This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Branching algebras for the general linear
Lie superalgebra

Soo Teck Lee Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road, Singapore 119076, Republic of Singapore [email protected]  and  Ruibin Zhang School of Mathematics and Statistics, University of Sydney, Sydney, N.S.W. 2006, Australia [email protected]
Abstract.

We develop an algebraic approach to the branching of representations of the general linear Lie superalgebra 𝔤𝔩p|q()\mathfrak{gl}_{p|q}({\mathbb{C}}), by constructing certain super commutative algebras whose structure encodes the branching rules. Using this approach, we derive the branching rules for restricting any irreducible polynomial representation VV of 𝔤𝔩p|q()\mathfrak{gl}_{p|q}({\mathbb{C}}) to a regular subalgebra isomorphic to 𝔤𝔩r|s()𝔤𝔩r|s(){\mathfrak{gl}}_{r|s}({\mathbb{C}})\oplus{\mathfrak{gl}}_{r^{\prime}|s^{\prime}}({\mathbb{C}}), 𝔤𝔩r|s()𝔤𝔩1()r+s\mathfrak{gl}_{r|s}({\mathbb{C}})\oplus{\mathfrak{gl}}_{1}({\mathbb{C}})^{r^{\prime}+s^{\prime}} or 𝔤𝔩r|s()\mathfrak{gl}_{r|s}({\mathbb{C}}), with r+r=pr+r^{\prime}=p and s+s=qs+s^{\prime}=q. In the case of 𝔤𝔩r|s()𝔤𝔩1()r+s\mathfrak{gl}_{r|s}({\mathbb{C}})\oplus{\mathfrak{gl}}_{1}({\mathbb{C}})^{r^{\prime}+s^{\prime}} with s=0s=0 or s=1s=1 but general rr, we also construct a basis for the space of 𝔤𝔩r|s(){\mathfrak{gl}}_{r|s}({\mathbb{C}}) highest weight vectors in VV; when r=s=0r=s=0, the branching rule leads to explicit expressions for the weight multiplicities of VV in terms of Kostka numbers.

Key words and phrases:
General linear Lie superalgebras, Reciprocity laws, Branching rules
2010 Mathematics Subject Classification:
05E10, 15A75, 20G05, 22E46

1. Introduction

Branching rules and tensor product decompositions are two aspects of the representation theory of Lie superalgebras [K], which are most frequently used in physics, particularly in building supersymmetric models of elementary particle (see e.g., [DJ]). Much research has been devoted to them since the discovery of Lie superalgebras [SNR, CNS] in the 70s, but most studies are concerned with special cases with immediate physical applications, and general results are rarely obtained. The generic non-semi-simplicity of finite dimensional representations of Lie superalgebras makes the branching rules and tensor product decompositions much more difficult to study for Lie superalgebras than for semi-simple Lie algebras [GW]. However, polynomial representations of the general linear Lie superalgebra turn out to be an exception. They are unitarizable with respect to the compact real form [GZ], thus are semi-simple.

We shall study branching rules for the general linear Lie superalgebra by developing an approach inspired by the work of Howe et al. [HTW1, HTW2]. The key feature of this approach is that the branching rules are encoded in the structure of certain super commutative algebras to be constructed in this paper.

Let 𝔤=𝔤𝔩p|q\mathfrak{g}={\mathfrak{gl}}_{p|q} be a general linear Lie superalgebra (defined precisely in §2.1.2) and let 𝔩\mathfrak{l} be a regular Lie super subalgebra of 𝔤\mathfrak{g}. If VV is an irreducible polynomial representation of 𝔤\mathfrak{g}, then we shall consider the action by 𝔩\mathfrak{l} on VV obtained by restriction. We call a description of how VV decomposes into irreducible 𝔩\mathfrak{l} representations a (𝔤,𝔩)(\mathfrak{g},\mathfrak{l}) branching rule. We shall determine (𝔤,𝔩)(\mathfrak{g},\mathfrak{l}) branching rules for the cases when (i) 𝔩𝔤𝔩r|s𝔤𝔩1r+s\mathfrak{l}\cong{\mathfrak{gl}}_{r|s}\oplus{\mathfrak{gl}}_{1}^{r^{\prime}+s^{\prime}}, (ii) 𝔩𝔤𝔩r|s\mathfrak{l}\cong{\mathfrak{gl}}_{r|s}, and (iii) 𝔩𝔤𝔩r|s𝔤𝔩r|s\mathfrak{l}\cong{\mathfrak{gl}}_{r|s}\oplus{\mathfrak{gl}}_{r^{\prime}|s^{\prime}}, where r,s,r,sr,s,r^{\prime},s^{\prime} are non-negative integers such that r+r=pr+r^{\prime}=p and s+s=qs+s^{\prime}=q, and 𝔤𝔩1{\mathfrak{gl}}_{1} is the one-dimensional Lie algebra over {\mathbb{C}}. In the case when r=s=0r=s=0, the branching rule in (i) leads to explicit expressions for the weight multiplicities in VV in terms of Kostka numbers. In addition, we also construct a set of linearly independent 𝔤\mathfrak{g} weight vectors of VV. It forms a basis for the space of 𝔤𝔩r|s{\mathfrak{gl}}_{r|s} highest weight vectors in VV if s=0s=0 or s=1s=1, and coincides with the basis of VV obtained in [CZ, Theorem 3.3] if r=s=0r=s=0.

Let us now briefly describe our approach to solutions of the branching problems.

Fix a positive integer nn and consider the natural action by 𝔤𝔩n𝔤𝔩p|q{\mathfrak{gl}}_{n}\oplus{\mathfrak{gl}}_{p|q} on the 2{\mathbb{Z}}_{2}-graded symmetric superalgebra :=𝕊(np|q)\mathcal{R}:=\mathbb{S}({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{p|q}) over np|q{\mathbb{C}}^{n}\otimes{\mathbb{C}}^{p|q}, where 𝔤𝔩n=𝔤𝔩n|0{\mathfrak{gl}}_{n}={\mathfrak{gl}}_{n|0} is the general linear Lie algebra. By the (𝔤𝔩n,𝔤𝔩p|q)({\mathfrak{gl}}_{n},{\mathfrak{gl}}_{p|q}) Howe duality [H1] (also see [CW, Se]), \mathcal{R} is a multiplicity free sum of irreducible polynomial representations of 𝔤𝔩n𝔤𝔩p|q{\mathfrak{gl}}_{n}\oplus{\mathfrak{gl}}_{p|q}. Let 𝔩\mathfrak{l} be a subalgebra of 𝔤\mathfrak{g} of the type (i)-(iii) described above, and let 𝔲n\mathfrak{u}_{n} and 𝔲𝔩\mathfrak{u}_{\mathfrak{l}} be the standard maximal nilpotent subalgebras of 𝔤𝔩n{\mathfrak{gl}}_{n} and 𝔩\mathfrak{l} respectively. We consider the subalgebra

𝒬(𝔤,𝔩)=𝔲n𝔲𝔩\mathcal{Q}(\mathfrak{g},\mathfrak{l})=\mathcal{R}^{\mathfrak{u}_{n}\oplus\mathfrak{u}_{\mathfrak{l}}}

of \mathcal{R} consisting of all vectors annihilated by the operators from 𝔲n𝔲𝔩\mathfrak{u}_{n}\oplus\mathfrak{u}_{\mathfrak{l}}. Then 𝒬(𝔤,𝔩)\mathcal{Q}(\mathfrak{g},\mathfrak{l}) is a representation for 𝔥n𝔥𝔤\mathfrak{h}_{n}\oplus\mathfrak{h}_{\mathfrak{g}}, where 𝔥n\mathfrak{h}_{n} and 𝔥𝔤\mathfrak{h}_{\mathfrak{g}} are Cartan subalgebras of 𝔤𝔩n{\mathfrak{gl}}_{n} and 𝔤\mathfrak{g} respectively. Thus 𝒬(𝔤,𝔩)\mathcal{Q}(\mathfrak{g},\mathfrak{l}) is a direct sum of eigenspaces for 𝔥n𝔥𝔤\mathfrak{h}_{n}\oplus\mathfrak{h}_{\mathfrak{g}}

𝒬(𝔤,𝔩)=i𝒬(𝔤,𝔩)i.\mathcal{Q}(\mathfrak{g},\mathfrak{l})=\bigoplus_{i}\mathcal{Q}(\mathfrak{g},\mathfrak{l})_{i}.

Each eigenspace 𝒬(𝔤,𝔩)i\mathcal{Q}(\mathfrak{g},\mathfrak{l})_{i} consists of 𝔤𝔩n𝔩{\mathfrak{gl}}_{n}\oplus\mathfrak{l} highest weight vectors of a specific weight, so that its dimension is equal to the multiplicity of an irreducible 𝔩\mathfrak{l} representation in an irreducible 𝔤\mathfrak{g} representation. In this sense the structure of 𝒬(𝔤,𝔩)\mathcal{Q}(\mathfrak{g},\mathfrak{l}) encodes a branching rule for (𝔤,𝔩)(\mathfrak{g},\mathfrak{l}). In view of this property of 𝒬(𝔤,𝔩)\mathcal{Q}(\mathfrak{g},\mathfrak{l}), we call it a branching algebra for (𝔤,𝔩)(\mathfrak{g},\mathfrak{l}).

It turns out that the structure of 𝒬(𝔤,𝔩)\mathcal{Q}(\mathfrak{g},\mathfrak{l}) also encodes a second branching rule for a pair of Lie algebras of the form (𝔤𝔩nk,Δ(𝔤𝔩n))({\mathfrak{gl}}_{n}^{k},\Delta({\mathfrak{gl}}_{n})), where 𝔤𝔩nk=𝔤𝔩n𝔤𝔩nk{\mathfrak{gl}}_{n}^{k}=\underbrace{{\mathfrak{gl}}_{n}\oplus\dots\oplus{\mathfrak{gl}}_{n}}_{k} for any given positive integer kk and Δ(𝔤𝔩n)\Delta({\mathfrak{gl}}_{n}) is a copy of 𝔤𝔩n{\mathfrak{gl}}_{n} which embeds in 𝔤𝔩nk{\mathfrak{gl}}_{n}^{k} diagonally. The second branching rule is well understood as it is related to either the Pieri rule or the Littlewood-Richardson rule which are well known. Hence, we use the second branching rule to deduce the branching rule for (𝔤,𝔩)(\mathfrak{g},\mathfrak{l}).

We believe that the approach described above to branching rules of the general linear Lie superalgebra is of general interest and should extend to the other classical series of Lie superalgebras.

We also construct a linearly independent set of vectors in \mathcal{R}. These vectors are 𝔤𝔩n{\mathfrak{gl}}_{n} highest weight vectors and are 𝔤\mathfrak{g} weight vectors. In the case when s=0s=0 or s=1s=1, these vectors are also highest weight vectors for 𝔤𝔩r|s{\mathfrak{gl}}_{r|s}. In fact, we obtain from these vectors a basis for the space of 𝔤𝔩r|s{\mathfrak{gl}}_{r|s} highest weight vectors in an irreducible polynomial 𝔤\mathfrak{g} representation VV which occurs in \mathcal{R}. We remark that the explicit form of the 𝔤𝔩r|s{\mathfrak{gl}}_{r|s} highest weight vectors provide more refined information than branching multiplicity. In the case when r=s=0r=s=0, we reproduce the basis for VV which was constructed in [CZ, Theorem 3.3] by direct calculation.

Now we relate the present paper to previous work. Branching rules for 𝔤𝔩p|q{\mathfrak{gl}}_{p|q} were extensively investigated in [BR] by using symmetric group techniques [DJ] through Schur-Weyl duality. In particular, a (𝔤𝔩p|q,𝔤𝔩r|s)({\mathfrak{gl}}_{p|q},{\mathfrak{gl}}_{r|s}) branching rule for any irreducible polynomial 𝔤𝔩p|q{\mathfrak{gl}}_{p|q}-representation was given in [BR, Theorem 5.14]. A (𝔤𝔩p|q,𝔤𝔩r|s𝔤𝔩r|s({\mathfrak{gl}}_{p|q},{\mathfrak{gl}}_{r|s}\oplus{\mathfrak{gl}}_{r^{\prime}|s^{\prime}}) branching rule was also obtained in [CLZ] for the oscillator representations by exploring a general principle that relates branching rules of 𝔤𝔩p|q{\mathfrak{gl}}_{p|q}-representations and tensor product decompositions of 𝔤𝔩n{\mathfrak{gl}}_{n}-representations in the context of (𝔤𝔩n,𝔤𝔩p|q)({\mathfrak{gl}}_{n},{\mathfrak{gl}}_{p|q}) duality. We also mention that the same method was applied in [CZ] to obtain a branching rule for the oscillator representations of the orthosymplectic Lie superalgebra, where a (𝔤𝔩p|q,𝔤𝔩r|s𝔤𝔩r|s({\mathfrak{gl}}_{p|q},{\mathfrak{gl}}_{r|s}\oplus{\mathfrak{gl}}_{r^{\prime}|s^{\prime}}) branching rule for the polynomial representations of 𝔤𝔩p|q{\mathfrak{gl}}_{p|q} was also alluded to (see [CZ, Remark 9.4]).

The content of this paper is arranged as follows. In Section 2, we set up notation and also review some basic facts in representation theory which we need in the rest of the paper. Sections 3 and 4 are devoted to constructing branching algebras for (𝔤𝔩p|q,𝔤𝔩r|s𝔤𝔩1r+s)({\mathfrak{gl}}_{p|q},{\mathfrak{gl}}_{r|s}\oplus{\mathfrak{gl}}^{r^{\prime}+s^{\prime}}_{1}) and for (𝔤𝔩p|q,𝔤𝔩r|s𝔤𝔩r|s)({\mathfrak{gl}}_{p|q},{\mathfrak{gl}}_{r|s}\oplus{\mathfrak{gl}}_{r^{\prime}|s^{\prime}}) respectively, and to deriving the associated branching rules. Finally in Section 5, we construct a linearly independent set of vectors in \mathcal{R} with properties described in the preceding paragraph.

We work over the field {\mathbb{C}} of complex numbers throughout the paper.

Acknowledgement

The first named author expresses his sincere gratitude to the University of Sydney for warm hospitality during his visit in December 2023 - February 2024.

2. Preliminaries

In this section, we will review the iterated Pieri rules for the general linear Lie algebra 𝔤𝔩n{\mathfrak{gl}}_{n} [HKL, KLW], and the Howe duality between 𝔤𝔩n{\mathfrak{gl}}_{n} and the general linear Lie superalgebra 𝔤𝔩p|q{\mathfrak{gl}}_{p|q} [H1] (also see [CLZ, CW, CZ, Se]). These results provide the main technical tools which we will apply to derive branching rule for polynomial representations of 𝔤𝔩p|q{\mathfrak{gl}}_{p|q}. Some necessary background material on linear algebra of 2{\mathbb{Z}}_{2}-graded vector spaces will also be given.

2.1. The (𝔤𝔩n,𝔤𝔩p|q)({\mathfrak{gl}}_{n},{\mathfrak{gl}}_{p|q}) Howe duality

2.1.1. Linear algebra of 2{\mathbb{Z}}_{2}-graded vector spaces

A 2{\mathbb{Z}}_{2}-graded vector space M=M0¯M1¯M=M_{\bar{0}}\oplus M_{\bar{1}} is the direct sum of the even subspace M0¯M_{\bar{0}} and the odd subspace M1¯M_{\bar{1}}. It is said to be purely even (resp. odd) if M1¯=0M_{\bar{1}}=0 (resp. M0¯=0M_{\bar{0}}=0). We denote by [v]=i[v]=i the degree of a homogeneous element vMi¯v\in M_{\bar{i}}. Let M=M0¯M1¯M^{\prime}=M^{\prime}_{\bar{0}}\oplus M^{\prime}_{\bar{1}} be another 2{\mathbb{Z}}_{2}-graded vector space. Then the space of linear maps from MM to MM^{\prime} is 2{\mathbb{Z}}_{2}-graded with Hom(M,M)=Hom(M,M)0¯Hom(M,M)1¯\mathrm{Hom}_{\mathbb{C}}(M,M^{\prime})=\mathrm{Hom}_{\mathbb{C}}(M,M^{\prime})_{\bar{0}}\oplus\mathrm{Hom}_{\mathbb{C}}(M,M^{\prime})_{\bar{1}}, where any φHom(M,M)i¯\varphi\in\mathrm{Hom}_{\mathbb{C}}(M,M^{\prime})_{\bar{i}} satisfies φ(Mj¯)Mi+j¯\varphi(M_{\bar{j}})\subset M^{\prime}_{\overline{i+j}} for all i,j=0,1i,j=0,1. Note in particular that End(M){\mathrm{End}}_{\mathbb{C}}(M) has the structure of a 2{\mathbb{Z}}_{2}-graded associative algebra, i.e., an associative superalgebra.

The usual tensor product of vectros spaces extends to the category of 2{\mathbb{Z}}_{2}-graded vector spaces. For any objects M,MM,M^{\prime}, we have

MM=(MM)0¯(MM)1¯,(MM)k¯=i+j¯=k¯Mi¯Mj¯.M\otimes M^{\prime}=(M\otimes M^{\prime})_{\bar{0}}\oplus(M\otimes M^{\prime})_{\bar{1}},\quad(M\otimes M^{\prime})_{\bar{k}}=\bigoplus_{\overline{i+j}=\bar{k}}M_{\bar{i}}\otimes M^{\prime}_{\bar{j}}.

The category of 2{\mathbb{Z}}_{2}-graded vector spaces has a canonical symmetry given by

τM,M:MMMM\tau_{M,M^{\prime}}:M\otimes M^{\prime}\longrightarrow M^{\prime}\otimes M (2.1)

for any objects M,MM,M^{\prime}, which is defined by the unique linear extension of the map vv(1)[v][v]vvv\otimes v^{\prime}\mapsto(-1)^{[v][v^{\prime}]}v^{\prime}\otimes v for all homogeneous elements vMv\in M and vMv^{\prime}\in M^{\prime}. This in particular gives rise to an action of the symmetric group Symr{\mathrm{Sym}}_{r} of degree rr on the rr-th tensor power Mr=MMMrM^{\otimes r}=\underbrace{M\otimes M\otimes\dots\otimes M}_{r} of MM for any r2r\geq 2 (see, e.g., [DJ] and [BR]). To describe this, we recall the standard presentation of Symr{\mathrm{Sym}}_{r} with generators s1,,sr1s_{1},\dots,s_{r-1} and defining relations

si2=si,sisi+1si=si+1sisi+1,for all valid i.s_{i}^{2}=s_{i},\quad s_{i}s_{i+1}s_{i}=s_{i+1}s_{i}s_{i+1},\quad\text{for all valid $i$}.

Then sis_{i} acts on MrM^{\otimes r} by νr(si):=idM(i1)τM,MidM(ri1)\nu_{r}(s_{i}):={\rm id}_{M}^{\otimes(i-1)}\otimes\tau_{M,M}\otimes{\rm id}_{M}^{\otimes(r-i-1)} for all ii.

The tensor algebra T(M)=r0MrT(M)=\oplus_{r\geq 0}M^{\otimes r} over a 2{\mathbb{Z}}_{2}-graded vector space MM is a superalgebra, which is also +{\mathbb{Z}}_{+}-graded with MrM^{\otimes r} being the degree rr homogeneous subspace. Here, +{\mathbb{Z}}_{+} denotes the set of all nonnegative integers. Let J(M)J(M) be the two-sided ideal of T(M)T(M) generated by the elements vv(1)[v][v]vvv\otimes v^{\prime}-(-1)^{[v][v^{\prime}]}v^{\prime}\otimes v for all homogeneous v,vMv,v^{\prime}\in M. This is a homogeneous ideal with respect to both the 2{\mathbb{Z}}_{2}-grading and +{\mathbb{Z}}_{+}-grading, and hence

𝕊(M):=T(M)/J(M)\mathbb{S}(M):=T(M)/J(M)

is a +{\mathbb{Z}}_{+}-graded associative superalgebra, which is usually referred to as the 2{\mathbb{Z}}_{2}-graded symmetric algebra, or supersymmetric algebra, over MM. It is 2{\mathbb{Z}}_{2}-graded commutative in the sense that xy(1)[x][y]yx=0xy-(-1)^{[x][y]}yx=0 for all homogeneous x,y𝕊(M)x,y\in\mathbb{S}(M).

Note the following obvious facts.

  1. (i)

    𝕊(M)=S(M0¯)Λ(M1¯)\mathbb{S}(M)=S(M_{\bar{0}})\otimes\Lambda(M_{\bar{1}}), where S(M0¯)S(M_{\bar{0}}) is the usual symmetric algebra of M0¯M_{\bar{0}} and Λ(M1¯)\Lambda(M_{\bar{1}}) is the exterior algebra of M1¯M_{\bar{1}};

  2. (ii)

    J(M)r=J(M)MrJ(M)_{r}=J(M)\cap M^{\otimes r} is a Symr{\mathrm{Sym}}_{r}-submodule, and Mr𝕊r(M)J(M)rM^{\otimes r}\cong\mathbb{S}^{r}(M)\oplus J(M)_{r} as Symr{\mathrm{Sym}}_{r}-module for any r+r\in{\mathbb{Z}}_{+}, where 𝕊r(M)\mathbb{S}^{r}(M) is the degree rr homogeneous subspace of 𝕊(M)\mathbb{S}(M);

  3. (iii)

    𝕊(MM)=𝕊(M)𝕊(M)\mathbb{S}(M\oplus M^{\prime})=\mathbb{S}(M)\otimes\mathbb{S}(M^{\prime}) for any 2{\mathbb{Z}}_{2}-graded vector spaces M,MM,M^{\prime}.

Part (ii) makes use of the semi-simplicity of MrM^{\otimes r} as Symr{\mathrm{Sym}}_{r}-module.

2.1.2. The general linear Lie superalgebra 𝔤𝔩p|q{\mathfrak{gl}}_{p|q}

For any 2{\mathbb{Z}}_{2}-graded vector space V=V0¯V1¯V=V_{\bar{0}}\oplus V_{\bar{1}}, the endomorphism superalgebra End(V){\mathrm{End}}_{\mathbb{C}}(V) can be endowed with a Lie superalgebra structure [,]:End(V)×End(V)End(V)[\ ,\ ]:{\mathrm{End}}_{\mathbb{C}}(V)\times{\mathrm{End}}_{\mathbb{C}}(V)\longrightarrow{\mathrm{End}}_{\mathbb{C}}(V), which is a bilinear map defined by

[X,Y]=XY(1)[X][Y]YX[X,Y]=XY-(-1)^{[X][Y]}YX

for any homogeneous X,YEnd(V)X,Y\in{\mathrm{End}}_{\mathbb{C}}(V). Then End(V){\mathrm{End}}_{\mathbb{C}}(V) together with [,][\ ,\ ] is called the general linear Lie superalgebra of VV and is denoted by 𝔤𝔩(V){\mathfrak{gl}}(V).

If VV is finite dimensional, there are non-negative integers pp and qq such that dimV0¯=p\dim V_{\bar{0}}=p and dimV1¯=q\dim V_{\bar{1}}=q. By choosing a homogeneous basis, we can identify VV with p|q=pq{\mathbb{C}}^{p|q}={\mathbb{C}}^{p}\oplus{\mathbb{C}}^{q}. We shall also write 𝔤𝔩p|q=𝔤𝔩p|q(){\mathfrak{gl}}_{p|q}={\mathfrak{gl}}_{p|q}({\mathbb{C}}) for 𝔤𝔩(p|q){\mathfrak{gl}}({\mathbb{C}}^{p|q}).

The standard basis for p|q{\mathbb{C}}^{p|q} is given by {e1,e2,,ep+q}\{e_{1},e_{2},...,e_{p+q}\} where

e1=[1000],e2=[0100],,ep+q1=[0010],ep+q=[0001].e_{1}=\begin{bmatrix}1\\ 0\\ 0\\ \vdots\\ 0\end{bmatrix},\quad e_{2}=\begin{bmatrix}0\\ 1\\ 0\\ \vdots\\ 0\end{bmatrix},\quad\dots,\quad e_{p+q-1}=\begin{bmatrix}0\\ \vdots\\ 0\\ 1\\ 0\end{bmatrix},\quad e_{p+q}=\begin{bmatrix}0\\ \vdots\\ 0\\ 0\\ 1\end{bmatrix}. (2.2)

Then {e1,e2,,ep}\{e_{1},e_{2},\dots,e_{p}\} is a basis for the even subspace p{\mathbb{C}}^{p} and (ep+1,ep+2,,ep+q)(e_{p+1},e_{p+2},\dots,e_{p+q}) is a basis for the odd subspace q{\mathbb{C}}^{q}. Denote by EabE_{ab}, for all a,b=1,2,,p+qa,b=1,2,\dots,p+q, the matrix units relative to the standard basis. Then Eabec=δbceaE_{ab}e_{c}=\delta_{bc}e_{a} for all a,b,c.a,b,c.

For positive integers aa and bb, let Mab=Mab()\mathrm{M}_{ab}=\mathrm{M}_{ab}({\mathbb{C}}) be the space of all a×ba\times b complex matrices, 0ab0_{ab} the a×ba\times b zero matrix and Ma=Maa\mathrm{M}_{a}=\mathrm{M}_{aa}. Write 𝔤=𝔤𝔩p|q\mathfrak{g}={\mathfrak{gl}}_{p|q}, and we shall identify each element T𝔤𝔩p|qT\in{\mathfrak{gl}}_{p|q} with the matrix which represents TT with respect to the standard basis of p+q{\mathbb{C}}^{p+q}. So as vector spaces, we have 𝔤=Mp+q\mathfrak{g}=\mathrm{M}_{p+q},

𝔤0¯\displaystyle\mathfrak{g}_{\bar{0}} ={(A0pq0qpD):AMp,DMq},\displaystyle=\left\{\left(\begin{array}[]{l|l}A&0_{pq}\\ \hline\cr 0_{qp}&D\end{array}\right):A\in\mathrm{M}_{p},\ D\in\mathrm{M}_{q}\right\}, (2.5)
𝔤1¯\displaystyle\mathfrak{g}_{\bar{1}} ={(0ppBC0qq):BMpq,CMqp}.\displaystyle=\left\{\left(\begin{array}[]{l|l}0_{pp}&B\\ \hline\cr C&0_{qq}\end{array}\right):B\in\mathrm{M}_{pq},\ C\in\mathrm{M}_{qp}\right\}. (2.8)

The matrix units EabE_{ab} form a homogeneous basis for 𝔤\mathfrak{g}. We fix for 𝔤\mathfrak{g} the standard Borel subalgebra 𝔟p|q\mathfrak{b}_{p|q} and Cartan subalgebras 𝔥p|q𝔟p|q\mathfrak{h}_{p|q}\subset\mathfrak{b}_{p|q}, where 𝔟p|q\mathfrak{b}_{p|q} consists of all upper triangular matrices in 𝔤\mathfrak{g}, and 𝔥p|q\mathfrak{h}_{p|q} consists of all diagonal matrices in 𝔤\mathfrak{g}. We also let 𝔲p|q\mathfrak{u}_{p|q} be the subalgebra of 𝔤\mathfrak{g} consisting of all strictly upper triangluar matrices in 𝔤\mathfrak{g}. Then the Borel subalgebra 𝔟p|q\mathfrak{b}_{p|q} can be written as a direct sum

𝔟p|q=𝔥p|q𝔲p|q.\mathfrak{b}_{p|q}=\mathfrak{h}_{p|q}\oplus\mathfrak{u}_{p|q}.
Remark 2.9.

Note that 𝔤𝔩p|0𝔤𝔩p{\mathfrak{gl}}_{p|0}\cong{\mathfrak{gl}}_{p}, and 𝔟p:=𝔟p|0\mathfrak{b}_{p}:=\mathfrak{b}_{p|0} and 𝔥p:=𝔥p|0𝔟p|0\mathfrak{h}_{p}:=\mathfrak{h}_{p|0}\subset\mathfrak{b}_{p|0} are the standard Borel and Cartan subalgebras of 𝔤𝔩p{\mathfrak{gl}}_{p} respectively. Moreover, 𝔟p=𝔥p𝔲p\mathfrak{b}_{p}=\mathfrak{h}_{p}\oplus\mathfrak{u}_{p} where 𝔲p:=𝔲p|0\mathfrak{u}_{p}:=\mathfrak{u}_{p|0}. We also have 𝔤𝔩0|q𝔤𝔩q{\mathfrak{gl}}_{0|q}\cong{\mathfrak{gl}}_{q}.

Highest weight modules for 𝔤\mathfrak{g} will be defined relative to the Borel sublgebra 𝔟p|q\mathfrak{b}_{p|q}. Irreducible highest weight modules are uniquely characterized by their highest weights, which are elements of the dual space 𝔥p|q\mathfrak{h}_{p|q}^{*} of 𝔥p|q\mathfrak{h}_{p|q}. The irreducible highest weight module with highest weight λ𝔥p|q\lambda\in\mathfrak{h}_{p|q}^{*} is finite dimensional if and only if λ(Eaa)λ(Ea+1,a+1)+\lambda(E_{aa})-\lambda(E_{a+1,a+1})\in{\mathbb{Z}}_{+} for all apa\neq p.

We will denote an element λ𝔥p|q\lambda\in\mathfrak{h}_{p|q}^{*} as λ=(λ1,λ2,,λp+q)\lambda=(\lambda_{1},\lambda_{2},\dots,\lambda_{p+q}), where λ=λ(Eaa)\lambda=\lambda(E_{aa}) for all a=1,2,,p+qa=1,2,\dots,p+q.

Let us introduce a subset of 𝔥p|q\mathfrak{h}_{p|q}^{*}, which will play an important role in the rest of this paper. Denote by Λ+\Lambda^{+} the set of partitions, i.e., the set of sequences F=(f1,f2,)F=(f_{1},f_{2},\dots) with fi+f_{i}\in{\mathbb{Z}}_{+} for all ii such that f1f2f_{1}\geq f_{2}\geq\dots, and fj=0f_{j}=0 for all j>>1j>>1. We depict FΛ+F\in\Lambda^{+} as a Young diagram with fif_{i} boxes in the ii-th row for each ii. (Recall that a Young diagram is an array of square boxes arranged in left-justified horizontal rows, with each row no longer than the one above it [Fu]. We will often abuse notation and write an element F=(f1,f2,)Λ+F=(f_{1},f_{2},...)\in\Lambda^{+} as F=(f1,f2,,fr)F=(f_{1},f_{2},...,f_{r}) if fi=0f_{i}=0 for all i>ri>r. For example, the element (1,0,0,)(1,0,0,...) of Λ+\Lambda^{+} will sometimes be written as (1)(1), and it represents the Young diagram which has exactly 11 box.) The depth of FF, denoted by (F)\ell(F), is the number of rows in the Young diagram of FF. Let

Λn+={DΛ+:(D)n}.\Lambda^{+}_{n}=\{D\in\Lambda^{+}:\ell(D)\leq n\}.

We also let

Λp|q+={F=(f1,f2,)Λ+:fp+1q}\Lambda^{+}_{p|q}=\left\{F=(f_{1},f_{2},\dots)\in\Lambda^{+}:f_{p+1}\leq q\right\}

and call it the (p,q)(p,q)-hook in Λ+\Lambda^{+}. Note that Λp+Λp|q+\Lambda^{+}_{p}\subset\Lambda^{+}_{p|q}.

Given F=(f1,f2,)Λp|q+F=(f_{1},f_{2},\dots)\in\Lambda^{+}_{p|q}, we write fif^{\prime}_{i} for the length of the ii-th column of the Young diagram of FF (in particular, (F)=f1\ell(F)=f^{\prime}_{1}), and let FF^{\sharp} be the (p+q)(p+q)-tuple defined by

F=(f1,f2,,fp+q),F^{\sharp}=(f^{\sharp}_{1},f^{\sharp}_{2},\dots,f^{\sharp}_{p+q}), (2.10)

where for 1ip+q1\leq i\leq p+q,

fi={fi1ipmax(fipp,0)p+1ip+q.f^{\sharp}_{i}=\left\{\begin{array}[]{ll}f_{i}&1\leq i\leq p\\ \mathrm{max}(f^{\prime}_{i-p}-p,0)&p+1\leq i\leq p+q.\end{array}\right.

Let

Λp|q+={F:FΛp|q+},\Lambda_{p|q}^{+\sharp}=\{F^{\sharp}:F\in\Lambda^{+}_{p|q}\},

and we identify it with a subset of 𝔥p|q\mathfrak{h}_{p|q}^{*} via the inclusion ψp|q:Λp|q+𝔥p|q\psi_{p|q}:\Lambda_{p|q}^{+\sharp}\longrightarrow\mathfrak{h}_{p|q}^{*} defined by, for all F=(f1,f2,)Λp|q+F=(f_{1},f_{2},\dots)\in\Lambda^{+}_{p|q},

ψp|q(F)=ψp|qF,\psi_{p|q}(F^{\sharp})=\psi^{F^{\sharp}}_{p|q}, (2.11)

where ψp|qF(Eii)=fi\psi^{F^{\sharp}}_{p|q}(E_{ii})=f^{\sharp}_{i} for all 1ip+q1\leq i\leq p+q.

Now, for any FΛp|q+F\in{\Lambda^{+}_{p|q}}, we denote by Lp|qFL_{p|q}^{F} the irreducible 𝔤𝔩p|q{\mathfrak{gl}}_{p|q}-representation with highest weight ψp|qF\psi^{F^{\sharp}}_{p|q}. We call the representation of 𝔤𝔩p|q{\mathfrak{gl}}_{p|q} corresponding to such an Lp|qFL_{p|q}^{F} an irreducible polynomial representation in view of the well-known facts that tensor powers of p|q{\mathbb{C}}^{p|q} are semi-simple, and their simple submodules are precisely Lp|qFL_{p|q}^{F} for all FΛp|q+F\in{\Lambda^{+}_{p|q}} (see, e.g., [BR, GZ]). Note in particular that Lp|q(1)=p|qL_{p|q}^{(1)}={\mathbb{C}}^{p|q}.

Remark 2.12.

The easiest way to see the semi-simplicity of the tensor powers of p|q{\mathbb{C}}^{p|q} is by observing the fact [GZ] that p|q{\mathbb{C}}^{p|q} is unitarizable with respect to the compact real form of 𝔤𝔩p|q{\mathfrak{gl}}_{p|q}. However, one should be warned that tensor products of polynomial representations with their duals are not semi-simple in general.

2.1.3. Realization of irreducible polynomial representations of 𝔤𝔩p|q{\mathfrak{gl}}_{p|q}

Fix a positive integer nn, and consider the natural action of 𝔤𝔩n𝔤𝔩p|q{\mathfrak{gl}}_{n}\oplus\mathfrak{gl}_{p|q} on np|q{\mathbb{C}}^{n}\otimes{\mathbb{C}}^{p|q}, where n{\mathbb{C}}^{n} is purely even. The action naturally extends to

=𝕊(np|q),\mathcal{R}=\mathbb{S}({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{p|q}),

the 2{\mathbb{Z}}_{2}-graded symmetric algebra on np|q{\mathbb{C}}^{n}\otimes{\mathbb{C}}^{p|q}. We have the following result.

Theorem 2.13 (The (𝔤𝔩n,𝔤𝔩p|q)({\mathfrak{gl}}_{n},{\mathfrak{gl}}_{p|q})-duality).

As a 𝔤𝔩n𝔤𝔩p|q{\mathfrak{gl}}_{n}\oplus\mathfrak{gl}_{p|q}-module, \mathcal{R} has the following multiplicity free decomposition into irreducible represenations

FΛn,p|q+ρnFLp|qF,\mathcal{R}\cong\bigoplus_{F\in\Lambda^{+}_{n,p|q}}\rho^{F}_{n}\otimes L^{F}_{p|q}, (2.14)

where Λn,p|q+=Λn+Λp|q+,\Lambda^{+}_{n,p|q}=\Lambda^{+}_{n}\cap\Lambda^{+}_{p|q}, and ρnF\rho^{F}_{n} is the irreducible 𝔤𝔩n{\mathfrak{gl}}_{n} representation with highest weight determined by FF in the usual way (see Remark 2.15 below).

Remark 2.15.

Since any F=(f1,f2,)Λn+F=(f_{1},f_{2},...)\in\Lambda^{+}_{n} satisfies fn+i=0f_{n+i}=0 for all i1i\geq 1, we define the map

ψn:Λn+𝔥n,FψnF=(f1,f2,,fn),\psi_{n}:\Lambda^{+}_{n}\longrightarrow\mathfrak{h}_{n}^{*},\quad F\mapsto\psi_{n}^{F}=(f_{1},f_{2},\dots,f_{n}),

which is the special case ψn|0\psi_{n|0} of the map ψp|q\psi_{p|q} defined in equation (2.11). Then the highest weight of ρnF\rho^{F}_{n} is equal to ψnF\psi_{n}^{F}.

Theorem 2.13 was already known to Howe in the 70s [H1]. More recent treatments of it can be found in [Se] and [CLZ, CW, CZ]. It reduces to (𝔤𝔩n,𝔤𝔩p)({\mathfrak{gl}}_{n},{\mathfrak{gl}}_{p})-duality when q=0q=0:

S(np)DΛmin(n,p)+ρnDρpD,S({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{p})\cong\bigoplus_{D\in\Lambda^{+}_{\min(n,p)}}\rho^{D}_{n}\otimes\rho^{D}_{p}, (2.16)

and to skew (𝔤𝔩n,𝔤𝔩q)({\mathfrak{gl}}_{n},{\mathfrak{gl}}_{q})-duality when p=0p=0:

Λ(nq)ERn,qρnEtρqE,\Lambda({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{q})\cong\bigoplus_{E\in R_{n,q}}\rho^{E^{t}}_{n}\otimes\rho^{E}_{q}, (2.17)

where

Rn,q={F=(f1,f2,)Λ+:f1n,fq+1=0},R_{n,q}=\{F=(f_{1},f_{2},...)\in\Lambda^{+}:f_{1}\leq n,\ f_{q+1}=0\}, (2.18)

i.e., Rn,qR_{n,q} is the set of all Young diagrams with at most nn columns and at most qq rows. (see [H, H1]).

Next, denote by 𝔲n\mathfrak{u}_{n} the subalgebra of 𝔤𝔩n{\mathfrak{gl}}_{n} consisting of all n×nn\times n strictly upper triangular matrices. Let

𝔲n={ξ:X.ξ=0X𝔲n}.\mathcal{R}^{\mathfrak{u}_{n}}=\{\xi\in\mathcal{R}:\ X.\xi=0\ \forall X\in\mathfrak{u}_{n}\}.

Then 𝔲n\mathcal{R}^{\mathfrak{u}_{n}} is a subalgebra of \mathcal{R}, as for any ζ,ξ\zeta,\xi\in\mathcal{R}, we have

X.(ζξ)=X.ζξ+ζX.ξ=0,X𝔲n.X.(\zeta\xi)=X.\zeta\xi+\zeta X.\xi=0,\quad\forall X\in\mathfrak{u}_{n}.

It is a module for 𝔥n𝔤𝔩p|q\mathfrak{h}_{n}\oplus\mathfrak{gl}_{p|q}, and can be decomposed as

𝔲nFΛn,p|q+(ρnF)𝔲nLp|qF,\mathcal{R}^{\mathfrak{u}_{n}}\cong\bigoplus_{F\in\Lambda^{+}_{n,p|q}}(\rho^{F}_{n})^{\mathfrak{u}_{n}}\otimes L^{F}_{p|q}, (2.19)

where (ρnF)𝔲n(\rho^{F}_{n})^{\mathfrak{u}_{n}} is the subspace of ρnF\rho^{F}_{n} consisting of all vectors annihilated by the operators from 𝔲n\mathfrak{u}_{n}. For FΛn,p|q+F\in\Lambda^{+}_{n,p|q}, we have dim(ρnF)𝔲n=1\dim(\rho^{F}_{n})^{\mathfrak{u}_{n}}=1 and h.v=ψnF(h)vh.v=\psi^{F}_{n}(h)v for all v(ρnF)𝔲nv\in(\rho^{F}_{n})^{\mathfrak{u}_{n}} and all h𝔥nh\in\mathfrak{h}_{n}, i.e., the nonzero vectors in (ρnF)𝔲n(\rho^{F}_{n})^{\mathfrak{u}_{n}} are 𝔤𝔩n{\mathfrak{gl}}_{n} highest weight vectors of weight ψnF\psi^{F}_{n}. Since dim(ρnF)𝔲n=1\dim(\rho^{F}_{n})^{\mathfrak{u}_{n}}=1, we have

(ρnF)𝔲nLp|qFLp|qF(\rho^{F}_{n})^{\mathfrak{u}_{n}}\otimes L^{F}_{p|q}\cong L^{F}_{p|q} (2.20)

as modules for 𝔤𝔩p|q\mathfrak{gl}_{p|q}. Thus, we may realize the 𝔤𝔩p|q\mathfrak{gl}_{p|q}-module Lp|qFL^{F}_{p|q} as the ψnF\psi^{F}_{n}-eigenspace of 𝔥n\mathfrak{h}_{n} in 𝔲n\mathcal{R}^{\mathfrak{u}_{n}}.

2.2. Iterated Pieri rules for 𝔤𝔩n{\mathfrak{gl}}_{n}

In this subsection, we restrict ourselves to ordinary general linear Lie algebras and consider the cases of Theorem 2.13 with q=0q=0 or p=0p=0, that is, the (𝔤𝔩n,𝔤𝔩p)({\mathfrak{gl}}_{n},{\mathfrak{gl}}_{p})- duality or the skew (𝔤𝔩n,𝔤𝔩q)({\mathfrak{gl}}_{n},{\mathfrak{gl}}_{q})-duality. In particular, the special case with p=1p=1 and q=0q=0 yields the well-known fact that ρn(d)Sd(n)\rho^{(d)}_{n}\cong S^{d}({\mathbb{C}}^{n}), the symmetric dd-th power of the standard representation n{\mathbb{C}}^{n}, for any d+d\in{\mathbb{Z}}_{+}; and the case with p=0p=0 and q=1q=1 gives ρn1dΛd(n)\rho^{1^{d}}_{n}\cong\Lambda^{d}({\mathbb{C}}^{n}), the exterior dd-th power of n{\mathbb{C}}^{n}, for any dnd\leq n.

We shall state the iterated Pieri rules for 𝔤𝔩n{\mathfrak{gl}}_{n} which play a crucial role in the rest of this paper. Before we do that, we recall some definitions in combinatorics. Let D=(d1,d2,)D=(d_{1},d_{2},...) and F=(f1,f2,)F=(f_{1},f_{2},...) be Young diagrams such that DD sits inside FF, that is, difid_{i}\leq f_{i} for all i1i\geq 1. By removing all boxes belonging to DD, we obtain the skew diagram F/DF/D. (We allow DD to be the empty Young diagram with no box, i.e., D=(0,0,)D=(0,0,...). In this case, we have F/D=FF/D=F.) If we put a positive number in each box of F/DF/D, then it becomes a skew tableau. Let us denote this skew tableau by TT. We say that the shape of TT is F/DF/D. If the entries of TT are taken from [m]={1,2,,m}[m]=\{1,2,...,m\}, and αj\alpha_{j} of them are jj for 1jm1\leq j\leq m, then we say the content of TT is α=(α1,,αm)\alpha=(\alpha_{1},...,\alpha_{m}). We also say that TT is semistandard if the numbers in each row of TT weakly increase from left-to-right, and the numbers in each column of TT strictly increase from top-to-bottom. The number of semistandard tableaux of shape F/DF/D and content α\alpha is denoted by KF/D,αK_{F/D,\alpha} and is called a Kostka number([Fu]). (If DD is the empty Young diagram, then we write KF,αK_{F,\alpha} for KF/D,αK_{F/D,\alpha}.) Finally, the conjugate diagram of the Young diagram D=(d1,d2,)D=(d_{1},d_{2},...) is the Young diagram DtD^{t} having djd_{j} boxes in the jjth column counting from left to right.

Proposition 2.21 (Iterated Pieri rules).

Let D,EΛn+D,E\in\Lambda^{+}_{n}.

  1. (i)

    If α1,,αp\alpha_{1},...,\alpha_{p} are non-negative integers, then

    dimHom𝔤𝔩n(ρnE,ρnDSα1(n)Sαp(n))=KE/D,α\dim\mathrm{Hom}_{{\mathfrak{gl}}_{n}}\left(\rho^{E}_{n},\rho^{D}_{n}\otimes S^{\alpha_{1}}({\mathbb{C}}^{n})\otimes\cdots\otimes S^{\alpha_{p}}({\mathbb{C}}^{n})\right)=K_{E/D,\alpha}

    where α=(α1,,αp)\alpha=(\alpha_{1},...,\alpha_{p}).

  2. (ii)

    If β1,,βq\beta_{1},...,\beta_{q} are non-negative integers not more than nn, then

    dimHom𝔤𝔩n(ρnE,ρnDΛβ1(n)Λβq(n))=KEt/Dt,β,\dim\mathrm{Hom}_{{\mathfrak{gl}}_{n}}\left(\rho^{E}_{n},\rho^{D}_{n}\otimes\Lambda^{\beta_{1}}({\mathbb{C}}^{n})\otimes\cdots\otimes\Lambda^{\beta_{q}}({\mathbb{C}}^{n})\right)=K_{E^{t}/D^{t},\beta},

    where β=(β1,,βq)\beta=(\beta_{1},...,\beta_{q}).

Proof.

The proof of part (i) was given in [L, §7.2] and also in [HKL, §3.3], by combining the (𝔤𝔩n,𝔤𝔩p)({\mathfrak{gl}}_{n},{\mathfrak{gl}}_{p})-duality with the Pieri rule. Part (ii) was proven in [KLW, Theorem 4] in a similar spirit by combining the skew (𝔤𝔩n,𝔤𝔩q)({\mathfrak{gl}}_{n},{\mathfrak{gl}}_{q})-duality with the Pieri rule for skew symmetric tensors. ∎

3. Branching algebra for (𝔤𝔩p|q,𝔤𝔩r|s𝔥r𝔥s)({\mathfrak{gl}}_{p|q},{\mathfrak{gl}}_{r|s}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{s^{\prime}})

In this section, we shall construct a branching algebra for (𝔤𝔩p|q,𝔤𝔩r|s𝔥r𝔥s)({\mathfrak{gl}}_{p|q},{\mathfrak{gl}}_{r|s}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{s^{\prime}}) where r+r=pr+r^{\prime}=p and s+s=qs+s^{\prime}=q. By using the structure of this algebra, we obtain branching rules for (𝔤𝔩p|q,𝔤𝔩r|s𝔥r𝔥s)({\mathfrak{gl}}_{p|q},{\mathfrak{gl}}_{r|s}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{s^{\prime}}) and also for (𝔤𝔩p|q,𝔤𝔩r|s)({\mathfrak{gl}}_{p|q},{\mathfrak{gl}}_{r|s}). By applying the result for the case r=s=0r=s=0, we obtain the dimensions of the weight spaces in an irreducible polynomial representation of 𝔤𝔩p|q{\mathfrak{gl}}_{p|q}.

3.1. Branching problems

From now on, we shall denote 𝔤𝔩p|q{\mathfrak{gl}}_{p|q} by 𝔤\mathfrak{g}. We first define two subalgebras of 𝔤\mathfrak{g} to be denoted by 𝔤\mathfrak{g}^{\prime} and 𝔪\mathfrak{m} respectively.

Let 0rp0\leq r\leq p and 0sq0\leq s\leq q be non-negative integers, and let ι:r|sp|q\iota:{\mathbb{C}}^{r|s}\to{\mathbb{C}}^{p|q} be the injection defined by

([x1x2xr],[y1y2ys])([x1x2xr00],[y1y2ys00]).(\begin{bmatrix}x_{1}\\ x_{2}\\ \vdots\\ x_{r}\end{bmatrix},\begin{bmatrix}y_{1}\\ y_{2}\\ \vdots\\ y_{s}\end{bmatrix})\to(\begin{bmatrix}x_{1}\\ x_{2}\\ \vdots\\ x_{r}\\ 0\\ \vdots\\ 0\end{bmatrix},\begin{bmatrix}y_{1}\\ y_{2}\\ \vdots\\ y_{s}\\ 0\\ \vdots\\ 0\end{bmatrix}).

This induces an injection ι~:𝔤𝔩r|s𝔤\tilde{\iota}:\mathfrak{gl}_{r|s}\to\mathfrak{g} of Lie superalgebras defined as follows: For any g=(ABCD)𝔤𝔩r|sg=\left(\begin{array}[]{l|l}A&B\\ \hline\cr C&D\end{array}\right)\in\mathfrak{gl}_{r|s}, where the matrices A,B,C,DA,B,C,D are respectively r×rr\times r, r×sr\times s, s×rs\times r and s×ss\times s, then

ι~(g)=(A0r,rB0r,s0r,r0r,r0r,s0r,sC0s,rD0s,s0s,r0s,r0s,s0s,s)𝔤,\tilde{\iota}(g)=\left(\begin{array}[]{c|c|c|c}A&0_{r,r^{\prime}}&B&0_{r,s^{\prime}}\\ \hline\cr 0_{r^{\prime},r}&0_{r^{\prime},r^{\prime}}&0_{r^{\prime},s}&0_{r^{\prime},s^{\prime}}\\ \hline\cr C&0_{s,r^{\prime}}&D&0_{s,s^{\prime}}\\ \hline\cr 0_{s^{\prime},r}&0_{s^{\prime},r^{\prime}}&0_{s^{\prime},s}&0_{s^{\prime},s^{\prime}}\end{array}\right)\in\mathfrak{g}, (3.1)

where 0ab0_{ab} denotes the a×ba\times b zero matrix, and

r=pr,s=qs.r^{\prime}=p-r,\quad s^{\prime}=q-s. (3.2)

Let

𝔤={ι~(g):g𝔤𝔩r|s},\mathfrak{g}^{\prime}=\{\tilde{\iota}(g):g\in{\mathfrak{gl}}_{r|s}\}, (3.3)

which is a subalgebra of 𝔤\mathfrak{g} and 𝔤𝔤𝔩r|s\mathfrak{g}^{\prime}\cong\mathfrak{gl}_{r|s}. Let

𝔥𝔤=ι~(𝔥r|s),𝔲𝔤=ι~(𝔲r|s),and𝔟𝔤=ι~(𝔟r|s).\mathfrak{h}_{\mathfrak{g}^{\prime}}=\tilde{\iota}(\mathfrak{h}_{r|s}),\quad\mathfrak{u}_{\mathfrak{g}^{\prime}}=\tilde{\iota}(\mathfrak{u}_{r|s}),\quad\mbox{and}\quad\mathfrak{b}_{\mathfrak{g}^{\prime}}=\tilde{\iota}(\mathfrak{b}_{r|s}).

Then 𝔥𝔤\mathfrak{h}_{\mathfrak{g}^{\prime}} is a Cartan subalgebra, 𝔟𝔤\mathfrak{b}_{\mathfrak{g}^{\prime}} is a Borel subalgebra of 𝔤\mathfrak{g}^{\prime} and 𝔟𝔤=𝔥𝔤𝔲𝔤\mathfrak{b}_{\mathfrak{g}^{\prime}}=\mathfrak{h}_{\mathfrak{g}^{\prime}}\oplus\mathfrak{u}_{\mathfrak{g}^{\prime}}.

We also let 𝔪\mathfrak{m} be the subalgebra of 𝔤\mathfrak{g} consisting of all matrices of the form (3.1)

(A0r,rB0r,s0r,rHr0r,s0r,sC0s,rD0s,s0s,r0s,r0s,sHs)\left(\begin{array}[]{c|c|c|c}A&0_{r,r^{\prime}}&B&0_{r,s^{\prime}}\\ \hline\cr 0_{r^{\prime},r}&H_{r^{\prime}}&0_{r^{\prime},s}&0_{r^{\prime},s^{\prime}}\\ \hline\cr C&0_{s,r^{\prime}}&D&0_{s,s^{\prime}}\\ \hline\cr 0_{s^{\prime},r}&0_{s^{\prime},r^{\prime}}&0_{s^{\prime},s}&H_{s^{\prime}}\end{array}\right) (3.4)

where all the submatrices are as in equation (3.1) except that HrH_{r^{\prime}} and HsH_{s^{\prime}} are diagonal matrices of sizes r×rr^{\prime}\times r^{\prime} and s×ss^{\prime}\times s^{\prime} respectively. Then it is clear that

𝔪𝔤𝔥r𝔥s𝔤𝔩r|s𝔥r𝔥s.\mathfrak{m}\cong\mathfrak{g}^{\prime}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{s^{\prime}}\cong{\mathfrak{gl}}_{r|s}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{s^{\prime}}.

Let

𝔟𝔪=𝔪𝔟p|q,𝔥𝔪=𝔪𝔥p|q,𝔲𝔪=𝔪𝔲p|q.\mathfrak{b}_{\mathfrak{m}}=\mathfrak{m}\cap\mathfrak{b}_{p|q},\quad\mathfrak{h}_{\mathfrak{m}}=\mathfrak{m}\cap\mathfrak{h}_{p|q},\quad\mathfrak{u}_{\mathfrak{m}}=\mathfrak{m}\cap\mathfrak{u}_{p|q}.

Then 𝔟m\mathfrak{b}_{m} is a Borel subalgebra of 𝔪\mathfrak{m}, 𝔥𝔪\mathfrak{h}_{\mathfrak{m}} is a Cartan subalgebra of 𝔪\mathfrak{m} and 𝔟𝔪=𝔥𝔪𝔲𝔪\mathfrak{b}_{\mathfrak{m}}=\mathfrak{h}_{\mathfrak{m}}\oplus\mathfrak{u}_{\mathfrak{m}}. Note that

𝔥𝔪𝔥𝔤𝔥r𝔥s𝔥r|s𝔥r𝔥s,and𝔲m=𝔲𝔤.\mathfrak{h}_{\mathfrak{m}}\cong\mathfrak{h}_{\mathfrak{g}^{\prime}}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{s^{\prime}}\cong\mathfrak{h}_{r|s}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{s^{\prime}},\quad\mbox{and}\quad\mathfrak{u}_{m}=\mathfrak{u}_{\mathfrak{g}^{\prime}}.

In this section, we consider the following branching problems:


Branching Problem: For FΛp|q+F\in\Lambda^{+}_{p|q},

  1. (i)

    determine a decomposition of Lp|qFL^{F}_{p|q} into irreducible 𝔪\mathfrak{m} modules, and

  2. (ii)

    determine a decomposition of Lp|qFL^{F}_{p|q} into irreducible 𝔤\mathfrak{g}^{\prime} modules.

3.2. The branching algebra 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m})

Let nn be a positive integer and consider the 𝔤𝔩n𝔤{\mathfrak{gl}}_{n}\oplus\mathfrak{g} module =𝕊(np|q)\mathcal{R}=\mathbb{S}({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{p|q}). Let

𝒬(𝔤,𝔪)=𝔲n𝔲𝔪\mathcal{Q}(\mathfrak{g},\mathfrak{m})=\mathcal{R}^{\mathfrak{u}_{n}\oplus\mathfrak{u}_{\mathfrak{m}}} (3.5)

be the subalgebra of \mathcal{R} consisting of vectors annihilated by operators from 𝔲n𝔲𝔪\mathfrak{u}_{n}\oplus\mathfrak{u}_{\mathfrak{m}}. It is a module for 𝔥n𝔥𝔪\mathfrak{h}_{n}\oplus\mathfrak{h}_{\mathfrak{m}}. Since 𝔥n𝔥𝔪\mathfrak{h}_{n}\oplus\mathfrak{h}_{\mathfrak{m}} is isomorphic Σ𝔥:=𝔥n𝔥r|s𝔥r𝔥s\Sigma\mathfrak{h}:=\mathfrak{h}_{n}\oplus\mathfrak{h}_{r|s}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{s^{\prime}}, we shall instead regard 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}) as a Σ𝔥\Sigma\mathfrak{h} module and describe the corresponding isotypic decomposition of 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}).

For convenience, we introduce the following notation:

Notation 3.6.

Let U1,U2,,UkU_{1},U_{2},...,U_{k} be complex vector spaces and U=U1U2UkU=U_{1}\oplus U_{2}\oplus\cdots\oplus U_{k}. For each 1iu1\leq i\leq u, let ψi:Ui\psi_{i}:U_{i}\to{\mathbb{C}} be a linear functional. Then (ψ1,ψ2,,ψk)(\psi_{1},\psi_{2},...,\psi_{k}) shall denote the linear functional on UU defined by, for all u=(u1,u2,,uk)Uu=(u_{1},u_{2},...,u_{k})\in U,

(ψ1,ψ2,,ψk)(u)=ψ1(u1)+ψ2(u2)++ψk(uk).(\psi_{1},\psi_{2},...,\psi_{k})(u)=\psi_{1}(u_{1})+\psi_{2}(u_{2})+\cdots+\psi_{k}(u_{k}). (3.7)

We shall assume that (r,s)(0,0)(r,s)\neq(0,0) here, the case (r,s)=(0,0)(r,s)=(0,0) will be discussed in §3.4. Let

Ω(𝔤,𝔪):=Λn,p|q+×Λn,r|s+×+r×+s.\Omega(\mathfrak{g},\mathfrak{m}):=\Lambda^{+}_{n,p|q}\times\Lambda^{+}_{n,r|s}\times{\mathbb{Z}}^{r^{\prime}}_{+}\times{\mathbb{Z}}^{s^{\prime}}_{+}. (3.8)

For each (F,D,α,β)Ω(𝔤,𝔪)(F,D,\alpha,\beta)\in\Omega(\mathfrak{g},\mathfrak{m}), let

𝒬(𝔤,𝔪)(F,D,α,β)={v𝒬(𝔤,𝔪):h.v=(ψnF,ψp|qD,ψrα,ψsβ)(h)hΣ𝔥},\mathcal{Q}(\mathfrak{g},\mathfrak{m})_{(F,D,\alpha,\beta)}=\left\{v\in\mathcal{Q}(\mathfrak{g},\mathfrak{m}):h.v=(\psi^{F}_{n},\psi^{D^{\sharp}}_{p|q},\psi^{\alpha}_{r^{\prime}},\psi^{\beta}_{s^{\prime}})(h)\ \forall h\in\Sigma\mathfrak{h}\right\},

that is, 𝒬(𝔤,𝔪)(F,D,α,β)\mathcal{Q}(\mathfrak{g},\mathfrak{m})_{(F,D,\alpha,\beta)} is the (ψnF,ψp|qD,ψrα,ψsβ)(\psi^{F}_{n},\psi^{D^{\sharp}}_{p|q},\psi^{\alpha}_{r^{\prime}},\psi^{\beta}_{s^{\prime}})-isotypic component for Σ𝔥\Sigma\mathfrak{h} in 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}).

Let us denote by ψrα{\mathbb{C}}_{\psi^{\alpha}_{r^{\prime}}} the 11-dimensional 𝔥r\mathfrak{h}_{r^{\prime}}-module with weight ψrα\psi^{\alpha}_{r^{\prime}}, and similarly denote by ψsβ{\mathbb{C}}_{\psi^{\beta}_{s^{\prime}}} the 11-dimensional 𝔥s\mathfrak{h}_{s^{\prime}}-module with weight ψsβ\psi^{\beta}_{s^{\prime}}. Then we have the following result:

Proposition 3.9.

The algebra 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}) has a direct sum decomposition given by

𝒬(𝔤,𝔪)=(F,D,α,β)Ω(𝔤,𝔪)𝒬(𝔤,𝔪)(F,D,α,β).\mathcal{Q}(\mathfrak{g},\mathfrak{m})=\bigoplus_{(F,D,\alpha,\beta)\in\Omega(\mathfrak{g},\mathfrak{m})}\mathcal{Q}(\mathfrak{g},\mathfrak{m})_{(F,D,\alpha,\beta)}. (3.10)

Moreover, for each (F,D,α,β)Ω(𝔤,𝔪)(F,D,\alpha,\beta)\in\Omega(\mathfrak{g},\mathfrak{m}),

dim𝒬(𝔤,𝔪)(F,D,α,β)=dimHom𝔪(Lr|sDψrαψsβ,Lp|qF).\dim\mathcal{Q}(\mathfrak{g},\mathfrak{m})_{(F,D,\alpha,\beta)}=\dim\mathrm{Hom}_{\mathfrak{m}}(L^{D}_{r|s}\otimes{\mathbb{C}}_{\psi^{\alpha}_{r^{\prime}}}\otimes{\mathbb{C}}_{\psi^{\beta}_{s^{\prime}}},L^{F}_{p|q}). (3.11)
Proof.

Since all vectors in 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}) are anihilated by the operators from 𝔲n\mathfrak{u}_{n}, any 𝔥n\mathfrak{h}_{n} eigenvector in 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}) is a 𝔤𝔩n{\mathfrak{gl}}_{n} highest weight vector, so that the corresponding eigencharacter is necessarily a dominant weight for 𝔤𝔩n{\mathfrak{gl}}_{n} and is of the form ψnF\psi^{F}_{n} for some FΛn,p|q+F\in\Lambda^{+}_{n,p|q}. For a similar reason, the eigencharacter of any eigenvector of 𝔥r|s\mathfrak{h}_{r|s} in 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}) is of the form ψr|sD\psi^{D^{\sharp}}_{r|s} for some DΛn,r|s+D\in\Lambda^{+}_{n,r|s}. Consequently, the direct sum (3.10) is the isotypic decomposition of 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}) with respect to the action by Σ𝔥\Sigma\mathfrak{h}.

To prove (3.11), we shall use equation (2.14) to obtain another decomposition of 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}). By extracting vectors in \mathcal{R} which are anihilated by 𝔲n𝔲m𝔲n𝔲𝔤\mathfrak{u}_{n}\oplus\mathfrak{u}_{m}\cong\mathfrak{u}_{n}\oplus\mathfrak{u}_{\mathfrak{g}^{\prime}}, we obtain from equation (2.14) the direct sum

𝒬(𝔤,𝔪)=𝔲n𝔲𝔪FΛn,p|q+(ρnF)𝔲n(Lp|qF)𝔲𝔤,\mathcal{Q}(\mathfrak{g},\mathfrak{m})=\mathcal{R}^{\mathfrak{u}_{n}\oplus\mathfrak{u}_{\mathfrak{m}}}\cong\bigoplus_{F\in\Lambda^{+}_{n,p|q}}(\rho^{F}_{n})^{\mathfrak{u}_{n}}\otimes(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{g}^{\prime}}}, (3.12)

where (Lp|qF)𝔲𝔤(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{g}^{\prime}}} is the space of vectors in Lp|qFL^{F}_{p|q} annihilated by operators from 𝔲𝔤\mathfrak{u}_{\mathfrak{g}^{\prime}}, which is a module for 𝔥r|s𝔥r𝔥s\mathfrak{h}_{r|s}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{s^{\prime}}.

We now fix FΛn,p|q+F\in\Lambda^{+}_{n,p|q}. Then (Lp|qF)𝔲𝔤(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{g}^{\prime}}} can be decomposed as

(Lp|qF)𝔲𝔤=(D,α,β)(Lp|qF)(D,α,β)𝔲𝔤,(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{g}^{\prime}}}=\bigoplus_{(D,\alpha,\beta)}(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{g}^{\prime}}}_{(D,\alpha,\beta)}, (3.13)

where the direct sum is taken over all (D,α,β)Λn,r|s+×+r×+s(D,\alpha,\beta)\in\Lambda^{+}_{n,r|s}\times{\mathbb{Z}}^{r^{\prime}}_{+}\times{\mathbb{Z}}^{s^{\prime}}_{+} and

(Lp|qF)(D,α,β)𝔲𝔤={v(Lp|qF)𝔲𝔤:h.v=(ψpD,ψrα,ψsβ)(h)vh𝔥r|s𝔥r𝔥s},(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{g}^{\prime}}}_{(D,\alpha,\beta)}=\left\{v\in(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{g}^{\prime}}}:h.v=(\psi^{D^{\sharp}}_{p},\psi^{\alpha}_{r^{\prime}},\psi^{\beta}_{s^{\prime}})(h)v\forall h\in\mathfrak{h}_{r|s}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{s^{\prime}}\right\},

i.e., the space of all 𝔪\mathfrak{m} highest weight vectors in Lp|qFL^{F}_{p|q} of weight (ψnD,ψrα,ψsβ)(\psi^{D^{\sharp}}_{n},\psi^{\alpha}_{r^{\prime}},\psi^{\beta}_{s^{\prime}}). Consequently,

dim(Lp|qF)(D,α,β)𝔲𝔤=dimHom𝔪(Lr|sDψrαψsβ,Lp|qF),\dim(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{g}^{\prime}}}_{(D,\alpha,\beta)}=\dim\mathrm{Hom}_{\mathfrak{m}}(L^{D}_{r|s}\otimes{\mathbb{C}}_{\psi^{\alpha}_{r^{\prime}}}\otimes{\mathbb{C}}_{\psi^{\beta}_{s^{\prime}}},L^{F}_{p|q}), (3.14)

which is the multiplicity of Lr|sDψrαψsβL^{D}_{r|s}\otimes{\mathbb{C}}_{\psi^{\alpha}_{r^{\prime}}}\otimes{\mathbb{C}}_{\psi^{\beta}_{s^{\prime}}} in Lp|qFL^{F}_{p|q}.

Using equations (3.12) and (3.13), we obtain

𝒬(𝔤,𝔪)\displaystyle\mathcal{Q}(\mathfrak{g},\mathfrak{m}) (F,D,α,β)Ω(𝔤,𝔪)(ρnF)𝔲n(Lp|qF)(D,α,β)𝔲𝔤.\displaystyle\cong\bigoplus_{(F,D,\alpha,\beta)\in\Omega(\mathfrak{g},\mathfrak{m})}(\rho^{F}_{n})^{\mathfrak{u}_{n}}\otimes(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{g}^{\prime}}}_{(D,\alpha,\beta)}. (3.15)

By comparing equations (3.10) and (3.15), we see that for each (F,D,α,β)Ω(𝔤,𝔪)(F,D,\alpha,\beta)\in\Omega(\mathfrak{g},\mathfrak{m}),

𝒬(𝔤,𝔪)(F,D,α,β)(ρnF)𝔲n(Lp|qF)(D,α,β)𝔲𝔤\mathcal{Q}(\mathfrak{g},\mathfrak{m})_{(F,D,\alpha,\beta)}\cong(\rho^{F}_{n})^{\mathfrak{u}_{n}}\otimes(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{g}^{\prime}}}_{(D,\alpha,\beta)} (3.16)

as a module for Σ𝔥\Sigma\mathfrak{h}. Since dim(ρnF)𝔲n=1\dim(\rho^{F}_{n})^{\mathfrak{u}_{n}}=1 and by equation (3.14), we obtain

dim𝒬(𝔤,𝔪)(F,D,α,β)=dim(Lp|qF)(D,α,β)𝔲𝔤=dimHom𝔪(Lr|sDψrαψsβ,Lp|qF).\dim\mathcal{Q}(\mathfrak{g},\mathfrak{m})_{(F,D,\alpha,\beta)}=\dim(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{g}^{\prime}}}_{(D,\alpha,\beta)}=\dim\mathrm{Hom}_{\mathfrak{m}}(L^{D}_{r|s}\otimes{\mathbb{C}}_{\psi^{\alpha}_{r^{\prime}}}\otimes{\mathbb{C}}_{\psi^{\beta}_{s^{\prime}}},L^{F}_{p|q}).

This proves (3.11), completing the proof of the proposition. ∎

Remark 3.17.

We see from Proposition (3.9) that part of the branching rule for (𝔤,𝔪)(\mathfrak{g},\mathfrak{m}) can be deduced from the structure of the algebra 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}). In particular, the dimension of each of the subspaces 𝒬(𝔤,𝔪)(F,D,α,β)\mathcal{Q}(\mathfrak{g},\mathfrak{m})_{(F,D,\alpha,\beta)} of 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}) is the multiplicity of an irreducible 𝔪\mathfrak{m} representation in an irreducible 𝔤\mathfrak{g} representation. In view of this property of 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}), we call 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}) a branching algebra for (𝔤,𝔪)(\mathfrak{g},\mathfrak{m}).

3.3. Branching rules for (𝔤,𝔪)(\mathfrak{g},\mathfrak{m}) and (𝔤,𝔤)(\mathfrak{g},\mathfrak{g}^{\prime})

We now express dim𝒬(𝔤,𝔪)(F,D,α,β)\dim\mathcal{Q}(\mathfrak{g},\mathfrak{m})_{(F,D,\alpha,\beta)} in terms of Kostka numbers and skew Kostka numbers.

Proposition 3.18.

For any (F,D,α,β)Ω(𝔤,𝔪)(F,D,\alpha,\beta)\in\Omega(\mathfrak{g},\mathfrak{m}), let N(F,D,α,β)N_{(F,D,\alpha,\beta)} be the non-negative integer defined by

N(F,D,α,β)=EKE/D,αKFt/Et,βN_{(F,D,\alpha,\beta)}=\sum_{E}K_{E/D,\alpha}K_{F^{t}/E^{t},\beta} (3.19)

where the sum is taken over all Young diagrams EE (note that KE/D,αKFt/Et,β0K_{E/D,\alpha}K_{F^{t}/E^{t},\beta}\neq 0 only for finitely many EE). Then

dim𝒬(𝔤,𝔪)(F,D,α,β)=N(F,D,α,β).\dim\mathcal{Q}(\mathfrak{g},\mathfrak{m})_{(F,D,\alpha,\beta)}=N_{(F,D,\alpha,\beta)}. (3.20)
Proof.

Write p=rr{\mathbb{C}}^{p}={\mathbb{C}}^{r}\oplus{\mathbb{C}}^{r^{\prime}} and q=ss{\mathbb{C}}^{q}={\mathbb{C}}^{s}\oplus{\mathbb{C}}^{s^{\prime}}. Then p|q=rrssr|sr|s{\mathbb{C}}^{p|q}={\mathbb{C}}^{r}\oplus{\mathbb{C}}^{r^{\prime}}\oplus{\mathbb{C}}^{s}\oplus{\mathbb{C}}^{s^{\prime}}\cong{\mathbb{C}}^{r|s}\oplus{\mathbb{C}}^{r^{\prime}|s^{\prime}}, and hence =𝕊(np|q)𝕊(nr|snr|s)\mathcal{R}=\mathbb{S}({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{p|q})\cong\mathbb{S}({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{r|s}\oplus{\mathbb{C}}^{n}\otimes{\mathbb{C}}^{r^{\prime}|s^{\prime}}). Recall from Section 2.1.1 the functorial property of the supersymmetric algebra that 𝕊(VV)=𝕊(V)𝕊(V)\mathbb{S}(V\oplus V^{\prime})=\mathbb{S}(V)\otimes\mathbb{S}(V^{\prime}) for any 2{\mathbb{Z}}_{2}-graded vector spaces VV and VV^{\prime}. This immediately leads to

\displaystyle\mathcal{R} 𝕊(nr|s)𝕊(nr|s).\displaystyle\cong\mathbb{S}({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{r|s})\otimes\mathbb{S}({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{r^{\prime}|s^{\prime}}).

Since 𝕊(nr|s)S(nr)Λ(ns)\mathbb{S}({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{r^{\prime}|s^{\prime}})\cong S({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{r^{\prime}})\otimes\Lambda({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{s^{\prime}}) (see Section 2.1.1), we obtain

\displaystyle\mathcal{R} 𝕊(nr|s)S(nr)Λ(ns).\displaystyle\cong\mathbb{S}({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{r|s})\otimes S({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{r^{\prime}})\otimes\Lambda({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{s^{\prime}}). (3.21)

This is an isomorphism of modules for 𝔤𝔩n×𝔪{\mathfrak{gl}}_{n}\times\mathfrak{m}, whose direct summands 𝔤𝔩n{\mathfrak{gl}}_{n}, 𝔤𝔩r|s{\mathfrak{gl}}_{r|s}, 𝔥r\mathfrak{h}_{r^{\prime}} and 𝔥s\mathfrak{h}_{s^{\prime}} act on both sides in the obvious way.

Next, we have S(nr)S(n)rS({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{r^{\prime}})\cong S({\mathbb{C}}^{n})^{\otimes r^{\prime}} and Λ(ns)Λ(n)s.\Lambda({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{s^{\prime}})\cong\Lambda({\mathbb{C}}^{n})^{\otimes s^{\prime}}. By using the (𝔤𝔩n,𝔤𝔩1)({\mathfrak{gl}}_{n},{\mathfrak{gl}}_{1})-duality and its skew version, we obtain

S(n)a+Sa(n)ρ1(a),Λ(n)b=0nΛb(n)ρ1(b).S({\mathbb{C}}^{n})\cong\bigoplus_{a\in{\mathbb{Z}}_{+}}S^{a}({\mathbb{C}}^{n})\otimes\rho_{1}^{(a)},\quad\Lambda({\mathbb{C}}^{n})\cong\bigoplus_{b=0}^{n}\Lambda^{b}({\mathbb{C}}^{n})\otimes\rho^{(b)}_{1}.

Thus we have the following isomorphisms of modules for 𝔤𝔩n×𝔥r{\mathfrak{gl}}_{n}\times\mathfrak{h}_{r^{\prime}} and 𝔤𝔩n×𝔥s{\mathfrak{gl}}_{n}\times\mathfrak{h}_{s^{\prime}} respectively:

S(nr)i=1r(αi+Sαi(n)ρ1(αi))α+r(i=1rSαi(n))ψrα,\displaystyle S({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{r^{\prime}})\cong\bigotimes_{i=1}^{r^{\prime}}\left(\bigoplus_{\alpha_{i}\in{\mathbb{Z}}_{+}}S^{\alpha_{i}}({\mathbb{C}}^{n})\otimes\rho^{(\alpha_{i})}_{1}\right)\cong\bigoplus_{\alpha\in{\mathbb{Z}}_{+}^{r^{\prime}}}\left(\bigotimes_{i=1}^{r^{\prime}}S^{\alpha_{i}}({\mathbb{C}}^{n})\right)\otimes{\mathbb{C}}_{\psi_{r^{\prime}}^{\alpha}}, (3.22)
Λ(ns)j=1s(βj=0nΛβj(n)ρ1(βj))β+s(j=1sΛβj(n))ψsβ,\displaystyle\Lambda({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{s^{\prime}})\cong\bigotimes_{j=1}^{s^{\prime}}\left(\bigoplus_{\beta_{j}=0}^{n}\Lambda^{\beta_{j}}({\mathbb{C}}^{n})\otimes\rho^{(\beta_{j})}_{1}\right)\cong\bigoplus_{\beta\in{\mathbb{Z}}_{+}^{s^{\prime}}}\left(\bigotimes_{j=1}^{s^{\prime}}\Lambda^{\beta_{j}}({\mathbb{C}}^{n})\right)\otimes{\mathbb{C}}_{\psi_{s^{\prime}}^{\beta}}, (3.23)

where α=(α1,α2,,αr)\alpha=(\alpha_{1},\alpha_{2},\dots,\alpha_{r^{\prime}}), β=(β1,β2,,βs)\beta=(\beta_{1},\beta_{2},\dots,\beta_{s^{\prime}}), and Λβj(n)=0\Lambda^{\beta_{j}}({\mathbb{C}}^{n})=0 if βj>n\beta_{j}>n for any jj. Moreover, ψrα{\mathbb{C}}_{\psi^{\alpha}_{r^{\prime}}} and ψsα{\mathbb{C}}_{\psi^{\alpha}_{s^{\prime}}} are one-dimensional modules of 𝔥r\mathfrak{h}_{r^{\prime}} and 𝔥s\mathfrak{h}_{s^{\prime}} respectively, satisfying

t1.f1\displaystyle t_{1}.f_{1} =ψrα(t1)f1,t2.f2=ψsβ(t2)f2,\displaystyle=\psi^{\alpha}_{r^{\prime}}(t_{1})f_{1},\qquad t_{2}.f_{2}=\psi^{\beta}_{s^{\prime}}(t_{2})f_{2},

for all t1𝔥rt_{1}\in\mathfrak{h}_{r^{\prime}}, f1ψrαf_{1}\in{\mathbb{C}}_{\psi^{\alpha}_{r^{\prime}}}, t2𝔥st_{2}\in\mathfrak{h}_{s^{\prime}} and f2ψsβf_{2}\in{\mathbb{C}}_{\psi^{\beta}_{s^{\prime}}}.

It now follows from equations (3.21), (2.14), (3.22) and (3.23) that

\displaystyle\mathcal{R} =(D,α,β)Λn,r|s+×+r×+s(D,α,β)\displaystyle=\bigoplus_{(D,\alpha,\beta)\in\Lambda^{+}_{n,r|s}\times{\mathbb{Z}}^{r^{\prime}}_{+}\times{\mathbb{Z}}^{s^{\prime}}_{+}}\mathcal{R}_{(D,\alpha,\beta)} (3.24)

where for each (D,α,β)Λn,r|s+×+r×+s(D,\alpha,\beta)\in\Lambda^{+}_{n,r|s}\times{\mathbb{Z}}^{r^{\prime}}_{+}\times{\mathbb{Z}}^{s^{\prime}}_{+},

(D,α,β)T(D,α,β)Lr|sDψrαψsβ,\mathcal{R}_{(D,\alpha,\beta)}\cong T(D,\alpha,\beta)\otimes L^{D}_{r|s}\otimes{\mathbb{C}}_{\psi^{\alpha}_{r^{\prime}}}\otimes{\mathbb{C}}_{\psi^{\beta}_{s^{\prime}}},

and T(D,α,β)T(D,\alpha,\beta) is the 𝔤𝔩n{\mathfrak{gl}}_{n} module defined by

T(D,α,β)=ρnD(i=1rSαi(n))(j=1sΛβj(n)).T(D,\alpha,\beta)=\rho^{D}_{n}\otimes\left(\bigotimes_{i=1}^{r^{\prime}}S^{\alpha_{i}}({\mathbb{C}}^{n})\right)\otimes\left(\bigotimes_{j=1}^{s^{\prime}}\Lambda^{\beta_{j}}({\mathbb{C}}^{n})\right).

(We agree that T(D,α,β)=0T(D,\alpha,\beta)=0 if j>nj>n for some 1js1\leq j\leq s^{\prime}.)

Now T(D,α,β)T(D,\alpha,\beta) can be analyzed using the Iterated Peiri rules. By first applying part (i) and then part (ii) of Proposition 2.21, we obatin

T(D,α,β)\displaystyle T(D,\alpha,\beta) (EKE/D,αρnE)(j=1sΛβj(n))\displaystyle\cong\left(\bigoplus_{E}K_{E/D,\alpha}\rho^{E}_{n}\right)\otimes\left(\bigotimes_{j=1}^{s^{\prime}}\Lambda^{\beta_{j}}({\mathbb{C}}^{n})\right)
EKE/D,α(FKFt/Et,βρnF)\displaystyle\cong\bigoplus_{E}K_{E/D,\alpha}\left(\bigoplus_{F}K_{F^{t}/E^{t},\beta}\rho^{F}_{n}\right)
F(EKE/D,αKFt/Et,β)ρnF\displaystyle\cong\bigoplus_{F}\left(\bigoplus_{E}K_{E/D,\alpha}K_{F^{t}/E^{t},\beta}\right)\rho^{F}_{n}
FN(F,D,α,β)ρnF.\displaystyle\cong\bigoplus_{F}N_{(F,D,\alpha,\beta)}\rho^{F}_{n}.

By extracting the vectors in T(D,α,β)T(D,\alpha,\beta) which are anihilated by 𝔲n\mathfrak{u}_{n}, we obtain

T(D,α,β)𝔲nFN(F,D,α,β)(ρnF)𝔲n.T(D,\alpha,\beta)^{\mathfrak{u}_{n}}\cong\bigoplus_{F}N_{(F,D,\alpha,\beta)}(\rho^{F}_{n})^{\mathfrak{u}_{n}}. (3.25)

We now fix FΛn,p|q+F\in\Lambda^{+}_{n,p|q} and let T(D,α,β)F𝔲nT(D,\alpha,\beta)^{\mathfrak{u}_{n}}_{F} be the space of vectors vv in T(D,α,β)𝔲nT(D,\alpha,\beta)^{\mathfrak{u}_{n}} for which a.v=ψnF(a)va.v=\psi^{F}_{n}(a)v for all a𝔥na\in\mathfrak{h}_{n}. Then since dim(ρnF)𝔲n=1\dim(\rho^{F}_{n})^{\mathfrak{u}_{n}}=1 and by equation (3.25),

dimT(D,α,β)F𝔲n=N(F,D,α,β).\dim T(D,\alpha,\beta)^{\mathfrak{u}_{n}}_{F}=N_{(F,D,\alpha,\beta)}. (3.26)

Moreover,

𝒬(F,D,α,β)T(D,α,β)F𝔲n(Lr|sD)𝔲r|sψrαψsβ\mathcal{Q}_{(F,D,\alpha,\beta)}\cong T(D,\alpha,\beta)^{\mathfrak{u}_{n}}_{F}\otimes(L^{D}_{r|s})^{\mathfrak{u}_{r|s}}\otimes{\mathbb{C}}_{\psi^{\alpha}_{r^{\prime}}}\otimes{\mathbb{C}}_{\psi^{\beta}_{s^{\prime}}}

as a module for 𝔥n𝔥r|s𝔥r𝔥s\mathfrak{h}_{n}\oplus\mathfrak{h}_{r|s}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{s^{\prime}}. It follows from this and equation (3.26) that

dim𝒬(F,D,α,β)\displaystyle\dim\mathcal{Q}_{(F,D,\alpha,\beta)} =dim(T(D,α,β)F𝔲n(Lr|sD)𝔲r|sψrαψsβ)\displaystyle=\dim\left(T(D,\alpha,\beta)^{\mathfrak{u}_{n}}_{F}\otimes(L^{D}_{r|s})^{\mathfrak{u}_{r|s}}\otimes{\mathbb{C}}_{\psi^{\alpha}_{r^{\prime}}}\otimes{\mathbb{C}}_{\psi^{\beta}_{s^{\prime}}}\right)
=dimT(D,α,β)F𝔲ndim(Lr|sD)𝔲r|sdimψrαdimψsβ\displaystyle=\dim T(D,\alpha,\beta)^{\mathfrak{u}_{n}}_{F}\dim(L^{D}_{r|s})^{\mathfrak{u}_{r|s}}\dim{\mathbb{C}}_{\psi^{\alpha}_{r^{\prime}}}\dim{\mathbb{C}}_{\psi^{\beta}_{s^{\prime}}}
=dimT(D,α,β)F𝔲n\displaystyle=\dim T(D,\alpha,\beta)^{\mathfrak{u}_{n}}_{F}
=N(F,D,α,β).\displaystyle=N_{(F,D,\alpha,\beta)}.

This completes the proof. ∎

Remark 3.27.

We have seen earlier that the structure of 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}) encodes a branching rule for (𝔤,𝔪)(\mathfrak{g},\mathfrak{m}). The proof of Proposition (3.18) shows that the dimension of 𝒬(F,D,α,β)\mathcal{Q}_{(F,D,\alpha,\beta)} is equal to the multiplicity of ρnF\rho^{F}_{n} in the kk-fold tensor product T(D,α,β)T(D,\alpha,\beta) of 𝔤𝔩n{\mathfrak{gl}}_{n} representations, where k=r+s+1k=r^{\prime}+s^{\prime}+1. So the structure of 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}) also encodes information on how such tensor products decomposes into irreducible 𝔤𝔩n{\mathfrak{gl}}_{n} representations, which can be viewed as a branching rule from 𝔤𝔩nk{\mathfrak{gl}}_{n}^{k} to its diagonal subalgebra Δ(k1)(𝔤𝔩n)\Delta^{(k-1)}({\mathfrak{gl}}_{n}) (see Remark 3.28 below for explanation). Hence, the structure of 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}) encodes two sets of branching rules connected by a reciprocity law. Following [HTW1, HTW2], we shall call 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}) a reciprocity algebra.

Remark 3.28.

Set Δ(k1)(𝔤𝔩n)={Δ(k1)(X)=(X,X,,Xk):X𝔤𝔩n}.\Delta^{(k-1)}({\mathfrak{gl}}_{n})=\left\{\Delta^{(k-1)}(X)=(\underbrace{X,X,\dots,X}_{k}):X\in{\mathfrak{gl}}_{n}\right\}. When 𝔤𝔩n{\mathfrak{gl}}_{n} is regarded as embedded in its universal enveloping algebra in the canonical way, one always writes Δ(k1)(X)=i=0k111iX11k1i\Delta^{(k-1)}(X)=\sum_{i=0}^{k-1}\underbrace{1\otimes\dots\otimes 1}_{i}\otimes X\otimes\underbrace{1\otimes\dots\otimes 1}_{k-1-i}.

We have the following result

Theorem 3.29.

Recall that r=prr^{\prime}=p-r and s=qss^{\prime}=q-s. Let FΛn,p|q+F\in\Lambda^{+}_{n,p|q}.

  1. (i)

    (Branching from 𝔤𝔩p|q{\mathfrak{gl}}_{p|q} to 𝔤𝔩r|s𝔥r𝔥s){\mathfrak{gl}}_{r|s}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{s^{\prime}})As a representation of 𝔪\mathfrak{m},

    Lp|qF=(D,α,β)Λn,r|s+×+r×+sN(F,D,α,β)Lr|sDψrαψsβ.L^{F}_{p|q}=\bigoplus_{(D,\alpha,\beta)\in\Lambda^{+}_{n,r|s}\times{\mathbb{Z}}^{r^{\prime}}_{+}\times{\mathbb{Z}}^{s^{\prime}}_{+}}N_{(F,D,\alpha,\beta)}\ L^{D}_{r|s}\otimes{\mathbb{C}}_{\psi^{\alpha}_{r^{\prime}}}\otimes{\mathbb{C}}_{\psi^{\beta}_{s^{\prime}}}.
  2. (ii)

    (Branching from 𝔤𝔩p|q{\mathfrak{gl}}_{p|q} to 𝔤𝔩r|s{\mathfrak{gl}}_{r|s} As a representation of 𝔤\mathfrak{g}^{\prime},

    Lp|qF=DΛn,r|s+N~(F,D)Lr|sD.L^{F}_{p|q}=\bigoplus_{D\in\Lambda^{+}_{n,r|s}}\widetilde{N}_{(F,D)}\ L^{D}_{r|s}.

    where for each DΛn,r|s+D\in\Lambda^{+}_{n,r|s},

    N~(F,D)=(α,β)+r×+sN(F,D,α,β).\widetilde{N}_{(F,D)}=\sum_{(\alpha,\beta)\in{\mathbb{Z}}^{r^{\prime}}_{+}\times{\mathbb{Z}}^{s^{\prime}}_{+}}N_{(F,D,\alpha,\beta)}. (3.30)
Proof.

This follows from equations (3.11) and (3.20). ∎

3.4. Weight multiplicities of Lp|qFL_{p|q}^{F}

We now consider the case r=s=0r=s=0. In this case, we have

𝔤=0,𝔪=𝔥𝔪=𝔥p𝔥q,𝒬(𝔤,𝔪)=𝔲n,Ω(𝔤,𝔪)=Λn,p|q+×+p×+q,\mathfrak{g}^{\prime}=0,\quad\mathfrak{m}=\mathfrak{h}_{\mathfrak{m}}=\mathfrak{h}_{p}\oplus\mathfrak{h}_{q},\quad\mathcal{Q}(\mathfrak{g},\mathfrak{m})=\mathcal{R}^{\mathfrak{u}_{n}},\quad\Omega(\mathfrak{g},\mathfrak{m})=\Lambda^{+}_{n,p|q}\times{\mathbb{Z}}^{p}_{+}\times{\mathbb{Z}}^{q}_{+},

and 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}) is a module for Σ𝔥:=𝔥n𝔥p𝔥q\Sigma\mathfrak{h}:=\mathfrak{h}_{n}\oplus\mathfrak{h}_{p}\oplus\mathfrak{h}_{q}. Note that Ω(𝔤,𝔪)\Omega(\mathfrak{g},\mathfrak{m}) is the direct product of only 33 sets instead of 44 since Λn,r|s+=\Lambda^{+}_{n,r|s}=\emptyset, and the algebra 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}) decomposes into the direct sum

𝒬(𝔤,𝔪)=(F,α,β)Ω(𝔤,𝔪)𝒬(𝔤,𝔪)(F,α,β),\mathcal{Q}(\mathfrak{g},\mathfrak{m})=\bigoplus_{(F,\alpha,\beta)\in\Omega(\mathfrak{g},\mathfrak{m})}\mathcal{Q}(\mathfrak{g},\mathfrak{m})_{(F,\alpha,\beta)},

where for each (F,α,β)Ω(𝔤,𝔪)(F,\alpha,\beta)\in\Omega(\mathfrak{g},\mathfrak{m}),

𝒬(𝔤,𝔪)(F,α,β)={v𝒬(𝔤,𝔪):h.v=(ψnF,ψpα,ψqβ)(h)hΣ𝔥}.\mathcal{Q}(\mathfrak{g},\mathfrak{m})_{(F,\alpha,\beta)}=\left\{v\in\mathcal{Q}(\mathfrak{g},\mathfrak{m}):h.v=(\psi^{F}_{n},\psi^{\alpha}_{p},\psi^{\beta}_{q})(h)\ \forall h\in\Sigma\mathfrak{h}\right\}.

Except these minor differences, the arguments in §3.2 and 3.3 remain valid and lead to the following results:

Corollary 3.31.

Let FΛn,p|q+F\in\Lambda^{+}_{n,p|q}.

  1. (i)

    For (α,β)+p×+q(\alpha,\beta)\in{\mathbb{Z}}^{p}_{+}\times{\mathbb{Z}}^{q}_{+}, let

    (Lp|qF)(α,β)={vLp|qF:(a,b).v=(ψpα(a)+ψqβ(b))v(a,b)𝔥p𝔥q},(L^{F}_{p|q})_{(\alpha,\beta)}=\left\{v\in L^{F}_{p|q}:\ (a,b).v=(\psi^{\alpha}_{p}(a)+\psi^{\beta}_{q}(b))v\ \forall(a,b)\in\mathfrak{h}_{p}\oplus\mathfrak{h}_{q}\right\},

    the (ψpα,ψqβ)(\psi^{\alpha}_{p},\psi^{\beta}_{q})-weight space of Lp|qFL^{F}_{p|q}. Then we have

    𝒬(𝔤,𝔪)(F,α,β)(ρnF)𝔲n(Lp|qF)(α,β)\mathcal{Q}(\mathfrak{g},\mathfrak{m})_{(F,\alpha,\beta)}\cong(\rho^{F}_{n})^{\mathfrak{u}_{n}}\otimes(L^{F}_{p|q})_{(\alpha,\beta)}

    as a module for Σ𝔥\Sigma\mathfrak{h}, and

    dim(Lp|qF)(α,β)=N(F,α,β)\dim(L^{F}_{p|q})_{(\alpha,\beta)}=N^{\prime}_{(F,\alpha,\beta)} (3.32)

    where

    N(F,α,β)=EKE,αKFt/Et,βN^{\prime}_{(F,\alpha,\beta)}=\sum_{E}K_{E,\alpha}K_{F^{t}/E^{t},\beta} (3.33)

    where the sum is taken over all Young diagrams EE.

  2. (ii)

    The dimension of Lp|qFL^{F}_{p|q} is given by

    dimLp|qF=N~F,\dim L^{F}_{p|q}=\widetilde{N}^{\prime}_{F}, (3.34)

    where

    N~F=(α,β)+p×+qN(F,α,β).\widetilde{N}^{\prime}_{F}=\sum_{(\alpha,\beta)\in{\mathbb{Z}}^{p}_{+}\times{\mathbb{Z}}^{q}_{+}}N^{\prime}_{(F,\alpha,\beta)}.
Remark 3.35.

Part (i) of Corollary 3.31 gives the weight multiplicities of any irreducible polynomial 𝔤𝔩p|q{\mathfrak{gl}}_{p|q}-representation. We believe that the formula (3.32), which expresses weight multiplicities in terms of Kostka numbers, is new.

4. Branching algebra for (𝔤𝔩p|q,𝔤𝔩r|s𝔤𝔩pr|qs)({\mathfrak{gl}}_{p|q},{\mathfrak{gl}}_{r|s}\oplus{\mathfrak{gl}}_{p-r|q-s})

In this section, we shall construct a branching algebra for (𝔤𝔩p|q,𝔤𝔩r|s𝔤𝔩r|s)({\mathfrak{gl}}_{p|q},{\mathfrak{gl}}_{r|s}\oplus{\mathfrak{gl}}_{r^{\prime}|s^{\prime}}) where r+r=p,s+s=qr+r^{\prime}=p,\ s+s^{\prime}=q. By using the structure of this algebra, we deduce a branching rule for (𝔤𝔩p|q,𝔤𝔩r|s𝔤𝔩r|s)({\mathfrak{gl}}_{p|q},{\mathfrak{gl}}_{r|s}\oplus{\mathfrak{gl}}_{r^{\prime}|s^{\prime}}). In particular, in the case (r,s,r,s)=(p,0,0,q)(r,s,r^{\prime},s^{\prime})=(p,0,0,q), we obtain a branching rule from 𝔤𝔩p|q{\mathfrak{gl}}_{p|q} to its even subspace 𝔤𝔩p𝔤𝔩q{\mathfrak{gl}}_{p}\oplus{\mathfrak{gl}}_{q}.

4.1. Branching problem

We continue to denote 𝔤=𝔤𝔩p|q\mathfrak{g}={\mathfrak{gl}}_{p|q}. Recall the subalgebra 𝔤\mathfrak{g}^{\prime} of 𝔤\mathfrak{g} defined in equation (3.3). We now define another Lie supalgebra 𝔤′′\mathfrak{g}^{\prime\prime} of 𝔤\mathfrak{g} as follows: Let κ:r|sp|q\kappa:{\mathbb{C}}^{r^{\prime}|s^{\prime}}\to{\mathbb{C}}^{p|q} be the injection defined by

([x1x2xr],[y1y2ys])([00x1x2xr],[00y1y2ys]).(\begin{bmatrix}x_{1}\\ x_{2}\\ \vdots\\ x_{r^{\prime}}\end{bmatrix},\begin{bmatrix}y_{1}\\ y_{2}\\ \vdots\\ y_{s^{\prime}}\end{bmatrix})\to(\begin{bmatrix}0\\ \vdots\\ 0\\ x_{1}\\ x_{2}\\ \vdots\\ x_{r^{\prime}}\end{bmatrix},\begin{bmatrix}0\\ \vdots\\ 0\\ y_{1}\\ y_{2}\\ \vdots\\ y_{s^{\prime}}\end{bmatrix}).

This induces an injection κ~:𝔤𝔩r|s𝔤\tilde{\kappa}:\mathfrak{gl}_{r^{\prime}|s^{\prime}}\to\mathfrak{g} of Lie superalgebras defined as follows: For any g=(EFGH)𝔤𝔩r|sg=\left(\begin{array}[]{l|l}E&F\\ \hline\cr G&H\end{array}\right)\in\mathfrak{gl}_{r^{\prime}|s^{\prime}}, where the matrices E,F,G,HE,F,G,H are respectively r×rr^{\prime}\times r^{\prime}, r×sr^{\prime}\times s^{\prime}, s×rs^{\prime}\times r^{\prime} and s×ss^{\prime}\times s^{\prime}, then

κ~(g)=(0r,r0r,r0r,s0r,s0r,rE0r,sF0s,r0s,r0s,s0s,s0s,rG0s,sH)𝔤.\tilde{\kappa}(g)=\left(\begin{array}[]{c|c|c|c}0_{r,r}&0_{r,r^{\prime}}&0_{r,s}&0_{r,s^{\prime}}\\ \hline\cr 0_{r^{\prime},r}&E&0_{r^{\prime},s}&F\\ \hline\cr 0_{s,r}&0_{s,r^{\prime}}&0_{s,s}&0_{s,s^{\prime}}\\ \hline\cr 0_{s^{\prime},r}&G&0_{s^{\prime},s}&H\end{array}\right)\in\mathfrak{g}. (4.1)

Let

𝔤′′={κ~(g):g𝔤𝔩r|s},\mathfrak{g}^{\prime\prime}=\{\tilde{\kappa}(g):g\in{\mathfrak{gl}}_{r^{\prime}|s^{\prime}}\}, (4.2)

which is a subalgebra of 𝔤\mathfrak{g} and 𝔤′′𝔤𝔩r|s\mathfrak{g}^{\prime\prime}\cong\mathfrak{gl}_{r^{\prime}|s^{\prime}}. Let

𝔥𝔤′′=κ~(𝔥r|s),𝔲𝔤′′=κ~(𝔲r|s),and𝔟𝔤′′=κ~(𝔟r|s).\mathfrak{h}_{\mathfrak{g}^{\prime\prime}}=\tilde{\kappa}(\mathfrak{h}_{r^{\prime}|s^{\prime}}),\quad\mathfrak{u}_{\mathfrak{g}^{\prime\prime}}=\tilde{\kappa}(\mathfrak{u}_{r^{\prime}|s^{\prime}}),\quad\mbox{and}\quad\mathfrak{b}_{\mathfrak{g}^{\prime\prime}}=\tilde{\kappa}(\mathfrak{b}_{r^{\prime}|s^{\prime}}).

Then 𝔥𝔤′′\mathfrak{h}_{\mathfrak{g}^{\prime\prime}} is a Cartan subalgebra and 𝔟𝔤′′\mathfrak{b}_{\mathfrak{g}^{\prime\prime}} is a Borel subalgebra of 𝔤′′\mathfrak{g}^{\prime\prime}, and 𝔟𝔤′′=𝔥𝔤′′𝔲𝔤′′\mathfrak{b}_{\mathfrak{g}^{\prime\prime}}=\mathfrak{h}_{\mathfrak{g}^{\prime\prime}}\oplus\mathfrak{u}_{\mathfrak{g}^{\prime\prime}}.

Next we let 𝔮\mathfrak{q} be the subspace of 𝔤\mathfrak{g} spanned by 𝔤𝔤′′\mathfrak{g}^{\prime}\cup\mathfrak{g}^{\prime\prime}. Explicitly, 𝔮\mathfrak{q} consists of all matrices of the form

(A0r,rB0r,s0r,rE0r,sFC0s,rD0s,s0s,rG0s,sH)𝔤.\left(\begin{array}[]{c|c|c|c}A&0_{r,r^{\prime}}&B&0_{r,s^{\prime}}\\ \hline\cr 0_{r^{\prime},r}&E&0_{r^{\prime},s}&F\\ \hline\cr C&0_{s,r^{\prime}}&D&0_{s,s^{\prime}}\\ \hline\cr 0_{s^{\prime},r}&G&0_{s^{\prime},s}&H\end{array}\right)\in\mathfrak{g}. (4.3)

where all the submatrices are as in equations (3.1) and (4.1). Then 𝔮\mathfrak{q} is a subalgebra of 𝔤\mathfrak{g}, and

𝔮𝔤𝔤′′𝔤𝔩r|s𝔤𝔩r|s.\mathfrak{q}\cong\mathfrak{g}^{\prime}\oplus\mathfrak{g}^{\prime\prime}\cong{\mathfrak{gl}}_{r|s}\oplus{\mathfrak{gl}}_{r^{\prime}|s^{\prime}}. (4.4)

Let

𝔟𝔮=𝔮𝔟p|q,𝔥𝔮=𝔮𝔥p|q,𝔲𝔮=𝔮𝔲p|q.\mathfrak{b}_{\mathfrak{q}}=\mathfrak{q}\cap\mathfrak{b}_{p|q},\quad\mathfrak{h}_{\mathfrak{q}}=\mathfrak{q}\cap\mathfrak{h}_{p|q},\quad\mathfrak{u}_{\mathfrak{q}}=\mathfrak{q}\cap\mathfrak{u}_{p|q}.

Then 𝔟q\mathfrak{b}_{q} is a Borel subalgebra of 𝔮\mathfrak{q}, 𝔥𝔮\mathfrak{h}_{\mathfrak{q}} is a Cartan subalgebra of 𝔮\mathfrak{q} and 𝔟𝔮=𝔥𝔮𝔲𝔮\mathfrak{b}_{\mathfrak{q}}=\mathfrak{h}_{\mathfrak{q}}\oplus\mathfrak{u}_{\mathfrak{q}}. Moreover, we have

𝔥𝔮𝔥𝔤𝔥𝔤′′𝔥r|s𝔥r|s,and𝔲𝔮𝔲𝔤𝔲𝔤′′.\mathfrak{h}_{\mathfrak{q}}\cong\mathfrak{h}_{\mathfrak{g}^{\prime}}\oplus\mathfrak{h}_{\mathfrak{g}^{\prime\prime}}\cong\mathfrak{h}_{r|s}\oplus\mathfrak{h}_{r^{\prime}|s^{\prime}},\quad\mbox{and}\quad\mathfrak{u}_{\mathfrak{q}}\cong\mathfrak{u}_{\mathfrak{g}^{\prime}}\oplus\mathfrak{u}_{\mathfrak{g}^{\prime\prime}}.

By (4.4), all the irreducible polynomial representations of 𝔮\mathfrak{q} are of the form Lr|sDLr|sEL^{D}_{r|s}\otimes L^{E}_{r^{\prime}|s^{\prime}} for some DΛr|sD\in\Lambda_{r|s} and EΛr|sE\in\Lambda_{r^{\prime}|s^{\prime}}.

In this section, we consider the following branching problem:

Branching Problem: For FΛp|q+F\in\Lambda^{+}_{p|q}, determine a decomposition of the irreducible 𝔤\mathfrak{g}-module Lp|qFL^{F}_{p|q} into irreducible 𝔮\mathfrak{q}-modules.

A solution of this branching problem was alluded to in [CZ, Remark 9.4]. Here we want to build a branching algebra to solve the problem.

4.2. The branching algebra 𝒬(𝔤,𝔮)\mathcal{Q}(\mathfrak{g},\mathfrak{q})

Let nn be a positive integer. We again consider the 𝔤𝔩n𝔤{\mathfrak{gl}}_{n}\oplus\mathfrak{g} module =𝕊(np|q)\mathcal{R}=\mathbb{S}({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{p|q}) and let

𝒬(𝔤,𝔮)=𝔲n𝔲𝔮\mathcal{Q}(\mathfrak{g},\mathfrak{q})=\mathcal{R}^{\mathfrak{u}_{n}\oplus\mathfrak{u}_{\mathfrak{q}}}

be the subalgebra of \mathcal{R} consisting of vectors annihilated by the operators from 𝔲n𝔲𝔮\mathfrak{u}_{n}\oplus\mathfrak{u}_{\mathfrak{q}} (recall that 𝔲n\mathfrak{u}_{n} is the subalgebra of 𝔤𝔩n{\mathfrak{gl}}_{n} consisting of all n×nn\times n strictly upper triangular matrices). Then 𝒬(𝔤,𝔮)\mathcal{Q}(\mathfrak{g},\mathfrak{q}) is a module for 𝔥n𝔥𝔮\mathfrak{h}_{n}\oplus\mathfrak{h}_{\mathfrak{q}}. Since 𝔥n𝔥𝔮\mathfrak{h}_{n}\oplus\mathfrak{h}_{\mathfrak{q}} is isomorphic to 𝔥n𝔥r|s𝔥r|s\mathfrak{h}_{n}\oplus\mathfrak{h}_{r|s}\oplus\mathfrak{h}_{r^{\prime}|s^{\prime}}, we shall instead regard 𝒬(𝔤,𝔮)\mathcal{Q}(\mathfrak{g},\mathfrak{q}) as a module for 𝔥n𝔥r|s𝔥r|s\mathfrak{h}_{n}\oplus\mathfrak{h}_{r|s}\oplus\mathfrak{h}_{r^{\prime}|s^{\prime}}.

Let

Ω(𝔤,𝔮)=Λn,p|q+×Λn,r|s+×Λn,r|s+.\Omega(\mathfrak{g},\mathfrak{q})=\Lambda^{+}_{n,p|q}\times\Lambda^{+}_{n,r|s}\times\Lambda^{+}_{n,r^{\prime}|s^{\prime}}.

For each (F,D,E)Ω(𝔤,𝔮)(F,D,E)\in\Omega(\mathfrak{g},\mathfrak{q}), let ψ(F,D,E):=(ψnF,ψr|sD,ψr|sE)\psi^{(F,D,E)}:=(\psi^{F}_{n},\psi^{D^{\sharp}}_{r|s},\psi^{E^{\sharp}}_{r^{\prime}|s^{\prime}}), which is the linear functional of 𝔥n𝔥r|s𝔥r|s\mathfrak{h}_{n}\oplus\mathfrak{h}_{r|s}\oplus\mathfrak{h}_{r^{\prime}|s^{\prime}} defined by equation (3.7). Define

𝒬(𝔤,𝔮)(F,D,E)={v𝒬(𝔤,𝔮):t.v=ψ(F,D,E)(t)v,t=(t1,t2,t3)𝔥n𝔥r|s𝔥r|s}.\mathcal{Q}(\mathfrak{g},\mathfrak{q})_{(F,D,E)}=\left\{v\in\mathcal{Q}(\mathfrak{g},\mathfrak{q}):t.v=\psi^{(F,D,E)}(t)v,\ \forall t=(t_{1},t_{2},t_{3})\in\mathfrak{h}_{n}\oplus\mathfrak{h}_{r|s}\oplus\mathfrak{h}_{r^{\prime}|s^{\prime}}\right\}.

We have the following result.

Proposition 4.5.
  1. (a)

    The algebra 𝒬(𝔤,𝔮)\mathcal{Q}(\mathfrak{g},\mathfrak{q}) has a direct sum decomposition given by

    𝒬(𝔤,𝔮)=(F,D,E)Ω(𝔤,𝔮)𝒬(𝔤,𝔮)(F,D,E).\mathcal{Q}(\mathfrak{g},\mathfrak{q})=\bigoplus_{(F,D,E)\in\Omega(\mathfrak{g},\mathfrak{q})}\mathcal{Q}(\mathfrak{g},\mathfrak{q})_{(F,D,E)}. (4.6)
  2. (b)

    For all (F,D,E)Ω(𝔤,𝔮)(F,D,E)\in\Omega(\mathfrak{g},\mathfrak{q}),

    dim𝒬(𝔤,𝔮)(F,D,E)=dimHom𝔤𝔩n(ρnF,ρnDρnE).\dim\mathcal{Q}(\mathfrak{g},\mathfrak{q})_{(F,D,E)}=\dim\mathrm{Hom}_{{\mathfrak{gl}}_{n}}(\rho^{F}_{n},\rho^{D}_{n}\otimes\rho^{E}_{n}). (4.7)
  3. (c)

    For all (F,D,E)Ω(𝔤,𝔮)(F,D,E)\in\Omega(\mathfrak{g},\mathfrak{q}),

    dim𝒬(𝔤,𝔤𝔮)(F,D,E)=dimHom𝔮(Lr|sDρr|sE,Lp|qF).\dim\mathcal{Q}(\mathfrak{g},\mathfrak{g}_{\mathfrak{q}})_{(F,D,E)}=\dim\mathrm{Hom}_{\mathfrak{q}}(L^{D}_{r|s}\otimes\rho^{E}_{r^{\prime}|s^{\prime}},L^{F}_{p|q}). (4.8)
Proof.

The following isomorphism of algebras is clear,

\displaystyle\mathcal{R} 𝕊(nr|s)𝕊(nr|s),\displaystyle\cong\mathbb{S}({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{r|s})\otimes\mathbb{S}({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{r^{\prime}|s^{\prime}}),

which can also be easily proved using arguments similar to those in the proof of Proposition 3.18. Using the (𝔤𝔩n,𝔤𝔩r|s)({\mathfrak{gl}}_{n},{\mathfrak{gl}}_{r|s})-duality and (𝔤𝔩n,𝔤𝔩r|s)({\mathfrak{gl}}_{n},{\mathfrak{gl}}_{r^{\prime}|s^{\prime}})-duality, we obtain

\displaystyle\mathcal{R} (DΛn,r|s+ρnDLr|sD)(EΛn,r|sρnELr|sE)\displaystyle\cong\left(\bigoplus_{D\in\Lambda^{+}_{n,r|s}}\rho^{D}_{n}\otimes L^{D}_{r|s}\right)\otimes\left(\bigoplus_{E\in\Lambda_{n,r^{\prime}|s^{\prime}}}\rho^{E}_{n}\otimes L^{E}_{r^{\prime}|s^{\prime}}\right)
(D,E)Λn,r|s+×Λn,r|s+(ρnDρnE)Lr|sDLr|sE.\displaystyle\cong\bigoplus_{(D,E)\in\Lambda^{+}_{n,r|s}\times\Lambda^{+}_{n,r^{\prime}|s^{\prime}}}(\rho^{D}_{n}\otimes\rho^{E}_{n})\otimes L^{D}_{r|s}\otimes L^{E}_{r^{\prime}|s^{\prime}}.

By extracting the vectors in \mathcal{R} which are annihilated by the operators from 𝔲n𝔲𝔮\mathfrak{u}_{n}\oplus\mathfrak{u}_{\mathfrak{q}}, we obtain

𝒬(𝔤,𝔮)(D,E)Λn,r|s+×Λn,r|s+(ρnDρnE)𝔲n(Lr|sD)𝔲r|s(Lr|sE)𝔲r|s.\mathcal{Q}(\mathfrak{g},\mathfrak{q})\cong\bigoplus_{(D,E)\in\Lambda^{+}_{n,r|s}\times\Lambda^{+}_{n,r^{\prime}|s^{\prime}}}(\rho^{D}_{n}\otimes\rho^{E}_{n})^{\mathfrak{u}_{n}}\otimes(L^{D}_{r|s})^{\mathfrak{u}_{r|s}}\otimes(L^{E}_{r^{\prime}|s^{\prime}})^{\mathfrak{u}_{r^{\prime}|s^{\prime}}}. (4.9)

Let (D,E)Λn,r|s+×Λn,r|s+(D,E)\in\Lambda^{+}_{n,r|s}\times\Lambda^{+}_{n,r^{\prime}|s^{\prime}}. Then the space (ρnDρnE)𝔲n(\rho^{D}_{n}\otimes\rho^{E}_{n})^{\mathfrak{u}_{n}} of vectors in ρnDρnE\rho^{D}_{n}\otimes\rho^{E}_{n} annihilated by the operators from 𝔲n\mathfrak{u}_{n} is a module for 𝔥n\mathfrak{h}_{n}, and can be decomposed as

(ρnDρnE)𝔲n=F(ρnDρnE)F𝔲n(\rho^{D}_{n}\otimes\rho^{E}_{n})^{\mathfrak{u}_{n}}=\bigoplus_{F}(\rho^{D}_{n}\otimes\rho^{E}_{n})^{\mathfrak{u}_{n}}_{F} (4.10)

where the direct sum is taken over a set of Young diagrams FF and

(ρnDρnE)F𝔲n={v(ρnDρE)𝔲n:t.v=ψnF(t)vt𝔲n},(\rho^{D}_{n}\otimes\rho^{E}_{n})^{\mathfrak{u}_{n}}_{F}=\left\{v\in(\rho^{D}_{n}\otimes\rho^{E})^{\mathfrak{u}_{n}}:\ t.v=\psi^{F}_{n}(t)v\ \forall t\in\mathfrak{u}_{n}\right\}, (4.11)

i.e., (ρnDρnE)F𝔲n(\rho^{D}_{n}\otimes\rho^{E}_{n})^{\mathfrak{u}_{n}}_{F} is the space of 𝔤𝔩n{\mathfrak{gl}}_{n} highest weight vectors of weight ψnF\psi^{F}_{n} in ρnDρnE\rho^{D}_{n}\otimes\rho^{E}_{n}. Therefore,

dim(ρnDρnE)F𝔲n=dimHom𝔤𝔩n(ρnF,ρnDρnE),\dim(\rho^{D}_{n}\otimes\rho^{E}_{n})^{\mathfrak{u}_{n}}_{F}=\dim\mathrm{Hom}_{{\mathfrak{gl}}_{n}}(\rho^{F}_{n},\rho^{D}_{n}\otimes\rho^{E}_{n}), (4.12)

the multiplicity of ρnF\rho^{F}_{n} in the tensor product ρnDρnE\rho^{D}_{n}\otimes\rho^{E}_{n}. By Theorem 2.13, the irreducible representations of 𝔤𝔩n{\mathfrak{gl}}_{n} which occur in \mathcal{R} are labeled by the Young digrams in Λn,p|q+\Lambda^{+}_{n,p|q}. Thus, we may assume that the Young diagrams FF which appear in the direct sum (4.10) also belong to Λn,p|q+\Lambda^{+}_{n,p|q}.

By combining equations (4.9) and (4.10), we obtain

𝒬(𝔤,𝔮)(F,D,E)Ω(𝔤,𝔮)(ρnDρnE)F𝔲n(Lr|sD)𝔲r|s(Lr|sE)𝔲r|s.\mathcal{Q}(\mathfrak{g},\mathfrak{q})\cong\bigoplus_{(F,D,E)\in\Omega(\mathfrak{g},\mathfrak{q})}(\rho^{D}_{n}\otimes\rho^{E}_{n})^{\mathfrak{u}_{n}}_{F}\otimes(L^{D}_{r|s})^{\mathfrak{u}_{r|s}}\otimes(L^{E}_{r^{\prime}|s^{\prime}})^{\mathfrak{u}_{r^{\prime}|s^{\prime}}}. (4.13)

Now observe that for all (F,D,E)Ω(𝔤,𝔮)(F,D,E)\in\Omega(\mathfrak{g},\mathfrak{q}),

𝒬(𝔤,𝔮)(F,D,E)(ρnDρnE)F𝔲n(Lr|sD)𝔲r|s(Lr|sE)𝔲r|s\mathcal{Q}(\mathfrak{g},\mathfrak{q})_{(F,D,E)}\cong(\rho^{D}_{n}\otimes\rho^{E}_{n})^{\mathfrak{u}_{n}}_{F}\otimes(L^{D}_{r|s})^{\mathfrak{u}_{r|s}}\otimes(L^{E}_{r^{\prime}|s^{\prime}})^{\mathfrak{u}_{r^{\prime}|s^{\prime}}} (4.14)

as a module for 𝔥n𝔥p𝔥q\mathfrak{h}_{n}\oplus\mathfrak{h}_{p}\oplus\mathfrak{h}_{q}. This immediately leads to (4.6). Moreover, by equations (4.14) and (4.12),

dim𝒬(𝔤,𝔮)(F,D,E)\displaystyle\dim\mathcal{Q}(\mathfrak{g},\mathfrak{q})_{(F,D,E)} =dim((ρnDρnE)F𝔲n(Lr|sD)𝔲r|s(Lr|sE)𝔲r|s)\displaystyle=\dim\left((\rho^{D}_{n}\otimes\rho^{E}_{n})^{\mathfrak{u}_{n}}_{F}\otimes(L^{D}_{r|s})^{\mathfrak{u}_{r|s}}\otimes(L^{E}_{r^{\prime}|s^{\prime}})^{\mathfrak{u}_{r^{\prime}|s^{\prime}}}\right)
=dim(ρnDρnE)F𝔲ndim(Lr|sD)𝔲r|sdim(Lr|sE)𝔲r|s\displaystyle=\dim(\rho^{D}_{n}\otimes\rho^{E}_{n})^{\mathfrak{u}_{n}}_{F}\ \dim(L^{D}_{r|s})^{\mathfrak{u}_{r|s}}\ \dim(L^{E}_{r^{\prime}|s^{\prime}})^{\mathfrak{u}_{r^{\prime}|s^{\prime}}}
=dim(ρnDρnE)F𝔲n\displaystyle=\dim(\rho^{D}_{n}\otimes\rho^{E}_{n})^{\mathfrak{u}_{n}}_{F}
=dimHom𝔤𝔩n(ρnF,ρnDρnE),\displaystyle=\dim\mathrm{Hom}_{{\mathfrak{gl}}_{n}}(\rho^{F}_{n},\rho^{D}_{n}\otimes\rho^{E}_{n}),

since dim(Lr|sD)𝔲r|s=dim(Lr|sE)𝔲r|s=1\dim(L^{D}_{r|s})^{\mathfrak{u}_{r|s}}=\dim(L^{E}_{r^{\prime}|s^{\prime}})^{\mathfrak{u}_{r^{\prime}|s^{\prime}}}=1. This proves (b).

Next, we use equation (2.14) to obtain another decomposition of 𝒬(𝔤,𝔮)\mathcal{Q}(\mathfrak{g},\mathfrak{q}). We have

𝒬(𝔤,𝔮)FΛn,p|q+(ρnF)𝔲n(Lp|qF)𝔲𝔮\mathcal{Q}(\mathfrak{g},\mathfrak{q})\cong\bigoplus_{F\in\Lambda^{+}_{n,p|q}}(\rho^{F}_{n})^{\mathfrak{u}_{n}}\otimes(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{q}}} (4.15)

where (Lp|qF)𝔲𝔮(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{q}}} for each FΛn,p|q+F\in\Lambda^{+}_{n,p|q} is the space of vectors in Lp|qFL^{F}_{p|q} annihilated by the operators from 𝔲𝔮\mathfrak{u}_{\mathfrak{q}}, which is a module for 𝔥𝔮𝔥r|s𝔥r|s\mathfrak{h}_{\mathfrak{q}}\cong\mathfrak{h}_{r|s}\oplus\mathfrak{h}_{r^{\prime}|s^{\prime}}. So (Lp|qF)𝔲𝔮(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{q}}} can be written as a direct sum

(Lp|qF)𝔲𝔮=(D,E)Λn,r|s+×Λn,r|s+(Lp|qF)(D,E)𝔲𝔮(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{q}}}=\bigoplus_{(D,E)\in\Lambda^{+}_{n,r|s}\times\Lambda^{+}_{n,r^{\prime}|s^{\prime}}}(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{q}}}_{(D,E)} (4.16)

where

(Lp|qF)(D,E)𝔲𝔮={v(Lp|qF)𝔲𝔮:t.v=(ψr|sD,ψr|sE)(t)v,t=(t1,t2)𝔥r|s𝔥r|s},(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{q}}}_{(D,E)}=\left\{v\in(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{q}}}:\ t.v=(\psi^{D^{\sharp}}_{r|s},\psi^{E^{\sharp}}_{r^{\prime}|s^{\prime}})(t)v,\ \forall t=(t_{1},t_{2})\in\mathfrak{h}_{r|s}\oplus\mathfrak{h}_{r^{\prime}|s^{\prime}}\right\},

which is the space of all 𝔮\mathfrak{q} highest weight vectors in Lp|qFL^{F}_{p|q} of weight (ψr|sD,ψr|sE)(\psi^{D^{\sharp}}_{r|s},\psi^{E^{\sharp}}_{r^{\prime}|s^{\prime}}). Hence

dim(Lp|qF)(D,E)𝔲𝔮=dimHom𝔮(Lr|sDLr|sE,Lp|qF),\dim(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{q}}}_{(D,E)}=\dim\mathrm{Hom}_{\mathfrak{q}}(L^{D}_{r|s}\otimes L^{E}_{r^{\prime}|s^{\prime}},L^{F}_{p|q}), (4.17)

the multiplicity of the irreducible 𝔮\mathfrak{q} representation Lr|sDρr|sEL^{D}_{r|s}\otimes\rho^{E}_{r^{\prime}|s^{\prime}} in the irreducible 𝔤\mathfrak{g} representation Lp|qFL^{F}_{p|q}. By combining equations (4.15) and (4.16), we obtain

𝒬(𝔤,𝔮)\displaystyle\mathcal{Q}(\mathfrak{g},\mathfrak{q}) FΛn,p|q+(ρnF)𝔲n((D,E)Λmin(n,p)+×Rn,q(Lp|qF)(D,E)𝔲𝔮)\displaystyle\cong\bigoplus_{F\in\Lambda^{+}_{n,p|q}}(\rho^{F}_{n})^{\mathfrak{u}_{n}}\otimes\left(\bigoplus_{(D,E)\in\Lambda^{+}_{\min(n,p)}\times R_{n,q}}(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{q}}}_{(D,E)}\right)
(F,D,E)Ω(𝔤,𝔮)(ρnF)𝔲n(Lp|qF)(D,E)𝔲𝔮.\displaystyle\cong\bigoplus_{(F,D,E)\in\Omega(\mathfrak{g},\mathfrak{q})}(\rho^{F}_{n})^{\mathfrak{u}_{n}}\otimes(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{q}}}_{(D,E)}. (4.18)

Now for each (F,D,E)Ω(𝔤,𝔮)(F,D,E)\in\Omega(\mathfrak{g},\mathfrak{q}), we have

𝒬(𝔤,𝔮)(F,D,E)(ρnF)𝔲n(Lp|qF)(D,E)𝔲𝔮\mathcal{Q}(\mathfrak{g},\mathfrak{q})_{(F,D,E)}\cong(\rho^{F}_{n})^{\mathfrak{u}_{n}}\otimes(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{q}}}_{(D,E)}

as a module for 𝔥n𝔥r|s𝔥r|s\mathfrak{h}_{n}\oplus\mathfrak{h}_{r|s}\oplus\mathfrak{h}_{r^{\prime}|s^{\prime}}. Since dim(ρnF)𝔲n=1\dim(\rho^{F}_{n})^{\mathfrak{u}_{n}}=1, by equation (4.17), we obtain

dim𝒬(𝔤,𝔮)(F,D,E)=dim(Lp|qF)(D,E)𝔲𝔮=dimHom𝔮(Lr|sDLr|sE,Lp|qF),\dim\mathcal{Q}(\mathfrak{g},\mathfrak{q})_{(F,D,E)}=\dim(L^{F}_{p|q})^{\mathfrak{u}_{\mathfrak{q}}}_{(D,E)}=\dim\mathrm{Hom}_{\mathfrak{q}}(L^{D}_{r|s}\otimes L^{E}_{r^{\prime}|s^{\prime}},L^{F}_{p|q}),

which proves (4.8). This completes the proof of the proposition. ∎

Remark 4.19.
  1. (i)

    Part (c) of Proposition (4.5) shows that the structure of the algebra 𝒬(𝔤,𝔮)\mathcal{Q}(\mathfrak{g},\mathfrak{q}) encodes part of the branching rule for (𝔤,𝔮)(\mathfrak{g},\mathfrak{q}). In view of this fact, we call 𝒬(𝔤,𝔮)\mathcal{Q}(\mathfrak{g},\mathfrak{q}) a branching algebra for (𝔤,𝔮)(\mathfrak{g},\mathfrak{q}).

  2. (ii)

    We see from Part (b) of Proposition (4.5) that the structure of 𝒬(𝔤,𝔮)\mathcal{Q}(\mathfrak{g},\mathfrak{q}) also encodes information on the decomposition of the tensor products of certain irreducible polynomial representations of 𝔤𝔩n{\mathfrak{gl}}_{n}, which can be viewed as a branching rule for (𝔤𝔩n𝔤𝔩n,Δ(𝔤𝔩n))({\mathfrak{gl}}_{n}\oplus{\mathfrak{gl}}_{n},\Delta({\mathfrak{gl}}_{n})), where Δ(𝔤𝔩n)=Δ(1)(𝔤𝔩n)\Delta({\mathfrak{gl}}_{n})=\Delta^{(1)}({\mathfrak{gl}}_{n}) in the notation of Remark 3.28. Therefore, 𝒬(𝔤,𝔮)\mathcal{Q}(\mathfrak{g},\mathfrak{q}) is also a branching algebra for (𝔤𝔩n𝔤𝔩n,Δ(𝔤𝔩n))({\mathfrak{gl}}_{n}\oplus{\mathfrak{gl}}_{n},\Delta({\mathfrak{gl}}_{n})).

  3. (iii)

    Since the structure of the algebra 𝒬(𝔤,𝔮)\mathcal{Q}(\mathfrak{g},\mathfrak{q}) encodes two sets of branching rules connected by a reciprocity law, it is a reciprocity algebra in the sense of [HTW1, HTW2].

4.3. A branching rule for (𝔤,𝔮)(\mathfrak{g},\mathfrak{q})

We now derive a branching rule for (𝔤,𝔮)(\mathfrak{g},\mathfrak{q}) using the reciprocity algebra 𝒬(𝔤,𝔮)\mathcal{Q}(\mathfrak{g},\mathfrak{q}), and the Littlewood-Richardson rule which we now recall. For a skew tableau TT, the word of TT is the sequence w(T)w(T) of positive integers obtained by reading the entries of TT from top to bottom, and right to left in each row. A Littlewood-Richardson tableau is a skew tableau TT which is semistandard and satisfies the Yamanouchi word condition, that is, for each positive integer jj, starting from the first entry of w(T)w(T) to any place in w(T)w(T), there are at least as many jjs as (j+1)(j+1)s. The Littlewood-Richardson rule [Fu, HL] states that if DD,EE and FF are Young diagrams with at most nn rows, then the multiplicity cD,EFc^{F}_{D,E} of ρnF\rho^{F}_{n} in the tensor product ρnDρnE\rho^{D}_{n}\otimes\rho^{E}_{n} is equal the number of Littlewood-Richardson tableaux of shape F/DF/D and content EE.

Theorem 4.20.

(Branching from 𝔤𝔩p|q{\mathfrak{gl}}_{p|q} to 𝔤𝔩r|s𝔤𝔩r|s{\mathfrak{gl}}_{r|s}\oplus{\mathfrak{gl}}_{r^{\prime}|s^{\prime}}) For any FΛn,p|q+F\in\Lambda^{+}_{n,p|q},

Lp|qF=(D,E)Λn,r|s+×Λn,r|s+cD,EFLr|sDLr|sEL^{F}_{p|q}=\bigoplus_{(D,E)\in\Lambda^{+}_{n,r|s}\times\Lambda^{+}_{n,r^{\prime}|s^{\prime}}}c^{F}_{D,E}\ L^{D}_{r|s}\otimes L^{E}_{r^{\prime}|s^{\prime}}

as a representation for 𝔮\mathfrak{q}.

Proof.

Let FΛp|q+F\in\Lambda^{+}_{p|q}. For any (D,E)Λn,r|s+×Λn,r|s+(D,E)\in\Lambda^{+}_{n,r|s}\times\Lambda^{+}_{n,r^{\prime}|s^{\prime}}, we have

dimHom𝔮(Lr|sDLr|sE,Lp|qF)\displaystyle\dim\mathrm{Hom}_{\mathfrak{q}}(L^{D}_{r|s}\otimes L^{E}_{r^{\prime}|s^{\prime}},L^{F}_{p|q}) =dim𝒬(𝔤,𝔮)(F,D,E)=dimHom𝔤𝔩n(ρnF,ρnDρnE),\displaystyle=\dim\mathcal{Q}(\mathfrak{g},\mathfrak{q})_{(F,D,E)}=\dim\mathrm{Hom}_{{\mathfrak{gl}}_{n}}(\rho^{F}_{n},\rho^{D}_{n}\otimes\rho^{E}_{n}),

by (b) and (c) of Proposition 4.5. The right hand side is equal to cD,EFc^{F}_{D,E} by the Littlewood-Richardson rule. Hence

dimHom𝔮(Lr|sDLr|sE,Lp|qF)=cD,EF,\dim\mathrm{Hom}_{\mathfrak{q}}(L^{D}_{r|s}\otimes L^{E}_{r^{\prime}|s^{\prime}},L^{F}_{p|q})=c^{F}_{D,E},

proving the theorem. ∎

Remark 4.21.

The branching rules of the oscillator representations of the general linear and orthosymplectic Lie superalgebras were determined in [CLZ, CZ] by exploiting the connection between branching and tensor product of representations of dual pairs of Lie (super)algebras, but without the framework of branching algebras. Also, the branching rule in Theorem 4.20 was described in [CZ, Remark 9.4].

We now consider the special case (r,s,r,s)=(p,0,0,q)(r,s,r^{\prime},s^{\prime})=(p,0,0,q). In this case, 𝔤𝔩r|s=𝔤𝔩p{\mathfrak{gl}}_{r|s}={\mathfrak{gl}}_{p}, 𝔤𝔩r|s=𝔤𝔩q{\mathfrak{gl}}_{r^{\prime}|s^{\prime}}={\mathfrak{gl}}_{q} and

𝔮=𝔤0¯𝔤𝔩p𝔤𝔩q\mathfrak{q}=\mathfrak{g}_{\bar{0}}\cong{\mathfrak{gl}}_{p}\oplus{\mathfrak{gl}}_{q}

is the even subspace of 𝔤\mathfrak{g}.

Corollary 4.22.

(Branching from 𝔤𝔩p|q{\mathfrak{gl}}_{p|q} to 𝔤𝔩p𝔤𝔩q{\mathfrak{gl}}_{p}\oplus{\mathfrak{gl}}_{q}) For FΛn,p|q+F\in\Lambda^{+}_{n,p|q}, we have

Lp|qF=(D,E)Λmin(n,p)+×Rn,qcD,EtFρpDρqEtL^{F}_{p|q}=\bigoplus_{(D,E)\in\Lambda^{+}_{\min(n,p)}\times R_{n,q}}c^{F}_{D,E^{t}}\ \rho^{D}_{p}\otimes\rho^{E^{t}}_{q} (4.23)

as a representation for 𝔤0¯\mathfrak{g}_{\bar{0}}, where Rn,qR_{n,q} is defined in (2.18).

Proof.

Let (r,s,r,s)=(p,0,0,q)(r,s,r^{\prime},s^{\prime})=(p,0,0,q). Then

Λn,r|s+=Λn,p|0+=Λmin(n,p)+,Λn,r|s+=Λn,0|q+=Rn,q,\Lambda^{+}_{n,r|s}=\Lambda^{+}_{n,p|0}=\Lambda^{+}_{\min(n,p)},\quad\Lambda^{+}_{n,r^{\prime}|s^{\prime}}=\Lambda^{+}_{n,0|q}=R_{n,q},

and for (D,E)Λmin(n,p)+×Rn,q(D,E)\in\Lambda^{+}_{\min(n,p)}\times R_{n,q},

Lr|sD=Lp|0D=ρpD,Lr|sE=L0|qE=ρqEt.L^{D}_{r|s}=L^{D}_{p|0}=\rho^{D}_{p},\quad L^{E}_{r^{\prime}|s^{\prime}}=L^{E}_{0|q}=\rho^{E^{t}}_{q}.

Equation (4.23) then follows from Theorem 4.20. ∎

Remark 4.24.

Let F=(λ1,λ2,)Λn,p|q+F=(\lambda_{1},\lambda_{2},...)\in\Lambda^{+}_{n,p|q}. Then the highest weight of Lp|qFL^{F}_{p|q} is F=(λ1,,λp;μ1,,μq)F^{\sharp}=(\lambda_{1},...,\lambda_{p};\mu_{1},...,\mu_{q}), where for each 1jq1\leq j\leq q, μj=max(λjp,0)\mu_{j}=\max(\lambda^{\prime}_{j}-p,0). Let D0D_{0} and E0E_{0} be defined respectively by

D0=(λ1,,λp),E0=(μ1,,μq).D_{0}=(\lambda_{1},...,\lambda_{p}),\quad E_{0}=(\mu_{1},...,\mu_{q}).

Then by Corollary 4.22, the 𝔤0¯\mathfrak{g}_{\bar{0}} module ρpD0ρqE0\rho^{D_{0}}_{p}\otimes\rho^{E_{0}}_{q} occurs in Lp|qFL^{F}_{p|q} with multiplicity 11. Moreover, the 𝔤𝔩p𝔤𝔩q{\mathfrak{gl}}_{p}\oplus{\mathfrak{gl}}_{q} highest weight vector in ρpD0ρqE0\rho^{D_{0}}_{p}\otimes\rho^{E_{0}}_{q} is also the 𝔤𝔩p|q{\mathfrak{gl}}_{p|q} highest weight vector in Lp|qFL^{F}_{p|q}

4.4. Alternative formulae of branching multiplicities

An interesting application of Theorem 4.20 is to deriving alternative formulae for the (𝔤𝔩p|q,𝔤𝔩r|s𝔥pr𝔥qs)({\mathfrak{gl}}_{p|q},{\mathfrak{gl}}_{r|s}\oplus\mathfrak{h}_{p-r}\oplus\mathfrak{h}_{q-s}) and (𝔤𝔩p|q,𝔤𝔩r|s)({\mathfrak{gl}}_{p|q},{\mathfrak{gl}}_{r|s}) branching multiplicities given in Theorem 3.29. We briefly discuss it here.

Let FΛn,p|q+F\in\Lambda^{+}_{n,p|q}. Then by Theorem 4.20, we have

Lp|qF=(D,E)Λn,r|s+×Λn,r|s+cD,EFLr|sDLr|sEL^{F}_{p|q}=\bigoplus_{(D,E)\in\Lambda^{+}_{n,r|s}\times\Lambda^{+}_{n,r^{\prime}|s^{\prime}}}c^{F}_{D,E}\ L^{D}_{r|s}\otimes L^{E}_{r^{\prime}|s^{\prime}}

which can be written as

Lp|qF=DΛn,r|s+Lr|sD(EΛn,r|s+cD,EFLr|sE).L^{F}_{p|q}=\bigoplus_{D\in\Lambda^{+}_{n,r|s}}\ L^{D}_{r|s}\otimes\left(\bigoplus_{E\in\Lambda^{+}_{n,r^{\prime}|s^{\prime}}}c^{F}_{D,E}L^{E}_{r^{\prime}|s^{\prime}}\right).

By writing Lr|sE=(α,β)+r×+s(Lr|sE)(α,β)L^{E}_{r^{\prime}|s^{\prime}}=\bigoplus_{(\alpha,\beta)\in{\mathbb{Z}}^{r^{\prime}}_{+}\times{\mathbb{Z}}^{s^{\prime}}_{+}}(L^{E}_{r^{\prime}|s^{\prime}})_{(\alpha,\beta)}, we also have

Lp|qF=(D,α,β)Λn,r|s+×+r×+sLr|sD(EΛn,r|s+cD,EF(Lr|sE)(α,β)).L^{F}_{p|q}=\bigoplus_{(D,\alpha,\beta)\in\Lambda^{+}_{n,r|s}\times{\mathbb{Z}}^{r^{\prime}}_{+}\times{\mathbb{Z}}^{s^{\prime}}_{+}}\ L^{D}_{r|s}\otimes\left(\bigoplus_{E\in\Lambda^{+}_{n,r^{\prime}|s^{\prime}}}c^{F}_{D,E}(L^{E}_{r^{\prime}|s^{\prime}})_{(\alpha,\beta)}\right).

For any (D,α,β)Λn,r|s+×+r×+s(D,\alpha,\beta)\in\Lambda^{+}_{n,r|s}\times{\mathbb{Z}}^{r^{\prime}}_{+}\times{\mathbb{Z}}^{s^{\prime}}_{+},

dimHom𝔤𝔩r|s(Lr|sDψrαψsβ,Lp|qF)\displaystyle\dim\mathrm{Hom}_{{\mathfrak{gl}}_{r|s}}(L^{D}_{r|s}\otimes{\mathbb{C}}_{\psi^{\alpha}_{r^{\prime}}}\otimes{\mathbb{C}}_{\psi^{\beta}_{s^{\prime}}},L^{F}_{p|q}) =dim(EΛn,r|s+cD,EF(Lr|sE)(α,β))\displaystyle=\dim\left(\bigoplus_{E\in\Lambda^{+}_{n,r^{\prime}|s^{\prime}}}c^{F}_{D,E}(L^{E}_{r^{\prime}|s^{\prime}})_{(\alpha,\beta)}\right)
=EcD,EFdim(Lr|sE)(α,β).\displaystyle=\sum_{E}c^{F}_{D,E}\dim(L^{E}_{r^{\prime}|s^{\prime}})_{(\alpha,\beta)}.

Using Corollary 3.31 (i) to the right hand side, we obtain

EcD,EFN(E,α,β)\displaystyle\sum_{E}c^{F}_{D,E}N^{\prime}(E,\alpha,\beta) =EcD,EFHKH,αKEt/Ht,β=E,HcD,EFKH,αKEt/Ht,β,\displaystyle=\sum_{E}c^{F}_{D,E}\sum_{H}K_{H,\alpha}K_{E^{t}/H^{t},\beta}=\sum_{E,H}c^{F}_{D,E}K_{H,\alpha}K_{E^{t}/H^{t},\beta},

where the sum is taken over all Young diagrams EE and HH. Hence

dimHom𝔤𝔩r|s(Lr|sDψrαψsβ,Lp|qF)=E,HcD,EFKH,αKEt/Ht,β.\dim\mathrm{Hom}_{{\mathfrak{gl}}_{r|s}}(L^{D}_{r|s}\otimes{\mathbb{C}}_{\psi^{\alpha}_{r^{\prime}}}\otimes{\mathbb{C}}_{\psi^{\beta}_{s^{\prime}}},L^{F}_{p|q})=\sum_{E,H}c^{F}_{D,E}K_{H,\alpha}K_{E^{t}/H^{t},\beta}.

It also follows that

dimHom𝔤𝔩r|s(Lr|sD,Lp|qF)\displaystyle\dim\mathrm{Hom}_{{\mathfrak{gl}}_{r|s}}(L^{D}_{r|s},L^{F}_{p|q}) =(α,β)+r×+sdimHom𝔤𝔩r|s(Lr|sDψrαψsβ,Lp|qF)\displaystyle=\sum_{(\alpha,\beta)\in{\mathbb{Z}}^{r^{\prime}}_{+}\times{\mathbb{Z}}^{s^{\prime}}_{+}}\dim\mathrm{Hom}_{{\mathfrak{gl}}_{r|s}}(L^{D}_{r|s}\otimes{\mathbb{C}}_{\psi^{\alpha}_{r^{\prime}}}\otimes{\mathbb{C}}_{\psi^{\beta}_{s^{\prime}}},L^{F}_{p|q})
=(α,β)+r×+sE,HcD,EFKH,αKEt/Ht,β.\displaystyle=\sum_{(\alpha,\beta)\in{\mathbb{Z}}^{r^{\prime}}_{+}\times{\mathbb{Z}}^{s^{\prime}}_{+}}\sum_{E,H}c^{F}_{D,E}K_{H,\alpha}K_{E^{t}/H^{t},\beta}.

5. Weight vectors of Lp|qFL^{F}_{p|q} associated to tableaux

In Section 3.1, we obtain a branching rule from 𝔤𝔩p|q{\mathfrak{gl}}_{p|q} to the subalgebra 𝔪𝔤𝔩r|s𝔥r𝔥s\mathfrak{m}\cong{\mathfrak{gl}}_{r|s}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{s^{\prime}}. In this section, we fix FΛn,p|q+F\in\Lambda^{+}_{n,p|q} and construct explicitly a particular set of 𝔤𝔩p|q{\mathfrak{gl}}_{p|q} weight vectors in Lp|qFL^{F}_{p|q}. We show that when s=0s=0 or s=1s=1, this set of weight vectors forms a basis for the space of all 𝔤𝔩r|s{\mathfrak{gl}}_{r|s} highest weight vectors in Lp|qFL^{F}_{p|q}. In particular, when r=1r=1 and s=0s=0, this set is the basis of weight vectors for Lp|qFL^{F}_{p|q} constructed in [CZ, Theorem 3.3].

5.1. Ordered monomials and leading monomials

In this subsection, we define a basis \mathcal{M} for the algebra =𝕊(np|q)\mathcal{R}=\mathbb{S}({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{p|q}) and use this basis to define the leading monomial of a non-zero element in \mathcal{R}. The notion of leading monomial provides an effective way to prove linearly independence of subsets of \mathcal{R}.

Recall from Section 2.1.2 that {e1,e2,,ep+q}\{e_{1},e_{2},\dots,e_{p+q}\} is the standard basis for p|q{\mathbb{C}}^{p|q}, where {e1,,ep}\{e_{1},...,e_{p}\} is the standard basis for the even subspace (p|q)0¯=p({\mathbb{C}}^{p|q})_{\bar{0}}={\mathbb{C}}^{p}, and {ep+1,,ep+q)}\{e_{p+1},...,e_{p+q)}\} is the standard basis for the odd subspace (p|q)1¯=q({\mathbb{C}}^{p|q})_{\bar{1}}={\mathbb{C}}^{q}. Let {ε1,,εn}\{\varepsilon_{1},...,\varepsilon_{n}\} be the standard basis for n{\mathbb{C}}^{n}, which is taken to be even. For 1in1\leq i\leq n, 1jp1\leq j\leq p and 1kq1\leq k\leq q, denote

eij=εiej,fik=εiep+k,e_{ij}=\varepsilon_{i}\otimes e_{j},\quad f_{ik}=\varepsilon_{i}\otimes e_{p+k},

and let n,p|q=n,pn,q\mathcal{B}_{n,p|q}=\mathcal{B}_{n,p}\cup\mathcal{B}_{n,q} with

n,p={eij:1in,1jp},n,q={fik:1in,1kq}.\mathcal{B}_{n,p}=\{e_{ij}:1\leq i\leq n,1\leq j\leq p\},\quad\mathcal{B}_{n,q}=\{f_{ik}:1\leq i\leq n,1\leq k\leq q\}.

Then =𝕊(np|q)\mathcal{R}=\mathbb{S}({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{p|q}) is the associative algebra generated by n,p|q\mathcal{B}_{n,p|q} with the following relations: For all i,i.,j,j,k,ki,i.,j,j^{\prime},k,k^{\prime}.

eijeij=eijeij,fikfik=fikfik,eijfik=fikeij.e_{ij}e_{i^{\prime}j^{\prime}}=e_{i^{\prime}j^{\prime}}e_{ij},\quad f_{ik}f_{i^{\prime}k^{\prime}}=-f_{i^{\prime}k^{\prime}}f_{ik},\quad e_{ij}f_{i^{\prime}k^{\prime}}=f_{i^{\prime}k^{\prime}}e_{ij}. (5.1)

It is a superalgebra with the 2{\mathbb{Z}}_{2}-grading defined as follows. Retaining the notation [v][v] for the 2{\mathbb{Z}}_{2}-degree of any homogeneous element vv\in\mathcal{R}, we have [eij]=0[e_{ij}]=0 and [fik]=1[f_{ik}]=1 for all i,j,ki,j,k. The algebra \mathcal{R} is also +{\mathbb{Z}}_{+}-graded with all elements of n,p|q\mathcal{B}_{n,p|q} having degree 11.

Remark 5.2.

It is evident that the subalgebra of \mathcal{R} generated by n,p\mathcal{B}_{n,p} subject to the relevant relations in (5.1) is isomorphic to S(np)S({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{p}), and the subalgebra generated by n,q\mathcal{B}_{n,q} is isomorphic to Λ(nq)\Lambda({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{q}). The multiplication induces an algebra isomorphism from their tensor product to \mathcal{R}, recovering 𝕊(np|q)S(np)Λ(nq)\mathbb{S}({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{p|q})\cong S({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{p})\otimes\Lambda({\mathbb{C}}^{n}\otimes{\mathbb{C}}^{q}).

Let us arrange the elements of n,p|q\mathcal{B}_{n,p|q} in a rectangular array as shown below:

e11e12e1pf11f12f1qe21e22e2pf21f22f2qen1en2enpfn1fn2fnq.\begin{array}[]{cccc|cccc}e_{11}&e_{12}&\cdots&e_{1p}&f_{11}&f_{12}&\cdots&f_{1q}\\ e_{21}&e_{22}&\cdots&e_{2p}&f_{21}&f_{22}&\cdots&f_{2q}\\ \vdots&\vdots&&\vdots&\vdots&\vdots&&\vdots\\ e_{n1}&e_{n2}&\cdots&e_{np}&f_{n1}&f_{n2}&\cdots&f_{nq}\end{array}. (5.3)

As we will consider \mathcal{R} as a module for the Lie super subalgebra 𝔪𝔤𝔩r|s𝔥r𝔥s\mathfrak{m}\cong{\mathfrak{gl}}_{r|s}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{s^{\prime}} of 𝔤𝔩p|q{\mathfrak{gl}}_{p|q}, it is more convenient to introduce a different set of notation for some elements of n,p|q\mathcal{B}_{n,p|q}. For 1in1\leq i\leq n, 1kr1\leq k\leq r^{\prime} and 1s1\leq\ell\leq s^{\prime}, let

eik=ei(r+k),fi=fi(s+).e^{\prime}_{ik}=e_{i(r+k)},\quad f^{\prime}_{i\ell}=f_{i(s+\ell)}.

In this new notation, the array (5.3) becomes

e11e1re11e1rf11f1sf11f1se21e2re11e2rf21f2sf21f2sen1enre11enrfn1fnsfn1fns.\begin{array}[]{ccc|ccc|ccc|ccc}e_{11}&\cdots&e_{1r}&e^{\prime}_{11}&\cdots&e^{\prime}_{1r^{\prime}}&f_{11}&\cdots&f_{1s}&f^{\prime}_{11}&\cdots&f^{\prime}_{1s^{\prime}}\\ e_{21}&\cdots&e_{2r}&e^{\prime}_{11}&\cdots&e^{\prime}_{2r^{\prime}}&f_{21}&\cdots&f_{2s}&f^{\prime}_{21}&\cdots&f^{\prime}_{2s^{\prime}}\\ \vdots&&\vdots&\vdots&&\vdots&\vdots&&\vdots&&\vdots&\vdots\\ e_{n1}&\cdots&e_{nr}&e^{\prime}_{11}&\cdots&e^{\prime}_{nr^{\prime}}&f_{n1}&\cdots&f_{ns}&f^{\prime}_{n1}&\cdots&f^{\prime}_{ns^{\prime}}\end{array}. (5.4)

We now define an ordering on n,p|q\mathcal{B}_{n,p|q} (in the notation (5.4)) as follows:

  1. (O1)

    eab>ecde_{ab}>e_{cd} if and only if d>bd>b, or d=bd=b and c>ac>a.

  2. (O2)

    eab>ecde^{\prime}_{ab}>e^{\prime}_{cd} if and only if d>bd>b, or d=bd=b and c>ac>a.

  3. (O3)

    fab>fcdf_{ab}>f_{cd} if and only if d>bd>b, or d=bd=b and c>ac>a.

  4. (O4)

    fab>fcdf^{\prime}_{ab}>f^{\prime}_{cd} if and only if d>bd>b, or d=bd=b and c>ac>a.

  5. (O5)

    eab>fcd>eij>fke_{ab}>f_{cd}>e^{\prime}_{ij}>f^{\prime}_{k\ell} for all indices a,b,c,d,i,j,k,a,b,c,d,i,j,k,\ell.

Definition 5.5.
  1. (i)

    We call a non-zero product of the form

    m=h1h2hsm=h_{1}h_{2}\cdots h_{s}

    where hin,p|qh_{i}\in\mathcal{B}_{n,p|q} for 1is1\leq i\leq s a monomial in \mathcal{R}.

  2. (ii)

    An ordered monomial in \mathcal{R} is a monomial m=h1h2hsm=h_{1}h_{2}\cdots h_{s} such that

    h1>h2>>hs.h_{1}>h_{2}>\cdots>h_{s}.
  3. (iii)

    If mm is a monomial in \mathcal{R}, then by reordering its factors if necessary, we obtain a unique ordered monomial [m][m]. We call [m][m] the ordered monomial associated with mm. Note that [m]=±m[m]=\pm m.

Let \mathcal{M} denote the set of all ordered monomials in \mathcal{R}. Then \mathcal{M} is a basis for \mathcal{R}. We now extend the ordering (O1-O5) to \mathcal{M} by the graded lexicographic order. Specifically:

  1. (O6)

    Given ordered monomials m=h1h2hsm=h_{1}h_{2}\cdots h_{s} and m=h1h2hsm^{\prime}=h^{\prime}_{1}h^{\prime}_{2}\cdots h^{\prime}_{s^{\prime}}, we have m>mm>m^{\prime} if and only if either s>ss>s^{\prime} or s=ss=s^{\prime} and there exists 1us1\leq u\leq s such that

    hi=hifor 1iu1, andhu>hu.h_{i}=h^{\prime}_{i}\ \ \text{for $1\leq i\leq u-1$, and}\ \ h_{u}>h^{\prime}_{u}.
Definition 5.6.

Let ff be a non-zero element of \mathcal{R}. Then ff can be written as a linear combination

f=i=1rcimif=\sum_{i=1}^{r}c_{i}m_{i} (5.7)

where 0ci0\neq c_{i}\in{\mathbb{C}}, mim_{i}\in\mathcal{M} for 1ir1\leq i\leq r and m1>m2>>mrm_{1}>m_{2}>\cdots>m_{r}. Then the leading ordered monomial of ff is defined as

LM(f)=m1.\mathrm{LM}(f)=m_{1}.

That is, LM(f)\mathrm{LM}(f) is the largest ordered monomial which appears in the linear combination (5.7).

Since \mathcal{M} is a basis for \mathcal{R}, it is evident that if SS is a subset of \mathcal{R} and all the elements of SS have distinct leading monomials, then SS is linearly independent.

5.2. Determinant over \mathcal{R}

Let 𝔄\mathfrak{A} be a complex algebra (not assumed to be commutative), and let Mk(𝔄)\mathrm{M}_{k}(\mathfrak{A}) be the space of all k×kk\times k matrices over 𝔄\mathfrak{A}. For A=(aij)Mk(𝔄)A=(a_{ij})\in\mathrm{M}_{k}(\mathfrak{A}), define the determinant of AA by

detA=σSymksgn(σ)aσ(1)1aσ(2)2aσ(k)k,\det A=\sum_{\sigma\in{\mathrm{Sym}}_{k}}\mathrm{sgn}(\sigma)\,a_{\sigma(1)1}a_{\sigma(2)2}\cdots a_{\sigma(k)k}, (5.8)

where Symk{\mathrm{Sym}}_{k} is the symmetric group on {1,2,,k}\{1,2,...,k\}. We also write detA\det A as

detA=|a11a12a1ka21a22a2kak1ak2akk|.\det A=\left|\begin{array}[]{cccc}a_{11}&a_{12}&\cdots&a_{1k}\\ a_{21}&a_{22}&\cdots&a_{2k}\\ \vdots&\vdots&&\vdots\\ a_{k1}&a_{k2}&\cdots&a_{kk}\end{array}\right|.

The following are some standard properties of the determinant:

  1. (D1)

    The function AdetAA\mapsto\det A is multi-linear in the rows and in the columns of the matrix.

  2. (D2)

    If the matrix BB is obtained by swapping two rows of AA, then detB=detA\det B=-\det A. Consequently, if AA has two identical rows, then detA=0\det A=0.

  3. (D3)

    If the matrix CC is obtained by adding a multiple of a row of AA to another row of AA, then detC=detA\det C=\det A.

If we replace row by column in (D2), then the conclusion may not hold in general. For example, if n2n\geq 2 and 𝔄=\mathfrak{A}=\mathcal{R}, then

|f11f11f21f21|=2f11f210in .\left|\begin{array}[]{cc}f_{11}&f_{11}\\ f_{21}&f_{21}\end{array}\right|=2f_{11}f_{21}\neq 0\quad\mbox{in $\mathcal{R}$.} (5.9)

5.3. Ordered pairs of tableaux

In this subsection, we define a set 𝒯(F,D,α,β)\mathcal{T}(F,D,\alpha,\beta) of ordered pairs of tableaux whose cardinality is equal to the non-negative integer N(F,D,α,β)N(F,D,\alpha,\beta) defined in equation (3.19).

Definition 5.10.

Let EE be a Young diagram and TT a tableau of shape EE.

  1. (a)

    We let TtT^{t} denote the tableau of shape EtE^{t} obtained by flipping the boxes and entries of the tableau TT.

  2. (b)

    If DD is a Young diagram such that DD sits in EE, then T|DT|_{D} shall denote the tableau of shape DD obtained by removing all the boxes of TT not in DD, and T/DT/D shall denote the tableau of skew shape E/DE/D obtained by removing all the boxes of TT belonging to DD.

Definition 5.11.

Let DΛn,r|s+D\in\Lambda^{+}_{n,r|s}. We define a tableau HDH_{D} of shape DD as follows:

  1. (i)

    If 1imin((D),r)1\leq i\leq\min(\ell(D),r), the boxes of DD in the ii-th row are all filled with the number ii.

  2. (ii)

    For DD with (D)>r\ell(D)>r and consisting of kk columns, if r<i(D)r<i\leq\ell(D) and 1jk1\leq j\leq k, then the box of DD in the ii-th row and jj-th column is filled with the number jj.

Denote by HDH_{D}^{\uparrow} the tableau which is formed by the first min((D),r)\min(\ell(D),r) rows of HDH_{D}, and by HDH_{D}^{\downarrow} the skew tableau obtained by removing all boxes belonging to HDH^{\uparrow}_{D} from HDH_{D}.

Note that in the special case when (D)r\ell(D)\leq r, we have HD=HDH_{D}=H^{\uparrow}_{D} and HDH_{D}^{\downarrow} is the empty tableau.

Example 5.12.

Let n=7n=7, r=s=2r=s=2 and D=(3,3,2,2,1)D=(3,3,2,2,1). Then DΛ7,2|2+D\in\Lambda^{+}_{7,2|2},

HD==100
,HD==100,HD==100
.
H_{D}={\hbox{=100$\vbox{\halign{&\mkcell{#}\cr\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\crcr}}$}},\qquad H_{D}^{\uparrow}={\hbox{=100$\vbox{\halign{&\mkcell{#}\cr\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\crcr}}$}},\qquad H_{D}^{\downarrow}={\hbox{=100$\vbox{\halign{&\mkcell{#}\cr\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\crcr}}$}}.}}}}}}}}}}}}}}}}}}}}}}}}}}}}

We now fix (F,D,α,β)Ω(𝔤,𝔪)(F,D,\alpha,\beta)\in\Omega(\mathfrak{g},\mathfrak{m}) with N(F,D,α,β)0N_{(F,D,\alpha,\beta)}\neq 0. For each Young diagram EE, let

SST(E/D,α)={T:T is a semistandard tableau of skew shape E/D and content α},\mathrm{SST}(E/D,\alpha)=\{T:\ \mbox{$T$ is a semistandard tableau of skew shape $E/D$ and content $\alpha$}\},
SST(Ft/Et,β)={T:T is a semistandard tableau of skew shape Ft/Et and content β}.\mathrm{SST}(F^{t}/E^{t},\beta)=\{T:\ \mbox{$T$ is a semistandard tableau of skew shape $F^{t}/E^{t}$ and content $\beta$}\}.

Then by the definition of Kostka numbers, we have

|SST(E/D,α)|=KE/D,α,|SST(Ft/Et,β)|=KFt/Et,β.|\mathrm{SST}(E/D,\alpha)|=K_{E/D,\alpha},\quad|\mathrm{SST}(F^{t}/E^{t},\beta)|=K_{F^{t}/E^{t},\beta}. (5.13)

Let us introduce the following sets:

𝒯(F,D,α,β)E\displaystyle\mathcal{T}(F,D,\alpha,\beta)_{E} =SST(E/D,α)×SST(Ft/Et,β),\displaystyle=\mathrm{SST}(E/D,\alpha)\times\mathrm{SST}(F^{t}/E^{t},\beta),
𝒯(F,D,α,β)\displaystyle\mathcal{T}(F,D,\alpha,\beta) =E𝒯(F,D,α,β)E,\displaystyle=\bigcup_{E}\mathcal{T}(F,D,\alpha,\beta)_{E}, (5.14)

where the union in (5.14) is taken over all Young diagrams EE. Note that if 𝒯(F,D,α,β)E\mathcal{T}(F,D,\alpha,\beta)_{E} \neq\emptyset, then DD sits insides EE and EtE^{t} sits insides FtF^{t}. Since DD and FF are fixed, there are only finitely many Young diagrams EE for which 𝒯(F,D,α,β)E\mathcal{T}(F,D,\alpha,\beta)_{E} are non-empty. Hence, (5.14) is actually a finite disjoint union of nonempty finite sets.

Now each element (T1,T2)(T_{1},T_{2}) of 𝒯(F,D,α,β)\mathcal{T}(F,D,\alpha,\beta) gives rise to a tableau T1T2T_{1}\ast T_{2} of shape FF defined as follows:

Definition 5.15.

For (T1,T2)𝒯(F,D,α,β)E(T_{1},T_{2})\in\mathcal{T}(F,D,\alpha,\beta)_{E}, T1T2T_{1}\ast T_{2} shall denote the tableau of shape FF such that:

  1. (i)

    (T1T2)|D=HD(T_{1}\ast T_{2})|_{D}=H_{D}.

  2. (ii)

    (T1T2)|E/(T1T2)|D=T1(T_{1}\ast T_{2})|_{E}/(T_{1}\ast T_{2})|_{D}=T_{1}.

  3. (iii)

    (T1T2)t/Et=T2(T_{1}\ast T_{2})^{t}/E^{t}=T_{2}.

Example 5.16.

Let n=7n=7, r=s=2r=s=2, p=q=4p=q=4, F=(5,4,3,3,3,3,2)F=(5,4,3,3,3,3,2), D=(3,3,2,2,1)D=(3,3,2,2,1), α=(2,3)\alpha=(2,3), β=(3,4)\beta=(3,4), E=(3,3,3,3,2,1,1)E=(3,3,3,3,2,1,1)

T1==100
and
T2==100
.
T_{1}={\hbox{=100$\vbox{\halign{&\mkcell{#}\cr\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to20.27pt{\vbox to20.27pt{\pgfpicture\makeatletter\hbox{\hskip 10.13603pt\lower-10.13603pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{9.93604pt}{0.0pt}\pgfsys@curveto{9.93604pt}{5.48758pt}{5.48758pt}{9.93604pt}{0.0pt}{9.93604pt}\pgfsys@curveto{-5.48758pt}{9.93604pt}{-9.93604pt}{5.48758pt}{-9.93604pt}{0.0pt}\pgfsys@curveto{-9.93604pt}{-5.48758pt}{-5.48758pt}{-9.93604pt}{0.0pt}{-9.93604pt}\pgfsys@curveto{5.48758pt}{-9.93604pt}{9.93604pt}{-5.48758pt}{9.93604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.50002pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}1}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to20.27pt{\vbox to20.27pt{\pgfpicture\makeatletter\hbox{\hskip 10.13603pt\lower-10.13603pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{9.93604pt}{0.0pt}\pgfsys@curveto{9.93604pt}{5.48758pt}{5.48758pt}{9.93604pt}{0.0pt}{9.93604pt}\pgfsys@curveto{-5.48758pt}{9.93604pt}{-9.93604pt}{5.48758pt}{-9.93604pt}{0.0pt}\pgfsys@curveto{-9.93604pt}{-5.48758pt}{-5.48758pt}{-9.93604pt}{0.0pt}{-9.93604pt}\pgfsys@curveto{5.48758pt}{-9.93604pt}{9.93604pt}{-5.48758pt}{9.93604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.50002pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}2}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to20.27pt{\vbox to20.27pt{\pgfpicture\makeatletter\hbox{\hskip 10.13603pt\lower-10.13603pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{9.93604pt}{0.0pt}\pgfsys@curveto{9.93604pt}{5.48758pt}{5.48758pt}{9.93604pt}{0.0pt}{9.93604pt}\pgfsys@curveto{-5.48758pt}{9.93604pt}{-9.93604pt}{5.48758pt}{-9.93604pt}{0.0pt}\pgfsys@curveto{-9.93604pt}{-5.48758pt}{-5.48758pt}{-9.93604pt}{0.0pt}{-9.93604pt}\pgfsys@curveto{5.48758pt}{-9.93604pt}{9.93604pt}{-5.48758pt}{9.93604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.50002pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}2}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to20.27pt{\vbox to20.27pt{\pgfpicture\makeatletter\hbox{\hskip 10.13603pt\lower-10.13603pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{9.93604pt}{0.0pt}\pgfsys@curveto{9.93604pt}{5.48758pt}{5.48758pt}{9.93604pt}{0.0pt}{9.93604pt}\pgfsys@curveto{-5.48758pt}{9.93604pt}{-9.93604pt}{5.48758pt}{-9.93604pt}{0.0pt}\pgfsys@curveto{-9.93604pt}{-5.48758pt}{-5.48758pt}{-9.93604pt}{0.0pt}{-9.93604pt}\pgfsys@curveto{5.48758pt}{-9.93604pt}{9.93604pt}{-5.48758pt}{9.93604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.50002pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}1}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to20.27pt{\vbox to20.27pt{\pgfpicture\makeatletter\hbox{\hskip 10.13603pt\lower-10.13603pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{9.93604pt}{0.0pt}\pgfsys@curveto{9.93604pt}{5.48758pt}{5.48758pt}{9.93604pt}{0.0pt}{9.93604pt}\pgfsys@curveto{-5.48758pt}{9.93604pt}{-9.93604pt}{5.48758pt}{-9.93604pt}{0.0pt}\pgfsys@curveto{-9.93604pt}{-5.48758pt}{-5.48758pt}{-9.93604pt}{0.0pt}{-9.93604pt}\pgfsys@curveto{5.48758pt}{-9.93604pt}{9.93604pt}{-5.48758pt}{9.93604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.50002pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}2}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\crcr}}$}}\qquad\mbox{and}\qquad T_{2}={\hbox{=100$\vbox{\halign{&\mkcell{#}\cr\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 1}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 2}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 1}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 2}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 1}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 2}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 2}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\crcr}}$}}.}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

Then

T1T2==100
.
T_{1}\ast T_{2}={\hbox{=100$\vbox{\halign{&\mkcell{#}\cr\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 1}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 2}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 2}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to20.27pt{\vbox to20.27pt{\pgfpicture\makeatletter\hbox{\hskip 10.13603pt\lower-10.13603pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{9.93604pt}{0.0pt}\pgfsys@curveto{9.93604pt}{5.48758pt}{5.48758pt}{9.93604pt}{0.0pt}{9.93604pt}\pgfsys@curveto{-5.48758pt}{9.93604pt}{-9.93604pt}{5.48758pt}{-9.93604pt}{0.0pt}\pgfsys@curveto{-9.93604pt}{-5.48758pt}{-5.48758pt}{-9.93604pt}{0.0pt}{-9.93604pt}\pgfsys@curveto{5.48758pt}{-9.93604pt}{9.93604pt}{-5.48758pt}{9.93604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.50002pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}1}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to20.27pt{\vbox to20.27pt{\pgfpicture\makeatletter\hbox{\hskip 10.13603pt\lower-10.13603pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{9.93604pt}{0.0pt}\pgfsys@curveto{9.93604pt}{5.48758pt}{5.48758pt}{9.93604pt}{0.0pt}{9.93604pt}\pgfsys@curveto{-5.48758pt}{9.93604pt}{-9.93604pt}{5.48758pt}{-9.93604pt}{0.0pt}\pgfsys@curveto{-9.93604pt}{-5.48758pt}{-5.48758pt}{-9.93604pt}{0.0pt}{-9.93604pt}\pgfsys@curveto{5.48758pt}{-9.93604pt}{9.93604pt}{-5.48758pt}{9.93604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.50002pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}2}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to20.27pt{\vbox to20.27pt{\pgfpicture\makeatletter\hbox{\hskip 10.13603pt\lower-10.13603pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{9.93604pt}{0.0pt}\pgfsys@curveto{9.93604pt}{5.48758pt}{5.48758pt}{9.93604pt}{0.0pt}{9.93604pt}\pgfsys@curveto{-5.48758pt}{9.93604pt}{-9.93604pt}{5.48758pt}{-9.93604pt}{0.0pt}\pgfsys@curveto{-9.93604pt}{-5.48758pt}{-5.48758pt}{-9.93604pt}{0.0pt}{-9.93604pt}\pgfsys@curveto{5.48758pt}{-9.93604pt}{9.93604pt}{-5.48758pt}{9.93604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.50002pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}2}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 1}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to20.27pt{\vbox to20.27pt{\pgfpicture\makeatletter\hbox{\hskip 10.13603pt\lower-10.13603pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{9.93604pt}{0.0pt}\pgfsys@curveto{9.93604pt}{5.48758pt}{5.48758pt}{9.93604pt}{0.0pt}{9.93604pt}\pgfsys@curveto{-5.48758pt}{9.93604pt}{-9.93604pt}{5.48758pt}{-9.93604pt}{0.0pt}\pgfsys@curveto{-9.93604pt}{-5.48758pt}{-5.48758pt}{-9.93604pt}{0.0pt}{-9.93604pt}\pgfsys@curveto{5.48758pt}{-9.93604pt}{9.93604pt}{-5.48758pt}{9.93604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.50002pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}1}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 1}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 2}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to20.27pt{\vbox to20.27pt{\pgfpicture\makeatletter\hbox{\hskip 10.13603pt\lower-10.13603pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{9.93604pt}{0.0pt}\pgfsys@curveto{9.93604pt}{5.48758pt}{5.48758pt}{9.93604pt}{0.0pt}{9.93604pt}\pgfsys@curveto{-5.48758pt}{9.93604pt}{-9.93604pt}{5.48758pt}{-9.93604pt}{0.0pt}\pgfsys@curveto{-9.93604pt}{-5.48758pt}{-5.48758pt}{-9.93604pt}{0.0pt}{-9.93604pt}\pgfsys@curveto{5.48758pt}{-9.93604pt}{9.93604pt}{-5.48758pt}{9.93604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.50002pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}2}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt&\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 2}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\crcr}}$}}.}}}}}}}}}}}}}}}}}}}}}}}
Lemma 5.17.

The cardinality of the set 𝒯(F,D,α,β)\mathcal{T}_{(F,D,\alpha,\beta)} is N(F,D,α,β)N_{(F,D,\alpha,\beta)}, i.e.,

|𝒯(F,D,α,β)|=N(F,D,α,β).|\mathcal{T}_{(F,D,\alpha,\beta)}|=N_{(F,D,\alpha,\beta)}.
Proof.

By (5.13), we have

|𝒯(F,D,α,β)|\displaystyle|\mathcal{T}(F,D,\alpha,\beta)| =E|𝒯(F,D,α,β)E|\displaystyle=\sum_{E}|\mathcal{T}(F,D,\alpha,\beta)_{E}|
=E|SST(E/D,α)||SST(Ft/Et,β)|\displaystyle=\sum_{E}|\mathrm{SST}(E/D,\alpha)||\mathrm{SST}(F^{t}/E^{t},\beta)|
=EKE/D,αKFt/Et,β\displaystyle=\sum_{E}K_{E/D,\alpha}K_{F^{t}/E^{t},\beta}
=N(F,D,α,β),\displaystyle=N_{(F,D,\alpha,\beta)},

where the last equality follows from the definition of N(F,D,α,β)N_{(F,D,\alpha,\beta)} (see (5.14)). ∎

5.4. Weight vectors associated to ordered pairs of tableaux

We now fix (T1,T2)𝒯(F,D,α,β)E(T_{1},T_{2})\in\mathcal{T}(F,D,\alpha,\beta)_{E} and let T=T1T2T=T_{1}\ast T_{2}. Assuming that T(1),T(2),T^{(1)},T^{(2)},..., T(k)T^{(k)} are all the columns of TT counted from left to right. Let 1jk1\leq j\leq k and consider the jjth column T(j)T^{(j)} of TT. We divide T(j)T^{(j)} into a maximum of 44 parts and call it Type jj or Type 0 according to the following:

(Type j)T(j)==100or(Type 0)T(j)==100\mbox{\normalsize(Type $j$)}\qquad T^{(j)}={\hbox{=100$\vbox{\halign{&\mkcell{#}\cr\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\vdots$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$r$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$j$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$j$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\vdots$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$j$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to16.46pt{\vbox to16.46pt{\pgfpicture\makeatletter\hbox{\hskip 8.22954pt\lower-8.22954pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{8.02954pt}{0.0pt}\pgfsys@curveto{8.02954pt}{4.43465pt}{4.43465pt}{8.02954pt}{0.0pt}{8.02954pt}\pgfsys@curveto{-4.43465pt}{8.02954pt}{-8.02954pt}{4.43465pt}{-8.02954pt}{0.0pt}\pgfsys@curveto{-8.02954pt}{-4.43465pt}{-4.43465pt}{-8.02954pt}{0.0pt}{-8.02954pt}\pgfsys@curveto{4.43465pt}{-8.02954pt}{8.02954pt}{-4.43465pt}{8.02954pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.99463pt}{-1.57501pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}$c_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to16.46pt{\vbox to16.46pt{\pgfpicture\makeatletter\hbox{\hskip 8.22954pt\lower-8.22954pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{8.02954pt}{0.0pt}\pgfsys@curveto{8.02954pt}{4.43465pt}{4.43465pt}{8.02954pt}{0.0pt}{8.02954pt}\pgfsys@curveto{-4.43465pt}{8.02954pt}{-8.02954pt}{4.43465pt}{-8.02954pt}{0.0pt}\pgfsys@curveto{-8.02954pt}{-4.43465pt}{-4.43465pt}{-8.02954pt}{0.0pt}{-8.02954pt}\pgfsys@curveto{4.43465pt}{-8.02954pt}{8.02954pt}{-4.43465pt}{8.02954pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.99463pt}{-1.57501pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}$c_{2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\vdots$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to16.64pt{\vbox to16.64pt{\pgfpicture\makeatletter\hbox{\hskip 8.31987pt\lower-8.31987pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{8.11987pt}{0.0pt}\pgfsys@curveto{8.11987pt}{4.48453pt}{4.48453pt}{8.11987pt}{0.0pt}{8.11987pt}\pgfsys@curveto{-4.48453pt}{8.11987pt}{-8.11987pt}{4.48453pt}{-8.11987pt}{0.0pt}\pgfsys@curveto{-8.11987pt}{-4.48453pt}{-4.48453pt}{-8.11987pt}{0.0pt}{-8.11987pt}\pgfsys@curveto{4.48453pt}{-8.11987pt}{8.11987pt}{-4.48453pt}{8.11987pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.13666pt}{-1.57501pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}$c_{u}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf d_{1}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf d_{2}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf\vdots}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf\vdots}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf d_{v}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\crcr}}$}}\qquad\qquad\mbox{\normalsize or}\qquad\qquad\mbox{\normalsize(Type $0$)}\qquad T^{(j)}={\hbox{=100$\vbox{\halign{&\mkcell{#}\cr\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\vdots$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\ell$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to16.46pt{\vbox to16.46pt{\pgfpicture\makeatletter\hbox{\hskip 8.22954pt\lower-8.22954pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{8.02954pt}{0.0pt}\pgfsys@curveto{8.02954pt}{4.43465pt}{4.43465pt}{8.02954pt}{0.0pt}{8.02954pt}\pgfsys@curveto{-4.43465pt}{8.02954pt}{-8.02954pt}{4.43465pt}{-8.02954pt}{0.0pt}\pgfsys@curveto{-8.02954pt}{-4.43465pt}{-4.43465pt}{-8.02954pt}{0.0pt}{-8.02954pt}\pgfsys@curveto{4.43465pt}{-8.02954pt}{8.02954pt}{-4.43465pt}{8.02954pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.99463pt}{-1.57501pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}$c_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to16.46pt{\vbox to16.46pt{\pgfpicture\makeatletter\hbox{\hskip 8.22954pt\lower-8.22954pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{8.02954pt}{0.0pt}\pgfsys@curveto{8.02954pt}{4.43465pt}{4.43465pt}{8.02954pt}{0.0pt}{8.02954pt}\pgfsys@curveto{-4.43465pt}{8.02954pt}{-8.02954pt}{4.43465pt}{-8.02954pt}{0.0pt}\pgfsys@curveto{-8.02954pt}{-4.43465pt}{-4.43465pt}{-8.02954pt}{0.0pt}{-8.02954pt}\pgfsys@curveto{4.43465pt}{-8.02954pt}{8.02954pt}{-4.43465pt}{8.02954pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.99463pt}{-1.57501pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}$c_{2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\vdots$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to16.64pt{\vbox to16.64pt{\pgfpicture\makeatletter\hbox{\hskip 8.31987pt\lower-8.31987pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{8.11987pt}{0.0pt}\pgfsys@curveto{8.11987pt}{4.48453pt}{4.48453pt}{8.11987pt}{0.0pt}{8.11987pt}\pgfsys@curveto{-4.48453pt}{8.11987pt}{-8.11987pt}{4.48453pt}{-8.11987pt}{0.0pt}\pgfsys@curveto{-8.11987pt}{-4.48453pt}{-4.48453pt}{-8.11987pt}{0.0pt}{-8.11987pt}\pgfsys@curveto{4.48453pt}{-8.11987pt}{8.11987pt}{-4.48453pt}{8.11987pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.13666pt}{-1.57501pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}$c_{u}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf d_{1}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf d_{2}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf\vdots}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf d_{v}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\crcr}}$}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} (5.18)

where the different parts can be described as follows:

  • Part 1: the entries 1,2,,r1,2,...,r in Type jj and the entries 1,2,,1,2,...,\ell where r\ell\leq r in Type 0 which come from HDH_{D}^{\uparrow};

  • Part 2: a string of jj in Type jj which comes from HDH_{D}^{\downarrow} (this part is missing in Type 0);

  • Part 3: the entries c1<<cuc_{1}<\cdots<c_{u} come from T1T_{1};

  • Part 4: the entries d1dvd_{1}\leq\cdots\leq d_{v} come from T2T_{2}.

It is possible that any of part 1, 3, 4 may not appear in T(j)T^{(j)}.

Assuming that T(j)T^{(j)} has length hh, we define ΔT(j)\Delta_{T^{(j)}} as the determinant

ΔT(j)=|e11e1rf1jf1je1c1e1cuf1d1f1dve21e2rf2jf2je2c1e2cuf2d1f2dveh1ehrfhjfhjehc1ehcufhd1fhdv|\Delta_{T^{(j)}}=\left|\begin{array}[]{ccc|ccc|ccc|ccc}e_{11}&\cdots&e_{1r}&f_{1j}&\cdots&f_{1j}&e^{\prime}_{1c_{1}}&\cdots&e^{\prime}_{1c_{u}}&f^{\prime}_{1d_{1}}&\cdots&f^{\prime}_{1d_{v}}\\ e_{21}&\cdots&e_{2r}&f_{2j}&\cdots&f_{2j}&e^{\prime}_{2c_{1}}&\cdots&e^{\prime}_{2c_{u}}&f^{\prime}_{2d_{1}}&\cdots&f^{\prime}_{2d_{v}}\\ \vdots&&\vdots&\vdots&&\vdots&\vdots&&\vdots&\vdots&&\vdots\\ e_{h1}&\cdots&e_{hr}&f_{hj}&\cdots&f_{hj}&e^{\prime}_{hc_{1}}&\cdots&e^{\prime}_{hc_{u}}&f^{\prime}_{hd_{1}}&\cdots&f^{\prime}_{hd_{v}}\end{array}\right|

if T(j)T^{(j)} is of Type jj, and

ΔT(j)=|e11e1e1c1e1cuf1d1f1dve21e2e2c1e2cuf2d1f2dveh1ehehc1ehcufhd1fhdv|\Delta_{T^{(j)}}=\left|\begin{array}[]{ccc|ccc|ccc}e_{11}&\cdots&e_{1\ell}&e^{\prime}_{1c_{1}}&\cdots&e^{\prime}_{1c_{u}}&f^{\prime}_{1d_{1}}&\cdots&f^{\prime}_{1d_{v}}\\ e_{21}&\cdots&e_{2\ell}&e^{\prime}_{2c_{1}}&\cdots&e^{\prime}_{2c_{u}}&f^{\prime}_{2d_{1}}&\cdots&f^{\prime}_{2d_{v}}\\ \vdots&&\vdots&\vdots&&\vdots&\vdots&&\vdots\\ e_{h1}&\cdots&e_{h\ell}&e^{\prime}_{hc_{1}}&\cdots&e^{\prime}_{hc_{u}}&f^{\prime}_{hd_{1}}&\cdots&f^{\prime}_{hd_{v}}\end{array}\right|

if T(j)T^{(j)} is of Type 0. If some parts do not appear in T(j)T^{(j)}, then the corresponding columns will be omitted in the determinant.

Lemma 5.19.

Let T(j)T^{(j)} be as given in equation (5.18).

  1. (i)

    The element ΔT(j)\Delta_{T^{(j)}} of \mathcal{R} is a 𝔤𝔩n{\mathfrak{gl}}_{n} highest weight vector and a 𝔤𝔩p|q{\mathfrak{gl}}_{p|q} weight vector.

  2. (ii)

    If T(j)T^{(j)} is of Type 0 or Type 11, then ΔT(j)\Delta_{T^{(j)}} is also a 𝔪\mathfrak{m} highest weight vector.

  3. (iii)

    The leading ordered monomial of ΔT(j)\Delta_{T^{(j)}} is given by

    LM(ΔT(j))={e11errf(r+1)jfje(+1)1e(+u)uf(+u+1)d1fhdv(Type j)e11ee(+1)1e(+u)uf(+u+1)d1fhdv(Type 0).\mathrm{LM}(\Delta_{T^{(j)}})=\left\{\begin{array}[]{ll}e_{11}\cdots e_{rr}f_{(r+1)j}\cdots f_{\ell j}e^{\prime}_{(\ell+1)1}\cdots e^{\prime}_{(\ell+u)u}f^{\prime}_{(\ell+u+1)d_{1}}\cdots f^{\prime}_{hd_{v}}&\mbox{(Type $j$)}\\ e_{11}\cdots e_{\ell\ell}e^{\prime}_{(\ell+1)1}\cdots e^{\prime}_{(\ell+u)u}f^{\prime}_{(\ell+u+1)d_{1}}\cdots f^{\prime}_{hd_{v}}&\mbox{(Type $0$).}\end{array}\right. (5.20)

    (We assume that there is a total of \ell entries which come from Part 1 and Part 2 of T(j)T^{(j)}.)

Proof.

Part (i) and part (ii) are clear. For part (iii), since c1<c2<<cuc_{1}<c_{2}<\cdots<c_{u} and d1d2dvd_{1}\leq d_{2}\leq\cdots d_{v}, we obtain by inspection that LM(ΔT(j))\mathrm{LM}(\Delta_{T^{(j)}}) is equal to the product of the diagonal entries, which is the ordered monomial given in equation (5.20). ∎

We now define the element Δ(T1,T2)\Delta_{(T_{1},T_{2})} in \mathcal{R} by

Δ(T1,T2)=ΔT(1)ΔT(2)ΔT(k).\Delta_{(T_{1},T_{2})}=\Delta_{T^{(1)}}\Delta_{T^{(2)}}\cdots\Delta_{T^{(k)}}. (5.21)

We also define the ordered monomial m(T1,T2)m_{(T_{1},T_{2})} as follows: For each box bb in T=T1T2T=T_{1}\ast T_{2}, R(b)R(b) shall denote the row in which the box bb lies and N(b)N(b) shall denote the number in the box bb. Then m(T1,T2)m_{(T_{1},T_{2})} is the ordered monomial associated with

(bHDeR(b)N(b))(bHDfR(b)N(b))(bT1eR(b)N(b))(bT2fR(b)N(b)).\left(\prod_{b\in H_{D}^{\uparrow}}e_{R(b)N(b)}\right)\left(\prod_{b\in H_{D}^{\downarrow}}f_{R(b)N(b)}\right)\left(\prod_{b\in T_{1}}e^{\prime}_{R(b)N(b)}\right)\left(\prod_{b\in T_{2}}f^{\prime}_{R(b)N(b)}\right). (5.22)

Note that m(T1,T2)m_{(T_{1},T_{2})} encodes all the information about (T1,T2)(T_{1},T_{2}).

Example 5.23.

Let (T1,T2)(T_{1},T_{2}) be as given in Example 5.16, and let T(1),T(2),T(3),T(4),T(5)T^{(1)},T^{(2)},T^{(3)},T^{(4)},T^{(5)} be the columns of the tableau T=T1T2T=T_{1}\ast T_{2}. Then we have:

T(1)==100,ΔT(1)=|e11e12f11f11f11e11e12e21e22f21f21f21e21e22e31e32f31f31f31e31e32e41e42f41f41f41e41e42e51e52f51f51f51e51e52e61e62f61f61f61e61e62e71e72f71f71f71e71e72|,T^{(1)}={\hbox{=100$\vbox{\halign{&\mkcell{#}\cr\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to20.27pt{\vbox to20.27pt{\pgfpicture\makeatletter\hbox{\hskip 10.13603pt\lower-10.13603pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{9.93604pt}{0.0pt}\pgfsys@curveto{9.93604pt}{5.48758pt}{5.48758pt}{9.93604pt}{0.0pt}{9.93604pt}\pgfsys@curveto{-5.48758pt}{9.93604pt}{-9.93604pt}{5.48758pt}{-9.93604pt}{0.0pt}\pgfsys@curveto{-9.93604pt}{-5.48758pt}{-5.48758pt}{-9.93604pt}{0.0pt}{-9.93604pt}\pgfsys@curveto{5.48758pt}{-9.93604pt}{9.93604pt}{-5.48758pt}{9.93604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.50002pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}1}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to20.27pt{\vbox to20.27pt{\pgfpicture\makeatletter\hbox{\hskip 10.13603pt\lower-10.13603pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{9.93604pt}{0.0pt}\pgfsys@curveto{9.93604pt}{5.48758pt}{5.48758pt}{9.93604pt}{0.0pt}{9.93604pt}\pgfsys@curveto{-5.48758pt}{9.93604pt}{-9.93604pt}{5.48758pt}{-9.93604pt}{0.0pt}\pgfsys@curveto{-9.93604pt}{-5.48758pt}{-5.48758pt}{-9.93604pt}{0.0pt}{-9.93604pt}\pgfsys@curveto{5.48758pt}{-9.93604pt}{9.93604pt}{-5.48758pt}{9.93604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.50002pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}2}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\crcr}}$}},\qquad\Delta_{T^{(1)}}=\left|\begin{array}[]{cc|ccc|cc}e_{11}&e_{12}&f_{11}&f_{11}&f_{11}&e^{\prime}_{11}&e^{\prime}_{12}\\ e_{21}&e_{22}&f_{21}&f_{21}&f_{21}&e^{\prime}_{21}&e^{\prime}_{22}\\ e_{31}&e_{32}&f_{31}&f_{31}&f_{31}&e^{\prime}_{31}&e^{\prime}_{32}\\ e_{41}&e_{42}&f_{41}&f_{41}&f_{41}&e^{\prime}_{41}&e^{\prime}_{42}\\ e_{51}&e_{52}&f_{51}&f_{51}&f_{51}&e^{\prime}_{51}&e^{\prime}_{52}\\ e_{61}&e_{62}&f_{61}&f_{61}&f_{61}&e^{\prime}_{61}&e^{\prime}_{62}\\ e_{71}&e_{72}&f_{71}&f_{71}&f_{71}&e^{\prime}_{71}&e^{\prime}_{72}\end{array}\right|,}}}}}}}
LM(ΔT(1))=e11e22f31f41f51e61e72.\mathrm{LM}(\Delta_{T^{(1)}})=e_{11}e_{22}f_{31}f_{41}f_{51}e^{\prime}_{61}e^{\prime}_{72}.
T(2)==100,ΔT(2)=|e11e12f12f12e12f11f12e21e22f22f22e22f21f22e31e32f32f32e32f31f32e41e42f42f42e42f41f42e51e52f52f52e52f51f52e61e62f62f62e62f61f62e71e72f72f72e72f71f72|,T^{(2)}={\hbox{=100$\vbox{\halign{&\mkcell{#}\cr\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to20.27pt{\vbox to20.27pt{\pgfpicture\makeatletter\hbox{\hskip 10.13603pt\lower-10.13603pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{9.93604pt}{0.0pt}\pgfsys@curveto{9.93604pt}{5.48758pt}{5.48758pt}{9.93604pt}{0.0pt}{9.93604pt}\pgfsys@curveto{-5.48758pt}{9.93604pt}{-9.93604pt}{5.48758pt}{-9.93604pt}{0.0pt}\pgfsys@curveto{-9.93604pt}{-5.48758pt}{-5.48758pt}{-9.93604pt}{0.0pt}{-9.93604pt}\pgfsys@curveto{5.48758pt}{-9.93604pt}{9.93604pt}{-5.48758pt}{9.93604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.50002pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}2}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 1}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 2}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\crcr}}$}},\qquad\Delta_{T^{(2)}}=\left|\begin{array}[]{cc|cc|c|cc}e_{11}&e_{12}&f_{12}&f_{12}&e^{\prime}_{12}&f^{\prime}_{11}&f^{\prime}_{12}\\ e_{21}&e_{22}&f_{22}&f_{22}&e^{\prime}_{22}&f^{\prime}_{21}&f^{\prime}_{22}\\ e_{31}&e_{32}&f_{32}&f_{32}&e^{\prime}_{32}&f^{\prime}_{31}&f^{\prime}_{32}\\ e_{41}&e_{42}&f_{42}&f_{42}&e^{\prime}_{42}&f^{\prime}_{41}&f^{\prime}_{42}\\ e_{51}&e_{52}&f_{52}&f_{52}&e^{\prime}_{52}&f^{\prime}_{51}&f^{\prime}_{52}\\ e_{61}&e_{62}&f_{62}&f_{62}&e^{\prime}_{62}&f^{\prime}_{61}&f^{\prime}_{62}\\ e_{71}&e_{72}&f_{72}&f_{72}&e^{\prime}_{72}&f^{\prime}_{71}&f^{\prime}_{72}\end{array}\right|,}}}}}}}
LM(ΔT(2))=e11e22f32f42e52f61f72.\mathrm{LM}(\Delta_{T^{(2)}})=e_{11}e_{22}f_{32}f_{42}e^{\prime}_{52}f^{\prime}_{61}f^{\prime}_{72}.
T(3)==100,ΔT(3)=|e11e12e11e12f11f12e21e22e21e22f21f22e31e32e31e32f31f32e41e42e41e42f41f42e51e52e51e52f51f52e61e62e61e62f61f62|,T^{(3)}={\hbox{=100$\vbox{\halign{&\mkcell{#}\cr\vbox to0.0pt{\vss\hbox to0.0pt{\hss$1$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$2$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=2.0pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=2.0pt,height=0.4pt\hss\vrule width=2.0pt}\vss\hrule height=2.0pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to20.27pt{\vbox to20.27pt{\pgfpicture\makeatletter\hbox{\hskip 10.13603pt\lower-10.13603pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{9.93604pt}{0.0pt}\pgfsys@curveto{9.93604pt}{5.48758pt}{5.48758pt}{9.93604pt}{0.0pt}{9.93604pt}\pgfsys@curveto{-5.48758pt}{9.93604pt}{-9.93604pt}{5.48758pt}{-9.93604pt}{0.0pt}\pgfsys@curveto{-9.93604pt}{-5.48758pt}{-5.48758pt}{-9.93604pt}{0.0pt}{-9.93604pt}\pgfsys@curveto{5.48758pt}{-9.93604pt}{9.93604pt}{-5.48758pt}{9.93604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.50002pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}1}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to20.27pt{\vbox to20.27pt{\pgfpicture\makeatletter\hbox{\hskip 10.13603pt\lower-10.13603pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{9.93604pt}{0.0pt}\pgfsys@curveto{9.93604pt}{5.48758pt}{5.48758pt}{9.93604pt}{0.0pt}{9.93604pt}\pgfsys@curveto{-5.48758pt}{9.93604pt}{-9.93604pt}{5.48758pt}{-9.93604pt}{0.0pt}\pgfsys@curveto{-9.93604pt}{-5.48758pt}{-5.48758pt}{-9.93604pt}{0.0pt}{-9.93604pt}\pgfsys@curveto{5.48758pt}{-9.93604pt}{9.93604pt}{-5.48758pt}{9.93604pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-7.50002pt}{-2.25pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}2}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 1}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 2}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\crcr}}$}},\qquad\Delta_{T^{(3)}}=\left|\begin{array}[]{cc|cc|cc}e_{11}&e_{12}&e^{\prime}_{11}&e^{\prime}_{12}&f^{\prime}_{11}&f^{\prime}_{12}\\ e_{21}&e_{22}&e^{\prime}_{21}&e^{\prime}_{22}&f^{\prime}_{21}&f^{\prime}_{22}\\ e_{31}&e_{32}&e^{\prime}_{31}&e^{\prime}_{32}&f^{\prime}_{31}&f^{\prime}_{32}\\ e_{41}&e_{42}&e^{\prime}_{41}&e^{\prime}_{42}&f^{\prime}_{41}&f^{\prime}_{42}\\ e_{51}&e_{52}&e^{\prime}_{51}&e^{\prime}_{52}&f^{\prime}_{51}&f^{\prime}_{52}\\ e_{61}&e_{62}&e^{\prime}_{61}&e^{\prime}_{62}&f^{\prime}_{61}&f^{\prime}_{62}\end{array}\right|,}}}}}}
LM(ΔT(3))=e11e22e31e42f51f62.\mathrm{LM}(\Delta_{T^{(3)}})=e_{11}e_{22}e^{\prime}_{31}e^{\prime}_{42}f^{\prime}_{51}f^{\prime}_{62}.
T(4)==100,ΔT(4)=|f11f12f21f22|,LM(ΔT(4))=f11f22.T^{(4)}={\hbox{=100$\vbox{\halign{&\mkcell{#}\cr\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 1}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 2}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\crcr}}$}},\qquad\Delta_{T^{(4)}}=\left|\begin{array}[]{cc}f^{\prime}_{11}&f^{\prime}_{12}\\ f^{\prime}_{21}&f^{\prime}_{22}\end{array}\right|,\qquad\mathrm{LM}(\Delta_{T^{(4)}})=f^{\prime}_{11}f^{\prime}_{22}.}}
T(5)==100,ΔT(5)=LM(ΔT(5))=f12,T^{(5)}={\hbox{=100$\vbox{\halign{&\mkcell{#}\cr\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf 2}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\crcr}}$}},\qquad\Delta_{T^{(5)}}=\mathrm{LM}(\Delta_{T^{(5)}})=f^{\prime}_{12},}
Δ(T1,T2)=ΔT(1)ΔT(2)ΔT(3)ΔT(4)ΔT(5)\Delta_{(T_{1},T_{2})}=\Delta_{T^{(1)}}\Delta_{T^{(2)}}\Delta_{T^{(3)}}\Delta_{T^{(4)}}\Delta_{T^{(5)}}

and

LM(Δ(T1,T2))=e113e223f31f41f51f32f42e31e61e42e52e72f11f51f61f12f22f62f72.\mathrm{LM}(\Delta_{(T_{1},T_{2})})=e^{3}_{11}e^{3}_{22}f_{31}f_{41}f_{51}f_{32}f_{42}e^{\prime}_{31}e^{\prime}_{61}e^{\prime}_{42}e^{\prime}_{52}e^{\prime}_{72}f^{\prime}_{11}f^{\prime}_{51}f^{\prime}_{61}f^{\prime}_{12}f^{\prime}_{22}f^{\prime}_{62}f^{\prime}_{72}.

We will see later that for (T1,T2)𝒯(F,D,α,β)(T_{1},T_{2})\in\mathcal{T}(F,D,\alpha,\beta), Δ(T1,T2)\Delta_{(T_{1},T_{2})} is a 𝔤𝔩p|q{\mathfrak{gl}}_{p|q} weight vector in \mathcal{R}. To specify the 𝔤𝔩p|q{\mathfrak{gl}}_{p|q} weight of Δ(T1,T2)\Delta_{(T_{1},T_{2})}, we shall adopt the following notation: Since 𝔥p|q𝔥r|s𝔥r𝔥s\mathfrak{h}_{p|q}\cong\mathfrak{h}_{r|s}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{s^{\prime}}, any linear functional ψp|q\psi_{p|q} of 𝔥p|q\mathfrak{h}_{p|q} can be identified with a linear functional

(ψr|s,ψr,ψs)(\psi_{r|s},\psi_{r^{\prime}},\psi_{s^{\prime}})

of 𝔥r|s𝔥r𝔥s\mathfrak{h}_{r|s}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{s^{\prime}} (defined in equation (3.7)) where ψr|s\psi_{r|s}, ψr\psi_{r^{\prime}} and ψs\psi_{s^{\prime}} are some linear functionals of 𝔥r|s\mathfrak{h}_{r|s}, 𝔥r\mathfrak{h}_{r^{\prime}} and 𝔥s\mathfrak{h}_{s^{\prime}} respectively.

Lemma 5.24.

Let (T1,T2)𝒯(F,D,α,β)(T_{1},T_{2})\in\mathcal{T}(F,D,\alpha,\beta). Then we have the following:

  1. (i)

    Δ(T1,T2)\Delta_{(T_{1},T_{2})} is a 𝔤𝔩n{\mathfrak{gl}}_{n} highest weight vector of weight ψnF\psi^{F}_{n} and a 𝔤𝔩p|q{\mathfrak{gl}}_{p|q} weight vector of weight (ψr|sD,ψrα,ψsβ)(\psi^{D^{\sharp}}_{r|s},\psi^{\alpha}_{r^{\prime}},\psi^{\beta}_{s^{\prime}}).

  2. (ii)

    LM(Δ(T1,T2))=m(T1,T2)\mathrm{LM}(\Delta_{(T_{1},T_{2})})=m_{(T_{1},T_{2})}.

Proof.

Part (i) is clear. For Part (ii), we have

LM(Δ(T1,T2))\displaystyle\mathrm{LM}(\Delta_{(T_{1},T_{2})}) =LM(ΔT(1)ΔT(2)ΔT(k))\displaystyle=\mathrm{LM}(\Delta_{T^{(1)}}\Delta_{T^{(2)}}\cdots\Delta_{T^{(k)}})
=[LM(ΔT(1))LM(ΔT(2))LM(ΔT(k))]\displaystyle=[\mathrm{LM}(\Delta_{T^{(1)}})\mathrm{LM}(\Delta_{T^{(2)}})\cdots\mathrm{LM}(\Delta_{T^{(k)}})]
=m(T1,T2)\displaystyle=m_{(T_{1},T_{2})}

by equation (5.20). ∎

Corollary 5.25.

Let (F,D,α,β)Ω(F,D,\alpha,\beta)\in\Omega and

𝐁(F,D,α,β)={Δ(T1,T2):(T1,T2)𝒯(F,D,α,β)}.\mathbf{B}(F,D,\alpha,\beta)=\{\Delta_{(T_{1},T_{2})}:\ {(T_{1},T_{2})}\in\mathcal{T}(F,D,\alpha,\beta)\}.

Then 𝐁(F,D,α,β)\mathbf{B}(F,D,\alpha,\beta) is a linearly independent set of 𝔤𝔩p|q{\mathfrak{gl}}_{p|q} weight vectors in Lp|qFL^{F}_{p|q} with weight (ψr|sD,ψrα,ψsβ)(\psi^{D^{\sharp}}_{r|s},\psi^{\alpha}_{r^{\prime}},\psi^{\beta}_{s^{\prime}}).

Proof.

By Lemma 5.24, the elements of 𝐁(F,D,α,β)\mathbf{B}(F,D,\alpha,\beta) have distinct leading monomials. Hence, 𝐁(F,D,α,β)\mathbf{B}(F,D,\alpha,\beta) is linearly independent. ∎

In the remainder of this section, we shall discuss cases when 𝐁(F,D,α,β)\mathbf{B}(F,D,\alpha,\beta) yields 𝔪\mathfrak{m} highest weight vectors.

5.5. The 𝔤𝔩r{\mathfrak{gl}}_{r} highest weight vectors in Lp|qFL^{F}_{p|q}

In this subsection, we assume that s=0s=0. In the notation of Section 3.1, we have

𝔤𝔤𝔩r|0=𝔤𝔩r,𝔪𝔤𝔥r𝔥q.\mathfrak{g}^{\prime}\cong{\mathfrak{gl}}_{r|0}={\mathfrak{gl}}_{r},\quad\mathfrak{m}\cong\mathfrak{g}^{\prime}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{q}.

In particular, 𝔤\mathfrak{g}^{\prime} is a Lie algebra. The algebra 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}) is a module for 𝔥n𝔥r𝔥r𝔥q\mathfrak{h}_{n}\oplus\mathfrak{h}_{r}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{q} and can be decomposed as

𝒬(𝔤,𝔪)=(F,D,α,β)Ω(𝔤,𝔪)𝒬(𝔤,𝔪)(F,D,α,β)\mathcal{Q}(\mathfrak{g},\mathfrak{m})=\bigoplus_{(F,D,\alpha,\beta)\in\Omega(\mathfrak{g},\mathfrak{m})}\mathcal{Q}(\mathfrak{g},\mathfrak{m})_{(F,D,\alpha,\beta)}

where

Ω(𝔤,𝔪):=Λn,p|q+×Λmin(n,r)+×+r×+q.\Omega(\mathfrak{g},\mathfrak{m}):=\Lambda^{+}_{n,p|q}\times\Lambda^{+}_{\min(n,r)}\times{\mathbb{Z}}^{r^{\prime}}_{+}\times{\mathbb{Z}}^{q}_{+}.

Note that the component Λn,r|s+\Lambda^{+}_{n,r|s} of Ω(𝔤,𝔪)\Omega(\mathfrak{g},\mathfrak{m}) reduces to Λmin(n,r)+\Lambda^{+}_{\min(n,r)} in this case.

Theorem 5.26.
  1. (i)

    If (F,D,α,β)Ω(𝔤,𝔪)(F,D,\alpha,\beta)\in\Omega(\mathfrak{g},\mathfrak{m}), then the set

    𝐁(F,D,α,β)={Δ(T1,T2):(T1,T2)𝒯(F,D,α,β)}\mathbf{B}(F,D,\alpha,\beta)=\{\Delta_{(T_{1},T_{2})}:\ {(T_{1},T_{2})}\in\mathcal{T}(F,D,\alpha,\beta)\}

    is a basis for 𝒬(𝔤,𝔪)(F,D,α,β)\mathcal{Q}(\mathfrak{g},\mathfrak{m})_{(F,D,\alpha,\beta)}.

  2. (ii)

    For FΛn,p|q+F\in\Lambda^{+}_{n,p|q} and DΛmin(n,r)+D\in\Lambda^{+}_{\min(n,r)}, the set

    (α,β)+r×+q𝐁(F,D,α,β)\bigcup_{(\alpha,\beta)\in{\mathbb{Z}}^{r^{\prime}}_{+}\times{\mathbb{Z}}^{q}_{+}}\mathbf{B}(F,D,\alpha,\beta)

    is a basis for the space of 𝔤𝔩r{\mathfrak{gl}}_{r} highest weight vectors of weight ψrD\psi^{D}_{r} in Lp|qFL^{F}_{p|q}.

  3. (iii)

    The set

    𝐁=(F,D,α,β)Ω𝐁(F,D,α,β)\mathbf{B}=\bigcup_{(F,D,\alpha,\beta)\in\Omega}\mathbf{B}(F,D,\alpha,\beta)

    is a basis for 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}).

Proof.

Let (F,D,α,β)Ω(𝔤,𝔪)(F,D,\alpha,\beta)\in\Omega(\mathfrak{g},\mathfrak{m}), (T1,T2)𝒯(F,D,α,β)(T_{1},T_{2})\in\mathcal{T}(F,D,\alpha,\beta) and T=T1T2T=T_{1}\ast T_{2}. We recall the definition of Δ(T1,T2)\Delta_{(T_{1},T_{2})} as given in equation (5.21) and assume that the tableau TT has kk columns. Since DΛmin(n,r)+D\in\Lambda^{+}_{\min(n,r)}, (D)r\ell(D)\leq r. Consequently, for each 1jk1\leq j\leq k, the column tableau T(j)T^{(j)} is of Type 0 and so by Part (ii) of Lemma 5.18, ΔT(j)\Delta_{T^{(j)}} is a 𝔪\mathfrak{m} highest weight vector. Hence, Δ(T1,T2)\Delta_{(T_{1},T_{2})} is a product of 𝔪\mathfrak{m} highest weight vectors, and it is also a 𝔪\mathfrak{m} highest weight vector. It follows that Δ(T1,T2)𝒬(F,D,α,β)\Delta_{(T_{1},T_{2})}\in\mathcal{Q}(F,D,\alpha,\beta). This proves that 𝐁(F,D,α,β)𝒬(F,D,α,β)\mathbf{B}(F,D,\alpha,\beta)\subseteq\mathcal{Q}(F,D,\alpha,\beta).

Since |𝐁(F,D,α,β)|=|𝒯(F,D,α,β)|=dim𝒬(F,D,α,β)|\mathbf{B}(F,D,\alpha,\beta)|=|\mathcal{T}(F,D,\alpha,\beta)|=\dim\mathcal{Q}(F,D,\alpha,\beta) and by Corollary 5.25, 𝐁(F,D,α,β)\mathbf{B}(F,D,\alpha,\beta) is linearly independent, it is a basis for 𝒬(F,D,α,β)\mathcal{Q}(F,D,\alpha,\beta). This proves (i).

As explained in the proof of Proposition 3.9, 𝒬(𝔤,𝔪)(F,D,α,β)\mathcal{Q}(\mathfrak{g},\mathfrak{m})_{(F,D,\alpha,\beta)} can be identified with the space of 𝔪\mathfrak{m} highest weight vectors of weight (ψrD,ψrα,ψqβ)(\psi^{D}_{r},\psi^{\alpha}_{r^{\prime}},\psi^{\beta}_{q}) in Lp|qFL^{F}_{p|q}. By taking union over all possible (α,β)(\alpha,\beta), we obtain all the 𝔤𝔩r{\mathfrak{gl}}_{r} highest weight vectors of weight ψrD\psi^{D}_{r} in Lp|qFL^{F}_{p|q}. This gives (ii).

Finally, (iii) follows from (i) and equation (3.10). ∎

5.6. A basis for Lp|qFL_{p|q}^{F}

We now consider the case with r=s=0r=s=0 and will use the notation defined in §3.4. In particular, we recall that in this case, Ω(𝔤,𝔪)=Λn,p|q+×+p×+q\Omega(\mathfrak{g},\mathfrak{m})=\Lambda^{+}_{n,p|q}\times{\mathbb{Z}}^{p}_{+}\times{\mathbb{Z}}^{q}_{+}. For (F,α,β)Ω(𝔤,𝔪)(F,\alpha,\beta)\in\Omega(\mathfrak{g},\mathfrak{m}), let

𝒯(F,α,β)=E𝒯(F,α,β)E\mathcal{T}^{\prime}(F,\alpha,\beta)=\bigcup_{E}\mathcal{T}^{\prime}(F,\alpha,\beta)_{E}

where the union is taken over all Young diagram EE, and

𝒯(F,α,β)E=SST(E,α)×SST(Ft/Et,β),\mathcal{T}^{\prime}(F,\alpha,\beta)_{E}=\mathrm{SST}(E,\alpha)\times\mathrm{SST}(F^{t}/E^{t},\beta),

that is, 𝒯(F,α,β)E\mathcal{T}^{\prime}(F,\alpha,\beta)_{E} consists of all ordered pairs (T1,T2)(T_{1},T_{2}) of tableaux such that T1T_{1} is semistandard tableau of shape EE and T2T_{2} is a semistandard tableau of skew shape Ft/EtF^{t}/E^{t}. Then we have |𝒯(F,α,β)|=N(F,α,β)|\mathcal{T}^{\prime}(F,\alpha,\beta)|=N^{\prime}_{(F,\alpha,\beta)} where N(F,α,β)N^{\prime}_{(F,\alpha,\beta)} is defined in equation (3.33). For (T1,T2)𝒯(F,α,β)E(T_{1},T_{2})\in\mathcal{T}^{\prime}(F,\alpha,\beta)_{E}, let T1T2T_{1}\ast T_{2} be the tableau of shape FF such that:

  1. (i)

    (T1T2)|E=T1(T_{1}\ast T_{2})|_{E}=T_{1}.

  2. (ii)

    (T1T2)t/Et=T2(T_{1}\ast T_{2})^{t}/E^{t}=T_{2}.

Remark 5.27.

In [BR], T1T2T_{1}\ast T_{2} is called a (𝐩,𝐪)\mathbf{(p,q)} semistandard tableau of shape FF. It is also shown there that the dimension of Lp|qFL^{F}_{p|q} is equal to the number of all such tableaux, which is N~F\tilde{N}^{\prime}_{F}. See Part (ii) of Corollary 3.31.

We now fix (T1,T2)𝒯(F,α,β)E(T_{1},T_{2})\in\mathcal{T}^{\prime}(F,\alpha,\beta)_{E} and construct an element Δ(T1,T2)\Delta_{(T_{1},T_{2})} of \mathcal{R} using a procedure similar to that given in §5.4. Let T=T1T2T=T_{1}\ast T_{2} and assuming that T(1),T(2),T^{(1)},T^{(2)},..., T(k)T^{(k)} are all the columns of TT counted from left to right. Let 1jk1\leq j\leq k and consider the jjth column T(j)T^{(j)} of TT. We divide T(j)T^{(j)} into a maximum of 22 parts as follows:

T(j)==100T^{(j)}={\hbox{=100$\vbox{\halign{&\mkcell{#}\cr\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to16.46pt{\vbox to16.46pt{\pgfpicture\makeatletter\hbox{\hskip 8.22954pt\lower-8.22954pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{8.02954pt}{0.0pt}\pgfsys@curveto{8.02954pt}{4.43465pt}{4.43465pt}{8.02954pt}{0.0pt}{8.02954pt}\pgfsys@curveto{-4.43465pt}{8.02954pt}{-8.02954pt}{4.43465pt}{-8.02954pt}{0.0pt}\pgfsys@curveto{-8.02954pt}{-4.43465pt}{-4.43465pt}{-8.02954pt}{0.0pt}{-8.02954pt}\pgfsys@curveto{4.43465pt}{-8.02954pt}{8.02954pt}{-4.43465pt}{8.02954pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.99463pt}{-1.57501pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}$c_{1}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to16.46pt{\vbox to16.46pt{\pgfpicture\makeatletter\hbox{\hskip 8.22954pt\lower-8.22954pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{8.02954pt}{0.0pt}\pgfsys@curveto{8.02954pt}{4.43465pt}{4.43465pt}{8.02954pt}{0.0pt}{8.02954pt}\pgfsys@curveto{-4.43465pt}{8.02954pt}{-8.02954pt}{4.43465pt}{-8.02954pt}{0.0pt}\pgfsys@curveto{-8.02954pt}{-4.43465pt}{-4.43465pt}{-8.02954pt}{0.0pt}{-8.02954pt}\pgfsys@curveto{4.43465pt}{-8.02954pt}{8.02954pt}{-4.43465pt}{8.02954pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-5.99463pt}{-1.57501pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}$c_{2}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\vdots$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss$\leavevmode\hbox to16.64pt{\vbox to16.64pt{\pgfpicture\makeatletter\hbox{\hskip 8.31987pt\lower-8.31987pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{ {{}}\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{{{}}}{{}}{}{}{}{}{}{}{}{}{}{{}\pgfsys@moveto{8.11987pt}{0.0pt}\pgfsys@curveto{8.11987pt}{4.48453pt}{4.48453pt}{8.11987pt}{0.0pt}{8.11987pt}\pgfsys@curveto{-4.48453pt}{8.11987pt}{-8.11987pt}{4.48453pt}{-8.11987pt}{0.0pt}\pgfsys@curveto{-8.11987pt}{-4.48453pt}{-4.48453pt}{-8.11987pt}{0.0pt}{-8.11987pt}\pgfsys@curveto{4.48453pt}{-8.11987pt}{8.11987pt}{-4.48453pt}{8.11987pt}{0.0pt}\pgfsys@closepath\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-6.13666pt}{-1.57501pt}\pgfsys@invoke{ }\hbox{{\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\hbox{{\vphantom{1g}$c_{u}$}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{{}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf d_{1}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf d_{2}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf\vdots}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf\vdots}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\\\vbox to0.0pt{\vss\hbox to0.0pt{\hss${\bf d_{v}}$\hss}\vss}\vbox to0.0pt{\vss\hbox to0.0pt{\hss\vbox to0.4pt{\hrule depth=0.4pt,height=0.0pt\vss\hbox to0.4pt{\vrule width=0.4pt,height=0.4pt\hss\vrule width=0.4pt}\vss\hrule height=0.4pt,depth=0.0pt}\kern-0.2pt}\kern-0.2pt\crcr}}$}}}}}}}}}}}

where the entries c1<<cuc_{1}<\cdots<c_{u} come from T1T_{1} and the entries d1dvd_{1}\leq\cdots\leq d_{v} come from T2T_{2}. Let ΔT(j)\Delta_{T^{(j)}} be the determinant

ΔT(j)=|e1c1e1c2e1cuf1d1f1d2f1dve2c1e2c2e2cuf2d1f2d2f2dvehc1ehc2ehcufhd1fhd2fhdv|\Delta_{T^{(j)}}=\left|\begin{array}[]{cccccccc}e_{1c_{1}}&e_{1c_{2}}&\cdots&e_{1c_{u}}&f_{1d_{1}}&f_{1d_{2}}&\cdots&f_{1d_{v}}\\ e_{2c_{1}}&e_{2c_{2}}&\cdots&e_{2c_{u}}&f_{2d_{1}}&f_{2d_{2}}&\cdots&f_{2d_{v}}\\ \vdots&\vdots&\ddots&\vdots&\vdots&\vdots&\ddots&\vdots\\ e_{hc_{1}}&e_{hc_{2}}&\cdots&e_{hc_{u}}&f_{hd_{1}}&f_{hd_{2}}&\cdots&f_{hd_{v}}\\ \end{array}\right|

where h=u+vh=u+v. Then Δ(T1,T2)\Delta_{(T_{1},T_{2})} is defined as

Δ(T1,T2)=ΔT(1)ΔT(2)ΔT(k).\Delta_{(T_{1},T_{2})}=\Delta_{T^{(1)}}\Delta_{T^{(2)}}\cdots\Delta_{T^{(k)}}.
Corollary 5.28.

Let FΛn,p|q+F\in\Lambda^{+}_{n,p|q}.

  1. (i)

    For (α,β)+p×+q(\alpha,\beta)\in{\mathbb{Z}}^{p}_{+}\times{\mathbb{Z}}^{q}_{+}, the set

    𝐁(F,α,β)={Δ(T1,T2):(T1,T2)𝒯(F,α,β)}\mathbf{B}(F,\alpha,\beta)=\{\Delta_{(T_{1},T_{2})}:\ {(T_{1},T_{2})}\in\mathcal{T}^{\prime}(F,\alpha,\beta)\}

    is a basis for (Lp|qF)(α,β)(L^{F}_{p|q})_{(\alpha,\beta)} (which is identified with 𝒬(𝔤,𝔪)(F,α,β)\mathcal{Q}(\mathfrak{g},\mathfrak{m})_{(F,\alpha,\beta)} by Corollary 3.31 (i)).

  2. (ii)

    The set

    (α,β)+p×+q𝐁(F,α,β)\bigcup_{(\alpha,\beta)\in{\mathbb{Z}}^{p}_{+}\times{\mathbb{Z}}^{q}_{+}}\mathbf{B}(F,\alpha,\beta)

    is a basis for Lp|qFL^{F}_{p|q} (which is identified with the subspace (ρnF)𝔲nLp|qF(\rho^{F}_{n})^{\mathfrak{u}_{n}}\otimes L^{F}_{p|q} of 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m})).

  3. (iii)

    The set

    𝐁=(F,α,β)Ω(𝔤,𝔪)𝐁(F,α,β)\mathbf{B}=\bigcup_{(F,\alpha,\beta)\in\Omega(\mathfrak{g},\mathfrak{m})}\mathbf{B}(F,\alpha,\beta)

    is a basis for 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}).

Remark 5.29.

The basis for Lp|qFL^{F}_{p|q} given in part (ii) of Corollary 3.31 was obtained in [CZ, Theorem 3.3] by direct calculations. Here we construct the basis from the iterated Pieri rules (see Section 5.4). This also explains why the semistandard tableaux enter the picture.

5.7. The 𝔤𝔩r|1{\mathfrak{gl}}_{r|1} highest weight vectors in Lp|qFL^{F}_{p|q}

In this final subsection, we consider the case s=1s=1. In this case, we have 𝔤𝔤𝔩r|1\mathfrak{g}^{\prime}\cong{\mathfrak{gl}}_{r|1} and 𝔪𝔤𝔥r𝔥q1\mathfrak{m}\cong\mathfrak{g}^{\prime}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{q-1}. The algebra 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}) is a module for 𝔥n𝔥r|1𝔥r𝔥q1\mathfrak{h}_{n}\oplus\mathfrak{h}_{r|1}\oplus\mathfrak{h}_{r^{\prime}}\oplus\mathfrak{h}_{q-1} and can be decomposed as

𝒬(𝔤,𝔪)=(F,D,α,β)Ω(𝔤,𝔪)𝒬(𝔤,𝔪)(F,D,α,β)\mathcal{Q}(\mathfrak{g},\mathfrak{m})=\bigoplus_{(F,D,\alpha,\beta)\in\Omega(\mathfrak{g},\mathfrak{m})}\mathcal{Q}(\mathfrak{g},\mathfrak{m})_{(F,D,\alpha,\beta)}

where

Ω(𝔤,𝔪)=Λn,p|q+×Λn,r|1+×+r×+q1.\Omega(\mathfrak{g},\mathfrak{m})=\Lambda^{+}_{n,p|q}\times\Lambda^{+}_{n,r|1}\times{\mathbb{Z}}^{r^{\prime}}_{+}\times{\mathbb{Z}}^{q-1}_{+}.
Theorem 5.30.
  1. (i)

    If (F,D,α,β)Ω(𝔤,𝔪)(F,D,\alpha,\beta)\in\Omega(\mathfrak{g},\mathfrak{m}), then the set

    𝐁(F,D,α,β)={Δ(T1,T2):(T1,T2)𝒯(F,D,α,β)}\mathbf{B}(F,D,\alpha,\beta)=\{\Delta_{(T_{1},T_{2})}:\ {(T_{1},T_{2})}\in\mathcal{T}(F,D,\alpha,\beta)\}

    is a basis for 𝒬(𝔤,𝔪)(F,D,α,β)\mathcal{Q}(\mathfrak{g},\mathfrak{m})_{(F,D,\alpha,\beta)}, which can be identified with the space of all 𝔪\mathfrak{m} highest weight vectors in Lp|qFL^{F}_{p|q} of weight (ψr|1D,ψrα,ψq1β)(\psi^{D^{\sharp}}_{r|1},\psi^{\alpha}_{r^{\prime}},\psi^{\beta}_{q-1}).

  2. (ii)

    For FΛn,p|q+F\in\Lambda^{+}_{n,p|q} and DΛn,r|1+D\in\Lambda^{+}_{n,r|1}, the set

    (α,β)+r×+q𝐁(F,D,α,β)\bigcup_{(\alpha,\beta)\in{\mathbb{Z}}^{r^{\prime}}_{+}\times{\mathbb{Z}}^{q}_{+}}\mathbf{B}(F,D,\alpha,\beta)

    is a basis for the space of all 𝔤𝔩r|1{\mathfrak{gl}}_{r|1} highest weight vectors of weight ψr|1D\psi^{D^{\sharp}}_{r|1} in Lp|qFL^{F}_{p|q}.

  3. (iii)

    The set

    𝐁=(F,D,α,β)Ω(𝔤,𝔪)𝐁(F,D,α,β)\mathbf{B}=\bigcup_{(F,D,\alpha,\beta)\in\Omega(\mathfrak{g},\mathfrak{m})}\mathbf{B}(F,D,\alpha,\beta)

    is a basis for 𝒬(𝔤,𝔪)\mathcal{Q}(\mathfrak{g},\mathfrak{m}).

Proof.

Let (F,D,α,β)Ω(F,D,\alpha,\beta)\in\Omega, (T1,T2)𝒯(F,D,α,β)(T_{1},T_{2})\in\mathcal{T}(F,D,\alpha,\beta) and T=T1T2T=T_{1}\ast T_{2}. Assume that TT has kk columns. Then since DΛr|1+D\in\Lambda^{+}_{r|1}, the column tableau T(j)T^{(j)} is of Type 11 for each 1jk1\leq j\leq k. By Part (ii) of Lemma 5.18, each ΔT(j)\Delta_{T^{(j)}} is a 𝔪\mathfrak{m} highest weight vector. The remaining arguments for (i) and the proof for (ii) and (iii) are similar to that of Theorem 5.26. ∎

References

  • [BR] A. Berele, A. Regev, Hook Young diagrams with applications to combinatorics and representations of Lie superalgebras, Adv. Math. 64 (1987) 118 - 175.
  • [CLZ] S. -J. Cheng, N. Lam, R. B. Zhang, Character formula for infinite-dimensional unitarizable modules of the general linear superalgebra. J. Algebra 273 (2004) 780 - 805.
  • [CW] S.-J. Cheng, W. Wang, Howe duality for Lie superalgebras. Compositio Math. 128 (2001) 53 - 94.
  • [CZ] S. -J. Cheng, R. B. Zhang, Howe duality and combinatorial character formula for orthosymplectic Lie superalgebras. Adv. Math. 182 (2004) 124 - 172.
  • [CNS] L. Corwin, Yuval Ne’eman, S. Sternberg, Graded Lie algebras in mathematics and physics (Bose-Fermi symmetry). Rev. Mod. Phys. 47 (1975) 573 - 604.
  • [DJ] P H Dondi and P D Jarvis, Diagram and superfield techniques in the classical superalgebras. J. Phys. A: Math. Gen. 14 (1981) 547 - 564.
  • [Fu] W. Fulton, Young tableaux. With applications to representation theory and geometry. London Mathematical Society Student Texts, 35. Cambridge University Press, Cambridge, 1997.
  • [GZ] M. D. Gould, R. B. Zhang, Classification of all star irreps of 𝔤𝔩(m|n){\mathfrak{gl}}(m|n). J. Math. physics 31 (1990), 2552 - 2559.
  • [GW] R. Goodman and N. R. Wallach, Symmetry, representations, and invariants. Graduate Texts in Mathematics, 255. Springer, Dordrecht, 2009.
  • [H] R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. The Schur lectures (1992) (Tel Aviv), 1–182, Israel Math. Conf. Proc., 8, Bar-Ilan Univ., Ramat Gan, 1995.
  • [H1] R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989) 539 - 570.
  • [HKL] R. Howe, S. Kim, and S. T. Lee, Double Pieri algebras and iterated Pieri algebras for the classical groups. Amer. J. Math. 139 (2017), no. 2, 347–401.
  • [HL] R. Howe and S. T. Lee, Why should the Littlewood-Richardson rule be true? Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 2, 187–236.
  • [HTW1] R. Howe, E-C. Tan and J. Willenbring, Stable branching rules for classical symmetric pairs, Trans. Amer. Math. Soc. 357 (2005), 1601–1626.
  • [HTW2] R. Howe, E-C. Tan and J. Willenbring, Reciprocity algebras and branching for classical symmetric pairs, in: Groups and Analysis - the Legacy of Hermann Weyl, London Math. Soc. Lecuter Note Ser. vol 354, K. Tent. ed., 191-130, Cambridge University Press, 2008.
  • [K] V. G. Kac, Lie superalgebras. Adv. Math. 26 (1977) 8 - 96.
  • [KLW] S. Kim, S. T. Lee, and Y. Wang, Skew Pieri algebras of the general linear group. J. Math. Phys. 59, 121702 (2018).
  • [L] S. T. Lee, Branching rules and branching algebras for the complex classical groups, COE Lecture Note, 47, Math-for-Industry (MI) Lecture Note Series, Kyushu University, Faculty of Mathematics, Fukuoka, 2013. ii+41 pp.
  • [Sc] M. Scheunert. The theory of Lie superalgebras: an introduction, volume 716. Springer, 1979.
  • [SNR] W. Nahm, V. Rittenberg, M. Scheunert, The classification of graded Lie algebras. Phys.Lett. B 61 (1976) 383- 384
  • [Se] A. Sergeev, An analog of the classical invariant theory for Lie superalgebras, I, Michigan Math. J. 49 (2001) 113 - 146; An analog of the classical invariant theory for Lie superalgebras, II, Michigan Math. J. 49 (2001) 147 - 168.