This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Bounds for Coefficients of the f(q)f(q) Mock Theta Function and Applications to Partition Ranks

Kevin Gomez Vanderbilt University
Nashville, Tennessee 37235
[email protected]
 and  Eric Zhu Georgia Institute of Technology
Atlanta, Georgia 30332
[email protected]
Abstract.

We compute effective bounds for α(n)\alpha(n), the Fourier coefficients of Ramanujan’s mock theta function f(q)f(q) utilizing a finite algebraic formula due to Bruinier and Schwagenscheidt. We then use these bounds to prove two conjectures of Hou and Jagadeesan on the convexity and maximal multiplicative properties of the even and odd partition rank counting functions.

1. Introduction and Statement of Results

For a nonnegative integer nn, a partition of nn is a finite list of nondecreasing positive integers λ=(λ1,λ2,,λk)\lambda=(\lambda_{1},\lambda_{2},\dots,\lambda_{k}) such that λ1+λ2++λk=n\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=n. The partition number p(n)p(n) denotes the number of partitions of nn which has been of large interest to number theorists.

Given a partition λ\lambda of nn, the rank of λ\lambda is defined as λkk\lambda_{k}-k. In words, this is the largest part of the partition minus the number of parts. For any nn, we can consider N(r,t;n)N(r,t;n) which counts the number of partitions of nn that have rank equal to r(modt)r\pmod{t}.

For the case of t=2t=2, we analyze partitions with even or odd rank, captured by the coefficients α(n)\alpha(n) of Ramanujan’s mock theta function

f(q):=1+n=0qn2(1+q)2(1+q2)2(1+qn)2=1+n=0α(n)qn\begin{split}f(q)&:=1+\sum_{n=0}^{\infty}\frac{q^{n^{2}}}{(1+q)^{2}(1+q^{2})^{2}\dots(1+q^{n})^{2}}\\ &=1+\sum_{n=0}^{\infty}\alpha(n)q^{n}\end{split}

for q:=e2πizq:=e^{2\pi iz}, where α(n)=N(0,2;n)N(1,2;n)\alpha(n)=N(0,2;n)-N(1,2;n).

In this paper, we will prove the following asymptotic formula for α(n)\alpha(n) with an effective bound on the error term:

Theorem 1.1.

Let Dn:=24n+1D_{n}:=-24n+1 and l(n):=π|Dn|/6l(n):=\pi\sqrt{\left|D_{n}\right|}/6. Then for all n1n\geq 1,

α(n)=(1)n+1624n1el(n)/2+E(n)\alpha(n)=(-1)^{n+1}\frac{\sqrt{6}}{\sqrt{24n-1}}e^{l(n)/2}+E(n)

where

|E(n)|<(4.30×1023)2q(n)|Dn|2el(n)/3\left|E(n)\right|<(4.30\times 10^{23})2^{q(n)}\left|D_{n}\right|^{2}e^{l(n)/3}

with

q(n):=log(|Dn|)|loglog(|Dn|)1.1714|.q(n):=\frac{\log(\left|D_{n}\right|)}{\left|\log\log(\left|D_{n}\right|)-1.1714\right|}.

In 1966, Andrews and Dragonette [4, pp. 456] conjectured a Rademacher-type infinite series for α(n)\alpha(n). This conjecture was proved by Bringmann and Ono [5], who obtained the following formula:

(1.1) α(n)=π(24n1)14k=1(1)k+12A2k(nk(1+(1)k)4)kI1/2(π24n112k)\alpha(n)=\pi(24n-1)^{-\frac{1}{4}}\sum_{k=1}^{\infty}\frac{(-1)^{\lfloor\frac{k+1}{2}\rfloor}A_{2k}\left(n-\frac{k(1+(-1)^{k})}{4}\right)}{k}\cdot I_{1/2}\left(\frac{\pi\sqrt{24n-1}}{12k}\right)

where A2k(n)A_{2k}(n) is a certain twisted Kloosterman-type sum and I1/2I_{1/2} is the II-Bessel function of order 1/2. One can easily show that the k=1k=1 term in (1.1) agrees with the main term in Theorem 1.1. Since (1.1) is only conditionally convergent, it is difficult to bound. Using a different, finite algebraic formula for α(n)\alpha(n) due to Alfes [3], Masri [16, Theorem 1.3] gave an asymptotic formula for α(n)\alpha(n) with a power-saving error term. Ahlgren and Dunn [2, Theorem 1.3] also produced an asymptotic formula with a power-saving error term by bounding the series (1.1) directly.

Using Theorem 1.1, we will show a certain convexity property for N(r,2;n)N(r,2;n). In particular, we aim to prove the following conjecture of Hou and Jagadeesan [12, Conjecture 4.1]:

Conjecture 1 (Hou/Jagadeesan).

If r=0r=0 (resp. r=1r=1), then we have that

N(r,2;a)N(r,2;b)>N(r,2;a+b)N(r,2;a)N(r,2;b)>N(r,2;a+b)

for all a,b11a,b\geq 11 (resp. 1212).

Hou and Jagadeesan [12, Theorem 1.1] proved a similar convexity bound modulo 33; however, their techniques do not extend to modulus two. Here, we overcome these difficulties using Theorem 1.1 and prove the following:

Theorem 1.2.

Conjecture 1 is true.

Hou and Jagadeesan also discussed a direct consequence of Conjecture 1, analogous to their own result for partition ranks modulo 3 [12, Theorem 1.2]. Extend N(r,t;n)N(r,t;n) to partitions as in [5] by

N(r,t;λ):=j=1kN(r,t;λj).N(r,t;\lambda):=\prod_{j=1}^{k}N(r,t;\lambda_{j}).

Let P(n)P(n) denote the set of all partitions of nn. Hou and Jagadeesan conjectured [12, Conjecture 4.2] the maximal values of these functions over P(n)P(n) for t=2t=2, where the maximal value is defined as

maxN(r,t;n):=max(N(r,t;λ):λP(n)),\operatorname{maxN}(r,t;n):=\max(N(r,t;\lambda)\colon\lambda\in P(n)),

and characterized the partitions which attain them.

Conjecture 2 (Hou/Jagadeesan).

The following are true:

  1. (1)

    If n5n\geq 5, then we have that

    maxN(0,2;n)={3n3n0(mod3)113n73n1(mod3)53n53n2(mod3),\operatorname{maxN}(0,2;n)=\begin{cases}3^{\frac{n}{3}}&n\equiv 0\pmod{3}\\ 11\cdot 3^{\frac{n-7}{3}}&n\equiv 1\pmod{3}\\ 5\cdot 3^{\frac{n-5}{3}}&n\equiv 2\pmod{3},\end{cases}

    and it is achieved at the unique partitions

    (3,3,,3) when n0(mod3)\displaystyle(3,3,\dots,3)\text{ when }n\equiv 0\pmod{3}
    (3,3,,7) when n1(mod3)\displaystyle(3,3,\dots,7)\text{ when }n\equiv 1\pmod{3}
    (3,3,,5) when n2(mod3).\displaystyle(3,3,\dots,5)\text{ when }n\equiv 2\pmod{3}.
  2. (2)

    If n8n\geq 8, then we have that

    maxN(1,2;n)={2n2n0(mod2)122n92n1(mod2),\operatorname{maxN}(1,2;n)=\begin{cases}2^{\frac{n}{2}}&n\equiv 0\pmod{2}\\ 12\cdot 2^{\frac{n-9}{2}}&n\equiv 1\pmod{2},\end{cases}

    and it is achieved at the following classes of partitions

    (2,2,,2) when n0(mod2)\displaystyle(2,2,\dots,2)\text{ when }n\equiv 0\pmod{2}
    (2,2,,9) when n1(mod2)\displaystyle(2,2,\dots,9)\text{ when }n\equiv 1\pmod{2}

    up to any number of the following substitutions: (2,2)(4)(2,2)\to(4) and (2,2,2)(6)(2,2,2)\to(6).

Remark. Conjecture 2, part (1) is a slight refinement of Hou and Jagadeesan’s original claim. The result holds for n5n\geq 5 rather than n6n\geq 6.

Utilizing Theorem 1.1, we prove the following:

Theorem 1.3.

Conjecture 2 is true.

We also demonstrate effective equidistribution of partition ranks modulo 2 (see Corollary 5.2). Asymptotic equidistribution of partition ranks modulo tt was demonstrated by Males [15] for all t2t\geq 2. Masri [16] proved equidistribution of partition ranks modulo 2 with a power-saving error term, however his results were not effective, and so cannot be applied toward Conjecture 1.

To give an effective bound on the error term for α(n)\alpha(n), we will use a finite algebraic formula due to Bruinier and Schwagenscheidt [7, Theorem 3.1] which express α(n)\alpha(n) as a trace over singular moduli. To state this formula, consider the weight zero weakly-holomorphic modular form for Γ0(6)\Gamma_{0}(6) defined by

(1.2) F(z):=140E4(z)+4E4(2z)9E4(3z)36E4(6z)(η(z)η(2z)η(3z)η(6z))2=q1483q296q2+.F(z):=-\frac{1}{40}\frac{E_{4}(z)+4E_{4}(2z)-9E_{4}(3z)-36E_{4}(6z)}{(\eta(z)\eta(2z)\eta(3z)\eta(6z))^{2}}=q^{-1}-4-83q-296q^{2}+\dots.

Bruinier and Schwagenscheidt [7, Theorem 3.1] proved

Theorem (Bruinier/Schwagenscheidt).

For n1n\geq 1, we have

α(n)=1|Dn|Im(S(n))\alpha(n)=-\dfrac{1}{\sqrt{\left|D_{n}\right|}}\mathrm{Im}(S(n))

where

S(n):=[Q]F(τQ).S(n):=\sum_{[Q]}F(\tau_{Q}).

Here, the sum is over the Γ0(6)\Gamma_{0}(6) equivalence classes of discriminant DnD_{n} positive definite, integral binary quadratic forms Q=[a,b,c]Q=[a,b,c] such that 6a6\mid a and b1(mod12)b\equiv 1\pmod{12}, and τQ\tau_{Q} is the Heegner point given by the root Q(τQ,1)Q(\tau_{Q},1) in the complex upper half-plane \mathbb{H}.

Our proof of Theorem 1.1 is inspired by work of Locus-Dawsey and Masri [14], who used a similar finite algebraic formula due to Ahlgren and Andersen [1] for the Andrews smallest-parts function spt(n)\mathrm{spt}(n) to give an asymptotic formula for spt(n)\mathrm{spt}(n) with an effective bound on the error term and prove several conjectural inequalities of Chen [8].

Organization. The paper is organized as follows. In Section 2, we review some facts regarding quadratic forms and Heegner points. In Section 3, we derive the Fourier expansion of F(z)F(z) and effective bounds on its coefficients. In Section 4, we prove Theorem 1.1. In Section 5, we discuss corollaries to Theorem 1.1. In Section 6, we prove Theorem 1.2. Finally, in Section 7, we prove Theorem 1.3.

Acknowledgements. We would like to thank Riad Masri, Matthew Young, and Agniva Dasgupta for their support in this work. We especially thank Narissara Khaochim for her contributions to the proof of Proposition 3.2 and Andrew Lin for very helpful comments. We also thank the referees for their detailed suggestions to improve the exposition. This research was completed in the 2020 REU in the Department of Mathematics at Texas A&M University, supported by NSF grant DMS-1757872.

2. Quadratic Forms and Heegner Points

Let NN be a positive integer and DD be a negative integer discriminant coprime to NN. Let 𝒬D,N\mathcal{Q}_{D,N} be the set of positive definite, integral binary quadratic forms

Q(X,Y)=[a,b,c](X,Y)=aX2+bXY+cY2Q(X,Y)=[a,b,c](X,Y)=aX^{2}+bXY+cY^{2}

with discriminant b24ac=D<0b^{2}-4ac=D<0 with a0(modN)a\equiv 0\pmod{N}. The congruence subgroup Γ0(N)\Gamma_{0}(N) acts on 𝒬D,N\mathcal{Q}_{D,N} by

Qσ=[aσ,bσ,cσ]Q\circ\sigma=[a^{\sigma},b^{\sigma},c^{\sigma}]

with σ=(wxyz)Γ0(N)\sigma=\begin{pmatrix}w&x\\ y&z\end{pmatrix}\in\Gamma_{0}(N), where

aσ\displaystyle a^{\sigma} =aw2+bwy+cy2\displaystyle=aw^{2}+bwy+cy^{2}
bσ\displaystyle b^{\sigma} =2awx+b(wz+xy)+2cyz\displaystyle=2awx+b(wz+xy)+2cyz
cσ\displaystyle c^{\sigma} =ax2+bxz+cz2.\displaystyle=ax^{2}+bxz+cz^{2}.

Given a solution r(mod2N)r\pmod{2N} of r2D(mod4N)r^{2}\equiv D\pmod{4N}, we define the subset of forms

𝒬D,N,r:={Q=[a,b,c]𝒬D,Nbr(mod2N)}.\mathcal{Q}_{D,N,r}:=\{Q=[a,b,c]\in\mathcal{Q}_{D,N}\mid b\equiv r\pmod{2N}\}.

The group Γ0(N)\Gamma_{0}(N) also acts on 𝒬D,N,r\mathcal{Q}_{D,N,r}. The number of Γ0(N)\Gamma_{0}(N) equivalence classes in 𝒬D,N,r\mathcal{Q}_{D,N,r} is given by the Hurwitz-Kronecker class number H(D)H(D).

We can also consider the subset 𝒬D,Nprim\mathcal{Q}^{\text{prim}}_{D,N} of primitive quadratic forms in 𝒬D,N\mathcal{Q}_{D,N}. These are the forms such that

gcd(a,b,c)=1.\gcd(a,b,c)=1.

In this case, the number of Γ0(N)\Gamma_{0}(N) equivalence classes in 𝒬D,N,rprim\mathcal{Q}^{\mathrm{prim}}_{D,N,r} is given by the class number h(D)h(D).

To each form Q𝒬D,NQ\in\mathcal{Q}_{D,N}, we associate a Heegner point τQ\tau_{Q} which is the root of Q(X,1)Q(X,1) given by

τQ=b+D2a.\tau_{Q}=\frac{-b+\sqrt{D}}{2a}\in\mathbb{H}.

The Heegner points τQ\tau_{Q} are compatible with the action of Γ0(N)\Gamma_{0}(N) in the sense that if σΓ0(N)\sigma\in\Gamma_{0}(N), then

(2.1) σ(τQ)=τQσ1.\sigma(\tau_{Q})=\tau_{Q\circ\sigma^{-1}}.

3. Fourier Expansion of F(z)F(z)

Let Dn=24n+1D_{n}=-24n+1 for n+n\in\mathbb{Z}^{+} and define the trace of F(z)F(z) by

S(n):=[Q]𝒬Dn,6,1/Γ0(6)F(τQ).S(n):=\sum_{[Q]\in\mathcal{Q}_{D_{n},6,1}/\Gamma_{0}(6)}F(\tau_{Q}).

Proceeding as in [14, Section 3], we decompose S(n)S(n) as a linear combination involving traces of primitive forms. Let Δ<0\Delta<0 be a discriminant with Δ1(mod24)\Delta\equiv 1\pmod{24} and define the class polynomials

HΔ(X):=[Q]𝒬Δ,6,1/Γ0(6)(XF(τQ))H_{\Delta}(X):=\prod_{[Q]\in\mathcal{Q}_{\Delta,6,1}/\Gamma_{0}(6)}(X-F(\tau_{Q}))

and

H^Δ,r(F;X):=[Q]𝒬Δ,6,rprim/Γ0(6)(XF(τQ)).\widehat{H}_{\Delta,r}(F;X):=\prod_{[Q]\in\mathcal{Q}^{\text{prim}}_{\Delta,6,r}/\Gamma_{0}(6)}(X-F(\tau_{Q})).

Let {W}6\{W_{\ell}\}_{\ell\mid 6} be the group of Atkin-Lehner operators for Γ0(6)\Gamma_{0}(6). We have by [7, pp. 47]

(3.1) F|0W=β()FF|_{0}W_{\ell}=\beta(\ell)F

where β()=1\beta(\ell)=1 if =1,2\ell=1,2 and β()=1\beta(\ell)=-1 if =3,6\ell=3,6.

Using these eigenvalues we modify [6, Lemma 3.7] to get the following:

Lemma 3.1.

We have the decomposition

HΔ(X)=u>0u2Δε(u)h(Δ/u2)H^Δ/u2,1(F;ε(u)X)H_{\Delta}(X)=\prod_{\begin{subarray}{c}u>0\\ u^{2}\mid\Delta\end{subarray}}\varepsilon(u)^{h(\Delta/u^{2})}\widehat{H}_{\Delta/u^{2},1}(F;\varepsilon(u)X)

where ε(u)=1\varepsilon(u)=1 if u1,7(mod12)u\equiv 1,7\pmod{12} and ε(u)=1\varepsilon(u)=-1 if u5,11(mod12)u\equiv 5,11\pmod{12}.

Comparing coefficients on both sides of Lemma 3.1 yields the decomposition

(3.2) S(n)=u>0u2Dnε(u)Su(n)S(n)=\sum_{\begin{subarray}{c}u>0\\ u^{2}\mid D_{n}\end{subarray}}\varepsilon(u)S_{u}(n)

where

Su(n):=[Q]𝒬Dn/u2,6,1prim/Γ0(6)F(τQ).S_{u}(n):=\sum_{[Q]\in\mathcal{Q}_{D_{n}/u^{2},6,1}^{\mathrm{prim}}/\Gamma_{0}(6)}F(\tau_{Q}).

We now express Su(n)S_{u}(n) as a trace involving primitive forms of level 1. As in [14, Section 3], we let 𝐂6\mathbf{C}_{6} denote the following set of right coset representatives of Γ0(6)\Gamma_{0}(6) in SL2()SL_{2}(\mathbb{Z}):

γ\displaystyle\gamma_{\infty} :=(1001)\displaystyle:=\begin{pmatrix}1&0\\ 0&1\end{pmatrix}
γ1/3,r\displaystyle\gamma_{1/3,r} :=(1031)(1r01),r=0,1\displaystyle:=\begin{pmatrix}1&0\\ 3&1\end{pmatrix}\begin{pmatrix}1&r\\ 0&1\end{pmatrix},\quad r=0,1
γ1/2,s\displaystyle\gamma_{1/2,s} :=(1123)(1s01),s=0,1,2\displaystyle:=\begin{pmatrix}1&1\\ 2&3\end{pmatrix}\begin{pmatrix}1&s\\ 0&1\end{pmatrix},\quad s=0,1,2
γ0,t\displaystyle\gamma_{0,t} :=(0110)(1t01),t=0,1,2,3,4,5\displaystyle:=\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}\begin{pmatrix}1&t\\ 0&1\end{pmatrix},\quad t=0,1,2,3,4,5

where γ()\gamma_{\infty}(\infty), γ1/3,r()=1/3\gamma_{1/3,r}(\infty)=1/3, γ1/2,s()=1/2\gamma_{1/2,s}(\infty)=1/2, and γ0,t()=0\gamma_{0,t}(\infty)=0.

Recall that a form Q=[aQ,bQ,cQ]𝒬Δ,1Q=[a_{Q},b_{Q},c_{Q}]\in\mathcal{Q}_{\Delta,1} is reduced if

|bQ|aQcQ,\left|b_{Q}\right|\leq a_{Q}\leq c_{Q},

and if either |bQ|=aQ\left|b_{Q}\right|=a_{Q} or aQ=cQa_{Q}=c_{Q}, then bQ0b_{Q}\geq 0. Let 𝒬Δ\mathcal{Q}_{\Delta} denote a set of primitive, reduced forms representing the equivalence classes in 𝒬Δ,1prim/SL2()\mathcal{Q}_{\Delta,1}^{\mathrm{prim}}/SL_{2}(\mathbb{Z}). For each Q𝒬ΔQ\in\mathcal{Q}_{\Delta}, there is a unique choice of representative γQ𝐂6\gamma_{Q}\in\mathbf{C}_{6} such that

[QγQ1]𝒬Δ,6,1prim/Γ0(6).[Q\circ\gamma_{Q}^{-1}]\in\mathcal{Q}_{\Delta,6,1}^{\mathrm{prim}}/\Gamma_{0}(6).

This induces a bijection

(3.3) 𝒬Δ𝒬Δ,6,1prim/Γ0(6)Q[QγQ1];\begin{split}\mathcal{Q}_{\Delta}&\longrightarrow\mathcal{Q}_{\Delta,6,1}^{\mathrm{prim}}/\Gamma_{0}(6)\\ Q&\longmapsto[Q\circ\gamma_{Q}^{-1}];\end{split}

see [11, pp. 505], or more concretely, [9, Lemma 3], where an explicit list of the matrices γQ𝐂6\gamma_{Q}\in\mathbf{C}_{6} is given.

Using the bijection (3.3) and the compatibility relation (2.1) for Heegner points, the trace Su(n)S_{u}(n) can be expressed as

(3.4) Su(n)=[Q]𝒬Dn/u2,6,1prim/Γ0(6)F(τQ)=Q𝒬Dn/u2F(γQ(τQ)).S_{u}(n)=\sum_{[Q]\in\mathcal{Q}_{D_{n}/u^{2},6,1}^{\mathrm{prim}}/\Gamma_{0}(6)}F(\tau_{Q})=\sum_{Q\in\mathcal{Q}_{D_{n}/u^{2}}}F(\gamma_{Q}(\tau_{Q})).

Therefore, to study the asymptotic distribution of Su(n)S_{u}(n), we need the Fourier expansion of F(z)F(z) with respect to γ,γ1/3,r,γ1/2,s\gamma_{\infty},\gamma_{1/3,r},\gamma_{1/2,s}, and γ0,t\gamma_{0,t}.

We first find the Fourier expansion of F(z)F(z) at the cusp \infty.

Proposition 3.2.

The Fourier expansion of F(z)F(z) at the cusp \infty is

F(z)=n=1a(n)e(nz)\displaystyle F(z)=\sum_{n=-1}^{\infty}a(n)e(nz)

where a(1)=1a(-1)=1, a(0)=4a(0)=-4 and for n1n\geq 1,

a(n)=2πn6β()c>0c0(mod 6/)(c,)=1c1S(¯,n;c)I1(4πnc),\displaystyle a(n)=\frac{2\pi}{\sqrt{n}}\sum_{\ell\mid 6}\frac{\beta(\ell)}{\sqrt{\ell}}\sum_{\mathclap{\begin{subarray}{c}c>0\\ c\equiv 0\ (\text{mod}\ 6/\ell)\\ (c,\ell)=1\end{subarray}}}\ c^{-1}S(-\bar{\ell},n;c)I_{1}\left(\frac{4\pi\sqrt{n}}{c\sqrt{\ell}}\right),

where

β():={1,=1,21,=3,6,\displaystyle\beta(\ell):=\begin{cases}1,&\ell=1,2\\ -1,&\ell=3,6,\end{cases}

I1I_{1} is the II-Bessel function of order 1, and S(a,b;c)S(a,b;c) is the ordinary Kloosterman sum defined as follows

S(a,b;c):=d(modc)(c,d)=1e(ad¯+bdc),\displaystyle S(a,b;c):=\sum_{\mathclap{\begin{subarray}{c}d\leavevmode\nobreak\ (\mathrm{mod}\leavevmode\nobreak\ {c})\\ (c,d)=1\end{subarray}}}\leavevmode\nobreak\ e\left(\frac{a\bar{d}+bd}{c}\right),

with d¯\bar{d} the multiplicative inverse of d(modc)d\pmod{c}.

Proof.

Define the function

𝒫F(z):=26β()F1(Wz,1,0)\displaystyle\mathcal{P}_{F}(z):=2\sum_{\ell\mid 6}\beta(\ell)F_{1}(W_{\ell}z,1,0)

where F1(z,1,0)F_{1}(z,1,0) is the Poincare series

F1(z,1,0):=12γΓ\Γ0(6)[M0,1/2(4πy)e(x)]|0γF_{1}(z,1,0):=\frac{1}{2}\sum_{\gamma\in\Gamma_{\infty}\backslash\Gamma_{0}(6)}[M_{0,1/2}(4\pi y)e(-x)]\,|_{0}\,\gamma

for Mκ,μM_{\kappa,\mu} the usual Whittaker function. Then by a straightforward calculation, we have

𝒫F(z):=26β()γΓ\Γ0(6)g(γWz)\displaystyle\mathcal{P}_{F}(z):=2\sum_{\ell\mid 6}\beta(\ell)\sum_{\gamma\in\Gamma_{\infty}\backslash\Gamma_{0}(6)}g(\gamma W_{\ell}z)

where

g(z):=ψ(y)e(z),\displaystyle g(z):=\psi(y)e(-z),

and

ψ(y):=πyI1/2(2πy)e2πy.\displaystyle\psi(y):=\pi\sqrt{y}I_{1/2}(2\pi y)e^{-2\pi y}.

Now, arguing as in [13, Section 2], we get the Fourier expansion

𝒫F(z)=e(z)e(z¯)+bF(0)+n=1bF(n)e(nz¯)+n=1bF(n)e(nz),\displaystyle\mathcal{P}_{F}(z)=e(-z)-e(-\bar{z})+b_{F}(0)+\sum_{n=1}^{\infty}b_{F}(-n)e(-n\bar{z})+\sum_{n=1}^{\infty}b_{F}(n)e(nz),

where

bF(0):=4π26β()c>0c0(mod 6/)(c,)=1c2S(¯,0;c),\displaystyle b_{F}(0):=4\pi^{2}\sum_{\ell\mid 6}\frac{\beta(\ell)}{\ell}\sum_{\mathclap{\begin{subarray}{c}c>0\\ c\equiv 0\ (\text{mod}\ 6/\ell)\\ (c,\ell)=1\end{subarray}}}c^{-2}S(-\bar{\ell},0;c),

and for n>0n>0

bF(n):=2πn6β()c>0c0(mod 6/)(c,)=1c1S(¯,n;c)J1(4πnc),\displaystyle b_{F}(-n):=\frac{2\pi}{\sqrt{n}}\sum_{\ell\mid 6}\frac{\beta(\ell)}{\sqrt{\ell}}\sum_{\mathclap{\begin{subarray}{c}c>0\\ c\equiv 0\ (\text{mod}\ 6/\ell)\\ (c,\ell)=1\end{subarray}}}\ c^{-1}S(-\bar{\ell},-n;c)J_{1}\left(\frac{4\pi\sqrt{n}}{c\sqrt{\ell}}\right),

and

bF(n):=2πn6β()c>0c0(mod 6/)(c,)=1c1S(¯,n;c)I1(4πnc).\displaystyle b_{F}(n):=\frac{2\pi}{\sqrt{n}}\sum_{\ell\mid 6}\frac{\beta(\ell)}{\sqrt{\ell}}\sum_{\mathclap{\begin{subarray}{c}c>0\\ c\equiv 0\ (\text{mod}\ 6/\ell)\\ (c,\ell)=1\end{subarray}}}\ c^{-1}S(-\bar{\ell},n;c)I_{1}\left(\frac{4\pi\sqrt{n}}{c\sqrt{\ell}}\right).

By (1.2), we have a(1)=1a(-1)=1 and a(0)=4a(0)=-4 so that

F|0γ(z)=e(z)4+n=1a(n)e(nz).F|_{0}\gamma_{\infty}(z)=e(-z)-4+\sum_{n=1}^{\infty}a(n)e(nz).

The Atkin-Lehner operators for Γ0(6)\Gamma_{0}(6) are given by

W1=(1001),W2=12(2162),W3=13(3163),W6=16(0160).W_{1}=\begin{pmatrix}1&0\\ 0&1\end{pmatrix},\quad W_{2}=\frac{1}{\sqrt{2}}\begin{pmatrix}2&-1\\ 6&-2\end{pmatrix},\quad W_{3}=\frac{1}{\sqrt{3}}\begin{pmatrix}3&1\\ 6&3\end{pmatrix},\quad W_{6}=\frac{1}{\sqrt{6}}\begin{pmatrix}0&-1\\ 6&0\end{pmatrix}.

For each 6\ell\mid 6 and v=6/v=6/\ell, let V=WV_{\ell}=\sqrt{\ell}W_{\ell} and

A=(1width of the cusp 1/v001).A_{\ell}=\begin{pmatrix}\frac{1}{\text{width of the cusp }1/v}&0\\ 0&1\end{pmatrix}.

We have

cusp 1/v1/v 1/6\infty\simeq 1/6 1/31/3 1/21/2 010\simeq 1
\ell 1 2 3 6
VV_{\ell} (1001)\begin{pmatrix}1&0\\ 0&1\end{pmatrix} (2162)\begin{pmatrix}2&-1\\ 6&-2\end{pmatrix} (3163)\begin{pmatrix}3&1\\ 6&3\end{pmatrix} (0160)\begin{pmatrix}0&-1\\ 6&0\end{pmatrix}
AA_{\ell} (1001)\begin{pmatrix}1&0\\ 0&1\end{pmatrix} (1/2001)\begin{pmatrix}1/2&0\\ 0&1\end{pmatrix} (1/3001)\begin{pmatrix}1/3&0\\ 0&1\end{pmatrix} (1/6001)\begin{pmatrix}1/6&0\\ 0&1\end{pmatrix}
VAV_{\ell}A_{\ell} (1001)\begin{pmatrix}1&0\\ 0&1\end{pmatrix} (1132)\begin{pmatrix}1&-1\\ 3&-2\end{pmatrix} (1123)\begin{pmatrix}1&1\\ 2&3\end{pmatrix} (0110)\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}

Proceeding as in [14, pp. 10], we get

γ=V1A1,γ1/3,r=V2A2(1r+101),γ1/2,s=V3A3(1s01),γ0,t=V4A4(1t01).\gamma_{\infty}=V_{1}A_{1},\quad\gamma_{1/3,r}=V_{2}A_{2}\begin{pmatrix}1&r+1\\ 0&1\end{pmatrix},\quad\gamma_{1/2,s}=V_{3}A_{3}\begin{pmatrix}1&s\\ 0&1\end{pmatrix},\quad\gamma_{0,t}=V_{4}A_{4}\begin{pmatrix}1&t\\ 0&1\end{pmatrix}.

By (3.1), F(Vz)=F(z)F(V_{\ell}z)=F(z) for =1,2\ell=1,2 and F(Vz)=F(z)F(V_{\ell}z)=-F(z) for =3,6\ell=3,6. Hence, if ζ6:=e(1/6)\zeta_{6}:=e(1/6) is a primitive sixth root of unity, then

F|0γ(z)=F(z)\displaystyle F|_{0}\gamma_{\infty}(z)=F(z) =e(z)4+n=1a(n)e(nz)\displaystyle=e(-z)-4+\sum_{n=1}^{\infty}a(n)e(nz)
F|0γ1/3,r(z)=F(z+r+12)\displaystyle F|_{0}\gamma_{1/3,r}(z)=F\left(\frac{z+r+1}{2}\right) =ζ633re(z/2)4+n=1ζ63n(r+1)a(n)e(nz/2)\displaystyle=\zeta_{6}^{3-3r}e(-z/2)-4+\sum_{n=1}^{\infty}\zeta_{6}^{3n(r+1)}a(n)e(nz/2)
F|0γ1/2,s(z)=F(z+s3)\displaystyle F|_{0}\gamma_{1/2,s}(z)=-F\left(\frac{z+s}{3}\right) =ζ632se(z/3)+4+n=1ζ63+2nsa(n)e(nz/3)\displaystyle=\zeta_{6}^{3-2s}e(-z/3)+4+\sum_{n=1}^{\infty}\zeta_{6}^{3+2ns}a(n)e(nz/3)
F|0γ0,t(z)=F(z+t6)\displaystyle F|_{0}\gamma_{0,t}(z)=-F\left(\frac{z+t}{6}\right) =ζ63te(z/6)+4+n=1ζ63+nta(n)e(nz/6).\displaystyle=\zeta_{6}^{3-t}e(-z/6)+4+\sum_{n=1}^{\infty}\zeta_{6}^{3+nt}a(n)e(nz/6).

Meanwhile, a calculation using the definition of 𝒫F(z)\mathcal{P}_{F}(z) and the group law on the Atkin-Lehner operators shows that

𝒫F(Wz)=β()𝒫F(z),\displaystyle\mathcal{P}_{F}(W_{\ell}z)=\beta(\ell)\mathcal{P}_{F}(z),

and hence

𝒫F|0γ(z)=𝒫F(z)\displaystyle\mathcal{P}_{F}|_{0}\gamma_{\infty}(z)=\mathcal{P}_{F}(z) =e(z)+O(1)\displaystyle=e(-z)+O(1)
𝒫F|0γ1/3,r(z)=𝒫F(z+r+12)\displaystyle\mathcal{P}_{F}|_{0}\gamma_{1/3,r}(z)=\mathcal{P}_{F}\left(\frac{z+r+1}{2}\right) =ζ633re(z/2)+O(1)\displaystyle=\zeta_{6}^{3-3r}e(-z/2)+O(1)
𝒫F|0γ1/2,s(z)=𝒫F(z+s3)\displaystyle\mathcal{P}_{F}|_{0}\gamma_{1/2,s}(z)=-\mathcal{P}_{F}\left(\frac{z+s}{3}\right) =ζ632se(z/3)+O(1)\displaystyle=\zeta_{6}^{3-2s}e(-z/3)+O(1)
𝒫F|0γ0,t(z)=𝒫F(z+t6)\displaystyle\mathcal{P}_{F}|_{0}\gamma_{0,t}(z)=-\mathcal{P}_{F}\left(\frac{z+t}{6}\right) =ζ63te(z/6)+O(1).\displaystyle=\zeta_{6}^{3-t}e(-z/6)+O(1).

From the preceding computations we find that FF and 𝒫F\mathcal{P}_{F} have the same principal parts in the cusps of Γ0(6)\Gamma_{0}(6). Therefore, F𝒫FF-\mathcal{P}_{F} is a bounded harmonic function on a compact Riemann surface, and hence constant. In particular, we have F𝒫F=CFF-\mathcal{P}_{F}=C_{F}, where the constant CFC_{F} is equal to

CF=4bF(0)+n=1a(n)e(nz)+e(z¯)n=1bF(n)e(nz¯)n=1bF(n)e(nz).\displaystyle C_{F}=-4-b_{F}(0)+\sum_{n=1}^{\infty}a(n)e(nz)+e(-\bar{z})-\sum_{n=1}^{\infty}b_{F}(-n)e(-n\bar{z})-\sum_{n=1}^{\infty}b_{F}(n)e(nz).

Take the limit of both sides as Im(z)\textrm{Im}(z)\rightarrow\infty to get

CF\displaystyle C_{F} =4bF(0).\displaystyle=-4-b_{F}(0).

To compute bF(0)b_{F}(0), we begin as in [14, Lemma 3.1], utilizing

S(¯,0;c)=μ(c)S(-\bar{\ell},0;c)=\mu(c)

to obtain

bF(0)=4π26β()c>0c0(mod6/l)(c,)=1μ(c)c2.b_{F}(0)=4\pi^{2}\sum_{\ell\mid 6}\frac{\beta(\ell)}{\ell}\smashoperator[]{\sum_{\begin{subarray}{c}c>0\\ c\equiv 0\pmod{6/l}\\ (c,\ell)=1\end{subarray}}^{}}\frac{\mu(c)}{c^{2}}.

For each 6\ell\mid 6, the rightmost sum then reduces to

c>0c0(mod6/l)(c,)=1μ(c)c2=236d=1(d,)=1μ(6d/)2=1ζ(2){1/24=11/6=23/8=33/2=6.\sum_{\begin{subarray}{c}c>0\\ c\equiv 0\pmod{6/l}\\ (c,\ell)=1\end{subarray}}\frac{\mu(c)}{c^{2}}=\frac{\ell^{2}}{36}\sum_{\begin{subarray}{c}d=1\\ (d,\ell)=1\end{subarray}}^{\infty}\frac{\mu(6d/\ell)}{\ell^{2}}=\frac{1}{\zeta(2)}\begin{cases}1/24&\ell=1\\ -1/6&\ell=2\\ -3/8&\ell=3\\ 3/2&\ell=6.\end{cases}

The evaluation ζ(2)=π2/6\zeta(2)=\pi^{2}/6 then grants

bF(0)=24(124112+1814)=4.b_{F}(0)=24\left(\frac{1}{24}-\frac{1}{12}+\frac{1}{8}-\frac{1}{4}\right)=-4.

It follows that CF=0C_{F}=0 and hence F=𝒫FF=\mathcal{P}_{F}. Thus by comparing the Fourier expansion of FF and 𝒫F\mathcal{P}_{F}, we obtain a(n)=bF(n)a(n)=b_{F}(n) for every n1n\geq 1, bF(1)=1b_{F}(-1)=1, and bF(n)=0b_{F}(-n)=0 for every n2n\geq 2. ∎

We conclude this section by giving an effective bound for the Fourier coefficients a(n)a(n) for n1n\geq 1.

Lemma 3.3.

For n1n\geq 1,

|a(n)|Cexp(4πn),\left|a(n)\right|\leq C\exp(4\pi\sqrt{n}),

where

C:=86π3/2+16π2ζ2(3/2).C:=8\sqrt{6}\pi^{3/2}+16\pi^{2}\zeta^{2}(3/2).
Proof.

We utilize the proof of [14, Lemma 3.1], which bounds similar coefficients

a(n)=2π6μ()c>0c0(mod6/)(c,)=1S(~,n;c)cI1(4πnc)a^{\prime}(n)=2\pi\sum_{\ell\mid 6}\frac{\mu(\ell)}{\sqrt{\ell}}\smashoperator[]{\sum_{\begin{subarray}{c}c>0\\ c\equiv 0\pmod{6/\ell}\\ (c,\ell)=1\end{subarray}}^{}}\frac{S(-\tilde{\ell},n;c)}{c}I_{1}\left(\frac{4\pi\sqrt{n}}{c\sqrt{\ell}}\right)

by Cnexp(4πn)C\sqrt{n}\exp(4\pi\sqrt{n}) for the given CC; our result follows then from |μ()|=|β()|=1\left|\mu(\ell)\right|=\left|\beta(\ell)\right|=1 for all 6\ell\mid 6 and multiplication by n1/2n^{-1/2}. ∎

4. Proof of Theorem 1.1

Given a form Q𝒬ΔQ\in\mathcal{Q}_{\Delta} and corresponding coset representative γQ𝐂6\gamma_{Q}\in\mathbf{C}_{6}, let hQ{1,2,3,6}h_{Q}\in\{1,2,3,6\} be the width of the cusp γQ()\gamma_{Q}(\infty), and let ζQ\zeta_{Q} and ϕn,Q\phi_{n,Q} be the sixth roots of unity defined as follows:

Table 1.
cusp γQ()\gamma_{Q}(\infty) 1/6\infty\simeq 1/6 1/31/3 1/21/2 010\simeq 1
ζQ\zeta_{Q} 1 ζ633r\zeta_{6}^{3-3r} ζ632s\zeta_{6}^{3-2s} ζ63t\zeta_{6}^{3-t}
ϕn,Q\phi_{n,Q} 11 ζ63n(r+1)\zeta_{6}^{3n(r+1)} ζ63+2ns\zeta_{6}^{3+2ns} ζ63+nt\zeta_{6}^{3+nt}

Then from the calculation in Proposition 3.2 we can write

(4.1) F|0γQ(z)=ζQe(z/hQ)4β(hQ)+n=1ϕn,Qa(n)e(nz/hQ).F|_{0}\gamma_{Q}(z)=\zeta_{Q}e(-z/h_{Q})-4\beta(h_{Q})+\sum_{n=1}^{\infty}\phi_{n,Q}a(n)e(nz/h_{Q}).

Now, recall the Bruinier/Schwagenscheidt formula [7],

(4.2) α(n)=1|Dn|Im(S(n)).\alpha(n)=-\frac{1}{\sqrt{\left|D_{n}\right|}}\mathrm{Im}(S(n)).

We use this to give an effective bound on S(n)S(n) and hence obtain our result for α(n)\alpha(n). By (3.2) and (3.4),

S(n)=u>0u2Dnε(u)Su(n)=u>0u2Dnε(u)[Q]𝒬Dn/u2,6,1prim/Γ0(6)F(τQ)=u>0u2Dnε(u)[Q]𝒬Dn/u2F|0γQ(τQ)\begin{split}S(n)&=\sum_{\begin{subarray}{c}u>0\\ u^{2}\mid D_{n}\end{subarray}}\varepsilon(u)S_{u}(n)\\ &=\sum_{\begin{subarray}{c}u>0\\ u^{2}\mid D_{n}\end{subarray}}\varepsilon(u)\sum_{[Q]\in\mathcal{Q}_{D_{n}/u^{2},6,1}^{\mathrm{prim}}/\Gamma_{0}(6)}F(\tau_{Q})\\ &=\sum_{\begin{subarray}{c}u>0\\ u^{2}\mid D_{n}\end{subarray}}\varepsilon(u)\sum_{[Q]\in\mathcal{Q}_{D_{n}/u^{2}}}F|_{0}\gamma_{Q}(\tau_{Q})\end{split}

which, by (4.1), yields

S(n)=u>0u2Dnε(u)Q𝒬Dn/u2ζQe(τQ/hQ)=Q𝒬DnζQe(τQ/hQ)+E1(n)+E2(n)S(n)=\sum_{\begin{subarray}{c}u>0\\ u^{2}\mid D_{n}\end{subarray}}\varepsilon(u)\sum_{Q\in\mathcal{Q}_{D_{n}/u^{2}}}\zeta_{Q}e(-\tau_{Q}/h_{Q})=\sum_{Q\in\mathcal{Q}_{D_{n}}}\zeta_{Q}e(-\tau_{Q}/h_{Q})+E_{1}(n)+E_{2}(n)

where

E1(n):=u>1u2Dnε(u)Q𝒬Dn/u2ζQe(τQ/hQ)E_{1}(n):=\sum_{\begin{subarray}{c}u>1\\ u^{2}\mid D_{n}\end{subarray}}\varepsilon(u)\sum_{Q\in\mathcal{Q}_{D_{n}/u^{2}}}\zeta_{Q}e(-\tau_{Q}/h_{Q})

and

E2(n):=4β(hQ)u>0u2Dnε(u)h(Dn/u2)+n=1a(n)u>0u2Dnε(u)ϕn,Qe(nτQ/hQ).E_{2}(n):=4\beta(h_{Q})\sum_{\begin{subarray}{c}u>0\\ u^{2}\mid D_{n}\end{subarray}}\varepsilon(u)h(D_{n}/u^{2})+\sum_{n=1}^{\infty}a(n)\sum_{\begin{subarray}{c}u>0\\ u^{2}\mid D_{n}\end{subarray}}\varepsilon(u)\phi_{n,Q}e(n\tau_{Q}/h_{Q}).

To analyze the main term, note that for any Q=[aQ,bQ,cQ]𝒬Dn/u2Q=[a_{Q},b_{Q},c_{Q}]\in\mathcal{Q}_{D_{n}/u^{2}}, we have

aQhQ0(mod6)a_{Q}h_{Q}\equiv 0\pmod{6}

and

(4.3) e(τQ/hQ)=ζ2aQhQbQexp(π|Dn|/u2aQhQ).e(-\tau_{Q}/h_{Q})=\zeta_{2a_{Q}h_{Q}}^{b_{Q}}\exp\left(\frac{\pi\sqrt{\left|D_{n}\right|/u^{2}}}{a_{Q}h_{Q}}\right).

We consider those forms Q𝒬DnQ\in\mathcal{Q}_{D_{n}} with aQhQ=6a_{Q}h_{Q}=6 and aQhQ=12a_{Q}h_{Q}=12. We examine Table 2, which contains the value of cQc_{Q} for those forms Q𝒬Dn,6,1prim/Γ0(6)Q\in\mathcal{Q}_{D_{n},6,1}^{\mathrm{prim}}/\Gamma_{0}(6) with 1aQ121\leq a_{Q}\leq 12.

Table 2.
aQa_{Q}\bQb_{Q} ±1\pm 1 ±3\pm 3 ±5\pm 5 ±7\pm 7 ±9\pm 9 ±11\pm 11
1 6n6n
2 3n3n
3 2n2n
4 3n2\frac{3n}{2} 3n+12\frac{3n+1}{2}
5 6n5\frac{6n}{5} 6n+25\frac{6n+2}{5}
6 nn n+1n+1
7 6n7\frac{6n}{7} 6n+27\frac{6n+2}{7} 6n+67\frac{6n+6}{7}
8 3n4\frac{3n}{4} 3n+14\frac{3n+1}{4} 3n+34\frac{3n+3}{4} 3n+64\frac{3n+6}{4}
9 2n3\frac{2n}{3} 2n+23\frac{2n+2}{3} 2n+43\frac{2n+4}{3}
10 3n5\frac{3n}{5} 3n+15\frac{3n+1}{5} 3n+65\frac{3n+6}{5} 3n+105\frac{3n+10}{5}
11 6n11\frac{6n}{11} 6n+211\frac{6n+2}{11} 6n+611\frac{6n+6}{11} 6n+1211\frac{6n+12}{11} 6n+2011\frac{6n+20}{11}
12 n2\frac{n}{2} n+12\frac{n+1}{2} n+22\frac{n+2}{2} n+52\frac{n+5}{2}

The forms with aQhQ=6a_{Q}h_{Q}=6 are then, via [9, Table 1],

Q1=[1,1,6n],Q2=[2,1,3n],Q3=[3,1,2n],Q4=[6,1,n]Q_{1}=[1,1,6n],\quad Q_{2}=[2,1,3n],\quad Q_{3}=[3,1,2n],\quad Q_{4}=[6,1,n]

with coset representatives

γQ1=γ0,1,γQ2=γ1/2,1,γQ3=γ1/3,0,γQ4=γ.\gamma_{Q_{1}}=\gamma_{0,1},\quad\gamma_{Q_{2}}=\gamma_{1/2,-1},\quad\gamma_{Q_{3}}=\gamma_{1/3,0},\quad\gamma_{Q_{4}}=\gamma_{\infty}.

Similarly, the forms with aQhQ=12a_{Q}h_{Q}=12 are

Q50\displaystyle Q_{5}^{0} =[2,1,3n]\displaystyle=[2,-1,3n] Q51\displaystyle Q_{5}^{1} =[2,1,3n]\displaystyle=[2,-1,3n]
Q60\displaystyle Q_{6}^{0} =[4,1,3n/2]\displaystyle=[4,1,3n/2] Q61\displaystyle Q_{6}^{1} =[4,3,(3n+1)/2]\displaystyle=[4,-3,(3n+1)/2]
Q70\displaystyle Q_{7}^{0} =[6,5,n+1]\displaystyle=[6,-5,n+1] Q71\displaystyle Q_{7}^{1} =[6,5,n+1]\displaystyle=[6,-5,n+1]
Q80\displaystyle Q_{8}^{0} =[12,1,n/2]\displaystyle=[12,1,n/2] Q81\displaystyle Q_{8}^{1} =[12,11,(n+5)/2]\displaystyle=[12,-11,(n+5)/2]

with coset representatives

γQ50\displaystyle\gamma_{Q_{5}^{0}} =γ0,0\displaystyle=\gamma_{0,0} γQ51\displaystyle\gamma_{Q_{5}^{1}} =γ0,3\displaystyle=\gamma_{0,3}
γQ60\displaystyle\gamma_{Q_{6}^{0}} =γ12,1\displaystyle=\gamma_{\frac{1}{2},1} γQ61\displaystyle\gamma_{Q_{6}^{1}} =γ12,2\displaystyle=\gamma_{\frac{1}{2},2}
γQ70\displaystyle\gamma_{Q_{7}^{0}} =γ13,0\displaystyle=\gamma_{\frac{1}{3},0} γQ71\displaystyle\gamma_{Q_{7}^{1}} =γ13,1\displaystyle=\gamma_{\frac{1}{3},1}
γQ80\displaystyle\gamma_{Q_{8}^{0}} =γ\displaystyle=\gamma_{\infty} γQ81\displaystyle\gamma_{Q_{8}^{1}} =γ.\displaystyle=\gamma_{\infty}.

Thus, for nr(mod2)n\equiv r\pmod{2}, write

Q𝒬DnζQe(τQ/hQ)=i=14ζQie(τQi/hQi)+i=58ζQire(τQir/hQir)+E3(n)\sum_{Q\in\mathcal{Q}_{D_{n}}}\zeta_{Q}e(-\tau_{Q}/h_{Q})=\sum_{i=1}^{4}\zeta_{Q_{i}}e(-\tau_{Q_{i}}/h_{Q_{i}})+\sum_{i=5}^{8}\zeta_{Q_{i}^{r}}e(-\tau_{Q_{i}^{r}}/h_{Q_{i}^{r}})+E_{3}(n)

where

E3(n):=Q𝒬DnaQhQ18ζQe(τQ/hQ).E_{3}(n):=\sum_{\begin{subarray}{c}Q\in\mathcal{Q}_{D_{n}}\\ a_{Q}h_{Q}\geq 18\end{subarray}}\zeta_{Q}e(-\tau_{Q}/h_{Q}).

For i=1,2,3,4i=1,2,3,4, we find via Table 1 the sixth roots of unity

ζQ1=ζ62,ζQ2=ζ65,ζQ3=ζ63,ζQ4=1\zeta_{Q_{1}}=\zeta_{6}^{2},\quad\zeta_{Q_{2}}=\zeta_{6}^{5},\quad\zeta_{Q_{3}}=\zeta_{6}^{3},\quad\zeta_{Q_{4}}=1

and, for i=5,6,7,8i=5,6,7,8,

ζQ50\displaystyle\zeta_{Q_{5}^{0}} =ζ63\displaystyle=\zeta_{6}^{3} ζQ51\displaystyle\zeta_{Q_{5}^{1}} =ζ60\displaystyle=\zeta_{6}^{0}
ζQ60\displaystyle\zeta_{Q_{6}^{0}} =ζ61\displaystyle=\zeta_{6}^{1} ζQ61\displaystyle\zeta_{Q_{6}^{1}} =ζ61\displaystyle=\zeta_{6}^{-1}
ζQ70\displaystyle\zeta_{Q_{7}^{0}} =ζ63\displaystyle=\zeta_{6}^{3} ζQ71\displaystyle\zeta_{Q_{7}^{1}} =ζ60\displaystyle=\zeta_{6}^{0}
ζQ80\displaystyle\zeta_{Q_{8}^{0}} =1\displaystyle=1 ζQ81\displaystyle\zeta_{Q_{8}^{1}} =1.\displaystyle=1.

We then compute via (4.3)

i=14ζQie(τQi/hQi)=exp(π|Dn|/6)i=14ζQiζ12bQi\sum_{i=1}^{4}\zeta_{Q_{i}}e(-\tau_{Q_{i}}/h_{Q_{i}})=\exp(\pi\sqrt{\left|D_{n}\right|/6})\sum_{i=1}^{4}\zeta_{Q_{i}}\zeta_{12}^{b_{Q_{i}}}

where, since bQi=1b_{Q_{i}}=1 for i=1,2,3,4i=1,2,3,4,

ζ12bQii=14ζQi=ζ12(ζ63+ζ61+ζ63+1)=0.\zeta_{12}^{b_{Q_{i}}}\sum_{i=1}^{4}\zeta_{Q_{i}}=\zeta_{12}(\zeta_{6}^{3}+\zeta_{6}^{1}+\zeta_{6}^{3}+1)=0.

Meanwhile, if nn is even,

i=58ζQi0ζ24bQi0=ζ241ζ63+ζ24ζ6+ζ245ζ63+ζ24=i6\displaystyle\sum_{i=5}^{8}\zeta_{Q_{i}^{0}}\zeta_{24}^{b_{Q_{i}^{0}}}=\zeta_{24}^{-1}\zeta_{6}^{3}+\zeta_{24}\zeta_{6}+\zeta_{24}^{-5}\zeta_{6}^{3}+\zeta_{24}=i\sqrt{6}

and, if nn is odd,

i=58ζQi1ζ24bQi1=ζ241+ζ243ζ61+ζ245+ζ2411=i6\displaystyle\sum_{i=5}^{8}\zeta_{Q_{i}^{1}}\zeta_{24}^{b_{Q_{i}^{1}}}=\zeta_{24}^{-1}+\zeta_{24}^{-3}\zeta_{6}^{-1}+\zeta_{24}^{-5}+\zeta_{24}^{-11}=-i\sqrt{6}

so that

S(n)=(1)ni6exp(π|Dn|/12)+E1(n)+E2(n)+E3(n).S(n)=(-1)^{n}i\sqrt{6}\exp(\pi\sqrt{\left|D_{n}\right|}/12)+E_{1}(n)+E_{2}(n)+E_{3}(n).

Thus, by (4.2),

α(n)=(1)n+1624n1el(n)/2+Im(E1(n)+E2(n)+E3(n)).\alpha(n)=(-1)^{n+1}\frac{\sqrt{6}}{\sqrt{24n-1}}e^{l(n)/2}+\mathrm{Im}(E_{1}(n)+E_{2}(n)+E_{3}(n)).

We now bound each error term; since uu is a unit modulo 1212 and u>1u>1, we have that u5u\geq 5 so that uaQhQ30ua_{Q}h_{Q}\geq 30. Then via (4.3),

|E1(n)|u>1u2DnQ𝒬Dn/u2exp(π|Dn|/aQhQ)H(Dn)exp(π|Dn|/30).\begin{split}\left|E_{1}(n)\right|&\leq\sum_{\begin{subarray}{c}u>1\\ u^{2}\mid D_{n}\end{subarray}}\sum_{Q\in\mathcal{Q}_{D_{n}/u^{2}}}\exp(\pi\sqrt{\left|D_{n}\right|}/a_{Q}h_{Q})\\ &\leq H(D_{n})\exp(\pi\sqrt{\left|D_{n}\right|}/30).\end{split}

To bound E2(n)E_{2}(n), we proceed analogously to [14, pp. 14–15] to obtain, via Lemma 3.3,

|E2(n)|\displaystyle\left|E_{2}(n)\right| 4H(Dn)+CH(Dn)n=1exp(4πnπn/23)\displaystyle\leq 4H(D_{n})+CH(D_{n})\sum_{n=1}^{\infty}\exp(4\pi\sqrt{n}-\pi n/2\sqrt{3})
C1H(Dn)\displaystyle\leq C_{1}H(D_{n})

where

C1:=4+C[2.08×1020+426]<2.47×1023.C_{1}:=4+C[2.08\times 10^{20}+426]<2.47\times 10^{23}.

Finally,

|E3(n)|Q𝒬DnaQhQ18exp(π|Dn|/aQhQ)h(Dn)exp(π|Dn|/18).\begin{split}\left|E_{3}(n)\right|&\leq\sum_{\begin{subarray}{c}Q\in\mathcal{Q}_{D_{n}}\\ a_{Q}h_{Q}\geq 18\end{subarray}}\exp(\pi\sqrt{\left|D_{n}\right|}/a_{Q}h_{Q})\\ &\leq h(D_{n})\exp(\pi\sqrt{\left|D_{n}\right|}/18).\end{split}

Let E(n):=Im(E1(n)+E2(n)+E3(n))E(n):=\mathrm{Im}(E_{1}(n)+E_{2}(n)+E_{3}(n)); this total error then satisfies

|E(n)|\displaystyle\left|E(n)\right| |E1(n)|+|E2(n)|+|E3(n)|\displaystyle\leq\left|E_{1}(n)\right|+\left|E_{2}(n)\right|+\left|E_{3}(n)\right|
H(Dn)[C1+exp(π|Dn|/30)+exp(π|Dn|/18)]\displaystyle\leq H(D_{n})\left[C_{1}+\exp(\pi\sqrt{\left|D_{n}\right|}/30)+\exp(\pi\sqrt{\left|D_{n}\right|}/18)\right]
<(2.48×1023)H(Dn)exp(π|Dn|/18).\displaystyle<(2.48\times 10^{23})H(D_{n})\exp(\pi\sqrt{\left|D_{n}\right|}/18).

By the class number bound from [14, pp. 17], then,

|E(n)|<(4.30×1023)2q(n)|Dn|2exp(π|Dn|/18).\left|E(n)\right|<(4.30\times 10^{23})2^{q(n)}\left|D_{n}\right|^{2}\exp(\pi\sqrt{\left|D_{n}\right|}/18).

5. Corollaries to Theorem 1.1

We make use of the effective bound on p(n)p(n) for all n1n\geq 1 from [14, Lemma 4.2]:

(5.1) p(n)=2324n1(11l(n))el(n)+Ep(n)p(n)=\frac{2\sqrt{3}}{24n-1}\left(1-\frac{1}{l(n)}\right)e^{l(n)}+E_{p}(n)

where |Ep(n)|(1313)el(n)/2\left|E_{p}(n)\right|\leq(1313)e^{l(n)/2}.

Corollary 5.1.

For r=0,1r=0,1 and n4n\geq 4,

N(r,2;n)=M(n)el(n)+(1)rR(n),N(r,2;n)=M(n)e^{l(n)}+(-1)^{r}R(n),

where

M(n):=324n1(11l(n))M(n):=\frac{\sqrt{3}}{24n-1}\left(1-\frac{1}{l(n)}\right)

and

|R(n)|(8.17×1030)el(n)/2.\left|R(n)\right|\leq(8.17\times 10^{30})e^{l(n)/2}.
Proof.

Utilizing (5.1) grants, via Theorem 1.1,

N(0,2;n)\displaystyle N(0,2;n) =p(n)+α(n)2\displaystyle=\frac{p(n)+\alpha(n)}{2}
=324n1(11l(n))el(n)+R(n)\displaystyle=\frac{\sqrt{3}}{24n-1}\left(1-\frac{1}{l(n)}\right)e^{l(n)}+R(n)

and similarly

N(1,2;n)\displaystyle N(1,2;n) =p(n)α(n)2\displaystyle=\frac{p(n)-\alpha(n)}{2}
=324n1(11l(n))el(n)R(n),\displaystyle=\frac{\sqrt{3}}{24n-1}\left(1-\frac{1}{l(n)}\right)e^{l(n)}-R(n),

where

R(n):=(1)n16224n1el(n)/2+12(Ep(n)+E(n)).R(n):=(-1)^{n-1}\frac{\sqrt{6}}{2\sqrt{24n-1}}e^{l(n)/2}+\frac{1}{2}(E_{p}(n)+E(n)).

We then have

|R(n)|\displaystyle\left|R(n)\right| (657+6224n1)el(n)/2+(2.15×1023)2q(n)|Dn|2el(n)/3\displaystyle\leq\left(657+\frac{\sqrt{6}}{2\sqrt{24n-1}}\right)e^{l(n)/2}+(2.15\times 10^{23})2^{q(n)}\left|D_{n}\right|^{2}e^{l(n)/3}
(8.17×1030)el(n)/2.\displaystyle\leq(8.17\times 10^{30})e^{l(n)/2}.

Corollary 5.2.

For all n4n\geq 4,

N(r,2;n)p(n)=12+(1)rR2(n),\frac{N(r,2;n)}{p(n)}=\frac{1}{2}+(-1)^{r}R_{2}(n),

where

|R2(n)|(1.89×1032)el(n)/3.\left|R_{2}(n)\right|\leq(1.89\times 10^{32})e^{-l(n)/3}.
Proof.

Note that

N(r,2;n)p(n)=12+(1)rα(n)2p(n).\frac{N(r,2;n)}{p(n)}=\frac{1}{2}+(-1)^{r}\frac{\alpha(n)}{2p(n)}.

Let R2(n):=α(n)/2p(n)R_{2}(n):=\alpha(n)/2p(n). We utilize a crude lower bound for p(n)p(n) for n4n\geq 4

p(n)>312n(11n)el(n)396el(n)p(n)>\frac{\sqrt{3}}{12n}\left(1-\frac{1}{\sqrt{n}}\right)e^{l(n)}\geq\frac{\sqrt{3}}{96}e^{l(n)}

due to Bessenrodt and Ono [5], and compute

|R2(n)|\displaystyle\left|R_{2}(n)\right| 483el(n)(624n1el(n)/2+|E(n)|)\displaystyle\leq\frac{48}{\sqrt{3}}e^{-l(n)}\left(\frac{\sqrt{6}}{\sqrt{24n-1}}e^{l(n)/2}+\left|E(n)\right|\right)
48224n1el(n)/2+(1.20×1025)2q(n)|Dn|2e2l(n)/3\displaystyle\leq\frac{48\sqrt{2}}{\sqrt{24n-1}}e^{-l(n)/2}+(1.20\times 10^{25})2^{q(n)}\left|D_{n}\right|^{2}e^{-2l(n)/3}
(1.89×1032)el(n)/3.\displaystyle\leq(1.89\times 10^{32})e^{-l(n)/3}.

6. Proof of Theorem 1.2

We first require the following lemma:

Lemma 6.1.

For r=0r=0 (resp. r=1r=1), we have that

M(n)(11n)el(n)<N(r,2;n)<M(n)(1+1n)el(n)M(n)\left(1-\frac{1}{\sqrt{n}}\right)e^{l(n)}<N(r,2;n)<M(n)\left(1+\frac{1}{\sqrt{n}}\right)e^{l(n)}

for all n8n\geq 8 (resp. 7).

Proof.

From Corollary 5.1, we have that

M(n)el(n)|R(n)|<N(r,2;n)<M(n)el(n)+|R(n)|M(n)e^{l(n)}-\left|R(n)\right|<N(r,2;n)<M(n)e^{l(n)}+\left|R(n)\right|

with

|R(n)|(8.17×1030)el(n)/2.\left|R(n)\right|\leq(8.17\times 10^{30})e^{l(n)/2}.

We then calculate that, for all n4543n\geq 4543,

8.17×1030<M(n)nel(n)/28.17\times 10^{30}<\frac{M(n)}{\sqrt{n}}e^{l(n)/2}

and verify with SageMath [10] and the OEIS [17] the result for n<4543n<4543. ∎

We now proceed with the full proof. Assume 11ab11\leq a\leq b and let b=Cab=Ca where C1C\geq 1. By Lemma 6.1 we have the inequalities

N(r,2;a)N(r,2;Ca)>M(a)M(Ca)(11a)(11Ca)el(a)+l(Ca)N(r,2;a)N(r,2;Ca)>M(a)M(Ca)\left(1-\frac{1}{\sqrt{a}}\right)\left(1-\frac{1}{\sqrt{Ca}}\right)e^{l(a)+l(Ca)}

and

N(r,2;a+Ca)<M(a+Ca)(1+1a+Ca)el(a+Ca).N(r,2;a+Ca)<M(a+Ca)\left(1+\frac{1}{\sqrt{a+Ca}}\right)e^{l(a+Ca)}.

Thus, we seek conditions on a>1a>1 such that

eTa(C)>M(a+Ca)M(a)M(Ca)Sa(C),e^{T_{a}(C)}>\frac{M(a+Ca)}{M(a)M(Ca)}S_{a}(C),

where

Ta(C):=l(a)+l(Ca)l(a+Ca) and Sa(C):=(1+1a+Ca)(11a)(11Ca).T_{a}(C):=l(a)+l(Ca)-l(a+Ca)\text{ and }S_{a}(C):=\frac{\left(1+\frac{1}{\sqrt{a+Ca}}\right)}{\left(1-\frac{1}{\sqrt{a}}\right)\left(1-\frac{1}{\sqrt{Ca}}\right)}.

Taking logarithms in turn grants an equivalent formulation

(6.1) Ta(C)>log(M(a+Ca)M(a)M(Ca))+logSa(C).T_{a}(C)>\log\left(\frac{M(a+Ca)}{M(a)M(Ca)}\right)+\log S_{a}(C).

Furthermore, as functions of CC, TaT_{a} is strictly increasing and SaS_{a} strictly decreasing, so that it suffices to show that

Ta(1)>log(M(a+Ca)M(a)M(Ca))+logSa(1)T_{a}(1)>\log\left(\frac{M(a+Ca)}{M(a)M(Ca)}\right)+\log S_{a}(1)

for all a8a\geq 8, and, with M(a+Ca)/M(Ca)1M(a+Ca)/M(Ca)\leq 1 for all such aa, we may show that

(6.2) Ta(1)>logSa(1)logM(a).T_{a}(1)>\log S_{a}(1)-\log M(a).

Calculation of Ta(1)T_{a}(1) and Sa(1)S_{a}(1) shows that (6.2) holds for a18a\geq 18.

To complete the proof, assume that 11a1711\leq a\leq 17. For each such integer aa, we calculate the real number CaC_{a} for which

Ta(Ca)=logSa(Ca)logM(a).T_{a}(C_{a})=\log S_{a}(C_{a})-\log M(a).

The values CaC_{a} are listed in the table below.

Table 3.
aa CaC_{a} maxb\max b
1111 2.20… 2424
1212 1.86… 2222
1313 1.62… 2121
1414 1.43… 2020
1515 1.27… 1919
1616 1.15… 1818
1717 1.05… 1717

By the discussion above, if b=Cab=Ca is an integer for which C>CaC>C_{a} holds, then (6.1) holds, which in turn grants the theorem in these cases. Only finitely many cases remain, namely the pairs integers where 11a1711\leq a\leq 17 and 1b/aCa1\leq b/a\leq C_{a}. We compute N(r,2;a)N(r,2;a), N(r,2;b)N(r,2;b), and N(r,2;a+b)N(r,2;a+b) directly in these cases to complete the proof.

7. Proof of Theorem 1.3

Let λr\lambda^{r} be a partition (λ1r,λ2r,,λkr)P(n)(\lambda_{1}^{r},\lambda_{2}^{r},\dots,\lambda_{k}^{r})\in P(n) such that N(r,2;λr)N(r,2;\lambda^{r}) is maximal. These λr\lambda^{r} and their corresponding values of maxN(r,2;n)\operatorname{maxN}(r,2;n) are recorded in Table 4 for n23n\leq 23, computed using SageMath [10]. Furthermore, let s0=3s_{0}=3 and s1=2s_{1}=2, the repeating portions of the conjectured maximal partitions λ0\lambda^{0} for n5n\geq 5 and λ1\lambda^{1} for n8n\geq 8 respectively, and λ^r\hat{\lambda}^{r} be the partition obtained by removing all parts of size srs_{r} from λr\lambda^{r}.

First note that λr\lambda^{r} contains no part larger than 2323, since if it did contain some part i24i\geq 24, we could perform the substitution

(i)(i/2,i/2)(i)\to(\lfloor i/2\rfloor,\lceil i/2\rceil)

and obtain, by Theorem 1.1, a partition μ\mu such that N(r,2;μ)>N(r,2;λr)N(r,2;\mu)>N(r,2;\lambda^{r}), contradicting the maximality of N(r,2;λr)N(r,2;\lambda^{r}). Thus, we need only consider parts i23i\leq 23 in λr\lambda^{r}.

Proposition 7.1.

Let mirm_{i}^{r} be the multiplicity of the part ii in λr\lambda^{r}. If i10i\geq 10, then mir=0m_{i}^{r}=0. Furthermore, for r=0r=0 and is0i\neq s_{0},

{mi0=0i=2,4,6,8,9mi01i=5,7mi02i=1\begin{cases}m_{i}^{0}=0&i=2,4,6,8,9\\ m_{i}^{0}\leq 1&i=5,7\\ m_{i}^{0}\leq 2&i=1\end{cases}

and, for r=1r=1 and is1i\neq s_{1},

{mi1=0i=4,6,8mi11i=3,5,7,9mi13i=1\begin{cases}m_{i}^{1}=0&i=4,6,8\\ m_{i}^{1}\leq 1&i=3,5,7,9\\ m_{i}^{1}\leq 3&i=1\end{cases}
Proof.

First note that, for all i10i\geq 10, we may replace ii by the representation of ii in Table 4 to yield a partition μ\mu such that N(r,2;μ)N(r,2;λr)N(r,2;\mu)\geq N(r,2;\lambda^{r}). We then observe the following substitutions for the remaining ii:

r=0r=0 r=1r=1
(1,1,1)(3)(1,1,1)\to(3) (1,1,1,1)(4)(1,1,1,1)\to(4)
(2)(1,1)(2)\to(1,1)
(3,3)(2,2,2)(3,3)\to(2,2,2)
(4)(1,3)(4)\to(1,3) (4)(2,2)(4)\to(2,2)
(5,5)(3,7)(5,5)\to(3,7) (5,5)(2,2,2,2,2)(5,5)\to(2,2,2,2,2)
(6)(3,3)(6)\to(3,3) (6)(2,2,2)(6)\to(2,2,2)
(7,7)(3,3,3,5)(7,7)\to(3,3,3,5) (7,7)(2,2,2,2,2,2,2)(7,7)\to(2,2,2,2,2,2,2)
(8)(3,5)(8)\to(3,5) (8)(2,2,2,2)(8)\to(2,2,2,2)
(9)(3,3,3)(9)\to(3,3,3) (9,9)(2,2,2,2,2,2,2,2,2)(9,9)\to(2,2,2,2,2,2,2,2,2).

Note in particular that N(r,2;μ)=N(r,2;λr)N(r,2;\mu)=N(r,2;\lambda^{r}) if and only if r=1r=1 and μ\mu is obtained by the substitutions (4)(2,2)(4)\to(2,2) or (6)(2,2,2)(6)\to(2,2,2). Thus, we may choose a representative of λ1\lambda^{1} such that m41=m61=0m_{4}^{1}=m_{6}^{1}=0, as these substitutions leave N(1,2;λ1)N(1,2;\lambda^{1}) unchanged. This demonstrates the equivalence of partition classes stipulated for r=1r=1 in Conjecture 2. ∎

Proposition 7.2.

m31=m51=m71=0m_{3}^{1}=m_{5}^{1}=m_{7}^{1}=0 unless λ1=(3),(5),(7)\lambda^{1}=(3),(5),(7), or (2,5)(2,5).

Proof.

Note that if ma11m_{a}^{1}\geq 1 for some aa, then by Proposition 7.1 we know that a=1,2,3,5,7,9a=1,2,3,5,7,9. Meanwhile, mb11m_{b}^{1}\leq 1 for b=3,5,7b=3,5,7. Thus, suppose m31=1m_{3}^{1}=1 (resp. m51=1m_{5}^{1}=1, m71=1m_{7}^{1}=1). Then it can be verified that replacing (a,3)(a,3) (resp. (a,5)(a,5), (a,7)(a,7)) with the representation of a+3a+3 (resp. a+5a+5, a+7a+7) in Table 4 will produce a partition μ\mu with N(1,2;μ)N(1,2;λ1)N(1,2;\mu)\geq N(1,2;\lambda^{1}), with equality only attained for (2,5)(7)(2,5)\to(7). ∎

Table 4.
nn maxN(0,2;n)\operatorname{maxN}(0,2;n) λ0\lambda^{0} maxN(1,2;n)\operatorname{maxN}(1,2;n) λ1\lambda^{1}
1 1 (1) 0 (1)
2 1 (1,1) 2 (2)
3 3 (3) 0 (3), (1,2), (1,1,1)
4 3 (1,3) 4 (4), (2,2)
5 5 (5) 2 (5)
6 9 (3,3) 8 (6), (2,4), (2,2,2)
7 11 (7) 4 (7), (2,5)
8 15 (3,5) 16 (2,2,2,2)
9 27 (3,3,3) 12 (9)
10 33 (3,7) 32 (2,2,2,2,2)
11 45 (3,3,5) 24 (2,9)
12 81 (3,3,3,3) 64 (2,2,2,2,2,2)
13 99 (3,3,7) 48 (2,2,9)
14 135 (3,3,3,5) 128 (2,2,2,2,2,2,2)
15 243 (3,3,3,3,3) 96 (2,2,2,9)
16 297 (3,3,3,7) 256 (2,2,2,2,2,2,2,2)
17 405 (3,3,3,3,5) 192 (2,2,2,2,2,9)
18 729 (3,3,3,3,3,3) 512 (2,2,2,2,2,2,2,2,2,2)
19 891 (3,3,3,3,7) 384 (2,2,2,2,2,9)
20 1215 (3,3,3,3,3,5) 1024 (2,2,2,2,2,2,2,2,2,2,2)
21 2187 (3,3,3,3,3,3,3) 768 (2,2,2,2,2,2,9)
22 2673 (3,3,3,3,3,7) 2048 (2,2,2,2,2,2,2,2,2,2,2,2)
23 3645 (3,3,3,3,3,3,5) 1536 (2,2,2,2,2,2,2,9)
Proposition 7.3.

There exist no distinct a,bsra,b\neq s_{r} such that mar=mbr=1m_{a}^{r}=m_{b}^{r}=1.

Proof.

By Proposition 7.1, we know that for r=0r=0 (resp. r=1r=1), mar=mbr=1m_{a}^{r}=m_{b}^{r}=1 implies a,b{1,5,7}a,b\in\{1,5,7\} (resp. a,b{1,9}a,b\in\{1,9\} via Proposition 7.2). It can then be verified that replacing aa and bb with the representation of a+ba+b in Table 4 will yield a partition μ\mu with N(r,2;μ)>N(r,2;λr)N(r,2;\mu)>N(r,2;\lambda^{r}). ∎

Proposition 7.4.

m1r=0m_{1}^{r}=0 unless

λ0=(1),(1,1),(1,3)\displaystyle\lambda^{0}=(1),(1,1),(1,3)
λ1=(1),(1,2),(1,1,1).\displaystyle\lambda^{1}=(1),(1,2),(1,1,1).
Proof.

Suppose that m1r1m_{1}^{r}\geq 1. By Proposition 7.3, we know that λ^0=(1),(1,1)\hat{\lambda}^{0}=(1),(1,1) (resp. λ^1=(1),(1,1),(1,1,1)\hat{\lambda}^{1}=(1),(1,1),(1,1,1)). Now we add back in the parts of size srs_{r}, and observe the following substitutions which yield partitions μ\mu such that N(r,2;μ)>N(r,2;λr)N(r,2;\mu)>N(r,2;\lambda^{r}):

r=0r=0 r=1r=1
(1,3,3)(7)(1,3,3)\to(7) (1,2,2)(5)(1,2,2)\to(5)
(1,1,3)(5)(1,1,3)\to(5) (1,1)(2)(1,1)\to(2)
(1,1,1,2)(5)(1,1,1,2)\to(5).

We now complete the proof of Theorem 1.3. For r=0r=0 (resp. r=1r=1), suppose λrP(n)\lambda^{r}\in P(n) for n5n\geq 5 (resp. 88). By Proposition 7.3 and Proposition 7.4, we know that λ^0=(5),(7)\hat{\lambda}^{0}=(5),(7) (resp. λ^1=(9))\hat{\lambda}^{1}=(9)). These partitions cover all the residue classes modulo srs_{r} except for n0(modsr)n\equiv 0\pmod{s_{r}} exactly once. For such nn, appending parts of size srs_{r} to these partitions covers each nn exactly once and yields the partitions stipulated in Theorem 1.3. If n0(modsr)n\equiv 0\pmod{s_{r}}, we can deduce that λr=(sr,sr,,sr)\lambda^{r}=(s_{r},s_{r},\dots,s_{r}) as stated in Theorem 1.3; the values of maxN(r,2;n)\operatorname{maxN}(r,2;n) then follow.

References

  • [1] Scott Ahlgren and Nickolas Andersen, Algebraic and transcendental formulas for the smallest parts function, Adv. Math. 289 (2016), 411–437.
  • [2] Scott Ahlgren and Alexander Dunn, Maaß  forms and the mock theta function f(q)f(q), Math. Ann. 374 (2019), no. 3-4, 1681–1718.
  • [3] Claudia Alfes, Formulas for the coefficients of half-integral weight harmonic Maaß  forms, Math. Z. 277 (2014), no. 3-4, 769–795.
  • [4] George E. Andrews, On the theorems of Watson and Dragonette for Ramanujan’s mock theta functions, Amer. J. Math. 88 (1966), 454–490.
  • [5] Christine Bessenrodt and Ken Ono, Maximal multiplicative properties of partitions, Ann. Comb. 20 (2016), no. 1, 59–64.
  • [6] Jan Hendrik Bruinier, Ken Ono, and Andrew V. Sutherland, Class polynomials for nonholomorphic modular functions, Journal of Number Theory 161 (2016), 204–229.
  • [7] Jan Hendrik Bruinier and Markus Schwagenscheidt, Algebraic formulas for the coefficients of mock theta functions and Weyl vectors of Borcherds products, J. Algebra 478 (2017), 38–57.
  • [8] William Y. C. Chen, The spt-function of Andrews, Surveys in combinatorics 2017, London Math. Soc. Lecture Note Ser., vol. 440, Cambridge Univ. Press, Cambridge, 2017, pp. 141–203.
  • [9] Michael Dewar and M. Ram Murty, A derivation of the Hardy-Ramanujan formula from an arithmetic formula, Proc. Amer. Math. Soc. 141 (2013), no. 6, 1903–1911.
  • [10] Kevin Gomez, Bounds for coefficients of the f(q) mock theta function, https://gist.github.com/kg583/0c176f1620989de58e47435e9cd9e676, 2020.
  • [11] Benedict Gross, Winfried Kohnen, and Don Zagier, Heegner points and derivatives of LL-series. II, Math. Ann. 278 (1987), no. 1-4, 497–562.
  • [12] Elaine Hou and Meena Jagadeesan, Dyson’s partition ranks and their multiplicative extensions, Ramanujan J. 45 (2018), no. 3, 817–839.
  • [13] Narissara Khaochim, Riad Masri, and Wei-Lun Tsai, An effective bound for the partition function, Res. Number Theory 5 (2019), no. 1, Paper No. 14, 25.
  • [14] Madeline Locus Dawsey and Riad Masri, Effective bounds for the Andrews spt-function, Forum Math. 31 (2019), no. 3, 743–767.
  • [15] Joshua Males, Asymptotic equidistribution and convexity for partition ranks, Ramanujan J. (2020).
  • [16] Riad Masri, Singular moduli and the distribution of partition ranks modulo 2, Math. Proc. Cambridge Philos. Soc. 160 (2016), no. 2, 209–232.
  • [17] Neil J.A. Sloane, The on-line encyclopedia of integer sequences, https://oeis.org.