This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Bounds for moments of Dirichlet LL-functions to a fixed modulus

Peng Gao School of Mathematical Sciences, Beihang University, Beijing 100191, P. R. China [email protected]
Abstract.

We study the 2k2k-th moment of central values of the family of Dirichlet LL-functions to a fixed prime modulus. We establish sharp lower bounds for all real k0k\geq 0 and sharp upper bounds for kk in the range 0k10\leq k\leq 1.

Mathematics Subject Classification (2010): 11M06

Keywords: moments, Dirichlet LL-functions, lower bounds, upper bounds

1. Introduction

A considerable amount of work in the literature has been done on moments of central values of families of LL-functions, due to rich arithmetic meanings these central values have. In this paper, we focus on the family of Dirichlet LL-functions to a fixed modulus. It is widely believed that (see [R&Sound]) for all real k0k\geq 0 and large integers q2(mod4)q\not\equiv 2\pmod{4} (so that primitive Dirichlet characters modulo qq exist),

(1.1) χ(modq)|L(12,χ)|2kCkϕ(q)(logq)k2,\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\sim C_{k}\phi^{*}(q)(\log q)^{k^{2}},

where we denote χ\chi (respectively, ϕ(q)\phi^{*}(q)) for a Dirichelt character (respectively, the number of primitive characters) modulo qq, the numbers CkC_{k} are explicit constants and we denote throughout the paper \sideset{}{{}^{*}}{\sum} for the sum over primitive Dirichlet characters modulo qq.

The formula given in (1.1) is well-known for k=1k=1 and is a conjecture due to K. Ramachandra [Rama79] for k=2k=2 when the sum in (1.1) is being replaced by the sum over all Dirichlet characters modulo a prime qq. For all most all qq, D. R. Heath-Brown [HB81] established (1.1) for k=2k=2 and K. Soundararajan [Sound2007] improved the result to be valid for all qq. An asymptotic formula with a power saving error term was further obtained in this case for qq being prime numbers by M. P. Young [Young2011]. The main terms in Young’s result agree with a conjectured formula provided by J. B. Conrey, D. W. Farmer, J. P. Keating, M. O. Rubinstein and N. C. Snaith in [CFKRS] concerning the left side of (1.1) for all positive integral values of kk. Subsequent improvements on the error terms in Young’s result are given in [BFKMM1] and [BFKMM]. See also [Wu2020] for an extension of Young’s result to general moduli.

Other than the asymptotic relations given in (1.1), much is known on upper and lower bounds of the conjectured order of magnitude for moments of the family of LL-functions under consideration. To give an account for the related results, we assume that qq is a prime number in the rest of the paper. In [Sound01], under the assumption of the generalized Riemann hypothesis (GRH), K. Soundararajan showed that

χ(modq)|L(12,χ)|2kkϕ(q)(logq)k2+ε\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\ll_{k}\phi^{*}(q)(\log q)^{k^{2}+\varepsilon}

for all real positive kk and any ε>0\varepsilon>0. These bounds are optimal except for the ε\varepsilon powers. The optimal upper bounds are later obtained by D. R. Heath-Brown in [HB2010] unconditionally for k=1/vk=1/v with vv a positive integer and for all k(0,2)k\in(0,2) under GRH. Using a sharpening of the method of Soundararajan by A. J. Harper in [Harper], one may also establish the optimal upper bounds for all real k0k\geq 0 under GRH. In [Radziwill&Sound], M. Radziwiłł and K. Soundararajan enunciated a principle that allows one to establish sharp upper bounds for moments of families of LL-functions unconditionally and used it to study the moments of quadratic twists of LL-functions attached to elliptic curves. This principle was then applied by W. Heap, M. Radziwiłł and K. Soundararajan in [HRS] to establish unconditionally the 2k2k-th moment of the Riemann zeta function on the critical line for all real 0k20\leq k\leq 2.

In the opposite direction, a simple and powerful method developed by Z. Rudnick and K. Soundararajan in [R&Sound1] shows that

χ(modq)|L(12,χ)|2kkϕ(q)(logq)k2\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\gg_{k}\phi^{*}(q)(\log q)^{k^{2}}

for all rational k1k\geq 1. A modification of a method of M. Radziwiłł and K. Soundararajan in [Radziwill&Sound1] may allow one to establish such lower bounds for all real k1k\geq 1. In [C&L], V. Chandee and X. Li obtained the above lower bounds for rational 0<k<10<k<1.

In [H&Sound], W. Heap and K. Soundararajan developed another principle which allows one to study lower bounds of families of LL-functions. This principle can be regarded as a companion to the above principle of M. Radziwiłł and K. Soundararajan [Radziwill&Sound] concerning upper bounds. Although Heap and Soundararajan only studied moments of the Riemann zeta function on the critical line, they did point out that their principle may be applied to study moments of families of LL-functions, including the one we consider in this paper. In fact, the density conjecture of N. Katz and P. Sarnak concerning low-lying zeros of families of LL-functions indicates that the underlying symmetry for the family of Dirichlet LL-functions to a fixed modulus is unitary, and that the behaviour of this family resembles that of the Riemann zeta function on the critical line. Thus, one expects to obtain sharp lower bounds for moments of the above unitary family of LL-functions using the principle of Heap and Soundararajan. The aim of this paper is to first carry out this principle explicitly to achieve the desired lower bounds in the following result.

Theorem 1.1.

For large prime qq and any real number k0k\geq 0, we have

(1.2) χ(modq)|L(12,χ)|2kkϕ(q)(logq)k2.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\gg_{k}\phi^{*}(q)(\log q)^{k^{2}}.

Next, we apply the dual principle of M. Radziwiłł and K. Soundararajan [Radziwill&Sound] to establish sharp upper bounds for a restricted range of kk as follows.

Theorem 1.2.

For large prime qq and any real number kk such that 0k10\leq k\leq 1, we have

(1.3) χ(modq)|L(12,χ)|2kkϕ(q)(logq)k2.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\ll_{k}\phi^{*}(q)(\log q)^{k^{2}}.

Note that we can combine Theorem 1.1 and 1.2 together to obtain the following result concerning the order of magnitude of our family of LL-functions.

Theorem 1.3.

For large prime qq and any real number kk such that 0k10\leq k\leq 1, we have

(1.4) χ(modq)|L(12,χ)|2kϕ(q)(logq)k2.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\asymp\phi^{*}(q)(\log q)^{k^{2}}.

We notice that such a result in (1.4) is already implied by the above mentioned result of D. R. Heath-Brown [HB2010] and that of V. Chandee and X. Li [C&L]. In particular, the case k=1k=1 of (1.4) is explicitly given in [C&L]. Moreover, the result is shown to be valid for k=3/2k=3/2 as well by H. M. Bui, K. Pratt, N. Robles and A. Zaharescu [BPRZ, Theorem 1.4]. This case is achieved by employing various tools including a result on a long mollified second moment of the corresponding family of LL-functions given in [BPRZ, Theorem 1.1]. In our proofs of Theorems 1.1 and 1.2, we also need to evaluate certain twisted second moments for the same family. The lengths of the corresponding Dirichlet polynomials are however short so that the main contributions come only from the diagonal terms. Hence, only the orthogonality relation for characters is needed to complete our work. We also point out here that as it is mentioned in [BPRZ] that one may apply the work of B. Hough [Hough2016] or R. Zacharias [Z2019] on twisted fourth moment for the family of Dirichlet LL-functions modulo qq to obtain sharp upper bounds on all moments below the fourth. We decide to use the twisted second moment here to keep our exposition simple by observing that it is needed for obtaining both the lower bounds and the upper bounds.

2. Preliminaries

We include a few auxiliary results in this section. We also reserve the letter pp for a prime number in this paper and we recall the following result from [Gao2021-2, Lemma 2.2].

Lemma 2.1.

Let x2x\geq 2. We have, for some constant bb,

px1p=loglogx+b+O(1logx).\sum_{p\leq x}\frac{1}{p}=\log\log x+b+O\Big{(}\frac{1}{\log x}\Big{)}.

Also, for any integer j1j\geq 1, we have

px(logp)jp=(logx)jj+O((logx)j1).\sum_{p\leq x}\frac{(\log p)^{j}}{p}=\frac{(\log x)^{j}}{j}+O((\log x)^{j-1}).

Next, we note the following approximate functional equation for |L(1/2,χ)|2|L(1/2,\chi)|^{2}.

Lemma 2.2.

Let 𝔞=0\mathfrak{a}=0 or 11 be given by χ(1)=(1)𝔞\chi(-1)=(-1)^{\mathfrak{a}}. We have

(2.1) |L(12,χ)|2=2a,b=1χ(a)χ¯(b)ab𝒲𝔞(πabq),\displaystyle|L(\tfrac{1}{2},\chi)|^{2}=2\sum^{\infty}_{a,b=1}\frac{\chi(a)\overline{\chi}(b)}{\sqrt{ab}}\mathcal{W}_{\mathfrak{a}}\left(\frac{\pi ab}{q}\right),

where

𝒲𝔞(x)=12πi(c)Γ(14+s+𝔞2)2Γ(14+𝔞2)2xsdss.\mathcal{W}_{\mathfrak{a}}(x)=\frac{1}{2\pi i}\int\limits_{(c)}\frac{\Gamma\left(\frac{1}{4}+\frac{s+\mathfrak{a}}{2}\right)^{2}}{\Gamma\left(\frac{1}{4}+\frac{\mathfrak{a}}{2}\right)^{2}}x^{-s}\>\frac{ds}{s}.

Moreover, the function 𝒲𝔞(x)\mathcal{W}_{\mathfrak{a}}(x) is real valued and satisfies the bound that for any c>0c>0,

𝒲𝔞(x)cmin(1,xc).\displaystyle\mathcal{W}_{\mathfrak{a}}(x)\ll_{c}\min(1,x^{-c}).

The above lemma follows by combining equations [Sound2007, (1.2)-(1.4)] and Lemma 2 there, together with the observation that the property that 𝒲𝔞(x)\mathcal{W}_{\mathfrak{a}}(x) is real valued can be established similar to [sound1, Lemma 2.1].

The presence of 𝒲𝔞(x)\mathcal{W}_{\mathfrak{a}}(x) in the expression for |L(1/2,χ)|2|L(1/2,\chi)|^{2} makes it natural to consider sums over odd and even characters separately when summing over χ\chi modulo qq. For this reason, we denote ϕ(q)\phi(q) for the Euler totient function and note the following orthogonal relations.

Lemma 2.3.

[C&L, Lemma 1] Let χ(e),χ(o)\sum_{\chi}^{(e)},\sum_{\chi}^{(o)} indicate the sum over non-trivial primitive even (respectively odd) characters modulo qq. Then

χ(e)χ(a)={ϕ(q)22ifa±1(modq)1ifa±1(modq)and(a,q)=1,{\sum_{\chi}}^{(e)}\chi(a)=\left\{\begin{array}[]{ll}\frac{\phi(q)-2}{2}&{\rm if}\ \ a\equiv\pm 1\ ({\rm mod}\ q)\\ -1&{\rm if}\ \ a\not\equiv\pm 1\ ({\rm mod}\ q)\ {\rm and}\ (a,q)=1,\end{array}\right.

and

χ(o)χ(a)={ϕ(q)2ifa1(modq)ϕ(q)2ifa1(modq)0ifa±1(modq)and(a,q)=1.{\sum_{\chi}}^{(o)}\chi(a)=\left\{\begin{array}[]{ll}\frac{\phi(q)}{2}&{\rm if}\ \ a\equiv 1\ ({\rm mod}\ q)\\ \frac{-\phi(q)}{2}&{\rm if}\ \ a\equiv-1\ ({\rm mod}\ q)\\ 0&{\rm if}\ \ a\not\equiv\pm 1\ ({\rm mod}\ q)\ {\rm and}\ (a,q)=1.\end{array}\right.

3. Outline of the Proofs

We may assume that qq is a large prime number and we note that in this case we have ϕ(q)=q2\phi^{*}(q)=q-2. As the case k=1k=1 for both (1.2) and (1.3) is known, we may assume in our proofs that k1k\neq 1 is a fixed positive real number and let N,MN,M be two large natural numbers depending on kk only and and denote {j}1jR\{\ell_{j}\}_{1\leq j\leq R} for a sequence of even natural numbers such that 1=2Nloglogq\ell_{1}=2\lceil N\log\log q\rceil and j+1=2Nlogj\ell_{j+1}=2\lceil N\log\ell_{j}\rceil for j1j\geq 1, where RR is defined to the largest natural number satisfying R>10M\ell_{R}>10^{M}. We may assume that MM is so chosen so that we have j>j+12\ell_{j}>\ell_{j+1}^{2} for all 1jR11\leq j\leq R-1 and this further implies that we have

(3.1) j=1R1j2R.\displaystyle\sum^{R}_{j=1}\frac{1}{\ell_{j}}\leq\frac{2}{\ell_{R}}.

We denote P1{P}_{1} for the set of odd primes not exceeding q1/12q^{1/\ell_{1}^{2}} and Pj{P_{j}} for the set of primes lying in the interval (q1/j12,q1/j2](q^{1/\ell_{j-1}^{2}},q^{1/\ell_{j}^{2}}] for 2jR2\leq j\leq R. For each 1jR1\leq j\leq R, we write

𝒫j(χ)=pPj1pχ(p),𝒬j(χ,k)=(12max(1,k2)𝒫(χ)j)rkj,{\mathcal{P}}_{j}(\chi)=\sum_{p\in P_{j}}\frac{1}{\sqrt{p}}\chi(p),\quad{\mathcal{Q}}_{j}(\chi,k)=\Big{(}\frac{12\max(1,k^{2}){\mathcal{P}}(\chi)}{\ell_{j}}\Big{)}^{r_{k}\ell_{j}},

where we define rk=1+1/k+1r_{k}=\lceil 1+1/k\rceil+1 for 0<k<10<k<1 and rk=k/(2k1)+1r_{k}=\lceil k/(2k-1)\rceil+1 for k>1k>1. We further define 𝒬R+1(χ,k)=1{\mathcal{Q}}_{R+1}(\chi,k)=1.

We define for any non-negative integer \ell and any real number xx,

E(x)=j=0xjj!.E_{\ell}(x)=\sum_{j=0}^{\ell}\frac{x^{j}}{j!}.

Further, we define for each 1jR1\leq j\leq R and any real number α\alpha,

𝒩j(χ,α)=Ej(α𝒫j(χ)),𝒩(χ,α)=j=1R𝒩j(χ,α).\displaystyle{\mathcal{N}}_{j}(\chi,\alpha)=E_{\ell_{j}}(\alpha{\mathcal{P}}_{j}(\chi)),\quad\mathcal{N}(\chi,\alpha)=\prod_{j=1}^{R}{\mathcal{N}}_{j}(\chi,\alpha).

Before we proceed to our discussions below, we would like to point out here without further notice that in the rest of the paper, when we use \ll or the OO-symbol to estimate various quantities needed, the implicit constants involved only depend on kk and are uniform with respect to χ\chi. We shall also make the convention that an empty product is defined to be 11.

We now present the needed versions in our setting of the lower bounds principle of W. Heap and K. Soundararajanand in [H&Sound] and the upper bounds principle of M. Radziwiłł and K. Soundararajan in [Radziwill&Sound] in the following two lemmas. We choose to state our results suitable for our proofs of Theorems 1.1 and 1.2 only. One may easily adjust them to study moments for various other families of LL-functions.

Our first lemma corresponds to the lower bounds principle.

Lemma 3.1.

With notations as above. For 0<k<10<k<1, we have

(3.2) χ(modq)L(12,χ)𝒩(χ,k1)𝒩(χ¯,k)(χ(modq)|L(12,χ)|2k)1/2(χ(modq)|L(12,χ)|2|𝒩(χ,k1)|2)(1k)/2×(χ(modq)j=1R(|𝒩j(χ,k)|2+|𝒬j(χ,k)|2))k/2.\displaystyle\begin{split}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}L(\tfrac{1}{2},\chi)\mathcal{N}(\chi,k-1)\mathcal{N}(\overline{\chi},k)\ll&\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\Big{)}^{1/2}\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2}|\mathcal{N}(\chi,k-1)|^{2}\Big{)}^{(1-k)/2}\\ &\times\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\big{)}\Big{)}^{k/2}.\end{split}

For k>1k>1, we have

(3.3) χ(modq)L(12,χ)𝒩(χ,k1)𝒩(χ¯,k)(χ(modq)|L(12,χ)|2k)12k(χ(modq)j=1R(|𝒩j(χ,k)|2+|𝒬j(χ,k)|2))2k12k.\displaystyle\begin{split}&\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}L(\tfrac{1}{2},\chi)\mathcal{N}(\chi,k-1)\mathcal{N}(\overline{\chi},k)\leq\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\Big{)}^{\frac{1}{2k}}\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\big{)}\Big{)}^{\frac{2k-1}{2k}}.\end{split}

The implied constants in (3.2) and (3.3) depend on kk only.

Proof.

We assume 0<k<10<k<1 first and apply Hölder’s inequality to see that the left side of (3.2) is

(3.4) (χ(modq)|L(12,χ)|2k)1/2(χ(modq)|L(12,χ)𝒩(χ,k1)|2)(1k)/2(χ(modq)|𝒩(χ,k)|2/k|𝒩(χ,k1)|2)k/2.\displaystyle\begin{split}\leq&\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\Big{)}^{1/2}\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)\mathcal{N}(\chi,k-1)|^{2}\Big{)}^{(1-k)/2}\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|\mathcal{N}(\chi,k)|^{2/k}|\mathcal{N}(\chi,k-1)|^{2}\Big{)}^{k/2}.\end{split}

Notice that we have for |z|aK/10|z|\leq aK/10 with 0<a10<a\leq 1,

(3.5) |r=0Kzrr!ez||az|KK!(ae10)K,\displaystyle\Big{|}\sum_{r=0}^{K}\frac{z^{r}}{r!}-e^{z}\Big{|}\leq\frac{|az|^{K}}{K!}\leq\Big{(}\frac{ae}{10}\Big{)}^{K},

where the last estimation above follows from the observation that

(3.6) (ne)nn!n(ne)n.\displaystyle(\frac{n}{e})^{n}\leq n!\leq n(\frac{n}{e})^{n}.

We apply (3.5) with z=k𝒫j(χ),K=jz=k{\mathcal{P}}_{j}(\chi),K=\ell_{j} and a=ka=k to see that when |𝒫j(χ)|j/10|{\mathcal{P}}_{j}(\chi)|\leq\ell_{j}/10,

𝒩j(χ,k)=\displaystyle{\mathcal{N}}_{j}(\chi,k)= exp(k𝒫j(χ))(1+O(exp(k|𝒫j(χ)|)(ke10)j)=exp(k𝒫j(χ))(1+O(kej)).\displaystyle\exp(k{\mathcal{P}}_{j}(\chi))\Big{(}1+O\Big{(}\exp(k|{\mathcal{P}}_{j}(\chi)|)\Big{(}\frac{ke}{10}\Big{)}^{\ell_{j}}\Big{)}=\exp(k{\mathcal{P}}_{j}(\chi))\Big{(}1+O\Big{(}ke^{-\ell_{j}}\Big{)}\Big{)}.

Similarly, we have

𝒩j(χ,k1)=\displaystyle{\mathcal{N}}_{j}(\chi,k-1)= exp((k1)𝒫j(χ))(1+O(ej)).\displaystyle\exp((k-1){\mathcal{P}}_{j}(\chi))\Big{(}1+O\Big{(}e^{-\ell_{j}}\Big{)}\Big{)}.

The above estimations then allow us to see that when |𝒫j(χ)|j/10|{\mathcal{P}}_{j}(\chi)|\leq\ell_{j}/10,

(3.7) |𝒩j(χ,k)1k𝒩j(χ,k1)|2\displaystyle|{\mathcal{N}}_{j}(\chi,k)^{\frac{1}{k}}{\mathcal{N}}_{j}(\chi,k-1)|^{2} =exp(2k(𝒫j(χ)))(1+O(ej))=|𝒩j(χ,k)|2(1+O(ej)).\displaystyle=\exp(2k\Re({\mathcal{P}}_{j}(\chi)))\Big{(}1+O\big{(}e^{-\ell_{j}}\big{)}\Big{)}=|{\mathcal{N}}_{j}(\chi,k)|^{2}\Big{(}1+O\big{(}e^{-\ell_{j}}\big{)}\Big{)}.

On the other hand, we notice that when |𝒫j(χ)|j/10|{\mathcal{P}}_{j}(\chi)|\geq\ell_{j}/10,

|𝒩j(χ,k)|r=0j|𝒫j(χ)|rr!|𝒫j(χ)|jr=0j(10j)jr1r!(12|𝒫j(χ)|j)j.\displaystyle\begin{split}|{\mathcal{N}}_{j}(\chi,k)|&\leq\sum_{r=0}^{\ell_{j}}\frac{|{\mathcal{P}}_{j}(\chi)|^{r}}{r!}\leq|{\mathcal{P}}_{j}(\chi)|^{\ell_{j}}\sum_{r=0}^{\ell_{j}}\Big{(}\frac{10}{\ell_{j}}\Big{)}^{\ell_{j}-r}\frac{1}{r!}\leq\Big{(}\frac{12|{\mathcal{P}}_{j}(\chi)|}{\ell_{j}}\Big{)}^{\ell_{j}}.\end{split}

Observe that the same bound above also holds for |𝒩j(χ,k1)||{\mathcal{N}}_{j}(\chi,k-1)|. It follows from these estimations that when |𝒫j(χ)|j/10|{\mathcal{P}}_{j}(\chi)|\geq\ell_{j}/10, we have

|𝒩j(χ,k)1k𝒩j(χ,k1)|2\displaystyle|{\mathcal{N}}_{j}(\chi,k)^{\frac{1}{k}}{\mathcal{N}}_{j}(\chi,k-1)|^{2} (12|𝒫j(χ)|j)2(1+1/k)j|𝒬j(χ,k)|2.\displaystyle\leq\Big{(}\frac{12|{\mathcal{P}}_{j}(\chi)|}{\ell_{j}}\Big{)}^{2(1+1/k)\ell_{j}}\leq|{\mathcal{Q}}_{j}(\chi,k)|^{2}.

Applying the above together with (3.4) and (3.7) allows us to establish the estimation given in (3.2).

It remains to consider the case k>1k>1 and we apply Hölder’s inequality again to see that the left side of (3.3) is

(3.8) (χ(modq)|L(12,χ)|2k)12k(χ(modq)|𝒩(χ,k)𝒩(χ,k1)|2k2k1)2k12k.\displaystyle\begin{split}\leq\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\Big{)}^{\frac{1}{2k}}\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|\mathcal{N}(\chi,k)\mathcal{N}(\chi,k-1)|^{\frac{2k}{2k-1}}\Big{)}^{\frac{2k-1}{2k}}.\end{split}

We apply (3.5) this time with z=k𝒫j(χ),K=j,a=1z=k{\mathcal{P}}_{j}(\chi),K=\ell_{j},a=1 and arguing as above to see that when |𝒫(χ)|j/(10k)|{\mathcal{P}}(\chi)|\leq\ell_{j}/(10k), we have

(3.9) |𝒩j(χ,k)𝒩j(χ,k1)|2k2k1=|𝒩j(χ,k)|2(1+O(ej)).\displaystyle\begin{split}|\mathcal{N}_{j}(\chi,k)\mathcal{N}_{j}(\chi,k-1)|^{\frac{2k}{2k-1}}=|{\mathcal{N}}_{j}(\chi,k)|^{2}\Big{(}1+O\big{(}e^{-\ell_{j}}\big{)}\Big{)}.\end{split}

Similarly, when |𝒫j(χ)|j/(10k)|{\mathcal{P}}_{j}(\chi)|\geq\ell_{j}/(10k), we have

(3.10) |𝒩j(χ,k)𝒩j(χ,k1)|2k2k1(12k2|𝒫j(χ)|j)2kj2k1|𝒬j(χ,k)|2.\displaystyle\begin{split}|\mathcal{N}_{j}(\chi,k)\mathcal{N}_{j}(\chi,k-1)|^{\frac{2k}{2k-1}}\leq\Big{(}\frac{12k^{2}|{\mathcal{P}}_{j}(\chi)|}{\ell_{j}}\Big{)}^{\frac{2k\ell_{j}}{2k-1}}\leq|{\mathcal{Q}}_{j}(\chi,k)|^{2}.\end{split}

We then deduce the estimation given in (3.3) readily from (3.8), (3.9) and (3.10). This completes the proof of the lemma. ∎

Our next lemma corresponds to the upper bounds principle. Instead of the form used for obtaining upper bounds given in [Radziwill&Sound], we decide to adapt one that resembles what is given in Lemma 3.1 above and also derive it via a similar fashion. One may compare our next lemma with [Radziwill&Sound, Proposition 3] and [HRS, Proposition 2.1].

Lemma 3.2.

With notations as above. We have for 0<k<10<k<1,

(3.11) χ(modq)|L(12,χ)|2k(χ(modq)|L(12,χ)|2v=0Rj=1v(|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2)k(χ(modq)v=0R(j=1v|𝒩j(χ,k)|2)|𝒬v+1(χ,k)|2)1k,\displaystyle\begin{split}&\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\\ \ll&\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2}\sum^{R}_{v=0}\prod^{v}_{j=1}\Big{(}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\Big{)}^{k}\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\sum^{R}_{v=0}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\Big{)}^{1-k},\end{split}

where the implied constants depend on kk only.

Proof.

Note first that using arguments similar to those in the proof of Lemma 3.1, we have that when |𝒫j(χ)|j/10|{\mathcal{P}}_{j}(\chi)|\leq\ell_{j}/10,

(3.12) |𝒩j(χ,k1)|2k|𝒩j(χ,k)|2(1k)1+O(ej),\displaystyle|\mathcal{N}_{j}(\chi,k-1)|^{2k}|\mathcal{N}_{j}(\chi,k)|^{2(1-k)}\geq 1+O\big{(}e^{-\ell_{j}}\big{)},

where the implied constants are uniformly bounded for all jj.

Now, if there exists an integer 0vR10\leq v\leq R-1 such that |𝒫j(χ)|j/10|\mathcal{P}_{j}(\chi)|\leq\ell_{j}/10 whenever jvj\leq v, but with |𝒫v+1(χ)|>v+1/10|\mathcal{P}_{v+1}(\chi)|>\ell_{v+1}/10, we deduce from the above and the observation that |𝒬v+1(χ,k)|1|{\mathcal{Q}}_{v+1}(\chi,k)|\geq 1 when |𝒫v+1(χ)|v+1/10|{\mathcal{P}}_{v+1}(\chi)|\geq\ell_{v+1}/10 that

(j=1v|𝒩j(χ,k1)|2k|𝒩j(χ,k)|2(1k))|𝒬v+1(χ,k)|21.\displaystyle\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2k}|\mathcal{N}_{j}(\chi,k)|^{2(1-k)}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\gg 1.

If no such vv exists, then we must have |𝒫j(χ)|j/10|\mathcal{P}_{j}(\chi)|\leq\ell_{j}/10 for all 1jR1\leq j\leq R so that the estimation (3.12) is valid for all jj and we have

j=1R|𝒩j(χ,k1)|2k|𝒩j(χ,k)|2(1k)1.\displaystyle\prod^{R}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2k}|\mathcal{N}_{j}(\chi,k)|^{2(1-k)}\gg 1.

In either case, we conclude that

(v=0R(j=1v|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2)k(v=0R(j=1v|𝒩j(χ,k)|2)|𝒬v+1(χ,k)|2)1k1.\displaystyle\Big{(}\sum^{R}_{v=0}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\Big{)}^{k}\Big{(}\sum^{R}_{v=0}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\Big{)}^{1-k}\gg 1.

We then deduce from this that

χ(modq)|L(12,χ)|2k\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}
\displaystyle\ll χ(modq)|L(12,χ)|2k(v=0R(j=0v|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2)k×(v=0R(j=1v|𝒩j(χ,k)|2)|𝒬v+1(χ,k)|2)1k.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2k}\Big{(}\sum^{R}_{v=0}\Big{(}\prod^{v}_{j=0}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\Big{)}^{k}\times\Big{(}\sum^{R}_{v=0}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\Big{)}^{1-k}.

Applying Hölder’s inequality to the last expression above leads to the estimation given in (3.11) and this completes the proof of the lemma. ∎

In what follows, we may further assume that 0<k<10<k<1 by noting that the case k1k\geq 1 of Theorem 1.1 can be obtained using (3.3) in Lemma 3.1 and applying the arguments in the paper. We then deduce from Lemma 3.1 and Lemma 3.2 that in order to prove Theorem 1.1 and 1.2 for the case 0<k<10<k<1, it suffices to establish the following three propositions.

Proposition 3.3.

With notations as above, we have

χ(modq)L(12,χ)𝒩(χ¯,k)𝒩(χ,k1)ϕ(q)(logq)k2.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}L(\tfrac{1}{2},\chi)\mathcal{N}(\overline{\chi},k)\mathcal{N}(\chi,k-1)\gg\phi^{*}(q)(\log q)^{k^{2}}.
Proposition 3.4.

With notations as above, we have

max(χ(modq)|L(12,χ)𝒩(χ,k1)|2,χ(modq)|L(12,χ)|2v=0R(j=1v|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2)ϕ(q)(logq)k2.\displaystyle\max\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)\mathcal{N}(\chi,k-1)|^{2},\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2}\sum^{R}_{v=0}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\Big{)}\ll\phi^{*}(q)(\log q)^{k^{2}}.
Proposition 3.5.

With notations as above, we have

max(χ(modq)j=1R(|𝒩j(χ,k)|2+|𝒬j(χ,k)|2),χ(modq)v=0R(j=1v|𝒩j(χ,k)|2)|𝒬v+1(χ,k)|2)ϕ(q)(logq)k2.\displaystyle\max\Big{(}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\big{)},\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\sum^{R}_{v=0}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\Big{)}\ll\phi^{*}(q)(\log q)^{k^{2}}.

We shall prove the above propositions in the rest of the paper.

4. Proof of Proposition 3.3

Denote Ω(n)\Omega(n) for the number of distinct prime powers dividing nn and w(n)w(n) for the multiplicative function such that w(pα)=α!w(p^{\alpha})=\alpha! for prime powers pαp^{\alpha}. Let bj(n),1jRb_{j}(n),1\leq j\leq R be functions such that bj(n)=1b_{j}(n)=1 when nn is composed of at most j\ell_{j} primes, all from the interval PjP_{j}. Otherwise, we define bj(n)=0b_{j}(n)=0. We use these notations to see that for any real number α\alpha,

(4.1) 𝒩j(χ,α)=nj1njαΩ(nj)w(nj)bj(nj)χ(nj),1jR.{\mathcal{N}}_{j}(\chi,\alpha)=\sum_{n_{j}}\frac{1}{\sqrt{n_{j}}}\frac{\alpha^{\Omega(n_{j})}}{w(n_{j})}b_{j}(n_{j})\chi(n_{j}),\quad 1\leq j\leq R.

Note that each 𝒩j(χ,α){\mathcal{N}}_{j}(\chi,\alpha) is a short Dirichlet polynomial since bj(nj)=0b_{j}(n_{j})=0 unless nj(q1/j2)j=q1/jn_{j}\leq(q^{1/\ell_{j}^{2}})^{\ell_{j}}=q^{1/\ell_{j}}. It follows from this that 𝒩(χ,k){\mathcal{N}}(\chi,k) and 𝒩(χ,k1){\mathcal{N}}(\chi,k-1) are short Dirichlet polynomials whose lengths are both at most q1/1++1/R<q2/10Mq^{1/\ell_{1}+\ldots+1/\ell_{R}}<q^{2/10^{M}} by (3.1). Moreover, it is readily checked that we have for each χ\chi modulo qq (including the case χ=χ0\chi=\chi_{0}, the principal character modulo qq),

(4.2) 𝒩(χ,k)𝒩(χ,k1)q2(1/1++1/R)<q4/10M.\displaystyle{\mathcal{N}}(\chi,k){\mathcal{N}}(\chi,k-1)\ll q^{2(1/\ell_{1}+\ldots+1/\ell_{R})}<q^{4/10^{M}}.

We note further that it is shown in [R&Sound] that for X1X\geq 1,

L(12,χ)=mXχ(m)m+O(qlogqX).\displaystyle L(\tfrac{1}{2},\chi)=\sum_{m\leq X}\frac{\chi(m)}{\sqrt{m}}+O(\frac{\sqrt{q}\log q}{\sqrt{X}}).

We deduce from the above that

χ(modq)L(12,χ)𝒩(χ¯,k)𝒩(χ,k1)\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}L(\tfrac{1}{2},\chi)\mathcal{N}(\overline{\chi},k)\mathcal{N}(\chi,k-1)
=\displaystyle= χ(modq)mXχ(m)m𝒩(χ¯,k)𝒩(χ,k1)+O(qlogqXχ(modq)𝒩(χ¯,k)𝒩(χ,k1))\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\sum_{m\leq X}\frac{\chi(m)}{\sqrt{m}}\mathcal{N}(\overline{\chi},k)\mathcal{N}(\chi,k-1)+O(\frac{\sqrt{q}\log q}{\sqrt{X}}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\mathcal{N}(\overline{\chi},k)\mathcal{N}(\chi,k-1))
=\displaystyle= χ(modq)mXχ(m)m𝒩(χ¯,k)𝒩(χ,k1)+O(ϕ(q)q1/2+4/10MlogqX),\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\sum_{m\leq X}\frac{\chi(m)}{\sqrt{m}}\mathcal{N}(\overline{\chi},k)\mathcal{N}(\chi,k-1)+O(\frac{\phi^{*}(q)q^{1/2+4/10^{M}}\log q}{\sqrt{X}}),

where the last estimation above follows from (4.2). Applying (4.2) one more time, we see that the main term above equals

χ(modq)mXχ(m)m𝒩(χ¯,k)𝒩(χ,k1)+O(Xq4/10M)\displaystyle\sum_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\sum_{m\leq X}\frac{\chi(m)}{\sqrt{m}}\mathcal{N}(\overline{\chi},k)\mathcal{N}(\chi,k-1)+O(\sqrt{X}q^{4/10^{M}})
=\displaystyle= ϕ(q)abnXanbmodqxaybabn+O(Xq4/10M),\displaystyle\phi^{*}(q)\sum_{a}\sum_{b}\sum_{\begin{subarray}{c}n\leq X\\ an\equiv b\bmod q\end{subarray}}\frac{x_{a}y_{b}}{\sqrt{abn}}+O(\sqrt{X}q^{4/10^{M}}),

where we write for simplicity

𝒩(χ,k1)=aq2/10Mxaaχ(a),𝒩(χ¯,k)=bq2/10Mybbχ¯(b).\displaystyle{\mathcal{N}}(\chi,k-1)=\sum_{a\leq q^{2/10^{M}}}\frac{x_{a}}{\sqrt{a}}\chi(a),\quad\mathcal{N}(\overline{\chi},k)=\sum_{b\leq q^{2/10^{M}}}\frac{y_{b}}{\sqrt{b}}\overline{\chi}(b).

We now consider the contribution from the terms am=b+lqam=b+lq with l1l\geq 1 above (note that as b<qb<q, we can not have b>amb>am in our case). As this implies that lq2/10MX/ql\leq q^{2/10^{M}}X/q, we deduce together with the observation that xa,yb1x_{a},y_{b}\ll 1 that the total contribution from these terms is

\displaystyle\ll ϕ(q)bq2/10Mlq2/10MX/q1bqlXq2/10M.\displaystyle\phi(q)\sum_{b\leq q^{2/10^{M}}}\sum_{l\leq q^{2/10^{M}}X/q}\frac{1}{\sqrt{bql}}\ll\sqrt{X}q^{2/10^{M}}.

We now set X=q1+1/10M1X=q^{1+1/10^{M-1}} to see that we can ignore the contributions from various error terms above to deduce that

χ(modq)L(12,χ)𝒩(χ¯,k)𝒩(χ,k1)ϕ(q)abmXam=bxaybabm=ϕ(q)bybba,mam=bxa=ϕ(q)bybba|bxa,\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}L(\tfrac{1}{2},\chi)\mathcal{N}(\overline{\chi},k)\mathcal{N}(\chi,k-1)\gg\phi^{*}(q)\sum_{a}\sum_{b}\sum_{\begin{subarray}{c}m\leq X\\ am=b\end{subarray}}\frac{x_{a}y_{b}}{\sqrt{abm}}=\phi^{*}(q)\sum_{b}\frac{y_{b}}{b}\sum_{\begin{subarray}{c}a,m\\ am=b\end{subarray}}x_{a}=\phi^{*}(q)\sum_{b}\frac{y_{b}}{b}\sum_{\begin{subarray}{c}a|b\end{subarray}}x_{a},

where the last equality above follows from the observation that bq2/10M<Xb\leq q^{2/10^{M}}<X.

Notice that

(4.3) bybba|bxa=j=1R(nj1njkΩ(nj)w(nj)bj(nj)nj|nj(k1)Ω(nj)w(nj)bj(nj))=j=1R(nj1njkΩ(nj)w(nj)bj(nj)nj|nj(k1)Ω(nj)w(nj)),\displaystyle\begin{split}\sum_{b}\frac{y_{b}}{b}\sum_{\begin{subarray}{c}a|b\end{subarray}}x_{a}=&\prod^{R}_{j=1}\Big{(}\sum_{n_{j}}\frac{1}{n_{j}}\frac{k^{\Omega(n_{j})}}{w(n_{j})}b_{j}(n_{j})\sum_{n^{\prime}_{j}|n_{j}}\frac{(k-1)^{\Omega(n^{\prime}_{j})}}{w(n^{\prime}_{j})}b_{j}(n^{\prime}_{j})\Big{)}\\ =&\prod^{R}_{j=1}\Big{(}\sum_{n_{j}}\frac{1}{n_{j}}\frac{k^{\Omega(n_{j})}}{w(n_{j})}b_{j}(n_{j})\sum_{n^{\prime}_{j}|n_{j}}\frac{(k-1)^{\Omega(n^{\prime}_{j})}}{w(n^{\prime}_{j})}\Big{)},\end{split}

where the last equality above follows by noting that bj(nj)=1b_{j}(n_{j})=1 implies that bj(nj)=1b_{j}(n^{\prime}_{j})=1 for all nj|njn^{\prime}_{j}|n_{j}.

We consider the sum above over njn_{j} for a fixed 1jR1\leq j\leq R in (4.3). Note that the factor bj(nj)b_{j}(n_{j}) restricts njn_{j} to have all prime factors in PjP_{j} such that Ω(nj)j\Omega(n_{j})\leq\ell_{j}. If we remove the restriction on Ω(nj)\Omega(n_{j}), then the sum becomes

(4.4) pPj(i=01pikii!(l=0i(k1)ll!))=pPj(1+k2p+O(1p2)).\displaystyle\begin{split}&\prod_{\begin{subarray}{c}p\in P_{j}\end{subarray}}\Big{(}\sum_{i=0}^{\infty}\frac{1}{p^{i}}\frac{k^{i}}{i!}\Big{(}\sum_{l=0}^{i}\frac{(k-1)^{l}}{l!}\Big{)}\Big{)}=\prod_{\begin{subarray}{c}p\in P_{j}\end{subarray}}\Big{(}1+\frac{k^{2}}{p}+O(\frac{1}{p^{2}})\Big{)}.\end{split}

On the other hand, using Rankin’s trick by noticing that 2Ω(nj)j12^{\Omega(n_{j})-\ell_{j}}\geq 1 if Ω(nj)>j\Omega(n_{j})>\ell_{j}, we see that the error introduced this way does not exceed

(nj1njkΩ(nj)w(nj)2Ω(nj)jnj|nj(1k)Ω(nj)w(nj))2jpPj(i=01pi(2k)ii!(l=0i(1k)ll!))2jpPj(1+2k(22k)p+O(1p2))2j/2pPj(1+k2p+O(1p2)),\displaystyle\begin{split}&\Big{(}\sum_{n_{j}}\frac{1}{n_{j}}\frac{k^{\Omega(n_{j})}}{w(n_{j})}2^{\Omega(n_{j})-\ell_{j}}\sum_{n^{\prime}_{j}|n_{j}}\frac{(1-k)^{\Omega(n^{\prime}_{j})}}{w(n^{\prime}_{j})}\Big{)}\\ \leq&2^{-\ell_{j}}\prod_{\begin{subarray}{c}p\in P_{j}\end{subarray}}\Big{(}\sum_{i=0}^{\infty}\frac{1}{p^{i}}\frac{(2k)^{i}}{i!}\Big{(}\sum_{l=0}^{i}\frac{(1-k)^{l}}{l!}\Big{)}\Big{)}\\ \leq&2^{-\ell_{j}}\prod_{\begin{subarray}{c}p\in P_{j}\end{subarray}}\Big{(}1+\frac{2k(2-2k)}{p}+O(\frac{1}{p^{2}})\Big{)}\\ \leq&2^{-\ell_{j}/2}\prod_{\begin{subarray}{c}p\in P_{j}\end{subarray}}\Big{(}1+\frac{k^{2}}{p}+O(\frac{1}{p^{2}})\Big{)},\end{split}

where the last estimation above follows by taking NN large enough so that we deduce from Lemma 2.1 that

(4.5) pPj1p1Nj.\displaystyle\sum_{p\in P_{j}}\frac{1}{p}\leq\frac{1}{N}\ell_{j}.

We then deduce from this, (4.4) and Lemma 2.1 that we have

χ(modq)L(12,χ)𝒩(χ¯,k)𝒩(χ,k1)ϕ(q)j=1R(1+O(2j/2))pPj(1+k2p+O(1p2))ϕ(q)(logq)k2.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}L(\tfrac{1}{2},\chi)\mathcal{N}(\overline{\chi},k)\mathcal{N}(\chi,k-1)\gg\phi^{*}(q)\prod^{R}_{j=1}\Big{(}1+O(2^{-\ell_{j}/2})\Big{)}\prod_{\begin{subarray}{c}p\in P_{j}\end{subarray}}\Big{(}1+\frac{k^{2}}{p}+O(\frac{1}{p^{2}})\Big{)}\gg\phi^{*}(q)(\log q)^{k^{2}}.

This completes the proof of the proposition.

5. Proof of Proposition 3.4

As the sum over ej/2e^{-\ell_{j}/2} converges, we see that it suffices to show that for a fixed integer vv such that 1vR11\leq v\leq R-1, we have

χ(modq)|L(12,χ)|2(j=1v|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2ϕ(q)ev+1/2(logq)k2.\displaystyle\begin{split}\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}|L(\tfrac{1}{2},\chi)|^{2}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\ll\phi^{*}(q)e^{-\ell_{v+1}/2}(\log q)^{k^{2}}.\end{split}

We define the function pv+1(n)p_{v+1}(n) such that pv+1(n)=0p_{v+1}(n)=0 or 11, and we have pv+1(n)=1p_{v+1}(n)=1 if and only if nn is composed of exactly rkv+1r_{k}\ell_{v+1} primes (counted with multiplicity), all from the interval Pv+1P_{v+1}. We use this together with the notations in Section 4 to write that

(5.1) 𝒫v+1(χ)rkv+1=\displaystyle{\mathcal{P}}_{v+1}(\chi)^{r_{k}\ell_{v+1}}= nv+11nv+1(rkv+1)!w(nv+1)χ(nv+1)pv+1(nv+1),\displaystyle\sum_{\begin{subarray}{c}n_{v+1}\end{subarray}}\frac{1}{\sqrt{n_{v+1}}}\frac{(r_{k}\ell_{v+1})!}{w(n_{v+1})}\chi(n_{v+1})p_{v+1}(n_{v+1}),

where we recall that rk=1+1/k+1r_{k}=\lceil 1+1/k\rceil+1 when 0<k<10<k<1. We then apply the above to write

(j=1v|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2=(12v+1)2rkv+1((rkv+1)!)2a,bq2rk/10Muaubabχ(a)χ¯(b).\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}=\Big{(}\frac{12}{\ell_{v+1}}\Big{)}^{2r_{k}\ell_{v+1}}((r_{k}\ell_{v+1})!)^{2}\sum_{a,b\leq q^{2r_{k}/10^{M}}}\frac{u_{a}u_{b}}{\sqrt{ab}}\chi(a)\overline{\chi}(b).

Here we observe that j=1v|𝒩j(χ,k1)||𝒬v+1(χ,k)|\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|\cdot|{\mathcal{Q}}_{v+1}(\chi,k)| is a short Dirichlet polynomial whose length is at most

q1/1++1/v+rk/v+1<q2rk/10M.q^{1/\ell_{1}+\ldots+1/\ell_{v}+r_{k}/\ell_{v+1}}<q^{2r_{k}/10^{M}}.

Note also that we have ua,ub1u_{a},u_{b}\leq 1 for all a,ba,b.

We evaluate the sum of (j=1v|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2} over all primitive characters over qq by splitting the sum into sums over even and odd characters separately. As the treatments are similar, we only consider the sum over even characters here. From (2.1) and Lemma 2.3, we have that

(5.2) χ(e)|L(1/2,χ)|2(j=1v|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2=2(12v+1)2rkv+1((rkv+1)!)2a,bq2rk/10Muaubabm,n1mn𝒲𝔞(πmnq)χ(e)χ(ma)χ¯(nb)=ϕ(q)(12v+1)2rkv+1((rkv+1)!)2a,bq2rk/10Mxaxbabm,n(mn,q)=1ma±nbmodq1mn𝒲𝔞(πmnq)+O((12v+1)2rkv+1((rkv+1)!)2a,bq2rk/10M1abm,n1mn𝒲𝔞(πmnq)).\displaystyle\begin{split}&{\sum_{\chi}}^{(e)}|L(1/2,\chi)|^{2}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\\ =&2\Big{(}\frac{12}{\ell_{v+1}}\Big{)}^{2r_{k}\ell_{v+1}}((r_{k}\ell_{v+1})!)^{2}\sum_{a,b\leq q^{2r_{k}/10^{M}}}\frac{u_{a}u_{b}}{\sqrt{ab}}\sum_{m,n}\frac{1}{\sqrt{mn}}\mathcal{W}_{\mathfrak{a}}\left(\frac{\pi mn}{q}\right){\sum_{\chi}}^{(e)}\chi(ma)\overline{\chi}(nb)\\ =&\phi^{*}(q)\Big{(}\frac{12}{\ell_{v+1}}\Big{)}^{2r_{k}\ell_{v+1}}((r_{k}\ell_{v+1})!)^{2}\sum_{a,b\leq q^{2r_{k}/10^{M}}}\frac{x_{a}x_{b}}{\sqrt{ab}}\sum_{\begin{subarray}{c}m,n\\ (mn,q)=1\\ ma\equiv\pm nb\,{\rm mod}\,q\end{subarray}}\frac{1}{\sqrt{mn}}\mathcal{W}_{\mathfrak{a}}\left(\frac{\pi mn}{q}\right)\\ &+O\left(\Big{(}\frac{12}{\ell_{v+1}}\Big{)}^{2r_{k}\ell_{v+1}}((r_{k}\ell_{v+1})!)^{2}\sum_{a,b\leq q^{2r_{k}/10^{M}}}\frac{1}{\sqrt{ab}}\sum_{m,n}\frac{1}{\sqrt{mn}}\mathcal{W}_{\mathfrak{a}}\left(\frac{\pi mn}{q}\right)\right).\end{split}

We now apply (3.6) and the definition of v+1\ell_{v+1} to see that

(5.3) (12v+1)2rkv+1((rkv+1)!)2(rkv+1)2(12rke)2rkv+1qε.\displaystyle\Big{(}\frac{12}{\ell_{v+1}}\Big{)}^{2r_{k}\ell_{v+1}}((r_{k}\ell_{v+1})!)^{2}\leq(r_{k}\ell_{v+1})^{2}\Big{(}\frac{12r_{k}}{e}\Big{)}^{2r_{k}\ell_{v+1}}\ll q^{\varepsilon}.

It follows from this that the error term in (5.2) is

q2rk/10M+εddϵd𝒲𝔞(πdq)q1ε.\ll q^{2r_{k}/10^{M}+\varepsilon}\sum_{d}\frac{d^{\epsilon}}{\sqrt{d}}\mathcal{W}_{\mathfrak{a}}\left(\frac{\pi d}{q}\right)\ll q^{1-\varepsilon}.

We next estimate the contribution of the terms manbma\neq nb in the last expression of (5.2). By the rapid decay of 𝒲𝔞\mathcal{W}_{\mathfrak{a}} given in Lemma 2.2, we may assume that mnq1+εmn\leq q^{1+\varepsilon}. Using 𝒲𝔞(πmnq)1\mathcal{W}_{\mathfrak{a}}\left(\frac{\pi mn}{q}\right)\ll 1 and (5.3), we see that these terms contribute

q1+εa,bq2rk/10M1abm,nmnq1+εq|ma±nbma±nb01mn.\ll q^{1+\varepsilon}\sum_{a,b\leq q^{2r_{k}/10^{M}}}\frac{1}{\sqrt{ab}}\sum_{\begin{subarray}{c}m,n\\ mn\leq q^{1+\varepsilon}\\ q|ma\pm nb\\ ma\pm nb\neq 0\end{subarray}}\frac{1}{\sqrt{mn}}.

To estimate the expression above, we may consider the case q|ma+nbq|ma+nb without loss of generality. We may also assume that manbma\geq nb so that on writing ma+nb=qlma+nb=ql, we have that ql2ma2q1+εq2rk/10Mql\leq 2ma\leq 2q^{1+\varepsilon}q^{2r_{k}/10^{M}} which implies that l2q2rk/10M+εl\leq 2q^{2r_{k}/10^{M}+\varepsilon}. Moreover, we have that 1/ma1/ql1/\sqrt{ma}\ll 1/\sqrt{ql} and that mnq1+εmn\leq q^{1+\varepsilon} implies that mnabq1+εabq1+εq4rk/10Mmnab\leq q^{1+\varepsilon}ab\leq q^{1+\varepsilon}q^{4r_{k}/10^{M}}, so that we have nnbq1/2+εq2rk/10Mn\leq nb\leq q^{1/2+\varepsilon}q^{2r_{k}/10^{M}}. It follows that

q1+εa,bq2rk/10M1abm,nmnq1+εq|ma+nbma+nb0manb1mnq1+εbq2rk/10M1bnnq1/2+εq2rk/10M1nl2q2rk/10M+ε1qlq1ε.\displaystyle q^{1+\varepsilon}\sum_{a,b\leq q^{2r_{k}/10^{M}}}\frac{1}{\sqrt{ab}}\sum_{\begin{subarray}{c}m,n\\ mn\leq q^{1+\varepsilon}\\ q|ma+nb\\ ma+nb\neq 0\\ ma\geq nb\end{subarray}}\frac{1}{\sqrt{mn}}\ll q^{1+\varepsilon}\sum_{b\leq q^{2r_{k}/10^{M}}}\frac{1}{\sqrt{b}}\sum_{\begin{subarray}{c}n\\ n\leq q^{1/2+\varepsilon}q^{2r_{k}/10^{M}}\end{subarray}}\frac{1}{\sqrt{n}}\sum_{\begin{subarray}{c}l\leq 2q^{2r_{k}/10^{M}+\varepsilon}\end{subarray}}\frac{1}{\sqrt{ql}}\ll q^{1-\varepsilon}.

It remains to consider the terms ma=nbma=nb in the last expression of (5.2). We write m=αb(a,b),n=αa(a,b)m=\frac{\alpha b}{(a,b)},n=\frac{\alpha a}{(a,b)} and apply (5.3) to see that these terms are

(5.4) \displaystyle\ll ϕ(q)(rkv+1)2(12rke)2rkv+1a,bq2rk/10M(a,b)abuaub(α,q)=11α𝒲𝔞(πα2abq(a,b)2).\displaystyle\phi^{*}(q)(r_{k}\ell_{v+1})^{2}\Big{(}\frac{12r_{k}}{e}\Big{)}^{2r_{k}\ell_{v+1}}\sum_{a,b\leq q^{2r_{k}/10^{M}}}\frac{(a,b)}{ab}u_{a}u_{b}\sum_{(\alpha,q)=1}\frac{1}{\alpha}\mathcal{W}_{\mathfrak{a}}\left(\frac{\pi\alpha^{2}ab}{q(a,b)^{2}}\right).

To evaluate the last sum above, we set X=q(a,b)2/(πab)X=q(a,b)^{2}/(\pi ab) and apply the definition of 𝒲𝔞(x)\mathcal{W}_{\mathfrak{a}}(x) given in Lemma 2.2 to see that

(α,q)=11α𝒲𝔞(α2X)=12πi(c)Γ(14+s+𝔞2)2Γ(14+𝔞2)2ζ(1+2s)(1q12s)Xsdss.\displaystyle\sum_{(\alpha,q)=1}\frac{1}{\alpha}\mathcal{W}_{\mathfrak{a}}\left(\frac{\alpha^{2}}{X}\right)=\frac{1}{2\pi i}\int\limits_{(c)}\frac{\Gamma\left(\frac{1}{4}+\frac{s+\mathfrak{a}}{2}\right)^{2}}{\Gamma\left(\frac{1}{4}+\frac{\mathfrak{a}}{2}\right)^{2}}\zeta(1+2s)(1-q^{-1-2s})X^{s}\frac{ds}{s}.

We evaluate the integral above by shifting the line of integration to (s)=1/4+ε\Re(s)=-1/4+\varepsilon. We encounter a double pole at s=0s=0 in the process. The integration on the new line can be estimated trivially using the convexity bound for ζ(s)\zeta(s) (see [iwakow, Exercise 3, p. 100]) as

ζ(s)(1+|s|)1(s)2+ε,0(s)1,\displaystyle\begin{split}\zeta(s)\ll&\left(1+|s|\right)^{\frac{1-\Re(s)}{2}+\varepsilon},\quad 0\leq\Re(s)\leq 1,\end{split}

and the rapid decay of Γ(s)\Gamma(s) when |(s)||\Im(s)|\rightarrow\infty. We also evaluate the corresponding residue to see that

(5.5) (α,q)=11α𝒲𝔞(α2X)=C1(q)logX+C2(q)+O(X1/4+ε),\displaystyle\sum_{(\alpha,q)=1}\frac{1}{\alpha}\mathcal{W}_{\mathfrak{a}}\left(\frac{\alpha^{2}}{X}\right)=C_{1}(q)\log X+C_{2}(q)+O(X^{-1/4+\varepsilon}),

where C1(q),C2(q)C_{1}(q),C_{2}(q) are some constants depending on qq, satisfying C1(q),C2(q)1C_{1}(q),C_{2}(q)\ll 1.

We apply (5.5) to evaluate (5.4) to see that we may ignore the contribution of the error term from (5.5) so that the expression in (5.4) is

ϕ(q)(rkv+1)2(12rke)2rkv+1a,bq2rk/10M(a,b)abuaub(C1(q)(logq+2log(a,b)logalogblogπ)+C2(q)).\displaystyle\ll\phi^{*}(q)(r_{k}\ell_{v+1})^{2}\Big{(}\frac{12r_{k}}{e}\Big{)}^{2r_{k}\ell_{v+1}}\sum_{a,b\leq q^{2r_{k}/10^{M}}}\frac{(a,b)}{ab}u_{a}u_{b}\Big{(}C_{1}(q)(\log q+2\log(a,b)-\log a-\log b-\log\pi)+C_{2}(q)\Big{)}.

As the estimations are similar, it suffices to give an estimation on the sum

(5.6) ϕ(q)(rkv+1)2(12rke)2rkv+1a,b(a,b)abuaubloga=ϕ(q)(rkv+1)2(12rke)2rkv+1pj=1v+1Pjl11,l20l1logppl1+l2min(l1,l2)(k1)l1+l2l1!l2!a,b(ab,p)=1(a,b)upl1aupl2bab.\displaystyle\begin{split}&\phi^{*}(q)(r_{k}\ell_{v+1})^{2}\Big{(}\frac{12r_{k}}{e}\Big{)}^{2r_{k}\ell_{v+1}}\sum_{a,b}\frac{(a,b)}{ab}u_{a}u_{b}\log a\\ =&\phi^{*}(q)(r_{k}\ell_{v+1})^{2}\Big{(}\frac{12r_{k}}{e}\Big{)}^{2r_{k}\ell_{v+1}}\sum_{p\in\bigcup^{v+1}_{j=1}P_{j}}\sum_{l_{1}\geq 1,l_{2}\geq 0}\frac{l_{1}\log p}{p^{l_{1}+l_{2}-\min(l_{1},l_{2})}}\frac{(k-1)^{l_{1}+l_{2}}}{l_{1}!l_{2}!}\sum_{\begin{subarray}{c}a,b\\ (ab,p)=1\end{subarray}}\frac{(a,b)u_{p^{l_{1}}a}u_{p^{l_{2}}b}}{ab}.\end{split}

We now estimate the sum last sum above for fixed p=p1,l1,l2p=p_{1},l_{1},l_{2}. Without loss of generality, we may assume that p=p1P1p=p_{1}\in P_{1}. We then define for (n1n1,p1)=1(n_{1}n^{\prime}_{1},p_{1})=1,

vn1=1n1(k1)Ω(n1)w(n1)b1(n1p1l1),vn1=1n1(k1)Ω(n1)w(n1)b1(n1p1l2).v_{n_{1}}=\frac{1}{n_{1}}\frac{(k-1)^{\Omega(n_{1})}}{w(n_{1})}b_{1}(n_{1}p_{1}^{l_{1}}),\quad v_{n^{\prime}_{1}}=\frac{1}{n^{\prime}_{1}}\frac{(k-1)^{\Omega(n^{\prime}_{1})}}{w(n^{\prime}_{1})}b_{1}(n^{\prime}_{1}p_{1}^{l_{2}}).

For 2jv2\leq j\leq v,

vnj=1nj(k1)Ω(nj)w(nj)bj(nj),vnj=1nj(k1)Ω(nj)w(nj)bj(nj).v_{n_{j}}=\frac{1}{n_{j}}\frac{(k-1)^{\Omega(n_{j})}}{w(n_{j})}b_{j}(n_{j}),\quad v_{n^{\prime}_{j}}=\frac{1}{n^{\prime}_{j}}\frac{(k-1)^{\Omega(n^{\prime}_{j})}}{w(n^{\prime}_{j})}b_{j}(n^{\prime}_{j}).

Also,

vnv+1=1nv+11w(nv+1)pv+1(nv+1),vnv+1=1nv+11w(nv+1)pv+1(nv+1).v_{n_{v+1}}=\frac{1}{n_{v+1}}\frac{1}{w(n_{v+1})}p_{v+1}(n_{v+1}),\quad v_{n^{\prime}_{v+1}}=\frac{1}{n^{\prime}_{v+1}}\frac{1}{w(n^{\prime}_{v+1})}p_{v+1}(n^{\prime}_{v+1}).

Then one checks that

(5.7) a,b(ab,p1)=1(a,b)upl1aupl2bab=j=1v+1(nj,nj(n1n1,p1)=1(nj,nj)vnjvnj).\displaystyle\sum_{\begin{subarray}{c}a,b\\ (ab,p_{1})=1\end{subarray}}\frac{(a,b)u_{p^{l_{1}}a}u_{p^{l_{2}}b}}{ab}=\prod^{v+1}_{j=1}\Big{(}\sum_{\begin{subarray}{c}n_{j},n^{\prime}_{j}\\ (n_{1}n^{\prime}_{1},p_{1})=1\end{subarray}}(n_{j},n^{\prime}_{j})v_{n_{j}}v_{n^{\prime}_{j}}\Big{)}.

As in the proof of Proposition 3.3, when max(l1,l2)1/2\max(l_{1},l_{2})\leq\ell_{1}/2, we remove the restriction of b1(n1)b_{1}(n_{1}) on Ω1(n1)\Omega_{1}(n_{1}) and b1(n1)b_{1}(n^{\prime}_{1}) on Ω1(n1)\Omega_{1}(n^{\prime}_{1}) to see that the last sum in (5.7) becomes

n1,n1(n1n1,p1)=1(n1,n1)1n1(k1)Ω(n1)w(n1)1n1(k1)Ω(n1)w(n1)=pP1pp1(1+2(k1)+(k1)2p+O(1p2))\displaystyle\sum_{\begin{subarray}{c}n_{1},n^{\prime}_{1}\\ (n_{1}n^{\prime}_{1},p_{1})=1\end{subarray}}(n_{1},n^{\prime}_{1})\frac{1}{n_{1}}\frac{(k-1)^{\Omega(n_{1})}}{w(n_{1})}\frac{1}{n^{\prime}_{1}}\frac{(k-1)^{\Omega(n^{\prime}_{1})}}{w(n^{\prime}_{1})}=\prod_{\begin{subarray}{c}p\in P_{1}\\ p\neq p_{1}\end{subarray}}\Big{(}1+\frac{2(k-1)+(k-1)^{2}}{p}+O(\frac{1}{p^{2}})\Big{)}
\displaystyle\ll exp(pP1k21p+O(pP11p2)).\displaystyle\exp(\sum_{p\in P_{1}}\frac{k^{2}-1}{p}+O(\sum_{p\in P_{1}}\frac{1}{p^{2}})).

Further, we notice that in this case we have 2Ω(n)1/212^{\Omega(n)-\ell_{1}/2}\geq 1 if Ω(n)+max(l1,l2)1\Omega(n)+\max(l_{1},l_{2})\geq\ell_{1}. Thus, we apply Rankin’s trick to see that the error introduced this way is

\displaystyle\ll 21/2n1,n1(n1,n1)n1n1(1k)Ω(n1)w(n1)(1k)Ω(n1)2Ω(n1)w(n1)=21/2pP1(1+3(1k)+2(1k)2p+O(1p2)).\displaystyle 2^{-\ell_{1}/2}\sum_{n_{1},n^{\prime}_{1}}\frac{(n_{1},n^{\prime}_{1})}{n_{1}n^{\prime}_{1}}\frac{(1-k)^{\Omega(n_{1})}}{w(n_{1})}\frac{(1-k)^{\Omega(n^{\prime}_{1})}2^{\Omega(n^{\prime}_{1})}}{w(n^{\prime}_{1})}=2^{-\ell_{1}/2}\prod_{p\in P_{1}}\Big{(}1+\frac{3(1-k)+2(1-k)^{2}}{p}+O(\frac{1}{p^{2}})\Big{)}.

We may take NN large enough so that it follows from (4.5) that when max(l1,l2)1/2\max(l_{1},l_{2})\leq\ell_{1}/2, the error is

\displaystyle\ll 21/4exp(pP1k21p+O(pP11p2)).\displaystyle 2^{-\ell_{1}/4}\exp(\sum_{p\in P_{1}}\frac{k^{2}-1}{p}+O(\sum_{p\in P_{1}}\frac{1}{p^{2}})).

On the other hand, when max(l1,l2)>1/2\max(l_{1},l_{2})>\ell_{1}/2, we apply (4.5) again to see that

n1,n1(n1n1,p1)=1(n1,n1)vn1vn1n1,n1(n1n1,p1)=1(n1,n1)n1n1(1k)Ω(n1)w(n1)(1k)Ω(n1)w(n1)21/6exp(pP1k21p+O(pP11p2)).\displaystyle\sum_{\begin{subarray}{c}n_{1},n^{\prime}_{1}\\ (n_{1}n^{\prime}_{1},p_{1})=1\end{subarray}}(n_{1},n^{\prime}_{1})v_{n_{1}}v_{n^{\prime}_{1}}\ll\sum_{\begin{subarray}{c}n_{1},n^{\prime}_{1}\\ (n_{1}n^{\prime}_{1},p_{1})=1\end{subarray}}\frac{(n_{1},n^{\prime}_{1})}{n_{1}n^{\prime}_{1}}\frac{(1-k)^{\Omega(n_{1})}}{w(n_{1})}\frac{(1-k)^{\Omega(n^{\prime}_{1})}}{w(n^{\prime}_{1})}\ll 2^{\ell_{1}/6}\exp(\sum_{p\in P_{1}}\frac{k^{2}-1}{p}+O(\sum_{p\in P_{1}}\frac{1}{p^{2}})).

We then deduce that in this case

l1logp1p1l1+l2min(l1,l2)(k1)l1+l2l1!l2!n1,n1(n1n1,p1)=1(n1,n1)vn1vn1l1logp1p1max(l1,l2)1l1!l2!21/6exp(pP1k21p+O(pP11p2))\displaystyle\frac{l_{1}\log p_{1}}{p^{l_{1}+l_{2}-\min(l_{1},l_{2})}_{1}}\frac{(k-1)^{l_{1}+l_{2}}}{l_{1}!l_{2}!}\sum_{\begin{subarray}{c}n_{1},n^{\prime}_{1}\\ (n_{1}n^{\prime}_{1},p_{1})=1\end{subarray}}(n_{1},n^{\prime}_{1})v_{n_{1}}v_{n^{\prime}_{1}}\ll\frac{l_{1}\log p_{1}}{p^{\max(l_{1},l_{2})}_{1}}\frac{1}{l_{1}!l_{2}!}2^{\ell_{1}/6}\exp(\sum_{p\in P_{1}}\frac{k^{2}-1}{p}+O(\sum_{p\in P_{1}}\frac{1}{p^{2}}))
\displaystyle\ll l1logp1p1l1/2+max(l1,l2)/21l1!l2!21/6exp(pP1k21p+O(pP11p2))\displaystyle\frac{l_{1}\log p_{1}}{p^{l_{1}/2+\max(l_{1},l_{2})/2}_{1}}\frac{1}{l_{1}!l_{2}!}2^{\ell_{1}/6}\exp(\sum_{p\in P_{1}}\frac{k^{2}-1}{p}+O(\sum_{p\in P_{1}}\frac{1}{p^{2}}))
\displaystyle\ll l1logp1p1l1/21l1!l2!21/12exp(pP1k21p1+O(pP11p2)).\displaystyle\frac{l_{1}\log p_{1}}{p^{l_{1}/2}_{1}}\frac{1}{l_{1}!l_{2}!}2^{-\ell_{1}/12}\exp(\sum_{p\in P_{1}}\frac{k^{2}-1}{p_{1}}+O(\sum_{p\in P_{1}}\frac{1}{p^{2}})).

Similar estimations carry over to the sums over nj,njn_{j},n^{\prime}_{j} for 2jv2\leq j\leq v in (5.7). To treat the sum over nv+1,nv+1n_{v+1},n^{\prime}_{v+1}, we apply Rankin’s trick again to see that the sum is

\displaystyle\ \ll (12rk)2rkv+1nv+1,nv+1p|nv+1nv+1pPv+1(nv+1,nv+1)nv+1nv+1(12rk)Ω(nv+1)w(nv+1)AΩ(nv+1)w(nv+1).\displaystyle(12r_{k})^{-2r_{k}\ell_{v+1}}\sum_{\begin{subarray}{c}n_{v+1},n^{\prime}_{v+1}\\ p|n_{v+1}n^{\prime}_{v+1}\implies p\in P_{v+1}\end{subarray}}\frac{(n_{v+1},n^{\prime}_{v+1})}{n_{v+1}n^{\prime}_{v+1}}\frac{(12r_{k})^{\Omega(n_{v+1})}}{w(n_{v+1})}\frac{A^{\Omega(n^{\prime}_{v+1})}}{w(n^{\prime}_{v+1})}.

By taking NN large enough, we deduce from this that

(rkv+1)2(12rke)2rkv+1nv+1,nv+1(nv+1nv+1,p1)=1(nv+1,nv+1)vnv+1vnv+1ev+1exp(pPv+1k21p+O(pPv+11p2)).\displaystyle\begin{split}&(r_{k}\ell_{v+1})^{2}\Big{(}\frac{12r_{k}}{e}\Big{)}^{2r_{k}\ell_{v+1}}\sum_{\begin{subarray}{c}n_{v+1},n^{\prime}_{v+1}\\ (n_{v+1}n^{\prime}_{v+1},p_{1})=1\end{subarray}}(n_{v+1},n^{\prime}_{v+1})v_{n_{v+1}}v_{n^{\prime}_{v+1}}\ll e^{-\ell_{v+1}}\exp(\sum_{p\in P_{v+1}}\frac{k^{2}-1}{p}+O(\sum_{p\in P_{v+1}}\frac{1}{p^{2}})).\end{split}

It follows from the above discussions that we have

(5.8) (rkv+1)2(12rke)2rkv+1l11,l20l1logp1p1l1+l2min(l1,l2)(k1)l1+l2l1!l2!a,b(ab,p1)=1up1l1aup1l2babev+1j=1v(1+O(2j/12))exp(pj=1v+1Pjk21p+O(pj=1v+1Pj1p2))×(logp1p1+O(logp1p12)).\displaystyle\begin{split}&(r_{k}\ell_{v+1})^{2}\Big{(}\frac{12r_{k}}{e}\Big{)}^{2r_{k}\ell_{v+1}}\sum_{l_{1}\geq 1,l_{2}\geq 0}\frac{l_{1}\log p_{1}}{p^{l_{1}+l_{2}-\min(l_{1},l_{2})}_{1}}\frac{(k-1)^{l_{1}+l_{2}}}{l_{1}!l_{2}!}\sum_{\begin{subarray}{c}a,b\\ (ab,p_{1})=1\end{subarray}}\frac{u_{p^{l_{1}}_{1}a}u_{p^{l_{2}}_{1}b}}{ab}\\ \ll&e^{-\ell_{v+1}}\prod^{v}_{j=1}\big{(}1+O(2^{-\ell_{j}/12})\big{)}\exp(\sum_{p\in\bigcup^{v+1}_{j=1}P_{j}}\frac{k^{2}-1}{p}+O(\sum_{p\in\bigcup^{v+1}_{j=1}P_{j}}\frac{1}{p^{2}}))\times\Big{(}\frac{\log p_{1}}{p_{1}}+O(\frac{\log p_{1}}{p^{2}_{1}})\Big{)}.\end{split}

We now apply (4.5) and the observation j>j+12>2j+1\ell_{j}>\ell^{2}_{j+1}>2\ell_{j+1} to see that

(5.9) pj=v+2RPj1k2pj=v+2RpPj1p1Nj=v+2Rjv+2Nj=012jv+1N.\displaystyle\sum_{p\in\bigcup^{R}_{j=v+2}P_{j}}\frac{1-k^{2}}{p}\leq\sum^{R}_{j=v+2}\sum_{p\in P_{j}}\frac{1}{p}\leq\frac{1}{N}\sum^{R}_{j=v+2}\ell_{j}\leq\frac{\ell_{v+2}}{N}\sum^{\infty}_{j=0}\frac{1}{2^{j}}\leq\frac{\ell_{v+1}}{N}.

It follows from (5.9) that the last expression in (5.8) is

ev+1/2exp(pj=1RPjk21p+O(pj=1RPj1p2))×(logp1p1+O(logp1p12)).\displaystyle\begin{split}\ll&e^{-\ell_{v+1}/2}\exp(\sum_{p\in\bigcup^{R}_{j=1}P_{j}}\frac{k^{2}-1}{p}+O(\sum_{p\in\bigcup^{R}_{j=1}P_{j}}\frac{1}{p^{2}}))\times\Big{(}\frac{\log p_{1}}{p_{1}}+O(\frac{\log p_{1}}{p^{2}_{1}})\Big{)}.\end{split}

We then conclude from this, (5.6) and Lemma 2.1 that

χ(e)|L(1/2,χ)|2(j=1v|𝒩j(χ,k1)|2)|𝒬v+1(χ,k)|2ϕ(q)ev+1/2exp(pj=1RPjk21p+O(pj=1RPj1p2))×pj=1v+1Pj(logpp+O(logpp2))ϕ(q)ev+1/2(logq)k2.\displaystyle\begin{split}&{\sum_{\chi}}^{(e)}|L(1/2,\chi)|^{2}\Big{(}\prod^{v}_{j=1}|\mathcal{N}_{j}(\chi,k-1)|^{2}\Big{)}|{\mathcal{Q}}_{v+1}(\chi,k)|^{2}\\ \ll&\phi^{*}(q)e^{-\ell_{v+1}/2}\exp(\sum_{p\in\bigcup^{R}_{j=1}P_{j}}\frac{k^{2}-1}{p}+O(\sum_{p\in\bigcup^{R}_{j=1}P_{j}}\frac{1}{p^{2}}))\times\sum_{p\in\bigcup^{v+1}_{j=1}P_{j}}\Big{(}\frac{\log p}{p}+O(\frac{\log p}{p^{2}})\Big{)}\ll\phi^{*}(q)e^{-\ell_{v+1}/2}(\log q)^{k^{2}}.\end{split}

This completes the proof of the proposition.

6. Proof of Proposition 3.5

As the proofs are similar, we shall only prove here that

χ(modq)j=1R(|𝒩j(χ,k)|2+|𝒬j(χ,k)|2)ϕ(q)(logq)k2.\displaystyle\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\big{)}\ll\phi^{*}(q)(\log q)^{k^{2}}.

We first note that

(6.1) χ(modq)j=1R(|𝒩j(χ,k)|2+|𝒬j(χ,k)|2)χ(modq)j=1R(|𝒩j(χ,k)|2+|𝒬j(χ,k)|2).\displaystyle\begin{split}&\sideset{}{{}^{*}}{\sum}_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\big{)}\leq\sum_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\big{)}.\end{split}

We shall take MM large enough so that we may deduce from (3.1) that

(2rk+2)j=1R1j4(rk+1)R<1.\displaystyle(2r_{k}+2)\sum^{R}_{j=1}\frac{1}{\ell_{j}}\leq\frac{4(r_{k}+1)}{\ell_{R}}<1.

It follows from this, (4.1), (5.1) and the orthogonality relation for characters modulo qq that only the diagonal terms in the last sum of (6.1) survive. This implies that

(6.2) χ(modq)j=1R(|𝒩j(χ,k)|2+|𝒬j(χ,k)|2)ϕ(q)j=1R(njk2Ω(nj)njw2(nj)bj(nj)+(12j)2rkj((rkj)!)2Ω(nj)=rkjp|njpPj1njw2(nj)).\displaystyle\begin{split}&\sum_{\begin{subarray}{c}\chi\negthickspace\negthickspace\negthickspace\pmod{q}\end{subarray}}\prod^{R}_{j=1}\big{(}|{\mathcal{N}}_{j}(\chi,k)|^{2}+|{\mathcal{Q}}_{j}(\chi,k)|^{2}\big{)}\\ \leq&\phi^{*}(q)\prod^{R}_{j=1}\Big{(}\sum_{n_{j}}\frac{k^{2\Omega(n_{j})}}{n_{j}w^{2}(n_{j})}b_{j}(n_{j})+\Big{(}\frac{12}{\ell_{j}}\Big{)}^{2r_{k}\ell_{j}}((r_{k}\ell_{j})!)^{2}\sum_{\begin{subarray}{c}\Omega(n_{j})=r_{k}\ell_{j}\\ p|n_{j}\implies p\in P_{j}\end{subarray}}\frac{1}{n_{j}w^{2}(n_{j})}\Big{)}.\end{split}

Arguing as before, we see that

(6.3) njk2Ω(nj)njw2(nj)bj(nj)=(1+O(2j/2))exp(pPjk2p+O(pPj1p2)).\displaystyle\begin{split}\sum_{n_{j}}\frac{k^{2\Omega(n_{j})}}{n_{j}w^{2}(n_{j})}b_{j}(n_{j})=\Big{(}1+O\big{(}2^{-\ell_{j}/2}\big{)}\Big{)}\exp(\sum_{p\in P_{j}}\frac{k^{2}}{p}+O(\sum_{p\in P_{j}}\frac{1}{p^{2}})).\end{split}

Note also that,

Ω(nj)=rkjp|njpPj1njw2(nj)1(rkj)!(pPj1p)rkj.\displaystyle\begin{split}\sum_{\begin{subarray}{c}\Omega(n_{j})=r_{k}\ell_{j}\\ p|n_{j}\implies p\in P_{j}\end{subarray}}\frac{1}{n_{j}w^{2}(n_{j})}\leq\frac{1}{(r_{k}\ell_{j})!}\Big{(}\sum_{p\in P_{j}}\frac{1}{p}\Big{)}^{r_{k}\ell_{j}}.\end{split}

Now, we apply (3.6) and (4.5) to deduce from the above that by taking M,NM,N large enough,

(6.4) (12j)2rkj((rkj)!)2Ω(nj)=rkjp|njpPj1njw2(nj)rkj(144rkej)rkj(pPj1p)rkjrkj(144rkej)rkjerkjlog(2j/N)ejexp(pPjk2p+O(pPj1p2)).\displaystyle\begin{split}&\Big{(}\frac{12}{\ell_{j}}\Big{)}^{2r_{k}\ell_{j}}((r_{k}\ell_{j})!)^{2}\sum_{\begin{subarray}{c}\Omega(n_{j})=r_{k}\ell_{j}\\ p|n_{j}\implies p\in P_{j}\end{subarray}}\frac{1}{n_{j}w^{2}(n_{j})}\ll r_{k}\ell_{j}\Big{(}\frac{144r_{k}}{e\ell_{j}}\Big{)}^{r_{k}\ell_{j}}\Big{(}\sum_{p\in P_{j}}\frac{1}{p}\Big{)}^{r_{k}\ell_{j}}\\ \ll&r_{k}\ell_{j}\Big{(}\frac{144r_{k}}{e\ell_{j}}\Big{)}^{r_{k}\ell_{j}}e^{r_{k}\ell_{j}\log(2\ell_{j}/N)}\ll e^{-\ell_{j}}\exp(\sum_{p\in P_{j}}\frac{k^{2}}{p}+O(\sum_{p\in P_{j}}\frac{1}{p^{2}})).\end{split}

Using (6.3) and (6.4) in (6.2) and then applying Lemma 2.1, we readily deduce the assertion of the proposition.

Acknowledgments. P. G. is supported in part by NSFC grant 11871082.

References