This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Bounds for moments of quadratic Dirichlet LL-functions of prime-related moduli

Peng Gao and Liangyi Zhao
Abstract.

In this paper, we study the kk-th moment of central values of the family of quadratic Dirichlet LL-functions of moduli 8p8p, with pp ranging over odd primes. Assuming the truth of the generalized Riemann hypothesis, we establish sharp upper and lower bounds for the kk-th power moment of these LL-values for all real k0k\geq 0.

Mathematics Subject Classification (2010): 11M06

Keywords: moments, quadratic Dirichlet LL-functions, prime moduli, lower bounds, upper bounds

1. Introduction

Moments of families of LL-functions at the central value are important subjects in analytical number theory due to their rich arithmetic applications. In [Jutila], M. Jutila initiated the study on the first and second moment of the family of quadratic Dirichlet LL-functions L(1/2,χd)L(1/2,\chi_{d}) for dd running over fundamental discriminants, where χd=(d)\chi_{d}=\left(\frac{d}{\cdot}\right) is the Kronecker symbol. Asymptotic formulae for these moments were given in [Jutila]. In the same paper, Jutila also obtained an asymptotic formula for the first moment of the family of quadratic Dirichlet LL-functions of prime moduli L(1/2,χp)L(1/2,\chi_{p}), for primes pp satisfying various congruence conditions. This resolved a conjecture raised earlier by D. Goldfeld and C. Viola in [G&V]. In [B&P], S. Baluyot and K. Pratt obtained an asymptotic formula for the second moment of L(12,χp)L(\tfrac{1}{2},\chi_{p}) under the generalized Riemann hypothesis (GRH). They also obtained sharp upper and lower bounds for the second moment unconditionally as well as for the third moment under the assumption that L(1/2,χn)0L(1/2,\chi_{n})\geq 0 for certain integers nn. The function field analogue of moments of quadratic Dirichlet LL-functions of prime moduli has been studied by J. Andrade and J. P. Keating in [Andrade&Keating] and by H. M. Bui and A. Florea in [B&F2020].

Based on results from Random Matrix Theory, J. P. Keating and N. C. Snaith conjectured in [Keating-Snaith02] that for all k0k\geq 0,

|d|XL(12,χd)kCkX(logX)k(k+1)/2\displaystyle\begin{split}\sum_{|d|\leq X}L\left(\frac{1}{2},\chi_{d}\right)^{k}\sim C_{k}X(\log X)^{k(k+1)/2}\end{split}

as XX\rightarrow\infty, where the numbers CkC_{k} are explicit constants. It is expected that the above relations continue to hold (with different constants), if one considers instead

pX(logp)L(12,χp)k.\displaystyle\begin{split}\sum_{p\leq X}(\log p)L\left(\frac{1}{2},\chi_{p}\right)^{k}.\end{split}

The aim of this paper is to establish sharp bounds of the right order of magnitude for the above expression. Due to some technical reasons, we consider χ8p\chi_{8p} instead of χp\chi_{p} for odd primes pp and we assume the truth of GRH throughout. In particular as a consequence of GRH, L(1/2,χ8p)0L(1/2,\chi_{8p})\geq 0 for all odd primes pp.

We shall establish upper and lower bounds separately. Our lower bound result is giving in the following.

Theorem 1.1.

Assume the truth of RH for ζ(s)\zeta(s) and GRH for L(s,χ8p)L(s,\chi_{8p}) for all odd primes pp. We have for large XX and all real numbers k0k\geq 0,

2<pX(logp)L(12,χ8p)kkX(logX)k(k+1)/2.\displaystyle\begin{split}\sum_{\begin{subarray}{c}2<p\leq X\end{subarray}}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{k}\gg_{k}&X(\log X)^{k(k+1)/2}.\end{split}

The proof of Theorem 1.1 relies on the lower bounds principal developed by W. Heap and K. Soundararajan in [H&Sound] towards establishing sharp lower bounds for moments for families of LL-functions at the central value. In this process, we shall actually need to make use of a method of K. Soundararajan in [Sound2009] together with its refinement by A. J. Harper in [Harper] to derive sharp upper bounds for moments of families of LL-functions under GRH. The same approach also leads to our sharp upper bounds as follows.

Theorem 1.2.

Assume the truth of RH for ζ(s)\zeta(s) and GRH for L(s,χ8p)L(s,\chi_{8p}) for all odd primes pp. We have for large XX and all real numbers k0k\geq 0,

2<pX(logp)L(12,χ8p)kkX(logX)k(k+1)/2.\displaystyle\begin{split}\sum_{\begin{subarray}{c}2<p\leq X\end{subarray}}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{k}\ll_{k}&X(\log X)^{k(k+1)/2}.\end{split}

Theorems 1.1 and 1.2 can be combined to readily produce the following result on the order of magnitude of the family of LL-functions under our consideration.

Corollary 1.3.

Assume the truth of RH for ζ(s)\zeta(s) and GRH for L(s,χ8p)L(s,\chi_{8p}) for all odd primes pp. We have for large XX and all real numbers k0k\geq 0,

2<pX(logp)L(12,χ8p)kkX(logX)k(k+1)/2.\displaystyle\begin{split}\sum_{\begin{subarray}{c}2<p\leq X\end{subarray}}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{k}\asymp_{k}&X(\log X)^{k(k+1)/2}.\end{split}

2. Preliminaries

We gather first a few auxiliary results required in our proofs. In the rest of the paper, we shall reserve the symbols pp, qq for primes.

2.1. Sums over primes

We note the following result on various summations over prime numbers.

Lemma 2.2.

Let x2x\geq 2. There is a constant cc such that

pxlogp=x+O(xexp(clogx)).\sum_{p\leq x}\log p=x+O\big{(}x\exp(-c\sqrt{\log x})\big{)}.

Also, there is a constant bb such that

px1p=loglogx+b+O(1logx).\sum_{p\leq x}\frac{1}{p}=\log\log x+b+O\Big{(}\frac{1}{\log x}\Big{)}.

The estimations in the above lemma are given by [MVa1, Theorem 6.9] and [MVa1, Theorem 2.7], respectively. There are, of course, better results under GRH. But the unconditional results in Lemma 2.2 are sufficient for our purpose.

2.3. The approximate functional equation

We recall the following approximate functional equation concerning L(1/2,χ8p)L(1/2,\chi_{8p}) given in [sound1, Lemma 2.2].

Lemma 2.4 (Approximate functional equation).

For any odd prime pp, we have

L(12,χ8d)=2n=1χ8p(n)nV(nd),\displaystyle\begin{split}L\left(\frac{1}{2},\chi_{8d}\right)=&2\sum^{\infty}_{\begin{subarray}{c}n=1\end{subarray}}\frac{\chi_{8p}(n)}{\sqrt{n}}V\left(\frac{n}{\sqrt{d}}\right),\end{split}

where for any real number t>0t>0,

(2.1) V(t)=12πi(2)(8π)s/2(Γ(s/2+1/4)Γ(1/4))tsdss.\displaystyle V(t)=\frac{1}{2\pi i}\int\limits\limits_{(2)}\left(\frac{8}{\pi}\right)^{s/2}\left(\frac{\Gamma(s/2+1/4)}{\Gamma(1/4)}\right)t^{-s}\frac{\mathrm{d}s}{s}.

2.5. Upper bound for log|L(1/2,χ8p)|\log|L(1/2,\chi_{8p})|

We cite a result from [Harper, Proposition 3] on an upper bound of log|L(12,χ8p)|\log|L(\tfrac{1}{2},\chi_{8p})| in terms of a sum over primes.

Lemma 2.6.

Assume RH for ζ(s)\zeta(s) and GRH for L(s,χ8p)L(s,\chi_{8p}) for all odd primes pp. We have for x2x\geq 2 and pXp\leq X for a large number XX,

(2.2) log|L(12,χ8p)|qxχ8p(q)q1/2+1/logxlog(x/q)logx+12loglogx+logXlogx+O(1).\displaystyle\begin{split}&\log\left|L(\tfrac{1}{2},\chi_{8p})\right|\leq\sum_{\begin{subarray}{c}q\leq x\end{subarray}}\frac{\chi_{8p}(q)}{q^{1/2+1/\log x}}\frac{\log(x/q)}{\log x}+\frac{1}{2}\log\log x+\frac{\log X}{\log x}+O(1).\end{split}

2.7. Smoothed character sums

For any positive odd integer cc, we write ψc\psi_{c} for the Dirichlet character with ψc(n)=(nc)\psi_{c}(n)=\left(\frac{n}{c}\right) for nn\in\mathbb{Z}. We also define δc==1\delta_{c=\square}=1 if cc is a perfect square and δc==0\delta_{c=\square}=0 otherwise. In the remainder of the paper, let Φ\Phi denote a smooth, non-negative function compactly supported on [1/2,5/2][1/2,5/2] satisfying Φ(x)=1\Phi(x)=1 for x[1,2]x\in[1,2]. The Mellin transform of Φ(x)\Phi(x) is wirtten as Φ^(s){\widehat{\Phi}}(s) and recall that for any complex number ss,

Φ^(s)=0Φ(x)xsdxx.{\widehat{\Phi}}(s)=\int\limits_{0}^{\infty}\Phi(x)x^{s}\frac{\mathrm{d}x}{x}.

We have the following result on the smoothed quadratic character sums.

Lemma 2.8.

Assume GRH. Let cc be a positive odd integer and Φ(X)\Phi(X) be a smooth function fitting the above descriptions. Then for any ε>0\varepsilon>0,

(2.3) (p,2)=1(logp)χ8p(c)Φ(pX)=δc=Φ^(1)X+O(X1/2+εloglog(c+2)).\sum_{(p,2)=1}(\log p)\chi_{8p}(c)\Phi\left(\frac{p}{X}\right)=\delta_{c=\square}\widehat{\Phi}(1)X+O\left(X^{1/2+\varepsilon}\log\log(c+2)\right).
Proof.

Due to the compact support of Φ\Phi, we get

(p,2)=1(logp)χ8p(c)Φ(pX)=\displaystyle\sum_{(p,2)=1}(\log p)\chi_{8p}(c)\Phi\left(\frac{p}{X}\right)= nχ8n(c)Λ(n)Φ(nX)+O(pjX1+ε,j2(logp)Φ(pjX)).\displaystyle\sum_{n}\chi_{8n}(c)\Lambda(n)\Phi\left(\frac{n}{X}\right)+O\left(\sum_{\begin{subarray}{c}p^{j}\leq X^{1+\varepsilon},\ j\geq 2\end{subarray}}(\log p)\Phi\left(\frac{p^{j}}{X}\right)\right).

Now Lemma 2.2 gives

(2.4) pjX1+ε,j2(logp)Φ(pjX)XεpX1/2+εlogpX1/2+ε.\displaystyle\sum_{\begin{subarray}{c}p^{j}\leq X^{1+\varepsilon},\ j\geq 2\end{subarray}}(\log p)\Phi\left(\frac{p^{j}}{X}\right)\ll X^{\varepsilon}\sum_{\begin{subarray}{c}p\leq X^{1/2+\varepsilon}\end{subarray}}\log p\ll X^{1/2+\varepsilon}.

Next, we apply Mellin inversion to obtain that

nχ8n(c)Λ(n)Φ(nX)=\displaystyle\sum_{n}\chi_{8n}(c)\Lambda(n)\Phi\left(\frac{n}{X}\right)= χ8(c)2πi(2)L(s,ψc)L(s,ψc)Φ^(s)Xsds.\displaystyle-\frac{\chi_{8}(c)}{2\pi i}\int\limits_{(2)}\frac{L^{\prime}(s,\psi_{c})}{L(s,\psi_{c})}\widehat{\Phi}(s)X^{s}\mathrm{d}s.

Recall here that ψc\psi_{c} denotes the Dirichlet character (nc)\left(\frac{n}{c}\right) for nn\in\mathbb{Z}.

We evaluate the above integral by shifting the line of integration to (s)=1/2+ε\Re(s)=1/2+\varepsilon. There is a pole at s=1s=1 with residue Φ^(1)X-\widehat{\Phi}(1)X only if cc is a perfect square. The integration on the line (s)=1/2+ε\Re(s)=1/2+\varepsilon can be estimated as O(X1/2+εloglog(c+2))O(X^{1/2+\varepsilon}\log\log(c+2)) by using the rapid decay of Φ^\widehat{\Phi} on the vertical line and the estimate (see [iwakow, Theorem 5.17]) that under GRH, we have for (s)1/2+ε\Re(s)\geq 1/2+\varepsilon,

(2.5) L(s,ψc)L(s,ψc)loglog((c+2)(1+|s|)).\displaystyle\frac{L^{\prime}(s,\psi_{c})}{L(s,\psi_{c})}\ll\log\log\big{(}(c+2)(1+|s|)\big{)}.

The expression given in (2.3) now follows. ∎

3. Proof of Theorem 1.1

3.1. The lower bound principle

We assume that XX is large throughout the proof. Upon dividing qq into dyadic blocks and replacing kk by 2k2k, we see that in order to prove Theorem 1.1, it suffices to show that for k0k\geq 0,

(p,2)=1(logp)L(12,χ8p)2kΦ(pX)X(logX)k(2k+1),\displaystyle\sum_{(p,2)=1}(\log p)L(\tfrac{1}{2},\chi_{8p})^{2k}\Phi\left(\frac{p}{X}\right)\gg X(\log X)^{k(2k+1)},

where Φ\Phi is given in Section 2.7.

As the case k=0k=0 is trivial and the case k=1/2k=1/2 above essentially follows from [Jutila, Theorem 3] (with minor changes in the proof) due to M. Jutila, we shall assume that 0<k1/20<k\neq 1/2 throughout the proof. We also note that in remainder of the paper, unless otherwise specified, the implicit constants involved in estimations using \ll or the big-OO notations depend on kk only and are uniform with respect to χ\chi. We further recall the usual convention that the empty product is defined to be 11.

We follow the ideas of A. J. Harper in [Harper] to define for a large number MM depending on kk only,

α0=log2logX,αi=20i1(loglogX)2for alli1,=k,X=1+max{i:αi10M}.\alpha_{0}=\frac{\log 2}{\log X},\;\;\;\;\;\alpha_{i}=\frac{20^{i-1}}{(\log\log X)^{2}}\;\;\;\mbox{for all}\;i\geq 1,\quad\mathcal{I}=\mathcal{I}_{k,X}=1+\max\{i:\alpha_{i}\leq 10^{-M}\}.

The above notations and Lemma 2.2 yield that that for XX large enough,

(3.1) logloglogX,α1=1(loglogX)2,pX1/(loglogX)21ploglogX.\displaystyle\mathcal{I}\leq\log\log\log X,\;\;\;\;\;\alpha_{1}=\frac{1}{(\log\log X)^{2}},\;\;\;\;\;\sum_{p\leq X^{1/(\log\log X)^{2}}}\frac{1}{p}\leq\log\log X.

Also, for 1i11\leq i\leq\mathcal{I}-1 and XX large enough,

(3.2) ilog(1/αi)log20,Xαi<pXαi+11p=logαi+1logαi+o(1)=log20+o(1)10.\displaystyle\mathcal{I}-i\leq\frac{\log(1/\alpha_{i})}{\log 20},\;\;\;\;\;\sum_{X^{\alpha_{i}}<p\leq X^{\alpha_{i+1}}}\frac{1}{p}=\log\alpha_{i+1}-\log\alpha_{i}+o(1)=\log 20+o(1)\leq 10.

Combining (3.1) and (3.2), we obtain

Xαi1<pXαi1p100103M/4αi3/4,1i.\displaystyle\sum_{X^{\alpha_{i-1}}<p\leq X^{\alpha_{i}}}\frac{1}{p}\leq\frac{100}{10^{3M/4}}\alpha^{-3/4}_{i},\quad 1\leq i\leq\mathcal{I}.

For any real numbers xx, yy with y0y\geq 0, we set

(3.3) Ey(x)=j=02yxjj!.\displaystyle E_{y}(x)=\sum_{j=0}^{2\lceil y\rceil}\frac{x^{j}}{j!}.

We then define for any real number α\alpha and any 1i1\leq i\leq\mathcal{I},

𝒫i(p)=\displaystyle{\mathcal{P}}_{i}(p)= Xαi1<qXαiχ8p(q)q,𝒩i(p,α)=Ee2kαi3/4(α𝒫i(p)),𝒩(p,α)=i=1𝒩i(p,α).\displaystyle\sum_{X^{\alpha_{i-1}}<q\leq X^{\alpha_{i}}}\frac{\chi_{8p}(q)}{\sqrt{q}},\quad{\mathcal{N}}_{i}(p,\alpha)=E_{e^{2}k\alpha^{-3/4}_{i}}\Big{(}\alpha{\mathcal{P}}_{i}(p)\Big{)},\quad{\mathcal{N}}(p,\alpha)=\prod^{\mathcal{I}}_{i=1}{\mathcal{N}}_{i}(p,\alpha).

Note that each 𝒩i(p,α){\mathcal{N}}_{i}(p,\alpha) is a short Dirichlet polynomial of length at most X2αie2kαi3/4X^{2\alpha_{i}\lceil e^{2}k\alpha^{-3/4}_{i}\rceil}. By taking XX large enough, we have that

(3.4) i=12αie2kαi3/44e2k10M/4.\displaystyle\sum^{\mathcal{I}}_{i=1}2\alpha_{i}\lceil e^{2}k\alpha^{-3/4}_{i}\rceil\leq\lceil 4e^{2}k10^{-M/4}\rceil.

It follows that 𝒩(p,α){\mathcal{N}}(p,\alpha) is also a short Dirichlet polynomial of length at most X4e2k10M/4X^{\lceil 4e^{2}k10^{-M/4}\rceil}.

In the proof of Theorem 1.1, we need the following bounds for expressions involving with various 𝒩(p,α){\mathcal{N}}(p,\alpha) .

Lemma 3.2.

With the notations as above, we have for 0<k<1/20<k<1/2 and 1i1\leq i\leq\mathcal{I},

(3.5) 𝒩i(p,2k1)2(23k)12k𝒩i(p,22k)2𝒩i(p,2k)(1+O(ee2kαi3/4))+𝒬irk(p,k).\displaystyle\begin{split}{\mathcal{N}}_{i}(p,2k-1)^{\frac{2(2-3k)}{1-2k}}{\mathcal{N}}_{i}(p,2-2k)^{2}\leq{\mathcal{N}}_{i}(p,2k)\left(1+O\big{(}e^{-e^{2}k\alpha^{-3/4}_{i}}\big{)}\right)+{\mathcal{Q}}^{r_{k}}_{i}(p,k).\end{split}

We also have for k>1/2k>1/2 and 1i1\leq i\leq\mathcal{I},

(3.6) 𝒩i(p,2k1)2k2k1𝒩i(p,2k)(1+O(ee2kαi3/4))+𝒬irk(p,k).\displaystyle\begin{split}\mathcal{N}_{i}(p,2k-1)^{\frac{2k}{2k-1}}\leq{\mathcal{N}}_{i}(p,2k)\left(1+O\big{(}e^{-e^{2}k\alpha^{-3/4}_{i}}\big{)}\right)+{\mathcal{Q}}^{r_{k}}_{i}(p,k).\end{split}

Here the implied constants in (3.5) and (3.6) are absolute, and we define

𝒬i(p,k)=(12max(9,36k2)𝒫i(p)e2kαi3/4)2e2kαi3/4,{\mathcal{Q}}_{i}(p,k)=\left(\frac{12\max(9,36k^{2}){\mathcal{P}}_{i}(p)}{\lceil e^{2}k\alpha^{-3/4}_{i}\rceil}\right)^{2\lceil e^{2}k\alpha^{-3/4}_{i}\rceil},

with rk=3+2(23k)/(12k)r_{k}=3+\lceil 2(2-3k)/(1-2k)\rceil for 0<k<1/20<k<1/2 and rk=1+2k/(2k1)r_{k}=1+\lceil 2k/(2k-1)\rceil for k>1/2k>1/2.

Proof.

As in the proof of [Gao2021-3, Lemma 3.4], we have for |z|aK/20|z|\leq aK/20 with 0<a20<a\leq 2,

(3.7) |r=0Kzrr!ez||z|KK!(ae20)K.\displaystyle\Big{|}\sum_{r=0}^{K}\frac{z^{r}}{r!}-e^{z}\Big{|}\leq\frac{|z|^{K}}{K!}\leq\Big{(}\frac{ae}{20}\Big{)}^{K}.

By taking z=α𝒫i(p),K=2e2kαi3/4z=\alpha{\mathcal{P}}_{i}(p),K=2\lceil e^{2}k\alpha^{-3/4}_{i}\rceil and a=min(|α|,2)a=\min(|\alpha|,2) in (3.7), we see that for any α|α|\alpha^{\prime}\geq|\alpha|, if

|𝒫i(p)|e2kαi3/4/(10(1+α)),|{\mathcal{P}}_{i}(p)|\leq\lceil e^{2}k\alpha^{-3/4}_{i}\rceil/(10(1+\alpha^{\prime})),

then

𝒩i(p,α)=\displaystyle{\mathcal{N}}_{i}(p,\alpha)= exp(α𝒫i(p))(1+O(exp(|α𝒫i(p)|)(ae20)2e2kαi3/4))\displaystyle\exp(\alpha{\mathcal{P}}_{i}(p))\left(1+O\left(\exp(|\alpha{\mathcal{P}}_{i}(p)|)\left(\frac{ae}{20}\right)^{2e^{2}k\alpha^{-3/4}_{i}}\right)\right)
=\displaystyle= exp(α𝒫i(p))(1+O(aee2kαi3/4)).\displaystyle\exp(\alpha{\mathcal{P}}_{i}(p))\left(1+O\left(ae^{-e^{2}k\alpha^{-3/4}_{i}}\right)\right).

We apply the above estimates to 𝒩i(p,2k1),𝒩i(p,22k){\mathcal{N}}_{i}(p,2k-1),\ {\mathcal{N}}_{i}(p,2-2k) and 𝒩i(p,2k){\mathcal{N}}_{i}(p,2k) by taking α=2\alpha^{\prime}=2 above to see that when 0<k<1/20<k<1/2 and |𝒫i(p)|e2kαi3/4/30|{\mathcal{P}}_{i}(p)|\leq\lceil e^{2}k\alpha^{-3/4}_{i}\rceil/30, then

(3.8) 𝒩i(p,2k1)2(23k)12k𝒩i(p,22k)2=exp(2k𝒫i(p))(1+O(ee2kαi3/4))=𝒩i(p,2k)(1+O(ee2kαi3/4)).\displaystyle\begin{split}{\mathcal{N}}_{i}(p,2k-1)^{\frac{2(2-3k)}{1-2k}}{\mathcal{N}}_{i}(p,2-2k)^{2}=&\exp(2k{\mathcal{P}}_{i}(p))\left(1+O\big{(}e^{-e^{2}k\alpha^{-3/4}_{i}}\big{)}\right)\\ =&{\mathcal{N}}_{i}(p,2k)\left(1+O\big{(}e^{-e^{2}k\alpha^{-3/4}_{i}}\big{)}\right).\end{split}

Similarly, by taking α=2k1\alpha^{\prime}=2k-1, we see that when k>1/2k>1/2 and |𝒫i(p)|e2kαi3/4/(20k)|{\mathcal{P}}_{i}(p)|\leq\lceil e^{2}k\alpha^{-3/4}_{i}\rceil/(20k), then

(3.9) 𝒩i(p,2k1)2k2k1𝒩i(p,2k)(1+O(ee2kαi3/4)).\displaystyle\begin{split}\mathcal{N}_{i}(p,2k-1)^{\frac{2k}{2k-1}}\leq{\mathcal{N}}_{i}(p,2k)\left(1+O\big{(}e^{-e^{2}k\alpha^{-3/4}_{i}}\big{)}\right).\end{split}

On the other hand, when |𝒫i(p)|e2kαi3/4/(10(1+α))|{\mathcal{P}}_{i}(p)|\geq\lceil e^{2}k\alpha^{-3/4}_{i}\rceil/(10(1+\alpha^{\prime})), we have that

(3.10) 𝒩i(p,α)r=02e2kαi3/4|α𝒫i(p)|rr!|(α+1)𝒫i(p)|2e2kαi3/4r=02e2kαi3/4(10(1+α)2e2kαi3/4)e2kαi3/4r1r!(12(α+1)2|𝒫i(p)|e2kαi3/4)2e2kαi3/4.\displaystyle\begin{split}{\mathcal{N}}_{i}(p,\alpha)\leq\sum_{r=0}^{2\lceil e^{2}k\alpha^{-3/4}_{i}\rceil}\frac{|\alpha{\mathcal{P}}_{i}(p)|^{r}}{r!}&\leq|(\alpha^{\prime}+1){\mathcal{P}}_{i}(p)|^{2\lceil e^{2}k\alpha^{-3/4}_{i}\rceil}\sum_{r=0}^{2\lceil e^{2}k\alpha^{-3/4}_{i}\rceil}\Big{(}\frac{10(1+\alpha^{\prime})}{2\lceil e^{2}k\alpha^{-3/4}_{i}\rceil}\Big{)}^{\lceil e^{2}k\alpha^{-3/4}_{i}\rceil-r}\frac{1}{r!}\\ &\leq\Big{(}\frac{12(\alpha^{\prime}+1)^{2}|{\mathcal{P}}_{i}(p)|}{\lceil e^{2}k\alpha^{-3/4}_{i}\rceil}\Big{)}^{2\lceil e^{2}k\alpha^{-3/4}_{i}\rceil}.\end{split}

The last expression in (3.10) enables us to deduce that when 0<k<1/20<k<1/2 and |𝒫i(p)|e2kαi3/4/30|{\mathcal{P}}_{i}(p)|\geq\lceil e^{2}k\alpha^{-3/4}_{i}\rceil/30,

(3.11) 𝒩i(p,2k1)2(23k)12k𝒩i(p,22k)2𝒬irk(p,k).\displaystyle\begin{split}{\mathcal{N}}_{i}(p,2k-1)^{\frac{2(2-3k)}{1-2k}}{\mathcal{N}}_{i}(p,2-2k)^{2}\leq{\mathcal{Q}}^{r_{k}}_{i}(p,k).\end{split}

Moreover, we set α=2k1\alpha^{\prime}=2k-1 in (3.10) to deduce that when k>1/2k>1/2 and |𝒫i(p)|e2kαi3/4/(20k)|{\mathcal{P}}_{i}(p)|\geq\lceil e^{2}k\alpha^{-3/4}_{i}\rceil/(20k),

(3.12) 𝒩i(p,2k1)2k2k1𝒬irk(p,k).\displaystyle\begin{split}\mathcal{N}_{i}(p,2k-1)^{\frac{2k}{2k-1}}\leq{\mathcal{Q}}^{r_{k}}_{i}(p,k).\end{split}

The assertion of the lemma now follows from (3.8), (3.9), (3.11) and (3.12). ∎

Next, we state the needed lower bounds principle of W. Heap and K. Soundararajan in [H&Sound] for our situation.

Lemma 3.3.

With notations as above, we have for 0<k<1/20<k<1/2 and c=(2/k3)1c=(2/k-3)^{-1},

(3.13) (p,2)=1(logp)L(12,χ8p)𝒩(p,2k1)Φ(pX)((p,2)=1(logp)L(12,χ8p)2kΦ(pX))c/(2k)((p,2)=1(logp)L(12,χ8p)2𝒩(p,2k2)Φ(pX))(1c)/2×((p,2)=1(logp)i=1(𝒩i(p,2k)+𝒬irk(p,k))Φ(pX))(1+c)/2c/(2k).\displaystyle\begin{split}\sum_{(p,2)=1}&(\log p)L\left(\frac{1}{2},\chi_{8p}\right)\mathcal{N}(p,2k-1)\Phi\left(\frac{p}{X}\right)\\ \ll&\left(\sum_{(p,2)=1}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{2k}\Phi\left(\frac{p}{X}\right)\right)^{c/(2k)}\left(\sum_{(p,2)=1}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{2}\mathcal{N}(p,2k-2)\Phi\left(\frac{p}{X}\right)\right)^{(1-c)/2}\\ &\hskip 56.9055pt\times\left(\sum_{(p,2)=1}(\log p)\prod^{{\mathcal{I}}}_{i=1}\big{(}{\mathcal{N}}_{i}(p,2k)+{\mathcal{Q}}^{r_{k}}_{i}(p,k)\big{)}\Phi\left(\frac{p}{X}\right)\right)^{(1+c)/2-c/(2k)}.\end{split}

For k>1/2k>1/2, we have

(3.14) (p,2)=1(logp)L(12,χ8p)𝒩(p,2k1)Φ(pX)((p,2)=1(logp)L(12,χ8p)2kΦ(pX))1/(2k)((p,2)=1(logp)i=1(𝒩i(p,2k)+𝒬irk(p,k))Φ(pX))11/(2k).\displaystyle\begin{split}\sum_{(p,2)=1}(\log p)&L\left(\frac{1}{2},\chi_{8p}\right)\mathcal{N}(p,2k-1)\Phi\left(\frac{p}{X}\right)\\ \leq&\Big{(}\sum_{(p,2)=1}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{2k}\Phi\left(\frac{p}{X}\right)\Big{)}^{1/(2k)}\Big{(}\sum_{(p,2)=1}(\log p)\prod^{{\mathcal{I}}}_{i=1}\big{(}{\mathcal{N}}_{i}(p,2k)+{\mathcal{Q}}^{r_{k}}_{i}(p,k)\big{)}\Phi\left(\frac{p}{X}\right)\Big{)}^{1-1/(2k)}.\end{split}
Proof.

We note from its definition E(x)E_{\ell}(x) is an even degree polynomial for any positive integer \ell. We then proceed as in [Gao2021-3, Section 2] to get that for any real number α\alpha,

(3.15) 𝒩(p,α)𝒩(p,α)1.\displaystyle\mathcal{N}(p,\alpha)\mathcal{N}(p,-\alpha)\geq 1.

We deduce from (3.15) that

(p,2)=1(logp)L(12,χ8p)𝒩(p,2k1)Φ(pX)(p,2)=1(logp)L(12,χ8p)cL(12,χ8p)1c𝒩(p,2k2)(1c)/2𝒩(p,2k1)𝒩(p,22k)(1c)/2Φ(pX).\displaystyle\begin{split}\sum_{(p,2)=1}(\log p)&L\left(\frac{1}{2},\chi_{8p}\right)\mathcal{N}(p,2k-1)\Phi\left(\frac{p}{X}\right)\\ \leq&\sum_{(p,2)=1}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{c}\cdot L\left(\frac{1}{2},\chi_{8p}\right)^{1-c}\mathcal{N}(p,2k-2)^{(1-c)/2}\cdot\mathcal{N}(p,2k-1)\mathcal{N}(p,2-2k)^{(1-c)/2}\Phi\left(\frac{p}{X}\right).\end{split}

We now apply Hölder’s inequality with exponents 2k/c,2/(1c),((1+c)/2c/(2k))12k/c,2/(1-c),((1+c)/2-c/(2k))^{-1} to the last sum above. We easily confirm, using the definition of cc, that these exponents are all at least 11. This leads to

(3.16) (p,2)=1(logp)L(12,χ8p)𝒩(p,2k1)Φ(pX)((p,2)=1(logp)L(12,χ8p)2kΦ(pX))c/(2k)((p,2)=1(logp)L(12,χ8p)2𝒩(p,2k2)Φ(pX))(1c)/2×((p,2)=1(logp)𝒩(p,2k1)2(23k)12k𝒩(p,22k)2Φ(pX))(1+c)/2c/(2k).\displaystyle\begin{split}\sum_{(p,2)=1}(\log p)&L\left(\frac{1}{2},\chi_{8p}\right)\mathcal{N}(p,2k-1)\Phi\left(\frac{p}{X}\right)\\ \leq&\left(\sum_{(p,2)=1}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{2k}\Phi\left(\frac{p}{X}\right)\right)^{c/(2k)}\left(\sum_{(p,2)=1}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{2}\mathcal{N}(p,2k-2)\Phi\left(\frac{p}{X}\right)\right)^{(1-c)/2}\\ &\hskip 56.9055pt\times\left(\sum_{(p,2)=1}(\log p)\mathcal{N}(p,2k-1)^{\frac{2(2-3k)}{1-2k}}\mathcal{N}(p,2-2k)^{2}\Phi\left(\frac{p}{X}\right)\right)^{(1+c)/2-c/(2k)}.\end{split}

The estimation given in (3.13) then follows from the above by applying the estimation in (3.5) in the last sum of (3.16).

Similarly, when k>1/2k>1/2, Hölder’s inequality with the exponents 2k2k, 2k/(2k1)2k/(2k-1) yeilds

(3.17) (p,2)=1(logp)L(12,χ8p)𝒩(p,2k1)Φ(pX)(p,2)=1(logp)|L(12,χ8p)|𝒩(p,2k1)Φ(pX)((p,2)=1(logp)L(12,χ8p)2kΦ(pX))1/(2k)((p,2)=1(logp)𝒩(p,2k1)2k2k1Φ(pX))11/(2k).\displaystyle\begin{split}\sum_{(p,2)=1}(\log p)&L\left(\frac{1}{2},\chi_{8p}\right)\mathcal{N}(p,2k-1)\Phi\left(\frac{p}{X}\right)\leq\sum_{(p,2)=1}(\log p)\left|L\left(\frac{1}{2},\chi_{8p}\right)\right|\mathcal{N}(p,2k-1)\Phi\left(\frac{p}{X}\right)\\ \leq&\left(\sum_{(p,2)=1}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{2k}\Phi\left(\frac{p}{X}\right)\right)^{1/(2k)}\left(\sum_{(p,2)=1}(\log p)\mathcal{N}(p,2k-1)^{\frac{2k}{2k-1}}\Phi\left(\frac{p}{X}\right)\right)^{1-1/(2k)}.\end{split}

The estimation given in (3.14) then follows from above by applying the estimation in (3.6) in the last sum of (3.17). This completes the proof. ∎

It follows from the above lemma that in order to establish Theorem 1.1, it suffices to prove the following three propositions.

Proposition 3.4.

With notations as above, we have for k>0k>0,

(3.18) (p,2)=1(logp)L(12,χ8p)𝒩(p,2k1)Φ(pX)X(logX)(2k)2+12.\displaystyle\sum_{(p,2)=1}(\log p)L\left(\frac{1}{2},\chi_{8p}\right){\mathcal{N}}(p,2k-1)\Phi\Big{(}\frac{p}{X}\Big{)}\gg X(\log X)^{\frac{(2k)^{2}+1}{2}}.
Proposition 3.5.

With notations as above, we have for 0<k<1/20<k<1/2,

(p,2)=1(logp)L(12,χ8p)2𝒩(p,2k2)Φ(pX)X(logX)(2k)2+22.\displaystyle\sum_{(p,2)=1}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{2}{\mathcal{N}}(p,2k-2)\Phi\Big{(}\frac{p}{X}\Big{)}\ll X(\log X)^{\frac{(2k)^{2}+2}{2}}.
Proposition 3.6.

With notations as above, we have for k>0k>0, k1/2k\neq 1/2,

(p,2)=1(logp)i=1(𝒩i(p,k)2+𝒬irk(p,k)2)Φ(pX)\displaystyle\sum_{(p,2)=1}(\log p)\prod^{\mathcal{I}}_{i=1}\big{(}{\mathcal{N}}_{i}(p,k)^{2}+{\mathcal{Q}}^{r_{k}}_{i}(p,k)^{2}\big{)}\Phi\left(\frac{p}{X}\right)\ll X(logX)(2k)22.\displaystyle X(\log X)^{\frac{(2k)^{2}}{2}}.

Notice that Proposition 3.6 can be established in a manner similar to [Gao2021-3, Proposition 2.2], upon using Lemma 2.8 in our situation. Thus, it remains to establish the other two propositions. In the course of the proof of Proposition 3.4, we need the following result on the twisted first moment of quadratic Dirichlet LL-functions of prime moduli.

Proposition 3.7.

With notations as above and let XX be a large real number. Suppose Φ\Phi is a function satisfying the conditions given in Section 2.7. Further let \ell be a fixed positive integer and write \ell uniquely as =122\ell=\ell_{1}\ell^{2}_{2} with 1\ell_{1} square-free, we have

(p,2)=1(logp)L(12,χ8p)χ8p()Φ(pX)=C1X1log(X1)+C2X1+O(X7/8+ε11/4+ε+X1/2+ε),\displaystyle\sum_{(p,2)=1}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)\chi_{8p}(\ell)\Phi\left(\frac{p}{X}\right)=C_{1}\frac{X}{\sqrt{\ell_{1}}}\log\Big{(}\frac{X}{\ell_{1}}\Big{)}+C_{2}\frac{X}{\sqrt{\ell_{1}}}+O(X^{7/8+\varepsilon}\ell_{1}^{-1/4+\varepsilon}+X^{1/2+\varepsilon}),

where C1C_{1}, C2C_{2} are explicit constants depending on Φ\Phi only.

Proof.

We apply the approximate functional equation given in Lemma 2.4 to see that

:=(p,2)=1(logp)L(12,χ8p)χ8p()Φ(pX)=2m=11m1/2(p,2)=1(logp)χ8p(m)V(mp)Φ(pX).\mathcal{M}:=\sum_{(p,2)=1}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)\chi_{8p}(\ell)\Phi\left(\frac{p}{X}\right)=2\sum^{\infty}_{m=1}\frac{1}{m^{1/2}}\sum_{(p,2)=1}(\log p)\chi_{8p}(m\ell)V\left(\frac{m}{\sqrt{p}}\right)\Phi\left(\frac{p}{X}\right).

Due to the compact support of Φ\Phi, we get that

(p,2)=1(logp)χ8p(m)V(mp)Φ(pX)=\displaystyle\sum_{(p,2)=1}(\log p)\chi_{8p}(m\ell)V\left(\frac{m}{\sqrt{p}}\right)\Phi\left(\frac{p}{X}\right)= n=1χ8n(m)Λ(n)V(mn)Φ(nX)+O(pjX1+ε,j2(logp)Φ(pjX)).\displaystyle\sum^{\infty}_{n=1}\chi_{8n}(m\ell)\Lambda(n)V\left(\frac{m}{\sqrt{n}}\right)\Phi\left(\frac{n}{X}\right)+O\left(\sum_{\begin{subarray}{c}p^{j}\leq X^{1+\varepsilon},j\geq 2\end{subarray}}(\log p)\Phi\left(\frac{p^{j}}{X}\right)\right).

By (2.4), the OO-term above is X1/2+ε\ll X^{1/2+\varepsilon}. To deal with the first term on the right-hand side of the above, we apply Mellin inversion to obtain that

(3.19) n=1χ8n(m)Λ(n)V(mn)Φ(nX)=\displaystyle\sum^{\infty}_{n=1}\chi_{8n}(m\ell)\Lambda(n)V\left(\frac{m}{\sqrt{n}}\right)\Phi\left(\frac{n}{X}\right)= χ8(m)2πi(2)L(s,ψm)L(s,ψm)f^(s)Xsds,\displaystyle-\frac{\chi_{8}(m\ell)}{2\pi i}\int\limits_{(2)}\frac{L^{\prime}(s,\psi_{m\ell})}{L(s,\psi_{m\ell})}\widehat{f}(s)X^{s}\mathrm{d}s,

where

f^(s)=0V(mXx1/2)Φ(x)xs1dx.\widehat{f}(s)=\int\limits_{0}^{\infty}V\left(\frac{m}{\sqrt{X}}x^{-1/2}\right)\Phi(x)x^{s-1}\mathrm{d}x.

The function VV satisfies the following bounds (see [sound1, Lemma 2.1]).

V(x)=1+O(x1/2ε),asx0V(x)=1+O\left(x^{1/2-\varepsilon}\right),\quad\mbox{as}\quad x\to 0

and for large xx and integers j0j\geq 0.

V(j)(x)jexp(x2/2).V^{(j)}(x)\ll_{j}\exp(-x^{2}/2).

Now repeated integration by parts, together with the above bounds for VV, yields

f^(s)(1+|s|)E(1+m/X)E,\widehat{f}(s)\ll(1+|s|)^{-E}\left(1+m/\sqrt{X}\right)^{-E},

for any (s)>0\Re(s)>0 and any integer E>0E>0.

We evaluate the integral in (3.19) by shifting the line of integration to the line (s)=1/2+ε\Re(s)=1/2+\varepsilon to encounter a pole at s=1s=1 with residue f^(1)X-\widehat{f}(1)X only if mm\ell is a perfect square. The integral over (s)=1/2+ε\Re(s)=1/2+\varepsilon can be estimated to be O(X1/2+εloglog(m+2))O(X^{1/2+\varepsilon}\log\log(m\ell+2)) using the rapid decay of f^\widehat{f} on the vertical line and (2.5).

To deal with the contribution from the residues, we deduce via the expression for VV in (2.1) that

f^(1)=0V(mXx1/2)Φ(x)𝑑x=12πi(2)(Xm)sΦ^(1+s2)(8π)s/2Γ(s/2+1/4)Γ(1/4)dss.\displaystyle\widehat{f}(1)=\int_{0}^{\infty}V\left(\frac{m}{\sqrt{X}}x^{-1/2}\right)\Phi(x)dx=\frac{1}{2\pi i}\int\limits_{(2)}\left(\frac{\sqrt{X}}{m}\right)^{s}\widehat{\Phi}\left(1+\frac{s}{2}\right)\left(\frac{8}{\pi}\right)^{s/2}\frac{\Gamma(s/2+1/4)}{\Gamma(1/4)}\frac{\mathrm{d}s}{s}.

Note that mm\ell is a perfect square if and only if mm is a square multiple of 1\ell_{1}. So we may replace mm by 1m2\ell_{1}m^{2} and get that the contribution from the poles to \mathcal{M} is

(3.20) 2X112πi(2)Φ^(1+s2)(8π)s/2Γ(s/2+1/4)Γ(1/4)(X1)s(1121+2s)ζ(1+2s)dss.\displaystyle\frac{2X}{\sqrt{\ell_{1}}}\frac{1}{2\pi i}\int\limits_{(2)}\widehat{\Phi}\left(1+\frac{s}{2}\right)\left(\frac{8}{\pi}\right)^{s/2}\frac{\Gamma(s/2+1/4)}{\Gamma(1/4)}\left(\frac{\sqrt{X}}{\ell_{1}}\right)^{s}\left(1-\frac{1}{2^{1+2s}}\right)\zeta(1+2s)\frac{\mathrm{d}s}{s}.

We evaluate the integral in (3.20) by moving the contour of integration to 1/4+ε-1/4+\varepsilon, crossing a pole at s=0s=0 only. To estimate the integral on the new line, we apply the convexity bound for ζ(s)\zeta(s) given in [iwakow, (5.20)] to see that, when (s)=1/2+ε\Re(s)=1/2+\varepsilon,

ζ(s)(1+|s|)1/4+ε.\zeta(s)\ll(1+|s|)^{1/4+\varepsilon}.

The residue of the pole in the above process can be easily computed and this leads to the proof of the proposition. ∎

3.8. Proof of Proposition 3.4

Let w(n)w(n) be the multiplicative function such that w(pβ)=β!w(p^{\beta})=\beta! for prime powers pβp^{\beta} and let Ω(n)\Omega(n) denote the number of distinct primes dividing nn. Let bi(n),1ib_{i}(n),1\leq i\leq{\mathcal{I}} be functions such that bi(n)=0b_{i}(n)=0 or 11 and that bi(n)=1b_{i}(n)=1 only when nn is composed of at most 2e2kαi3/42\lceil e^{2}k\alpha^{-3/4}_{i}\rceil primes, all from the interval (Xαi1,Xαi](X^{\alpha_{i-1}},X^{\alpha_{i}}].

These notations allow us to write for any real number α\alpha,

(3.21) 𝒩i(p,α)=ni1niαΩ(ni)w(ni)bi(ni)χ8p(ni),1i.{\mathcal{N}}_{i}(p,\alpha)=\sum_{n_{i}}\frac{1}{\sqrt{n_{i}}}\frac{\alpha^{\Omega(n_{i})}}{w(n_{i})}b_{i}(n_{i})\chi_{8p}(n_{i}),\quad 1\leq i\leq{\mathcal{I}}.

We now apply Proposition 3.7 and (3.21) to evaluate the left side expression in (3.18). In this process, we may ignore the error term in Proposition 3.7 as 𝒩(p,2k1){\mathcal{N}}(p,2k-1) is a short Dirichlet polynomial by (3.4). In the same decomposition of ll in the statement of Proposition 3.7, nin_{i} can be uniquely written as ni=(ni)1(ni)22n_{i}=(n_{i})_{1}(n_{i})_{2}^{2} with (ni)1,(ni)2(n_{i})_{1},(n_{i})_{2}\in\mathbb{Z} and (ni)1(n_{i})_{1} square-free. Thus main term contribution leads to

(p,2)=1(logp)\displaystyle\sum_{(p,2)=1}(\log p) L(12,χ8p)𝒩(p,2k1)Φ(pX)\displaystyle L\left(\frac{1}{2},\chi_{8p}\right){\mathcal{N}}(p,2k-1)\Phi\Big{(}\frac{p}{X}\Big{)}
\displaystyle\gg Xn1,,n(i=11ni(ni)1(2k1)Ω(ni)w(ni)bi(ni))(log(X(n1)1(n)1)+C2).\displaystyle X\sum_{n_{1},\cdots,n_{\mathcal{I}}}\Big{(}\prod_{i=1}^{\mathcal{I}}\frac{1}{\sqrt{n_{i}(n_{i})_{1}}}\frac{(2k-1)^{\Omega(n_{i})}}{w(n_{i})}b_{i}(n_{i})\Big{)}\Big{(}\log\Big{(}\frac{\sqrt{X}}{(n_{1})_{1}\cdots(n_{\mathcal{I}})_{1}}\Big{)}+C_{2}\Big{)}.

An expression similar to the right side expression above already appears in the proof of [Gao2021-3, Propsition 2.1]. It follows from the treatment there that the right side expression above is X(logX)((2k)2+1)/2\gg X(\log X)^{((2k)^{2}+1)/2}. This completes the proof of the proposition.

3.9. Proof of Proposition 3.5

We begin by establishing some weaker estimations on the upper bounds for moments of the quadratic families of Dirichlet LL-functions under consideration. Let XX be a large number and 𝒩(V,X)\mathcal{N}(V,X) be the number of Dirichlet characters χ8p\chi_{8p} such that 2<pX2<p\leq X and logL(1/2,χ8p)V+12loglogX\log L(1/2,\chi_{8p})\geq V+\tfrac{1}{2}\log\log X. We then have that

(3.22) 2<pX(logp)L(12,χ8p)k(logX)+exp(kV+k2loglogX)d𝒩(V,X)=k(logX)k/2+1+exp(kV)𝒩(V,X)dV.\displaystyle\begin{split}\sum_{\begin{subarray}{c}2<p\leq X\end{subarray}}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{k}&\leq-(\log X)\int\limits_{-\infty}^{+\infty}\operatorname{exp}\Big{(}kV+\frac{k}{2}\log\log X\Big{)}\mathrm{d}\mathcal{N}(V,X)\\ &=k(\log X)^{k/2+1}\int\limits_{-\infty}^{+\infty}\operatorname{exp}(kV)\mathcal{N}(V,X)\mathrm{d}V.\end{split}

To estimate the last integral above, we note that by setting x=logXx=\log X and summing over pp trivially in (2.2) to see that we may assume that 𝒩(V,X)6logX/loglogX\mathcal{N}(V,X)\leq 6\log X/\log\log X. For V<10loglogXV<10\sqrt{\operatorname{log}\operatorname{log}X}, we use the trivial bounds 𝒩(V,X)X/(logX)\mathcal{N}(V,X)\ll X/(\log X). For the remaining range of VV, we note the following upper bounds for 𝒩(V,X)\mathcal{N}(V,X) given in [Sound2009, Section 4].

Proposition 3.10.

Assume RH for ζ(s)\zeta(s) and GRH for L(s,χ8p)L(s,\chi_{8p}) for all odd primes pp. We have for any fixed k>0k>0,

𝒩(V,X){XlogXexp(V22loglogX(1+o(1))),10loglogXVo((loglogX)(logloglogX)),XlogXexp(cVlogV),o((loglogX)(logloglogX))V6logXloglogX.\displaystyle\mathcal{N}(V,X)\ll\left\{\begin{array}[c]{ll}\displaystyle{\frac{X}{\log X}\exp\left(-\frac{V^{2}}{2\log\log X}(1+o(1))\right),\quad 10\sqrt{\operatorname{log}\operatorname{log}X}\leq V\leq o((\log\log X)(\log\log\log X))},\\ \\ \displaystyle{\frac{X}{\log X}\exp\left(-cV\log V\right),\quad o((\log\log X)(\log\log\log X))\leq V\leq\frac{6\log X}{\log\log X}}.\end{array}\right.

Applying the above bounds for 𝒩(V,X)\mathcal{N}(V,X) in (3.22) readily leads to the following weaker upper bounds for moments of the family of quadratic Dirichlet LL-functions .

Proposition 3.11.

Assume RH for ζ(s)\zeta(s) and GRH for L(s,χ8p)L(s,\chi_{8p}) for all odd primes pp. For any positive real number kk and any ε>0\varepsilon>0, we have for large XX,

2<pX(logp)L(12,χ8p)kk\displaystyle\sum_{\begin{subarray}{c}2<p\leq X\end{subarray}}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{k}\ll_{k} X(logX)k(k+1)/2+ε.\displaystyle X(\log X)^{k(k+1)/2+\varepsilon}.

Now, we take exponentials on both sides of (2.2) and deduce that

(3.23) L(12,χ8p)kexp(k(qxχ8p(q)q1/2+1/logxlog(x/q)logx+12loglogx+logXlogx)).\displaystyle\begin{split}&L\left(\frac{1}{2},\chi_{8p}\right)^{k}\ll\exp\left(k\left(\sum_{\begin{subarray}{c}q\leq x\end{subarray}}\frac{\chi_{8p}(q)}{q^{1/2+1/\log x}}\frac{\log(x/q)}{\log x}+\frac{1}{2}\log\log x+\frac{\log X}{\log x}\right)\right).\end{split}

To estimate the right side expression above, we denote

i,j(p)=\displaystyle{\mathcal{M}}_{i,j}(p)= Xαi1<qXαiχ8p(q)q12+1/(logXαj)log(xαj/q)logxαj,1ij.\displaystyle\sum_{X^{\alpha_{i-1}}<q\leq X^{\alpha_{i}}}\frac{\chi_{8p}(q)}{q^{\tfrac{1}{2}+1/(\log X^{\alpha_{j}})}}\frac{\log(x^{\alpha_{j}}/q)}{\log x^{\alpha_{j}}},\quad 1\leq i\leq j\leq\mathcal{I}.

We also define the following set:

𝒮(0)=\displaystyle\mathcal{S}(0)= {0<pX:|1,l(p)|>α13/4 for some 1l},\displaystyle\{0<p\leq X:|{\mathcal{M}}_{1,l}(p)|>\alpha_{1}^{-3/4}\;\text{ for some }1\leq l\leq\mathcal{I}\},
𝒮(j)=\displaystyle\mathcal{S}(j)= {0<pX:|i,l(p)|αi3/4for all 1ij,andil,\displaystyle\{0<p\leq X:|{\mathcal{M}}_{i,l}(p)|\leq\alpha_{i}^{-3/4}\;\mbox{for all}\;1\leq i\leq j,\;\mbox{and}\;i\leq l\leq\mathcal{I},
but|j+1,l(p)|>αj+13/4 for some j+1l},1j,\displaystyle\hskip 56.9055pt\text{but}\;|{\mathcal{M}}_{j+1,l}(p)|>\alpha_{j+1}^{-3/4}\;\text{ for some }j+1\leq l\leq\mathcal{I}\},\quad 1\leq j\leq\mathcal{I},
𝒮()=\displaystyle\mathcal{S}(\mathcal{I})= {0<pX:|i,(p)|αi3/4for all 1i}.\displaystyle\{0<p\leq X:|{\mathcal{M}}_{i,\mathcal{I}}(p)|\leq\alpha_{i}^{-3/4}\;\mbox{for all}\;1\leq i\leq\mathcal{I}\}.

As

{0<pX}=j=0𝒮(j),\{0<p\leq X\}=\bigcup_{j=0}^{\mathcal{I}}\mathcal{S}(j),

it remains to show that

(3.24) j=0p𝒮(j)(logp)L(12,χ8p)2𝒩(p,2k2)Φ(pX)X(logX)((2k)2+2)/2.\displaystyle\sum_{j=0}^{\mathcal{I}}\sum_{p\in\mathcal{S}(j)}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{2}\mathcal{N}(p,2k-2)\Phi\left(\frac{p}{X}\right)\ll X(\log X)^{((2k)^{2}+2)/2}.

We let W(t)W(t) be any non-negative smooth function that is supported on (1/2ε1,1+ε1)(1/2-\varepsilon_{1},1+\varepsilon_{1}) for some fixed small 0<ε1<1/20<\varepsilon_{1}<1/2 such that W(t)1W(t)\gg 1 for t(1/2,1)t\in(1/2,1). We then notice that

(3.25) meas(𝒮(0))(p,2)=1l=1(α13/4|1,l(χ)|)21/(10α1)W(pX)=l=1(p,2)=1(α13/4|1,l(χ)|)21/(10α1)W(pX).\displaystyle\begin{split}\text{meas}(\mathcal{S}(0))\ll\sum_{\begin{subarray}{c}(p,2)=1\end{subarray}}\sum^{\mathcal{I}}_{l=1}\Big{(}\alpha^{3/4}_{1}{|\mathcal{M}}_{1,l}(\chi)|\Big{)}^{2\lceil 1/(10\alpha_{1})\rceil}W\left(\frac{p}{X}\right)=\sum^{\mathcal{I}}_{l=1}\sum_{\begin{subarray}{c}(p,2)=1\end{subarray}}\Big{(}\alpha^{3/4}_{1}{|\mathcal{M}}_{1,l}(\chi)|\Big{)}^{2\lceil 1/(10\alpha_{1})\rceil}W\left(\frac{p}{X}\right).\end{split}

We now apply the estimates in (3.1) to evaluate the last sums in (3.25). Using an approach similar to the proof of Proposition 3.4, we get

(3.26) meas(𝒮(0))\displaystyle\text{meas}(\mathcal{S}(0))\ll Xe1/(6α1)Xe(loglogX)2/10.\displaystyle\mathcal{I}Xe^{-1/(6\alpha_{1})}\ll Xe^{-(\log\log X)^{2}/10}.

We then deduce via the Cauchy-Schwarz inequality that

(3.27) χ𝒮(0)(logp)L(12,χ8p)2𝒩(p,2k2)Φ(pX)((logX)meas(𝒮(0)))1/4((p,2)=1(logp)L(12,χ8p)8Φ(pX))1/4((p,2)=1(logp)𝒩(p,2k2)2Φ(pX))1/2.\displaystyle\begin{split}\sum_{\chi\in\mathcal{S}(0)}&(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{2}\mathcal{N}(p,2k-2)\Phi\left(\frac{p}{X}\right)\\ \leq&\Big{(}(\log X)\text{meas}(\mathcal{S}(0))\Big{)}^{1/4}\left(\sum_{\begin{subarray}{c}(p,2)=1\end{subarray}}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{8}\Phi\left(\frac{p}{X}\right)\right)^{1/4}\Big{(}\sum_{\begin{subarray}{c}(p,2)=1\end{subarray}}(\log p)\mathcal{N}(p,2k-2)^{2}\Phi\left(\frac{p}{X}\right)\Big{)}^{1/2}.\end{split}

Similar to the proof of Proposition 3.6, we have that

(3.28) (p,2)=1(logp)𝒩(p,2k2)2Φ(pX)X(logX)(2(2k2))2/2.\displaystyle\sum_{\begin{subarray}{c}(p,2)=1\end{subarray}}(\log p)\mathcal{N}(p,2k-2)^{2}\Phi\left(\frac{p}{X}\right)\ll X(\log X)^{(2(2k-2))^{2}/2}.

Also, by Proposition 3.11 with ε=1\varepsilon=1, we have that

(3.29) (p,2)=1(logp)L(12,χ8p)8Φ(pX)0<p4X(logp)L(12,χ8p)8X(logX)37.\displaystyle\sum_{\begin{subarray}{c}(p,2)=1\end{subarray}}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{8}\Phi\left(\frac{p}{X}\right)\leq\sum_{\begin{subarray}{c}0<p\leq 4X\end{subarray}}(\log p)L(\tfrac{1}{2},\chi_{8p})^{8}\ll X(\log X)^{37}.

Applying the bounds given in (3.26), (3.28) and (3.29) in (3.27), we deduce that

χ𝒮(0)(logp)L(12,χ8p)2𝒩(p,2k2)Φ(pX)X(logX)k(k+1)/2.\displaystyle\sum_{\chi\in\mathcal{S}(0)}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{2}\mathcal{N}(p,2k-2)\Phi\left(\frac{p}{X}\right)\ll X(\log X)^{k(k+1)/2}.

The above estimation implies that it remains to consider the cases j1j\geq 1 in (3.24). When p𝒮(j)p\in\mathcal{S}(j), we set x=Xαjx=X^{\alpha_{j}} in (3.23) to see that

(3.30) L(12,χ8p)k(logX)k/2exp(kαj)exp(ki=0ji,j(p)).\displaystyle\begin{split}&L\left(\frac{1}{2},\chi_{8p}\right)^{k}\ll(\log X)^{k/2}\exp\Big{(}\frac{k}{\alpha_{j}}\Big{)}\exp\Big{(}k\sum^{j}_{i=0}{\mathcal{M}}_{i,j}(p)\Big{)}.\end{split}

As we have Mi,jαi3/4M_{i,j}\leq\alpha^{-3/4}_{i} when p𝒮(j)p\in\mathcal{S}(j), we argue as in the proof of [Kirila, Lemma 5.2] to see that

(3.31) exp(ki=1ji,j(p))i=1jEe2kαi3/4(ki,j(p)).\displaystyle\begin{split}\exp\Big{(}k\sum^{j}_{i=1}{\mathcal{M}}_{i,j}(p)\Big{)}\ll\prod^{j}_{i=1}E_{e^{2}k\alpha^{-3/4}_{i}}(k{\mathcal{M}}_{i,j}(p)).\end{split}

We then deduce from the description on 𝒮(j)\mathcal{S}(j) that when j1j\geq 1,

p𝒮(j)(logp)L(12,χ8p)2𝒩(p,2k2)Φ(pX)(logX)exp(2αj)l=j+12<pXexp(2i=1ji,j(p))𝒩(p,2k2)(αj+13/4j+1,l(p))21/(10αj+1)(logX)exp(2αj)l=j+12<pXi=1jEe2kαi3/4(2i,j(p))Ee2kαi3/4((2k2)𝒫i(p))×Ee2kαj+13/4((2k2)𝒫j+1(p))(αj+13/4j+1,l(p))21/(10αj+1)i=j+2Ee2kαi3/4((2k2)𝒫i(p)).\displaystyle\begin{split}\sum_{p\in\mathcal{S}(j)}(\log p)&L\left(\frac{1}{2},\chi_{8p}\right)^{2}\mathcal{N}(p,2k-2)\Phi(\frac{p}{X})\\ \ll&(\log X)\exp\left(\frac{2}{\alpha_{j}}\right)\sum^{\mathcal{I}}_{l=j+1}\sum_{\begin{subarray}{c}2<p\leq X\end{subarray}}\exp\Big{(}2\sum^{j}_{i=1}{\mathcal{M}}_{i,j}(p)\Big{)}\mathcal{N}(p,2k-2)\Big{(}\alpha^{3/4}_{j+1}{\mathcal{M}}_{j+1,l}(p)\Big{)}^{2\lceil 1/(10\alpha_{j+1})\rceil}\\ \ll&(\log X)\exp\left(\frac{2}{\alpha_{j}}\right)\sum^{\mathcal{I}}_{l=j+1}\sum_{\begin{subarray}{c}2<p\leq X\end{subarray}}\prod^{j}_{i=1}E_{e^{2}k\alpha^{-3/4}_{i}}(2{\mathcal{M}}_{i,j}(p))E_{e^{2}k\alpha^{-3/4}_{i}}((2k-2){\mathcal{P}}_{i}(p))\\ &\hskip 28.45274pt\times E_{e^{2}k\alpha^{-3/4}_{j+1}}((2k-2){\mathcal{P}}_{j+1}(p))\Big{(}\alpha^{3/4}_{j+1}{\mathcal{M}}_{j+1,l}(p)\Big{)}^{2\lceil 1/(10\alpha_{j+1})\rceil}\prod^{\mathcal{I}}_{i=j+2}E_{e^{2}k\alpha^{-3/4}_{i}}((2k-2){\mathcal{P}}_{i}(p)).\end{split}

We now apply (3.2) and proceed as in the proofs of Proposition 3.4 to arrive at

p𝒮(j)(logp)L(12,χ8p)2𝒩(p,2k2)Φ(pX)(logX)exp(2αj)(j)e44/αj+1pXα(1+(2k)22p+O(1p2))e42/αj+1X(logX)((2k)2+2)/2.\displaystyle\begin{split}\sum_{p\in\mathcal{S}(j)}(\log p)&L\left(\frac{1}{2},\chi_{8p}\right)^{2}\mathcal{N}(p,2k-2)\Phi\left(\frac{p}{X}\right)\\ \ll&(\log X)\exp\Big{(}\frac{2}{\alpha_{j}}\Big{)}(\mathcal{I}-j)e^{-44/\alpha_{j+1}}\prod_{p\leq X^{\alpha_{\mathcal{I}}}}\Big{(}1+\frac{(2k)^{2}}{2p}+O\Big{(}\frac{1}{p^{2}}\Big{)}\Big{)}\ll e^{-42/\alpha_{j+1}}X(\log X)^{((2k)^{2}+2)/2}.\end{split}

As 20/αj+1=1/αj20/\alpha_{j+1}=1/\alpha_{j}, we conclude from the above that

p𝒮(j)(logp)L(12,χ8p)2𝒩(p,2k2)Φ(pX)e1/(10αj)X(logX)((2k)2+2)/2.\displaystyle\begin{split}&\sum_{p\in\mathcal{S}(j)}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{2}\mathcal{N}(p,2k-2)\Phi\Big{(}\frac{p}{X}\Big{)}\ll e^{-1/(10\alpha_{j})}X(\log X)^{((2k)^{2}+2)/2}.\end{split}

As the sum of the right side expression above over jj converges, we see that the above estimation implies (3.24) and this completes the proof of Proposition 3.5.

4. Proof of Theorem 1.2

The proof of Theorem 1.2 is similar to that of Proposition 3.5. Thus we shall be brief here. In keeping the notations in Section 3.9, we see that it suffices to show that for k>0k>0,

(4.1) j=0p𝒮(j)(logp)L(12,χ8p)kX(logX)k(k+1)/2.\displaystyle\sum_{j=0}^{\mathcal{I}}\sum_{p\in\mathcal{S}(j)}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{k}\ll X(\log X)^{k(k+1)/2}.

Once again we may only examine the case j1j\geq 1 here. We apply (3.30) and (3.31) to see that when j1j\geq 1,

p𝒮(j)(logp)L(12,χ8p)k(logX)k/2exp(kαj)l=j+12<pXi=1jEe2kαi3/4(ki,j(χ))(αj+13/4j+1,l(χ))21/(10αj+1).\displaystyle\begin{split}\sum_{p\in\mathcal{S}(j)}(\log p)&L\left(\frac{1}{2},\chi_{8p}\right)^{k}\\ \ll&(\log X)^{k/2}\exp\Big{(}\frac{k}{\alpha_{j}}\Big{)}\sum^{\mathcal{I}}_{l=j+1}\sum_{\begin{subarray}{c}2<p\leq X\end{subarray}}\prod^{j}_{i=1}E_{e^{2}k\alpha^{-3/4}_{i}}(k{\mathcal{M}}_{i,j}(\chi))\Big{(}\alpha^{3/4}_{j+1}{\mathcal{M}}_{j+1,l}(\chi)\Big{)}^{2\lceil 1/(10\alpha_{j+1})\rceil}.\end{split}

Applying 3.2 and arguing as in the proof of Proposition 3.4, we obtain that

l=j+12<pXi=1jEe2kαi3/4(ki,j(χ))(αj+13/4j+1,l(χ))21/(10αj+1)X(j)e22k/αj+1pXαj(1+k22p+O(1p2))e21k/αj+1X(logX)k2/2.\displaystyle\begin{split}\sum^{\mathcal{I}}_{l=j+1}\sum_{\begin{subarray}{c}2<p\leq X\end{subarray}}&\prod^{j}_{i=1}E_{e^{2}k\alpha^{-3/4}_{i}}(k{\mathcal{M}}_{i,j}(\chi))\Big{(}\alpha^{3/4}_{j+1}{\mathcal{M}}_{j+1,l}(\chi)\Big{)}^{2\lceil 1/(10\alpha_{j+1})\rceil}\\ \ll&X(\mathcal{I}-j)e^{-22k/\alpha_{j+1}}\prod_{p\leq X^{\alpha_{j}}}\Big{(}1+\frac{k^{2}}{2p}+O\Big{(}\frac{1}{p^{2}}\Big{)}\Big{)}\ll e^{-21k/\alpha_{j+1}}X(\log X)^{k^{2}/2}.\end{split}

We conclude from the above that

p𝒮(j)(logp)L(12,χ8p)kek/(20αj)X(logX)k(k+1)/2.\sum_{p\in\mathcal{S}(j)}(\log p)L\left(\frac{1}{2},\chi_{8p}\right)^{k}\ll e^{-k/(20\alpha_{j})}X(\log X)^{k(k+1)/2}.

Summing over jj now leads to (4.1) and this completes the proof of Theorem 1.2.

Acknowledgments. P. G. is supported in part by NSFC grant 11871082 and L. Z. by the FRG grant PS43707 at the University of New South Wales (UNSW). The authors are grateful to the anonymous referee for his/her very careful reading of this manuscript and many helpful comments and suggestions.

References

School of Mathematical Sciences School of Mathematics and Statistics
Beihang University University of New South Wales
Beijing 100191 China Sydney NSW 2052 Australia
Email: [email protected] Email: [email protected]