This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Bounds for moments of modular LL-functions to a fixed modulus

Peng Gao, Xiaoguang He, and Xiaosheng Wu
Abstract.

We study the 2k2k-th moment of the family of twisted modular LL-functions to a fixed prime power modulus at the central values. We establish sharp lower bounds for all real k0k\geq 0 and sharp upper bounds for kk in the range 0k10\leq k\leq 1.

Mathematics Subject Classification (2010): 11F66, 11F11

Keywords: moments, modular LL-functions, lower bounds, upper bounds

1. Introduction

Evaluating asymptotically moments of LL-functions at the central point is an important subject in analytical number theory as these moments have many arithmetic applications. In this paper, we are interested in the families of twisted modular LL-functions to a fixed modulus. For simplicity, we fix a holomorphic Hecke eigenform ff of weight κ\kappa of level 11. The Fourier expansion of ff at infinity can be written as

f(z)=n=1λ(n)nκ12e(nz),f(z)=\sum_{n=1}^{\infty}\lambda(n)n^{\frac{\kappa-1}{2}}e(nz),

where we denote e(z)e(z) for e2πize^{2\pi iz}. Here the coefficients λ(n)\lambda(n) are real and satisfy λ(1)=1\lambda(1)=1 and |λ(n)|d(n)|\lambda(n)|\leq d(n) for n1n\geq 1 with d(n)d(n) being the divisor function of nn. We fix a modulus qq and assume that q2(mod4)q\not\equiv 2\pmod{4} throughout so that primitive Dirichlet characters modulo qq exist and denote χ\chi for a primitive Dirichlet character modulo qq. For (s)>1\Re(s)>1, we define the twisted modular LL-function L(s,fχ)L(s,f\otimes\chi) by

L(s,fχ)\displaystyle L(s,f\otimes\chi) =n=1λ(n)χ(n)ns=p(1λ(p)χ(p)ps+χ(p2)p2s)1.\displaystyle=\sum_{n=1}^{\infty}\frac{\lambda(n)\chi(n)}{n^{s}}=\prod_{p}\left(1-\frac{\lambda(p)\chi(p)}{p^{s}}+\frac{\chi(p^{2})}{p^{2s}}\right)^{-1}.

In [Stefanicki], T. Stefanicki obtained asymptotic formulas for the first and second moment of L(12,fχ)L(\tfrac{1}{2},f\otimes\chi) over all primitive characters. The result given in [Stefanicki] concerning the second moment is only valid for a restricted values of qq and this was later improved by P. Gao, R. Khan and G. Ricotta [GKR] to hold for almost all qq. Subsequent work with improvements on the error term can be found in [BM15, BFKMM, KMS17].

In [BM15], V. Blomer and D. Milićević not only studied the second moments of various modular LL-functions in a much broader sense but also obtained sharp lower bounds for the second moment of mixed product of twisted modular LL-functions. It is mentioned in [BM15] that the method carries over to treat the 2k2k-th moment for any integer kk as well and this was later achieved by G. Chen and X. He [CH].

The aim of this paper is to establish sharp lower and upper bounds for the 2k2k-th moments of central values of twisted modular LL-functions to a fixed prime power modulus for real kk. Throughout the paper, we denote ϕ(q)\phi^{*}(q) for the number of primitive characters modulo qq and \sideset{}{{}^{*}}{\sum} for the sum over primitive Dirichlet characters modulo qq. For lower bounds, we have the following result.

Theorem 1.1.

With notations as above. Let q=q0νq=q_{0}^{\nu} where q0q_{0} is a large prime number and ν1\nu\geq 1. For any real number k0k\geq 0, we have

(1.1) χ(modq)|L(12,fχ)|2kkϕ(q)(logq)k2.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},f\otimes\chi)|^{2k}\gg_{k}\phi^{*}(q)(\log q)^{k^{2}}.

For upper bounds, our result is as follows.

Theorem 1.2.

With notations as above. Let q=q0νq=q_{0}^{\nu} where q0q_{0} is a large prime number and ν1\nu\geq 1. For any real number kk such that 0k10\leq k\leq 1, we have

(1.2) χ(modq)|L(12,fχ)|2kkϕ(q)(logq)k2.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},f\otimes\chi)|^{2k}\ll_{k}\phi^{*}(q)(\log q)^{k^{2}}.

Our strategy of proofs for the above results largely follows from the lower bounds principle of W. Heap and K. Soundararajan [H&Sound] as well as the upper bounds principle of M. Radziwiłł and K. Soundararajan [Radziwill&Sound] concerning moments of general families of LL-functions. These principles require one to be able to evaluate twisted moments. For our case, we shall employ the method in [Stefanicki] to treat the twisted first moment and apply the tools developed in [BM15] to treat the twisted second moment. Especially, an estimation for certain off-diagonal terms in [BM15, Section 12] plays a crucial role in our treatment for the twisted second moment.

Combining Theorem 1.1 and 1.2, we have the following result concerning the order of magnitude of our family of LL-functions.

Theorem 1.3.

With notations as above. Let q=q0νq=q_{0}^{\nu} where q0q_{0} is a large prime number and ν1\nu\geq 1. For any real number kk such that 0k10\leq k\leq 1, we have

χ(modq)|L(12,χ)|2kϕ(q)(logq)k2.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\asymp\phi^{*}(q)(\log q)^{k^{2}}.

Our results above are in agreement with the conjectured formulas for these moments following from the general philosophy in the work of J. P. Keating and N. C. Snaith [Keating&Snaith2000].

2. Preliminaries

We reserve the letter pp for a prime number in this paper and we note the following result concerning sums over primes.

Lemma 2.1.

With notations as above and let x2x\geq 2. We have for some constant bb,

(2.1) pxλ2(p)p=loglogx+b+O(1logx).\displaystyle\sum_{p\leq x}\frac{\lambda^{2}(p)}{p}=\log\log x+b+O\Big{(}\frac{1}{\log x}\Big{)}.

Also,

(2.2) pxlogpp=logx+O(1).\displaystyle\sum_{p\leq x}\frac{\log p}{p}=\log x+O(1).

The first assertion of Lemma 2.1 follows from the Rankin-Selberg theory for L(s,f)L(s,f), which can be found in [iwakow, Chapter 5]. The second assertion of Lemma 2.1 is given in [MVa1, Lemma 2.7].

Next, we note the following approximate functional equations for L(12,fχ)L(\tfrac{1}{2},f\otimes\chi) and |L(1/2,fχ)|2|L(1/2,f\otimes\chi)|^{2}.

Lemma 2.2.

For X>0X>0, we have

(2.3) L(12,fχ)=n=1λ(n)χ(n)nW(nXq)+ιχn=1λ(n)χ¯(n)nW(nqX),\displaystyle L(\tfrac{1}{2},f\otimes\chi)=\sum^{\infty}_{n=1}\frac{\lambda(n)\chi(n)}{\sqrt{n}}W\left(\frac{nX}{q}\right)+\iota_{\chi}\sum^{\infty}_{n=1}\frac{\lambda(n)\overline{\chi}(n)}{\sqrt{n}}W\left(\frac{n}{qX}\right),

where ιχ=iκτ(χ)2/q\iota_{\chi}=i^{\kappa}\tau(\chi)^{2}/q, τ(χ)\tau(\chi) is the Gauss sum associated to χ\chi and

W(x)=12πi(c)Γ(κ2+s)Γ(κ2)es2(2πx)sdss.W(x)=\frac{1}{2\pi i}\int\limits_{(c)}\frac{\Gamma(\frac{\kappa}{2}+s)}{\Gamma(\frac{\kappa}{2})}e^{s^{2}}(2\pi x)^{-s}\>\frac{ds}{s}.

We also have

(2.4) |L(12,fχ)|2=2a,b=1χ(a)χ¯(b)ab𝒲(abq2),\displaystyle|L(\tfrac{1}{2},f\otimes\chi)|^{2}=2\sum^{\infty}_{a,b=1}\frac{\chi(a)\overline{\chi}(b)}{\sqrt{ab}}\mathcal{W}\left(\frac{ab}{q^{2}}\right),

where

𝒲(x)=12πi(c)Γ(κ2+s)2(2π)sΓ(κ2)2xsdss.\mathcal{W}(x)=\frac{1}{2\pi i}\int\limits_{(c)}\frac{\Gamma\left(\frac{\kappa}{2}+s\right)^{2}}{(2\pi)^{s}\Gamma\left(\frac{\kappa}{2}\right)^{2}}x^{-s}\>\frac{ds}{s}.

Moreover, the functions w(x),𝒲(x)w(x),\mathcal{W}(x) are real valued and satisfy the bound that for any c>0c>0,

(2.5) W(x),𝒲(x)cmin(1,xc).\displaystyle W(x),\mathcal{W}(x)\ll_{c}\min(1,x^{-c}).

The functional equation given in (2.3) can be derived using standard arguments as those in the proof of [iwakow, Theorem 5.3]. The functional equation given in (2.4) can be found in [GKR, Lemma 2.2].

3. Outline of the Proofs

As the case k=0k=0 is trivial and the case k=1k=1 for (1.1)-(1.2) is known from [BM15], we may assume in our proofs that 0<k10<k\neq 1 is a fixed positive real number. We let N,MN,M be two large natural numbers depending on kk only and define a sequence of even natural numbers {j}1jR\{\ell_{j}\}_{1\leq j\leq R} such that 1=2Nloglogq\ell_{1}=2\lceil N\log\log q\rceil and j+1=2Nlogj\ell_{j+1}=2\lceil N\log\ell_{j}\rceil for j1j\geq 1, where we set RR to be the largest natural number satisfying R>10M\ell_{R}>10^{M}. We shall choose MM large enough so that we have j>j+12\ell_{j}>\ell_{j+1}^{2} for all 1jR11\leq j\leq R-1 and we note that this implies that

(3.1) Rloglog1,j=1R1j2R.\displaystyle R\ll\log\log\ell_{1},\quad\sum^{R}_{j=1}\frac{1}{\ell_{j}}\leq\frac{2}{\ell_{R}}.

We define P1{P}_{1} to be the set of odd primes not exceeding q1/12q^{1/\ell_{1}^{2}} and Pj{P_{j}} to be the set of primes lying in the interval (q1/j12,q1/j2](q^{1/\ell_{j-1}^{2}},q^{1/\ell_{j}^{2}}] for 2jR2\leq j\leq R. For each 1jR1\leq j\leq R, we write

𝒫j(χ)=pPj1pχ(p),𝒬j(χ,k)=(ck𝒫j(χ)j)rkj,{\mathcal{P}}_{j}(\chi)=\sum_{p\in P_{j}}\frac{1}{\sqrt{p}}\chi(p),\quad{\mathcal{Q}}_{j}(\chi,k)=\Big{(}\frac{c_{k}{\mathcal{P}}_{j}(\chi)}{\ell_{j}}\Big{)}^{r_{k}\ell_{j}},

where we define

(3.2) ck=64max(1,k),rk={1+1/k+1k>1,k/(2k1)+1k<1.\displaystyle\begin{split}c_{k}=&64\max(1,k),\\ r_{k}=&\left\{\begin{array}[c]{ll}\lceil 1+1/k\rceil+1&k>1,\\ \lceil k/(2k-1)\rceil+1&k<1.\end{array}\right.\end{split}

We also define 𝒬R+1(χ,k)=1{\mathcal{Q}}_{R+1}(\chi,k)=1.

For any non-negative integer \ell and any real number xx, we denote

E(x)=j=0xjj!.E_{\ell}(x)=\sum_{j=0}^{\ell}\frac{x^{j}}{j!}.

We further define for each 1jR1\leq j\leq R and any real number α\alpha,

𝒩j(χ,α)=Ej(α𝒫j(χ)),𝒩(χ,α)=j=1R𝒩j(χ,α).\displaystyle{\mathcal{N}}_{j}(\chi,\alpha)=E_{\ell_{j}}(\alpha{\mathcal{P}}_{j}(\chi)),\quad\mathcal{N}(\chi,\alpha)=\prod_{j=1}^{R}{\mathcal{N}}_{j}(\chi,\alpha).

We point out here that in the rest of the paper, when we use \ll or the OO-symbol to estimate various quantities presented, the implicit constants involved depend on kk only and are uniform with respect to p,χp,\chi. We shall also make the convention that an empty product is defined to be 11.

The following two lemmas present in our setting the lower bounds principle of W. Heap and K. Soundararajan in [H&Sound] and the upper bounds principle of M. Radziwiłł and K. Soundararajan in [Radziwill&Sound], respectively.

The first one corresponds to the lower bounds principle.

Lemma 3.1.

With notations as above. For 0<k<10<k<1, we have

(3.3) χ(modq)L(12,fχ)𝒩(χ,k1)𝒩(χ¯,k)(χ(modq)|L(12,fχ)|2k)1/2(χ(modq)|L(12,fχ)|2|𝒩(χ,k1)|2)(1k)/2×(χ(modq)j=1R(|𝒩j(χ,k)|2+|𝒬j(χ,k)|2))k/2.\displaystyle\begin{split}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}L(\tfrac{1}{2},f\otimes\chi)\mathcal{N}(\chi,k-1)\mathcal{N}(\overline{\chi},k)\ll&\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},f\otimes\chi)|^{2k}\Big{)}^{1/2}\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},f\otimes\chi)|^{2}|\mathcal{N}(\chi,k-1)|^{2}\Big{)}^{(1-k)/2}\\ &\times\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\big{)}\Big{)}^{k/2}.\end{split}

For k>1k>1, we have

(3.4) χ(modq)L(12,fχ)𝒩(χ,k1)𝒩(χ¯,k)(χ(modq)|L(12,fχ)|2k)12k(χ(modq)j=1R(|𝒩j(χ,k)|2+|𝒬j(χ,k)|2))2k12k.\displaystyle\begin{split}&\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}L(\tfrac{1}{2},f\otimes\chi)\mathcal{N}(\chi,k-1)\mathcal{N}(\overline{\chi},k)\ll\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},f\otimes\chi)|^{2k}\Big{)}^{\frac{1}{2k}}\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\big{)}\Big{)}^{\frac{2k-1}{2k}}.\end{split}

The implied constants in (3.3) and (3.4) depend on kk only.

Proof.

We consider the case 0<k<10<k<1 first and we apply Hölder’s inequality to see that the left side of (3.3) is

(χ(modq)|L(12,fχ)|2k)1/2(χ(modq)|L(12,fχ)𝒩(χ,k1)|2)(1k)/2(χ(modq)|𝒩(χ,k)|2/k|𝒩(χ,k1)|2)k/2.\displaystyle\begin{split}\leq&\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},f\otimes\chi)|^{2k}\Big{)}^{1/2}\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},f\otimes\chi)\mathcal{N}(\chi,k-1)|^{2}\Big{)}^{(1-k)/2}\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|\mathcal{N}(\chi,k)|^{2/k}|\mathcal{N}(\chi,k-1)|^{2}\Big{)}^{k/2}.\end{split}

As in the proof of [Gao2021-3, Lemma 3.4], we have for |z|aK/20|z|\leq aK/20 with 0<a20<a\leq 2,

(3.5) |r=0Kzrr!ez||z|KK!(ae20)K.\displaystyle\Big{|}\sum_{r=0}^{K}\frac{z^{r}}{r!}-e^{z}\Big{|}\leq\frac{|z|^{K}}{K!}\leq\Big{(}\frac{ae}{20}\Big{)}^{K}.

Setting z=α𝒫j(χ),K=jz=\alpha{\mathcal{P}}_{j}(\chi),K=\ell_{j} and a=min(|α|,2)a=\min(|\alpha|,2) in (3.5) then implies that when |𝒫j(χ)|j/(20(1+|α|))|{\mathcal{P}}_{j}(\chi)|\leq\ell_{j}/(20(1+|\alpha|)),

𝒩j(χ,α)\displaystyle{\mathcal{N}}_{j}(\chi,\alpha)\leq exp(α𝒫j(χ))(1+exp(|α𝒫j(χ)|)(ae20)j)exp(α𝒫j(χ))(1+ej).\displaystyle\exp(\alpha{\mathcal{P}}_{j}(\chi))\left(1+\exp(|\alpha{\mathcal{P}}_{j}(\chi)|)\left(\frac{ae}{20}\right)^{\ell_{j}}\right)\leq\exp(\alpha{\mathcal{P}}_{j}(\chi))\left(1+e^{-\ell_{j}}\right).

Similarly, we have

𝒩j(χ,α)\displaystyle{\mathcal{N}}_{j}(\chi,\alpha)\geq exp(α𝒫j(χ))(1exp(|α𝒫j(χ)|)(ae20)j)exp(α𝒫j(χ))(1ej).\displaystyle\exp(\alpha{\mathcal{P}}_{j}(\chi))\left(1-\exp(|\alpha{\mathcal{P}}_{j}(\chi)|)\left(\frac{ae}{20}\right)^{\ell_{j}}\right)\geq\exp(\alpha{\mathcal{P}}_{j}(\chi))\left(1-e^{-\ell_{j}}\right).

We apply the above estimations to 𝒩j(χ,k1),𝒩j(χ,k){\mathcal{N}}_{j}(\chi,k-1),{\mathcal{N}}_{j}(\chi,k) to see that when 0<k<10<k<1 and |𝒫j(χ)|j/60|{\mathcal{P}}_{j}(\chi)|\leq\ell_{j}/60, then

|𝒩j(χ,k1)|2exp(2(k1)𝒫j(χ))(1+ej)2|𝒩j(χ,k)|2(k1)k(1+ej)2(1ej)2(k1)k.\displaystyle\begin{split}|\mathcal{N}_{j}(\chi,k-1)|^{2}\leq&\exp(2(k-1)\Re{\mathcal{P}}_{j}(\chi))\left(1+e^{-\ell_{j}}\right)^{2}\\ \leq&|{\mathcal{N}}_{j}(\chi,k)|^{\frac{2(k-1)}{k}}\left(1+e^{-\ell_{j}}\right)^{2}\left(1-e^{-\ell_{j}}\right)^{-\frac{2(k-1)}{k}}.\end{split}

We then conclude that when |𝒫j(χ)|j/60|{\mathcal{P}}_{j}(\chi)|\leq\ell_{j}/60,

(3.6) |𝒩j(χ,k)1k𝒩j(χ,k1)|2\displaystyle|{\mathcal{N}}_{j}(\chi,k)^{\frac{1}{k}}{\mathcal{N}}_{j}(\chi,k-1)|^{2}\leq |𝒩j(χ,k)|2(1+ej)2(1ej)2(k1)k.\displaystyle|{\mathcal{N}}_{j}(\chi,k)|^{2}\left(1+e^{-\ell_{j}}\right)^{2}\left(1-e^{-\ell_{j}}\right)^{-\frac{2(k-1)}{k}}.

On the other hand, we notice that when |𝒫j(χ)|>j/60|{\mathcal{P}}_{j}(\chi)|>\ell_{j}/60,

max(|𝒩j(χ,k1)|,|𝒩j(χ,k)|)r=0j|𝒫j(χ)|rr!|𝒫j(χ)|jr=0j(60j)jr1r!(64|𝒫j(χ)|j)j.\displaystyle\begin{split}\max\Big{(}|{\mathcal{N}}_{j}(\chi,k-1)|,|{\mathcal{N}}_{j}(\chi,k)|\Big{)}&\leq\sum_{r=0}^{\ell_{j}}\frac{|{\mathcal{P}}_{j}(\chi)|^{r}}{r!}\leq|{\mathcal{P}}_{j}(\chi)|^{\ell_{j}}\sum_{r=0}^{\ell_{j}}\Big{(}\frac{60}{\ell_{j}}\Big{)}^{\ell_{j}-r}\frac{1}{r!}\leq\Big{(}\frac{64|{\mathcal{P}}_{j}(\chi)|}{\ell_{j}}\Big{)}^{\ell_{j}}.\end{split}

It follows that when |𝒫j(χ)|>j/60|{\mathcal{P}}_{j}(\chi)|>\ell_{j}/60, we have

(3.7) |𝒩j(χ,k)1k𝒩j(χ,k1)|2\displaystyle|{\mathcal{N}}_{j}(\chi,k)^{\frac{1}{k}}{\mathcal{N}}_{j}(\chi,k-1)|^{2} (64|𝒫j(χ)|j)2(1+1/k)j|𝒬j(χ,k)|2.\displaystyle\leq\Big{(}\frac{64|{\mathcal{P}}_{j}(\chi)|}{\ell_{j}}\Big{)}^{2(1+1/k)\ell_{j}}\leq|{\mathcal{Q}}_{j}(\chi,k)|^{2}.

We apply (3.6) and (3.7) to deduce that when 0<k<10<k<1, we have

χ(modq)|𝒩(χ,k)|2/k|𝒩(χ,k1)|2χ(modq)(j=1R(|𝒩j(χ,k)|2(1+ej)2(1ej)2(k1)k+|𝒬j(χ,k)|2))j=1Rmax((1+ej)2(1ej)2(k1)k,1)χ(modq)j=1R(|𝒩j(χ,k)|2+|𝒬j(χ,k)|2)χ(modq)j=1R(|𝒩j(χ,k)|2+|𝒬j(χ,k)|2),\displaystyle\begin{split}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|\mathcal{N}(\chi,k)|^{2/k}|\mathcal{N}(\chi,k-1)|^{2}\leq&\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\Big{(}\prod^{R}_{j=1}\Big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}\left(1+e^{-\ell_{j}}\right)^{2}\left(1-e^{-\ell_{j}}\right)^{-\frac{2(k-1)}{k}}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\Big{)}\Big{)}\\ \leq&\prod^{R}_{j=1}\max\Big{(}\left(1+e^{-\ell_{j}}\right)^{2}\left(1-e^{-\ell_{j}}\right)^{-\frac{2(k-1)}{k}},1\Big{)}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\Big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\Big{)}\\ \ll&\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\Big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\Big{)},\end{split}

where the last estimation above follows by noting that

j=1Rmax((1+ej)2(1ej)2(k1)k,1)1.\displaystyle\begin{split}\prod^{R}_{j=1}\max\Big{(}\left(1+e^{-\ell_{j}}\right)^{2}\left(1-e^{-\ell_{j}}\right)^{-\frac{2(k-1)}{k}},1\Big{)}\ll 1.\end{split}

Next, we consider the case k>1k>1 and we apply Hölder’s inequality again to see that the left side of (3.4) is

(3.8) (χ(modq)|L(12,fχ)|2k)12k(χ(modq)|𝒩(χ,k)𝒩(χ,k1)|2k2k1)2k12k.\displaystyle\begin{split}\leq\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},f\otimes\chi)|^{2k}\Big{)}^{\frac{1}{2k}}\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|\mathcal{N}(\chi,k)\mathcal{N}(\chi,k-1)|^{\frac{2k}{2k-1}}\Big{)}^{\frac{2k-1}{2k}}.\end{split}

We argue similar to above to see that when |𝒫j(χ)|j/(40k)|{\mathcal{P}}_{j}(\chi)|\leq\ell_{j}/(40k),

(3.9) |𝒩j(χ,k)𝒩j(χ,k1)|2k2k1|𝒩j(χ,k)|2(1+ej)2k2k1(1ej)2(k1)2k1.\displaystyle\begin{split}|\mathcal{N}_{j}(\chi,k)\mathcal{N}_{j}(\chi,k-1)|^{\frac{2k}{2k-1}}\leq|{\mathcal{N}}_{j}(\chi,k)|^{2}\Big{(}1+e^{-\ell_{j}}\Big{)}^{\frac{2k}{2k-1}}\left(1-e^{-\ell_{j}}\right)^{-\frac{2(k-1)}{2k-1}}.\end{split}

Similarly, when |𝒫j(χ)|>j/(40k)|{\mathcal{P}}_{j}(\chi)|>\ell_{j}/(40k), we have

|𝒩j(χ,k)𝒩j(χ,k1)|2k2k1|𝒬j(χ,k)|2.\displaystyle\begin{split}|\mathcal{N}_{j}(\chi,k)\mathcal{N}_{j}(\chi,k-1)|^{\frac{2k}{2k-1}}\leq|{\mathcal{Q}}_{j}(\chi,k)|^{2}.\end{split}

Combining (3.8), (3.9) and arguing as above, we readily deduce the estimation given in (3.4). This completes the proof of the lemma. ∎

Our next lemma corresponds to the upper bounds principle.

Lemma 3.2.

With notations as above. We have for 0<k<10<k<1,

(3.10) χ(modq)|L(12,fχ)|2k(χ(modq)|L(12,fχ)|2v=0R(j=1v|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2)k(χ(modq)v=0R(j=1v|𝒩j(χ,k)|2)|𝒬v+1(χ,k)|2)1k,\displaystyle\begin{split}&\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},f\otimes\chi)|^{2k}\\ \ll&\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},f\otimes\chi)|^{2}\sum^{R}_{v=0}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\Big{)}^{k}\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\sum^{R}_{v=0}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\Big{)}^{1-k},\end{split}

where the implied constants depend on kk only.

Proof.

Using arguments similar to those in the proof of Lemma 3.1, we see that when |𝒫j(χ)|j/60|{\mathcal{P}}_{j}(\chi)|\leq\ell_{j}/60,

(3.11) |𝒩j(χ,k1)|2k|𝒩j(χ,k)|2(1k)(1ej)2.\displaystyle|\mathcal{N}_{j}(\chi,k-1)|^{2k}|\mathcal{N}_{j}(\chi,k)|^{2(1-k)}\geq\big{(}1-e^{-\ell_{j}}\big{)}^{2}.

If there exists an integer 0vR10\leq v\leq R-1 such that |𝒫j(χ)|j/60|\mathcal{P}_{j}(\chi)|\leq\ell_{j}/60 for all jvj\leq v and that |𝒫v+1(χ)|>v+1/60|\mathcal{P}_{v+1}(\chi)|>\ell_{v+1}/60, we deduce from the above and the observation that |𝒬v+1(χ,k)|1|{\mathcal{Q}}_{v+1}(\chi,k)|\geq 1 when |𝒫v+1(χ)|v+1/60|{\mathcal{P}}_{v+1}(\chi)|\geq\ell_{v+1}/60 that

(j=1v|𝒩j(χ,k1)|2k|𝒩j(χ,k)|2(1k))|𝒬v+1(χ,k)|21.\displaystyle\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2k}|\mathcal{N}_{j}(\chi,k)|^{2(1-k)}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\gg 1.

If no such vv exists, then |𝒫j(χ)|j/60|\mathcal{P}_{j}(\chi)|\leq\ell_{j}/60 for all 1jR1\leq j\leq R. Thus the estimation (3.11) holds for all jj and we have

j=1R|𝒩j(χ,k1)|2k|𝒩j(χ,k)|2(1k)1.\displaystyle\prod^{R}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2k}|\mathcal{N}_{j}(\chi,k)|^{2(1-k)}\gg 1.

In either case, we conclude that

(v=0R(j=1v|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2)k(v=0R(j=1v|𝒩j(χ,k)|2)|𝒬v+1(χ,k)|2)1k1.\displaystyle\Big{(}\sum^{R}_{v=0}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\Big{)}^{k}\Big{(}\sum^{R}_{v=0}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\Big{)}^{1-k}\gg 1.

It follows from this that we have

χ(modq)|L(12,fχ)|2k\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},f\otimes\chi)|^{2k}
\displaystyle\ll χ(modq)|L(12,fχ)|2k(v=0R(j=1v|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2)k×(v=0R(j=1v|𝒩j(χ,k)|2)|𝒬v+1(χ,k)|2)1k.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},f\otimes\chi)|^{2k}\Big{(}\sum^{R}_{v=0}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\Big{)}^{k}\times\Big{(}\sum^{R}_{v=0}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\Big{)}^{1-k}.

Applying Hölder’s inequality to the last expression above leads to the estimation given in (3.10) and this completes the proof of the lemma. ∎

We apply Lemma 3.1 and Lemma 3.2 to see that in order to prove Theorem 1.1 and Theorem 1.2, it suffices to establish the following three propositions.

Proposition 3.3.

With notations as above. We have for k>0k>0,

χ(modq)L(12,fχ)𝒩(χ¯,k)𝒩(χ,k1)ϕ(q)(logq)k2.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}L(\tfrac{1}{2},f\otimes\chi)\mathcal{N}(\overline{\chi},k)\mathcal{N}(\chi,k-1)\gg\phi^{*}(q)(\log q)^{k^{2}}.
Proposition 3.4.

With notations as above. We have for 0<k<10<k<1,

max(χ(modq)|L(12,fχ)𝒩(χ,k1)|2,χ(modq)|L(12,fχ)|2v=0R(j=1v|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2)ϕ(q)(logq)k2.\displaystyle\max\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},f\otimes\chi)\mathcal{N}(\chi,k-1)|^{2},\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},f\otimes\chi)|^{2}\sum^{R}_{v=0}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\Big{)}\ll\phi^{*}(q)(\log q)^{k^{2}}.
Proposition 3.5.

With notations as above. We have for k>0k>0,

max(χ(modq)j=1R(|𝒩j(χ,k)|2+|𝒬j(χ,k)|2),χ(modq)v=0R(j=1v|𝒩j(χ,k)|2)|𝒬v+1(χ,k)|2)ϕ(q)(logq)k2.\displaystyle\max\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\big{)},\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\sum^{R}_{v=0}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\Big{)}\ll\phi^{*}(q)(\log q)^{k^{2}}.

We shall prove the above propositions in the rest of the paper.

4. Proof of Proposition 3.3

We define λ~(n)\widetilde{\lambda}(n) to be the completely multiplicative function λ~(p)=λ(p)\widetilde{\lambda}(p)=\lambda(p) on primes pp, we also define w(n)w(n) to be the multiplicative function such that w(pα)=α!w(p^{\alpha})=\alpha! for prime powers pαp^{\alpha}. We further denote Ω(n)\Omega(n) for the number of prime powers dividing nn and let bj(n),1jRb_{j}(n),1\leq j\leq R be functions such that bj(n)b_{j}(n) only takes values 0 or 11 and bj(n)=1b_{j}(n)=1 if and only if Ω(n)j\Omega(n)\leq\ell_{j} and the primes dividing nn are all from the interval PjP_{j}. We use these notations to write 𝒩j(χ,α){\mathcal{N}}_{j}(\chi,\alpha) as

(4.1) 𝒩j(χ,α)=njλ~(nj)njαΩ(nj)w(nj)bj(nj)χ(nj),1jR.{\mathcal{N}}_{j}(\chi,\alpha)=\sum_{n_{j}}\frac{\widetilde{\lambda}(n_{j})}{\sqrt{n_{j}}}\frac{\alpha^{\Omega(n_{j})}}{w(n_{j})}b_{j}(n_{j})\chi(n_{j}),\quad 1\leq j\leq R.

Note that each 𝒩j(χ,α){\mathcal{N}}_{j}(\chi,\alpha) is a short Dirichlet polynomial since bj(nj)=0b_{j}(n_{j})=0 unless nj(q1/j2)j=q1/jn_{j}\leq(q^{1/\ell_{j}^{2}})^{\ell_{j}}=q^{1/\ell_{j}}. We then deduce that both 𝒩(χ,k){\mathcal{N}}(\chi,k) and 𝒩(χ,k1){\mathcal{N}}(\chi,k-1) are short Dirichlet polynomials whose lengths are both at most q1/1++1/R<q2/10Mq^{1/\ell_{1}+\ldots+1/\ell_{R}}<q^{2/10^{M}} by (3.1). Note further that we have λ~f(nj)2Ω(nj)\widetilde{\lambda}_{f}(n_{j})\leq 2^{\Omega(n_{j})} since λf(p)2\lambda_{f}(p)\leq 2 and bj(nj)b_{j}(n_{j}) restricts njn_{j} to satisfy Ω(nj)j\Omega(n_{j})\leq\ell_{j}. This observation allows us to also write 𝒩j(χ,α){\mathcal{N}}_{j}(\chi,\alpha) as

(4.2) 𝒩j(χ,α)=njq1/jcnjbj(nj)njχ(nj),\displaystyle{\mathcal{N}}_{j}(\chi,\alpha)=\sum_{n_{j}\leq q^{1/\ell_{j}}}\frac{c_{n_{j}}b_{j}(n_{j})}{\sqrt{n_{j}}}\chi(n_{j}),

where we have, for some constant B0(α)B_{0}(\alpha) depending on α\alpha only,

|cnj|B0(α)j.\displaystyle|c_{n_{j}}|\leq B_{0}(\alpha)^{\ell_{j}}.

We apply (4.2) to write for simplicity that

𝒩(χ,k1)=aq2/10Mxaaχ(a),𝒩(χ¯,k)=bq2/10Mybbχ¯(b),\displaystyle{\mathcal{N}}(\chi,k-1)=\sum_{a\leq q^{2/10^{M}}}\frac{x_{a}}{\sqrt{a}}\chi(a),\quad\mathcal{N}(\overline{\chi},k)=\sum_{b\leq q^{2/10^{M}}}\frac{y_{b}}{\sqrt{b}}\overline{\chi}(b),

where for some constant B(k)B(k) depending on kk only, we have

(4.3) xa,ybB(k)j=1RjB(k)R1qε.\displaystyle x_{a},y_{b}\ll B(k)^{\sum^{R}_{j=1}\ell_{j}}\ll B(k)^{R\ell_{1}}\ll q^{\varepsilon}.

The last estimation above follows from (3.1).

We now deduce from Lemma 2.2 that

(4.4) χ(modq)L(12,fχ)𝒩(χ¯,k)𝒩(χ,k1)=χ(modq)mλ(m)χ(m)m𝒩(χ¯,k)𝒩(χ,k1)W(mXq)+χ(modq)ιχmλ(m)χ¯(m)m𝒩(χ¯,k)𝒩(χ,k1)W(mqX).\displaystyle\begin{split}&\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}L(\tfrac{1}{2},f\otimes\chi)\mathcal{N}(\overline{\chi},k)\mathcal{N}(\chi,k-1)\\ =&\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\sum_{m}\frac{\lambda(m)\chi(m)}{\sqrt{m}}\mathcal{N}(\overline{\chi},k)\mathcal{N}(\chi,k-1)W\left(\frac{mX}{q}\right)+\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\iota_{\chi}\sum_{m}\frac{\lambda(m)\overline{\chi}(m)}{\sqrt{m}}\mathcal{N}(\overline{\chi},k)\mathcal{N}(\chi,k-1)W\left(\frac{m}{qX}\right).\end{split}

We denote μ\mu for the Möbius function and note the following relation (see [Stefanicki, (2.3)])

(4.5) χ(modq)χ(a)=c|(q,a1)μ(q/c)ϕ(c).\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\chi(a)=\sum_{c|(q,a-1)}\mu(q/c)\phi(c).

In particular, setting a=1a=1 above implies that

(4.6) ϕ(q)=c|qμ(q/c)ϕ(c).\displaystyle\phi^{*}(q)=\sum_{c|q}\mu(q/c)\phi(c).

We apply (4.5) to see that the right side expression in (4.4) equals to

c|qμ(q/c)ϕ(c)abambmodcλ(m)xaybabmW(mXq)+abmλ(m)xaybabmW(mqX)χ(modq)ιχχ(a)χ¯(mb).\displaystyle\sum_{c|q}\mu(q/c)\phi(c)\sum_{a}\sum_{b}\sum_{\begin{subarray}{c}am\equiv b\bmod c\end{subarray}}\frac{\lambda(m)x_{a}y_{b}}{\sqrt{abm}}W\left(\frac{mX}{q}\right)+\sum_{a}\sum_{b}\sum_{\begin{subarray}{c}m\end{subarray}}\frac{\lambda(m)x_{a}y_{b}}{\sqrt{abm}}W\left(\frac{m}{qX}\right)\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\iota_{\chi}\chi(a)\overline{\chi}(mb).

We evaluate the last summation above by applying the definition of ιχ\iota_{\chi} to see that

χ(modq)ιχχ(a)χ¯(mb)=iκqχ(modq)χ(a)χ¯(mb)v(modq)χ(v)S(1,v,q)=iκqc|qμ(q/c)ϕ(c)v(modq)avmb(modc)S(1,v,q),\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\iota_{\chi}\chi(a)\overline{\chi}(mb)=\frac{i^{\kappa}}{q}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\chi(a)\overline{\chi}(mb)\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}v\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\chi(v)S(1,v,q)=\frac{i^{\kappa}}{q}\sum_{c|q}\mu(q/c)\phi(c)\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}v\negthickspace\negthickspace\negthickspace\pmod{q}\\ av\equiv mb\negthickspace\negthickspace\negthickspace\pmod{c}\end{subarray}}S(1,v,q),

where SS is the Kloosterman’s sum defined by

S(u,v,q)=h(modq)exp(uh+vh¯q).\displaystyle S(u,v,q)=\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}h\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\exp(\frac{uh+v\overline{h}}{q}).

It follows from the well-known Weil’s bound for Kloosterman’s sum (see [iwakow, Corollary 11.20]) that we have

|S(1,v,q)|d(q)q1/2.\displaystyle|S(1,v,q)|\leq d(q)q^{1/2}.

We then deduce from this that

χ(modq)ιχχ(a)χ¯(mb)1qc|qϕ(c)qcd(q)q1/2q12+ε.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\iota_{\chi}\chi(a)\overline{\chi}(mb)\leq\frac{1}{q}\sum_{c|q}\phi(c)\frac{q}{c}d(q)q^{1/2}\ll q^{\tfrac{1}{2}+\varepsilon}.

The above then implies that we have

(4.7) abmλ(m)xaybabmW(mqX)χ(modq)ιχχ(a)χ¯(mb)q4/10Mq1/2+εXεqX.\displaystyle\sum_{a}\sum_{b}\sum_{\begin{subarray}{c}m\end{subarray}}\frac{\lambda(m)x_{a}y_{b}}{\sqrt{abm}}W\left(\frac{m}{qX}\right)\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\iota_{\chi}\chi(a)\overline{\chi}(mb)\ll q^{4/10^{M}}q^{1/2+\varepsilon}X^{\varepsilon}\sqrt{qX}.

It remains to evaluate

(4.8) c|qμ(q/c)ϕ(c)abambmodcλ(m)xaybabmW(mXq).\displaystyle\sum_{c|q}\mu(q/c)\phi(c)\sum_{a}\sum_{b}\sum_{\begin{subarray}{c}am\equiv b\bmod c\end{subarray}}\frac{\lambda(m)x_{a}y_{b}}{\sqrt{abm}}W\left(\frac{mX}{q}\right).

We first consider the contribution from the terms am=b+lcam=b+lc with l1l\geq 1 above (note that we may take MM large enough so that we can not have b>amb>am in our case). By the rapid decay of W(x)W(x) given in (2.5), we may assume that m(q/X)1+εm\leq(q/X)^{1+\varepsilon}. This then implies that lq1+2/10M+ε/(Xc)l\leq q^{1+2/10^{M}+\varepsilon}/(Xc), so that we deduce together with the observation that xa,ybqεx_{a},y_{b}\ll q^{\varepsilon} that the total contribution from these terms is

(4.9) \displaystyle\ll c|qϕ(c)qεXεbq2/10Mlq1+2/10M+ε/(Xc)d(b+lc)bdlX1/2+εq12+2/10M+ε.\displaystyle\sum_{c|q}\phi(c)q^{\varepsilon}X^{\varepsilon}\sum_{b\leq q^{2/10^{M}}}\sum_{l\leq q^{1+2/10^{M}+\varepsilon}/(Xc)}\frac{d(b+lc)}{\sqrt{bdl}}\ll X^{-1/2+\varepsilon}q^{\tfrac{1}{2}+2/10^{M}+\varepsilon}.

We now set X=q16/10MX=q^{-16/10^{M}} to see from (4.4), (4.6)-(4.9) that we have

χ(modq)L(12,fχ)𝒩(χ¯,k)𝒩(χ,k1)ϕ(q)abm(q/X)1+εam=bλ(m)xaybabm=ϕ(q)bybba,mam=bλ(m)xa,\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}L(\tfrac{1}{2},f\otimes\chi)\mathcal{N}(\overline{\chi},k)\mathcal{N}(\chi,k-1)\gg\phi^{*}(q)\sum_{a}\sum_{b}\sum_{\begin{subarray}{c}m\leq(q/X)^{1+\varepsilon}\\ am=b\end{subarray}}\frac{\lambda(m)x_{a}y_{b}}{\sqrt{abm}}=\phi^{*}(q)\sum_{b}\frac{y_{b}}{b}\sum_{\begin{subarray}{c}a,m\\ am=b\end{subarray}}\lambda(m)x_{a},

where the last equality above follows from the observation that bq2/10M<(q/X)1+εb\leq q^{2/10^{M}}<(q/X)^{1+\varepsilon}.

Notice that

(4.10) bybba|bλ(m)xa=j=1R(njλ~(nj)njkΩ(nj)w(nj)bj(nj)nj|njλ~(nj)(k1)Ω(nj)w(nj)bj(nj)λ(nj/nj))=j=1R(njλ~(nj)njkΩ(nj)w(nj)bj(nj)nj|njλ~(nj)(k1)Ω(nj)w(nj)λ(nj/nj)),\displaystyle\begin{split}\sum_{b}\frac{y_{b}}{b}\sum_{\begin{subarray}{c}a|b\end{subarray}}\lambda(m)x_{a}=&\prod^{R}_{j=1}\Big{(}\sum_{n_{j}}\frac{\widetilde{\lambda}(n_{j})}{n_{j}}\frac{k^{\Omega(n_{j})}}{w(n_{j})}b_{j}(n_{j})\sum_{n^{\prime}_{j}|n_{j}}\frac{\widetilde{\lambda}(n^{\prime}_{j})(k-1)^{\Omega(n^{\prime}_{j})}}{w(n^{\prime}_{j})}b_{j}(n^{\prime}_{j})\lambda(n_{j}/n^{\prime}_{j})\Big{)}\\ =&\prod^{R}_{j=1}\Big{(}\sum_{n_{j}}\frac{\widetilde{\lambda}(n_{j})}{n_{j}}\frac{k^{\Omega(n_{j})}}{w(n_{j})}b_{j}(n_{j})\sum_{n^{\prime}_{j}|n_{j}}\frac{\widetilde{\lambda}(n^{\prime}_{j})(k-1)^{\Omega(n^{\prime}_{j})}}{w(n^{\prime}_{j})}\lambda(n_{j}/n^{\prime}_{j})\Big{)},\end{split}

where the last equality above follows by noting that bj(nj)=1b_{j}(n_{j})=1 implies that bj(nj)=1b_{j}(n^{\prime}_{j})=1 for all nj|njn^{\prime}_{j}|n_{j}.

We consider the sum above over njn_{j} for a fixed 1jR1\leq j\leq R in (4.10). Note that the factor bj(nj)b_{j}(n_{j}) restricts njn_{j} to have all prime factors in PjP_{j} such that Ω(nj)j\Omega(n_{j})\leq\ell_{j}. If we remove the restriction on Ω(nj)\Omega(n_{j}), then the sum becomes

(4.11) pPj(i=0λi(p)pikii!(l=0i(k1)ll!λl(p)λ(pil)))=pPj(1+k2λ2(p)p+O(1p2)).\displaystyle\begin{split}&\prod_{\begin{subarray}{c}p\in P_{j}\end{subarray}}\Big{(}\sum_{i=0}^{\infty}\frac{\lambda^{i}(p)}{p^{i}}\frac{k^{i}}{i!}\Big{(}\sum_{l=0}^{i}\frac{(k-1)^{l}}{l!}\lambda^{l}(p)\lambda(p^{i-l})\Big{)}\Big{)}=\prod_{\begin{subarray}{c}p\in P_{j}\end{subarray}}\Big{(}1+\frac{k^{2}\lambda^{2}(p)}{p}+O(\frac{1}{p^{2}})\Big{)}.\end{split}

On the other hand, using Rankin’s trick by noticing that 2Ω(nj)j12^{\Omega(n_{j})-\ell_{j}}\geq 1 if Ω(nj)>j\Omega(n_{j})>\ell_{j}, we see that the error introduced this way does not exceed

njλ~(nj)njkΩ(nj)w(nj)2Ω(nj)jnj|njλ~(nj)|1k|Ω(nj)w(nj)2jpPj(i=0λi(p)pi(2k)ii!(l=0i|1k|ll!λl(p)λ(pil)))2jpPj(1+2k(1+|1k|)λ2(p)p+O(1p2))2j/2pPj(1+k2λ2(p)p+O(1p2)),\displaystyle\begin{split}&\sum_{n_{j}}\frac{\widetilde{\lambda}(n_{j})}{n_{j}}\frac{k^{\Omega(n_{j})}}{w(n_{j})}2^{\Omega(n_{j})-\ell_{j}}\sum_{n^{\prime}_{j}|n_{j}}\frac{\widetilde{\lambda}(n^{\prime}_{j})|1-k|^{\Omega(n^{\prime}_{j})}}{w(n^{\prime}_{j})}\\ \leq&2^{-\ell_{j}}\prod_{\begin{subarray}{c}p\in P_{j}\end{subarray}}\Big{(}\sum_{i=0}^{\infty}\frac{\lambda^{i}(p)}{p^{i}}\frac{(2k)^{i}}{i!}\Big{(}\sum_{l=0}^{i}\frac{|1-k|^{l}}{l!}\lambda^{l}(p)\lambda(p^{i-l})\Big{)}\Big{)}\\ \leq&2^{-\ell_{j}}\prod_{\begin{subarray}{c}p\in P_{j}\end{subarray}}\Big{(}1+\frac{2k(1+|1-k|)\lambda^{2}(p)}{p}+O(\frac{1}{p^{2}})\Big{)}\\ \leq&2^{-\ell_{j}/2}\prod_{\begin{subarray}{c}p\in P_{j}\end{subarray}}\Big{(}1+\frac{k^{2}\lambda^{2}(p)}{p}+O(\frac{1}{p^{2}})\Big{)},\end{split}

where the last estimation above follows by taking NN large enough and the bound (which is a consequence of Lemma 2.1) that

(4.12) 14NjpPjλ2(p)p2Nj.\displaystyle\frac{1}{4N}\ell_{j}\leq\sum_{p\in P_{j}}\frac{\lambda^{2}(p)}{p}\leq\frac{2}{N}\ell_{j}.

We then deduce from this, (4.11) and Lemma 2.1 that we have

χ(modq)L(12,χ)𝒩(χ¯,k)𝒩(χ,k1)ϕ(q)j=1R(1+O(2j/2))pPj(1+k2λ2(p)p+O(1p2))ϕ(q)(logq)k2.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}L(\tfrac{1}{2},\chi)\mathcal{N}(\overline{\chi},k)\mathcal{N}(\chi,k-1)\gg\phi^{*}(q)\prod^{R}_{j=1}\Big{(}1+O(2^{-\ell_{j}/2})\Big{)}\prod_{\begin{subarray}{c}p\in P_{j}\end{subarray}}\Big{(}1+\frac{k^{2}\lambda^{2}(p)}{p}+O(\frac{1}{p^{2}})\Big{)}\gg\phi^{*}(q)(\log q)^{k^{2}}.

This completes the proof of the proposition.

5. Proof of Proposition 3.4

Observe that for a fixed integer vv such that 1vR11\leq v\leq R-1, we have

χ(modq)|L(12,fχ)|2(j=1v|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2χ(modq)|L(12,fχ)|2(j=1v|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2.\displaystyle\begin{split}&\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},f\otimes\chi)|^{2}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\leq\sum_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},f\otimes\chi)|^{2}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}.\end{split}

Since the sum over ej/2e^{-\ell_{j}/2} converges, we deduce from the above that it remains to show that

χ(modq)|L(12,fχ)|2(j=1v|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2ϕ(q)ev+1/2(logq)k2.\displaystyle\begin{split}\sum_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},f\otimes\chi)|^{2}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\ll&\phi^{*}(q)e^{-\ell_{v+1}/2}(\log q)^{k^{2}}.\end{split}

Recall the definition of ck,rkc_{k},r_{k} given in (3.2). We further define the function pv+1(n)p_{v+1}(n) such that pv+1(n)=0p_{v+1}(n)=0 or 11, and that pv+1(n)=1p_{v+1}(n)=1 if and only if Ω(n)=rkv+1\Omega(n)=r_{k}\ell_{v+1} and all the prime factors of nn are from the interval Pv+1P_{v+1}. Using these together with the notations in Section 4, we see that

(5.1) 𝒬v+1(χ,k)rkv+1=\displaystyle{\mathcal{Q}}_{v+1}(\chi,k)^{r_{k}\ell_{v+1}}= (ckv+1)rkv+1nv+1λ~(nv+1)nv+1(ckv+1)!w(nv+1)χ(nv+1)pv+1(nv+1).\displaystyle\Big{(}\frac{c_{k}}{\ell_{v+1}}\Big{)}^{r_{k}\ell_{v+1}}\sum_{\begin{subarray}{c}n_{v+1}\end{subarray}}\frac{\widetilde{\lambda}(n_{v+1})}{\sqrt{n_{v+1}}}\frac{(c_{k}\ell_{v+1})!}{w(n_{v+1})}\chi(n_{v+1})p_{v+1}(n_{v+1}).

Note that j=1v𝒩j(χ,k1)𝒬v+1(χ,k)\prod^{v}_{j=1}\mathcal{N}_{j}(\chi,k-1){\mathcal{Q}}_{v+1}(\chi,k) is a short Dirichlet polynomial whose length does not exceed

q1/1++1/v+rk/v+1<q2rk/10M.q^{1/\ell_{1}+\ldots+1/\ell_{v}+r_{k}/\ell_{v+1}}<q^{2r_{k}/10^{M}}.

We apply (4.1), (5.1) and the above observation to write for simplicity that

(j=1v|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2=(ckv+1)2rkv+1((rkv+1)!)2a,bq2rk/10Muaubabχ(a)χ¯(b).\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}=\Big{(}\frac{c_{k}}{\ell_{v+1}}\Big{)}^{2r_{k}\ell_{v+1}}((r_{k}\ell_{v+1})!)^{2}\sum_{a,b\leq q^{2r_{k}/10^{M}}}\frac{u_{a}u_{b}}{\sqrt{ab}}\chi(a)\overline{\chi}(b).

Similar to (4.3), we note that for all a,ba,b,

(5.2) ua,ubqε.\displaystyle u_{a},u_{b}\ll q^{\varepsilon}.

We apply (2.4) to see that

(5.3) χ(modq)|L(12,fχ)|2(j=1v|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2=2(ckv+1)2rkv+1((rkv+1)!)2a,bq2rk/10Muaubabm,nλ(m)λ(n)mn𝒲(mnq2)χχ(ma)χ¯(nb)=ϕ(q)(ckv+1)2rkv+1((rkv+1)!)2a,bq2rk/10Muaubabm,n(mn,q)=1manbmodqλ(m)λ(n)mn𝒲(mnq2).\displaystyle\begin{split}&{\sum_{\chi\negthickspace\negthickspace\negthickspace\pmod{q}}}|L(\tfrac{1}{2},f\otimes\chi)|^{2}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\\ =&2\Big{(}\frac{c_{k}}{\ell_{v+1}}\Big{)}^{2r_{k}\ell_{v+1}}((r_{k}\ell_{v+1})!)^{2}\sum_{a,b\leq q^{2r_{k}/10^{M}}}\frac{u_{a}u_{b}}{\sqrt{ab}}\sum_{m,n}\frac{\lambda(m)\lambda(n)}{\sqrt{mn}}\mathcal{W}\left(\frac{mn}{q^{2}}\right){\sum_{\chi}}\chi(ma)\overline{\chi}(nb)\\ =&\phi(q)\Big{(}\frac{c_{k}}{\ell_{v+1}}\Big{)}^{2r_{k}\ell_{v+1}}((r_{k}\ell_{v+1})!)^{2}\sum_{a,b\leq q^{2r_{k}/10^{M}}}\frac{u_{a}u_{b}}{\sqrt{ab}}\sum_{\begin{subarray}{c}m,n\\ (mn,q)=1\\ ma\equiv nb\,{\rm mod}\,q\end{subarray}}\frac{\lambda(m)\lambda(n)}{\sqrt{mn}}\mathcal{W}\left(\frac{mn}{q^{2}}\right).\end{split}

We now consider the contribution of the terms manbma\neq nb in the last expression of (5.3). Due to the rapid decay of 𝒲(x)\mathcal{W}(x) given in (2.5), we may assume that mnq2+εmn\leq q^{2+\varepsilon}. We apply [BFKMM, Lemma 1.6] to see that there exist two non-negative function 𝒱1(x),𝒱2(x){\mathcal{V}}_{1}(x),{\mathcal{V}}_{2}(x) supported on [1/2,2][1/2,2], satisfying

(5.4) 𝒱i(j)(x)j,εqjε.\displaystyle\begin{split}{\mathcal{V}}^{(j)}_{i}(x)\ll_{j,\varepsilon}q^{j\varepsilon}.\end{split}

Moreover, we have the following smooth partition of unity:

k0𝒱i(x2k)=1,i=1,2.\displaystyle\begin{split}\sum_{k\geq 0}{\mathcal{V}}_{i}(\frac{x}{2^{k}})=1,\quad i=1,2.\end{split}

We also note the estimations

(5.5) (ne)nn!n(ne)n.\displaystyle(\frac{n}{e})^{n}\leq n!\leq n(\frac{n}{e})^{n}.

It follows from this and the definition of v+1\ell_{v+1} given in Section 3 that we have

(5.6) (ckv+1)2rkv+1((rkv+1)!)2(rkv+1)2(ckrke)2rkv+1qε.\displaystyle\Big{(}\frac{c_{k}}{\ell_{v+1}}\Big{)}^{2r_{k}\ell_{v+1}}((r_{k}\ell_{v+1})!)^{2}\leq(r_{k}\ell_{v+1})^{2}\Big{(}\frac{c_{k}r_{k}}{e}\Big{)}^{2r_{k}\ell_{v+1}}\ll q^{\varepsilon}.

Applying the above, the definition of 𝒲(x)\mathcal{W}(x) given in Lemma 2.2 and the estimations given in (5.2), we see that the terms manbma\neq nb in the last expression of (5.3) contributes

(5.7) q1+εABa,bq2rk/10M1abA=2k1,B=2k2k1,k20ABq2+ε(ε)|Γ(κ2+s)2(2π)sΓ(κ2)2manb(mn,q)=1manbmodqλ(m)λ(n)V1(mA)V2(nB)(qmn)s||ds||s|,\displaystyle\begin{split}\ll&\frac{q^{1+\varepsilon}}{\sqrt{AB}}\sum_{a,b\leq q^{2r_{k}/10^{M}}}\frac{1}{\sqrt{ab}}\sum_{\begin{subarray}{c}A=2^{k_{1}},B=2^{k_{2}}\\ k_{1},k_{2}\geq 0\\ AB\leq q^{2+\varepsilon}\end{subarray}}\int\limits_{(\varepsilon)}\Big{|}\frac{\Gamma\left(\frac{\kappa}{2}+s\right)^{2}}{(2\pi)^{s}\Gamma\left(\frac{\kappa}{2}\right)^{2}}\sum_{\begin{subarray}{c}ma\neq nb\\ (mn,q)=1\\ ma\equiv nb\,{\rm mod}\,q\end{subarray}}\lambda(m)\lambda(n)V_{1}\left(\frac{m}{A}\right)V_{2}\left(\frac{n}{B}\right)\big{(}\frac{q}{mn}\big{)}^{s}\Big{|}\frac{|ds|}{|s|},\end{split}

where

Vi(x)=x12s𝒱i(x),i=1,2.\displaystyle V_{i}\left(x\right)=x^{-\tfrac{1}{2}-s}{\mathcal{V}}_{i}(x),\quad i=1,2.

Due to the rapid decay of Γ(s)\Gamma(s) on the vertical line, we may truncate the integral in (5.7) to (s)(log5q)2\Im(s)\leq(\log 5q)^{2} with a negligible error. This implies that the bounds given in (5.4) are also satisfied by Vi(i=1,2)V_{i}(i=1,2) and that the expression in (5.7) can be further bounded by

A=2k1,B=2k2k1,k20ABq2+εE(A,B),\displaystyle\begin{split}\sum_{\begin{subarray}{c}A=2^{k_{1}},B=2^{k_{2}}\\ k_{1},k_{2}\geq 0\\ AB\leq q^{2+\varepsilon}\end{subarray}}E(A,B),\end{split}

where A,B1A,B\geq 1, ABq2+εAB\leq q^{2+\varepsilon} and that

E(A,B)=q1+εABa,bq2rk/10M1ab|manb(mn,q)=1manbmodqλ(m)λ(n)V1(mA)V2(nB)|.\displaystyle\begin{split}&E(A,B)=\frac{q^{1+\varepsilon}}{\sqrt{AB}}\sum_{a,b\leq q^{2r_{k}/10^{M}}}\frac{1}{\sqrt{ab}}\Big{|}\sum_{\begin{subarray}{c}ma\neq nb\\ (mn,q)=1\\ ma\equiv nb\,{\rm mod}\,q\end{subarray}}\lambda(m)\lambda(n)V_{1}\left(\frac{m}{A}\right)V_{2}\left(\frac{n}{B}\right)\Big{|}.\end{split}

We are thus led to estimate E(A,B)E(A,B) for integers A,B1,ABq2+εA,B\geq 1,AB\leq q^{2+\varepsilon} and functions V1,V2V_{1},V_{2} satisfying (5.4). In fact, this work has already been done in [BM15, Section 12] and it follows from the result given in the first display below [BM15, (12.7)] that we have upon setting X=q2rk/10M,θ=0X=q^{2r_{k}/10^{M}},\theta=0 there that E(A,B)q1εE(A,B)\ll q^{1-\varepsilon}. This implies that the contribution of the terms manbma\neq nb in the last expression of (5.3) is negligible.

It remains to consider the terms ma=nbma=nb in the last expression of (5.3). We write m=αb(a,b),n=αa(a,b)m=\frac{\alpha b}{(a,b)},n=\frac{\alpha a}{(a,b)} and apply the estimation in (5.6) to see that these terms are

(5.8) \displaystyle\ll ϕ(q)(rkv+1)2(ckrke)2rkv+1a,bq2rk/10M(a,b)abuaub(α,q)=1λ(αb(a,b))λ(αa(a,b))α𝒲(α2abq2(a,b)2).\displaystyle\phi(q)(r_{k}\ell_{v+1})^{2}\Big{(}\frac{c_{k}r_{k}}{e}\Big{)}^{2r_{k}\ell_{v+1}}\sum_{a,b\leq q^{2r_{k}/10^{M}}}\frac{(a,b)}{ab}u_{a}u_{b}\sum_{(\alpha,q)=1}\frac{\lambda(\frac{\alpha b}{(a,b)})\lambda(\frac{\alpha a}{(a,b)})}{\alpha}\mathcal{W}\left(\frac{\alpha^{2}ab}{q^{2}(a,b)^{2}}\right).

To evaluate the last sum above, we first recall that the Rankin-Selberg LL-function of L(s,f×f)L(s,f\times f) of ff is defined for (s)>1\Re(s)>1 by (see [iwakow, (23.24)])

L(s,f×f)=n1λ2(n)ns.\displaystyle L(s,f\times f)=\sum_{n\geq 1}\frac{\lambda^{2}(n)}{n^{s}}.

It is known (see [iwakow, p. 132]) that L(s,f×f)L(s,f\times f) has a simple at s=1s=1. In fact, we have (see [iwakow, (5.97)])

L(s,f×f)=ζ(s)L(s,sym2f),\displaystyle L(s,f\times f)=\zeta(s)L(s,\operatorname{sym}^{2}f),

where L(s,sym2f)L(s,\operatorname{sym}^{2}f) is the symmetric square LL-function of ff defined for (s)>1\Re(s)>1 by (see [iwakow, (25.73)])

L(s,sym2f)=\displaystyle L(s,\operatorname{sym}^{2}f)= ζ(2s)n1λ(n2)ns=p(1λ(p2)ps+λ(p2)p2s1p3s)1.\displaystyle\zeta(2s)\sum_{n\geq 1}\frac{\lambda(n^{2})}{n^{s}}=\prod_{p}(1-\frac{\lambda(p^{2})}{p^{s}}+\frac{\lambda(p^{2})}{p^{2s}}-\frac{1}{p^{3s}})^{-1}.

It follows from a result of G. Shimura [Shimura] that the corresponding completed LL-function

Λ(s,sym2f)=\displaystyle\Lambda(s,\operatorname{sym}^{2}f)= π3s/2Γ(s+12)Γ(s+κ12)Γ(s+κ2)L(s,sym2f).\displaystyle\pi^{-3s/2}\Gamma(\frac{s+1}{2})\Gamma(\frac{s+\kappa-1}{2})\Gamma(\frac{s+\kappa}{2})L(s,\operatorname{sym}^{2}f).

is entire and satisfies the functional equation Λ(s,sym2f)=Λ(1s,sym2f)\Lambda(s,\operatorname{sym}^{2}f)=\Lambda(1-s,\operatorname{sym}^{2}f). Combining this with [iwakow, (5.8)] and apply the convexity bounds (see [iwakow, Exercise 3, p. 100]) for LL-functions, we deduce that

(5.9) L(s,sym2f)(1+|s|)3(1(s))2+ε,0(s)1.\displaystyle\begin{split}L(s,\operatorname{sym}^{2}f)\ll&\left(1+|s|\right)^{\frac{3(1-\Re(s))}{2}+\varepsilon},\quad 0\leq\Re(s)\leq 1.\end{split}

Note also the following convexity bound for ζ(s)\zeta(s):

(5.10) ζ(s)(1+|s|)1(s)2+ε,0(s)1.\displaystyle\begin{split}\zeta(s)\ll&\left(1+|s|\right)^{\frac{1-\Re(s)}{2}+\varepsilon},\quad 0\leq\Re(s)\leq 1.\end{split}

We now evaluate the last sum in (5.8) by setting X=q2(a,b)2/(ab)X=q^{2}(a,b)^{2}/(ab) there and applying the definition of 𝒲(x)\mathcal{W}(x) given in Lemma 2.2 to obtain that

(5.11) (α,q)=1λ(αb(a,b))λ(αa(a,b))α𝒲(α2X)=12πi(c)Γ(κ2+s)2(2π)sΓ(κ2)2L(1+2s,f×f)H(1+2s;q)G(1+2s;a,b)Xsdss,\displaystyle\sum_{(\alpha,q)=1}\frac{\lambda(\frac{\alpha b}{(a,b)})\lambda(\frac{\alpha a}{(a,b)})}{\alpha}\mathcal{W}\left(\frac{\alpha^{2}}{X}\right)=\frac{1}{2\pi i}\int\limits_{(c)}\frac{\Gamma\left(\frac{\kappa}{2}+s\right)^{2}}{(2\pi)^{s}\Gamma\left(\frac{\kappa}{2}\right)^{2}}L(1+2s,f\times f)H(1+2s;q)G(1+2s;a,b)X^{s}\frac{ds}{s},

where H(s;q)=p|q(1λ2(p)p1+2s+O(1p2(1+2s)))H(s;q)=\prod_{p|q}(1-\frac{\lambda^{2}(p)}{p^{1+2s}}+O(\frac{1}{p^{2(1+2s)}})), G(s;a,b)=pGp(s;a,b)G(s;a,b)=\prod_{p}G_{p}(s;a,b) with

Gp(s;a,b)={λ(pl)+O(1p1+2s)if p|ab/(a,b)2,1otherwise .\begin{split}G_{p}(s;a,b)=\left\{\begin{array}[c]{ll}\lambda(p^{l})+O(\frac{1}{p^{1+2s}})&\text{if }p|ab/(a,b)^{2},\\ 1&\text{otherwise }.\end{array}\right.\end{split}

We evaluate the integral in (5.11) by shifting the line of integration to (s)=1/4+ε\Re(s)=-1/4+\varepsilon. We encounter a double pole at s=0s=0 in the process. Note that on the new line, we have for some constant B1B_{1},

G(14+ε;a,b)B1Ω(q)+Ω(a(a,b)+Ω(b(a,b))d(a(a,b))d(b(a,b))qε,\displaystyle\begin{split}G(-\frac{1}{4}+\varepsilon;a,b)\ll B_{1}^{\Omega(q)+\Omega(\frac{a}{(a,b)}+\Omega(\frac{b}{(a,b)})}d\Big{(}\frac{a}{(a,b)}\Big{)}d\Big{(}\frac{b}{(a,b)}\Big{)}\ll q^{\varepsilon},\end{split}

where the last estimation above can be obtained using arguments that lead to (4.3).

Combining the above with (5.9), (5.10) and the rapid decay of Γ(s)\Gamma(s) when |(s)||\Im(s)|\rightarrow\infty, we deduce that the integration on the new line is

q12+ε.\displaystyle\begin{split}\ll q^{-\tfrac{1}{2}+\varepsilon}.\end{split}

Applying this in (5.8) and taking note of the definition of v+1\ell_{v+1} given in Section 3, we see that the contribution of the integration on the new line to the right side of (5.8) is

ϕ(q)(rkv+1)2(ckrke)2rkv+1q4rk/10M12+εq12+4rk/10M+εq1ε.\displaystyle\begin{split}\ll\phi(q)(r_{k}\ell_{v+1})^{2}\Big{(}\frac{c_{k}r_{k}}{e}\Big{)}^{2r_{k}\ell_{v+1}}q^{4r_{k}/10^{M}-\tfrac{1}{2}+\varepsilon}\ll q^{\tfrac{1}{2}+4r_{k}/10^{M}+\varepsilon}\ll q^{1-\varepsilon}.\end{split}

We now evaluate the corresponding residue to see that

(5.12) (α,q)=1λ(αb(a,b))λ(αa(a,b))α𝒲(α2X)=C1(q)L(1,sym2f)G(0;a,b)(logX+2p|ab/(a,b)2Gp(1;a,b)Gp(1;a,b)+C2(q))+O(q12+ε),\displaystyle\sum_{(\alpha,q)=1}\frac{\lambda(\frac{\alpha b}{(a,b)})\lambda(\frac{\alpha a}{(a,b)})}{\alpha}\mathcal{W}\left(\frac{\alpha^{2}}{X}\right)=C_{1}(q)L(1,\operatorname{sym}^{2}f)G(0;a,b)\Big{(}\log X+2\sum_{p|ab/(a,b)^{2}}\frac{G^{\prime}_{p}(1;a,b)}{G_{p}(1;a,b)}+C_{2}(q)\Big{)}+O(q^{-\tfrac{1}{2}+\varepsilon}),

where C1(q),C2(q)C_{1}(q),C_{2}(q) are some constants depending on qq only, satisfying Ci(q)1,i=1,2C_{i}(q)\ll 1,i=1,2.

We apply (5.12) to evaluate (5.8) to see that we may ignore the contribution of the error term in (5.12) so that the expression in (5.8) is

\displaystyle\ll ϕ(q)(rkv+1)2(ckrke)2rkv+1\displaystyle\phi(q)(r_{k}\ell_{v+1})^{2}\Big{(}\frac{c_{k}r_{k}}{e}\Big{)}^{2r_{k}\ell_{v+1}}
×a,bq2rk/10M(a,b)abuaubG(0;a,b)(2logq+2log(a,b)logalogb+2p|ab/(a,b)2Gp(0;a,b)Gp(0;a,b)+C2(q)).\displaystyle\times\sum_{a,b\leq q^{2r_{k}/10^{M}}}\frac{(a,b)}{ab}u_{a}u_{b}G(0;a,b)\Big{(}2\log q+2\log(a,b)-\log a-\log b+2\sum_{p|ab/(a,b)^{2}}\frac{G^{\prime}_{p}(0;a,b)}{G_{p}(0;a,b)}+C_{2}(q)\Big{)}.

As the estimations are similar, it suffices to treat the sum

(5.13) ϕ(q)(rkv+1)2(ckrke)2rkv+1a,b(a,b)G(0;a,b)abuaubloga=ϕ(q)(rkv+1)2(ckrke)2rkv+1pj=1v+1Pjl11,l20l1logppl1+l2min(l1,l2)a,b(ab,p)=1(a,b)G(0;pl1a,pl2b)upl1aupl2bab.\displaystyle\begin{split}&\phi(q)(r_{k}\ell_{v+1})^{2}\Big{(}\frac{c_{k}r_{k}}{e}\Big{)}^{2r_{k}\ell_{v+1}}\sum_{a,b}\frac{(a,b)G(0;a,b)}{ab}u_{a}u_{b}\log a\\ =&\phi(q)(r_{k}\ell_{v+1})^{2}\Big{(}\frac{c_{k}r_{k}}{e}\Big{)}^{2r_{k}\ell_{v+1}}\sum_{p\in\bigcup^{v+1}_{j=1}P_{j}}\sum_{l_{1}\geq 1,l_{2}\geq 0}\frac{l_{1}\log p}{p^{l_{1}+l_{2}-\min(l_{1},l_{2})}}\sum_{\begin{subarray}{c}a,b\\ (ab,p)=1\end{subarray}}\frac{(a,b)G(0;p^{l_{1}}a,p^{l_{2}}b)u_{p^{l_{1}}a}u_{p^{l_{2}}b}}{ab}.\end{split}

We now consider the last sum above for fixed p=p1,l1,l2p=p_{1},l_{1},l_{2}. Without loss of generality, we may assume that p1P1p_{1}\in P_{1}. We then define for (n1n1,p1)=1(n_{1}n^{\prime}_{1},p_{1})=1,

vn1=1n1(k1)Ω(n1)λ~(n1)w(n1)b1(n1p1l1),vn1=1n1(k1)Ω(n1)λ~(n1)w(n1)b1(n1p1l2).v_{n_{1}}=\frac{1}{n_{1}}\frac{(k-1)^{\Omega(n_{1})}\widetilde{\lambda}(n_{1})}{w(n_{1})}b_{1}(n_{1}p_{1}^{l_{1}}),\quad v_{n^{\prime}_{1}}=\frac{1}{n^{\prime}_{1}}\frac{(k-1)^{\Omega(n^{\prime}_{1})}\widetilde{\lambda}(n^{\prime}_{1})}{w(n^{\prime}_{1})}b_{1}(n^{\prime}_{1}p_{1}^{l_{2}}).

For 2jv2\leq j\leq v,

vnj=1nj(k1)Ω(nj)λ~(nj)w(nj)bj(nj),vnj=1nj(k1)Ω(nj)λ~(nj)w(nj)bj(nj).v_{n_{j}}=\frac{1}{n_{j}}\frac{(k-1)^{\Omega(n_{j})}\widetilde{\lambda}(n_{j})}{w(n_{j})}b_{j}(n_{j}),\quad v_{n^{\prime}_{j}}=\frac{1}{n^{\prime}_{j}}\frac{(k-1)^{\Omega(n^{\prime}_{j})}\widetilde{\lambda}(n^{\prime}_{j})}{w(n^{\prime}_{j})}b_{j}(n^{\prime}_{j}).

Also,

vnv+1=1nv+1λ~(nv+1)w(nv+1)pv+1(nv+1),vnv+1=1nv+1λ~(nv+1)w(nv+1)pv+1(nv+1).v_{n_{v+1}}=\frac{1}{n_{v+1}}\frac{\widetilde{\lambda}(n_{v+1})}{w(n_{v+1})}p_{v+1}(n_{v+1}),\quad v_{n^{\prime}_{v+1}}=\frac{1}{n^{\prime}_{v+1}}\frac{\widetilde{\lambda}(n^{\prime}_{v+1})}{w(n^{\prime}_{v+1})}p_{v+1}(n^{\prime}_{v+1}).

Then one checks that

(5.14) a,b(ab,p1)=1(a,b)G(0;pl1a,pl2b)upl1aupl2bab=(k1)l1+l2λl1+l2(p1)G(0;pl1,pl2)l1!l2!j=1v+1(nj,nj(n1n1,p1)=1(nj,nj)G(0;nj,nj)vnjvnj).\displaystyle\sum_{\begin{subarray}{c}a,b\\ (ab,p_{1})=1\end{subarray}}\frac{(a,b)G(0;p^{l_{1}}a,p^{l_{2}}b)u_{p^{l_{1}}a}u_{p^{l_{2}}b}}{ab}=\frac{(k-1)^{l_{1}+l_{2}}\lambda^{l_{1}+l_{2}}(p_{1})G(0;p^{l_{1}},p^{l_{2}})}{l_{1}!l_{2}!}\prod^{v+1}_{j=1}\Big{(}\sum_{\begin{subarray}{c}n_{j},n^{\prime}_{j}\\ (n_{1}n^{\prime}_{1},p_{1})=1\end{subarray}}(n_{j},n^{\prime}_{j})G(0;n_{j},n^{\prime}_{j})v_{n_{j}}v_{n^{\prime}_{j}}\Big{)}.

As in the proof of Proposition 3.3, we remove the restriction of b1(n1p1l1)b_{1}(n_{1}p_{1}^{l_{1}}) on Ω(n1p1l1)\Omega(n_{1}p_{1}^{l_{1}}) and b1(n1p1l2)b_{1}(n^{\prime}_{1}p_{1}^{l_{2}}) on Ω(n1p1l2)\Omega(n^{\prime}_{1}p_{1}^{l_{2}}) to see that the sum on the right side in (5.14) for j=1j=1 becomes

n1,n1(n1n1,p1)=1(n1,n1)G(0;n1,n1)λ~(n1)n1(k1)Ω(n1)w(n1)λ~(n1)n1(k1)Ω(n1)w(n1)=pP1pp1(1+(2(k1)+(k1)2)λ2(p)p+O(1p2))\displaystyle\sum_{\begin{subarray}{c}n_{1},n^{\prime}_{1}\\ (n_{1}n^{\prime}_{1},p_{1})=1\end{subarray}}(n_{1},n^{\prime}_{1})G(0;n_{1},n^{\prime}_{1})\frac{\widetilde{\lambda}(n_{1})}{n_{1}}\frac{(k-1)^{\Omega(n_{1})}}{w(n_{1})}\frac{\widetilde{\lambda}(n^{\prime}_{1})}{n^{\prime}_{1}}\frac{(k-1)^{\Omega(n^{\prime}_{1})}}{w(n^{\prime}_{1})}=\prod_{\begin{subarray}{c}p\in P_{1}\\ p\neq p_{1}\end{subarray}}\Big{(}1+\frac{(2(k-1)+(k-1)^{2})\lambda^{2}(p)}{p}+O(\frac{1}{p^{2}})\Big{)}
\displaystyle\ll exp(pP1(k21)λ2(p)p+O(pP11p2)).\displaystyle\exp(\sum_{p\in P_{1}}\frac{(k^{2}-1)\lambda^{2}(p)}{p}+O(\sum_{p\in P_{1}}\frac{1}{p^{2}})).

Further, we notice that in this case we have 2Ω(n)+li112^{\Omega(n)+l_{i}-\ell_{1}}\geq 1 for i=1,2i=1,2. Thus, we apply Rankin’s trick to see that the error introduced this way is

\displaystyle\ll (2l1+2l2)21n1,n1(n1,n1)|G(0;n1,n1)|n1n1|k1|Ω(n1)|λ~(n1)|w(n1)|k1|Ω(n1)2Ω(n1)|λ~(n1)|w(n1).\displaystyle\big{(}2^{l_{1}}+2^{l_{2}}\big{)}2^{-\ell_{1}}\sum_{n_{1},n^{\prime}_{1}}\frac{(n_{1},n^{\prime}_{1})|G(0;n_{1},n^{\prime}_{1})|}{n_{1}n^{\prime}_{1}}\frac{|k-1|^{\Omega(n_{1})}|\widetilde{\lambda}(n_{1})|}{w(n_{1})}\frac{|k-1|^{\Omega(n^{\prime}_{1})}2^{\Omega(n^{\prime}_{1})}|\widetilde{\lambda}(n^{\prime}_{1})|}{w(n^{\prime}_{1})}.

We then deduce that

l11,l20l1logp1p1l1+l2min(l1,l2)(k1)l1+l2l1!l2!n1,n1(n1n1,p1)=1(n1,n1)G(0;n1,n1)vn1vn1\displaystyle\sum_{l_{1}\geq 1,l_{2}\geq 0}\frac{l_{1}\log p_{1}}{p^{l_{1}+l_{2}-\min(l_{1},l_{2})}_{1}}\frac{(k-1)^{l_{1}+l_{2}}}{l_{1}!l_{2}!}\sum_{\begin{subarray}{c}n_{1},n^{\prime}_{1}\\ (n_{1}n^{\prime}_{1},p_{1})=1\end{subarray}}(n_{1},n^{\prime}_{1})G(0;n_{1},n^{\prime}_{1})v_{n_{1}}v_{n^{\prime}_{1}}
\displaystyle\ll l11,l20l1logp1p1l1+l2min(l1,l2)(k1)l1+l2l1!l2!(1+O((2l1+2l2)21/2))exp(pP1(k21)λ2(p)p+O(pP11p2))\displaystyle\sum_{l_{1}\geq 1,l_{2}\geq 0}\frac{l_{1}\log p_{1}}{p^{l_{1}+l_{2}-\min(l_{1},l_{2})}_{1}}\frac{(k-1)^{l_{1}+l_{2}}}{l_{1}!l_{2}!}\Big{(}1+O\big{(}\big{(}2^{l_{1}}+2^{l_{2}}\big{)}2^{-\ell_{1}/2}\big{)}\Big{)}\exp(\sum_{p\in P_{1}}\frac{(k^{2}-1)\lambda^{2}(p)}{p}+O(\sum_{p\in P_{1}}\frac{1}{p^{2}}))
\displaystyle\ll (1+O(21/2))(logp1p1+O(logp1p12))exp(pP1(k21)λ2(p)p+O(pP11p2)).\displaystyle\Big{(}1+O\big{(}2^{-\ell_{1}/2}\big{)}\Big{)}\Big{(}\frac{\log p_{1}}{p_{1}}+O(\frac{\log p_{1}}{p^{2}_{1}})\Big{)}\exp(\sum_{p\in P_{1}}\frac{(k^{2}-1)\lambda^{2}(p)}{p}+O(\sum_{p\in P_{1}}\frac{1}{p^{2}})).

Similar estimations carry over to the sums over nj,njn_{j},n^{\prime}_{j} for 2jv2\leq j\leq v in (5.14). To treat the sum over nv+1,nv+1n_{v+1},n^{\prime}_{v+1}, we apply Rankin’s trick again to see that the sum is

\displaystyle\ \ll (ckrk)2rkv+1nv+1,nv+1p|nv+1nv+1pPv+1(nv+1,nv+1)|λ~(nv+1)λ~(nv+1)G(0;nv+1,nv+1)|nv+1nv+1(ckrk)Ω(nv+1)w(nv+1)(ckrk)Ω(nv+1)w(nv+1).\displaystyle(c_{k}r_{k})^{-2r_{k}\ell_{v+1}}\sum_{\begin{subarray}{c}n_{v+1},n^{\prime}_{v+1}\\ p|n_{v+1}n^{\prime}_{v+1}\implies p\in P_{v+1}\end{subarray}}\frac{(n_{v+1},n^{\prime}_{v+1})|\widetilde{\lambda}(n_{v+1})\widetilde{\lambda}(n^{\prime}_{v+1})G(0;n_{v+1},n^{\prime}_{v+1})|}{n_{v+1}n^{\prime}_{v+1}}\frac{(c_{k}r_{k})^{\Omega(n_{v+1})}}{w(n_{v+1})}\frac{(c_{k}r_{k})^{\Omega(n^{\prime}_{v+1})}}{w(n^{\prime}_{v+1})}.

By taking NN large enough, we deduce from this that

(rkv+1)2(ckrke)2rkv+1nv+1,nv+1(nv+1nv+1,p1)=1(nv+1,nv+1)vnv+1vnv+1ev+1exp(pPv+1(k21)λ2(p)p+O(pPv+11p2)).\displaystyle\begin{split}&(r_{k}\ell_{v+1})^{2}\Big{(}\frac{c_{k}r_{k}}{e}\Big{)}^{2r_{k}\ell_{v+1}}\sum_{\begin{subarray}{c}n_{v+1},n^{\prime}_{v+1}\\ (n_{v+1}n^{\prime}_{v+1},p_{1})=1\end{subarray}}(n_{v+1},n^{\prime}_{v+1})v_{n_{v+1}}v_{n^{\prime}_{v+1}}\ll e^{-\ell_{v+1}}\exp(\sum_{p\in P_{v+1}}\frac{(k^{2}-1)\lambda^{2}(p)}{p}+O(\sum_{p\in P_{v+1}}\frac{1}{p^{2}})).\end{split}

It follows from the above discussions that we have

(5.15) (rkv+1)2(ckrke)2rkv+1l11,l20l1logp1p1l1+l2min(l1,l2)(k1)l1+l2l1!l2!a,b(ab,p1)=1up1l1aup1l2babev+1j=1v(1+O(2j/2))exp(pj=1v+1Pj(k21)λ2(p)p+O(pj=1v+1Pj1p2))×(logp1p1+O(logp1p12)).\displaystyle\begin{split}&(r_{k}\ell_{v+1})^{2}\Big{(}\frac{c_{k}r_{k}}{e}\Big{)}^{2r_{k}\ell_{v+1}}\sum_{l_{1}\geq 1,l_{2}\geq 0}\frac{l_{1}\log p_{1}}{p^{l_{1}+l_{2}-\min(l_{1},l_{2})}_{1}}\frac{(k-1)^{l_{1}+l_{2}}}{l_{1}!l_{2}!}\sum_{\begin{subarray}{c}a,b\\ (ab,p_{1})=1\end{subarray}}\frac{u_{p^{l_{1}}_{1}a}u_{p^{l_{2}}_{1}b}}{ab}\\ \ll&e^{-\ell_{v+1}}\prod^{v}_{j=1}\big{(}1+O(2^{-\ell_{j}/2})\big{)}\exp(\sum_{p\in\bigcup^{v+1}_{j=1}P_{j}}\frac{(k^{2}-1)\lambda^{2}(p)}{p}+O(\sum_{p\in\bigcup^{v+1}_{j=1}P_{j}}\frac{1}{p^{2}}))\times\Big{(}\frac{\log p_{1}}{p_{1}}+O(\frac{\log p_{1}}{p^{2}_{1}})\Big{)}.\end{split}

We now apply (4.12) and the observation j>j+12>2j+1\ell_{j}>\ell^{2}_{j+1}>2\ell_{j+1} to see that

(5.16) pj=v+2RPj|k21|λ2(p)pj=v+2RpPj|k21|λ2(p)p2|k21|Nj=v+2Rj2|k21|v+2Nj=012j2|k21|v+1N.\displaystyle\sum_{p\in\bigcup^{R}_{j=v+2}P_{j}}\frac{|k^{2}-1|\lambda^{2}(p)}{p}\leq\sum^{R}_{j=v+2}\sum_{p\in P_{j}}\frac{|k^{2}-1|\lambda^{2}(p)}{p}\leq\frac{2|k^{2}-1|}{N}\sum^{R}_{j=v+2}\ell_{j}\leq\frac{2|k^{2}-1|\ell_{v+2}}{N}\sum^{\infty}_{j=0}\frac{1}{2^{j}}\leq\frac{2|k^{2}-1|\ell_{v+1}}{N}.

It follows from (5.16) that the last expression in (5.15) is

ev+1/2exp(pj=1RPj(k21)λ2(p)p+O(pj=1RPj1p2))×(logp1p1+O(logp1p12)).\displaystyle\begin{split}\ll&e^{-\ell_{v+1}/2}\exp(\sum_{p\in\bigcup^{R}_{j=1}P_{j}}\frac{(k^{2}-1)\lambda^{2}(p)}{p}+O(\sum_{p\in\bigcup^{R}_{j=1}P_{j}}\frac{1}{p^{2}}))\times\Big{(}\frac{\log p_{1}}{p_{1}}+O(\frac{\log p_{1}}{p^{2}_{1}})\Big{)}.\end{split}

We then conclude from the above, (5.13), Lemma 2.1 and the observation that ϕ(q)ϕ(q)\phi(q)\ll\phi^{*}(q) that

χ(modq)|L(12,fχ)|2(j=1v|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2ϕ(q)ev+1/2exp(pj=1RPj(k21)λ2(p)p+O(pj=1RPj1p2))×pj=1v+1Pj(logpp+O(logpp2))ϕ(q)ev+1/2(logq)k2.\displaystyle\begin{split}&\sum_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},f\otimes\chi)|^{2}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\\ \ll&\phi(q)e^{-\ell_{v+1}/2}\exp(\sum_{p\in\bigcup^{R}_{j=1}P_{j}}\frac{(k^{2}-1)\lambda^{2}(p)}{p}+O(\sum_{p\in\bigcup^{R}_{j=1}P_{j}}\frac{1}{p^{2}}))\times\sum_{p\in\bigcup^{v+1}_{j=1}P_{j}}\Big{(}\frac{\log p}{p}+O(\frac{\log p}{p^{2}})\Big{)}\\ \ll&\phi^{*}(q)e^{-\ell_{v+1}/2}(\log q)^{k^{2}}.\end{split}

This completes the proof of the proposition.

6. Proof of Proposition 3.5

As the proofs are similar, we shall only prove here that

χ(modq)j=1R(|𝒩j(χ,k)|2+|𝒬j(χ,k)|2)ϕ(q)(logq)k2.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\big{)}\ll\phi^{*}(q)(\log q)^{k^{2}}.

We first note that

(6.1) χ(modq)j=1R(|𝒩j(χ,k)|2+|𝒬j(χ,k)|2)χ(modq)j=1R(|𝒩j(χ,k)|2+|𝒬j(χ,k)|2).\displaystyle\begin{split}&\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\big{)}\leq\sum_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\big{)}.\end{split}

We shall take MM large enough so that we may deduce from (3.1) that

(2rk+2)j=1R1j4(rk+1)R<1.\displaystyle(2r_{k}+2)\sum^{R}_{j=1}\frac{1}{\ell_{j}}\leq\frac{4(r_{k}+1)}{\ell_{R}}<1.

We then apply (4.1) and (5.1) in the last sum of (6.1) and deduce from the above that the orthogonality relation for characters modulo qq implies that only the diagonal terms in the last sum of (6.1) survive. Thus we obtain that

(6.2) χ(modq)j=1R(|𝒩j(χ,k)|2+|𝒬j(χ,k)|2)ϕ(q)j=1R(njk2Ω(nj)λ~2(nj)njw2(nj)bj(nj)+(ckj)2rkj((rkj)!)2Ω(nj)=rkjp|njpPjλ~2(nj)njw2(nj)).\displaystyle\begin{split}&\sum_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\big{)}\leq\phi(q)\prod^{R}_{j=1}\Big{(}\sum_{n_{j}}\frac{k^{2\Omega(n_{j})}\widetilde{\lambda}^{2}(n_{j})}{n_{j}w^{2}(n_{j})}b_{j}(n_{j})+\Big{(}\frac{c_{k}}{\ell_{j}}\Big{)}^{2r_{k}\ell_{j}}((r_{k}\ell_{j})!)^{2}\sum_{\begin{subarray}{c}\Omega(n_{j})=r_{k}\ell_{j}\\ p|n_{j}\implies p\in P_{j}\end{subarray}}\frac{\widetilde{\lambda}^{2}(n_{j})}{n_{j}w^{2}(n_{j})}\Big{)}.\end{split}

Arguing as before, we see that

(6.3) njk2Ω(nj)λ~2(nj)njw2(nj)bj(nj)=(1+O(2j/2))exp(pPjk2λ2(p)p+O(pPj1p2)).\displaystyle\begin{split}\sum_{n_{j}}\frac{k^{2\Omega(n_{j})}\widetilde{\lambda}^{2}(n_{j})}{n_{j}w^{2}(n_{j})}b_{j}(n_{j})=\Big{(}1+O\big{(}2^{-\ell_{j}/2}\big{)}\Big{)}\exp(\sum_{p\in P_{j}}\frac{k^{2}\lambda^{2}(p)}{p}+O(\sum_{p\in P_{j}}\frac{1}{p^{2}})).\end{split}

Note also that, as w2(n)w(n)w^{2}(n)\geq w(n) and λ~2(n)0\widetilde{\lambda}^{2}(n)\geq 0, we have

Ω(nj)=rkjp|njpPjλ~2(nj)njw2(nj)1(rkj)!(pPjλ2(p)p)rkj.\displaystyle\begin{split}\sum_{\begin{subarray}{c}\Omega(n_{j})=r_{k}\ell_{j}\\ p|n_{j}\implies p\in P_{j}\end{subarray}}\frac{\widetilde{\lambda}^{2}(n_{j})}{n_{j}w^{2}(n_{j})}\leq\frac{1}{(r_{k}\ell_{j})!}\Big{(}\sum_{p\in P_{j}}\frac{\lambda^{2}(p)}{p}\Big{)}^{r_{k}\ell_{j}}.\end{split}

Now, we apply the estimations given in (4.12) and (5.5) to deduce from the above that by taking M,NM,N large enough,

(6.4) (ckj)2rkj((rkj)!)2Ω(nj)=rkjp|njpPjλ~2(nj)njw2(nj)rkj(ck2rkej)rkj(pPjλ2(p)p)rkjrkj(ck2rkej)rkjerkjlog(2j/N)ejexp(pPjk2λ2(p)p+O(pPj1p2)).\displaystyle\begin{split}&\Big{(}\frac{c_{k}}{\ell_{j}}\Big{)}^{2r_{k}\ell_{j}}((r_{k}\ell_{j})!)^{2}\sum_{\begin{subarray}{c}\Omega(n_{j})=r_{k}\ell_{j}\\ p|n_{j}\implies p\in P_{j}\end{subarray}}\frac{\widetilde{\lambda}^{2}(n_{j})}{n_{j}w^{2}(n_{j})}\ll r_{k}\ell_{j}\Big{(}\frac{c^{2}_{k}r_{k}}{e\ell_{j}}\Big{)}^{r_{k}\ell_{j}}\Big{(}\sum_{p\in P_{j}}\frac{\lambda^{2}(p)}{p}\Big{)}^{r_{k}\ell_{j}}\\ \ll&r_{k}\ell_{j}\Big{(}\frac{c^{2}_{k}r_{k}}{e\ell_{j}}\Big{)}^{r_{k}\ell_{j}}e^{r_{k}\ell_{j}\log(2\ell_{j}/N)}\ll e^{-\ell_{j}}\exp(\sum_{p\in P_{j}}\frac{k^{2}\lambda^{2}(p)}{p}+O(\sum_{p\in P_{j}}\frac{1}{p^{2}})).\end{split}

Applying (6.3) and (6.4) in (6.2), together with Lemma 2.1 and the observation that ϕ(q)ϕ(q)\phi(q)\ll\phi^{*}(q), we readily deduce the assertion of the proposition.

Acknowledgments. P.G. is supported in part by NSFC grant 11871082, X. He is supported in part by NSFC grant 12101427 and X. Wu is supported in part by NSFC grant 11871187.

References

School of Mathematical Sciences College of Mathematical Sciences School of Mathematics
Beihang University Sichuan University Hefei University of Technology
Beijing 100191 China Chengdu Sichuan 610016 China Hefei Anhui 230009 China
Email: [email protected] Email: [email protected] Email: [email protected]