This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Bounds on Choquet Risk Measures in Finite
Product Spaces with Ambiguous Marginals

Mario Ghossoub
University of Waterloo
[email protected]
David Saunders
University of Waterloo
[email protected]
Kelvin Shuangjian Zhang
University of Waterloo
[email protected]
Mario Ghossoub: University of Waterloo – Department of Statistics and Actuarial Science – 200 University Ave. W. – Waterloo, ON, N2L 3G1 – Canada [email protected] David Saunders: University of Waterloo – Department of Statistics and Actuarial Science – 200 University Ave. W. – Waterloo, ON, N2L 3G1 – Canada [email protected] Kelvin Shuangjian Zhang: University of Waterloo – Department of Statistics and Actuarial Science – 200 University Ave. W. – Waterloo, ON, N2L 3G1 – Canada [email protected]
Abstract.

We investigate the problem of finding upper and lower bounds for a Choquet risk measure of a nonlinear function of two risk factors, when the marginal distributions of the risk factors are ambiguous and represented by nonadditive measures on the marginal spaces and the joint nonadditive distribution on the product space is unknown. We treat this problem as a generalization of the optimal transport problem to the setting of nonadditive measures. We provide explicit characterizations of the optimal solutions for finite marginal spaces, and we investigate some of their properties. We further discuss the connections with linear programming, showing that the optimal transport problems for capacities are linear programs, and we also characterize their duals explicitly. Finally, we investigate a series of numerical examples, including a comparison with the classical optimal transport problem, and applications to counterparty credit risk.

2020 Mathematics Subject Classification: 49Q22, 90C08, 91A12, 91A70, 91G40, 91G70.
Mario Ghossoub and David Saunders acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada in the form of Discovery Grants (NSERC Grant Nos. 2018-03961 and  2017-04220, respectively).
Declarations of interest: none

Key Words and Phrases: Risk management, Optimal Transport, Non-Additive Measures, Risk Measures, Cooperative Games.

1. Introduction

An important problem in the literature on credit risk management is that of determining bounds on the Credit Valuation Adjustment (CVA), that is, the price adjustment on a given derivatives portfolio to account for potential counterparty credit risk losses (e.g., Garcia-Cespedes \BOthers. (\APACyear2010); Glasserman \BBA Yang (\APACyear2018); Rosen \BBA Saunders (\APACyear2010, \APACyear2012)). A portfolio’s counterparty credit risk exposure depends on market risk factors, and the likelihood of a counterparty default depends on credit risk factors. Consequently, the computation of CVA requires the modelling of potential portfolio losses as functions of these two sets of dependent risk factors. There is a large literature on the required credit risk models (e.g., McNeil \BOthers. (\APACyear2015) and the references therein). In practice, counterparty exposures often depend on a large number of risk factors (equity prices, interest rates, exchange rates, etc.), leading to several challenges with their measurement and management (e.g., Brigo \BOthers. (\APACyear2013); Gregory (\APACyear2020)).

Joint models of market and credit risk are, in general, very difficult to develop and estimate in practice. Hence, even when the marginal distributions of the market and credit risk factors are known, there is still uncertainty about their joint distribution and about the ensuing CVA computation. Glasserman \BBA Yang (\APACyear2018) examine bounds on CVA arising from the uncertainty about the dependence structure. They formulated the problem of finding the worst-case CVA with respect to the dependence structure between the risk factors as an Optimal Transport (OT) problem. In related work, Memartoluie \BOthers. (\APACyear2017) considered in a formal way the problem of finding the worst-case Expected Shortfall (ES) of a nonlinear function of market risk and credit risk, given the marginal distributions of the factors, and they showed that in the case of finite sample spaces, the problem is equivalent to a linear program. Recently, Ghossoub \BOthers. (\APACyear2023) extended the problem to general spaces and to spectral risk measures. They examined the problem of finding a worst-case spectral risk measure of a nonlinear function of two risk factors with known marginals, with respect to their dependence structure. They formulated the problem as a generalized OT problem and provided a strong duality theory similar to the Kantorovich duality in classical OT theory.

OT is the subject of a large literature, dating back to the seminal work of Monge (\APACyear1781) and Kantorovich (\APACyear1942). Monge (\APACyear1781) considered the problem of minimizing the total cost (measured using the Euclidean distance between the source and the target) of moving one mass distribution to another among all volume-preserving maps. Kantorovich (\APACyear1942, \APACyear1948) later relaxed this problem by expanding the feasible set to all measure couplings with given marginal distributions and developed a duality theory for the relaxed problem. Modern OT is a large and rapidly developing field (e.g., Santambrogio (\APACyear2015); Villani (\APACyear2008)) with applications to several areas within mathematics (e.g., Rachev \BBA Rüschendorf (\APACyear1998); Villani (\APACyear2003)), and applied fields such as physics (e.g., Guillen \BBA Kitagawa (\APACyear2017); R. McCann (\APACyear2020)), statistics (e.g., Panaretos \BBA Zemel (\APACyear2022); Zhang \BOthers. (\APACyear2020)), economics (e.g., Carlier \BBA Zhang (\APACyear2020); Galichon (\APACyear2016); R\BPBIJ. McCann \BBA Zhang (\APACyear2019)), finance (e.g., Henry-Labordère (\APACyear2017); Eckstein \BOthers. (\APACyear2021)), and machine learning (e.g., Peyré \BBA Cuturi (\APACyear2019); Torres \BOthers. (\APACyear2021)), for instance.

In the aforementioned literature, the marginal distributions of risk factors are assumed to be given and known, but their dependence structure is unknown. In particular, the marginals are (additive) probability measures. As a result, problems of bounding risk measures of loss functions can be formulated as (generalized) OT problems, with various cost functions, depending on the particular application. In many such applications, particularly related to the modelling of decision-making under ambiguity or vagueness in beliefs, a decision-maker’s attitude toward, and sensitivity to ambiguity in beliefs is represented by monotone set functions that lack additivity. Such objects are called capacities or nonadditive measures. See, for example, the work of Quiggin (\APACyear1982, \APACyear1993); Schmeidler (\APACyear1986, \APACyear1989); Yaari (\APACyear1987) for theoretical foundations. In particular, the seminal contribution of Schmeidler (\APACyear1986, \APACyear1989) axiomatized models of decision-making under ambiguity in which the decision-maker’s preferences admit a representation in terms of an expected utility with respect to a nonadditive measure. Such expectations are defined through the notion of a Choquet integral with respect to a capacity.111Note that our use of the word capacity here is distinct from the usage in the literature on optimal transport with capacity constraints (e.g., Korman \BBA McCann (\APACyear2015); Korman \BOthers. (\APACyear2015); Pennanen \BBA Perkkiö (\APACyear2019)), where the “capacity constraint” imposes an upper bound on the density of the coupling. We refer to Denneberg (\APACyear1994) or Marinacci \BBA Montrucchio (\APACyear2004) for more about capacities and Choquet integration.

In this paper, we are interested in the problem of bounding a risk measure of a nonlinear function of two risk factors, but where (i) the marginal distributions of the risk factors are ambiguous, and represented by nonadditive measures on the marginal spaces; and, (ii) the objective function is a Choquet integral. As in Glasserman \BBA Yang (\APACyear2018), we consider the case of two risk factors defined on finite spaces. We assume given (marginal) capacities on these spaces, representing the ambiguous distributions of the risk factors, and consider the problem of finding the joint capacity on the product space with these given marginals, which maximizes or minimizes the Choquet integral of a given portfolio loss function. We treat this problem as a generalization of the OT problem to the setting of nonadditive measures. We provide explicit characterizations of the optimal solutions for finite marginal spaces, and we investigate some of their properties. Additionally, we explore connections to linear programming and present a version of the Kantorovich duality.

The remainder of the paper is organized as follows. Section 2 presents definitions and background material needed for the rest of the paper. Section 3 formulates the problem of bounding Choquet risk measures as an OT problem with nonadditive marginals. Section 4 presents a mathematical formulation of the OT problem for capacities, investigates properties of its feasible set, and gives characterizations and explicit formulas for its solution. In addition, we further study properties of the optimal capacities (in particular, non-emptiness of the core) in terms of the corresponding properties of the marginal capacities. The explicit formula for the core of the minimizer can be found in that section. Moreover, as in the case of measures, the OT problem for capacities can be formulated as a linear program (see Torra (\APACyear2023) for a related result), and we characterize its dual in Section 5. Section 6 presents numerical examples comparing our problem to the classical OT problem and illustrating its use in a counterparty credit risk application. Finally, Section 7 concludes.

2. Preliminaries

2.1. Capacities and Choquet Integration

Denote by B(Σ)B\left(\Sigma\right) the vector space of all bounded and Σ\Sigma-measurable real-valued functions on a given measurable space (S,Σ)\left(S,\Sigma\right). Then (B(Σ),sup)\left(B\left(\Sigma\right),\|\cdot\|_{sup}\right) is a Banach space (Dunford \BBA Schwartz, \APACyear1958, IV.5.1), where sup\|\cdot\|_{sup} denotes the supnorm.

Let ba(Σ)ba\left(\Sigma\right) denote the linear space of all bounded finitely additive set functions on (S,Σ)\left(S,\Sigma\right). When equipped with the variation norm v\|\cdot\|_{v}, ba(Σ)ba\left(\Sigma\right) is a Banach space, and (ba(Σ),v)\left(ba\left(\Sigma\right),\|\cdot\|_{v}\right) is isometrically isomorphic to the norm-dual of the Banach space (B(Σ),sup)\left(B\left(\Sigma\right),\|\cdot\|_{sup}\right) (e.g., (Dunford \BBA Schwartz, \APACyear1958, IV.5.1)) via the duality ϕ,λ=ϕ𝑑λ,λba(Σ),ϕB(Σ)\langle\phi,\lambda\rangle=\int\phi\ d\lambda,\ \forall\lambda\in ba\left(\Sigma\right),\ \forall\phi\in B\left(\Sigma\right). Denote by ca(Σ)ca\left(\Sigma\right) the collection of all countably additive elements of ba(Σ)ba\left(\Sigma\right). Then ca(Σ)ca\left(\Sigma\right) is a v\|\cdot\|_{v}-closed (and hence complete) linear subspace of ba(Σ)ba\left(\Sigma\right). Henceforth, a collection of probability measures will be called weak-compact if it is compact in the weak topology σ(ba(Σ),B(Σ))\sigma\left(ba\left(\Sigma\right),B\left(\Sigma\right)\right).

Definition 2.1.

A capacity (nonadditive measure) on a measurable space (S,Σ)\left(S,\Sigma\right) is a finite set function γ:Σ[0,ν(S)]\gamma\mathrel{\mathop{\mathchar 58\relax}}\Sigma\rightarrow\left[0,\nu(S)\right] such that γ()=0\gamma\left(\emptyset\right)=0 and γ\gamma is monotone; that is, for any A,BΣA,B\in\Sigma, γ(A)γ(B)\gamma\left(A\right)\leq\gamma\left(B\right) whenever ABA\subseteq B. When γ(S)=1\gamma(S)=1, the capacity γ\gamma is said to be normalized.

The conjugate of a capacity γ\gamma on (S,Σ)\left(S,\Sigma\right) is the finite set function γ¯:Σ[0,ν(S)]\bar{\gamma}\mathrel{\mathop{\mathchar 58\relax}}\Sigma\rightarrow\left[0,\nu(S)\right] defined by γ¯(A):=γ(S)γ(Ac)\bar{\gamma}(A)\mathrel{\mathop{\mathchar 58\relax}}=\gamma\left(S\right)-\gamma(A^{c}), for all AΣA\in\Sigma. Then γ¯\bar{\gamma} is also a capacity, and if γ\gamma is normalized then so is γ¯\bar{\gamma}.

A capacity γ\gamma is called supermodular (resp. submodular) if

γ(AB)+γ(AB)(resp.)γ(A)+γ(B),A,BΣ.\gamma\left(A\cup B\right)+\gamma\left(A\cap B\right)\geq\ (\hbox{resp.}\leq)\ \gamma\left(A\right)+\gamma\left(B\right),\ \forall\,A,B\in\Sigma.

The core of a capacity γ\gamma on (S,Σ)\left(S,\Sigma\right), denoted by 𝒞(γ)\mathcal{C}\left(\gamma\right), is the collection of all bounded finitely additive measures η\eta on (S,Σ)\left(S,\Sigma\right) such that η(A)γ(A)\eta\left(A\right)\geq\gamma\left(A\right), for all AΣA\in\Sigma. When nonempty, core(γ)core\left(\gamma\right) is weak-compact and convex.

Definition 2.2.

Let γ\gamma be a capacity on (S,Σ)\left(S,\Sigma\right). The Choquet integral of YB(Σ)Y\in B\left(\Sigma\right) with respect to γ\gamma is defined by

Ydγ:=0+γ({sS:Y(s)t})dt+0[γ({sS:Y(s)t})1]dt,\int Y\ d\gamma\mathrel{\mathop{\mathchar 58\relax}}=\int_{0}^{+\infty}\gamma\left(\{s\in S\mathrel{\mathop{\mathchar 58\relax}}Y\left(s\right)\geq t\}\right)\ dt+\int_{-\infty}^{0}\left[\gamma\left(\{s\in S\mathrel{\mathop{\mathchar 58\relax}}Y\left(s\right)\geq t\}\right)-1\right]\ dt,

where the integrals are taken in the sense of Riemann.

Definition 2.3.

Two functions Y1,Y2B(Σ)Y_{1},Y_{2}\in B\left(\Sigma\right) are said to be comonotonic if

[Y1(s)Y1(s)][Y2(s)Y2(s)]0, for all s,sS.\Big{[}Y_{1}\left(s\right)-Y_{1}\left(s^{\prime}\right)\Big{]}\Big{[}Y_{2}\left(s\right)-Y_{2}\left(s^{\prime}\right)\Big{]}\geq 0,\hbox{ for all }s,s^{\prime}\in S.

If γca(Σ)\gamma\in ca(\Sigma), then the Choquet integral with respect to γ\gamma is the usual Lebesgue integral with respect to γ\gamma (e.g., (Marinacci \BBA Montrucchio, \APACyear2004, p. 59)). Unlike the Lebesgue integral, the Choquet integral is not an additive operator on B(Σ)B\left(\Sigma\right). However, the Choquet integral is additive over comonotonic functions.

Proposition 2.4.

Let γ\gamma be a capacity on (S,Σ)\left(S,\Sigma\right).

  1. (1)

    If ϕ1,ϕ2B(Σ)\phi_{1},\phi_{2}\in B\left(\Sigma\right) are comonotonic, then (ϕ1+ϕ2)𝑑γ=ϕ1𝑑γ+ϕ2𝑑γ\displaystyle\int\left(\phi_{1}+\phi_{2}\right)\ d\gamma=\int\phi_{1}\ d\gamma+\int\phi_{2}\ d\gamma.

  2. (2)

    If ϕ1,ϕ2B(Σ)\phi_{1},\phi_{2}\in B\left(\Sigma\right) are such that ϕ1ϕ2\phi_{1}\leq\phi_{2}, then ϕ1𝑑γϕ2𝑑γ\displaystyle\int\phi_{1}\ d\gamma\leq\int\phi_{2}\ d\gamma.

  3. (3)

    For all ϕB(Σ)\phi\in B\left(\Sigma\right) and all c0c\geq 0, then cϕ𝑑γ=cϕ𝑑γ\displaystyle\int c\phi\ d\gamma=c\int\phi\ d\gamma.

  4. (4)

    If γ\gamma is submodular, then for any ϕ1,ϕ2B(Σ)\phi_{1},\phi_{2}\in B\left(\Sigma\right), (ϕ1+ϕ2)𝑑γϕ1𝑑γ+ϕ2𝑑γ\displaystyle\int\left(\phi_{1}+\phi_{2}\right)\ d\gamma\leq\int\phi_{1}\ d\gamma+\int\phi_{2}\ d\gamma.

  5. (5)

    If γ\gamma is supermodular, then for any ϕ1,ϕ2B(Σ)\phi_{1},\phi_{2}\in B\left(\Sigma\right), (ϕ1+ϕ2)𝑑γϕ1𝑑γ+ϕ2𝑑γ\displaystyle\int\left(\phi_{1}+\phi_{2}\right)\ d\gamma\geq\int\phi_{1}\ d\gamma+\int\phi_{2}\ d\gamma.

2.2. Risk Measures

Risk measures are real-valued functionals defined on some collection of random variables on a given probability space. They are often used either as a quantification of riskiness of a given financial position, or as a way to determine adequate capital requirements (e.g., Föllmer \BBA Schied (\APACyear2016), McNeil \BOthers. (\APACyear2015), or Rüschendorf (\APACyear2013)). Formally, a risk measure is a mapping ρ:𝒳\rho\mathrel{\mathop{\mathchar 58\relax}}\mathcal{X}\to\mathbb{R}, where 𝒳\mathcal{X} is a prespecified collection of random variables on a given probablity space (S,Σ,)\left(S,\Sigma,\mathbb{P}\right). Common properties of risk measures include:

  1. R.1

    (Monotonicity) ρ(X)ρ(Y)\rho(X)\leq\rho(Y), for all X,Y𝒳X,Y\in\mathcal{X} such that XYX\leq Y, \mathbb{P}-a.s.

  2. R.2

    (Positive Homogeneity) ρ(λX)=λρ(X)\rho(\lambda X)=\lambda\rho(X), for all X𝒳X\in\mathcal{X} and all λ+\lambda\in\mathbb{R}_{+}.

  3. R.3

    (Cash Invariance) ρ(X+c)=ρ(X)+c\rho(X+c)=\rho(X)+c, for all X𝒳X\in\mathcal{X} and cc\in\mathbb{R}.

  4. R.4

    (Subadditivity) ρ(X+Y)ρ(X)+ρ(Y)\rho(X+Y)\leq\rho(X)+\rho(Y) for all X,Y𝒳X,Y\in\mathcal{X}.

  5. R.5

    (Comonotonic Additivity) ρ(X+Y)=ρ(X)+ρ(Y)\rho(X+Y)=\rho(X)+\rho(Y) for all X,Y𝒳X,Y\in\mathcal{X} that are comonotonic.

  6. R.6

    (Law Invariance) ρ(X)=ρ(Y)\rho(X)=\rho(Y) when XX and YY have the same distribution under \mathbb{P}.

A coherent risk measure Artzner \BOthers. (\APACyear1999); Delbaen (\APACyear2002) is a risk measure that satisfies Axioms R.1-R.4, which are considered desirable for effective risk management. A practically relevant example of a coherent risk measure, frequently used in the banking and insurance industries, is the Expected Shortfall (ES), also known as the Conditional Value-at-Risk (CVaR). If FX(t)F^{\leftarrow}_{X}(t) is the left-continuous quantile of XX, and α(0,1)\alpha\in(0,1), then the expected shortfall of XX at the confidence level α\alpha is:

ESα(X)=11αα1FX(t)𝑑t.\mbox{ES}_{\alpha}(X)=\frac{1}{1-\alpha}\int_{\alpha}^{1}F^{\leftarrow}_{X}(t)\,dt.

If the space (S,Σ,)(S,\Sigma,\mathbb{P}) is nonatomic, then a coherent, comonotonic additive, and law-invariant risk measure admits a representation as a spectral risk measure (e.g., (Föllmer \BBA Schied, \APACyear2016, Theorem 4.93), Kusuoka (\APACyear2001), (McNeil \BOthers., \APACyear2015, Proposition 8.18), Shapiro (\APACyear2013)), that is, as a risk measure of the form

ρ(X)=01ESu(X)𝑑Γ(u),\rho(X)=\int_{0}^{1}\mbox{ES}_{u}(X)\,d\Gamma(u),

for some probability measure Γ\Gamma on [0,1][0,1]. Moreover, by a classical result on Choquet integration (e.g., Schmeidler (\APACyear1986)), monotone and comonotonic additive risk measures admit a representation in terms of a Choquet integral of the form

ρ(X)=X𝑑γ,\rho(X)=\int X\,d\gamma,

for some capacity γ\gamma on (S,Σ)(S,\Sigma).

The class of spectral risk measures is flexible and rich enough to encompass several of the most popular and practically relevant risk measures. Additionally, there is a tight relationship between spectral risk measures and the subclass of Choquet risk measures called Distortion Risk Measures (DRM). These are Choquet risk measures for which the capacity γ\gamma is of the form TT\circ\mathbb{P}, for some increasing function T:[0,1][0,1]T\mathrel{\mathop{\mathchar 58\relax}}[0,1]\to[0,1] such that T(0)=1T(1)=0T(0)=1-T(1)=0. The function TT is called a distortion function, or a probability weighting function. Indeed, it can be shown (e.g., Acerbi (\APACyear2002); Föllmer \BBA Schied (\APACyear2016); Kusuoka (\APACyear2001); McNeil \BOthers. (\APACyear2015); Shapiro (\APACyear2013)) that a spectral risk measure also admits the representation

ρ(X)=01FX(t)κ(t)𝑑t,\rho(X)=\int_{0}^{1}F^{\leftarrow}_{X}(t)\,\kappa(t)\,dt,

where κ:[0,1)+\kappa\mathrel{\mathop{\mathchar 58\relax}}[0,1)\to\mathbb{R}_{+} is a nonnegative and increasing function that satisfies 01κ(t)𝑑t=1\displaystyle\int_{0}^{1}\kappa(t)\,dt=1. This function is called the spectral function. For instance, for the Expected Shortfall (ES) at level α\alpha, the spectral function is given by (1α)1𝟏[α,1](t)\left(1-\alpha\right)^{-1}\mathbf{1}_{[\alpha,1]}(t), that is, ESα(X)=(1α)1α1FX(t)𝑑t\mbox{ES}_{\alpha}\left(X\right)=\left(1-\alpha\right)^{-1}\displaystyle\int_{\alpha}^{1}F^{\leftarrow}_{X}\left(t\right)\,dt. Moreover, letting

T(x)=101xκ(t)𝑑t,x[0,1],T(x)=1-\displaystyle\int_{0}^{1-x}\kappa(t)\,dt,\ \ \forall\,x\in[0,1],

it follows that TT is a distortion function, and it can be shown that ρ\rho is DRM with respect to TT\circ\mathbb{P}, that is,

ρ(X)=X𝑑T.\rho(X)=\int X\,dT\circ\mathbb{P}.

2.3. Finite State Spaces

Suppose that 𝒵\mathcal{Z} is a nonempty finite set, and let Σ=2𝒵\Sigma=2^{\mathcal{Z}} be the collection of all of its subsets. Throughout, we identify measures on any nonempty finite set 𝒵\mathcal{Z} with vectors v|𝒵|v\in\mathbb{R}^{|\mathcal{Z}|} through v(A)=iAviv(A)=\sum_{i\in A}v_{i}. Let γ\gamma be a capacity on (𝒵,Σ)\left(\mathcal{Z},\Sigma\right).

Definition 2.5.

The Möbius transform of a capacity γ\gamma is defined as

mγ(A):=BA(1)|AB|γ(B).m^{\gamma}(A)\mathrel{\mathop{\mathchar 58\relax}}=\sum_{B\subseteq A}(-1)^{|A\setminus B|}\gamma(B).

The Choquet integral of a function ff with respect to the capacity γ\gamma can be represented in terms of the Möbius transform as follows:

(2.1) γ(f)=A𝒳mγ(A)xAfx=A𝒳BA(1)|AB|γ(B)xAfx=B𝒳γ(B)(AB(1)|AB|xAfx)=B𝒳Kf(B)γ(B),\begin{split}\gamma(f)&=\sum_{A\subseteq\mathcal{X}}m^{\gamma}(A)\bigwedge_{x\in A}f_{x}=\sum_{A\subseteq\mathcal{X}}\sum_{B\subseteq A}(-1)^{|A\setminus B|}\gamma(B)\bigwedge_{x\in A}f_{x}\\ &=\sum_{B\subseteq\mathcal{X}}\gamma(B)\left(\sum_{A\supseteq B}(-1)^{|A\setminus B|}\bigwedge_{x\in A}f_{x}\right)=\sum_{B\subseteq\mathcal{X}}K_{f}(B)\gamma(B),\end{split}

with

(2.2) Kf(B):=AB(1)|AB|xAfx,K_{f}(B)\mathrel{\mathop{\mathchar 58\relax}}=\sum_{A\supseteq B}(-1)^{|A\setminus B|}\bigwedge_{x\in A}f_{x},

where fx=f(x)f_{x}=f(x), and xAfx\bigwedge_{x\in A}f_{x} represents the minimum of ff on AA (e.g., (Grabisch, \APACyear2016, Theorem 4.95)). See Grabisch (\APACyear2016) and Marinacci \BBA Montrucchio (\APACyear2004) for more information about the Möbius transform.

Definition 2.6.

Let 𝒵\mathcal{Z} be a nonempty finite set, and let 𝒢2𝒵\mathcal{G}\subseteq 2^{\mathcal{Z}} be a collection of subsets containing 𝒵\mathcal{Z} and the empty set. Suppose that a function G:𝒢+G\mathrel{\mathop{\mathchar 58\relax}}\mathcal{G}\to\mathbb{R}_{+} satisfies G()=0G(\emptyset)=0, and G(A)G(B)G(A)\leq G(B) whenever A,B𝒢A,B\in\mathcal{G}, ABA\subseteq B. The capacity on 𝒵\mathcal{Z} defined by

G(B):=infA𝒢ABG(A), for all B2𝒵,G^{*}(B)\mathrel{\mathop{\mathchar 58\relax}}=\inf_{\begin{subarray}{c}A\in\mathcal{G}\\ A\supseteq B\end{subarray}}G(A),\text{ for all }B\in 2^{\mathcal{Z}},

is called the outer envelope of GG. The capacity defined by

G(B):=supA𝒢ABG(A), for all B2𝒵,G_{*}(B)\mathrel{\mathop{\mathchar 58\relax}}=\sup_{\begin{subarray}{c}A\in\mathcal{G}\\ A\subseteq B\end{subarray}}G(A),\text{ for all }B\in 2^{\mathcal{Z}},

is called the inner envelope of GG.

When it is necessary to make 𝒢\mathcal{G} explicit in the notation, we will write G(B)=G(B;𝒢)G^{*}(B)=G^{*}(B;\mathcal{G}) for the outer envelope, and G(B)=G(B;𝒢)G_{*}(B)=G_{*}(B;\mathcal{G}) for the inner envelope. It is easy to see that GGG_{*}\leq G^{*}.222Fix M𝒵M\subseteq\mathcal{Z}, and A,B𝒢A,B\in\mathcal{G} with AMBA\subseteq M\subseteq B. Then G(A)G(B)G(A)\leq G(B). Minimizing over BB containing MM yields G(A)G(M)G(A)\leq G^{*}(M), and then maximizing over AA contained in MM gives that G(M)G(M)G_{*}(M)\leq G^{*}(M).

Definition 2.7.

Given nonempty finite sets 𝒳,𝒴\mathcal{X},\mathcal{Y}, we define 𝒫𝒳,𝒴\mathcal{P}_{\mathcal{X},\mathcal{Y}} to be the collection of all subsets of 𝒳×𝒴\mathcal{X}\times\mathcal{Y} of the form A×BA\times B with A𝒳A\subseteq\mathcal{X} and B𝒴B\subseteq\mathcal{Y}. We define 𝒫𝒳,𝒴\mathcal{P}^{*}_{\mathcal{X},\mathcal{Y}} to be the collection of all subsets of 𝒳×𝒴\mathcal{X}\times\mathcal{Y} of the form A×BA\times B with A𝒳A\subseteq\mathcal{X} and B𝒴B\subseteq\mathcal{Y}, and either A=𝒳A=\mathcal{X} or B=𝒴B=\mathcal{Y} (or both). That is 𝒫𝒳,𝒴\mathcal{P}^{*}_{\mathcal{X},\mathcal{Y}} is the collection of all sets either of the form 𝒳×B\mathcal{X}\times B with B𝒴B\subseteq\mathcal{Y} or A×𝒴A\times\mathcal{Y} with A𝒳A\subseteq\mathcal{X}.

Sets in product spaces and their projections will feature prominently in the optimal solutions of our optimization problems. The notation in the next definition will be convenient.

Definition 2.8.

For a set M𝒳×𝒴M\subseteq\mathcal{X}\times\mathcal{Y}, define:

M𝒳:={x𝒳:z=(x,y)M},M𝒴:={y𝒴:z=(x,y)M},\displaystyle M_{\mathcal{X}}\mathrel{\mathop{\mathchar 58\relax}}=\{x\in\mathcal{X}\mathrel{\mathop{\mathchar 58\relax}}\exists z=(x,y)\in M\},\quad M_{\mathcal{Y}}\mathrel{\mathop{\mathchar 58\relax}}=\{y\in\mathcal{Y}\mathrel{\mathop{\mathchar 58\relax}}\exists z=(x,y)\in M\},
M~𝒳:={x𝒳:(x,y)M,y𝒴},M~𝒴:={y𝒴:(x,y)M,x𝒳}.\displaystyle\widetilde{M}_{\mathcal{X}}\mathrel{\mathop{\mathchar 58\relax}}=\{x\in\mathcal{X}\mathrel{\mathop{\mathchar 58\relax}}(x,y)\in M,\;\;\forall y\in\mathcal{Y}\},\quad\widetilde{M}_{\mathcal{Y}}\mathrel{\mathop{\mathchar 58\relax}}=\{y\in\mathcal{Y}\mathrel{\mathop{\mathchar 58\relax}}(x,y)\in M,\;\;\forall x\in\mathcal{X}\}.

It is easy to see that M~𝒳=((Mc)𝒳)c\widetilde{M}_{\mathcal{X}}=((M^{c})_{\mathcal{X}})^{c}, and M~𝒴=((Mc)𝒴)c\widetilde{M}_{\mathcal{Y}}=((M^{c})_{\mathcal{Y}})^{c}.

Definition 2.9.

Let k2k\geq 2 be an integer. A capacity γ\gamma on 𝒵\mathcal{Z} is called kk-monotone if for any sets A1,,Ak𝒵A_{1},\ldots,A_{k}\in\mathcal{Z},

γ(j=1kAj)J{1,,k}J(1)|J|+1γ(jJAj).\gamma\left(\bigcup_{j=1}^{k}A_{j}\right)\geq\sum_{\begin{subarray}{c}J\subseteq\{1,\ldots,k\}\\ J\neq\emptyset\end{subarray}}(-1)^{|J|+1}\gamma\left(\bigcap_{j\in J}A_{j}\right).

The capacity is called kk-alternating if the above inequality is reversed. A 2-monotone capacity is supermodular, while a 2-alternating capacity is submodular. If γ\gamma is kk-monotone for all k2k\geq 2, it is called totally monotone, and if it is kk-alternating for all k2k\geq 2, it is called totally alternating.

3. Bounds on Choquet Risk Measures

3.1. Problem Formulation

We consider the case of a portfolio whose loss depends on two risk factors defined on two finite spaces. We assume given (marginal) capacities on these spaces, representing the ambiguous distributions of the risk factors, and we consider the problem of finding the joint capacity on the product space with these given marginals that maximizes or minimizes the Choquet integral of a given portfolio loss function.

Specifically, let 𝒳\mathcal{X} and 𝒴\mathcal{Y} be non-empty finite sets, and let XX and YY be random variables on 𝒳\mathcal{X} and 𝒴\mathcal{Y}, respectively. We are given a function L:X(𝒳)×Y(𝒴)L\mathrel{\mathop{\mathchar 58\relax}}X(\mathcal{X})\times Y(\mathcal{Y})\to\mathbb{R} representing the loss on a portfolio consisting of the risk factors XX and YY. The distributional uncertainty, or ambiguity, about the risk factors is represented by capacities μ\mu on 𝒳\mathcal{X} and ν\nu on 𝒴\mathcal{Y}, to be interpreted as ambiguous beliefs about the distributions of XX and YY, respectively.

A joint distribution for XX and YY is represented by a capacity on the product space 𝒳×𝒴\mathcal{X}\times\mathcal{Y}, such that the projections onto 𝒳\mathcal{X} and 𝒴\mathcal{Y} are μ\mu and ν\nu, respectively.

Definition 3.1.

Let 𝒳\mathcal{X} and 𝒴\mathcal{Y} be nonempty finite sets, μ\mu a capacity on 𝒳\mathcal{X}, ν\nu a capacity on 𝒴\mathcal{Y}, and π\pi a capacity on 𝒳×𝒴\mathcal{X}\times\mathcal{Y}.

  1. (1)

    The marginal capacities of π\pi on 𝒳\mathcal{X} and 𝒴\mathcal{Y}, respectively, are defined by

    π𝒳(A):=π(A×𝒴)andπ𝒴(B):=π(𝒳×B),for all A𝒳 and B𝒴.\pi_{\mathcal{X}}(A)\mathrel{\mathop{\mathchar 58\relax}}=\pi(A\times\mathcal{Y})\ \ \hbox{and}\ \ \pi_{\mathcal{Y}}(B)\mathrel{\mathop{\mathchar 58\relax}}=\pi(\mathcal{X}\times B),\ \ \hbox{for all $A\subseteq\mathcal{X}$ and $B\subseteq\mathcal{Y}$}.
  2. (2)

    The set of all capacities π\pi on 𝒳×𝒴\mathcal{X}\times\mathcal{Y} such that π𝒳=μ\pi_{\mathcal{X}}=\mu and π𝒴=ν\pi_{\mathcal{Y}}=\nu is denoted by ΠCh(μ,ν)\Pi_{\mathrm{Ch}}(\mu,\nu).

We are interested in evaluating a risk measure ρ(L(X,Y))\rho\left(L(X,Y)\right) of the portfolio loss function in the case where ρ\rho is a Choquet integral of L(X,Y)L\left(X,Y\right) with respect to a capacity π\pi on 𝒳×𝒴\mathcal{X}\times\mathcal{Y}:

ρπ(L(X,Y))=𝒳×𝒴L(X,Y)𝑑π.\rho_{\pi}\left(L(X,Y)\right)=\int_{\mathcal{X}\times\mathcal{Y}}L(X,Y)\,d\pi.

In our framework, while the capacities μ\mu and ν\nu are given, no information about the dependence structure (and hence the joint distribution) of the two risk factors is available. Therefore, computing a Choquet risk measure of the portfolio loss function is not possible without further information. A natural question that arises is whether we are able to establish upper and lower bounds on the value of such a risk measures with respect to the uncertrainty about the joint capacity πΠCh(μ,ν)\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu). Specifically, our problem is that of finding capacities that maximize or minimize the Choquet integral of L(X,Y)L(X,Y) among all capacities in ΠCh(μ,ν)\Pi_{\mathrm{Ch}}(\mu,\nu):

(3.1) (L;ΠCh(μ,ν)):=infπΠCh(μ,ν)ρπ(L(X,Y))supπΠCh(μ,ν)ρπ(L(X,Y))=:𝒰(L;ΠCh(μ,ν)).\mathcal{L}(L;\Pi_{\mathrm{Ch}}(\mu,\nu))\mathrel{\mathop{\mathchar 58\relax}}=\inf_{\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu)}\rho_{\pi}\left(L(X,Y)\right)\leq\sup_{\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu)}\rho_{\pi}\left(L(X,Y)\right)=\mathrel{\mathop{\mathchar 58\relax}}\mathcal{U}(L;\Pi_{\mathrm{Ch}}(\mu,\nu)).

Problem (3.1) can be seen as a generalization of the optimal transport problem to the setting of nonadditive measures.

4. The Optimal Transport Problem for Capacities

In this section, we formulate the optimal transport problem for capacities. Once the problem is formulated, we investigate properties of the feasible set. Understanding the lattice structure of the feasible set leads immediately to explicit formulas for the optimizers.

Definition 4.1.

Let 𝒳\mathcal{X} and 𝒴\mathcal{Y} be non-empty finite sets, and let uu and vv be probability measures on 𝒳\mathcal{X} and 𝒴\mathcal{Y}, respectively. Denote by Πa(u,v)\Pi_{a}(u,v) the set of measures on 𝒳×𝒴\mathcal{X}\times\mathcal{Y} that have the marginals uu on 𝒳\mathcal{X} and vv on 𝒴\mathcal{Y}. That is,

Πa(u,v):={π|π is a measure on 𝒳×𝒴 such that π(A×𝒴)=u(A), for any A𝒳,\displaystyle\Pi_{a}(u,v)\mathrel{\mathop{\mathchar 58\relax}}=\Big{\{}\pi~{}|~{}\pi\text{ is a measure on }\mathcal{X}\times\mathcal{Y}\text{ such that }\pi(A\times\mathcal{Y})=u(A),\text{ for any }A\subseteq\mathcal{X},
and π(𝒳×B)=v(B), for any B𝒴.}\displaystyle\text{ and }\pi(\mathcal{X}\times B)=v(B),\text{ for any }B\subseteq\mathcal{Y}.\Big{\}}

Given a function ff, the optimal transport minimization problem is:

(4.1) infπΠa(u,v)π(f)=infπΠa(u,v)x𝒳,y𝒴f(x,y)π({(x,y)}).\displaystyle\inf_{\pi\in\Pi_{a}(u,v)}\pi(f)=\inf_{\pi\in\Pi_{a}(u,v)}\sum_{x\in\mathcal{X},y\in\mathcal{Y}}f(x,y)\,\pi(\{(x,y)\}).

Similarly, given a function gg, the optimal transport maximization problem is:

(4.2) supπΠa(u,v)π(g).\displaystyle\sup_{\pi\in\Pi_{a}(u,v)}\pi(g).

Both the maximization and minimization problems are linear in π\pi. Because Πa(u,v)\Pi_{a}(u,v) is convex and compact, optimal solutions exist, and the set of optimal solutions contains at least one extreme point of the feasible set. For instance, when |𝒳|=|𝒴||\mathcal{X}|=|\mathcal{Y}| and both uu and vv are uniform measures, by Birkhoff’s Theorem there exists an optimal solution supported on i=1|𝒳|{(xi,yσ(i))}\bigcup_{i=1}^{|\mathcal{X}|}\{(x_{i},y_{\sigma(i)})\}, for some permutation σ\sigma.

Definition 4.2.

Let 𝒳\mathcal{X} and 𝒴\mathcal{Y} be nonempty finite sets and π\pi be a capacity on 𝒳×𝒴\mathcal{X}\times\mathcal{Y}. The marginal capacities of π\pi on 𝒳\mathcal{X} and 𝒴\mathcal{Y}, respectively, are defined by

π𝒳(A):=π(A×𝒴)andπ𝒴(B):=π(𝒳×B),\pi_{\mathcal{X}}(A)\mathrel{\mathop{\mathchar 58\relax}}=\pi(A\times\mathcal{Y})\ \ \hbox{and}\ \ \pi_{\mathcal{Y}}(B)\mathrel{\mathop{\mathchar 58\relax}}=\pi(\mathcal{X}\times B),

for all A𝒳A\subseteq\mathcal{X}, B𝒴B\subseteq\mathcal{Y}.

In particular, for two probability measures uu and vv, Πa(u,v)ΠCh(u,v)\Pi_{a}(u,v)\subseteq\Pi_{\mathrm{Ch}}(u,v), where the latter is defined in Definition 3.1. The proof of the following result is straightforward.

Lemma 4.3.

Let μ\mu and ν\nu be normalized capacities on 𝒳\mathcal{X} and 𝒴\mathcal{Y}, respectively. Then πΠCh(μ,ν)\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu) if and only if π¯ΠCh(μ¯,ν¯)\bar{\pi}\in\Pi_{\mathrm{Ch}}(\bar{\mu},\bar{\nu}).

Given a function f:𝒳×𝒴f\mathrel{\mathop{\mathchar 58\relax}}\mathcal{X}\times\mathcal{Y}\to\mathbb{R}, consider the analogue of the optimal transport problem on capacity couplings, i.e. finding capacities to maximize or minimize the Choquet integral of ff among all capacities in ΠCh(μ,ν)\Pi_{\mathrm{Ch}}(\mu,\nu):

(f;ΠCh(μ,ν)):=infπΠCh(μ,ν)π(f)supπΠCh(μ,ν)π(f)=:𝒰(f;ΠCh(μ,ν)).\mathcal{L}(f;\Pi_{\mathrm{Ch}}(\mu,\nu))\mathrel{\mathop{\mathchar 58\relax}}=\inf_{\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu)}\pi(f)\leq\sup_{\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu)}\pi(f)=\mathrel{\mathop{\mathchar 58\relax}}\mathcal{U}(f;\Pi_{\mathrm{Ch}}(\mu,\nu)).

We note that, since π(f)π(f)\pi(-f)\neq-\pi(f) in general, it is worthwhile to develop the theories for the minimum and maximum problems in parallel.

4.1. The Feasible Set and Its Properties

The first thing to observe about the feasible set is that it is nonempty.

Proposition 4.4.

Let μ\mu and ν\nu be normalized capacities on 𝒳\mathcal{X} and 𝒴\mathcal{Y} respectively. Then ΠCh(μ,ν)\Pi_{\mathrm{Ch}}(\mu,\nu)\neq\emptyset.

Proof.

Define the function G:𝒫𝒳,𝒴+G\mathrel{\mathop{\mathchar 58\relax}}\mathcal{P}_{\mathcal{X},\mathcal{Y}}\to\mathbb{R}_{+} by G(A×B):=μ(A)ν(B)G(A\times B)\mathrel{\mathop{\mathchar 58\relax}}=\mu(A)\cdot\nu(B) for A×B𝒫𝒳,𝒴A\times B\in\mathcal{P}_{\mathcal{X},\mathcal{Y}} with A𝒳A\subseteq\mathcal{X} and B𝒴B\subseteq\mathcal{Y}. It is easy to verify that both GG_{*} and GG^{*} are in ΠCh(μ,ν)\Pi_{\mathrm{Ch}}(\mu,\nu). \square

We note that we could have used 𝒫𝒳,𝒴\mathcal{P}^{*}_{\mathcal{X},\mathcal{Y}} in place of 𝒫𝒳,𝒴\mathcal{P}_{\mathcal{X},\mathcal{Y}} in the above argument, and reached the same conclusion. Since ΠCh(μ,ν)\Pi_{\mathrm{Ch}}(\mu,\nu) is defined by a finite system of linear equalities and inequalities, and 0π(B)10\leq\pi(B)\leq 1 for any set BB, we in fact have the following result.

Proposition 4.5.

Let μ\mu and ν\nu be normalized capacities on 𝒳\mathcal{X} and 𝒴\mathcal{Y}. Then ΠCh(μ,ν)\Pi_{\mathrm{Ch}}(\mu,\nu) is a compact, convex polyhedron in 2|𝒳||𝒴|\mathbb{R}^{2^{|\mathcal{X}|\cdot|\mathcal{Y}|}}.

Remark 4.6.
  • A capacity γ\gamma is called the unanimity game associated with the set FF if γ(G)=1\gamma(G)=1 if GFG\supseteq F, and γ(G)=0\gamma(G)=0 otherwise. If μ\mu is the unanimity game associated with A𝒳A\subseteq\mathcal{X}, and ν\nu is the unanimity game associated with B𝒴B\subseteq\mathcal{Y}, then the unanimity game π\pi associated with A×B𝒳×𝒴A\times B\subseteq\mathcal{X}\times\mathcal{Y} is in ΠCh(μ,ν)\Pi_{\mathrm{Ch}}(\mu,\nu).

  • Suppose that μ\mu is a totally monotone capacity on 𝒳\mathcal{X} with Möbius transform mμm^{\mu}, and ν\nu is a totally monotone capacity on 𝒴\mathcal{Y} with Möbius transform mνm^{\nu}, then π\pi defined to be the capacity on 𝒳×𝒴\mathcal{X}\times\mathcal{Y} with Möbius transform given by

    mπ(F)={mμ(A)mν(B),F=A×B,A𝒳,B𝒴;0,otherwise,m^{\pi}(F)=\begin{cases}m^{\mu}(A)\cdot m^{\nu}(B),&F=A\times B,A\subseteq\mathcal{X},B\subseteq\mathcal{Y};\\ 0,&\mathrm{otherwise},\end{cases}

    is a totally monotone capacity in ΠCh(μ,ν)\Pi_{\mathrm{Ch}}(\mu,\nu).333It should be noted that if μ\mu and ν\nu are capacities, this construction does not in general result in a capacity. A counterexample is given by 𝒳=𝒴={0,1}\mathcal{X}=\mathcal{Y}=\{0,1\}, μ=ν\mu=\nu, with μ()=0,μ({0})=μ({1})=0.7,μ(𝒳)=1\mu(\emptyset)=0,\mu(\{0\})=\mu(\{1\})=0.7,\mu(\mathcal{X})=1 (see Dyckerhoff (\APACyear2022)). For further information on this construction, see Bauer (\APACyear2012); Destercke (\APACyear2013); Ghirardato (\APACyear1997); Hendon \BOthers. (\APACyear1991); Koshevoy (\APACyear1998); Walley \BBA Fine (\APACyear1982). Combining the above argument with Lemma 4.3, it is easy to see that if μ\mu and ν\nu are totally alternating, then there exists a totally alternating capacity πΠCh(μ,ν)\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu).

  • A possibility measure γ\gamma is defined as a normalized capacity such that γ(AB)=max(γ(A),γ(B))\gamma(A\cup B)=\max(\gamma(A),\gamma(B)), for any sets AA and BB. From this definition, it is easy to see that γ(A)=maxzAγ({z})\gamma(A)=\max_{z\in A}\gamma(\{z\}) (and by normalization, there must exist zz such that γ({z})=1\gamma(\{z\})=1). If μ\mu and ν\nu are possibility measures, then π(A):=max(x,y)Aμ({x})ν({y})\pi(A)\mathrel{\mathop{\mathchar 58\relax}}=\max_{(x,y)\in A}\mu(\{x\})\cdot\nu(\{y\}) defines a possibility measure in ΠCh(μ,ν)\Pi_{\mathrm{Ch}}(\mu,\nu). The conjugate of a possibility measure is called a necessity measure (which satisfies γ(AB)=min(γ(A),γ(B))\gamma(A\cap B)=\min(\gamma(A),\gamma(B))). Again, using Lemma 4.3 one can show that if μ\mu and ν\nu are necessity measures, then there exists a necessity measure πΠCh(μ,ν)\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu).

A capacity is said to be balanced if its core is nonempty. The next result demonstrates that there exists a balanced πΠCh(μ,ν)\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu) if and only if both μ\mu and ν\nu are balanced.

Proposition 4.7.

Let μ\mu and ν\nu be normalized capacities on nonempty finite sets 𝒳\mathcal{X} and 𝒴\mathcal{Y}, respectively. Then the following are equivalent:

  1. (1)

    Both μ\mu and ν\nu have nonempty cores (i.e., 𝒞(μ)\mathcal{C}(\mu)\neq\emptyset and 𝒞(ν)\mathcal{C}(\nu)\neq\emptyset).

  2. (2)

    There exists πΠCh(μ,ν)\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu) with a nonempty core.

Proof.

Suppose that u𝒞(μ)u\in\mathcal{C}(\mu) and v𝒞(ν)v\in\mathcal{C}(\nu). Define a measure ww on 𝒳×𝒴\mathcal{X}\times\mathcal{Y} by w({(x,y)}):=u({x})v({y})w(\{(x,y)\})\mathrel{\mathop{\mathchar 58\relax}}=u(\{x\})v(\{y\}) and additivity. Further, define G:𝒫𝒳,𝒴+G\mathrel{\mathop{\mathchar 58\relax}}\mathcal{P}_{\mathcal{X},\mathcal{Y}}\to\mathbb{R}_{+} by G(A×B):=μ(A)ν(B)G(A\times B)\mathrel{\mathop{\mathchar 58\relax}}=\mu(A)\cdot\nu(B) for A𝒳A\subseteq\mathcal{X} and B𝒴B\subseteq\mathcal{Y}, and take π=GΠCh(μ,ν)\pi=G_{*}\in\Pi_{\mathrm{Ch}}(\mu,\nu). It is easy to see that π(𝒳×𝒴)=w(𝒳×𝒴)\pi(\mathcal{X}\times\mathcal{Y})=w(\mathcal{X}\times\mathcal{Y}). Let M𝒳×𝒴M\subseteq\mathcal{X}\times\mathcal{Y}, and consider K=A×B𝒫𝒳,𝒴K=A\times B\in\mathcal{P}_{\mathcal{X},\mathcal{Y}}, KMK\subseteq M. Then:

G(K)=μ(A)ν(B)\displaystyle G(K)\,=\,\mu(A)\,\nu(B) xAyBu({x})v({y})=z=(x,y)Kw({(x,y)})\displaystyle\,\leq\,\sum_{x\in A}\sum_{y\in B}u(\{x\})v(\{y\})\,=\sum_{z=(x,y)\in K}w(\{(x,y)\})
z=(x,y)Mw({(x,y)})=w(M).\displaystyle\leq\sum_{z=(x,y)\in M}w(\{(x,y)\})\,=\,w(M).

This implies that π(M)=G(M)w(M)\pi(M)=G_{*}(M)\leq w(M), for all M𝒳×𝒴M\subseteq\mathcal{X}\times\mathcal{Y}. Therefore, w𝒞(π)w\in\mathcal{C}(\pi).

Conversely, let πΠCh(μ,ν)\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu) and w𝒞(π)w\in\mathcal{C}(\pi), and define for y𝒴y\in\mathcal{Y}, v({y}):=x𝒳w({x,y})v(\{y\})\mathrel{\mathop{\mathchar 58\relax}}=\sum_{x\in\mathcal{X}}w(\{x,y\}). With B𝒴B\subseteq\mathcal{Y}, we have

v(B)=yBv({y})=x𝒳,yBw({x,y})=w(𝒳×B)π(𝒳×B)=ν(B),v(B)=\sum_{y\in B}v(\{y\})=\sum_{x\in\mathcal{X},y\in B}w(\{x,y\})=w(\mathcal{X}\times B)\geq\pi(\mathcal{X}\times B)=\nu(B),

with equality when B=𝒴B=\mathcal{Y}, and therefore v𝒞(ν)v\in\mathcal{C}(\nu)\neq\emptyset. The same argument yields 𝒞(μ)\mathcal{C}(\mu)\neq\emptyset. \square

Remark 4.8.

It should be noted that there can exist capacities μ\mu on 𝒳\mathcal{X} and ν\nu on 𝒴\mathcal{Y} with nonempty cores and an element πΠCh(μ,ν)\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu) with an empty core. Consider 𝒳={x1,x2}\mathcal{X}=\{x_{1},x_{2}\}, 𝒴={y1,y2}\mathcal{Y}=\{y_{1},y_{2}\}, and take μ\mu and ν\nu to be probability measures on 𝒳\mathcal{X} and 𝒴\mathcal{Y} respectively, giving equal weight to each point. Define πΠCh(μ,ν)\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu) to give value zero to the empty set, 1 to 𝒳×𝒴\mathcal{X}\times\mathcal{Y}, 14\tfrac{1}{4} to any subset consisting of a single point, 12\tfrac{1}{2} to any subset consisting of two points, and 78\tfrac{7}{8} to any subset consisting of three points. Any element w𝒞(π)w\in\mathcal{C}(\pi) would have to satisfy w({(x1,y1)})14w(\{(x_{1},y_{1})\})\geq\tfrac{1}{4}, and w(𝒳×𝒴{(x1,y1)})78w(\mathcal{X}\times\mathcal{Y}\setminus\{(x_{1},y_{1})\})\geq\tfrac{7}{8}, and thus w(𝒳×𝒴)98>1w(\mathcal{X}\times\mathcal{Y})\geq\tfrac{9}{8}>1, contradicting w(𝒳×𝒴)=π(𝒳×𝒴)=1w(\mathcal{X}\times\mathcal{Y})=\pi(\mathcal{X}\times\mathcal{Y})=1.

4.2. Lattice Structure of the Feasible Set and Characterization of the Optimal Solutions

If we think of normalized capacities on 𝒵\mathcal{Z} as functions on the collection of subsets 2𝒵2^{\mathcal{Z}}, then given two capacities γ\gamma and π\pi, we can define, for A𝒵A\subseteq\mathcal{Z}:

(πγ)(A):=min(π(A),γ(A)),(πγ)(A):=max(π(A),γ(A)).(\pi\wedge\gamma)(A)\mathrel{\mathop{\mathchar 58\relax}}=\min(\pi(A),\gamma(A)),\quad(\pi\vee\gamma)(A)\mathrel{\mathop{\mathchar 58\relax}}=\max(\pi(A),\gamma(A)).

With these definitions, πγ\pi\wedge\gamma and πγ\pi\vee\gamma are both capacities, and the collection of all normalized capacities is a bounded distributive lattice, with largest element giving value 1 to all nonempty sets, and smallest element giving value 0 to all sets except 𝒵\mathcal{Z}, which has value 1.444We note that there is another way of defining lattice operations on capacities, involving setwise maxima and minima of their Möbius transforms. See Grabisch (\APACyear2016); Marinacci \BBA Montrucchio (\APACyear2004) for details.

Since all capacities in ΠCh(μ,ν)\Pi_{\mathrm{Ch}}(\mu,\nu) have the same values for sets of the form A×𝒴A\times\mathcal{Y}, for A𝒳A\subseteq\mathcal{X}, and 𝒳×B\mathcal{X}\times B, for B𝒴B\subseteq\mathcal{Y}, we have that ΠCh(μ,ν)\Pi_{\mathrm{Ch}}(\mu,\nu) is a distributive sublattice. Furthermore, ΠCh(μ,ν)\Pi_{\mathrm{Ch}}(\mu,\nu) is bounded (as a lattice) with maximum and minimum elements given by taking setwise maxima and minima:

π(A)=supπΠCh(μ,ν)π(A)andπ(A)=infπΠCh(μ,ν)π(A).\pi^{*}(A)=\sup_{\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu)}\pi(A)\ \ \hbox{and}\ \ \quad\pi_{*}(A)=\inf_{\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu)}\pi(A).

The next result follows from the definition of the Choquet integral.

Theorem 4.9.

For f:𝒳×𝒴f\mathrel{\mathop{\mathchar 58\relax}}\mathcal{X}\times\mathcal{Y}\to\mathbb{R}, and π\pi_{*} and π\pi^{*} described above, we have

minπΠCh(μ,ν)π(f)=π(f)andmaxπΠCh(μ,ν)π(f)=π(f).\min_{\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu)}\pi(f)=\pi_{*}(f)\ \ \hbox{and}\ \ \max_{\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu)}\pi(f)=\pi^{*}(f).
Proof.

We first verify that both π\pi_{*} and π\pi^{*} are indeed feasible. Note that if N=A×𝒴N=A\times\mathcal{Y} for A𝒳A\subseteq\mathcal{X}, then π(N)=μ(A)\pi(N)=\mu(A) for all πΠCh(μ,ν)\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu), and therefore π(N)=π(N)=μ(A)\pi^{*}(N)=\pi_{*}(N)=\mu(A). Similarly, if N=𝒳×BN=\mathcal{X}\times B with B𝒴B\subseteq\mathcal{Y}, then π(N)=π(N)=ν(B)\pi^{*}(N)=\pi_{*}(N)=\nu(B). Furthermore, by their definitions, both π\pi^{*} and π\pi_{*} are non-negative non-decreasing set functions, i.e. capacities. In other words, we have that π,πΠCh(μ,ν)\pi^{*},\pi_{*}\in\Pi_{\mathrm{Ch}}(\mu,\nu).

Now, by the definition in (4.2), π\pi_{*} and π\pi^{*} achieve the set-wise infimum and supremum among ΠCh(μ,ν)\Pi_{\mathrm{Ch}}(\mu,\nu), respectively. Let πΠCh(μ,ν)\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu). Then:

π(f)\displaystyle\pi(f) =0π({ft})𝑑t+0(π({ft})π(𝒵))𝑑t\displaystyle=\int_{0}^{\infty}\pi(\{f\geq t\})\,dt+\int_{-\infty}^{0}(\pi(\{f\geq t\})-\pi(\mathcal{Z}))\,dt
=0π({ft})𝑑t+0(π({ft})1)𝑑t\displaystyle=\int_{0}^{\infty}\pi(\{f\geq t\})\,dt+\int_{-\infty}^{0}(\pi(\{f\geq t\})-1)\,dt
0π({ft})𝑑t+0(π({ft})1)𝑑t=π(f).\displaystyle\geq\int_{0}^{\infty}\pi_{*}(\{f\geq t\})\,dt+\int_{-\infty}^{0}(\pi_{*}(\{f\geq t\})-1)\,dt=\pi_{*}(f).

The proof for π\pi^{*} is similar. \square

It is possible to find explicit expressions for π\pi_{*} and π\pi^{*}.

Theorem 4.10.

For any N𝒳×𝒴N\subseteq\mathcal{X}\times\mathcal{Y},

π(N)=max(μ(N~𝒳),ν(N~𝒴))andπ(N)=min(μ(N𝒳),ν(N𝒴)).\pi_{*}(N)=\max\left(\mu(\widetilde{N}_{\mathcal{X}}),\nu(\widetilde{N}_{\mathcal{Y}})\right)\ \ \hbox{and}\ \ \pi^{*}(N)=\min\left(\mu(N_{\mathcal{X}}),\nu(N_{\mathcal{Y}})\right).
Proof.

Define G:𝒫𝒳,𝒴G\mathrel{\mathop{\mathchar 58\relax}}\mathcal{P}^{*}_{\mathcal{X},\mathcal{Y}}\rightarrow\mathbb{R} by

G(M):={μ(A), if M=A×𝒴;ν(B), if M=𝒳×B.\displaystyle G(M)\mathrel{\mathop{\mathchar 58\relax}}=\begin{cases}\mu(A),&\text{ if }M=A\times\mathcal{Y};\\ \nu(B),&\text{ if }M=\mathcal{X}\times B.\end{cases}

Let GG* and GG_{*} be the outer and inner envelope of GG as defined in Definition 2.6 with 𝒢=𝒫𝒳,𝒴\mathcal{G}=\mathcal{P}^{*}_{\mathcal{X},\mathcal{Y}}. From the monotonicity of μ\mu on 2𝒳2^{\mathcal{X}} (with the inclusion order), it is not hard to see that, for any N𝒫𝒳,𝒴N\in\mathcal{P}^{*}_{\mathcal{X},\mathcal{Y}} with N=A×𝒴N=A\times\mathcal{Y}, one has G(N)=G(N)=μ(A)G^{*}(N)=G_{*}(N)=\mu(A). Similarly, for any N=𝒳×BN=\mathcal{X}\times B with B𝒴B\subseteq\mathcal{Y}, we have G(N)=G(N)=ν(B)G^{*}(N)=G_{*}(N)=\nu(B). By definition, GG^{*} and GG_{*} are clearly non-negative and non-decreasing, so G,GΠCh(μ,ν)G^{*},G_{*}\in\Pi_{\mathrm{Ch}}(\mu,\nu).

For any N𝒳×𝒴N\subseteq\mathcal{X}\times\mathcal{Y}, N~𝒳×𝒴NN𝒳×𝒴\widetilde{N}_{\mathcal{X}}\times\mathcal{Y}\subseteq N\subseteq N_{\mathcal{X}}\times\mathcal{Y} and 𝒳×N~𝒴N𝒳×N𝒴\mathcal{X}\times\widetilde{N}_{\mathcal{Y}}\subseteq N\subseteq\mathcal{X}\times N_{\mathcal{Y}}. Therefore, G(N)min(μ(N𝒳),ν(N𝒴))G^{*}(N)\leq\min(\mu(N_{\mathcal{X}}),\nu(N_{\mathcal{Y}})) and G(N)max(μ(N~𝒳),ν(N~𝒴))G_{*}(N)\geq\max(\mu(\widetilde{N}_{\mathcal{X}}),\nu(\widetilde{N}_{\mathcal{Y}})). If NA×𝒴N\subseteq A\times\mathcal{Y}, then N𝒳AN_{\mathcal{X}}\subseteq A, and if A×𝒴NA^{\prime}\times\mathcal{Y}\subseteq N, then AN~𝒳A^{\prime}\subseteq\widetilde{N}_{\mathcal{X}}. The monotonicity of μ\mu and ν\nu then imply that

G(N)=min(μ(N𝒳),ν(N𝒴)),\displaystyle G^{*}(N)=\min(\mu(N_{\mathcal{X}}),\nu(N_{\mathcal{Y}})),
G(N)=max(μ(N~𝒳),ν(N~𝒴)).\displaystyle G_{*}(N)=\max(\mu(\widetilde{N}_{\mathcal{X}}),\nu(\widetilde{N}_{\mathcal{Y}})).

To complete the proof, we will show that π=G\pi_{*}=G_{*} and π=G\pi^{*}=G^{*}. For any πΠCh(μ,ν)\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu) and N𝒳×𝒴N\subseteq\mathcal{X}\times\mathcal{Y}, the relation N~𝒳×𝒴NN𝒳×𝒴\widetilde{N}_{\mathcal{X}}\times\mathcal{Y}\subseteq N\subseteq N_{\mathcal{X}}\times\mathcal{Y} implies that

μ(N~𝒳)=π(N~𝒳×𝒴)π(N)π(N𝒳×𝒴)=μ(N𝒳),\mu(\widetilde{N}_{\mathcal{X}})=\pi(\widetilde{N}_{\mathcal{X}}\times\mathcal{Y})\leq\pi(N)\leq\pi(N_{\mathcal{X}}\times\mathcal{Y})=\mu(N_{\mathcal{X}}),\\

and 𝒳×N~𝒴N𝒳×N𝒴\mathcal{X}\times\widetilde{N}_{\mathcal{Y}}\subseteq N\subseteq\mathcal{X}\times N_{\mathcal{Y}} implies that

ν(N~𝒴)=π(𝒳×N~𝒴)π(N)π(𝒳×N𝒴)=ν(N𝒴).\nu(\widetilde{N}_{\mathcal{Y}})=\pi(\mathcal{X}\times\widetilde{N}_{\mathcal{Y}})\leq\pi(N)\leq\pi(\mathcal{X}\times N_{\mathcal{Y}})=\nu(N_{\mathcal{Y}}).

Therefore,

G(N)=max(μ(N~𝒳),ν(N~𝒴))π(N)min(μ(N𝒳),ν(N𝒴))=G(N).G_{*}(N)=\max(\mu(\widetilde{N}_{\mathcal{X}}),\nu(\widetilde{N}_{\mathcal{Y}}))\leq\pi(N)\leq\min(\mu(N_{\mathcal{X}}),\nu(N_{\mathcal{Y}}))=G^{*}(N).

This implies, GπG_{*}\leq\pi_{*} and πG\pi^{*}\leq G^{*}. The equalities hold because G,GΠCh(μ,ν)G_{*},G^{*}\in\Pi_{\mathrm{Ch}}(\mu,\nu). \square

Remark 4.11.

If we explicitly include the dependence of the optimizers on the marginal capacities, i.e. when given μ,ν\mu,\nu write π(;μ,ν)\pi_{*}(\cdot;\mu,\nu) and π(;μ,ν)\pi^{*}(\cdot;\mu,\nu) for the smallest and largest elements of ΠCh(μ,ν)\Pi_{\mathrm{Ch}}(\mu,\nu), then it is easy to show that π¯(;μ,ν)=π(;μ¯,ν¯)\bar{\pi}_{*}(\cdot;\mu,\nu)=\pi^{*}(\cdot;\bar{\mu},\bar{\nu}) and π¯(;μ,ν)=π(;μ¯,ν¯)\bar{\pi}^{*}(\cdot;\mu,\nu)=\pi_{*}(\cdot;\bar{\mu},\bar{\nu}).

Remark 4.12.
  • Suppose that μ\mu is the unanimity game associated with A𝒳A\subseteq\mathcal{X} and ν\nu is the unanimity game associated with B𝒴B\subseteq\mathcal{Y}, and N𝒳×𝒴N\subseteq\mathcal{X}\times\mathcal{Y}. Then π(N)=1\pi_{*}(N)=1 if either A×𝒴NA\times\mathcal{Y}\subseteq N or 𝒳×BN\mathcal{X}\times B\subseteq N, and zero otherwise. On the other hand, π(N)=1\pi^{*}(N)=1 if for all x0Ax_{0}\in A there exists y(x0)𝒴y(x_{0})\in\mathcal{Y} such that (x0,y(x0))N(x_{0},y(x_{0}))\in N and for all y0By_{0}\in B there exists x(y0)𝒳x(y_{0})\in\mathcal{X} such that (x(y0),y0)N(x(y_{0}),y_{0})\in N, and π(N)=0\pi^{*}(N)=0 otherwise.

  • Suppose that μ\mu and ν\nu are possibility measures, and define M:𝒳×𝒴[0,1]M\mathrel{\mathop{\mathchar 58\relax}}\mathcal{X}\times\mathcal{Y}\to[0,1] by M(x,y):=max(μ({x}),ν({y})M(x,y)\mathrel{\mathop{\mathchar 58\relax}}=\max(\mu(\{x\}),\nu(\{y\}). Then given N𝒳×𝒴N\subseteq\mathcal{X}\times\mathcal{Y},

    π(N)=max(maxxN~𝒳μ({x}),maxyN~𝒴ν({y}))=max(x,y)N~𝒳×N~𝒴M(x,y).\pi_{*}(N)=\max(\max_{x\in\widetilde{N}_{\mathcal{X}}}\mu(\{x\}),\max_{y\in\widetilde{N}_{\mathcal{Y}}}\nu(\{y\}))=\max_{(x,y)\in\widetilde{N}_{\mathcal{X}}\times\widetilde{N}_{\mathcal{Y}}}M(x,y).

    Define m:𝒳×𝒴[0,1]m\mathrel{\mathop{\mathchar 58\relax}}\mathcal{X}\times\mathcal{Y}\to[0,1] by m(x,y):=min(μ({x}),ν({y}))m(x,y)\mathrel{\mathop{\mathchar 58\relax}}=\min(\mu(\{x\}),\nu(\{y\})), then

    π(N)=min(maxxN𝒳μ({x}),maxyN𝒴ν({y}))=max(x,y)N𝒳×N𝒴m(x,y).\pi^{*}(N)=\min(\max_{x\in N_{\mathcal{X}}}\mu(\{x\}),\max_{y\in N_{\mathcal{Y}}}\nu(\{y\}))=\max_{(x,y)\in N_{\mathcal{X}}\times N_{\mathcal{Y}}}m(x,y).

    When μ\mu and ν\nu are necessity measures, then π\pi_{*} and π\pi^{*} can be calculated using the previous remark.

Consider f:𝒳×𝒴f\mathrel{\mathop{\mathchar 58\relax}}\mathcal{X}\times\mathcal{Y}\to\mathbb{R}. For a fixed x𝒳x\in\mathcal{X}, define

fy(x):=min{f(x,y):y𝒴}andfy(x):=max{f(x,y):y𝒴},\displaystyle f_{y}(x)\mathrel{\mathop{\mathchar 58\relax}}=\min\{f(x,y)\mathrel{\mathop{\mathchar 58\relax}}y\in\mathcal{Y}\}\ \ \hbox{and}\ \ f^{y}(x)\mathrel{\mathop{\mathchar 58\relax}}=\max\{f(x,y)\mathrel{\mathop{\mathchar 58\relax}}y\in\mathcal{Y}\},

with fx,fx:𝒴f_{x},f^{x}\mathrel{\mathop{\mathchar 58\relax}}\mathcal{Y}\to\mathbb{R} defined similarly. Then

{ft}~𝒳\displaystyle\widetilde{\{f\geq t\}}_{\mathcal{X}} ={x𝒳:(x,y){ft}y𝒴}\displaystyle=\{x\in\mathcal{X}\mathrel{\mathop{\mathchar 58\relax}}(x,y)\in\{f\geq t\}\;\forall y\in\mathcal{Y}\}
={x𝒳:miny𝒴f(x,y)t}={fyt}.\displaystyle=\{x\in\mathcal{X}\mathrel{\mathop{\mathchar 58\relax}}\min_{y\in\mathcal{Y}}f(x,y)\geq t\}=\{f_{y}\geq t\}.

Similarly {ft}~𝒴={fxt}\widetilde{\{f\geq t\}}_{\mathcal{Y}}=\{f_{x}\geq t\}, and therefore

π({ft})=max(μ({fyt}),ν({fxt})),\pi_{*}(\{f\geq t\})=\max(\mu(\{f_{y}\geq t\}),\nu(\{f_{x}\geq t\})),

and

π(f)=0max(μ({fyt}),ν({fxt}))𝑑t+0(max(μ({fyt}),ν({fxt}))1)𝑑t,\pi_{*}(f)=\int_{0}^{\infty}\max(\mu(\{f_{y}\geq t\}),\nu(\{f_{x}\geq t\}))\,dt+\int_{-\infty}^{0}(\max(\mu(\{f_{y}\geq t\}),\nu(\{f_{x}\geq t\}))-1)\,dt,

using the fact that we have assumed μ\mu and ν\nu to be normalized.

Using a similar argument,

{ft}𝒳\displaystyle\{f\geq t\}_{\mathcal{X}} ={x𝒳:y𝒴,f(x,y)t}\displaystyle=\{x\in\mathcal{X}\mathrel{\mathop{\mathchar 58\relax}}\exists y\in\mathcal{Y},f(x,y)\geq t\}
={x𝒳:maxy𝒴f(x,y)t}={fyt},\displaystyle=\{x\in\mathcal{X}\mathrel{\mathop{\mathchar 58\relax}}\max_{y\in\mathcal{Y}}f(x,y)\geq t\}=\{f^{y}\geq t\},

and {ft}𝒴={fxt}\{f\geq t\}_{\mathcal{Y}}=\{f^{x}\geq t\}. Thus,

π({ft})=min(μ({fyt}),ν({fxt})),\pi^{*}(\{f\geq t\})=\min(\mu(\{f^{y}\geq t\}),\nu(\{f^{x}\geq t\})),

and

π(f)=0min(μ({fyt}),ν({fxt}))𝑑t+0(min(μ({fyt}),ν({fxt}))1)𝑑t.\pi^{*}(f)=\int_{0}^{\infty}\min(\mu(\{f^{y}\geq t\}),\nu(\{f^{x}\geq t\}))\,dt+\int_{-\infty}^{0}(\min(\mu(\{f^{y}\geq t\}),\nu(\{f^{x}\geq t\}))-1)\,dt.

To conclude, we have

(f;ΠCh(μ,ν))\displaystyle\mathcal{L}(f;\Pi_{\mathrm{Ch}}(\mu,\nu))
=minπΠCh(μ,ν)π(f)=π(f)\displaystyle=\min_{\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu)}\pi(f)=\pi_{*}(f)
=0max(μ({fyt}),ν({fxt}))𝑑t+0(max(μ({fyt}),ν({fxt}))1)𝑑t\displaystyle=\int_{0}^{\infty}\max(\mu(\{f_{y}\geq t\}),\nu(\{f_{x}\geq t\}))\,dt+\int_{-\infty}^{0}(\max(\mu(\{f_{y}\geq t\}),\nu(\{f_{x}\geq t\}))-1)\,dt
0min(μ({fyt}),ν({fxt}))𝑑t+0(min(μ({fyt}),ν({fxt}))1)𝑑t\displaystyle\leq\int_{0}^{\infty}\min(\mu(\{f^{y}\geq t\}),\nu(\{f^{x}\geq t\}))\,dt+\int_{-\infty}^{0}(\min(\mu(\{f^{y}\geq t\}),\nu(\{f^{x}\geq t\}))-1)\,dt
=π(f)=maxπΠCh(μ,ν)π(f)\displaystyle=\pi^{*}(f)=\max_{\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu)}\pi(f)
=𝒰(f;Π(μ,ν)).\displaystyle=\mathcal{U}(f;\Pi(\mu,\nu)).

4.3. Balancedness and Cores of the Optimal Solutions

Since π(N)π(N)π(N)\pi_{*}(N)\leq\pi(N)\leq\pi^{*}(N), for all N𝒳×𝒴N\subseteq\mathcal{X}\times\mathcal{Y} and πΠCh(μ,ν)\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu), we immediately obtain the following result.

Proposition 4.13.

Let μ\mu and ν\nu be normalized capacities on 𝒳\mathcal{X} and 𝒴\mathcal{Y}, respectively. The following statements regarding the cores hold.

  1. (1)

    If 𝒞(π)\mathcal{C}(\pi^{*})\neq\emptyset, then 𝒞(π)\mathcal{C}(\pi)\neq\emptyset for all πΠCh(μ,ν)\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu).

  2. (2)

    If 𝒞(π)=\mathcal{C}(\pi_{*})=\emptyset, then 𝒞(π)=\mathcal{C}(\pi)=\emptyset for all πΠCh(μ,ν)\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu).

  3. (3)

    In particular, 𝒞(π)\mathcal{C}(\pi_{*})\neq\emptyset iff 𝒞(μ)\mathcal{C}(\mu)\neq\emptyset and 𝒞(ν)\mathcal{C}(\nu)\neq\emptyset.

Proof.

Suppose p𝒞(π)p\in\mathcal{C}(\pi^{*}), then for any fixed πΠ(μ,ν)\pi\in\Pi(\mu,\nu) and any N𝒳×𝒴N\subseteq\mathcal{X}\times\mathcal{Y}, one has p(N)π(N)π(N)p(N)\geq\pi^{*}(N)\geq\pi(N), with both equalities hold at N=𝒳×𝒴N=\mathcal{X}\times\mathcal{Y}. Therefore, p𝒞(π)p\in\mathcal{C}(\pi). Using the same argument, one can show (2). Proposition 4.7 together with (2) implies (3). \square

However, 𝒞(π)\mathcal{C}(\pi^{*}) is typically empty, as per the following result.

Proposition 4.14.

Suppose that μ\mu and ν\nu are normalized capacities on 𝒳\mathcal{X} and 𝒴\mathcal{Y}, respectively, and |𝒳|2|\mathcal{X}|\geq 2, |𝒴|2|\mathcal{Y}|\geq 2. Then 𝒞(π)=\mathcal{C}(\pi^{*})=\emptyset.

Proof.

Let {A1,A2}\{A_{1},A_{2}\} and {B1,B2}\{B_{1},B_{2}\} be partitions of 𝒳\mathcal{X} and 𝒴\mathcal{Y} respectively, and define:

N1=(A1×B1)(A2×B2)andN2=(A1×B2)(A2×B1).N^{1}=(A_{1}\times B_{1})\cup(A_{2}\times B_{2})\ \ \hbox{and}\ \ N^{2}=(A_{1}\times B_{2})\cup(A_{2}\times B_{1}).

Then N𝒳1=N𝒳2=𝒳N^{1}_{\mathcal{X}}=N^{2}_{\mathcal{X}}=\mathcal{X}, N𝒴1=N𝒴2=𝒴N^{1}_{\mathcal{Y}}=N^{2}_{\mathcal{Y}}=\mathcal{Y}, so that for the disjoint sets N1N^{1} and N2N^{2}, π(N1)=π(N2)=1\pi^{*}(N^{1})=\pi^{*}(N^{2})=1. \square

We can in fact explicitly identify 𝒞(π)\mathcal{C}(\pi_{*}) in terms of 𝒞(μ)\mathcal{C}(\mu) and 𝒞(ν)\mathcal{C}(\nu).

Proposition 4.15.

Let μ\mu and ν\nu be normalized capacities on 𝒳\mathcal{X} and 𝒴\mathcal{Y}, respectively. Then

𝒞(π)=u𝒞(μ),v𝒞(ν)Πa(u,v).\mathcal{C}(\pi_{*})=\bigcup_{u\in\mathcal{C}(\mu),v\in\mathcal{C}(\nu)}\Pi_{a}(u,v).
Proof.

Let w𝒞(π)w\in\mathcal{C}(\pi_{*}), and for each fixed x0𝒳x_{0}\in\mathcal{X}, y0𝒴y_{0}\in\mathcal{Y} define uw({x0}):=y𝒴w({x0,y})u_{w}(\{x_{0}\})\mathrel{\mathop{\mathchar 58\relax}}=\sum_{y\in\mathcal{Y}}w(\{x_{0},y\}), and vw({y0}):=x𝒳w({x,y0})v_{w}(\{y_{0}\})\mathrel{\mathop{\mathchar 58\relax}}=\sum_{x\in\mathcal{X}}w(\{x,y_{0}\}). Clearly wΠa(uw,vw)w\in\Pi_{a}(u_{w},v_{w}). Furthermore, for A𝒳A\subseteq\mathcal{X}, we have

uw(A)=w(A×𝒴)π(A×𝒴)=μ(A),u_{w}(A)=w(A\times\mathcal{Y})\geq\pi_{*}(A\times\mathcal{Y})=\mu(A),

since πΠCh(μ,ν)\pi_{*}\in\Pi_{\mathrm{Ch}}(\mu,\nu). Thus, uw𝒞(μ)u_{w}\in\mathcal{C}(\mu), and similarly vw𝒞(ν)v_{w}\in\mathcal{C}(\nu).


Conversely, suppose that wΠa(u,v)w\in\Pi_{a}(u,v) with u𝒞(μ)u\in\mathcal{C}(\mu) and v𝒞(ν)v\in\mathcal{C}(\nu). Clearly, w(𝒳×𝒴)=u(𝒳)=μ(𝒳)=1w(\mathcal{X}\times\mathcal{Y})=u(\mathcal{X})=\mu(\mathcal{X})=1. Let N𝒳×𝒴N\subseteq\mathcal{X}\times\mathcal{Y}, and note that N~𝒳×𝒴N\widetilde{N}_{\mathcal{X}}\times\mathcal{Y}\subseteq N and 𝒳×N~𝒴N\mathcal{X}\times\widetilde{N}_{\mathcal{Y}}\subseteq N. Then

π(N)=max(μ(N~𝒳),ν(N~𝒴))max(u(N~𝒳),v(N~𝒴))=max(w(N~𝒳×𝒴),w(𝒳×N~𝒴))w(N).\displaystyle\pi_{*}(N)=\max(\mu(\widetilde{N}_{\mathcal{X}}),\nu(\widetilde{N}_{\mathcal{Y}}))\leq\max(u(\widetilde{N}_{\mathcal{X}}),v(\widetilde{N}_{\mathcal{Y}}))=\max(w(\widetilde{N}_{\mathcal{X}}\times\mathcal{Y}),w(\mathcal{X}\times\widetilde{N}_{\mathcal{Y}}))\leq w(N).

That is, w𝒞(π)w\in\mathcal{C}(\pi_{*}). \square

Remark 4.16.

By (Grabisch, \APACyear2016, Corollary 2.23 (ii)), γ\gamma is supermodular if and only if for every AB𝒳×𝒴A\subseteq B\subseteq\mathcal{X}\times\mathcal{Y} and zBz\notin B, Δzγ(A)Δzγ(B)\Delta_{z}\gamma(A)\leq\Delta_{z}\gamma(B), where Δzγ(A):=γ(A{z})γ(A)\Delta_{z}\gamma(A)\mathrel{\mathop{\mathchar 58\relax}}=\gamma(A\cup\{z\})-\gamma(A), and Δzγ(B)\Delta_{z}\gamma(B) is defined similarly. It is well-known that if γ\gamma is supermodular, then 𝒞(γ)\mathcal{C}(\gamma)\neq\emptyset (e.g., (Grabisch, \APACyear2016, Theorem 3.15)).

Let 𝒳={x1,x2,x3}\mathcal{X}=\{x_{1},x_{2},x_{3}\}, and 𝒴={y1,y2,y3}\mathcal{Y}=\{y_{1},y_{2},y_{3}\}, and let μ\mu be the additive (and therefore supermodular) capacity with μ({x1})=μ({x2})=0.1\mu(\{x_{1}\})=\mu(\{x_{2}\})=0.1, and μ({x3})=0.8\mu(\{x_{3}\})=0.8, with ν\nu defined on 𝒴\mathcal{Y} in the same way. Define:

A:={(x1,y2),(x1,y3)}andB:={(x1,y2),(x1,y3),(x2,y3),(x3,y3)},\displaystyle A\mathrel{\mathop{\mathchar 58\relax}}=\{(x_{1},y_{2}),(x_{1},y_{3})\}\ \ \text{and}\ \ B\mathrel{\mathop{\mathchar 58\relax}}=\{(x_{1},y_{2}),(x_{1},y_{3}),(x_{2},y_{3}),(x_{3},y_{3})\},

and z:=(x1,y1)z\mathrel{\mathop{\mathchar 58\relax}}=(x_{1},y_{1}). Note that A~𝒳=\widetilde{A}_{\mathcal{X}}=\emptyset, A~𝒴=\widetilde{A}_{\mathcal{Y}}=\emptyset, so π(A)=0\pi_{*}(A)=0. Also, (Az)~𝒳={x1}\widetilde{(A\cup z)}_{\mathcal{X}}=\{x_{1}\}, (Az)~𝒴=\widetilde{(A\cup z)}_{\mathcal{Y}}=\emptyset, so Δzπ(A)=π(Az)=μ({x1})=0.1\Delta_{z}\pi_{*}(A)=\pi_{*}(A\cup z)=\mu(\{x_{1}\})=0.1. Furthermore, B~𝒳=\widetilde{B}_{\mathcal{X}}=\emptyset, B~𝒴={y3}\widetilde{B}_{\mathcal{Y}}=\{y_{3}\}, (Bz)~𝒳={x1}\widetilde{(B\cup z)}_{\mathcal{X}}=\{x_{1}\}, and (Bz)~𝒴={y3}\widetilde{(B\cup z)}_{\mathcal{Y}}=\{y_{3}\}, so π(B)=π(Bz)=ν({y3})=0.8\pi_{*}(B)=\pi_{*}(B\cup z)=\nu(\{y_{3}\})=0.8, and Δzπ(B)=0\Delta_{z}\pi_{*}(B)=0. Thus, we conclude that while π\pi_{*} has a nonempty core, it is not supermodular.

Definition 4.17.

A capacity γ\gamma on 𝒵\mathcal{Z} is said to be exact if for every S2𝒵S\in 2^{\mathcal{Z}}\setminus\emptyset, there exists a core element p𝒞(γ)p\in\mathcal{C}(\gamma) such that p(S)=γ(S)p(S)=\gamma(S).

We have seen that 𝒞(π)\mathcal{C}(\pi^{*}) is typically empty, so that π\pi^{*} will not be exact. In the case when μ\mu and ν\nu are exact, we may ask whether π\pi_{*} is exact. That is, we define the capacity π~ΠCh(μ,ν)\widetilde{\pi}\in\Pi_{\mathrm{Ch}}(\mu,\nu) by:

π~(N):=min{p(N):pu𝒞(μ),v𝒞(ν)Πa(u,v)}, for any N𝒳×𝒴,\widetilde{\pi}(N)\mathrel{\mathop{\mathchar 58\relax}}=\min\left\{p(N)\mathrel{\mathop{\mathchar 58\relax}}p\in\bigcup_{u\in\mathcal{C}(\mu),v\in\mathcal{C}(\nu)}\Pi_{a}(u,v)\right\},\text{ for any }N\subseteq\mathcal{X}\times\mathcal{Y},

and we ask whether π=π~\pi_{*}=\widetilde{\pi}.

Remark 4.18.

In general π~\widetilde{\pi} as defined above need not be either submodular or supermodular. To see this, consider the case 𝒳=𝒴={1,2,,n}\mathcal{X}=\mathcal{Y}=\{1,2,\ldots,n\} for some n3n\geq 3, with μ\mu and ν\nu being uniform probability measures, and let π\pi^{\prime} be the conjugate of π~\widetilde{\pi}.555We prefer to avoid the cumbersome notation π~¯\bar{\widetilde{\pi}}. Then

π(A)=1π~(Ac)=1minpΠa(μ,ν)p(Ac)=maxpΠa(μ,ν)p(A).\pi^{\prime}(A)=1-\widetilde{\pi}(A^{c})=1-\min_{p\in\Pi_{a}(\mu,\nu)}p(A^{c})=\max_{p\in\Pi_{a}(\mu,\nu)}p(A).

By Birkhoff’s Theorem, the optimum π~(A)\widetilde{\pi}(A) (and similarly π(A)\pi^{\prime}(A)) is achieved by measures that put mass 1n\frac{1}{n} on points {xi,yσ(i)}\{x_{i},y_{\sigma(i)}\} for some permutation σ\sigma. Consider A1={(1,1)}A_{1}=\{(1,1)\}, z=(n,n)z=(n,n) and B1=𝒳×𝒴{z}B_{1}=\mathcal{X}\times\mathcal{Y}\setminus\{z\}. Then it is easy to see that Δzπ(A1)=2n1n=1n\Delta_{z}\pi^{\prime}(A_{1})=\tfrac{2}{n}-\tfrac{1}{n}=\tfrac{1}{n}, while Δzπ(B1)=11=0\Delta_{z}\pi^{\prime}(B_{1})=1-1=0. Thus Δzπ(A1)>Δzπ(B1)\Delta_{z}\pi^{\prime}(A_{1})>\Delta_{z}\pi^{\prime}(B_{1}), and A1B1A_{1}\subseteq B_{1}, so π\pi^{\prime} is not supermodular (and therefore π~\widetilde{\pi} is not submodular, see (Grabisch, \APACyear2016, Theorem 2.20)). On the other hand, consider A2={(1,1)}A_{2}=\{(1,1)\}, B2={(1,1),(2,1)}B_{2}=\{(1,1),(2,1)\} and z=(1,2)z=(1,2). Then Δzπ(A2)=0\Delta_{z}\pi^{\prime}(A_{2})=0, and Δzπ(B2)=1n\Delta_{z}\pi^{\prime}(B_{2})=\frac{1}{n}. We therefore have that (B2{z})c(A2{z})c(B_{2}\cup\{z\})^{c}\subseteq(A_{2}\cup\{z\})^{c}, and Δzπ~((B2{z})c)=Δzπ(B2)>Δzπ(A2)=Δzπ~((A2{z})c)\Delta_{z}\widetilde{\pi}((B_{2}\cup\{z\})^{c})=\Delta_{z}\pi^{\prime}(B_{2})>\Delta_{z}\pi^{\prime}(A_{2})=\Delta_{z}\widetilde{\pi}((A_{2}\cup\{z\})^{c}) (e.g., (Grabisch, \APACyear2016, Theorem 2.16)). Thus π~\widetilde{\pi} is not supermodular (and π\pi^{\prime} is not submodular).

Remark 4.19.

Let n2n\geq 2, 𝒳={1,,n}\mathcal{X}=\{1,\ldots,n\} and 𝒴=𝒳\mathcal{Y}=\mathcal{X}, and take μ\mu and ν\nu to be two probability measures on 𝒳\mathcal{X} that are not equal. Then 𝒞(μ)={μ}\mathcal{C}(\mu)=\{\mu\}, and 𝒞(ν)={ν}\mathcal{C}(\nu)=\{\nu\}, so that 𝒞(π)=Πa(μ,ν)\mathcal{C}(\pi_{*})=\Pi_{a}(\mu,\nu). Notice that any element of Πa(μ,ν)\Pi_{a}(\mu,\nu) is also in ΠCh(μ,ν)\Pi_{\mathrm{Ch}}(\mu,\nu). Πa(μ,ν)\Pi_{a}(\mu,\nu) is compact, and for any fixed BB, p(B)={x,y}Bp({x,y})p(B)=\sum_{\{x,y\}\in B}p(\{x,y\}) is a continuous function on Πa(μ,ν)\Pi_{a}(\mu,\nu) and therefore its minimum is attained. Consider the set D={(1,1),(2,2),,(n,n)}D=\{(1,1),(2,2),\ldots,(n,n)\} and M=DcM=D^{c}. We have that M~𝒳=M~𝒴=\widetilde{M}_{\mathcal{X}}=\widetilde{M}_{\mathcal{Y}}=\emptyset, and therefore π(M)=0\pi_{*}(M)=0. Suppose that π\pi_{*} was exact. Then there is a πΠa(μ,ν)\pi\in\Pi_{a}(\mu,\nu) such that π(M)=0\pi(M)=0. But then π\pi is concentrated on the diagonal DD, contradicting the fact that μν\mu\neq\nu. This implies that π\pi_{*} is not exact.

5. Linear Programming and the Kantorovich Duality for Capacities

In this section, we formulate the optimal transport problem for capacities as a linear program, and we present its dual. Recall that the Choquet integral of ff with respect to a capacity γ\gamma on 𝒵\mathcal{Z} can be written as

f𝑑γ\displaystyle\int f\,d\gamma =B𝒵Kf(B)γ(B),\displaystyle=\sum_{B\subseteq\mathcal{Z}}K_{f}(B)\gamma(B),

where

Kf(B)=AB(1)|AB|xAfx.K_{f}(B)=\sum_{A\supseteq B}(-1)^{|A\setminus B|}\bigwedge_{x\in A}f_{x}.

While this expression is not linear in ff, it is linear in γ\gamma, and since the constraints defining ΠCh(μ,ν)\Pi_{\mathrm{Ch}}(\mu,\nu) are all linear (see Proposition 4.5), the problem of minimizing π(f)\pi(f) over all πΠCh(μ,ν)\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu) becomes a linear program:

(5.1) minπB𝒳×𝒴Kc(B)π(B), subject to\displaystyle\min_{\pi}\sum_{B\subseteq\mathcal{X}\times\mathcal{Y}}K_{c}(B)\pi(B),~{}~{}\text{ subject to}
(5.2) π(G×𝒴)=μ(G),G𝒳;π(𝒳×F)=ν(F),F𝒴;π(Aw)π(A),A𝒳×𝒴,w={(x,y)}A;π()=0,\displaystyle\begin{aligned} \pi(G\times\mathcal{Y})&=\mu(G),&\quad&\emptyset\neq G\subseteq\mathcal{X};\\ \pi(\mathcal{X}\times F)&=\nu(F),&\quad&\emptyset\neq F\subseteq\mathcal{Y};\\ \pi(A\cup w)&\geq\pi(A),&\quad&A\subset\mathcal{X}\times\mathcal{Y},w=\{(x,y)\}\notin A;\\ \pi(\emptyset)&=0,&\end{aligned}

(e.g., (Grabisch, \APACyear2016, pp. 81-82)). Recall that a subset BB of 𝒳×𝒴\mathcal{X}\times\mathcal{Y} is in 𝒫𝒳,𝒴\mathcal{P}^{*}_{\mathcal{X},\mathcal{Y}} if B=G×𝒴B=G\times\mathcal{Y} for some G𝒳G\subseteq\mathcal{X} or B=𝒳×FB=\mathcal{X}\times F for some F𝒴F\in\mathcal{Y}.

The dual of the above linear program is given by

(5.3) maxφ^,ψ^,ρ^G𝒳φ^(G)μ(G)+F𝒴ψ^(F)ν(F), subject to\displaystyle\max_{\hat{\varphi},\hat{\psi},\hat{\rho}}\sum_{G\subseteq\mathcal{X}}\hat{\varphi}(G)\mu(G)+\sum_{F\subseteq\mathcal{Y}}\hat{\psi}(F)\nu(F),~{}~{}\text{ subject to}
(5.4) φ^(G)wG×𝒴ρ^(G×𝒴,w)+wG×𝒴ρ^((G×𝒴){w},w)=Kc(G×𝒴),G𝒳;ψ^(F)w𝒳×Fρ^(𝒳×F,w)+w𝒳×Fρ^((𝒳×F){w},w)=Kc(𝒳×F),F𝒴;φ^(𝒳)+ψ^(𝒴)+wρ^((𝒳×𝒴){w},w)=Kc(𝒳×𝒴);wBρ^(B,w)+wBρ^(B{w},w)=Kc(B),B𝒫𝒳,𝒴;ρ^0.\displaystyle\begin{aligned} \hat{\varphi}(G)-\sum_{w\notin G\times\mathcal{Y}}\hat{\rho}(G\times\mathcal{Y},w)+\sum_{w\in G\times\mathcal{Y}}\hat{\rho}((G\times\mathcal{Y})\setminus\{w\},w)&=K_{c}(G\times\mathcal{Y}),&\quad&\emptyset\neq G\subsetneqq\mathcal{X};\\ \hat{\psi}(F)-\sum_{w\notin\mathcal{X}\times F}\hat{\rho}(\mathcal{X}\times F,w)+\sum_{w\in\mathcal{X}\times F}\hat{\rho}((\mathcal{X}\times F)\setminus\{w\},w)&=K_{c}(\mathcal{X}\times F),&\quad&\emptyset\neq F\subsetneqq\mathcal{Y};\\ \hat{\varphi}(\mathcal{X})+\hat{\psi}(\mathcal{Y})+\sum_{w}\hat{\rho}((\mathcal{X}\times\mathcal{Y})\setminus\{w\},w)&=K_{c}(\mathcal{X}\times\mathcal{Y});\\ -\sum_{w\notin B}\hat{\rho}(B,w)+\sum_{w\in B}\hat{\rho}(B\setminus\{w\},w)&=K_{c}(B),&\quad&B\notin\mathcal{P}^{*}_{\mathcal{X},\mathcal{Y}};\\ \hat{\rho}&\geq 0.\end{aligned}

Let (φ^,ψ^,ρ^)(\hat{\varphi}_{*},\hat{\psi}_{*},\hat{\rho}_{*}) be an optimal solution to (5.3 - 5.4). Then complementary slackness implies that, for any (A,w){(A,w)2𝒳×𝒴×(𝒳×𝒴):wA}(A,w)\in\{(A,w)\in 2^{\mathcal{X}\times\mathcal{Y}}\times(\mathcal{X}\times\mathcal{Y})\mathrel{\mathop{\mathchar 58\relax}}w\not\in A\},

(5.5) ρ^(A,w)(π(Aw)π(A))=0.\displaystyle\hat{\rho}_{*}(A,w)\,\left(\pi_{*}(A\cup w)-\pi_{*}(A)\right)=0.
Remark 5.1.

The dual of the maximization problem

(5.6) maxπΠCh(μ,ν)π(c)\displaystyle\max_{\pi\in\Pi_{\mathrm{Ch}}(\mu,\nu)}\pi(c)

is given by

(5.7) minφ^,ψ^,ρ^G𝒳φ^(G)μ(G)+F𝒴ψ^(F)ν(F), subject to\displaystyle\min_{\hat{\varphi},\hat{\psi},\hat{\rho}}\sum_{G\subseteq\mathcal{X}}\hat{\varphi}(G)\mu(G)+\sum_{F\subseteq\mathcal{Y}}\hat{\psi}(F)\nu(F),~{}~{}\text{ subject to}
(5.8) φ^(G)wG×𝒴ρ^(G×𝒴,w)+wG×𝒴ρ^((G×𝒴){w},w)=Kc(G×𝒴),G𝒳;ψ^(F)w𝒳×Fρ^(𝒳×F,w)+w𝒳×Fρ^((𝒳×F){w},w)=Kc(𝒳×F),F𝒴;φ^(𝒳)+ψ^(𝒴)+wρ^((𝒳×𝒴){w},w)=Kc(𝒳×𝒴);wBρ^(B,w)+wBρ^(B{w},w)=Kc(B),B𝒫𝒳,𝒴;ρ^0.\displaystyle\begin{aligned} \hat{\varphi}(G)-\sum_{w\notin G\times\mathcal{Y}}\hat{\rho}(G\times\mathcal{Y},w)+\sum_{w\in G\times\mathcal{Y}}\hat{\rho}((G\times\mathcal{Y})\setminus\{w\},w)&=K_{c}(G\times\mathcal{Y}),&\quad&\emptyset\neq G\subsetneqq\mathcal{X};\\ \hat{\psi}(F)-\sum_{w\notin\mathcal{X}\times F}\hat{\rho}(\mathcal{X}\times F,w)+\sum_{w\in\mathcal{X}\times F}\hat{\rho}((\mathcal{X}\times F)\setminus\{w\},w)&=K_{c}(\mathcal{X}\times F),&\quad&\emptyset\neq F\subsetneqq\mathcal{Y};\\ \hat{\varphi}(\mathcal{X})+\hat{\psi}(\mathcal{Y})+\sum_{w}\hat{\rho}((\mathcal{X}\times\mathcal{Y})\setminus\{w\},w)&=K_{c}(\mathcal{X}\times\mathcal{Y});\\ -\sum_{w\notin B}\hat{\rho}(B,w)+\sum_{w\in B}\hat{\rho}(B\setminus\{w\},w)&=K_{c}(B),&\quad&B\notin\mathcal{P}^{*}_{\mathcal{X},\mathcal{Y}};\\ \hat{\rho}&\leq 0.\end{aligned}

Suppose that (φ^,ψ^,ρ^)(\hat{\varphi}^{*},\hat{\psi}^{*},\hat{\rho}^{*}) is an optimal solution to (5.7 - 5.8). Then by complementary slackness, for any (A,w){(A,w)2𝒳×𝒴×(𝒳×𝒴):wA}(A,w)\in\{(A,w)\in 2^{\mathcal{X}\times\mathcal{Y}}\times(\mathcal{X}\times\mathcal{Y})\mathrel{\mathop{\mathchar 58\relax}}w\not\in A\},

ρ^(A,w)(π(Aw)π(A))=0.\displaystyle\hat{\rho}^{*}(A,w)\,\left(\pi^{*}(A\cup w)-\pi^{*}(A)\right)=0.
Remark 5.2.

The dual of the minimization Optimal Transport problem is equivalent to the problem

(5.9) maxLφ,Lψ,ρ^G𝒳mμ(G)Lφ(G)+F𝒴mν(F)Lψ(F), subject to\displaystyle\max_{L_{\varphi},L_{\psi},\hat{\rho}}\sum_{G\subseteq\mathcal{X}}m^{\mu}(G)L_{\varphi}(G)+\sum_{F\subseteq\mathcal{Y}}m^{\nu}(F)L_{\psi}(F),~{}~{}\text{ subject to}
(5.10) Lφ(A𝒳)+Lψ(A𝒴)+DAwAρ^(D{w},w)=(x,y)Ac(x,y),A𝒳×𝒴;ρ^0.\displaystyle\begin{aligned} L_{\varphi}(A_{\mathcal{X}})+L_{\psi}(A_{\mathcal{Y}})+\sum_{D\supseteq A}\sum_{w\in A}\hat{\rho}(D\setminus\{w\},w)&=\bigwedge_{(x,y)\in A}c(x,y),\quad\emptyset\neq A\subseteq\mathcal{X}\times\mathcal{Y};\\ \hat{\rho}&\geq 0.\end{aligned}

To see this, we will show, by the following change of variables666This corresponds to the situation derived from a set function ξφ\xi_{\varphi}, where φ^=mξφ\hat{\varphi}=m^{\xi_{\varphi}}, and Lφ=mˇξφL_{\varphi}=\check{m}^{\xi_{\varphi}}, the co-Möbius transform, with similar conventions for ψ\psi, see (Grabisch, \APACyear2016, Table A.2, p.  440).

φ^(G):=BG(1)|BG|Lφ(B);ψ^(F):=AF(1)|AF|Lψ(A),\displaystyle\begin{aligned} \hat{\varphi}(G)\mathrel{\mathop{\mathchar 58\relax}}=\sum_{B\supseteq G}(-1)^{|B\setminus G|}L_{\varphi}(B);\hskip 56.9055pt\hat{\psi}(F)\mathrel{\mathop{\mathchar 58\relax}}=\sum_{A\supseteq F}(-1)^{|A\setminus F|}L_{\psi}(A),\end{aligned}

that the objectives are equal and that the constraints can be derived from each other.

First, the objective function becomes

G𝒳φ^(G)μ(G)+F𝒴ψ^(F)ν(F)\displaystyle\sum_{G\subseteq\mathcal{X}}\hat{\varphi}(G)\mu(G)+\sum_{F\subseteq\mathcal{Y}}\hat{\psi}(F)\nu(F)
=\displaystyle= G𝒳BG(1)|BG|Lφ(B)μ(G)+F𝒴AF(1)|AF|Lψ(A)ν(F)\displaystyle\sum_{G\subseteq\mathcal{X}}\sum_{B\supseteq G}(-1)^{|B\setminus G|}L_{\varphi}(B)\mu(G)+\sum_{F\subseteq\mathcal{Y}}\sum_{A\supseteq F}(-1)^{|A\setminus F|}L_{\psi}(A)\nu(F)
=\displaystyle= B𝒳(GB(1)|BG|μ(G))Lφ(B)+A𝒴(FA(1)|AF|ν(F))Lψ(A)\displaystyle\sum_{B\subseteq\mathcal{X}}\left(\sum_{G\subseteq B}(-1)^{|B\setminus G|}\mu(G)\right)L_{\varphi}(B)+\sum_{A\subseteq\mathcal{Y}}\left(\sum_{F\subseteq A}(-1)^{|A\setminus F|}\nu(F)\right)L_{\psi}(A)
=\displaystyle= B𝒳mμ(B)Lφ(B)+A𝒴mν(A)Lψ(A).\displaystyle\sum_{B\subseteq\mathcal{X}}m^{\mu}(B)L_{\varphi}(B)+\sum_{A\subseteq\mathcal{Y}}m^{\nu}(A)L_{\psi}(A).

To see that the constraints are equivalent, notice that the above transformation can be inverted as

Lφ(G)=GGφ^(G);Lψ(F)=FFψ^(F).\displaystyle\begin{aligned} L_{\varphi}(G)=\sum_{G^{\prime}\supseteq G}\hat{\varphi}(G^{\prime});\hskip 56.9055ptL_{\psi}(F)=\sum_{F^{\prime}\supseteq F}\hat{\psi}(F^{\prime}).\end{aligned}

Furthermore, for any B𝒳×𝒴B\subseteq\mathcal{X}\times\mathcal{Y}, recall

Kc(B)=AB(1)|AB|(x,y)Ac(x,y).K_{c}(B)=\sum_{A\supseteq B}(-1)^{|A\setminus B|}\bigwedge_{(x,y)\in A}c(x,y).

Using the same inversion formula, we obtain

(x,y)Ac(x,y)=BAKc(B).\bigwedge_{(x,y)\in A}c(x,y)=\sum_{B\supseteq A}K_{c}(B).

For any non-empty set A𝒳×𝒴A\subseteq\mathcal{X}\times\mathcal{Y}, sum all constraints with a right-hand side involving Kc(B)K_{c}(B) with BAB\supseteq A. The right-hand side term of (5.4) becomes

BAKc(B)=(x,y)Ac(x,y).\sum_{B\supseteq A}K_{c}(B)=\bigwedge_{(x,y)\in A}c(x,y).

The sum of terms on the left-hand side of (5.4) will yield a sum involving φ^\hat{\varphi}, which is

GA𝒳φ^(G)=Lφ(A𝒳),\sum_{G^{\prime}\supseteq A_{\mathcal{X}}}\hat{\varphi}(G^{\prime})=L_{\varphi}(A_{\mathcal{X}}),

and a sum involving ψ^\hat{\psi}, which is

FA𝒴ψ^(F)=Lψ(A𝒴).\sum_{F^{\prime}\supseteq A_{\mathcal{Y}}}\hat{\psi}(F^{\prime})=L_{\psi}(A_{\mathcal{Y}}).

Lastly, denoting the sum of all terms involving ρ^\hat{\rho} in (5.4) by SS, we obatin

S=J1+J2+J3+J4+J5+J6+J7,S=J_{1}+J_{2}+J_{3}+J_{4}+J_{5}+J_{6}+J_{7},

where

J1\displaystyle J_{1} :=GA𝒳G𝒳xGy𝒴ρ^(G×𝒴,(x,y));\displaystyle\mathrel{\mathop{\mathchar 58\relax}}=-\sum_{\begin{subarray}{c}G^{\prime}\supseteq A_{\mathcal{X}}\\ G^{\prime}\neq\mathcal{X}\end{subarray}}\sum_{\begin{subarray}{c}x\notin G^{\prime}\\ y\in\mathcal{Y}\end{subarray}}\hat{\rho}(G^{\prime}\times\mathcal{Y},(x,y)); J2\displaystyle J_{2} :=GA𝒳G𝒳xGy𝒴ρ^(G×𝒴{(x,y)},(x,y));\displaystyle\mathrel{\mathop{\mathchar 58\relax}}=\sum_{\begin{subarray}{c}G^{\prime}\supseteq A_{\mathcal{X}}\\ G^{\prime}\neq\mathcal{X}\end{subarray}}\sum_{\begin{subarray}{c}x\in G^{\prime}\\ y\in\mathcal{Y}\end{subarray}}\hat{\rho}(G^{\prime}\times\mathcal{Y}\setminus\{(x,y)\},(x,y));
J3\displaystyle J_{3} :=FA𝒴F𝒴yFx𝒳ρ^(𝒳×F,(x,y));\displaystyle\mathrel{\mathop{\mathchar 58\relax}}=-\sum_{\begin{subarray}{c}F^{\prime}\supseteq A_{\mathcal{Y}}\\ F^{\prime}\neq\mathcal{Y}\end{subarray}}\sum_{\begin{subarray}{c}y\notin F^{\prime}\\ x\in\mathcal{X}\end{subarray}}\hat{\rho}(\mathcal{X}\times F^{\prime},(x,y)); J4\displaystyle J_{4} :=FA𝒴F𝒴yFx𝒳ρ^(𝒳×F{(x,y)},(x,y));\displaystyle\mathrel{\mathop{\mathchar 58\relax}}=\sum_{\begin{subarray}{c}F^{\prime}\supseteq A_{\mathcal{Y}}\\ F^{\prime}\neq\mathcal{Y}\end{subarray}}\sum_{\begin{subarray}{c}y\in F^{\prime}\\ x\in\mathcal{X}\end{subarray}}\hat{\rho}(\mathcal{X}\times F^{\prime}\setminus\{(x,y)\},(x,y));
J5\displaystyle J_{5} :=x𝒳,y𝒴ρ^(𝒳×𝒴{(x,y)},(x,y));\displaystyle\mathrel{\mathop{\mathchar 58\relax}}=\sum_{x\in\mathcal{X},y\in\mathcal{Y}}\hat{\rho}(\mathcal{X}\times\mathcal{Y}\setminus\{(x,y)\},(x,y));
J6\displaystyle J_{6} :=BAB𝒫𝒳,𝒴(x,y)Bρ^(B,(x,y));\displaystyle\mathrel{\mathop{\mathchar 58\relax}}=-\sum_{\begin{subarray}{c}B\supseteq A\\ B\notin\mathcal{P}^{*}_{\mathcal{X},\mathcal{Y}}\\ (x,y)\notin B\end{subarray}}\hat{\rho}(B,(x,y)); J7\displaystyle J_{7} :=BAB𝒫𝒳,𝒴(x,y)Bρ^(B{(x,y)},(x,y)).\displaystyle\mathrel{\mathop{\mathchar 58\relax}}=\sum_{\begin{subarray}{c}B\supseteq A\\ B\notin\mathcal{P}^{*}_{\mathcal{X},\mathcal{Y}}\\ (x,y)\in B\end{subarray}}\hat{\rho}(B\setminus\{(x,y)\},(x,y)).

By summing the above terms, we obtain

(5.11) S=BAwBρ^(B,w)+DAwDρ^(D{w},w)=BAwBρ^(B,w)+DA[wAρ^(D{w},w)+wDAρ^(D{w},w)]=DAwAρ^(D{w},w).\displaystyle\begin{aligned} S&=-\sum_{B\supseteq A}\sum_{w\notin B}\hat{\rho}(B,w)+\sum_{D\supseteq A}\sum_{w\in D}\hat{\rho}(D\setminus\{w\},w)\\ &=-\sum_{B\supseteq A}\sum_{w\notin B}\hat{\rho}(B,w)+\sum_{D\supseteq A}\left[\sum_{w\in A}\hat{\rho}(D\setminus\{w\},w)+\sum_{w\in D\setminus A}\hat{\rho}(D\setminus\{w\},w)\right]\\ &=\sum_{D\supseteq A}\sum_{w\in A}\hat{\rho}(D\setminus\{w\},w).\end{aligned}

The last equality comes from the observation that there exists an one-to-one mapping between {(B,w):AB,wB}\{(B,w)\mathrel{\mathop{\mathchar 58\relax}}A\subset B,w\notin B\} and {(D,w):AD,wDA}\{(D,w)\mathrel{\mathop{\mathchar 58\relax}}A\subset D,w\in D\setminus A\} by the map D:=B{w}D\mathrel{\mathop{\mathchar 58\relax}}=B\cup\{w\}, and thus the first and third terms in the second line of (5.11) cancel out. Therefore, one can derive the equations in (5.10) from those in (5.4). Similarly, one can also prove the opposite direction by using the above change of variables. ∎

Remark 5.3.

By a similar argument, the dual of the maximization Optimal Transport problem is equivalent to

(5.12) minLφ,Lψ,ρ^G𝒳mμ(G)Lφ(G)+F𝒴mν(F)Lψ(F), subject to\displaystyle\min_{L_{\varphi},L_{\psi},\hat{\rho}}\sum_{G\subseteq\mathcal{X}}m^{\mu}(G)L_{\varphi}(G)+\sum_{F\subseteq\mathcal{Y}}m^{\nu}(F)L_{\psi}(F),~{}~{}\text{ subject to}
(5.13) Lφ(A𝒳)+Lψ(A𝒴)+DAwAρ^(D{w},w)=(x,y)Ac(x,y),A𝒳×𝒴;ρ^0.\displaystyle\begin{aligned} L_{\varphi}(A_{\mathcal{X}})+L_{\psi}(A_{\mathcal{Y}})+\sum_{D\supseteq A}\sum_{w\in A}\hat{\rho}(D\setminus\{w\},w)&=\bigwedge_{(x,y)\in A}c(x,y),\quad\emptyset\neq A\subseteq\mathcal{X}\times\mathcal{Y};\\ \hat{\rho}&\leq 0.\end{aligned}

6. Numerical Examples

6.1. A Comparison with the Optimal Transport Problem for Additive Measures

In this section, we compare the optimal transport problem for capacities with the classical optimal transport problem (for measures) via numerical simulations. Assume that 𝒳\mathcal{X} and 𝒴\mathcal{Y} are two finite subsets of \mathbb{R} with |𝒳|=30|\mathcal{X}|=30 and |𝒴|=20|\mathcal{Y}|=20, and μ\mu and ν\nu are probability measures on 𝒳\mathcal{X} and 𝒴\mathcal{Y}, respectively. Given the quadratic function c(x,y)=(xy)2c(x,y)=(x-y)^{2} on 𝒳×𝒴\mathcal{X}\times\mathcal{Y}, the classical optimal transport problem is to find

minπΠa(μ,ν)𝒳×𝒴c(x,y)𝑑π(x,y);\min_{\pi\in\Pi_{a}(\mu,\nu)}\int_{\mathcal{X}\times\mathcal{Y}}c(x,y)\,d\pi(x,y);

while the optimal transport minimization problem for capacities seeks

minγΠCh(μ,ν)γ(c),\min_{\gamma\in\Pi_{\mathrm{Ch}}(\mu,\nu)}\gamma(c),

where γ(c)\gamma(c) represents the Choquet integral of cc with respect to γ\gamma. The latter problem will have a lower minimum since its feasible set is larger.

We use the Python package AMPL to solve the linear program for the classical optimal transport minimization. However, the linear program for the optimal transport for capacities is quite large when both sets have cardinality greater than 5. For example, when |𝒳|=|𝒴|=5|\mathcal{X}|=|\mathcal{Y}|=5, the number of variables in the linear program is 33,554,43233,\!554,\!432, and the number of constraints is 419,430,437419,\!430,\!437. These numbers will become astronomical if |𝒳||\mathcal{X}| and |𝒴||\mathcal{Y}| exceed 20. For the case when |𝒳|=30|\mathcal{X}|=30 and |𝒴|=20|\mathcal{Y}|=20, the number of variables for the linear program is larger than 1018010^{180}, and the number of constraints is larger than 1018310^{183}; while the number of variables for the classical optimal transport problem is 600600 and the number of constraints is only 5050. Therefore, in this case, solving the classical optimal transport problem using linear programming methods is still fast, but the linear program for capacities cannot be solved using numerical methods. However, using the explicit solution provided in Theorem 4.10, the minimum can be computed in a few seconds even when |𝒳|=|𝒴|=100|\mathcal{X}|=|\mathcal{Y}|=100.

Refer to caption
(a) plot with the line y=xy=x
Refer to caption
(b) log-log plot with the line y=xy=x
Figure 1. Comparison of the optimal values of the optimal transport problem for capacities with those of the optimal transport problem for additive measures, when both marginals are additive measures.

For the case |𝒳|=30|\mathcal{X}|=30 and |𝒴|=20|\mathcal{Y}|=20, we run the following experiment 100 times. We consider the spaces 𝒳={1,2,3,,30}\mathcal{X}=\{1,2,3,...,30\} and 𝒴={0,2.2,4.4,6.6,,41.8}\mathcal{Y}=\{0,2.2,4.4,6.6,...,41.8\}, as well as the cost function c(x,y)=(xy)2c(x,y)=(x-y)^{2}. To determine the marginal capacity μ\mu, we simulate |𝒳|1=29|\mathcal{X}|-1=29 independent random variates from a uniform distribution on [0,1][0,1], and we let U(i),i=1,,29U_{(i)},i=1,\ldots,29 be their order statistics (so that U(i)U(i+1)U_{(i)}\leq U_{(i+1)}, and U(1)U_{(1)} is the smallest observation). Then set U(0)=0U_{(0)}=0 and U(30)=1U_{(30)}=1, and μ({i})=U(i)U(i1)\mu(\{i\})=U_{(i)}-U_{(i-1)}, for i=1,,30i=1,\ldots,30. The μ\mu capacity (measure) of any other subset of 𝒳\mathcal{X} is determined by additivity. An analogous method is used to simulate the marginal capacity ν\nu on 𝒴\mathcal{Y}. For each pair of simulated capacities (μ,ν)(\mu,\nu) generated in this fashion, we calculate the minima for both the optimal transport problem for measures and the one for capacities, and we compare the resulting optimal values.

The horizontal coordinates of the blue dots in Figure 1(a) represent the optimal values of the optimal transport problem for capacities; the vertical coordinates of the blue dots represent the minimum values of the classical optimal transport problem.

We observe a trend that the greater the distance between the two marginal distributions, the larger the ratio between OT minimum for measures over the OT minimum for capacities. This trend is better revealed by the log-log plot in Figure 1(b), showing that the one optimal value appears to behave roughly like a power of the other. The difference between these two minima implies that the classical optimal transport minimum over probability measures is inaccurate in approximating the optimal transport minimum for capacities.

6.2. An Application in Counterparty Credit Risk

We consider a basic model in counterparty credit risk, similar to the one used in Ghossoub \BOthers. (\APACyear2023). Consider a bank that trades with two counterparties whose credit exposures and the credit ratings at the end of the year determine the counterparty credit risk losses of the bank over the next year. For simplicity, we assume that there are four credit ratings, A, B, C, and D (default), with the transition probabilities in Table 1.777Table 1 is borrowed from Hardy \BBA Saunders (\APACyear2022).

Initial State Year End State
A B C D
A 0.990 0.007 0.002 0.001
B 0.030 0.950 0.015 0.005
C 0.015 0.020 0.960 0.005
D 0 0 0 1
Table 1. Transition probabilities for a simplified credit rating system.

Assume that the initial credit ratings of counterparties 1 and 2 are BB and CC, respectively. Due to ambiguity, we assume the joint rating Y=(Y1,Y2)Y=(Y_{1},Y_{2}) of these two counterparties at the year-end is represented by a capacity on 𝒴\mathcal{Y} of the form gg\circ\mathbb{P} where g(x):=xsg(x)\mathrel{\mathop{\mathchar 58\relax}}=x^{s} is a concave distortion function with s(0,1]s\in(0,1] 888In particular, when s=1s=1, this capacity is the same as the additive measure PP., and \mathbb{P} is the law of a joint probability distribution with a Gaussian copula. In particular, we let V=(V1,V2)V=(V_{1},V_{2}) be a two-dimensional Gaussian random vector with mean 0 and covariance matrix

ΣV=(1ρyρy1),\Sigma_{V}=\begin{pmatrix}1&\rho_{y}\\ \rho_{y}&1\end{pmatrix},

and define Yi=Fi(Φ(Vi))Y_{i}=F_{i}^{\leftarrow}(\Phi(V_{i})), i=1,2i=1,2, where FiF_{i} is the marginal cumulative distribution function of YiY_{i}. In particular, we have:

(6.1) Y1={D,if V1Φ1(0.005);C,if Φ1(0.005)V1Φ1(0.02);B,if Φ1(0.02)V1Φ1(0.97);A,if V1Φ1(0.97),Y_{1}=\begin{cases}D,&\text{if\ }V_{1}\leq\Phi^{-1}(0.005);\\ C,&\text{if\ }\Phi^{-1}(0.005)\leq V_{1}\leq\Phi^{-1}(0.02);\\ B,&\text{if\ }\Phi^{-1}(0.02)\leq V_{1}\leq\Phi^{-1}(0.97);\\ A,&\text{if\ }V_{1}\geq\Phi^{-1}(0.97),\\ \end{cases}

where Φ\Phi is the standard normal cumulative distribution function. Y2Y_{2} is defined similarly.

The cardinality of 𝒴\mathcal{Y} is 1616. The probability of each pair of credit ratings can be calculated using the bivariate Gaussian distribution. For example

P(Y1=D,Y2=D)=Φ2(Φ1(0.005),Φ1(0.005);ρy),P(Y_{1}=D,Y_{2}=D)=\Phi_{2}(\Phi^{-1}(0.005),\Phi^{-1}(0.005);\rho_{y}),

where Φ2\Phi_{2} is the bivariate normal cumulative distribution function.

We assume that each counterparty exposure has a (marginal) binomial distribution. In particular, we suppose that counterparty 1 has exposure X1X_{1} that follows binomial(n1n_{1}, p1p_{1}) and counterparty 2 has exposure X2X_{2} that follows binomial(n2n_{2}, p2p_{2}). The random vector (X1,X2)(X_{1},X_{2}) is taken to have a Gaussian copula with correlation ρx\rho_{x}. We denote the corresponding probability distribution on 𝒳\mathcal{X} by \mathbb{Q}, and we assume that the marginal capacity μ=\mu=\mathbb{Q} (i.e., there is no distortion, or for the exposure capacity s=1s=1).

We take n1=40,p1=0.4,n2=25n_{1}=40,p_{1}=0.4,n_{2}=25, and p2=0.7p_{2}=0.7. Then the cardinality of 𝒳\mathcal{X} is (n1+1)(n2+1)=1066(n_{1}+1)\cdot(n_{2}+1)=1066. Again, here the joint probabilities P((X1,X2)=(n,m))P\left((X_{1},X_{2})=(n,m)\right) for 0nn10\leq n\leq n_{1} and 0mn20\leq m\leq n_{2} can be calculated using the cumulative bivariate Gaussian distribution.

Finally, we describe the loss function, which is the sum of the losses due to the credit migrations of each counterparty:

(6.2) L(X,Y)=X1h(Y1)+X2h(Y2),L(X,Y)=X_{1}\cdot h(Y_{1})+X_{2}\cdot h(Y_{2}),

where the function h:{A,B,C,D}[0,1]h\mathrel{\mathop{\mathchar 58\relax}}\{A,B,C,D\}\rightarrow[0,1] represents the fraction of total exposure that will be lost in the next year, given the credit rating at the year-end. In this example, we take h(A)=0h(A)=0, h(B)=0.1h(B)=0.1, h(C)=0.2h(C)=0.2, h(D)=1h(D)=1 (default).

We look for the maximum risk represented by a Choquet integral of the loss function LL against a capacity γ\gamma with prescribed marginal capacities μ\mu and ν=g\nu=g\circ\mathbb{P}, as described above above. That is,

(6.3) maxγΠ(μ,ν)γ(L)=maxγΠ(μ,gP)γ(L).\max_{\gamma\in\Pi(\mu,\nu)}\gamma(L)=\max_{\gamma\in\Pi(\mu,g\circ P)}\gamma(L).

Note that, unlike the optimization problems in Section 6.1, one of the given marginals in (6.3) is non-additive.

Refer to caption
(a) Maximum Choquet risk as the distortion parameter ss varies
Refer to caption
(b) Maximum Choquet risk as ρx\rho_{x} varies
Refer to caption
(c) Maximum Choquet risk as ρy\rho_{y} varies
Figure 2. Sensitivity Analysis of the Maximum Choquet Risk for the counterparty credit risk example.

Figure 2 shows how the maximum varies along with changes in (a) the power ss in the distortion function, (b) the correlation ρx\rho_{x}, or (c) the correlation ρy\rho_{y} in the Gaussian copula. We observe that the maximum risk is a decreasing and convex function of the distortion parameter ss. This accords with intuition, as the smaller the parameter ss, the greater uncertainty there is regarding the marginal distribution of the credit risk factors. With the other parameters fixed, the maximum Choquet risk is an increasing and concave function of the correlation in the copula defining the distribution of the exposure factors μ\mu. Again, this makes financial sense given the nature of our loss function. If the exposures were negatively correlated, then an increase in the first term in the loss function LL in (6.2) would tend to correspond to a decrease in the second term. This diversification effect is amplified the greater the magnitude of the negative correlation. Similarly, if ρx\rho_{x} is large and positive, then the tail of the losses will be fatter due to the tendency for large exposures to both counterparties to occur simultaneously.

Perhaps most interesting is Figure 2(c), which considers the impact of the correlation parameter of the copula of the credit risk factors on the maximum Choquet risk, as it reveals the nature (and underlying conservatism) of the Choquet risk measure corresponding to the capacity π\pi^{*}. The most striking aspect of the plot in Figure 2(c) is that it is not monotone; there is an interior maximum of π(L)\pi^{*}(L) as a function of ρy\rho_{y}. To understand this, we consider explicitly a simplified version of the model. In particular, we take X1X_{1} to be binomial with parameters n1=2n_{1}=2 and p1=0.4p_{1}=0.4, X2X_{2} to be binomial with n2=2n_{2}=2 and p2=0.7p_{2}=0.7, and ρx=0.3\rho_{x}=-0.3. Based on this specification, we can compute the probabilities for the joint distribution of the exposures (X1,X2)(X_{1},X_{2}) given in Table 2.

X2=0X_{2}=0 X2=1X_{2}=1 X2=2X_{2}=2
X1=0X_{1}=0 0.09 0.27 0
X1=1X_{1}=1 0 0.15 0.33
X1=2X_{1}=2 0 0 0.16
Table 2. Joint exposure probabilities for the simplified counterparty credit risk example.

We further simplify the model by assuming only two credit states, default and no default, with both firms starting in the no-default state, and with default probability PD=0.005PD=0.005. The probability of both counterparties defaulting together is then

(6.4) pDD(ρy)=Φ2(Φ1(0.005),Φ1(0.005);ρy),p_{DD}(\rho_{y})=\Phi_{2}(\Phi^{-1}(0.005),\Phi^{-1}(0.005);\rho_{y}),

while the probability of at least one of the counterparties defaulting is pD=0.01pDD(ρy)p_{D}=0.01-p_{DD}(\rho_{y}).

Let Ut={Lt}U^{t}=\{L\geq t\}, so that π(Ut)=min(μ(U𝒳t),ν(U𝒴t))=min(Q(U𝒳t),P(U𝒴t))\pi^{*}(U^{t})=\min(\mu(U^{t}_{\mathcal{X}}),\nu(U^{t}_{\mathcal{Y}}))=\min(Q(U^{t}_{\mathcal{X}}),\sqrt{P(U^{t}_{\mathcal{Y}})}). Here U𝒳tU^{t}_{\mathcal{X}} is the set of (x1,x2)(x_{1},x_{2}) for which there is some scenario for the credit factor YY such that L(X,Y)tL(X,Y)\geq t. Since we can take the credit scenario to be as extreme as possible (both counterparties default), reflecting the inherent conservatism in π\pi^{*}, we see that U𝒳t={(x1,x2):x1+x2t}U^{t}_{\mathcal{X}}=\{(x_{1},x_{2})\mathrel{\mathop{\mathchar 58\relax}}x_{1}+x_{2}\geq t\}. Simple calculations with the bivariate normal distribution with ρx=0.3\rho_{x}=-0.3 then lead to the data in Table 3.

tt values U𝒳tU^{t}_{\mathcal{X}} μ(U𝒳t)\mu(U^{t}_{\mathcal{X}})
t>4t>4 \emptyset 0
3<t43<t\leq 4 {(2,2)}\{(2,2)\} 0.0494
2<t32<t\leq 3 {(1,2),(2,1),(2,2)}\{(1,2),(2,1),(2,2)\} 0.35
1<t21<t\leq 2 {(1,0),(0,1),(0,0)}c\{(1,0),(0,1),(0,0)\}^{c} 0.8162
0<t10<t\leq 1 {(0,0)}c\{(0,0)\}^{c} 0.9843
t0t\leq 0 𝒳\mathcal{X} 1
Table 3. Sets U𝒳tU^{t}_{\mathcal{X}} and their capacities for the simplified counterparty credit risk example.

Similarly, when considering U𝒴tU^{t}_{\mathcal{Y}}, we take the worst-case exposure scenario X1=X2=2X_{1}=X_{2}=2, and find that U𝒴t={(y1,y2):h(y1)+h(y2)t2}U^{t}_{\mathcal{Y}}=\{(y_{1},y_{2})\mathrel{\mathop{\mathchar 58\relax}}h(y_{1})+h(y_{2})\geq\tfrac{t}{2}\}. Recalling that ν(U𝒴t)=P(U𝒴t)\nu(U^{t}_{\mathcal{Y}})=\sqrt{P(U^{t}_{\mathcal{Y}})}, we obtain the data in Table 4.

tt values U𝒴tU^{t}_{\mathcal{Y}} ν(U𝒴t)\nu(U^{t}_{\mathcal{Y}})
t>4t>4 \emptyset 0
2<t42<t\leq 4 {(D,D)}\{(D,D)\} pDD(ρy)\sqrt{p_{DD}(\rho_{y})}
0<t20<t\leq 2 {(A,A)}c\{(A,A)\}^{c} 0.01pDD(ρy)\sqrt{0.01-p_{DD}(\rho_{y})}
t0t\leq 0 𝒴\mathcal{Y} 1
Table 4. Sets U𝒴tU^{t}_{\mathcal{Y}} and their capacities for the simplified counterparty credit risk example.

A simple calculation then yields:

maxγΠCh(μ,ν)γ(L)\displaystyle\max_{\gamma\in\Pi_{\mathrm{Ch}}(\mu,\nu)}\gamma(L) =0π(Lt)𝑑t\displaystyle=\int_{0}^{\infty}\pi^{*}(L\geq t)\,dt
=04min(μ(U𝒳t),ν(U𝒴t)dt\displaystyle=\int_{0}^{4}\min\left(\mu(U^{t}_{\mathcal{X}}),\nu(U^{t}_{\mathcal{Y}}\right)\,dt
=20.01pDD(ρy)+pDD(ρy)+0.0494,\displaystyle=2\sqrt{0.01-p_{DD}(\rho_{y})}+\sqrt{p_{DD}(\rho_{y})}+0.0494,

and it can be seen that this function has an interior maximum (as a function of ρy\rho_{y} on [1,1][-1,1]). It is interesting to note that this behaviour depends on the parameters of our model, such as the probabilities of the most extreme exposure and credit scenarios. For example, with ρx=1\rho_{x}=1 instead of ρx=0.3\rho_{x}=-0.3, similar calculations give that π(L)=2(0.01pDD(ρy)+pDD(ρy))\pi^{*}(L)=2(\sqrt{0.01-p_{DD}(\rho_{y})}+\sqrt{p_{DD}(\rho_{y})}), which is monotone increasing in ρy\rho_{y}.

6.3. Comparison of Maximum Expected Shortfall and Maximum Choquet Risk with Expected Shortfall Marginal Risks

In this subsection, we will compare the Choquet risk measure defined in the current paper with the Maximum Expected Shortfall (MES\mathrm{MES}) studied in Ghossoub \BOthers. (\APACyear2023).

For a given loss random variable LL defined on 𝒳×𝒴\mathcal{X}\times\mathcal{Y}, and for prescribed marginal probability measures μ\mu on 𝒳\mathcal{X} and ν\nu on 𝒴\mathcal{Y}, the maximum expected shortfall at confidence level α\alpha associated with LL is defined as

MESα(L):=supπΠa(m,n)ESα,π(L),\mathrm{MES}_{\alpha}(L)\mathrel{\mathop{\mathchar 58\relax}}=\sup_{\pi\in\Pi_{a}(m,n)}\mathrm{ES}_{\alpha,\pi}(L),

where ESα,π\mathrm{ES}_{\alpha,\pi} is the expected shortfall with respect to the probability measure πΠa(μ,ν)\pi\in\Pi_{a}(\mu,\nu). In contrast to the maximum Choquet risk measure problem studied in this paper, when determining MESα\mathrm{MES}_{\alpha}:

  • The marginal probability distributions of the risk factors on 𝒳\mathcal{X} and 𝒴\mathcal{Y} are assumed to be known with certainty (in contrast to the case of marginal capacities, which may represent ambiguity about these marginal distributions).

  • The joint risk measure is restricted to be the expected shortfall computed with respect to some probability measure πΠa\pi\in\Pi_{a} (in contrast to the maximum Choquet risk measure problem, in which we consider all possible Choquet risk measures on 𝒳×𝒴\mathcal{X}\times\mathcal{Y} that match the given marginal Choquet risk measures on 𝒳\mathcal{X} and 𝒴\mathcal{Y}).

Since expected shortfall is a distortion risk measure, the MES can be written as:

(6.5) MESα(L)=supπΠa(μ,ν)L𝑑gα(π),\mathrm{MES}_{\alpha}(L)=\sup_{\pi\in\Pi_{a}(\mu,\nu)}\int Ldg_{\alpha}(\pi),

where

gα(x)={x1α,x[0,1α),1,x[1α,1],g_{\alpha}(x)=\begin{cases}\frac{x}{1-\alpha},&x\in[0,1-\alpha),\\ 1,&x\in[1-\alpha,1],\end{cases}

is the corresponding distortion function.

Explicitly, the Choquet Maximum Expected Shortfall (MES\mathrm{MES}) can be defined as the maximum Choquet integral of the loss function against capacities with the same marginals as gα(π)g_{\alpha}(\pi).

(6.6) CMESα(L):=supγΠ(gα(μ),gα(ν))Ldγ.\mathrm{CMES}_{\alpha}(L)\mathrel{\mathop{\mathchar 58\relax}}=\sup_{\gamma\in\Pi(g_{\alpha}(\mu),g_{\alpha}(\nu))}\int Ld\gamma.

Since the feasible set for the maximum Choquet risk measure problem contains the feasible set for the maximum expected shortfall problem, we have that CMESα(L)MESα(L)\mathrm{CMES}_{\alpha}(L)\geq\mathrm{MES}_{\alpha}(L). In Figure 3, we compare the values of CMESα(L)\mathrm{CMES}_{\alpha}(L) and MESα(L)\mathrm{MES}_{\alpha}(L) for the loss random variable LL in the counterparty credit risk example described in the above subsection with different ρx\rho_{x} and ρy\rho_{y}.

Refer to caption
(a) MES v.s. CMES with different ρx\rho_{x}
Refer to caption
(b) MES v.s. CMES with different ρy\rho_{y}
Figure 3. Comparison between the Maximum Expected Shortfall (MES) and the Choquet Maximum Expected Shortfall (CMES) using different levels of the correlation parameters ρx\rho_{x} and ρy\rho_{y}.

Throughout the experiments, we fix α=0.9\alpha=0.9. Assume that the counterparty 1 has initial rating B and exposure X1X_{1} that follows binomial(4040, 0.40.4) and that counterparty 2 has initial rating C and exposure X2X_{2} that follows binomial(2525, 0.70.7). In Figure 3(a), the probability ν\nu corresponds to the law of joint rating Y=(Y1,Y2)Y=(Y_{1},Y_{2}), which can be calculated using bivariate Gaussian distribution with correlation factor ρy=0.25\rho_{y}=0.25; similarly, the probability μ\mu corresponds to the law of counterparty exposures X=(X1,X2)X=(X_{1},X_{2}), which can be determined using bivariate Gaussian distributions with correlation factor ρx\rho_{x} varying from 1-1 to 11. We plot both risk measures over different correlation factor ρx\rho_{x}. When fixing ρx=0.35\rho_{x}=0.35 and allowing ρy\rho_{y} change from 1-1 to 11, we obtain Figure 3(b).

From the figures, one can also observe that the ratio of CMES0.9(L)\mathrm{CMES}_{0.9}(L) over MES0.9(L)\mathrm{MES}_{0.9}(L) is between 130% to 160%. This ratio depends on the parameter α\alpha and the two given distributions, μ\mu and ν\nu, which are eventually determined by the parameters n1n_{1}, p1p_{1}, n2n_{2}, p2p_{2}, ρx\rho_{x}, ρy\rho_{y}, and the values in Table 1.

7. Conclusion

This paper investigates the problem of bounding a Choquet risk measure of a nonlinear function of two risk factors. Specifically, we assume given (marginal) capacities on the marginal spaces, representing the ambiguous distributions of the risk factors, and we consider the problem of finding the joint capacity on the product space with these given marginals, which maximizes or minimizes the Choquet integral of a given portfolio loss function.

We treat this problem as a generalization of the optimal transport problem to the setting of nonadditive measures. We provide explicit characterizations of the optimal solutions for finite marginal spaces, and we investigate some of their properties. Furthermore, we investigate the relationship between properties of the marginal capacities and those of the optimizers (and, more generally, capacities in the feasible set). In particular, we show that the minimizing capacity π\pi_{*} is balanced if and only if both marginal capacities are balanced, and we describe its core explicitly in that case. In contrast, in all but the most trivial cases, the maximizing capacity π\pi^{*} is not balanced.

We further discuss the connections with linear programming, showing that the optimal transport problems for capacities are linear programs, and we also characterize their duals explicitly. We investigate a series of numerical examples, including a comparison with the classical optimal transport problem, and applications to counterparty credit risk.

References

  • Acerbi (\APACyear2002) \APACinsertmetastarAcerbi{APACrefauthors}Acerbi, C.  \APACrefYearMonthDay2002. \BBOQ\APACrefatitleSpectral Measures of Risk: A Coherent Representation of Subjective Risk Aversion Spectral measures of risk: A coherent representation of subjective risk aversion.\BBCQ \APACjournalVolNumPagesJournal of Banking and Finance2671505–1518. \PrintBackRefs\CurrentBib
  • Artzner \BOthers. (\APACyear1999) \APACinsertmetastarArtznerDelbaenEberHeath{APACrefauthors}Artzner, P., Delbaen, F., Eber, J\BHBIM.\BCBL \BBA Heath, D.  \APACrefYearMonthDay1999. \BBOQ\APACrefatitleCoherent Measures of Risk Coherent measures of risk.\BBCQ \APACjournalVolNumPagesMathematical Finance9203–228. \PrintBackRefs\CurrentBib
  • Bauer (\APACyear2012) \APACinsertmetastarBauer2012{APACrefauthors}Bauer, C.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleProducts of Non-Additive Measures: a Fubini-like Theorem Products of non-additive measures: a Fubini-like theorem.\BBCQ \APACjournalVolNumPagesTheory and Decision73621–647. \PrintBackRefs\CurrentBib
  • Brigo \BOthers. (\APACyear2013) \APACinsertmetastarBrigoMoriniPallavicini{APACrefauthors}Brigo, D., Morini, M.\BCBL \BBA Pallavicini, A.  \APACrefYear2013. \APACrefbtitleCounterparty Credit Risk, Collateral and Funding: With Pricing Cases For All Asset Classes Counterparty credit risk, collateral and funding: With pricing cases for all asset classes. \APACaddressPublisherHobokenWiley. \PrintBackRefs\CurrentBib
  • Carlier \BBA Zhang (\APACyear2020) \APACinsertmetastarcarlier2020existence{APACrefauthors}Carlier, G.\BCBT \BBA Zhang, K\BPBIS.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleExistence of solutions to principal–agent problems with adverse selection under minimal assumptions Existence of solutions to principal–agent problems with adverse selection under minimal assumptions.\BBCQ \APACjournalVolNumPagesJournal of Mathematical Economics8864–71. \PrintBackRefs\CurrentBib
  • Delbaen (\APACyear2002) \APACinsertmetastarDelbaen2002{APACrefauthors}Delbaen, F.  \APACrefYearMonthDay2002. \BBOQ\APACrefatitleCoherent risk measures on general probability spaces Coherent risk measures on general probability spaces.\BBCQ \BIn K. Sandmann \BBA P. Schönbucher (\BEDS), \APACrefbtitleAdvances in Finance and Stochastics. Essays in Honour of Dieter Sondermann Advances in finance and stochastics. essays in honour of dieter sondermann (\BPGS 1–37). \APACaddressPublisherSpringer. \PrintBackRefs\CurrentBib
  • Denneberg (\APACyear1994) \APACinsertmetastardenneberg1994non{APACrefauthors}Denneberg, D.  \APACrefYear1994. \APACrefbtitleNon-additive measure and integral Non-additive measure and integral (\BVOL 27). \APACaddressPublisherSpringer Science & Business Media. \PrintBackRefs\CurrentBib
  • Destercke (\APACyear2013) \APACinsertmetastarDestercke{APACrefauthors}Destercke, S.  \APACrefYearMonthDay2013. \BBOQ\APACrefatitleIndependence and 2-Monotonicity: Nice to Have, Hard to Keep Independence and 2-monotonicity: Nice to have, hard to keep.\BBCQ \APACjournalVolNumPagesInternational Journal of Approximate Reasoning54478–490. \PrintBackRefs\CurrentBib
  • Dunford \BBA Schwartz (\APACyear1958) \APACinsertmetastarDunford{APACrefauthors}Dunford, N.\BCBT \BBA Schwartz, J.  \APACrefYear1958. \APACrefbtitleLinear Operators, Part 1: General Theory Linear Operators, Part 1: General Theory. \APACaddressPublisherWiley-Interscience. \PrintBackRefs\CurrentBib
  • Dyckerhoff (\APACyear2022) \APACinsertmetastarDyckerhoff{APACrefauthors}Dyckerhoff, R.  \APACrefYearMonthDay2022. \APAChowpublishedPersonal communication. \PrintBackRefs\CurrentBib
  • Eckstein \BOthers. (\APACyear2021) \APACinsertmetastareckstein2021robust{APACrefauthors}Eckstein, S., Guo, G., Lim, T.\BCBL \BBA Obłój, J.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleRobust pricing and hedging of options on multiple assets and its numerics Robust pricing and hedging of options on multiple assets and its numerics.\BBCQ \APACjournalVolNumPagesSIAM Journal on Financial Mathematics121158–188. \PrintBackRefs\CurrentBib
  • Föllmer \BBA Schied (\APACyear2016) \APACinsertmetastarFollmerSchied{APACrefauthors}Föllmer, H.\BCBT \BBA Schied, A.  \APACrefYear2016. \APACrefbtitleStochastic Finance: An Introduction in Discrete Time Stochastic finance: An introduction in discrete time (\PrintOrdinalFourth \BEd). \APACaddressPublisherBerlinde Gruyter. \PrintBackRefs\CurrentBib
  • Galichon (\APACyear2016) \APACinsertmetastarGalichon{APACrefauthors}Galichon, A.  \APACrefYear2016. \APACrefbtitleOptimal Transport Methods in Economics Optimal transport methods in economics. \APACaddressPublisherPrincetonPrinceton University Press. \PrintBackRefs\CurrentBib
  • Garcia-Cespedes \BOthers. (\APACyear2010) \APACinsertmetastarRosenSaundersAlpha{APACrefauthors}Garcia-Cespedes, J., de Juan Herrero, J., Rosen, D.\BCBL \BBA Saunders, D.  \APACrefYearMonthDay2010. \BBOQ\APACrefatitleEffective Modelling of Wrong-Way Risk, CCR Capital and Alpha in Basel II Effective modelling of wrong-way risk, CCR capital and alpha in Basel II.\BBCQ \APACjournalVolNumPagesJournal of Risk Model Validation4171–98. \PrintBackRefs\CurrentBib
  • Ghirardato (\APACyear1997) \APACinsertmetastarghirardato1997independence{APACrefauthors}Ghirardato, P.  \APACrefYearMonthDay1997. \BBOQ\APACrefatitleOn Independence for Non-Additive Measures, with a Fubini Theorem On independence for non-additive measures, with a Fubini theorem.\BBCQ \APACjournalVolNumPagesJournal of Economic Theory732261–291. \PrintBackRefs\CurrentBib
  • Ghossoub \BOthers. (\APACyear2023) \APACinsertmetastarGHS2023{APACrefauthors}Ghossoub, M., Hall, J.\BCBL \BBA Saunders, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMaximum Spectral Measures of Risk with Given Risk Factor Marginal Distributions Maximum Spectral Measures of Risk with Given Risk Factor Marginal Distributions.\BBCQ \APACjournalVolNumPagesMathematics of Operations Research4821158–1182. \PrintBackRefs\CurrentBib
  • Glasserman \BBA Yang (\APACyear2018) \APACinsertmetastarGlassermanYang{APACrefauthors}Glasserman, P.\BCBT \BBA Yang, L.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBounding Wrong-Way Risk in CVA Calculation Bounding wrong-way risk in CVA calculation.\BBCQ \APACjournalVolNumPagesMathematical Finance28268–305. \PrintBackRefs\CurrentBib
  • Grabisch (\APACyear2016) \APACinsertmetastarGrabisch{APACrefauthors}Grabisch, M.  \APACrefYear2016. \APACrefbtitleSet Functions, Games, and Capacities in Decision Making Set functions, games, and capacities in decision making. \APACaddressPublisherSwitzerlandSpringer. \PrintBackRefs\CurrentBib
  • Gregory (\APACyear2020) \APACinsertmetastarGregory{APACrefauthors}Gregory, J.  \APACrefYear2020. \APACrefbtitleThe xVA Challenge: Counterparty Risk, Funding, Collateral, Capital and Initial Margin The xva challenge: Counterparty risk, funding, collateral, capital and initial margin. \APACaddressPublisherJohn Wiley & Sons. \PrintBackRefs\CurrentBib
  • Guillen \BBA Kitagawa (\APACyear2017) \APACinsertmetastarguillen2017pointwise{APACrefauthors}Guillen, N.\BCBT \BBA Kitagawa, J.  \APACrefYearMonthDay2017. \BBOQ\APACrefatitlePointwise estimates and regularity in geometric optics and other generated Jacobian equations Pointwise estimates and regularity in geometric optics and other generated jacobian equations.\BBCQ \APACjournalVolNumPagesCommunications on Pure and Applied Mathematics7061146–1220. \PrintBackRefs\CurrentBib
  • Hardy \BBA Saunders (\APACyear2022) \APACinsertmetastarHardySaundersQERM{APACrefauthors}Hardy, M.\BCBT \BBA Saunders, D.  \APACrefYear2022. \APACrefbtitleQuantitative Enterprise Risk Management Quantitative enterprise risk management. \APACaddressPublisherCambridge, U.K.Cambridge University Press. \PrintBackRefs\CurrentBib
  • Hendon \BOthers. (\APACyear1991) \APACinsertmetastarhendon1991s{APACrefauthors}Hendon, E., Jacobsen, H., Sloth, B.\BCBL \BBA Tran, T.  \APACrefYearMonthDay1991. \APACrefbtitleThe product of capacities and lower probabilities The product of capacities and lower probabilities \APACbVolEdTR\BTR. \APACaddressInstitutionmimeo, University of Copenhagen. \PrintBackRefs\CurrentBib
  • Henry-Labordère (\APACyear2017) \APACinsertmetastarHenryLabordereMFHBook{APACrefauthors}Henry-Labordère, P.  \APACrefYear2017. \APACrefbtitleModel-Free Hedging: A Martingale Optimal Transport Viewpoint Model-free hedging: A martingale optimal transport viewpoint. \APACaddressPublisherBoca RatonCRC Press. \PrintBackRefs\CurrentBib
  • Kantorovich (\APACyear1942) \APACinsertmetastarkantorovich1942{APACrefauthors}Kantorovich, L.  \APACrefYearMonthDay1942. \BBOQ\APACrefatitleOn the translocation of masses On the translocation of masses.\BBCQ \APACjournalVolNumPagesC.R. (Doklady) Acad. Sci. URSS (N.S.)37199–201. \PrintBackRefs\CurrentBib
  • Kantorovich (\APACyear1948) \APACinsertmetastarkantorovich1948{APACrefauthors}Kantorovich, L.  \APACrefYearMonthDay1948. \BBOQ\APACrefatitleOn a problem of Monge (In Russian) On a problem of Monge (in russian).\BBCQ \APACjournalVolNumPagesUspekhi Math. Nauk.3225–226. \PrintBackRefs\CurrentBib
  • Korman \BBA McCann (\APACyear2015) \APACinsertmetastarkorman2015optimal{APACrefauthors}Korman, J.\BCBT \BBA McCann, R.  \APACrefYearMonthDay2015. \BBOQ\APACrefatitleOptimal transportation with capacity constraints Optimal transportation with capacity constraints.\BBCQ \APACjournalVolNumPagesTransactions of the American Mathematical Society36731501–1521. \PrintBackRefs\CurrentBib
  • Korman \BOthers. (\APACyear2015) \APACinsertmetastarkorman2015dual{APACrefauthors}Korman, J., McCann, R.\BCBL \BBA Seis, C.  \APACrefYearMonthDay2015. \BBOQ\APACrefatitleDual potentials for capacity constrained optimal transport Dual potentials for capacity constrained optimal transport.\BBCQ \APACjournalVolNumPagesCalculus of Variations and Partial Differential Equations541573–584. \PrintBackRefs\CurrentBib
  • Koshevoy (\APACyear1998) \APACinsertmetastarKoshevoy{APACrefauthors}Koshevoy, G.  \APACrefYearMonthDay1998. \BBOQ\APACrefatitleDistributive Lattices and Products of Capacities Distributive lattices and products of capacities.\BBCQ \APACjournalVolNumPagesJournal of Mathematical Analysis and Applications219427–441. \PrintBackRefs\CurrentBib
  • Kusuoka (\APACyear2001) \APACinsertmetastarKusuoka{APACrefauthors}Kusuoka, S.  \APACrefYearMonthDay2001. \BBOQ\APACrefatitleOn Law Invariant Coherent Risk Measures On law invariant coherent risk measures.\BBCQ \APACjournalVolNumPagesAdvances in Mathematical Economics383–95. \PrintBackRefs\CurrentBib
  • Marinacci \BBA Montrucchio (\APACyear2004) \APACinsertmetastarmontrucchiointroduction{APACrefauthors}Marinacci, M.\BCBT \BBA Montrucchio, L.  \APACrefYearMonthDay2004. \BBOQ\APACrefatitleIntroduction to the Mathematics of Ambiguity Introduction to the mathematics of ambiguity.\BBCQ \APACjournalVolNumPagesUncertainty in Economic Theory, I. Gilboa (ed.)46–107. \PrintBackRefs\CurrentBib
  • R. McCann (\APACyear2020) \APACinsertmetastarmccann2018displacement{APACrefauthors}McCann, R.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleDisplacement convexity of Boltzmann’s entropy characterizes the strong energy condition from general relativity Displacement convexity of boltzmann’s entropy characterizes the strong energy condition from general relativity.\BBCQ \APACjournalVolNumPagesCamb. J. Math.83609-681. \PrintBackRefs\CurrentBib
  • R\BPBIJ. McCann \BBA Zhang (\APACyear2019) \APACinsertmetastarmccann2019concavity{APACrefauthors}McCann, R\BPBIJ.\BCBT \BBA Zhang, K\BPBIS.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleOn concavity of the monopolist’s problem facing consumers with nonlinear price preferences On concavity of the monopolist’s problem facing consumers with nonlinear price preferences.\BBCQ \APACjournalVolNumPagesCommunications on Pure and Applied Mathematics7271386–1423. \PrintBackRefs\CurrentBib
  • McNeil \BOthers. (\APACyear2015) \APACinsertmetastarMcNeilFreyEmbrechts{APACrefauthors}McNeil, A., Frey, R.\BCBL \BBA Embrechts, P.  \APACrefYear2015. \APACrefbtitleQuantitative Risk Management Quantitative risk management (\PrintOrdinalSecond \BEd). \APACaddressPublisherPrincetonPrinceton University Press. \PrintBackRefs\CurrentBib
  • Memartoluie \BOthers. (\APACyear2017) \APACinsertmetastarMemartoluieSaundersWirjanto{APACrefauthors}Memartoluie, A., Saunders, D.\BCBL \BBA Wirjanto, T.  \APACrefYearMonthDay2017. \BBOQ\APACrefatitleWrong-Way Risk Bounds in Counterparty Credit Risk Management Wrong-way risk bounds in counterparty credit risk management.\BBCQ \APACjournalVolNumPagesJournal of Risk Management in Financial Institutions102150–163. \PrintBackRefs\CurrentBib
  • Monge (\APACyear1781) \APACinsertmetastarmonge1781memoire{APACrefauthors}Monge, G.  \APACrefYearMonthDay1781. \BBOQ\APACrefatitleMémoire sur la théorie des déblais et des remblais (Dissertation on the theory of cuttings and embankments) Mémoire sur la théorie des déblais et des remblais (Dissertation on the theory of cuttings and embankments).\BBCQ \APACjournalVolNumPagesMem. Math. Phys. Acad. Royale Sci.666–704. \PrintBackRefs\CurrentBib
  • Panaretos \BBA Zemel (\APACyear2022) \APACinsertmetastarPanaretosZemel{APACrefauthors}Panaretos, V.\BCBT \BBA Zemel, Y.  \APACrefYear2022. \APACrefbtitleAn Invitation to Statistics in Wasserstein Space An invitation to statistics in Wasserstein space. \APACaddressPublisherChamSpringer. \PrintBackRefs\CurrentBib
  • Pennanen \BBA Perkkiö (\APACyear2019) \APACinsertmetastarPennanenPerkkio2019{APACrefauthors}Pennanen, T.\BCBT \BBA Perkkiö, A\BHBIP.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleConvex Duality in Nonlinear Optimal Transport Convex duality in nonlinear optimal transport.\BBCQ \APACjournalVolNumPagesJournal of Functional Analysis277141029–1060. \PrintBackRefs\CurrentBib
  • Peyré \BBA Cuturi (\APACyear2019) \APACinsertmetastarpeyre2019computational{APACrefauthors}Peyré, G.\BCBT \BBA Cuturi, M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleComputational optimal transport: With applications to data science Computational optimal transport: With applications to data science.\BBCQ \APACjournalVolNumPagesFoundations and Trends® in Machine Learning115-6355–607. \PrintBackRefs\CurrentBib
  • Quiggin (\APACyear1982) \APACinsertmetastarquiggin82{APACrefauthors}Quiggin, J.  \APACrefYearMonthDay1982. \BBOQ\APACrefatitleA Theory of Anticipated Utility A theory of anticipated utility.\BBCQ \APACjournalVolNumPagesJournal of Economic Behavior & Organization34323–343. \PrintBackRefs\CurrentBib
  • Quiggin (\APACyear1993) \APACinsertmetastarquiggin93{APACrefauthors}Quiggin, J.  \APACrefYear1993. \APACrefbtitleGeneralized Expected Utility Theory - The Rank-Dependent Model Generalized expected utility theory - the rank-dependent model. \APACaddressPublisherKluwer Academic Publishers. \PrintBackRefs\CurrentBib
  • Rachev \BBA Rüschendorf (\APACyear1998) \APACinsertmetastarRachevRuschendorf{APACrefauthors}Rachev, S.\BCBT \BBA Rüschendorf, L.  \APACrefYear1998. \APACrefbtitleMass Transportation Problems Mass transportation problems. \APACaddressPublisherNew YorkSpringer. \PrintBackRefs\CurrentBib
  • Rosen \BBA Saunders (\APACyear2010) \APACinsertmetastarRosenSaundersST{APACrefauthors}Rosen, D.\BCBT \BBA Saunders, D.  \APACrefYearMonthDay2010. \BBOQ\APACrefatitleComputing and Stress Testing Counterparty Credit Risk Capital Computing and stress testing counterparty credit risk capital.\BBCQ \BIn E. Canabarro (\BED), \APACrefbtitleCounterparty Credit Risk Counterparty credit risk (\BPGS 245–292). \APACaddressPublisherRiskBooks. \PrintBackRefs\CurrentBib
  • Rosen \BBA Saunders (\APACyear2012) \APACinsertmetastarRosenSaundersCVA{APACrefauthors}Rosen, D.\BCBT \BBA Saunders, D.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleCVA the Wrong Way CVA the wrong way.\BBCQ \APACjournalVolNumPagesJournal of Risk Management in Financial Institutions53252–272. \PrintBackRefs\CurrentBib
  • Rüschendorf (\APACyear2013) \APACinsertmetastarRuschendorfMathematicalRiskAnalysis{APACrefauthors}Rüschendorf, L.  \APACrefYear2013. \APACrefbtitleMathematical Risk Analysis Mathematical risk analysis. \APACaddressPublisherBerlinSpringer. \PrintBackRefs\CurrentBib
  • Santambrogio (\APACyear2015) \APACinsertmetastarsantambrogio2015optimal{APACrefauthors}Santambrogio, F.  \APACrefYearMonthDay2015. \BBOQ\APACrefatitleOptimal Transport for Applied Mathematicians Optimal transport for applied mathematicians.\BBCQ \APACjournalVolNumPagesBirkäuser, NY5558-6394. \PrintBackRefs\CurrentBib
  • Schmeidler (\APACyear1986) \APACinsertmetastarSchmeidler86{APACrefauthors}Schmeidler, D.  \APACrefYearMonthDay1986. \BBOQ\APACrefatitleIntegral representation without additivity Integral representation without additivity.\BBCQ \APACjournalVolNumPagesProceedings of the American Mathematical Society255 – 261. \PrintBackRefs\CurrentBib
  • Schmeidler (\APACyear1989) \APACinsertmetastarschmeidler1989subjective{APACrefauthors}Schmeidler, D.  \APACrefYearMonthDay1989. \BBOQ\APACrefatitleSubjective probability and expected utility without additivity Subjective probability and expected utility without additivity.\BBCQ \APACjournalVolNumPagesEconometrica571–587. \PrintBackRefs\CurrentBib
  • Shapiro (\APACyear2013) \APACinsertmetastarShapiro2013{APACrefauthors}Shapiro, A.  \APACrefYearMonthDay2013. \BBOQ\APACrefatitleOn Kusuoka Representation of Law Invariant Risk Measures On Kusuoka representation of law invariant risk measures.\BBCQ \APACjournalVolNumPagesMathematics of Operations Research381142–152. \PrintBackRefs\CurrentBib
  • Torra (\APACyear2023) \APACinsertmetastarTorra{APACrefauthors}Torra, V.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleThe Transport Problem for Non-Additive Measures The transport problem for non-additive measures.\BBCQ \APACjournalVolNumPagesEuropean Journal of Operational Research. {APACrefDOI} \doihttps://doi.org/10.1016/j.ejor.2023.03.016 \PrintBackRefs\CurrentBib
  • Torres \BOthers. (\APACyear2021) \APACinsertmetastarTorresPereiraAmini{APACrefauthors}Torres, L., Pereira, L.\BCBL \BBA Amini, M.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Survey on Optimal Transport for Machine Learning: Theory and Applications A survey on optimal transport for machine learning: Theory and applications.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.01963. \PrintBackRefs\CurrentBib
  • Villani (\APACyear2003) \APACinsertmetastarVillaniTopicsInOT{APACrefauthors}Villani, C.  \APACrefYear2003. \APACrefbtitleTopics in Optimal Transportation Topics in optimal transportation. \APACaddressPublisherProvidenceAmerican Mathematical Society. \PrintBackRefs\CurrentBib
  • Villani (\APACyear2008) \APACinsertmetastarVillaniOTOldAndNew{APACrefauthors}Villani, C.  \APACrefYear2008. \APACrefbtitleOptimal Transport, Old and New Optimal transport, old and new. \APACaddressPublisherBerlinSpringer. \PrintBackRefs\CurrentBib
  • Walley \BBA Fine (\APACyear1982) \APACinsertmetastarWalleyFine{APACrefauthors}Walley, P.\BCBT \BBA Fine, T.  \APACrefYearMonthDay1982. \BBOQ\APACrefatitleTowards a frequentist theory of upper and lower probability Towards a frequentist theory of upper and lower probability.\BBCQ \APACjournalVolNumPagesAnnals of Statistics103741–761. \PrintBackRefs\CurrentBib
  • Yaari (\APACyear1987) \APACinsertmetastaryaari1987dual{APACrefauthors}Yaari, M.  \APACrefYearMonthDay1987. \BBOQ\APACrefatitleThe dual theory of choice under risk The dual theory of choice under risk.\BBCQ \APACjournalVolNumPagesEconometrica95–115. \PrintBackRefs\CurrentBib
  • Zhang \BOthers. (\APACyear2020) \APACinsertmetastarzhang2020wasserstein{APACrefauthors}Zhang, K., Peyré, G., Fadili, J.\BCBL \BBA Pereyra, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleWasserstein control of mirror langevin monte carlo Wasserstein control of mirror langevin monte carlo.\BBCQ \BIn \APACrefbtitleConference on Learning Theory Conference on learning theory (\BPGS 3814–3841). \PrintBackRefs\CurrentBib