f𝒞)f^{\ast}:\operatorname{QCoh}(Y;\operatorname{\mathcal{C}})\rightarrow\operatorname{QCoh}(X;f^{\ast}\operatorname{\mathcal{C}}) is compact.

Proof.

By virtue of 5.10 and 5.11, we can reduce to the case where XX and YY are representable by spectral Deligne-Mumford stacks, in which case the desired result follows by combining [14, 10.1.7.15] with [14, 10.3.1.13]. ∎

5.24.

As a first step towards the proof of 1.10, we show that the property of being of twisted compact generation behaves well with respect to open immersions:

Proposition 5.25.

Let j:UXj:U\rightarrow X be an open immersion of quasi-geometric spectral algebraic stacks. If XX is of twisted compact generation, then so is UU.

Proof.

Let 𝒞\operatorname{\mathcal{C}} be a compactly generated stable quasi-coherent stack on UU; we wish to show that QCoh(U;𝒞)\operatorname{QCoh}(U;\operatorname{\mathcal{C}}) is compactly generated. It follows from 5.22 and 5.23 that we have an adjunction

j:QCoh(X;j𝒞)\textstyle{j^{\ast}:\operatorname{QCoh}(X;j_{\ast}\operatorname{\mathcal{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}QCoh(U;𝒞):j,\textstyle{\operatorname{QCoh}(U;\operatorname{\mathcal{C}}):j_{\ast},\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

where jj_{\ast} is conservative and preserves small filtered colimits. Using [14, 10.3.2.3] and [14, 10.3.1.7] (see also [14, 10.1.4.1]), we see that j𝒞QStkPSt(X)j_{\ast}\operatorname{\mathcal{C}}\in\operatorname{QStk}^{\operatorname{PSt}}(X) is compactly generated and stable. Since XX is of twisted compact generation, the desired result follows from [16, 6.2]. ∎

5.26.

Our proof of 1.10 will require two descent results about the property of being of twisted compact generation. Let us begin with the descent along finite morphisms. In what follows, we regard 𝒫rL\operatorname{\mathcal{P}r^{L}} as equipped with the symmetric monoidal structure described in [17, 4.8.1.15]. Note that 𝒫rSt\operatorname{\mathcal{P}r}^{\operatorname{St}} inherits a symmetric monoidal structure from 𝒫rL\operatorname{\mathcal{P}r^{L}} (see [17, 4.8.2.18]). For the first descent result, we need the following stable version of [14, 10.2.4.2]:

Lemma 5.27.

Let f:XYf:X\rightarrow Y be a representable quasi-affine morphism of quasi-geometric stacks satisfying condition ()(\ast) of 5.9, and let 𝒞\operatorname{\mathcal{C}} be a stable quasi-coherent stack on YY. Then the canonical morphism

QCoh(X)QCoh(Y)QCoh(Y;𝒞)QCoh(X;f𝒞)\operatorname{QCoh}(X)\otimes_{\operatorname{QCoh}(Y)}\operatorname{QCoh}(Y;\operatorname{\mathcal{C}})\rightarrow\operatorname{QCoh}(X;f^{\ast}\operatorname{\mathcal{C}})

is an equivalence of presentable stable \infty-categories.

Proof.

We first claim that the functor ModQCoh(Y)(𝒫rSt)𝒫rSt\operatorname{Mod}_{\operatorname{QCoh}(Y)}(\operatorname{\mathcal{P}r}^{\operatorname{St}})\rightarrow\operatorname{\mathcal{P}r}^{\operatorname{St}} which carries a presentable stable \infty-category 𝒟\operatorname{\mathcal{D}} equipped with an action of QCoh(Y)\operatorname{QCoh}(Y) to the presentable stable \infty-category QCoh(X)QCoh(Y)𝒟\operatorname{QCoh}(X)\otimes_{\operatorname{QCoh}(Y)}\operatorname{\mathcal{D}} preserves small limits. For this, it will suffice to show that QCoh(X)\operatorname{QCoh}(X) is dualizable when viewed as an object of ModQCoh(Y)(𝒫rSt)\operatorname{Mod}_{\operatorname{QCoh}(Y)}(\operatorname{\mathcal{P}r}^{\operatorname{St}}). Let 𝒜CAlg(QCoh(Y))\operatorname{\mathcal{A}}\in\operatorname{CAlg}(\operatorname{QCoh}(Y)) denote the pushforward of the structure sheaf of XX (that is, the unit object of QCoh(X)\operatorname{QCoh}(X)) along ff. Then [14, 6.3.4.6] supplies an equivalence QCoh(X)Mod𝒜(QCoh(Y))\operatorname{QCoh}(X)\rightarrow\operatorname{Mod}_{\operatorname{\mathcal{A}}}(\operatorname{QCoh}(Y)), so the desired assertion follows from [17, 4.8.4.8]. Combining this observation with 5.10 (see also [14, 6.3.4.7]), we are reduced to the case where XX and YY are representable by spectral Deligne-Mumford stacks 𝖷\operatorname{\mathsf{X}} and 𝖸\operatorname{\mathsf{Y}}, respectively. In this case, it follows from [14, 10.2.1.1] that LMod𝒜(QCoh(𝖸;𝒞))\mathrm{LMod}_{\operatorname{\mathcal{A}}}(\operatorname{QCoh}(\operatorname{\mathsf{Y}};\operatorname{\mathcal{C}})) can be identified with the stabilization of LMod𝒜(QCoh(𝖸;𝒞))0\mathrm{LMod}_{\operatorname{\mathcal{A}}}(\operatorname{QCoh}(\operatorname{\mathsf{Y}};\operatorname{\mathcal{C}}))_{\geq 0} (see [14, 10.2.1.1] for the t-structure). By virtue of the equivalence QCoh(𝖷)Mod𝒜(QCoh(𝖸))\operatorname{QCoh}(\operatorname{\mathsf{X}})\simeq\operatorname{Mod}_{\operatorname{\mathcal{A}}}(\operatorname{QCoh}(\operatorname{\mathsf{Y}})) and [17, 4.8.4.6], it can also be identified with QCoh(𝖷)QCoh(𝖸)QCoh(𝖸;𝒞)\operatorname{QCoh}(\operatorname{\mathsf{X}})\otimes_{\operatorname{QCoh}(\operatorname{\mathsf{Y}})}\operatorname{QCoh}(\operatorname{\mathsf{Y}};\operatorname{\mathcal{C}}). Invoking our assumption that ff is quasi-affine, we obtain an equivalence LMod𝒜(QCoh(𝖸;𝒞))0QCoh(𝖷,f𝒞)\mathrm{LMod}_{\operatorname{\mathcal{A}}}(\operatorname{QCoh}(\operatorname{\mathsf{Y}};\operatorname{\mathcal{C}}))_{\geq 0}\simeq\operatorname{QCoh}(\operatorname{\mathsf{X}},f^{\ast}\operatorname{\mathcal{C}}) by combining [14, 10.2.1.3] and [14, 10.2.4.2]; the desired equivalence now follows by passing to the stabilization. ∎

Proposition 5.28.

Let f:XYf:X\rightarrow Y be a morphism of quasi-geometric spectral algebraic stacks which is representable, finite, faithfully flat, and locally almost of finite presentation. If XX is of twisted compact generation, then so is YY.

Proof.

Let 𝒞\operatorname{\mathcal{C}} be a compactly generated stable quasi-coherent stack on YY; we wish to show that QCoh(Y;𝒞)\operatorname{QCoh}(Y;\operatorname{\mathcal{C}}) is compactly generated. We first show that the pullback functor f:QCoh(Y;𝒞)QCoh(X;f𝒞)f^{\ast}:\operatorname{QCoh}(Y;\operatorname{\mathcal{C}})\rightarrow\operatorname{QCoh}(X;f^{\ast}\operatorname{\mathcal{C}}) admits a left adjoint. Since it preserves small colimits (see 5.22), it will suffice to prove that it preserves small limits by virtue of the adjoint functor theorem [13, 5.5.2.9]. Let 𝒜CAlg(QCoh(Y))\operatorname{\mathcal{A}}\in\operatorname{CAlg}(\operatorname{QCoh}(Y)) denote the pushforward f𝒪Xf_{\ast}\operatorname{\mathcal{O}}_{X}. Combining 5.27 with [14, 6.3.4.6] and [17, 4.8.4.6], we can identify QCoh(X;f𝒞)\operatorname{QCoh}(X;f^{\ast}\operatorname{\mathcal{C}}) with LMod𝒜(QCoh(Y;𝒞))\mathrm{LMod}_{\operatorname{\mathcal{A}}}(\operatorname{QCoh}(Y;\operatorname{\mathcal{C}})), under which ff^{\ast} corresponds to the functor QCoh(Y;𝒞)LMod𝒜(QCoh(Y;𝒞))\operatorname{QCoh}(Y;\operatorname{\mathcal{C}})\rightarrow\mathrm{LMod}_{\operatorname{\mathcal{A}}}(\operatorname{QCoh}(Y;\operatorname{\mathcal{C}})) given by tensor product with 𝒜\operatorname{\mathcal{A}}. Since the forgetful functor LMod𝒜(QCoh(Y;𝒞))QCoh(Y;𝒞)\mathrm{LMod}_{\operatorname{\mathcal{A}}}(\operatorname{QCoh}(Y;\operatorname{\mathcal{C}}))\rightarrow\operatorname{QCoh}(Y;\operatorname{\mathcal{C}}) is conservative [17, 4.2.3.2] and preserves small limits [17, 4.2.3.3], it is enough to prove that 𝒜\operatorname{\mathcal{A}} is dualizable as an object of QCoh(Y)\operatorname{QCoh}(Y). Invoking our assumption on ff (and using [14, 6.3.4.1]), we deduce from [14, 6.1.3.2] that 𝒜\operatorname{\mathcal{A}} is perfect, hence dualizable as desired (see [14, 6.2.6.2]). Now let f+f_{+} denote a left adjoint to ff^{\ast}. Since XX is of twisted compact generation and ff^{\ast} is conservative (by virtue of 5.10), the desired compact generation follows immediately by applying [16, 6.2] to the adjoint pair (f+,f)(f_{+},f^{\ast}). ∎

5.29.

We next show that the property of being a twisted compact generation satisfies descent for excision squares. For this purpose, the Thomason–Neeman localization theorem in the setting of \infty-categories by Adeel A. Khan (see [10, 2.11]) will play an essential role. Of greatest interest to us is the case of semi-orthogonal decompositions [14, 7.2.0.1]:

Lemma 5.30.

Let 𝒞\operatorname{\mathcal{C}} be a compactly generated presentable stable \infty-category and let (𝒞+,𝒞)(\operatorname{\mathcal{C}}_{+},\operatorname{\mathcal{C}}_{-}) be a semi-orthogonal decomposition of 𝒞\operatorname{\mathcal{C}} for which the subcategories 𝒞+,𝒞\operatorname{\mathcal{C}}_{+},\operatorname{\mathcal{C}}_{-} are compactly generated. Suppose that the inclusion functor ι:𝒞𝒞\iota:\operatorname{\mathcal{C}}_{-}\rightarrow\operatorname{\mathcal{C}} preserves small filtered colimits. Let LL denote a left adjoint to the inclusion ι\iota (which exists by virtue of [14, 7.2.1.7]). Let DD be a compact object of 𝒞\operatorname{\mathcal{C}}_{-}. Then there exists a compact object CC of 𝒞\operatorname{\mathcal{C}} and an equivalence L(C)DD[1]L(C)\simeq D\oplus D[1] in the \infty-category 𝒞\operatorname{\mathcal{C}}_{-}.

Proof.

By virtue of [14, 7.2.1.4], the inclusion functor 𝒞+𝒞\operatorname{\mathcal{C}}_{+}\rightarrow\operatorname{\mathcal{C}} admits a right adjoint, which we denote by RR. According to [14, 7.2.0.2], for each object C𝒞C\in\operatorname{\mathcal{C}}, there is a fiber sequence R(C)CL(C)R(C)\rightarrow C\rightarrow L(C). Combing this with our assumption on ι\iota, we see that RR preserves small filtered colimits. The desired result now follows immediately from [10, 2.11]. ∎

5.31.

The following “Nisnevich excision” result will be useful in the proof of 5.33:

Lemma 5.32.

Suppose we are given an excision square of quasi-geometric spectral algebraic stacks:

U\textstyle{U^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{\prime}}f\scriptstyle{f^{\prime}}X\textstyle{X^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}U\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j}X.\textstyle{X.}

Let 𝒞\operatorname{\mathcal{C}} be a prestable quasi-coherent stack on XX. If ff is quasi-affine, then the commutative diagram of \infty-categories

QCoh(X;𝒞)\textstyle{\operatorname{QCoh}(X;\operatorname{\mathcal{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}QCoh(U;j𝒞)\textstyle{\operatorname{QCoh}(U;j^{\ast}\operatorname{\mathcal{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}QCoh(X;f𝒞)\textstyle{\operatorname{QCoh}(X^{\prime};f^{\ast}\operatorname{\mathcal{C}})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}QCoh(U;jf𝒞)\textstyle{\operatorname{QCoh}(U^{\prime};{j^{\prime}}^{\ast}f^{\ast}\operatorname{\mathcal{C}})}

is a pullback square in 𝖦𝗋𝗈𝗍𝗁\operatorname{\mathsf{Groth}}_{\infty}.

Proof.

We can use 5.10 to reduce to the case where XX and YY are quasi-affine spectral Deligne-Mumford stacks. In this case, the desired result follows from [14, 10.2.3.1] and [14, 10.2.4.2]. ∎

Proposition 5.33.

Suppose we are given an excision square of quasi-geometric spectral algebraic stacks

U\textstyle{U^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{\prime}}f\scriptstyle{f^{\prime}}X\textstyle{X^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}U\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j}X,\textstyle{X,}

where ff is quasi-affine. If XX^{\prime} and UU are of twisted compact generation, then so is XX.

Proof.

Let 𝒞QStkPSt(X)\operatorname{\mathcal{C}}\in\operatorname{QStk}^{\operatorname{PSt}}(X) be compactly generated stable; we wish to show that QCoh(X;𝒞)\operatorname{QCoh}(X;\operatorname{\mathcal{C}}) is compactly generated. For this, we proceed as in the proofs of [16, 6.20] and [1, 6.13]. We first claim that the collection of objects of the form jMj^{\ast}M, where MM is a compact object of QCoh(X;𝒞)\operatorname{QCoh}(X;\operatorname{\mathcal{C}}), is a set of compact generators for QCoh(U;j𝒞)\operatorname{QCoh}(U;j^{\ast}\operatorname{\mathcal{C}}) (note that jMj^{\ast}M is compact by virtue of 5.23). Using the compact generation of QCoh(U;j𝒞)\operatorname{QCoh}(U;j^{\ast}\operatorname{\mathcal{C}}) (because UU is of twisted compact generation), it suffices to prove that for each compact object NQCoh(U;j𝒞)N\in\operatorname{QCoh}(U;j^{\ast}\operatorname{\mathcal{C}}), there exists a compact object MQCoh(X;𝒞)M\in\operatorname{QCoh}(X;\operatorname{\mathcal{C}}) such that jMNN[1]j^{\ast}M\simeq N\oplus N[1]. By virtue of 5.23 and 5.32, we observe that an object MQCoh(X;𝒞)M\in\operatorname{QCoh}(X;\operatorname{\mathcal{C}}) is compact if and only if both jMj^{\ast}M and fMf^{\ast}M are compact; consequently, in order to lift NN[1]N\oplus N[1] to a compact object of QCoh(X;𝒞)\operatorname{QCoh}(X;\operatorname{\mathcal{C}}), it suffices to lift f(NN[1]){f^{\prime}}^{\ast}(N\oplus N[1]) to a compact object of QCoh(X;f𝒞)\operatorname{QCoh}(X^{\prime};f^{\ast}\operatorname{\mathcal{C}}). Since jj^{\prime\ast} admits a fully faithful right adjoint jj^{\prime}_{\ast} 5.22, it follows from [14, 7.2.1.7] that the pair of subcategories (QCohXU(X;f𝒞),QCoh(U;jf𝒞))(\operatorname{QCoh}_{X^{\prime}-U^{\prime}}(X^{\prime};f^{\ast}\operatorname{\mathcal{C}}),\operatorname{QCoh}(U^{\prime};{j^{\prime}}^{\ast}f^{\ast}\operatorname{\mathcal{C}})) determine a semi-orthogonal decomposition of QCoh(X;f𝒞)\operatorname{QCoh}(X^{\prime};f^{\ast}\operatorname{\mathcal{C}}). Combining the assumption that XX^{\prime} is of twisted compact generation with 5.14 and 5.25, we deduce that QCoh(X;f𝒞)\operatorname{QCoh}(X^{\prime};f^{\ast}\operatorname{\mathcal{C}}) and the two subcategories are compactly generated. Since jj^{\prime}_{\ast} preserves small filtered colimits 5.23, the desired lifting follows from the Thomason–Neeman localization theorem [10, 2.11] (see 5.30).

On the other hand, 5.32 guarantees that the pullback functor ff^{\ast} induces an equivalence of \infty-categories QCohXU(X;𝒞)QCohXU(X;f𝒞)\operatorname{QCoh}_{X-U}(X;\operatorname{\mathcal{C}})\rightarrow\operatorname{QCoh}_{X^{\prime}-U^{\prime}}(X^{\prime};f^{\ast}\operatorname{\mathcal{C}}), so that QCohXU(X;𝒞)\operatorname{QCoh}_{X-U}(X;\operatorname{\mathcal{C}}) is also compactly generated. Let {Mα}αA\{M^{\prime}_{\alpha}\}_{\alpha\in A} be the collection of compact objects of QCohXU(X;𝒞)\operatorname{QCoh}_{X-U}(X;\operatorname{\mathcal{C}}). As in the case of QCoh(X;f𝒞)\operatorname{QCoh}(X^{\prime};f^{\ast}\operatorname{\mathcal{C}}), the pair (QCohXU(X;𝒞),QCoh(U;j𝒞))(\operatorname{QCoh}_{X-U}(X;\operatorname{\mathcal{C}}),\operatorname{QCoh}(U;j^{\ast}\operatorname{\mathcal{C}})) is a semi-orthogonal decomposition of QCoh(X;𝒞)\operatorname{QCoh}(X;\operatorname{\mathcal{C}}). Since jj_{\ast} preserves small filtered colimits, it follows from the proof of 5.30 that the inclusion QCohXU(X;𝒞)QCoh(X;𝒞)\operatorname{QCoh}_{X-U}(X;\operatorname{\mathcal{C}})\subseteq\operatorname{QCoh}(X;\operatorname{\mathcal{C}}) admits a right adjoint RR which preserves small filtered colimits, and therefore each MαQCohXU(X;𝒞)M^{\prime}_{\alpha}\in\operatorname{QCoh}_{X-U}(X;\operatorname{\mathcal{C}}) is compact as an object of QCoh(X;𝒞)\operatorname{QCoh}(X;\operatorname{\mathcal{C}}) as well. To complete the proof, we will show that the collection of objects of the form MMαQCoh(X;𝒞)M\oplus M^{\prime}_{\alpha}\in\operatorname{QCoh}(X;\operatorname{\mathcal{C}}), where MQCoh(X;𝒞)M\in\operatorname{QCoh}(X;\operatorname{\mathcal{C}}) is compact, is a set of compact generators for QCoh(X;𝒞)\operatorname{QCoh}(X;\operatorname{\mathcal{C}}): let M′′QCoh(X;𝒞)M^{\prime\prime}\in\operatorname{QCoh}(X;\operatorname{\mathcal{C}}) and suppose that ExtQCoh(X;𝒞)(MMα,M′′)=0\operatorname{Ext}^{\ast}_{\operatorname{QCoh}(X;\operatorname{\mathcal{C}})}(M\oplus M^{\prime}_{\alpha},M^{\prime\prime})=0 for each compact object MQCoh(X;𝒞)M\in\operatorname{QCoh}(X;\operatorname{\mathcal{C}}) and each MαM^{\prime}_{\alpha}. Since the collection {Mα}\{M^{\prime}_{\alpha}\} is a set of compact generators for QCohXU(X;𝒞)\operatorname{QCoh}_{X-U}(X;\operatorname{\mathcal{C}}), we see that RM′′0RM^{\prime\prime}\simeq 0. It then follows from the fiber sequence RM′′M′′jjM′′RM^{\prime\prime}\rightarrow M^{\prime\prime}\rightarrow j_{\ast}j^{\ast}M^{\prime\prime} (see [14, 7.2.0.2]) that the unit map M′′jjM′′M^{\prime\prime}\rightarrow j_{\ast}j^{\ast}M^{\prime\prime} is an equivalence. Combining this with the above discussion of the collection {jM}\{j^{\ast}M\}, we deduce that jM′′0j^{\ast}M^{\prime\prime}\simeq 0, hence M′′0M^{\prime\prime}\simeq 0 as desired. ∎

5.34.

We now provide a proof of our main result of this section. Our basic strategy is analogous to the proof of [8, Theorem A].

Proof of 1.10.

In view of the special presentation of 4.12 and the stacky scallop decomposition induced by pp (see 4.7), we can use the descent results 5.28 and 5.33 (note that each morphism WmUmW_{m}\rightarrow U_{m} appearing in the proof of 4.7 is quasi-affine by virtue of the separatedness of pp and [14, 3.3.0.2]) along with 5.25 to reduce to the case of quasi-affine spectral Deligne-Mumford stacks, in which case the desired result follows from 5.20 and 5.25 (see also [14, 2.4.2.3]). ∎

5.35.

We close this section by mentioning another consequence of the special presentation of 4.12 and the descent results 5.28 and 5.33. According to [14, D.5.3.1], the property of being a compactly generated prestable RR-linear \infty-category is local for the étale topology, where RR is a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring. In the stable case, we have the following stronger assertion, whose proof is immediate from the proofs of 5.28 and 5.33 by considering 4.12 and 4.7:

Theorem 5.36.

Let XX be a quasi-geometric spectral algebraic stack and let 𝒞\operatorname{\mathcal{C}} be a stable quasi-coherent stack on XX. If there exists a locally quasi-finite, faithfully flat, and locally almost of finite presentation of quasi-geometric spectral algebraic stacks f:SpecAXf:\operatorname{Spec}A\rightarrow X for which f𝒞f^{\ast}\operatorname{\mathcal{C}} is compactly generated, then 𝒞\operatorname{\mathcal{C}} is compactly generated.

6. Brauer Spaces and Azumaya Algebras

Our goal in this section is to give a proof of our main result 1.2, and to provide an explicit description of the homotopy groups of the extended Brauer sheaf of a quasi-geometric stack.

6.1.

Let RR be a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring. According to [14, 11.5.3.1], an 𝔼1\operatorname{\mathbb{E}}_{1}-algebra AA over RR is called the Azumaya algebra over RR if it is a compact generator of ModR\operatorname{Mod}_{R} and the natural map ARArevEndR(A)A\otimes_{R}A^{\operatorname{rev}}\rightarrow\operatorname{End}_{R}(A) induced by the left and right actions of AA on itself is an equivalence. In the setting of derived algebraic geometry, the property of being a derived Azumaya algebra (see [19, 2.1]) is local for the flat topology [19, 2.3]. We have the following spectral analogue, which can be proven by exactly the same argument:

Lemma 6.2.

Let RR be a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring and let AA be an 𝔼1\operatorname{\mathbb{E}}_{1}-algebra over RR. Then the condition that AA is an Azumaya algebra is stable under base change [14, 6.2.5.1] and local for the flat topology [14, 2.8.4.1].

6.3.

Before giving our proof of the main result 1.2, we need to recall a bit of terminology. Let X:CAlgcn𝒮^X:\operatorname{CAlg}^{\operatorname{cn}}\rightarrow\widehat{\operatorname{\mathcal{S}}} be a functor. Let QStkcg(X)\operatorname{QStk}^{\operatorname{cg}}(X) denote the subcategory of QStkSt(X)\operatorname{QStk}^{\operatorname{St}}(X) whose objects are compactly generated stable quasi-coherent stacks and whose morphisms are compact morphisms of quasi-coherent stacks of [14, 10.1.3.1]. Note that it inherits a symmetric monoidal structure from QStkSt(X)\operatorname{QStk}^{\operatorname{St}}(X); see [14, 11.4.0.1]. According to [14, 11.5.2.1], the extended Brauer space r(X)QStkcg(X)\operatorname{\mathscr{B}r}^{\dagger}(X)\subseteq\operatorname{QStk}^{\operatorname{cg}}(X)^{\simeq} of XX is defined to be the full subcategory spanned by the invertible objects of QStkcg(X)\operatorname{QStk}^{\operatorname{cg}}(X) (here QStkcg(X)\operatorname{QStk}^{\operatorname{cg}}(X)^{\simeq} denotes the largest Kan complex contained in QStkcg(X)\operatorname{QStk}^{\operatorname{cg}}(X)), and the extended Brauer group Br(X)\operatorname{Br}^{\dagger}(X) of XX is defined to be the set π0r(X)\pi_{0}\operatorname{\mathscr{B}r}^{\dagger}(X). As in [14, 11.5.2.11], we denote the full subcategory of QCoh(X)\operatorname{QCoh}(X)^{\simeq} spanned by the invertible objects of QCoh(X)\operatorname{QCoh}(X) by 𝒫ic(X)\operatorname{\mathscr{P}ic}^{\dagger}(X) and refer to it as the extended Picard space of XX. Using the symmetric monoidal structures on QStkSt(X)\operatorname{QStk}^{\operatorname{St}}(X) and QCoh(X)\operatorname{QCoh}(X), we may regard r(X)\operatorname{\mathscr{B}r}^{\dagger}(X) and 𝒫ic(X)\operatorname{\mathscr{P}ic}^{\dagger}(X) as grouplike commutative monoid objects of the \infty-category 𝒮^\widehat{\operatorname{\mathcal{S}}}.

According to [14, 11.5.3.7], an associative algebra object 𝒜\operatorname{\mathcal{A}} of QCoh(X)\operatorname{QCoh}(X) is called the Azumaya algebra if, for every morphism η:SpecRX\eta:\operatorname{Spec}R\rightarrow X where RR is a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring, η𝒜AlgR\eta^{\ast}\operatorname{\mathcal{A}}\in\operatorname{Alg}_{R} is an Azumaya algebra over RR. For each Azumaya algebra 𝒜Alg(QCoh(X))\operatorname{\mathcal{A}}\in\operatorname{Alg}(\operatorname{QCoh}(X)), it follows from [14, 11.5.3.9] that the stable quasi-coherent stack on XX given by the formula (η:SpecRX)(RModη𝒜LinCatRSt)(\eta:\operatorname{Spec}R\rightarrow X)\mapsto(\operatorname{RMod}_{\eta^{\ast}\operatorname{\mathcal{A}}}\in\operatorname{LinCat}^{\operatorname{St}}_{R}) determines an object of the extended Brauer space r(X)\operatorname{\mathscr{B}r}^{\dagger}(X). We refer to the equivalence class of this quasi-coherent stack as the extended Brauer class of 𝒜\operatorname{\mathcal{A}} and denote it by [𝒜]r(X)[\operatorname{\mathcal{A}}]\in\operatorname{\mathscr{B}r}^{\dagger}(X).

6.4.

We are now ready to prove our main result which extends [14, 11.5.3.10] (which asserts that if 𝖷\operatorname{\mathsf{X}} is a quasi-compact quasi-separated spectral algebraic space, then every object of Br(𝖷)\operatorname{Br}^{\dagger}(\operatorname{\mathsf{X}}) has the form [𝒜][\operatorname{\mathcal{A}}] for some Azumaya algebra 𝒜Alg(QCoh(𝖷))\operatorname{\mathcal{A}}\in\operatorname{Alg}(\operatorname{QCoh}(\operatorname{\mathsf{X}}))) to quasi-geometric spectral algebraic stacks which admit a quasi-finite presentation (see 1.3). The main ingredient in the proof of [14, 11.5.3.10] is [14, 10.3.2.1] which shows that QCoh(𝖷;𝒞)\operatorname{QCoh}(\operatorname{\mathsf{X}};\operatorname{\mathcal{C}}) is compactly generated for each compactly generated prestable quasi-coherent stack 𝒞\operatorname{\mathcal{C}} on 𝖷\operatorname{\mathsf{X}}. In our case of interest, we will closely follow the proof of [14, 11.5.3.10], using 1.10 in place of [14, 10.3.2.1].

Proof of 1.2.

Let uBr(X)u\in\operatorname{Br}^{\dagger}(X) be an element, and choose an invertible object 𝒞\operatorname{\mathcal{C}} of QStkcg(X)\operatorname{QStk}^{\operatorname{cg}}(X) which represents uu. By virtue of 1.10, XX is of twisted compact generation, so that QCoh(X;𝒞)\operatorname{QCoh}(X;\operatorname{\mathcal{C}}) is compactly generated. Choose a set of compact generators {Ci}iI\{C_{i}\}_{i\in I} for QCoh(X;𝒞)\operatorname{QCoh}(X;\operatorname{\mathcal{C}}). Choose a fiber smooth surjection f:SpecAXf:\operatorname{Spec}A\rightarrow X, where AA is a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring. Since ff is quasi-affine, f:QCoh(X;𝒞)QCoh(SpecA;f𝒞)f^{\ast}:\operatorname{QCoh}(X;\operatorname{\mathcal{C}})\rightarrow\operatorname{QCoh}(\operatorname{Spec}A;f^{\ast}\operatorname{\mathcal{C}}) admits a right adjoint ff_{\ast} (see 5.22), and it follows from the proof of 5.28 that QCoh(SpecA;f𝒞)\operatorname{QCoh}(\operatorname{Spec}A;f^{\ast}\operatorname{\mathcal{C}}) can be identified with LMod𝒜(QCoh(Y;𝒞))\mathrm{LMod}_{\operatorname{\mathcal{A}}}(\operatorname{QCoh}(Y;\operatorname{\mathcal{C}})), under which the pushforward ff_{\ast} corresponds to the forgetful functor LMod𝒜(QCoh(Y;𝒞))QCoh(Y;𝒞)\mathrm{LMod}_{\operatorname{\mathcal{A}}}(\operatorname{QCoh}(Y;\operatorname{\mathcal{C}}))\rightarrow\operatorname{QCoh}(Y;\operatorname{\mathcal{C}}). In particular, ff_{\ast} is conservative. Combining this observation with the fact that ff^{\ast} is compact (see 5.23), we deduce that {fCi}iI\{f^{\ast}C_{i}\}_{i\in I} is a set of compact generators for f𝒞f^{\ast}\operatorname{\mathcal{C}} (see 5.2). Using [14, 11.5.2.5], we see that f𝒞f^{\ast}\operatorname{\mathcal{C}} is smooth over AA, and therefore the proof of [14, 11.3.2.4] guarantees that there exists a finite subset I0II_{0}\subset I such that the pullback of C=iI0CiC=\oplus_{i\in I_{0}}C_{i} along ff is a compact generator of f𝒞f^{\ast}\operatorname{\mathcal{C}}. Let Alg(QCoh(X))\operatorname{\mathcal{E}}\in\operatorname{Alg}(\operatorname{QCoh}(X)) denote the endomorphism algebra of CC (here we regard QCoh(X;𝒞)\operatorname{QCoh}(X;\operatorname{\mathcal{C}}) as tensored over QCoh(X)\operatorname{QCoh}(X)), and let 𝒞\operatorname{\mathcal{C}}^{\prime} be the stable quasi-coherent stack on XX, given by the formula (η:SpecRX)(RModηLinCatRSt)(\eta:\operatorname{Spec}R\rightarrow X)\mapsto(\operatorname{RMod}_{{\eta}^{\ast}\operatorname{\mathcal{E}}}\in\operatorname{LinCat}^{\operatorname{St}}_{R}). Consider the morphism of quasi-coherent stacks F:𝒞𝒞F:\operatorname{\mathcal{C}}^{\prime}\rightarrow\operatorname{\mathcal{C}} determined by the operation C\bullet\otimes_{\operatorname{\mathcal{E}}}C. We will complete the proof by showing that the functor FF is an equivalence and that \operatorname{\mathcal{E}} is an Azumaya algebra on XX. By virtue of 6.2 and [14, D.4.1.6] (see also [14, 11.2.3.3]), it will suffice to show the assertion after pulling back along ff. Invoking the fact that fCf^{\ast}C is a compact generator of f𝒞f^{\ast}\operatorname{\mathcal{C}}, we deduce that fFf^{\ast}F is an equivalence of AA-linear \infty-categories (see [17, 7.1.2.1]). Combining this observation with the fact that 𝒞\operatorname{\mathcal{C}} is invertible and [14, 11.5.3.4], we conclude that ff^{\ast}\operatorname{\mathcal{E}} is an Azumaya algebra over AA as desired. ∎

6.5.

The remainder of this section is devoted to describing the homotopy groups of the extended Brauer sheaf r¯(X)\underline{\operatorname{\mathscr{B}r}}^{\dagger}(X) where XX is a quasi-geometric stack.

Definition 6.6.

Let XX be a quasi-geometric stack. Let CAlgXcnCAlgcn\operatorname{CAlg}^{\operatorname{cn}}_{X}\rightarrow\operatorname{CAlg}^{\operatorname{cn}} be a left fibration classified by XX (so that an object of CAlgXcn\operatorname{CAlg}^{\operatorname{cn}}_{X} can be identified with a pair (A,η)(A,\eta), where AA is a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring and ηX(A)\eta\in X(A) is an AA-valued point of XX). The \infty-category (CAlgXcn)op(\operatorname{CAlg}^{\operatorname{cn}}_{X})^{\operatorname{op}} can be equipped with a Grothendieck topology which we refer to as the big étale topology: a sieve on an object (A,η)(A,\eta) is a covering if it contains a finite collection of morphisms {(A,η)(Ai,ηi)}1in\{(A,\eta)\rightarrow(A_{i},\eta_{i})\}_{1\leq i\leq n} for which the induced map AAiA\rightarrow\prod A_{i} is faithfully flat and étale. There is an induced Grothendieck topology on the opposite of the full subcategory CAlgXcn,fpqcCAlgXcn\operatorname{CAlg}^{\operatorname{cn},\operatorname{fpqc}}_{X}\subseteq\operatorname{CAlg}^{\operatorname{cn}}_{X} spanned by those objects (A,η)(A,\eta) for which the corresponding morphism SpecAX\operatorname{Spec}A\rightarrow X is flat. We let 𝒮hvXfpqce´tFun(CAlgXcn,fpqc,𝒮)\operatorname{\mathcal{S}hv}^{\operatorname{fpqc}-\mathrm{\acute{e}t}}_{X}\subseteq\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn},\operatorname{fpqc}}_{X},\operatorname{\mathcal{S}}) denote the full subcategory spanned by the sheaves on (CAlgXcn,fpqc)op(\operatorname{CAlg}^{\operatorname{cn},\operatorname{fpqc}}_{X})^{\operatorname{op}} and refer to it as the fpqc-étale \infty-topos of XX.

Remark 6.7.

Let r¯X,𝒫ic¯X:CAlgXcn,fpqc𝒮\underline{\operatorname{\mathscr{B}r}}^{\dagger}_{X},\underline{\operatorname{\mathscr{P}ic}}^{\dagger}_{X}:\operatorname{CAlg}^{\operatorname{cn},\operatorname{fpqc}}_{X}\rightarrow\operatorname{\mathcal{S}} denote the functors given on objects by (A,η)r(A)(A,\eta)\mapsto\operatorname{\mathscr{B}r}^{\dagger}(A) and 𝒫ic(A)\operatorname{\mathscr{P}ic}^{\dagger}(A), respectively. They are fpqc-étale sheaves and factor through the \infty-category CAlggp(𝒮)\operatorname{CAlg}^{\operatorname{gp}}(\operatorname{\mathcal{S}}) of grouplike 𝔼\operatorname{\mathbb{E}}_{\infty}-spaces (see [17, 5.2.6.6]). By virtue of [14, 11.5.2.11], we have a canonical equivalence Ωr¯X𝒫ic¯X\Omega\underline{\operatorname{\mathscr{B}r}}^{\dagger}_{X}\simeq\underline{\operatorname{\mathscr{P}ic}}^{\dagger}_{X} in the \infty-category of CAlggp(𝒮)\operatorname{CAlg}^{\operatorname{gp}}(\operatorname{\mathcal{S}})-valued fpqc-étale sheaves on XX. We refer to r¯X\underline{\operatorname{\mathscr{B}r}}^{\dagger}_{X} as the extended Brauer sheaf of XX.

6.8.

There is an evident forgetful functor QCoh(X)Fun(CAlgXcn,𝒮)\operatorname{QCoh}(X)\rightarrow\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}}_{X},\operatorname{\mathcal{S}}). More informally, it assigns to each FQCoh(X)F\in\operatorname{QCoh}(X) a functor which carries a pair (R,η)CAlgXcn(R,\eta)\in\operatorname{CAlg}^{\operatorname{cn}}_{X} to the 0-th space Ω(Fη)\Omega^{\infty}(F_{\eta}) of the underlying spectrum of the RR-module FηF_{\eta}. By virtue of [14, 6.2.3.1], the forgetful functor factors through the \infty-category of big étale sheaves on XX. For any integer n0n\geq 0 and any object FQCoh(X)F\in\operatorname{QCoh}(X), let πnF\pi_{n}F denote the nn-th homotopy group of the restriction of the underlying big étale sheaf of FF to 𝒮hvXfpqce´t\operatorname{\mathcal{S}hv}^{\operatorname{fpqc}-\mathrm{\acute{e}t}}_{X}. We have the following analogue of [14, 11.5.5.3], which can be proven by exactly the same argument:

Lemma 6.9.

Let XX be a quasi-geometric stack. Then the homotopy groups of r¯X\underline{\operatorname{\mathscr{B}r}}^{\dagger}_{X} are given by

πnr¯X{0if n=0¯if n=1(π0𝒪X)×if n=2πn2𝒪Xif n3.\pi_{n}\underline{\operatorname{\mathscr{B}r}}^{\dagger}_{X}\simeq\begin{cases}0&\text{if $n=0$}\\ \underline{\mathbb{Z}}&\text{if $n=1$}\\ (\pi_{0}\operatorname{\mathcal{O}}_{X})^{\times}&\text{if $n=2$}\\ \pi_{n-2}\operatorname{\mathcal{O}}_{X}&\text{if $n\geq 3$.}\end{cases}

Here ¯\underline{\mathbb{Z}} denotes the constant sheaf associated to the abelian group \mathbb{Z}.

6.10.

In the special case where XX is 0-truncated (in the sense of [14, 9.1.6.1]), the restriction of the underlying big étale sheaf of the structure sheaf 𝒪X\operatorname{\mathcal{O}}_{X} to 𝒮hvXfpqce´t\operatorname{\mathcal{S}hv}^{\operatorname{fpqc}-\mathrm{\acute{e}t}}_{X} can be regarded as a commutative ring object of the topos of discrete objects of 𝒮hvXfpqce´t\operatorname{\mathcal{S}hv}^{\operatorname{fpqc}-\mathrm{\acute{e}t}}_{X}; let us denote its group of units by 𝒪X×\operatorname{\mathcal{O}}_{X}^{\times}. Arguing as in [14, 11.5.5.4, 11.5.5.5] (using 6.9 in place of [14, 11.5.5.3]), 6.9 supplies an equivalence r¯XK(𝒪X×,2)×K(¯,1)\underline{\operatorname{\mathscr{B}r}}^{\dagger}_{X}\simeq K(\operatorname{\mathcal{O}}_{X}^{\times},2)\times K(\underline{\mathbb{Z}},1) in the \infty-topos 𝒮hvXfpqce´t\operatorname{\mathcal{S}hv}^{\operatorname{fpqc}-\mathrm{\acute{e}t}}_{X}. Since the space of global sections of r¯X\underline{\operatorname{\mathscr{B}r}}^{\dagger}_{X} can be identified with r(X)\operatorname{\mathscr{B}r}^{\dagger}(X), we have the following:

Lemma 6.11.

Let XX be a 0-truncated quasi-geometric stack. Then the homotopy groups of r(X)\operatorname{\mathscr{B}r}^{\dagger}(X) are given by

πnr(X){Hfpqce´t2(X,𝒪X×)×Hfpqce´t1(X,¯)if n=0Hfpqce´t1(X,𝒪X×)×Hfpqce´t0(X,¯)if n=1Hfpqce´t0(X,𝒪X×)if n=20if n3,\pi_{n}\operatorname{\mathscr{B}r}^{\dagger}(X)\simeq\begin{cases}\operatorname{H}^{2}_{\operatorname{fpqc}-\mathrm{\acute{e}t}}(X,\operatorname{\mathcal{O}}_{X}^{\times})\times\operatorname{H}^{1}_{\operatorname{fpqc}-\mathrm{\acute{e}t}}(X,\underline{\mathbb{Z}})&\text{if $n=0$}\\ \operatorname{H}^{1}_{\operatorname{fpqc}-\mathrm{\acute{e}t}}(X,\operatorname{\mathcal{O}}_{X}^{\times})\times\operatorname{H}^{0}_{\operatorname{fpqc}-\mathrm{\acute{e}t}}(X,\underline{\mathbb{Z}})&\text{if $n=1$}\\ \operatorname{H}^{0}_{\operatorname{fpqc}-\mathrm{\acute{e}t}}(X,\operatorname{\mathcal{O}}_{X}^{\times})&\text{if $n=2$}\\ 0&\text{if $n\geq 3$,}\end{cases}

where Hfpqce´t(X,)\operatorname{H}^{\ast}_{\operatorname{fpqc}-\mathrm{\acute{e}t}}(X,\bullet) denotes of the cohomology group of the fpqc-étale \infty-topos of XX.

Remark 6.12.

In the special case where XX is an ordinary quasi-compact quasi-separated scheme, we recover [1, 7.14].

References

  • [1] Benjamin Antieau and David Gepner, Brauer groups and étale cohomology in derived algebraic geometry, Geom. Topol. 18 (2014), no. 2, 1149–1244. MR 3190610
  • [2] M. Artin, Algebraization of formal moduli. I, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 21–71. MR 0260746
  • [3] Aise Johan de Jong, A result of gabber, Preprint.
  • [4] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. (1966), no. 28, 255. MR 0217086
  • [5] by same author, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. (1967), no. 32, 361. MR 0238860
  • [6] Alexander Grothendieck, Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses [ MR0244269 (39 #5586a)], Séminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1995, pp. Exp. No. 290, 199–219. MR 1608798
  • [7] by same author, Le groupe de Brauer. II. Théorie cohomologique [ MR0244270 (39 #5586b)], Séminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1995, pp. Exp. No. 297, 287–307. MR 1608805
  • [8] Jack Hall and David Rydh, Perfect complexes on algebraic stacks, Compos. Math. 153 (2017), no. 11, 2318–2367. MR 3705292
  • [9] by same author, Addendum to “Étale dévissage, descent and pushouts of stacks” [J. Algebra 331 (1) (2011) 194–223] [ MR2774654], J. Algebra 498 (2018), 398–412. MR 3754421
  • [10] Adeel A. Khan, Compact generation of quasi-coherent sheaves.
  • [11] Gérard Laumon and Laurent Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 39, Springer-Verlag, Berlin, 2000. MR 1771927
  • [12] Jacob Lurie, Derived algebraic geometry, ProQuest LLC, Ann Arbor, MI, 2004, Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2717174
  • [13] by same author, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659
  • [14] by same author, Spectral algebraic geometry, Last update: Feb 2018, Preprint.
  • [15] by same author, Spectral schemes, Last update: June 2011, Preprint.
  • [16] by same author, Descent theorems, Last update: Sep 2011, Preprint.
  • [17] by same author, Higher algebra, Last update: Sep 2017, Preprint.
  • [18] The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu, 2018.
  • [19] Bertrand Toën, Derived Azumaya algebras and generators for twisted derived categories, Invent. Math. 189 (2012), no. 3, 581–652. MR 2957304