Boundary triplets and the index of families of self-adjoint elliptic boundary problems
Nikolai V. Ivanov
Contents
1. Introduction 1
2. Boundary triplets and self-adjoint extensions 5
3. Gelfand triples 9
4. Abstract boundary problems 12
5. Families of abstract boundary problems 22
6. Differential boundary problems of order one 28
7. Dirac-like boundary problems 33
8. Comparing two boundary conditions 38
9. Rellich example 43
References 44
The Lagrange identity (Green formula).
Let X X be a compact manifold with the boundary Y = ∂ X Y\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.00006ptX . Let D D be a differential operator acting on section of a Hermitian bundle E E over X X , and D ′ D^{\prime} be the operator formally adjoint to D D . The theory of boundary problems for D D crucially depends on an identity
of the form
(1)
⟨ D u , v ⟩ − ⟨ u , D ′ v ⟩ = ⟨ γ 1 u , γ 0 v ⟩ ∂ − ⟨ γ 0 u , γ 1 v ⟩ ∂ , \quad\langle\hskip 1.49994pt\hskip 1.00006ptD\hskip 0.50003ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptD^{\prime}\hskip 0.50003ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt,
where u , v u\hskip 0.50003pt,\hskip 1.99997ptv are sections of E E . It is known as the Lagrange identity or the Green formula . The scalar products ⟨ ∙ , ∙ ⟩ \langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle and ⟨ ∙ , ∙ ⟩ ∂ \langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004pt\partial} are obtained by taking the scalar product in E E and integrating over X X and Y Y respectively. The operators γ 0 , γ 1 \gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1} are the boundary operators taking sections of E E over X X to sections of the restriction E | Y E\hskip 1.49994pt|\hskip 1.49994ptY of E E to Y Y . The identity (1 ) is established first for smooth sections u , v u\hskip 0.50003pt,\hskip 1.99997ptv and then extended to sections in Sobolev spaces.
When D D is a differential operator of order 2 2 , it is only natural to take as γ 0 \gamma_{0} the restriction of sections to Y Y
and as γ 1 \gamma_{1} the normal derivative along Y Y . M.I. Vishik [V ] discovered that this “naïve” choice of γ 0 , γ 1 \gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1} is not the most efficient one. Namely, it is advantageous to adjust the operator γ 1 \gamma_{1}
by replacing it by γ 1 − P \gamma_{1}\hskip 1.99997pt-\hskip 1.99997ptP , where P P , nowadays known as the Dirichlet–to–Neumann operator, takes a section f f over Y Y to γ 1 u \gamma_{1}\hskip 1.00006ptu , where u u is the solution of boundary problem D u = 0 D\hskip 1.00006ptu\hskip 3.99994pt=\hskip 3.99994pt0 , γ 0 u = f \gamma_{0}\hskip 1.00006ptu\hskip 3.99994pt=\hskip 3.99994ptf . Then the identity (1 ) still holds, and, moreover, is valid for u , v u\hskip 0.50003pt,\hskip 1.99997ptv belonging to the maximal domains of definition of D , D ′ D\hskip 0.50003pt,\hskip 1.99997ptD^{\prime} respectively.
G. Grubb [G 1 G_{\hskip 0.70004pt1} ] extended Vishik’s theory to operators
of even order 2 m 2m (and strengthened it in some respects). Both Vishik and Grubb considered only operators acting on functions, but the generalization to sections of bundles is routine. At the same time the assumption of the even order was used throughout and was even build into the notations. There are 2 m 2m boundary operators
and they are split into to two groups
of m m operators each, one leading to γ 0 \gamma_{0} and the other to γ 1 \gamma_{1} . Much later B.M. Brown, G. Grubb and I.G. Wood [BGW ] indicated that Grubb’s theory can be adapted to
some matrix operators of order 1 1 .
Self-adjoint operators and boundary triplets.
In the present paper we are interested only in formally self-adjoint operators, and their realizations by self-adjoint operators in Hilbert spaces. The theory of boundary triplets provides an abstract axiomatic framework for using the Lagrange identity to construct self-adjoint operators in Hilbert spaces. Let H 0 H_{\hskip 0.70004pt0} and K ∂ K^{\hskip 0.70004pt\partial} be Hilbert spaces and T T be
a densely defined symmetric operator in H 0 H_{\hskip 0.70004pt0} , T ∗ T^{\hskip 0.70004pt*} be its adjoint operator, and 𝒟 = 𝒟 ( T ∗ ) \mathcal{D}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)
be its domain. Let γ 0 , γ 1 : 𝒟 ⟶ K ∂ \gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1}\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial} be two linear maps. The triple ( 𝒟 , γ 0 , γ 1 ) (\hskip 1.49994pt\mathcal{D}\hskip 0.50003pt,\hskip 3.00003pt\gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1}\hskip 1.49994pt) is a boundary triplet for T ∗ T^{\hskip 0.70004pt*} if γ 0 ⊕ γ 1 : 𝒟 ⟶ K ∂ ⊕ K ∂ \gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1}\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial} is surjective and
⟨ T ∗ u , v ⟩ − ⟨ u , T ∗ v ⟩ = ⟨ γ 1 u , γ 0 v ⟩ ∂ − ⟨ γ 0 u , γ 1 v ⟩ ∂ \quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
for every u , v ∈ 𝒟 u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D} . Here ⟨ ∙ , ∙ ⟩ \langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle is the scalar product in H 0 H_{\hskip 0.70004pt0} and ⟨ ∙ , ∙ ⟩ ∂ \langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004pt\partial} is the scalar product in K ∂ K^{\hskip 0.70004pt\partial} . A boundary triplet for T ∗ T^{\hskip 0.70004pt*} exists if and only if T T admits a self-adjoint extension, and then the self-adjoint extensions of T T are in a natural one-to-one
correspondence with self-adjoint relations ℬ ⊂ K ∂ ⊕ K ∂ \mathcal{B}\hskip 1.99997pt\subset\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial} , which should be understood as boundary conditions for T T or T ∗ T^{\hskip 0.70004pt*} . Such self-adjoint relations are a minor but essential generalization of self-adjoint operators K ∂ ⟶ K ∂ K^{\hskip 0.70004pt\partial}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial} . Also, if a boundary triplet exists, then 𝒟 ( T ¯ ) = Ker γ 0 ⊕ γ 1 \mathcal{D}\hskip 1.00006pt(\hskip 1.99997pt\overline{T}\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1} . We refer to the book of K. Schmüdgen [Schm ] , Chapter 14, for the details. An outline of this theory, sufficient for our purposes, is contained in [I 2 I_{\hskip 1.04996pt2} ] , Sections 11 and 12.
Let D D be a formally self-adjoint differential operator. In this case the Lagrange identity (1 ) leads to a description
of some self-adjoint boundary conditions, i.e. of relations between γ 0 u \gamma_{0}\hskip 1.00006ptu and γ 1 u \gamma_{1}\hskip 1.00006ptu leading to self-adjoint realisations of D D in a Hilbert space, usually in the Sobolev space H 0 ( X ∘ , E ) H_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt) , where X ∘ = X ∖ Y X^{\hskip 0.70004pt\circ}\hskip 3.99994pt=\hskip 3.99994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY . In fact, the most interesting self-adjoint boundary conditions are defined in terms of “naïve” boundary operators, not the ones adjusted according to Vishik and Grubb. But the “naïve” boundary operators do not form
a boundary triplet and by this reason are not good enough. The results of Vishik [V ] and Grubb [G 1 G_{\hskip 0.70004pt1} ] concerned with adjusting the “naïve” boundary operators for D D can be understood as a construction of a boundary triplet for D ∗ D^{\hskip 0.35002pt*}
starting with the “naïve” Lagrange identity (1 ). But they were proved before the notion of boundary triplets appeared.
The index of families of self-adjoint operators.
The theory of boundary triplets turns out be a very efficient tool to study the index of families of self-adjoint operators. It was already used by the author in [I 2 I_{\hskip 1.04996pt2} ] to explain
why the index theorem of [I 2 I_{\hskip 1.04996pt2} ] applies only to
bundle-like boundary conditions. See [I 2 I_{\hskip 1.04996pt2} ] , Section 13. The key result for the applications to the index theory is a corollary of one of the main results
of the theory of boundary triplets, namely, of the Krein–Naimark resolvent formula . See the identities (5 ) and (6 ) below. Originally the Krein–Naimark resolvent formula and this corollary
are proved for the boundary triplets constructed abstractly in terms of the operator theory. But the boundary triplets are unique in a very strong sense, and this allows to apply this corollary to families of differential operators after the Lagrange identity is adjusted .
The Krein–Naimark resolvent formula is concerned with extensions
of symmetric operators, but in all sources known to the author it is proved without referring to von Neumann theory of extensions. For the sake of the readers who may be, like the author, not quite comfortable about such state of affairs, we provided in Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems a direct proof of the identities (5 ) and (6 ) based on von Neumann theory and bypassing the
Krein–Naimark resolvent formula. For a proof based on the Krein–Naimark resolvent formula
see [I 2 I_{\hskip 1.04996pt2} ] , Section 12.
An abstract construction of boundary triplets.
In Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems we develop an abstract axiomatic version
of the adjustment procedure of Vishik and Grubb. The starting point is an axiomatic version of the “naïve” Lagrange identity, closely related to the
abstract boundary problems framework of [I 2 I_{\hskip 1.04996pt2} ] , Section 5. Another key ingredient is a reference operator , a self-adjoint and invertible extension A A of D D , which is assumed to be naïvely defined by the boundary condition γ 0 = 0 \gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0 . Under appropriate assumptions we construct a boundary triplet generalizing the boundary triplet implicitly present in the results
of Vishik and Grubb. An important role in the construction of Grubb [G 1 G_{\hskip 0.70004pt1} ] is played by two results of J.L. Lions and E. Magenes [L M 2 LM_{\hskip 0.35002pt2} ] , [L M 3 LM_{\hskip 0.35002pt3} ] . We prove an abstract version of them. See Theorems Boundary triplets and the index of families of self-adjoint elliptic boundary problems and Boundary triplets and the index of families of self-adjoint elliptic boundary problems . These two theorems are proved by an adaptation of arguments of Lions and Magenes. Most of the other proofs in Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems are adapted from arguments of Grubb [G 1 G_{\hskip 0.70004pt1} ] .
Our axiomatic approach involves the notion of Gelfand triples in an essential manner. We need only the relevant definitions and
a couple of the most basic properties, and we included in Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems a self-contained exposition of what is needed.
Families of abstract boundary problems.
In Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems we add parameters to the theory developed in Sections Boundary triplets and the index of families of self-adjoint elliptic boundary problems – Boundary triplets and the index of families of self-adjoint elliptic boundary problems and apply the parameterized theory to the index. Let W W be a reasonable topological space. Suppose that everything in sight depends on the parameter w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW . We indicate this dependence by a subscript. The index of the family A w , w ∈ W A_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW of reference operators is equal to 0 because these operators are invertible. By our assumptions these operators are defined by the boundary conditions
γ w 0 = 0 \gamma_{w\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994pt0 . Let ℬ w , w ∈ W \mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW be a family of naïve boundary conditions. Replacing the boundary conditions γ w 0 = 0 \gamma_{w\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994pt0 by the boundary conditions ℬ w \mathcal{B}_{\hskip 0.35002ptw} results in a family of self-adjoint operators with the index equal to the index of ℬ w − M w , w ∈ W \mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997pt-\hskip 1.99997ptM_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW , where M w M_{\hskip 0.70004ptw} are the adjusting operators, analogues of the Dirichlet–to–Neumann ones. See the last subsection of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems for the precise statement. The appearance of the summand − M w -\hskip 1.99997ptM_{\hskip 0.70004ptw} is fairly surprising, but the operators ℬ w \mathcal{B}_{\hskip 0.35002ptw}
are usually invertible and then the index of the uncorrected family ℬ w , w ∈ W \mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is 0 .
Differential boundary problems of order one.
Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems is devoted to the application of the abstract theory to
differential operators of order one. The key role is played by the results related to the Calderón projector. They are used to prove that the adjusting operators M w M_{\hskip 0.70004ptw} are pseudo-differential operators of order zero continuously depending on w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW . We identify the symbols of the adjusting operators M w M_{\hskip 0.70004ptw}
and prove that the graph of M w M_{\hskip 0.70004ptw} is the space of the Cauchy data of solutions of the equation D ∗ u = 0 D^{\hskip 0.35002pt*}\hskip 1.00006ptu\hskip 3.99994pt=\hskip 3.99994pt0 .
In Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems we use the results of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems to give an analytic
and fairly elementary proof of the index theorem for Dirac-like boundary problems
from [I 2 I_{\hskip 1.04996pt2} ] , Section 15. See Theorem Boundary triplets and the index of families of self-adjoint elliptic boundary problems . In [I 2 I_{\hskip 1.04996pt2} ] this theorem was deduced from its analogue for the topological index and the general index theorem for operators of order one. In a sense the proof from [I 2 I_{\hskip 1.04996pt2} ] provides topological reasons for the need to adjust the boundary operators and predicts the symbols of adjusting operators. The desire to find a direct analytic proof of this theorem was the starting point of the present paper.
In Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems we modify the arguments of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems in order to prove an Agranovich–Dynin type theorem computing the difference of indices
of two families of self-adjoint problems differing only by the boundary conditions. The formula for the difference is more complicated than the classical one and involves an appropriate form of the adjusting operators M w M_{\hskip 0.70004ptw} .
We limited ourselves by the differential operators of order one
in order to avoid technical complications and present the main ideas in the most transparent form. Most of the results can be extended to pseudo-differential operators satisfying the transmission condition.
Rellich example.
In Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems we illustrate our abstract theory by an example, due to F. Rellich, of a family of self-adjoint boundary problems
parameterized by the circle for a fixed operator of order 2 2 . The operator is − d 2 / d x 2 -\hskip 1.99997ptd^{\hskip 0.70004pt2}/\hskip 1.00006ptdx^{\hskip 0.70004pt2}
on the interval [ 0 , 1 ] [\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt] . The index of this family can be computed by brute force
and is equal to 1 1 . We prove this result as an application of our abstract theory. In dimension one there is no need to adjust the Lagrange identity, but one can still do this. Each way leads to a proof that the index is equal to 1 1 .
2. Boundary triplets and self-adjoint extensions
The main abstract example.
Let us consider the following abstract situation taken from [Schm ] , Example 14.5. Let H H be a separable Hilbert space, T T be a densely defined closed symmetric operator in H H , and A A be a fixed self-adjoint extension of T T . By ∔ \dotplus we will denote the direct, but not necessarily orthogonal, sum of subspaces of H H . Let us fix a number μ ∈ 𝐂 ∖ 𝐑 \mu\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{C}\hskip 1.99997pt\smallsetminus\hskip 1.99997pt\mathbf{R} . Then the numbers μ , μ ¯ \mu\hskip 1.00006pt,\hskip 3.99994pt\overline{\mu} belong to the resolvent set of A A . In particular, the operators ( A − μ ) − 1 (\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1} and ( A − μ ¯ ) − 1 (\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1} are well defined. Let
𝒦 + = Ker ( T ∗ − μ ) = Im ( T − μ ¯ ) ⟂ and \quad\mathcal{K}_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.99997pt-\hskip 1.99997pt\hskip 0.24994pt\mu\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)^{\hskip 0.70004pt\perp}\quad\mbox{and}\quad
𝒦 − = Ker ( T ∗ − μ ¯ ) = Im ( T − μ ) ⟂ . \quad\mathcal{K}_{\hskip 0.70004pt-}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.99997pt)^{\hskip 0.70004pt\perp}\hskip 3.00003pt.
Then the domain 𝒟 ( T ∗ ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt) of T ∗ T^{\hskip 0.70004pt*} is equal to
(2)
𝒟 ( T ∗ ) = 𝒟 ( T ) ∔ A ( A − μ ) − 1 𝒦 − ∔ ( A − μ ) − 1 𝒦 − . \quad\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt)\hskip 1.99997pt\dotplus\hskip 1.99997ptA\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.99997pt\dotplus\hskip 1.99997pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 3.99994pt.
See [Schm ] , Proposition 14.11. Hence every z ∈ 𝒟 ( T ∗ ) z\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt) can be uniquely written as
(3)
z = z T + A ( A − μ ) − 1 z 0 + ( A − μ ) − 1 z 1 \quad z\hskip 3.99994pt=\hskip 3.99994ptz_{\hskip 1.04996ptT}\hskip 1.99997pt+\hskip 1.99997ptA\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt0}\hskip 1.99997pt+\hskip 1.99997pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt1}\hskip 3.99994pt
with z T ∈ 𝒟 ( T ) z_{\hskip 1.04996ptT}\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt)
and z 0 , z 1 ∈ 𝒦 − z_{\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 1.99997ptz_{\hskip 0.70004pt1}\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-} . Then K = 𝒦 − K\hskip 3.99994pt=\hskip 3.99994pt\mathcal{K}_{\hskip 0.70004pt-} and the maps Γ i : z ⟼ z i \Gamma_{i}\hskip 1.00006pt\colon\hskip 1.00006ptz\hskip 3.99994pt\longmapsto\hskip 3.99994ptz_{\hskip 0.70004pti} , i = 0 , 1 i\hskip 3.99994pt=\hskip 3.99994pt0\hskip 0.50003pt,\hskip 1.99997pt1 form a boundary triplet for T ∗ T^{\hskip 0.70004pt*} . This is the boundary triplet from [Schm ] , Example 14.5.
The main example from the point of view of von Neumann theory.
By von Neuman theory
𝒟 ( T ∗ ) = 𝒟 ( T ) ∔ 𝒦 + ∔ 𝒦 − \quad\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt)\hskip 1.99997pt\dotplus\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt+}\hskip 1.99997pt\dotplus\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 3.00003pt
and A A defines an isometry
V : 𝒦 + ⟶ 𝒦 − V\hskip 1.00006pt\colon\mathcal{K}_{\hskip 0.70004pt+}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}
such that A A is the restriction of T ∗ T^{\hskip 0.70004pt*} to
{ x + y − V y | x ∈ 𝒟 ( T ) , y ∈ 𝒦 + } . \quad\bigl{\{}\hskip 3.00003ptx\hskip 1.99997pt+\hskip 1.99997pty\hskip 1.99997pt-\hskip 1.99997ptVy\hskip 3.00003pt\bigl{|}\hskip 3.00003ptx\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.99994pty\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt+}\hskip 3.00003pt\bigr{\}}\hskip 3.99994pt.
2.1. Lemma.
V y = A − μ A − μ ¯ y \displaystyle Vy\hskip 3.99994pt=\hskip 3.99994pt\frac{A\hskip 1.99997pt-\hskip 1.99997pt\mu}{\hskip 1.00006ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.00006pt}\hskip 1.99997pty for every y ∈ 𝒦 + y\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt+} .
Proof . If y ∈ 𝒦 + y\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt+} , then
( A − μ ¯ ) ( y − V y ) = μ y − μ ¯ V y − μ ¯ y + μ ¯ V y = ( μ − μ ¯ ) y , \quad(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)\hskip 1.99997pt(\hskip 1.49994pty\hskip 1.99997pt-\hskip 1.99997ptVy\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994pt\mu\hskip 1.99997pty\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 3.00003ptVy\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pty\hskip 1.99997pt+\hskip 1.99997pt\overline{\mu}\hskip 3.00003ptVy\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\mu\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)\hskip 1.99997pty\hskip 3.00003pt,
y − V y = ( A − μ ¯ ) − 1 ( μ − μ ¯ ) y , \quad y\hskip 1.99997pt-\hskip 1.99997ptVy\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mu\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)\hskip 1.99997pty\hskip 3.00003pt,
and hence V y = y − ( A − μ ¯ ) − 1 ( μ − μ ¯ ) y = A − μ A − μ ¯ y \displaystyle Vy\hskip 3.99994pt=\hskip 3.99994pty\hskip 1.99997pt-\hskip 1.99997pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mu\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)\hskip 1.99997pty\hskip 3.99994pt=\hskip 3.99994pt\frac{A\hskip 1.99997pt-\hskip 1.99997pt\mu}{\hskip 1.00006ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.00006pt}\hskip 1.99997pty . ■ \blacksquare
2.2. Lemma.
Suppose that z = z T + z + + z − z\hskip 3.99994pt=\hskip 3.99994ptz_{\hskip 1.04996ptT}\hskip 1.99997pt+\hskip 1.99997ptz_{\hskip 0.70004pt+}\hskip 1.99997pt+\hskip 1.99997ptz_{\hskip 0.70004pt-} with z T ∈ 𝒟 ( T ) z_{\hskip 1.04996ptT}\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt) , z + ∈ 𝒦 + z_{\hskip 0.70004pt+}\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt+} , and z − ∈ 𝒦 − z_{\hskip 0.70004pt-}\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-} . Let z 0 = z − + V z + z_{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 3.00003ptV\hskip 0.50003ptz_{\hskip 0.70004pt+}
and z 1 = − μ z − − μ ¯ V z + z_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt\mu\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 3.00003ptV\hskip 0.50003ptz_{\hskip 0.70004pt+} . Then the equality (3 ) holds.
Proof . Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that
z 0 = z − + V z + = z − + A − μ A − μ ¯ z + and \quad z_{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 3.00003ptV\hskip 0.50003ptz_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 1.99997pt\frac{A\hskip 1.99997pt-\hskip 1.99997pt\mu}{\hskip 1.00006ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.00006pt}\hskip 3.99994ptz_{\hskip 0.70004pt+}\quad\mbox{and}
z 1 = − μ z − − μ ¯ V z + = − μ z − − μ ¯ A − μ A − μ ¯ z + . \quad z_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt\mu\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 3.00003ptV\hskip 0.50003ptz_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt\mu\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 3.99994pt\frac{A\hskip 1.99997pt-\hskip 1.99997pt\mu}{\hskip 1.00006ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.00006pt}\hskip 3.99994ptz_{\hskip 0.70004pt+}\hskip 3.00003pt.
It follows that
A ( A − μ ) − 1 z 0 = A ( A − μ ) − 1 z − + A ( A − μ ¯ ) − 1 z + , \quad A\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994ptA\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 1.99997ptA\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt+}\hskip 3.00003pt,
( A − μ ) − 1 z 1 = − ( A − μ ) − 1 μ z − − μ ¯ ( A − μ ¯ ) − 1 z + , \quad(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\mu\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt+}\hskip 3.00003pt,
and hence
A ( A − μ ) − 1 z 0 + ( A − μ ) − 1 z 1 \quad A\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt0}\hskip 1.99997pt+\hskip 1.99997pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt1}
= A ( A − μ ) − 1 z − − ( A − μ ) − 1 μ z − + A ( A − μ ¯ ) − 1 z + − μ ¯ ( A − μ ¯ ) − 1 z + \quad=\hskip 3.99994ptA\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt-}\hskip 1.99997pt-\hskip 1.99997pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\mu\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 3.99994pt+\hskip 3.99994ptA\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt+}\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt+}
= z − + z + . \quad=\hskip 3.99994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 1.99997ptz_{\hskip 0.70004pt+}\hskip 3.00003pt.
The equality (3 ) follows. ■ \blacksquare
The Lagrange identity.
In the notations of Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems , let
Γ 0 z = z − + V z + and Γ 1 z = − μ z − − μ ¯ V z + . \quad\Gamma_{0}\hskip 1.00006ptz\hskip 3.99994pt=\hskip 3.99994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 3.00003ptV\hskip 0.50003ptz_{\hskip 0.70004pt+}\quad\mbox{and}\quad\Gamma_{1}\hskip 1.00006ptz\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt\mu\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 3.00003ptV\hskip 0.50003ptz_{\hskip 0.70004pt+}\hskip 3.00003pt.
We claim that then for every x , y ∈ 𝒟 ( T ∗ ) x\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)
(4)
⟨ T ∗ x , y ⟩ − ⟨ x , T ∗ y ⟩ = ⟨ Γ 1 x , Γ 0 y ⟩ − ⟨ Γ 0 x , Γ 1 y ⟩ , \quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}x\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptx\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}y\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{1}\hskip 1.00006ptx\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006pty\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.00006ptx\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{1}\hskip 1.00006pty\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt,
where all scalar products are taken in H H . In order to prove this, let us write x x and y y in the form of Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems , x = x T + x + + x − x\hskip 3.99994pt=\hskip 3.99994ptx_{\hskip 1.04996ptT}\hskip 1.99997pt+\hskip 1.99997ptx_{\hskip 0.70004pt+}\hskip 1.99997pt+\hskip 1.99997ptx_{\hskip 0.70004pt-} and y = y T + y + + y − y\hskip 3.99994pt=\hskip 3.99994pty_{\hskip 1.04996ptT}\hskip 1.99997pt+\hskip 1.99997pty_{\hskip 0.70004pt+}\hskip 1.99997pt+\hskip 1.99997pty_{\hskip 0.70004pt-} . Since T T is symmetric, x T x_{\hskip 1.04996ptT} and y T y_{\hskip 1.04996ptT}
do not affect the validity of the Lagrange identity and hence
we can assume that x T = y T = 0 x_{\hskip 1.04996ptT}\hskip 3.99994pt=\hskip 3.99994pty_{\hskip 1.04996ptT}\hskip 3.99994pt=\hskip 3.99994pt0 . Then T ∗ x = μ x + + μ ¯ x − T^{\hskip 0.70004pt*}\hskip 1.00006ptx\hskip 3.99994pt=\hskip 3.99994pt\mu\hskip 1.00006ptx_{\hskip 0.70004pt+}\hskip 1.99997pt+\hskip 3.00003pt\overline{\mu}\hskip 1.99997ptx_{\hskip 0.70004pt-}
and T ∗ y = μ y + + μ ¯ y − T^{\hskip 0.70004pt*}\hskip 1.00006pty\hskip 3.99994pt=\hskip 3.99994pt\mu\hskip 1.00006pty_{\hskip 0.70004pt+}\hskip 1.99997pt+\hskip 3.00003pt\overline{\mu}\hskip 1.99997pty_{\hskip 0.70004pt-} . Therefore the left hand side
of (4 ) is equal to
μ ⟨ x + , y + ⟩ + μ ⟨ x + , y − ⟩ + μ ¯ ⟨ x − , y + ⟩ + μ ¯ ⟨ x − , y − ⟩ \quad\mu\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt+}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt\mu\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt+}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle
− μ ¯ ⟨ x + , y + ⟩ − μ ⟨ x + , y − ⟩ − μ ¯ ⟨ x − , y + ⟩ − μ ⟨ x − , y − ⟩ \quad-\hskip 3.99994pt\overline{\mu}\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt+}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt+}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle
= ( μ − μ ¯ ) ⟨ x + , y + ⟩ − ( μ − μ ¯ ) ⟨ x − , y − ⟩ . \quad=\hskip 3.99994pt(\hskip 1.49994pt\mu\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 1.99997pt)\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt+}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt-\hskip 1.99997pt(\hskip 1.49994pt\mu\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 1.99997pt)\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt.
The right hand side of (4 ) is equal to
⟨ − μ x − − μ ¯ V x + , y − + V y + ⟩ − ⟨ x − + V x + , − μ y − − μ ¯ V y + ⟩ \quad\left\langle\hskip 1.49994pt\hskip 1.49994pt-\hskip 1.99997pt\mu\hskip 1.49994ptx_{\hskip 0.70004pt-}\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 3.00003ptV\hskip 0.50003ptx_{\hskip 0.70004pt+}\hskip 1.00006pt,\hskip 3.99994pty_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 3.00003ptV\hskip 0.50003pty_{\hskip 0.70004pt+}\hskip 1.49994pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.49994ptx_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 3.00003ptV\hskip 0.50003ptx_{\hskip 0.70004pt+}\hskip 1.00006pt,\hskip 3.99994pt-\hskip 1.99997pt\mu\hskip 1.49994pty_{\hskip 0.70004pt-}\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 3.00003ptV\hskip 0.50003pty_{\hskip 0.70004pt+}\hskip 1.49994pt\hskip 1.49994pt\right\rangle
= − μ ⟨ x − , y − ⟩ − μ ⟨ x − , V y + ⟩ − μ ¯ ⟨ V x − , y − ⟩ − μ ¯ ⟨ V x + , V y + ⟩ \quad=\hskip 3.99994pt-\hskip 1.99997pt\mu\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 1.99997ptVy_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptVx_{\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptVx_{\hskip 0.70004pt+}\hskip 1.00006pt,\hskip 1.99997ptVy_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle
+ μ ¯ ⟨ x − , y − ⟩ + μ ⟨ x − , V y + ⟩ + μ ¯ ⟨ V x + , y − ⟩ + μ ⟨ V x + , V y + ⟩ \quad\phantom{=\hskip 3.99994pt}+\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt\mu\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 1.99997ptVy_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptVx_{\hskip 0.70004pt+}\hskip 1.00006pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt\mu\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptVx_{\hskip 0.70004pt+}\hskip 1.00006pt,\hskip 1.99997ptVy_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle
= − ( μ − μ ¯ ) ⟨ x − , y − ⟩ + ( μ − μ ¯ ) ⟨ V x + , V y + ⟩ \quad=\hskip 3.99994pt-\hskip 1.99997pt(\hskip 1.49994pt\mu\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 1.99997pt)\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt(\hskip 1.49994pt\mu\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 1.99997pt)\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptVx_{\hskip 0.70004pt+}\hskip 0.50003pt,\hskip 1.99997ptVy_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle
= − ( μ − μ ¯ ) ⟨ x − , y − ⟩ + ( μ − μ ¯ ) ⟨ x + , y + ⟩ \quad=\hskip 3.99994pt-\hskip 1.99997pt(\hskip 1.49994pt\mu\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 1.99997pt)\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt(\hskip 1.49994pt\mu\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 1.99997pt)\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt+}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle
because V V is an isometry. The identity (4 ) follows.
The boundary triplet.
Clearly, the map z ⟼ ( z − , z + ) z\hskip 3.99994pt\longmapsto\hskip 3.99994pt(\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 1.99997ptz_{\hskip 0.70004pt+}\hskip 1.49994pt) from 𝒟 ( T ∗ ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt) to 𝒦 − ⊕ 𝒦 + \mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt+} is surjective. Since μ ∉ 𝐑 \mu\hskip 1.99997pt\not\in\hskip 1.99997pt\mathbf{R} , this implies that the map
Γ 0 ⊕ Γ 1 : 𝒟 ( T ∗ ) ⟶ 𝒦 − ⊕ 𝒦 − \quad\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\Gamma_{1}\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-}
is also surjective. In view of (4 ) this implies that ( 𝒦 − , Γ 0 , Γ 1 ) (\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 3.99994pt\Gamma_{0}\hskip 1.00006pt,\hskip 3.99994pt\Gamma_{1}\hskip 1.49994pt) is a boundary triplet for T ∗ T^{\hskip 0.70004pt*} . Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that this is the same boundary triplet as in [Schm ] , Example 14.5.
Isometries between subspaces.
Let W : 𝒦 ⟶ 𝒦 ′ W\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{K}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}\hskip 0.50003pt^{\prime} be an isometry between two closed subspaces
𝒦 , 𝒦 ′ ⊂ H \mathcal{K},\hskip 3.99994pt\mathcal{K}\hskip 0.50003pt^{\prime}\hskip 1.99997pt\subset\hskip 1.99997ptH . We will denote by W 0 W_{\hskip 0.70004pt0} the corresponding partial isometry of H H , i.e. the operator equal to W W on 𝒦 \mathcal{K} and to 0
on 𝒦 ⟂ \mathcal{K}^{\hskip 0.70004pt\perp} . When 𝒦 = 𝒦 ′ \mathcal{K}\hskip 3.00003pt=\hskip 3.99994pt\mathcal{K}\hskip 0.50003pt^{\prime} , we will denote by W H W_{\hskip 0.70004ptH} the operator H ⟶ H H\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH equal to W W on 𝒦 \mathcal{K} and to the identity
on 𝒦 ⟂ \mathcal{K}^{\hskip 0.70004pt\perp} .
The Cayley transforms.
As above, let μ ∈ 𝐂 ∖ 𝐑 \mu\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{C}\hskip 1.99997pt\smallsetminus\hskip 1.99997pt\mathbf{R}
and T T be a symmetric operator in H H . The μ \mu -Cayley transform U μ ( T ) U_{\hskip 0.70004pt\mu}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt)
of T T is the partial isometry
equal to
T − μ T − μ ¯ \quad\frac{T\hskip 1.99997pt-\hskip 1.99997pt\mu}{\hskip 1.00006ptT\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.00006pt}
on Im ( T − μ ¯ ) \operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)
and as 0 on the orthogonal complement Im ( T − μ ¯ ) ⟂ = 𝒦 + \operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)^{\hskip 0.70004pt\perp}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{K}_{\hskip 0.70004pt+} . It induces an isometry Im ( T − μ ¯ ) ⟶ Im ( T − μ ) \operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt) . If A A is a self-adjoint extension of T T as above, then U μ ( A ) U_{\hskip 0.70004pt\mu}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt) agrees with U μ ( T ) U_{\hskip 0.70004pt\mu}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt)
on Im ( T − μ ¯ ) \operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt) . In this case Im ( A − μ ¯ ) = H \operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994ptH
and U μ ( A ) U_{\hskip 0.70004pt\mu}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt) is an isometry H ⟶ H H\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH . Let V V be related to A A as above.
2.3. Lemma.
U μ ( A ) = U μ ( T ) + V 0 U_{\hskip 0.70004pt\mu}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptU_{\hskip 0.70004pt\mu}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptV_{\hskip 0.35002pt0} .
Proof . This immediately follows from Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems . ■ \blacksquare
Changing the extension A A .
Let B : 𝒦 − ⟶ 𝒦 − B\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-} be a self-adjoint operator. Together with our boundary triplet B B defines another
self-adjoint extension A ′ A^{\prime} of T T , namely the restriction of T ∗ T^{\hskip 0.70004pt*} to Ker ( Γ 1 − B Γ 0 ) \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994pt\Gamma_{1}\hskip 1.99997pt-\hskip 1.99997ptB\hskip 1.49994pt\Gamma_{0}\hskip 1.49994pt) . The domain 𝒟 ( A ′ ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA^{\prime}\hskip 1.49994pt) is described by the equation
− μ z − − μ ¯ V z + = B ( z − + V z + ) , \quad-\hskip 1.99997pt\mu\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 3.00003ptV\hskip 0.50003ptz_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994ptB\hskip 1.49994pt(\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 3.00003ptV\hskip 0.50003ptz_{\hskip 0.70004pt+}\hskip 1.49994pt)\hskip 3.00003pt,
or, equivalently, by either of the equations
( B + μ ) z − + ( B + μ ¯ ) V z + = 0 , z − + B + μ ¯ B + μ V z + = 0 . \quad(\hskip 1.49994ptB\hskip 1.99997pt+\hskip 1.99997pt\mu\hskip 1.49994pt)\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 1.99997pt(\hskip 1.49994ptB\hskip 1.99997pt+\hskip 3.00003pt\overline{\mu}\hskip 1.99997pt)\hskip 1.49994ptV\hskip 0.50003ptz_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994pt0\hskip 3.00003pt,\quad z_{\hskip 0.70004pt-}\hskip 3.00003pt+\hskip 3.00003pt\frac{B\hskip 1.99997pt+\hskip 3.00003pt\overline{\mu}\hskip 0.50003pt}{B\hskip 1.99997pt+\hskip 1.99997pt\mu}\hskip 3.00003ptV\hskip 0.50003ptz_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994pt0\hskip 3.00003pt.
Let V ′ V\hskip 0.50003pt^{\prime} be related to A ′ A^{\prime} in the same way as V V to A A . The last formula shows that
V ′ = B + μ ¯ B + μ V \quad V\hskip 0.50003pt^{\prime}\hskip 3.99994pt=\hskip 3.99994pt\frac{B\hskip 1.99997pt+\hskip 3.00003pt\overline{\mu}\hskip 0.50003pt}{B\hskip 1.99997pt+\hskip 1.99997pt\mu}\hskip 3.00003ptV
Together with Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems this implies that
U μ ( A ′ ) = ( B + μ ¯ B + μ ) H U μ ( A ) . \quad U_{\hskip 0.70004pt\mu}\hskip 1.00006pt(\hskip 1.49994ptA^{\prime}\hskip 1.49994pt)\hskip 3.99994pt\hskip 0.50003pt=\hskip 3.99994pt\hskip 1.00006pt\left(\hskip 1.99997pt\frac{B\hskip 1.99997pt+\hskip 3.00003pt\overline{\mu}\hskip 0.50003pt}{B\hskip 1.99997pt+\hskip 1.99997pt\mu}\hskip 1.99997pt\right)_{\hskip 0.70004ptH}U_{\hskip 0.70004pt\mu}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.00003pt.
Now, let us take μ = i \mu\hskip 3.99994pt=\hskip 3.99994pti and observe that U i ( ∙ ) U_{\hskip 0.35002pti}\hskip 1.49994pt(\hskip 1.49994pt\bullet\hskip 1.49994pt) is the usual Cayley transform, which we will denote by U ( ∙ ) U\hskip 1.49994pt(\hskip 1.49994pt\bullet\hskip 1.49994pt) . Hence the last formula implies that
(5)
U ( A ′ ) = U ( B ) H U ( A ) . \quad U\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.49994pt(\hskip 1.49994ptB\hskip 1.49994pt)_{\hskip 0.70004ptH}\hskip 1.49994ptU\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.00003pt.
Since U − i ( ∙ ) = U ( ∙ ) − 1 U_{\hskip 0.35002pt-\hskip 0.70004pti}\hskip 1.49994pt(\hskip 1.49994pt\bullet\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.49994pt(\hskip 1.49994pt\bullet\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1} , for μ = − i \mu\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pti we get U ( A ′ ) − 1 = U ( B ) H − 1 U ( A ) − 1 U\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.49994pt(\hskip 1.49994ptB\hskip 1.49994pt)_{\hskip 0.70004ptH}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994ptU\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1} and hence
(6)
U ( A ′ ) = U ( A ) U ( B ) H . \quad U\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 1.49994ptU\hskip 1.49994pt(\hskip 1.49994ptB\hskip 1.49994pt)_{\hskip 0.70004ptH}\hskip 3.00003pt.
Here U ( A ) , U ( A ′ ) U\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptU\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}\hskip 1.49994pt) have the same meaning as before, but B B is a operator in Ker ( T ∗ − i ) \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.99997pt)
and not in Ker ( T ∗ + i ) \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.99997pt+\hskip 1.99997pti\hskip 1.99997pt)
as before. The identity (6 ) is a minor generalization of the last identity in [Schm ] , Theorem 14.20. The same arguments work for self-adjoint relations ℬ ⊂ 𝒦 − ⊕ 𝒦 − \mathcal{B}\hskip 1.99997pt\subset\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.99997pt\oplus\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-} . In this case we get U ( A ′ ) = U ( ℬ ) H U ( A ) U\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt)_{\hskip 0.70004ptH}\hskip 1.49994ptU\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt) for μ = i \mu\hskip 3.99994pt=\hskip 3.99994pti .
Gelfand triples.
Let H H be a separable Hilbert space and K ⊂ H K\hskip 1.99997pt\subset\hskip 1.99997ptH be a dense vector subspace which is also a Hilbert space in its own right. Let ι : K ⟶ H \iota\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH be the inclusion. It is assumed that ι \iota is bounded. Let K ′ K\hskip 0.50003pt^{\prime} be the space of anti-linear maps K ⟶ 𝐂 K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{C} . Then the dual of ι \iota is the map ι ′ : H ′ ⟶ K ′ \iota\hskip 0.50003pt^{\prime}\hskip 1.00006pt\colon\hskip 1.00006ptH\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime} . Since ι \iota is injective, ι ′ ( H ) \iota\hskip 0.50003pt^{\prime}\hskip 1.00006pt(\hskip 1.49994ptH\hskip 1.49994pt) is dense in K ′ K\hskip 0.50003pt^{\prime} . Since ι ( K ) \iota\hskip 1.49994pt(\hskip 1.49994ptK\hskip 1.49994pt) is dense in H H , the map ι ′ \iota\hskip 0.50003pt^{\prime} is injective. We will identify H H with H ′ H\hskip 0.50003pt^{\prime} in the usual manner, but not K K with K ′ K\hskip 0.50003pt^{\prime} , despite the fact that K K is a Hilbert space. In fact, it is impossible to satisfactory identify both H H with H ′ H\hskip 0.50003pt^{\prime} and K K with K ′ K\hskip 0.50003pt^{\prime} simultaneously. Still, since K K is a Hilbert space, K ′ K\hskip 0.50003pt^{\prime} is also a Hilbert space. Usually we will treat the maps ι \iota and ι ′ \iota\hskip 0.50003pt^{\prime} as inclusions (of sets). Then we get a triple K ⊂ H ⊂ K ′ K\hskip 1.99997pt\subset\hskip 1.99997ptH\hskip 1.99997pt\subset\hskip 1.99997ptK\hskip 0.50003pt^{\prime} of Hilbert spaces, called the Gelfand triple associated with the pair K , H K\hskip 0.50003pt,\hskip 1.99997ptH . We will denote the Hilbert scalar product in K K by ⟨ ∙ , ∙ ⟩ K \langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK}
and use similar notations for other Hilbert spaces. Let
⟨ ∙ , ∙ ⟩ K ′ , K : K ′ × K ⟶ 𝐂 \quad\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 1.99997pt\colon\hskip 1.99997ptK\hskip 0.50003pt^{\prime}\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{C}
be the canonical pairing
⟨ y , x ⟩ K ′ , K = y ( x ) \langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.99994pt=\hskip 3.99994pty\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt) , If ( y , x ) ∈ H × K (\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptx\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptH\hskip 1.00006pt\times\hskip 1.00006ptK , then
⟨ y , x ⟩ K ′ , K = ι ′ y ( x ) = ⟨ y , ι x ⟩ H = ⟨ y , x ⟩ H . \quad\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.99994pt=\hskip 3.99994pt\iota\hskip 0.50003pt^{\prime}\hskip 0.50003pty\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 3.00003pt\iota\hskip 1.00006ptx\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptH}\hskip 3.00003pt.
In other words, ⟨ ∙ , ∙ ⟩ K ′ , K \langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK} is equal to ⟨ ∙ , ∙ ⟩ H \langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptH} on H × K H\hskip 1.00006pt\times\hskip 1.00006ptK . Let
⟨ ∙ , ∙ ⟩ K , K ′ : K × K ′ ⟶ 𝐂 \quad\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 1.99997pt\colon\hskip 1.99997ptK\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{C}
be the pairing ⟨ x , y ⟩ K , K ′ = y ( x ) ¯ \langle\hskip 1.49994pt\hskip 1.00006ptx\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.99994pt=\hskip 3.99994pt\overline{y\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)} . If ( x , y ) ∈ K × H (\hskip 1.49994ptx\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptK\hskip 1.00006pt\times\hskip 1.00006ptH , then
⟨ x , y ⟩ K , K ′ = ι ′ y ( x ) ¯ = ⟨ y , x ⟩ ¯ H = ⟨ x , y ⟩ H . \quad\langle\hskip 1.49994pt\hskip 1.00006ptx\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.99994pt=\hskip 3.99994pt\overline{\iota\hskip 0.50003pt^{\prime}\hskip 0.50003pty\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)}\hskip 3.99994pt=\hskip 3.99994pt\overline{\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\rangle}_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptx\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptH}\hskip 3.00003pt.
In other words, ⟨ ∙ , ∙ ⟩ K , K ′ \langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}} is equal to ⟨ ∙ , ∙ ⟩ H \langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptH} on K × H K\hskip 1.00006pt\times\hskip 1.00006ptH . The Hilbert space K ′ K\hskip 0.50003pt^{\prime} can be also constructed as the completion
of H H with respect to a new scalar product. Let ι ∗ : H ⟶ K \iota^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK be the operator adjoint to ι \iota , i.e. such that
⟨ ι x , y ⟩ H = ⟨ x , ι ∗ y ⟩ K \quad\left\langle\hskip 1.49994pt\hskip 1.00006pt\iota\hskip 1.49994ptx\hskip 0.50003pt,\hskip 3.00003pty\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006ptx\hskip 0.50003pt,\hskip 3.00003pt\iota^{\hskip 0.70004pt*}y\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK}
for every x ∈ K x\hskip 1.99997pt\in\hskip 1.99997ptK , y ∈ H y\hskip 1.99997pt\in\hskip 1.99997ptH . For y ∈ H y\hskip 1.99997pt\in\hskip 1.99997ptH the linear functional ι ′ y : K ⟶ 𝐂 \iota\hskip 0.50003pt^{\prime}\hskip 0.50003pty\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{C} is equal to
ι ′ y : x ⟼ ⟨ y , ι x ⟩ H = ⟨ ι ∗ y , x ⟩ K . \quad\iota\hskip 0.50003pt^{\prime}\hskip 0.50003pty\hskip 1.00006pt\colon\hskip 1.00006ptx\hskip 3.99994pt\longmapsto\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 3.00003pt\iota\hskip 1.00006ptx\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\iota^{\hskip 0.70004pt*}y\hskip 0.50003pt,\hskip 3.00003ptx\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK}\hskip 3.00003pt.
It follows that for every u , v ∈ H u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997ptH the scalar product in K ′ K\hskip 0.50003pt^{\prime} is
⟨ ι ′ u , ι ′ v ⟩ K ′ = ⟨ ι ∗ u , ι ∗ v ⟩ K . \quad\left\langle\hskip 1.49994pt\hskip 1.00006pt\iota\hskip 0.50003pt^{\prime}\hskip 0.50003ptu\hskip 0.50003pt,\hskip 3.00003pt\iota\hskip 0.50003pt^{\prime}\hskip 0.50003ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\iota^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 3.00003pt\iota^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK}\hskip 3.00003pt.
Therefore K ′ K\hskip 0.50003pt^{\prime} can be identified with the completion of H H with respect to the scalar product
(7)
⟨ u , v ⟩ ′ = ⟨ ι ∗ u , ι ∗ v ⟩ K . \quad\left\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle^{\prime}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\iota^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 3.00003pt\iota^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK}\hskip 3.00003pt.
In particular, ⟨ ∙ , ∙ ⟩ K ′ = ⟨ ∙ , ∙ ⟩ ′ \left\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\right\rangle^{\prime} . The equality (7 ) implies that the operator ι ∗ \iota^{\hskip 0.70004pt*} defines
an isometry from the subspace H H of K ′ K\hskip 0.50003pt^{\prime} into K K . Extending ι ∗ \iota^{\hskip 0.70004pt*} by continuity, we get an isometric
operator 𝐈 : K ′ ⟶ K \mathbf{I}\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK . In fact, 𝐈 \mathbf{I} is surjective. Indeed, the image Im 𝐈 \operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\mathbf{I} is closed, and if x ∈ K x\hskip 1.99997pt\in\hskip 1.99997ptK is orthogonal to this image, then x x is orthogonal to Im ι ∗ \operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\iota^{\hskip 0.70004pt*}
and hence x = 0 x\hskip 3.99994pt=\hskip 3.99994pt0 .
It turns out that 𝐈 \mathbf{I} admits a canonical presentation as the composition of two isometries K ′ ⟶ H ⟶ K K\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK . In order to see this, let us consider the operator j = ι ∘ ι ∗ : H ⟶ H j\hskip 3.99994pt=\hskip 3.99994pt\iota\hskip 1.00006pt\circ\hskip 1.00006pt\iota^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH . Clearly, j j is self-adjoint and ⟨ j u , u ⟩ H = ⟨ ι ∗ u , ι ∗ u ⟩ K ⩾ 0 \langle\hskip 1.49994pt\hskip 1.00006ptj\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006pt\iota^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997pt\iota^{\hskip 0.70004pt*}u\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK}\hskip 1.99997pt\geqslant\hskip 1.99997pt0 for every u ∈ H u\hskip 1.99997pt\in\hskip 1.99997ptH , i.e j j is a non-negative operator. Hence the square root Λ = j \Lambda\hskip 3.99994pt=\hskip 3.99994pt\sqrt{j} is well defined. Clearly,
⟨ Λ u , Λ v ⟩ H = ⟨ Λ 2 u , v ⟩ H = ⟨ j u , v ⟩ H = ⟨ ι ∗ u , ι ∗ v ⟩ K = ⟨ u , v ⟩ K ′ \quad\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997pt\Lambda\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda^{2}\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006ptj\hskip 0.50003ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\iota^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997pt\iota^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}}
for every u , v ∈ H u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997ptH . Hence Λ \Lambda defines an isometry from the subspace H ⊂ K ′ H\hskip 1.99997pt\subset\hskip 1.99997ptK\hskip 0.50003pt^{\prime} into H H . Extending Λ \Lambda by continuity to K ′ K\hskip 0.50003pt^{\prime} we get an isometric operator Λ ′ : K ′ ⟶ H \Lambda^{\prime}\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH . We claim that it is surjective. Indeed, the image Im Λ ′ \operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\Lambda^{\prime} is closed, and if u ∈ H u\hskip 1.99997pt\in\hskip 1.99997ptH is orthogonal to this image, then u u is orthogonal to Im Λ = Λ ( H ) \operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\Lambda\hskip 3.99994pt=\hskip 3.99994pt\Lambda\hskip 1.00006pt(\hskip 1.49994ptH\hskip 1.49994pt) . Since Λ \Lambda is self-adjoint, in this case Λ u = 0 \Lambda\hskip 1.00006ptu\hskip 3.99994pt=\hskip 3.99994pt0 and hence ι ∗ u = 0 \iota^{\hskip 0.70004pt*}u\hskip 3.99994pt=\hskip 3.99994pt0 . In turn, this implies that u = 0 u\hskip 3.99994pt=\hskip 3.99994pt0 . It follows that Λ ′ \Lambda^{\prime} is surjective, and hence is an isomorphism K ′ ⟶ H K\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH . Next, we claim that
Λ ∘ Λ ′ = ι ∘ 𝐈 . \quad\Lambda\hskip 1.00006pt\circ\hskip 1.00006pt\Lambda^{\prime}\hskip 3.99994pt=\hskip 3.99994pt\iota\hskip 1.00006pt\circ\hskip 1.00006pt\mathbf{I}\hskip 3.00003pt.
Indeed, on the subspace H ⊂ K ′ H\hskip 1.99997pt\subset\hskip 1.99997ptK\hskip 0.50003pt^{\prime} both compositions
are equal to j = ι ∘ ι ∗ j\hskip 3.99994pt=\hskip 3.99994pt\iota\hskip 1.00006pt\circ\hskip 1.00006pt\iota^{\hskip 0.70004pt*} . By continuity this equality extends to the whole space K ′ K\hskip 0.50003pt^{\prime} . This equality implies that the image Im Λ \operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\Lambda is contained in Im ι = K \operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\iota\hskip 3.99994pt=\hskip 3.99994ptK . Hence we may consider Λ \Lambda as an operator H ⟶ K H\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK . Then the above equality turns into Λ ∘ Λ ′ = 𝐈 \Lambda\hskip 1.00006pt\circ\hskip 1.00006pt\Lambda^{\prime}\hskip 3.99994pt=\hskip 3.99994pt\mathbf{I} , where Λ \Lambda is a map H ⟶ K H\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK and Λ ′ \Lambda^{\prime} is a map K ′ ⟶ H K\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH . Since Λ ′ \Lambda^{\prime} and 𝐈 \mathbf{I} are isometric isomorphisms, this implies that Λ \Lambda is also an isometric isomorphism. The equality 𝐈 = Λ ∘ Λ ′ \mathbf{I}\hskip 3.99994pt=\hskip 3.99994pt\Lambda\hskip 1.00006pt\circ\hskip 1.00006pt\Lambda^{\prime} is the promised presentation of 𝐈 \mathbf{I} as the composition of two isometries K ′ ⟶ H ⟶ K K\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK .
3.1. Lemma.
For every x ∈ K x\hskip 1.99997pt\in\hskip 1.99997ptK , y ∈ K ′ y\hskip 1.99997pt\in\hskip 1.99997ptK\hskip 0.50003pt^{\prime} .
⟨ y , x ⟩ K ′ , K = ⟨ Λ ′ y , Λ − 1 x ⟩ H . \quad\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda^{\prime}\hskip 1.00006pty\hskip 1.00006pt,\hskip 1.99997pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.00006ptx\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.00003pt.
Proof . Let u = Λ − 1 x u\hskip 3.99994pt=\hskip 3.99994pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.00006ptx . If y ∈ H y\hskip 1.99997pt\in\hskip 1.99997ptH , then
⟨ y , x ⟩ K ′ , K = ⟨ y , x ⟩ H = ⟨ y , Λ u ⟩ H = ⟨ Λ y , u ⟩ H = ⟨ Λ ′ y , u ⟩ H . \quad\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 1.00006pt,\hskip 1.99997pt\Lambda\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda\hskip 1.00006pty\hskip 1.00006pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda^{\prime}\hskip 1.00006pty\hskip 1.00006pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.00003pt.
This proves the lemma for y ∈ H y\hskip 1.99997pt\in\hskip 1.99997ptH . The general case follows by continuity. ■ \blacksquare
3.2. Lemma.
The operators Λ : H ⟶ K \Lambda\hskip 1.00006pt\colon\hskip 1.00006ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK and Λ ′ : K ′ ⟶ H \Lambda^{\prime}\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH are adjoint to each other.
Proof . We need to check that Λ ′ y ( u ) = y ( Λ u ) \Lambda^{\prime}\hskip 1.00006pty\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pty\hskip 1.49994pt(\hskip 1.49994pt\Lambda\hskip 1.00006ptu\hskip 1.49994pt) for every y ∈ K ′ y\hskip 1.99997pt\in\hskip 1.99997ptK\hskip 0.50003pt^{\prime} , u ∈ H u\hskip 1.99997pt\in\hskip 1.99997ptH . Recall that we identify H H with H ′ H\hskip 0.50003pt^{\prime} in the standard way. In view of this identification
Λ ′ y ( u ) = ⟨ Λ ′ y , u ⟩ H . \quad\Lambda^{\prime}\hskip 1.00006pty\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda^{\prime}\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.00003pt.
Also, y ( Λ u ) = ⟨ y , Λ u ⟩ K ′ , K y\hskip 1.49994pt(\hskip 1.49994pt\Lambda\hskip 1.00006ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997pt\Lambda\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK} by the definition. If y ∈ H y\hskip 1.99997pt\in\hskip 1.99997ptH , then Λ ′ y = Λ y \Lambda^{\prime}\hskip 1.00006pty\hskip 3.99994pt=\hskip 3.99994pt\Lambda\hskip 1.00006pty
and
⟨ y , Λ u ⟩ K ′ , K = ⟨ y , Λ u ⟩ H . \quad\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997pt\Lambda\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997pt\Lambda\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.00003pt.
The operator Λ \Lambda , considered as an operator H ⟶ H H\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH , is the square root of a self-adjoint positive operator and hence is self-adjoint. Therefore, if y ∈ H y\hskip 1.99997pt\in\hskip 1.99997ptH , then
⟨ Λ ′ y , u ⟩ H = ⟨ Λ y , u ⟩ H = ⟨ y , Λ u ⟩ H = ⟨ y , Λ u ⟩ K ′ , K . \quad\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda^{\prime}\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997pt\Lambda\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997pt\Lambda\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.00003pt.
It follows that Λ ′ y ( u ) = y ( Λ u ) \Lambda^{\prime}\hskip 1.00006pty\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pty\hskip 1.49994pt(\hskip 1.49994pt\Lambda\hskip 1.00006ptu\hskip 1.49994pt) for every y , u ∈ H y\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.99997pt\in\hskip 1.99997ptH . By continuity this equality holds for every y ∈ K ′ y\hskip 1.99997pt\in\hskip 1.99997ptK\hskip 0.50003pt^{\prime} , u ∈ H u\hskip 1.99997pt\in\hskip 1.99997ptH . The lemma follows. ■ \blacksquare
Adjoints in the context of Gelfand triples.
Let us define the adjoint of a closed densely defined operator B : K ′ ⟶ K B\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK as the operator
B ∗ : K ′ ⟶ K ′′ = K B^{\hskip 0.35002pt*}\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime\prime}\hskip 3.99994pt=\hskip 3.99994ptK having as its domain of definition 𝒟 ( B ∗ ) \mathcal{D}\hskip 1.49994pt(\hskip 1.49994ptB^{\hskip 0.35002pt*}\hskip 1.49994pt) the subspace of x ∈ K ′ x\hskip 1.99997pt\in\hskip 1.99997ptK\hskip 0.50003pt^{\prime} such that the linear functional a ⟼ ⟨ B a , x ⟩ K , K ′ a\hskip 1.99997pt\longmapsto\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptB\hskip 1.00006pta\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}} on 𝒟 ( B ) \mathcal{D}\hskip 1.49994pt(\hskip 1.49994ptB\hskip 1.49994pt) extends to a continuous functional on K ′ K\hskip 0.50003pt^{\prime} and
such that
⟨ B a , x ⟩ K , K ′ = ⟨ a , B ∗ x ⟩ K ′ , K \quad\langle\hskip 1.49994pt\hskip 1.00006ptB\hskip 1.00006pta\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006pta\hskip 1.00006pt,\hskip 1.99997ptB^{\hskip 0.35002pt*}x\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.00003pt
for every a ∈ 𝒟 ( B ) , x ∈ 𝒟 ( B ∗ ) a\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.49994pt(\hskip 1.49994ptB\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.49994pt(\hskip 1.49994ptB^{\hskip 0.35002pt*}\hskip 1.49994pt) . Since 𝒟 ( B ) \mathcal{D}\hskip 1.49994pt(\hskip 1.49994ptB\hskip 1.49994pt) is dense, this uniquely determines B ∗ x B^{\hskip 0.35002pt*}x . This notion is different from the usual notion
of the adjoint of B B as an operator between two Hilbert spaces, the latter being an operator K ⟶ K ′ K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime} . An operator B : K ′ ⟶ K B\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK is said to be self-adjoint if it is equal to its adjoint. Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that B B is self-adjoint if and only if the operator Λ − 1 ∘ B ∘ ( Λ ′ ) − 1 : H ⟶ H \Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006ptB\hskip 1.00006pt\circ\hskip 1.00006pt(\hskip 1.49994pt\Lambda^{\prime}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH is self-adjoint in the usual sense.
These definitions naturally extend to relations ℬ ⊂ K ′ ⊕ K \mathcal{B}\hskip 1.99997pt\subset\hskip 1.99997ptK\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006ptK . Namely, the adjoint relation ℬ ∗ \mathcal{B}^{\hskip 0.35002pt*} is defined as the space of pairs ( x , y ) ∈ K ′ ⊕ K (\hskip 1.49994ptx\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptK\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006ptK
such that
⟨ b , x ⟩ K , K ′ = ⟨ a , y ⟩ K ′ , K \quad\langle\hskip 1.49994pt\hskip 1.00006ptb\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006pta\hskip 1.00006pt,\hskip 1.99997pty\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}
for every ( a , b ) ∈ ℬ (\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{B} . Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that ( x , y ) ∈ ℬ ∗ (\hskip 1.49994ptx\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{B}^{\hskip 0.35002pt*} if and only if
⟨ Λ − 1 b , Λ ′ x ⟩ H = ⟨ Λ ′ a , Λ − 1 y ⟩ H \quad\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.00006ptb\hskip 1.00006pt,\hskip 1.99997pt\Lambda^{\prime}\hskip 1.00006ptx\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda^{\prime}\hskip 1.00006pta\hskip 1.00006pt,\hskip 1.99997pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.00006pty\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}
for every ( a , b ) ∈ ℬ (\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{B} . Then ℬ \mathcal{B} is a self-adjoint relation , i.e. is equal to its adjoint, if and only if its image Λ ′ ⊕ Λ − 1 ( ℬ ) \Lambda\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt) in H ⊕ H H\hskip 1.00006pt\oplus\hskip 1.00006ptH is a self-adjoint relation.
4. Abstract boundary problems
The operator A A .
Let H 0 H_{\hskip 0.70004pt0} be a separable Hilbert space and let T T be a closed densely defined symmetric operator in H 0 H_{\hskip 0.70004pt0} . We need to fix a closed self-adjoint extension A A of T T , which we will call the reference operator . The operator A A is contained in T ∗ T^{\hskip 0.70004pt*} . We will say that A A is invertible if A A has a bounded everywhere defined inverse A − 1 : H 0 ⟶ H 0 A^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt0}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0} .
4.1. Lemma.
If the operator A A is invertible, then there is a topological direct sum decomposition 𝒟 ( T ∗ ) = 𝒟 ( A ) ∔ Ker T ∗ \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt)\hskip 1.99997pt\dotplus\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} , where the domains 𝒟 ( T ∗ ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt) and 𝒟 ( A ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt)
are equipped with graph topologies. The associated projection 𝒟 ( T ∗ ) ⟶ 𝒟 ( A ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt) is equal to A − 1 T ∗ A^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.49994ptT^{\hskip 0.70004pt*} .
Proof . See Grubb [G 1 G_{\hskip 0.70004pt1} ] , Lemma II.1.1. Let us reproduce the key part of the proof. Clearly, the right hand side is contained in the left hand side. If u ∈ 𝒟 ( T ∗ ) u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)
and u = a + z u\hskip 3.99994pt=\hskip 3.99994pta\hskip 1.99997pt+\hskip 1.99997ptz with a ∈ 𝒟 ( A ) a\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt)
and z ∈ Ker T ∗ z\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} , then T ∗ u = A a T^{\hskip 0.70004pt*}u\hskip 3.99994pt=\hskip 3.99994ptA\hskip 1.00006pta
and hence a = A − 1 T ∗ u a\hskip 3.99994pt=\hskip 3.99994ptA^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.49994ptT^{\hskip 0.70004pt*}u . It follows that the presentation u = a + z u\hskip 3.99994pt=\hskip 3.99994pta\hskip 1.99997pt+\hskip 1.99997ptz , if exists, is unique. If a = A − 1 T ∗ u a\hskip 3.99994pt=\hskip 3.99994ptA^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.49994ptT^{\hskip 0.70004pt*}u
and z = u − a z\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.99997pt-\hskip 1.99997pta , then
T ∗ z = T ∗ u − A a = T ∗ u − T ∗ a = 0 \quad T^{\hskip 0.70004pt*}z\hskip 3.99994pt=\hskip 3.99994ptT^{\hskip 0.70004pt*}u\hskip 1.99997pt-\hskip 1.99997ptA\hskip 1.00006pta\hskip 3.99994pt=\hskip 3.99994ptT^{\hskip 0.70004pt*}u\hskip 1.99997pt-\hskip 1.99997ptT^{\hskip 0.70004pt*}a\hskip 3.99994pt=\hskip 3.99994pt0
and hence z ∈ Ker T ∗ z\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} . This proves the above decomposition on the algebraic level. Passing to the topological decomposition is fairly routine. ■ \blacksquare
Notations.
When the operator A A is invertible, we will denote by p : 𝒟 ( T ∗ ) ⟶ 𝒟 ( A ) p\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt) and k : 𝒟 ( T ∗ ) ⟶ Ker T ∗ k\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} the projections associated with the decomposition of Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems . We will denote ⟨ ∙ , ∙ ⟩ H 0 \langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptH_{\hskip 0.50003pt0}} simply by ⟨ ∙ , ∙ ⟩ \langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle .
4.2. Lemma.
Suppose that A A is a reference operator. If u , v ∈ 𝒟 ( T ∗ ) u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt) , then
⟨ T ∗ u , v ⟩ − ⟨ u , T ∗ v ⟩ = ⟨ T ∗ u , k ( v ) ⟩ − ⟨ k ( u ) , T ∗ v ⟩ . \quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 1.00006pt,\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt.
Proof . Since u = p ( u ) + k ( u ) u\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)
and v = p ( v ) + k ( v ) v\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt) , the left hand side is equal to
⟨ T ∗ u , p ( v ) + k ( v ) ⟩ − ⟨ p ( u ) + k ( u ) , T ∗ v ⟩ \quad\left\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 1.00006pt,\hskip 1.99997ptp\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle
= ⟨ T ∗ u , p ( v ) ⟩ + ⟨ T ∗ u , k ( v ) ⟩ − ⟨ p ( u ) , T ∗ v ⟩ − ⟨ k ( u ) , T ∗ v ⟩ . \quad=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 1.00006pt,\hskip 1.99997ptp\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 1.99997pt+\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 1.00006pt,\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt.
Since T ∗ k ( u ) = T ∗ k ( v ) = 0 T^{\hskip 0.70004pt*}k\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptT^{\hskip 0.70004pt*}k\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0 , the last expression is equal to
⟨ T ∗ p ( u ) , p ( v ) ⟩ + ⟨ T ∗ u , k ( v ) ⟩ − ⟨ p ( u ) , T ∗ p ( v ) ⟩ − ⟨ k ( u ) , T ∗ v ⟩ \quad\left\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}p\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptp\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 1.99997pt+\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 1.00006pt,\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}p\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt
= ⟨ A p ( u ) , p ( v ) ⟩ − ⟨ p ( u ) , A p ( v ) ⟩ + ⟨ T ∗ u , k ( v ) ⟩ − ⟨ k ( u ) , T ∗ v ⟩ . \quad=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006ptA\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptp\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptA\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 1.99997pt+\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 1.00006pt,\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt.
Since A A is a self-adjoint operator
and p ( u ) , p ( v ) ∈ 𝒟 ( A ) p\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptp\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt) ,
⟨ A p ( u ) , p ( v ) ⟩ − ⟨ p ( u ) , A p ( v ) ⟩ = 0 . \quad\left\langle\hskip 1.49994pt\hskip 1.00006ptA\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptp\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptA\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.99994pt=\hskip 3.99994pt0\hskip 3.00003pt.
The lemma follows. ■ \blacksquare
Boundary operators.
Let H 1 H_{\hskip 0.35002pt1} be a dense subspace of H 0 H_{\hskip 0.70004pt0} , which is a Hilbert space in its own right. Let K ∂ K^{\hskip 0.70004pt\partial} be another separable Hilbert space
and and K K be a dense subspace of K ∂ K^{\hskip 0.70004pt\partial} , which is a Hilbert space in its own right. Suppose that the inclusion maps H 1 ⟶ H 0 H_{\hskip 0.35002pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0} and K ⟶ K ∂ K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial} are bounded operators with respect to these Hilbert space structures. Let K ⊂ K ∂ ⊂ K ′ K\hskip 1.99997pt\subset\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\subset\hskip 1.99997ptK\hskip 0.50003pt^{\prime} be the Gelfand triple associated with the pair K , K ∂ K\hskip 0.50003pt,\hskip 3.00003ptK^{\hskip 0.70004pt\partial} .
We will denote by ⟨ ∙ , ∙ ⟩ ∂ \langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 1.00006pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004pt\partial} the scalar product in K ∂ K^{\hskip 0.70004pt\partial} . Suppose that H 1 ⊂ 𝒟 ( T ∗ ) H_{\hskip 0.70004pt1}\hskip 1.99997pt\subset\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt) , H 1 H_{\hskip 0.70004pt1} is dense in 𝒟 ( T ∗ ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt) , the operator H 1 ⟶ H 0 H_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0} induced by T ∗ T^{\hskip 0.70004pt*} is bounded, and
γ 0 , γ 1 : H 1 ⟶ K ⊂ K ∂ \quad\gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 3.99994pt\subset\hskip 3.99994ptK^{\hskip 0.70004pt\partial}
are bounded operators such that γ = γ 0 ⊕ γ 1 : H 1 ⟶ K ⊕ K \gamma\hskip 3.99994pt=\hskip 3.99994pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK is surjective and
(8)
⟨ T ∗ u , v ⟩ − ⟨ u , T ∗ v ⟩ = ⟨ γ 1 u , γ 0 v ⟩ ∂ − ⟨ γ 0 u , γ 1 v ⟩ ∂ \quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
for every u , v ∈ H 1 u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1} . Then γ : H 1 ⟶ K ⊕ K \gamma\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.35002pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK admits a continuous section, i.e. there exists a bounded operator κ : K ⊕ K ⟶ H 1 \kappa\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.35002pt1} such that γ ∘ κ \gamma\hskip 1.00006pt\circ\hskip 1.00006pt\kappa is equal to the identity map. Suppose further that Ker γ \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma is dense in H 0 H_{\hskip 0.70004pt0} . We will also assume that 𝒟 ( T ) = Ker γ = Ker γ 0 ⊕ γ 1 \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1} . The subspace H 1 H_{\hskip 0.70004pt1} is usually
strictly smaller than 𝒟 ( T ∗ ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt) , and the map γ = γ 0 ⊕ γ 1 \gamma\hskip 3.99994pt=\hskip 3.99994pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1}
considered as a map H 1 ⟶ K ∂ ⊕ K ∂ H_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial} is not surjective unless K = K ∂ K\hskip 3.99994pt=\hskip 3.99994ptK^{\hskip 0.70004pt\partial} . By these reasons the boundary operators γ 0 , γ 1 \gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1} do not define a boundary triplet for T ∗ T^{\hskip 0.70004pt*} .
4.3. Theorem.
The operators γ 0 , γ 1 \gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1} extend by continuity to bounded operators
Γ 0 , Γ 1 : 𝒟 ( T ∗ ) ⟶ K ′ \quad\Gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\Gamma_{1}\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}
(where 𝒟 ( T ∗ ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt) is equipped with the graph topology) such that the Lagrange identity
(9)
⟨ T ∗ u , v ⟩ − ⟨ u , T ∗ v ⟩ = ⟨ Γ 1 u , Γ 0 v ⟩ K ′ , K − ⟨ Γ 0 u , Γ 1 v ⟩ K ′ , K \quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}
holds for every u ∈ 𝒟 ( T ∗ ) , v ∈ H 1 u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1} .
Proof . The proof is based on ideas of Lions and Magenes [L M 3 LM_{\hskip 0.35002pt3} ] . See [L M 3 LM_{\hskip 0.35002pt3} ] , the proof of Theorem 3.1. Let us temporarily fix some u ∈ 𝒟 ( T ∗ ) u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt) . Given φ ∈ K \varphi\hskip 1.99997pt\in\hskip 1.99997ptK , let us choose some w ∈ H 1 w\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1}
such that γ 0 w = 0 \gamma_{0}\hskip 1.00006ptw\hskip 3.99994pt=\hskip 3.99994pt0 and γ 1 w = φ \gamma_{1}\hskip 1.00006ptw\hskip 3.99994pt=\hskip 3.99994pt\varphi and set
Y w ( φ ) = ⟨ u , T ∗ w ⟩ − ⟨ T ∗ u , w ⟩ . \quad Y^{\hskip 0.70004ptw}\hskip 1.00006pt(\hskip 1.49994pt\varphi\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}w\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptw\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt.
We claim that Y w ( φ ) Y^{\hskip 0.70004ptw}\hskip 1.00006pt(\hskip 1.49994pt\varphi\hskip 1.49994pt) does not depend on the choice of w w . Indeed, if w 1 w_{\hskip 0.70004pt1} is some other choice and d = w − w 1 d\hskip 3.99994pt=\hskip 3.99994ptw\hskip 1.99997pt-\hskip 1.99997ptw_{\hskip 0.70004pt1} , then γ 0 d = γ 1 d = 0 \gamma_{0}\hskip 1.00006ptd\hskip 3.99994pt=\hskip 3.99994pt\gamma_{1}\hskip 1.00006ptd\hskip 3.99994pt=\hskip 3.99994pt0 and hence d ∈ 𝒟 ( T ) d\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt) . It follows that ⟨ u , T d ⟩ − ⟨ T ∗ u , d ⟩ = 0 \langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT\hskip 1.00006ptd\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptd\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt0 . At the same time
⟨ T ∗ u , d ⟩ − ⟨ u , T d ⟩ = Y w ( φ ) − Y w 1 ( φ ) , \quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptd\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT\hskip 1.00006ptd\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994ptY^{\hskip 0.70004ptw}\hskip 1.00006pt(\hskip 1.49994pt\varphi\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptY^{\hskip 0.70004ptw_{\hskip 0.50003pt1}}\hskip 1.00006pt(\hskip 1.49994pt\varphi\hskip 1.49994pt)\hskip 3.00003pt,
and therefore Y w ( φ ) = Y w 1 ( φ ) Y^{\hskip 0.70004ptw}\hskip 1.00006pt(\hskip 1.49994pt\varphi\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptY^{\hskip 0.70004ptw_{\hskip 0.50003pt1}}\hskip 1.00006pt(\hskip 1.49994pt\varphi\hskip 1.49994pt) . The claim follows. Now we can set Y ( φ ) = Y w ( φ ) Y\hskip 1.49994pt(\hskip 1.49994pt\varphi\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptY^{\hskip 0.70004ptw}\hskip 1.00006pt(\hskip 1.49994pt\varphi\hskip 1.49994pt) for an arbitrary choice of w w . Clearly, the map φ ⟼ Y ( φ ) \varphi\hskip 3.99994pt\longmapsto\hskip 3.99994ptY\hskip 1.49994pt(\hskip 1.49994pt\varphi\hskip 1.49994pt) is anti-linear. Moreover, it is continuous because the section κ \kappa allows to choose w w continuously depending on φ \varphi . Therefore the map φ ⟼ Y ( φ ) \varphi\hskip 3.99994pt\longmapsto\hskip 3.99994ptY\hskip 1.49994pt(\hskip 1.49994pt\varphi\hskip 1.49994pt) belongs to K ′ K\hskip 0.50003pt^{\prime} . In other terms,
Y ( φ ) = ⟨ τ u , φ ⟩ K ′ , K \quad Y\hskip 1.49994pt(\hskip 1.49994pt\varphi\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006pt\tau\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997pt\varphi\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}
for some τ u ∈ K ′ \tau\hskip 1.00006ptu\hskip 1.99997pt\in\hskip 1.99997ptK\hskip 0.50003pt^{\prime} . Let us denote by ∥ ∙ ∥ T ∗ \|\hskip 1.99997pt\bullet\hskip 1.99997pt\|_{\hskip 1.04996ptT^{\hskip 0.50003pt*}} the graph norm in 𝒟 ( T ∗ ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt) , by ∥ ∙ ∥ \|\hskip 1.99997pt\bullet\hskip 1.99997pt\| the norm in H 0 H_{\hskip 0.70004pt0} , and by ∥ ∙ ∥ K \|\hskip 1.99997pt\bullet\hskip 1.99997pt\|_{\hskip 0.70004ptK} the norm in K K . If w = κ ( φ ) w\hskip 3.99994pt=\hskip 3.99994pt\kappa\hskip 1.49994pt(\hskip 1.49994pt\varphi\hskip 1.49994pt) , then
| ⟨ τ u , φ ⟩ K ′ , K | ⩽ | ⟨ u , T ∗ w ⟩ | + | ⟨ T ∗ u , w ⟩ | \quad|\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006pt\tau\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997pt\varphi\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 1.99997pt|\hskip 3.99994pt\leqslant\hskip 3.99994pt|\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}w\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt|\hskip 3.99994pt+\hskip 3.99994pt|\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptw\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt|
⩽ ‖ u ‖ ⋅ ‖ T ∗ w ‖ + ‖ T ∗ u ‖ ⋅ ‖ w ‖ ⩽ ‖ u ‖ T ∗ ( ‖ T ∗ w ‖ + ‖ w ‖ ) \quad\leqslant\hskip 3.99994pt\|\hskip 1.99997pt\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.99997pt\|\hskip 1.00006pt\cdot\hskip 1.00006pt\|\hskip 1.99997pt\hskip 1.00006ptT^{\hskip 0.70004pt*}w\hskip 1.00006pt\hskip 1.99997pt\|\hskip 3.99994pt+\hskip 3.99994pt\|\hskip 1.99997pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 1.00006pt\hskip 1.99997pt\|\hskip 1.00006pt\cdot\hskip 1.00006pt\|\hskip 1.99997ptw\hskip 1.99997pt\|\hskip 3.99994pt\leqslant\hskip 3.99994pt\|\hskip 1.99997pt\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.99997pt\|_{\hskip 1.04996ptT^{\hskip 0.50003pt*}}\hskip 1.99997pt\left(\hskip 1.99997pt\|\hskip 1.99997pt\hskip 1.00006ptT^{\hskip 0.70004pt*}w\hskip 1.00006pt\hskip 1.99997pt\|\hskip 3.99994pt+\hskip 3.99994pt\|\hskip 1.99997ptw\hskip 1.99997pt\|\hskip 1.99997pt\right)
= ‖ u ‖ T ∗ ( ‖ T ∗ κ ( 0 , φ ) ‖ + ‖ κ ( 0 , φ ) ‖ ) ⩽ ‖ u ‖ T ∗ ( C ‖ φ ‖ K + C ′ ‖ φ ‖ K ) , \quad=\hskip 3.99994pt\|\hskip 1.99997pt\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.99997pt\|_{\hskip 1.04996ptT^{\hskip 0.50003pt*}}\hskip 1.99997pt\left(\hskip 1.99997pt\|\hskip 1.99997pt\hskip 1.00006ptT^{\hskip 0.70004pt*}\kappa\hskip 1.49994pt(\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt\varphi\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.99997pt\|\hskip 3.99994pt+\hskip 3.99994pt\|\hskip 1.99997pt\kappa\hskip 1.49994pt(\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt\varphi\hskip 1.49994pt)\hskip 1.99997pt\|\hskip 1.99997pt\right)\hskip 3.99994pt\leqslant\hskip 3.99994pt\|\hskip 1.99997pt\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.99997pt\|_{\hskip 1.04996ptT^{\hskip 0.50003pt*}}\hskip 1.99997pt\left(\hskip 1.99997ptC\hskip 1.99997pt\|\hskip 1.99997pt\varphi\hskip 1.99997pt\|_{\hskip 0.70004ptK}\hskip 3.99994pt+\hskip 3.99994ptC\hskip 0.50003pt^{\prime}\hskip 1.99997pt\|\hskip 1.99997pt\varphi\hskip 1.99997pt\|_{\hskip 0.70004ptK}\hskip 1.99997pt\right)\hskip 1.99997pt,
where C C and C ′ C\hskip 0.50003pt^{\prime} are the norms of the composition of the section κ : K ⊕ K ⟶ H 1 \kappa\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt1} with the map H 1 ⟶ H 0 H_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0}
induced by T ∗ T^{\hskip 0.70004pt*} and with the inclusion H 1 ⟶ H 0 H_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0} respectively. It follows that u ⟼ τ u u\hskip 3.99994pt\longmapsto\hskip 3.99994pt\tau\hskip 1.00006ptu is a continuous map 𝒟 ( T ∗ ) ⟶ K ′ \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime} .
Let us prove now that τ \tau extends γ 0 \gamma_{0} . If u ∈ H 1 u\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1} , φ ∈ K \varphi\hskip 1.99997pt\in\hskip 1.99997ptK , and w w is as above, then
⟨ τ u , φ ⟩ K ′ , K = ⟨ u , T ∗ w ⟩ − ⟨ T ∗ u , w ⟩ \quad\langle\hskip 1.49994pt\hskip 1.00006pt\tau\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997pt\varphi\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}w\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptw\hskip 1.00006pt\hskip 1.49994pt\rangle
= ⟨ γ 0 u , γ 1 w ⟩ ∂ − ⟨ γ 1 u , γ 0 w ⟩ ∂ = ⟨ γ 0 u , φ ⟩ ∂ = ⟨ γ 0 u , φ ⟩ K ′ , K , \quad\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{1}\hskip 1.00006ptw\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{0}\hskip 1.00006ptw\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\varphi\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\varphi\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.99994pt,
where the last equality holds
because γ 0 u ∈ K ∂ \gamma_{0}\hskip 1.00006ptu\hskip 1.99997pt\in\hskip 1.99997ptK^{\hskip 0.70004pt\partial}
and φ ∈ K \varphi\hskip 1.99997pt\in\hskip 1.99997ptK . Since φ ∈ K \varphi\hskip 1.99997pt\in\hskip 1.99997ptK , it follows that τ u = γ 0 u \tau\hskip 1.00006ptu\hskip 3.99994pt=\hskip 3.99994pt\gamma_{0}\hskip 1.00006ptu . Therefore τ \tau is a continuous extension of γ 0 \gamma_{0} . Let us set Γ 0 = τ \Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt\tau and let us construct the extension Γ 1 \Gamma_{1} in the same way. Since H 1 H_{\hskip 0.70004pt1} is dense in 𝒟 ( T ∗ ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt) by our assumptions, these extensions are unique and are the extensions by the continuity. Since ⟨ ∙ , ∙ ⟩ K , K ′ \langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}} is equal to ⟨ ∙ , ∙ ⟩ ∂ \langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004pt\partial} on K × K ∂ K\hskip 1.00006pt\times\hskip 1.00006ptK^{\hskip 0.70004pt\partial} , the identity (8 ) implies that
⟨ T ∗ u , v ⟩ − ⟨ u , T ∗ v ⟩ = ⟨ Γ 1 u , Γ 0 v ⟩ K ′ , K − ⟨ Γ 0 u , Γ 1 v ⟩ K ′ , K \quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}
for every u , v ∈ H 1 u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1} . In contrast with (8 ) both sides of this equality make sense also for u ∈ 𝒟 ( T ∗ ) u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt) and v ∈ H 1 v\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1} . By continuity this equality extends to such u , v u\hskip 0.50003pt,\hskip 1.99997ptv . In other words (9 ) holds for every u ∈ 𝒟 ( T ∗ ) , v ∈ H 1 u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1} . ■ \blacksquare
4.4. Lemma.
If 𝒟 ( A ) = Ker γ 0 \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0} , then
Ker Γ 0 = Ker γ 0 \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0} and hence Ker Γ 0 ⊂ H 1 \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0}\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1} .
Proof . If u ∈ Ker γ 0 u\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}
and v ∈ Ker Γ 0 v\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0} , then (9 ) implies that ⟨ A u , v ⟩ − ⟨ u , T ∗ v ⟩ = 0 \langle\hskip 1.49994pt\hskip 1.00006ptA\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt0 . It follows that the map u ⟼ ⟨ A u , v ⟩ u\hskip 3.99994pt\longmapsto\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptA\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle extends to a continuous map H ⟶ 𝐂 H\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{C} . Hence u u belongs to the domain 𝒟 ( A ∗ ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA^{*}\hskip 1.00006pt)
of A ∗ A^{*} . Since A A is self-adjoint, it follows that u ∈ 𝒟 ( A ) u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)
and hence
u ∈ Ker γ 0 u\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0} . Therefore Ker Γ 0 ⊂ Ker γ 0 \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0}\hskip 1.99997pt\subset\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0} . The opposite inclusion is obvious. ■ \blacksquare
4.5. Theorem.
If 𝒟 ( A ) = Ker γ 0 \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0} and A A is invertible, then Γ 0 \Gamma_{0} induces a topological isomorphism Ker T ∗ ⟶ K ′ \operatorname{Ker}\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime} , and T ∗ ⊕ Γ 0 : 𝒟 ( T ∗ ) ⟶ H ⊕ K ′ T^{\hskip 0.70004pt*}\oplus\hskip 1.00006pt\Gamma_{0}\hskip 1.99997pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 0.50003pt^{\prime} is a topological isomorphism.
Proof . The proof is based on ideas of Lions and Magenes [L M 2 LM_{\hskip 0.35002pt2} ] . See [L M 2 LM_{\hskip 0.35002pt2} ] , the proof of Theorem 9.2. Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that A = T ∗ | Ker Γ 0 A\hskip 3.99994pt=\hskip 3.99994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0} . By our assumptions A A induces a topological isomorphism 𝒟 ( A ) ⟶ H 0 \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0} . By combining this with Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems , we see that it is sufficient to prove that Γ 0 | Ker T ∗ \Gamma_{0}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} is a topological isomorphism Ker T ∗ ⟶ K ′ \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime} . The kernel of Γ 0 | Ker T ∗ \Gamma_{0}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} is equal to the kernel of A A and hence is equal to 0 by our assumptions. Since Γ 0 \Gamma_{0} is continuous, it is sufficient to prove that the induced map is surjective. Given x ∈ K ′ x\hskip 1.99997pt\in\hskip 1.99997ptK\hskip 0.50003pt^{\prime} , let us consider the anti-linear functional l : 𝒟 ( A ) ⟶ 𝐂 l\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{C}
defined by
l : v ⟼ ⟨ x , γ 1 v ⟩ K ′ , K . \quad l\hskip 1.00006pt\colon\hskip 1.00006ptv\hskip 3.99994pt\longmapsto\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptx\hskip 1.00006pt,\hskip 1.99997pt\gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.00003pt.
Since γ 1 \gamma_{1} is continuous, l l is also continuous. Since A A induces a topological isomorphism 𝒟 ( A ) ⟶ H 0 \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0} , the functional l l is equal to the functional v ⟼ ⟨ u , A v ⟩ v\hskip 3.99994pt\longmapsto\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\rangle for a unique u ∈ H 0 u\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt0} . If v ∈ Ker γ = Ker γ 0 ∩ Ker γ 1 v\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}\hskip 1.99997pt\cap\hskip 1.99997pt\hskip 0.50003pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{1} , then l ( v ) = 0 l\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0
and hence ⟨ u , A v ⟩ = 0 \langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt0 . In view of our assumptions this means that ⟨ u , T v ⟩ = 0 \langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptT\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt0 for every v ∈ 𝒟 ( T ) v\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt) . Therefore u ∈ 𝒟 ( T ∗ ) u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)
and T ∗ u = 0 T^{\hskip 0.70004pt*}u\hskip 3.99994pt=\hskip 3.99994pt0 , i.e. u ∈ Ker T ∗ u\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} . Now (9 ) implies that
− ⟨ u , T ∗ v ⟩ = ⟨ Γ 1 u , Γ 0 v ⟩ K ′ , K − ⟨ Γ 0 u , Γ 1 v ⟩ K ′ , K \quad-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}
for every v ∈ H 1 v\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1} . If v ∈ 𝒟 ( A ) = Ker γ 0 v\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0} , then ⟨ u , T ∗ v ⟩ = l ( v ) \langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994ptl\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt) , and hence
⟨ x , γ 1 v ⟩ K ′ , K = ⟨ Γ 0 u , Γ 1 v ⟩ K ′ , K = ⟨ Γ 0 u , γ 1 v ⟩ K ′ , K . \quad\langle\hskip 1.49994pt\hskip 1.00006ptx\hskip 1.00006pt,\hskip 1.99997pt\gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.00003pt.
Since γ = γ 0 ⊕ γ 1 \gamma\hskip 3.99994pt=\hskip 3.99994pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1} is a map onto K ⊕ K K\hskip 1.00006pt\oplus\hskip 1.00006ptK , the boundary map γ 1 \gamma_{1} maps Ker γ 0 \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0} onto K K . Therefore the last displayed equality implies that x = Γ 0 u x\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{0}\hskip 1.00006ptu . The surjectivity follows. ■ \blacksquare
The reference operator and the boundary operators.
Let us say that an unbounded self-adjoint operator P P in H 0 H_{\hskip 0.70004pt0} is elliptic regular if 𝒟 ( P ) ⊂ H 1 \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptP\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1} . For the rest of this section we will assume that the reference operator A A is elliptic regular. Moreover, we will assume that 𝒟 ( A ) = Ker γ 0 \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0} . The last assumption has technical character
and usually can be achieved by changing the boundary operators γ 0 , γ 1 \gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1} . We will also assume that A A is invertible
and that 𝒟 ( T ) = Ker γ = Ker γ 0 ⊕ γ 1 \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1} .
Where such reference operators come from ?
Let H ∂ = K ∂ ⊕ K ∂ H^{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial} and H 1 / 2 ∂ = K ⊕ K H^{\hskip 0.70004pt\partial}_{\hskip 0.70004pt1/2}\hskip 3.99994pt=\hskip 3.99994ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK , and let Σ : H ∂ ⟶ H ∂ \Sigma\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt\partial}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt\partial} be the operator such that
i Σ = ( 0 1 − 1 0 ) \quad i\hskip 1.49994pt\Sigma\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994pt0&1\hskip 1.99997pt\hskip 3.99994pt\vspace{4.5pt}\\
\hskip 3.99994pt\hskip 1.00006pt-\hskip 1.99997pt1&0\hskip 1.99997pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt
with respect to the decomposition H ∂ = K ∂ ⊕ K ∂ H^{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial} . Clearly, Σ \Sigma leaves H 1 / 2 ∂ H^{\hskip 0.70004pt\partial}_{\hskip 0.70004pt1/2} invariant. In these terms the Lagrange identity (8 ) takes the form
⟨ T ∗ u , v ⟩ − ⟨ u , T ∗ v ⟩ = ⟨ i Σ γ u , γ v ⟩ ∂ , \quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.49994pt\Sigma\hskip 1.49994pt\gamma\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt,
where u , v ∈ H 1 u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1} . Let Π : H ∂ ⟶ H ∂ \Pi\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt\partial}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt\partial} be the projection onto the second summand of the decomposition H ∂ = K ∂ ⊕ K ∂ H^{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial} . Then the pair T ∗ | H 1 , Π T^{\hskip 0.70004pt*}\hskip 1.49994pt|\hskip 1.49994ptH_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994pt\Pi is a boundary problem in the sense of [I 2 I_{\hskip 1.04996pt2} ] , Section 5. Since, clearly, Σ ( Im Π ) = Ker Π \Sigma\hskip 1.49994pt(\hskip 1.49994pt\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\Pi\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Pi , this boundary problem is self-adjoint in the sense of [I 2 I_{\hskip 1.04996pt2} ] . The unbounded operator induced by this boundary problem is nothing else but A = T ∗ | Ker γ 0 A\hskip 3.99994pt=\hskip 3.99994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0} (in [I 2 I_{\hskip 1.04996pt2} ] it is denoted by A Γ A_{\hskip 0.70004pt\Gamma} ).
Suppose now that the boundary problem T ∗ | H 1 , Π T^{\hskip 0.70004pt*}\hskip 1.49994pt|\hskip 1.49994ptH_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994pt\Pi is elliptic regular in the sense of [I 2 I_{\hskip 1.04996pt2} ] (we will not need the precise definition). Suppose also that the inclusion H 1 ⟶ H 0 H_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0} is a compact operator. If, furthermore, the operator
( T ∗ | H 1 ) ⊕ γ 0 : H 1 ⟶ H 0 ⊕ K \quad(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt|\hskip 1.49994ptH_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{0}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006ptK
is Fredholm, then A = T ∗ | Ker γ 0 A\hskip 3.99994pt=\hskip 3.99994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0} is an unbounded self-adjoint Fredholm operator in H 0 H_{\hskip 0.70004pt0} . Moreover, it has discrete spectrum and is an operator with compact resolvent. See [I 2 I_{\hskip 1.04996pt2} ] , Theorem 5.4. All these assumptions hold when the Hilbert spaces involved
are Sobolev spaces, T T is a differential operator, and the boundary condition γ 0 = 0 \gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0 satisfies the Shapiro–Lopatinskii condition for T T , as it will be the case in Sections Boundary triplets and the index of families of self-adjoint elliptic boundary problems – Boundary triplets and the index of families of self-adjoint elliptic boundary problems .
Under the assumptions of the previous paragraph, the operator A A can serve as the reference operator if its kernel is equal to 0 . Indeed, since under these assumptions A A is self-adjoint, the injectivity of A A implies that A A is an isomorphism 𝒟 ( A ) ⟶ H 0 \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0} .
The reduced boundary operator.
Let us
denote the inverse of the isomorphism Γ 0 | Ker T ∗ \Gamma_{0}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} by 𝜸 ( 0 ) : K ′ ⟶ Ker T ∗ \bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} and set M ( 0 ) = Γ 1 ∘ 𝜸 ( 0 ) : K ′ ⟶ K ′ M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt\circ\hskip 1.49994pt\bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime} . The operators 𝜸 ( 0 ) \bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) and M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)
are analogues of the values at z = 0 z\hskip 3.99994pt=\hskip 3.99994pt0 of the gamma field γ ( z ) \gamma\hskip 1.49994pt(\hskip 1.49994ptz\hskip 1.49994pt)
and the Weyl function M ( z ) M\hskip 1.49994pt(\hskip 1.49994ptz\hskip 1.49994pt) from the theory of boundary triplets. Since Γ 1 \Gamma_{1} is continuous in the graph topology of 𝒟 ( T ∗ ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt) , the operator M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) is continuous. The reduced boundary operator is the operator
𝚪 1 = Γ 1 − M ( 0 ) ∘ Γ 0 : 𝒟 ( T ∗ ) ⟶ K ′ . \quad\bm{\Gamma}_{1}\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma_{0}\hskip 1.99997pt\colon\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}\hskip 3.00003pt.
The continuity of Γ 0 , Γ 1 \Gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\Gamma_{1} and M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) implies that 𝚪 1 \bm{\Gamma}_{1} is continuous.
4.6. Lemma.
𝚪 1 = Γ 1 ∘ p \bm{\Gamma}_{1}\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt\circ\hskip 1.00006ptp , where p p is the projection 𝒟 ( T ∗ ) ⟶ 𝒟 ( A ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt) , and Im 𝚪 1 ⊂ K \operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\bm{\Gamma}_{1}\hskip 1.99997pt\subset\hskip 1.99997ptK .
Proof . By Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems , if u ∈ 𝒟 ( T ∗ ) u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.49994pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt) , then u = p ( u ) + z u\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptz for some z ∈ Ker T ∗ z\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} . Since 𝒟 ( A ) = Ker Γ 0 | H 1 \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0}\hskip 1.99997pt|\hskip 1.99997ptH_{\hskip 0.70004pt1} and p p is the projection to 𝒟 ( A ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt) , we see that Γ 0 ( p ( u ) ) = 0 \Gamma_{0}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0 . Hence
𝚪 1 ( u ) = Γ 1 ( p ( u ) ) + Γ 1 ( z ) − M ( 0 ) ∘ Γ 0 ( z ) = Γ 1 ( p ( u ) ) \quad\bm{\Gamma}_{1}\hskip 1.00006pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997pt\Gamma_{1}\hskip 1.00006pt(\hskip 1.49994ptz\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma_{0}\hskip 1.00006pt(\hskip 1.49994ptz\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt)
because M ( 0 ) ∘ Γ 0 ( z ) = Γ 1 ( z ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma_{0}\hskip 1.00006pt(\hskip 1.49994ptz\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt(\hskip 1.49994ptz\hskip 1.49994pt) by the definition. This proves that 𝚪 1 = Γ 1 ∘ p \bm{\Gamma}_{1}\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt\circ\hskip 1.00006ptp . Since p p maps 𝒟 ( T ∗ ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt) into 𝒟 ( A ) ⊂ H 1 \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt)\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1}
and Γ 1 \Gamma_{1} maps H 1 H_{\hskip 0.70004pt1} to K K , this implies that Im 𝚪 1 ⊂ K \operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\bm{\Gamma}_{1}\hskip 1.99997pt\subset\hskip 1.99997ptK . ■ \blacksquare
4.7. Lemma.
If u ∈ 𝒟 ( T ∗ ) u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt) and v ∈ Ker T ∗ v\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} , then
⟨ T ∗ u , v ⟩ = ⟨ 𝚪 1 u , Γ 0 v ⟩ K , K ′ . \quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\bm{\Gamma}_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.00003pt.
Proof . Since T ∗ v = 0 T^{\hskip 0.70004pt*}v\hskip 3.99994pt=\hskip 3.99994pt0 ,
⟨ T ∗ u , v ⟩ = ⟨ T ∗ p ( u ) , v ⟩ = ⟨ T ∗ p ( u ) , v ⟩ − ⟨ p ( u ) , T ∗ v ⟩ . \quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}p\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}p\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt.
Since p ( u ) ∈ 𝒟 ( A ) ⊂ H 1 p\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt)\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1} , the Lagrange identity (9 ) applies with p ( u ) p\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt) in the role of u u , and hence the last expression is equal to
⟨ Γ 1 p ( u ) , Γ 0 v ⟩ K , K ′ − ⟨ Γ 0 p ( u ) , Γ 1 v ⟩ K , K ′ . \quad\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{1}\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.00003pt.
Since Γ 0 p ( u ) = 0 \Gamma_{0}\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0 , it is also equal to
⟨ Γ 1 p ( u ) , Γ 0 v ⟩ K , K ′ = ⟨ 𝚪 1 u , Γ 0 v ⟩ K , K ′ . \quad\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{1}\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\bm{\Gamma}_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.00003pt.
The lemma follows. ■ \blacksquare
4.8. Lemma.
Suppose that u , v ∈ 𝒟 ( T ∗ ) u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt) . Then
⟨ T ∗ u , v ⟩ − ⟨ u , T ∗ v ⟩ = ⟨ 𝚪 1 u , Γ 0 v ⟩ K , K ′ − ⟨ Γ 0 u , 𝚪 1 v ⟩ K ′ , K \quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\bm{\Gamma}_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\bm{\Gamma}_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.00003pt
Proof . Since k ( u ) , k ( v ) ∈ Ker T ∗ k\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} , Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that
⟨ T ∗ u , k ( v ) ⟩ = ⟨ 𝚪 1 u , Γ 0 k ( v ) ⟩ K , K ′ and ⟨ k ( u ) , T ∗ v ⟩ = ⟨ Γ 0 k ( u ) , 𝚪 1 v ⟩ K ′ , K . \quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\bm{\Gamma}_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 8.00003pt\mbox{and}\hskip 8.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997pt\bm{\Gamma}_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 1.99997pt.
Also, Γ 0 p ( u ) = 0 \Gamma_{0}\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0 implies that
Γ 0 u = Γ 0 k ( u ) . \quad\Gamma_{0}\hskip 1.00006ptu\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{0}\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.00003pt.
Similarly, Γ 0 v = Γ 0 k ( v ) \Gamma_{0}\hskip 1.00006ptv\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{0}\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt) . Hence
⟨ T ∗ u , k ( v ) ⟩ − ⟨ k ( u ) , T ∗ v ⟩ = ⟨ 𝚪 1 u , Γ 0 v ⟩ K , K ′ − ⟨ Γ 0 u , 𝚪 1 v ⟩ K ′ , K . \quad\left\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 1.00006pt,\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\bm{\Gamma}_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\bm{\Gamma}_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.00003pt.
It remains to combine this equality with Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems . ■ \blacksquare
4.9. Lemma.
The map Γ 0 ⊕ 𝚪 1 : 𝒟 ( T ∗ ) ⟶ K ′ ⊕ K \Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\bm{\Gamma}_{1}\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006ptK is surjective.
Proof . Recall that the restriction Γ 0 | Ker T ∗ \Gamma_{0}\hskip 1.99997pt|\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} is an isomorphism Ker T ∗ ⟶ K ′ \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime} . Therefore in order to prove surjectivity, it is sufficient to prove that 𝚪 1 \bm{\Gamma}_{1}
maps Ker Γ 0 \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0} onto K K .
By our assumptions, the map Γ 0 ⊕ Γ 1 \Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\Gamma_{1} restricted to H 1 H_{\hskip 0.70004pt1} is surjective onto K ⊕ K K\hskip 1.00006pt\oplus\hskip 1.00006ptK . Therefore Γ 1 \Gamma_{1} maps H 1 ∩ Ker Γ 0 H_{\hskip 0.70004pt1}\hskip 1.99997pt\cap\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0} onto K K . If u ∈ H 1 ∩ Ker Γ 0 u\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1}\hskip 1.99997pt\cap\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0} , then u ∈ 𝒟 ( A ) u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt)
and hence p ( u ) = u p\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu . It follows that 𝚪 1 ( u ) = Γ 1 ∘ p ( u ) = Γ 1 ( u ) \bm{\Gamma}_{1}\hskip 1.00006pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt\circ\hskip 1.00006ptp\hskip 1.00006pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt(\hskip 1.49994ptu\hskip 1.49994pt) . This implies that 𝚪 1 \bm{\Gamma}_{1} maps H 1 ∩ Ker Γ 0 H_{\hskip 0.70004pt1}\hskip 1.99997pt\cap\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0} onto K K . Together with the previous paragraph this proves surjectivity. ■ \blacksquare
The reduced boundary triplet.
Let
Γ ¯ 0 = Λ ′ ∘ Γ 0 : 𝒟 ( T ∗ ) ⟶ K ∂ and \quad\overline{\Gamma}_{0}\hskip 3.99994pt=\hskip 3.99994pt\Lambda^{\prime}\hskip 1.00006pt\circ\hskip 1.49994pt\Gamma_{0}\hskip 1.99997pt\colon\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\quad\mbox{and}\quad
𝚪 ¯ 1 = Λ − 1 ∘ 𝚪 1 : 𝒟 ( T ∗ ) ⟶ K ∂ , \quad\overline{\bm{\Gamma}}_{1}\hskip 3.99994pt=\hskip 3.99994pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.49994pt\bm{\Gamma}_{1}\hskip 1.99997pt\colon\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 3.00003pt,
where Λ , Λ ′ \Lambda\hskip 0.50003pt,\hskip 3.99994pt\Lambda^{\prime} are the operators associated with the Gelfand triple K ⊂ K ∂ ⊂ K ′ K\hskip 3.99994pt\subset\hskip 3.99994ptK^{\hskip 0.70004pt\partial}\hskip 3.99994pt\subset\hskip 3.99994ptK\hskip 0.50003pt^{\prime} . Using Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems we can rewrite the Lagrange identity of Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems as
⟨ T ∗ u , v ⟩ − ⟨ u , T ∗ v ⟩ = ⟨ 𝚪 ¯ 1 u , Γ ¯ 0 v ⟩ ∂ − ⟨ Γ ¯ 0 u , 𝚪 ¯ 1 v ⟩ ∂ , \quad\left\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\overline{\bm{\Gamma}}_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\overline{\Gamma}_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\overline{\Gamma}_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\overline{\bm{\Gamma}}_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt,
i.e. in the standard form of the theory of boundary triplets. Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that
Γ ¯ 0 ⊕ 𝚪 ¯ 1 : 𝒟 ( T ∗ ) ⟶ K ∂ ⊕ K ∂ \quad\overline{\Gamma}_{0}\hskip 1.99997pt\oplus\hskip 1.99997pt\overline{\bm{\Gamma}}_{1}\hskip 1.99997pt\colon\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}
is surjective. Therefore
( K ∂ , Γ ¯ 0 , 𝚪 ¯ 1 ) \quad\left(\hskip 1.99997ptK^{\hskip 0.70004pt\partial},\hskip 3.99994pt\overline{\Gamma}_{0}\hskip 1.00006pt,\hskip 3.99994pt\overline{\bm{\Gamma}}_{1}\hskip 1.99997pt\right)
is a boundary triplet for T ∗ T^{\hskip 0.70004pt*} , called the reduced boundary triplet .
4.10. Lemma.
Ker 𝚪 1 = 𝒟 ( T ) ∔ Ker T ∗ \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\bm{\Gamma}_{1}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt)\hskip 1.99997pt\dotplus\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}
and Ker Γ 0 ⊕ 𝚪 1 = 𝒟 ( T ) \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\bm{\Gamma}_{1}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt) .
Proof . Lemmas Boundary triplets and the index of families of self-adjoint elliptic boundary problems and Boundary triplets and the index of families of self-adjoint elliptic boundary problems imply that Ker 𝚪 1 \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\bm{\Gamma}_{1} is equal to the direct sum of Ker T ∗ \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}
and the kernel of the restriction Γ 1 | 𝒟 ( A ) \Gamma_{1}\hskip 1.49994pt|\hskip 1.99997pt\hskip 0.50003pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt) . Since 𝒟 ( A ) = Ker Γ 0 \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0} , the latter kernel is equal to Ker Γ 0 ⊕ Γ 1 = 𝒟 ( T ) \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\Gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt) . This proves the first claim of the lemma. Since the restriction Γ 0 | Ker T ∗ \Gamma_{0}\hskip 1.99997pt|\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} is injective, the second claim follows. ■ \blacksquare
Comparing boundary triplets.
Let us apply to the extension A A of T T and μ = i \mu\hskip 3.99994pt=\hskip 3.99994pti the construction of boundary triplets
from Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems , and let
(10)
( 𝒦 − , Γ 0 , Γ 1 ) \quad\left(\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 3.99994pt\Gamma^{\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994pt\Gamma^{\hskip 1.04996pt1}\hskip 3.00003pt\right)
be the resulting boundary triplet. Then 𝒟 ( A ) = Ker Γ 0 \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma^{\hskip 1.04996pt0} and Γ 0 : 𝒟 ( T ∗ ) ⟶ 𝒦 − \Gamma^{\hskip 1.04996pt0}\hskip 1.99997pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-} is a continuous surjective map. Therefore Γ 0 \Gamma^{\hskip 1.04996pt0} induces an isomorphism between the quotient space 𝒟 ( T ∗ ) / 𝒟 ( A ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.00006pt/\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)
and 𝒦 − \mathcal{K}_{\hskip 0.70004pt-} . By the same reasons Γ ¯ 0 \overline{\Gamma}_{0} induces an isomorphism between the same quotient space 𝒟 ( T ∗ ) / 𝒟 ( A ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.00006pt/\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt) and K ∂ K^{\hskip 0.70004pt\partial} . It follows that there is a unique topological isomorphism D : K ∂ ⟶ 𝒦 − D\hskip 1.00006pt\colon\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-} such that the triangle
𝒟 ( T ∗ ) {\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)} K ∂ {K^{\hskip 0.70004pt\partial}} 𝒦 − {\mathcal{K}_{\hskip 0.70004pt-}} Γ ¯ 0 \scriptstyle{\displaystyle\overline{\Gamma}_{0}} Γ 0 \scriptstyle{\displaystyle\Gamma^{\hskip 1.04996pt0}} D \scriptstyle{\displaystyle D}
is commutative. Similarly, the kernels of Γ 0 ⊕ Γ 1 \Gamma^{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\Gamma^{\hskip 1.04996pt1} and Γ ¯ 0 ⊕ 𝚪 ¯ 1 \overline{\Gamma}_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\overline{\bm{\Gamma}}_{1}
are equal to
𝒟 ( T ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt) and there is a unique topological isomorphism 𝒲 : K ∂ ⊕ K ∂ ⟶ 𝒦 − ⊕ 𝒦 − \mathcal{W}\hskip 1.00006pt\colon\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-} such that the triangle
𝒟 ( T ∗ ) {\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)} K ∂ ⊕ K ∂ {K^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}} 𝒦 − ⊕ 𝒦 − {\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-}} Γ ¯ 0 ⊕ 𝚪 ¯ 1 \scriptstyle{\displaystyle\overline{\Gamma}_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\overline{\bm{\Gamma}}_{1}} Γ 0 ⊕ Γ 1 \scriptstyle{\displaystyle\Gamma^{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\Gamma^{\hskip 1.04996pt1}} 𝒲 \scriptstyle{\displaystyle\mathcal{W}}
is commutative. The uniqueness of D D implies that the square
K ∂ ⊕ K ∂ {K^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}} 𝒦 − ⊕ 𝒦 − {\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-}} K ∂ {K^{\hskip 0.70004pt\partial}} 𝒦 − , {\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt,} 𝒲 \scriptstyle{\displaystyle\mathcal{W}} D \scriptstyle{\displaystyle D}
where the vertical arrows are projections on the first summand, is commutative. By the uniqueness of boundary triplets 𝒲 \mathcal{W} is an isometry between the Hermitian scalar product
[ ( u , v ) , ( a , b ) ] ∂ = i ⟨ u , b ⟩ ∂ − i ⟨ v , a ⟩ ∂ . \quad[\hskip 1.49994pt(\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997pt(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.49994pt]_{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994pti\hskip 1.49994pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.49994pt\langle\hskip 1.49994pt\hskip 1.00006ptv\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt.
on K ∂ ⊕ K ∂ K^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial} and similarly defined product on 𝒦 − ⊕ 𝒦 − \mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-} . See [BHS ] , Section 1.8 and Theorem 2.5.1. Together with the fact that Ker Γ 0 = Ker Γ ¯ 0 \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma^{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\overline{\Gamma}_{0} this implies that there exists a bounded self-adjoint operator P : 𝒦 − ⟶ 𝒦 − P\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-} such that
(11)
Γ ¯ 0 = D − 1 Γ 0 and 𝚪 ¯ 1 = D ∗ Γ 1 + P D − 1 Γ 0 . \quad\overline{\Gamma}_{0}\hskip 3.99994pt=\hskip 3.99994ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\Gamma^{\hskip 1.04996pt0}\quad\mbox{and}\quad\overline{\bm{\Gamma}}_{1}\hskip 3.99994pt=\hskip 3.99994ptD^{\hskip 0.70004pt*}\hskip 1.49994pt\Gamma^{\hskip 1.04996pt1}\hskip 1.99997pt+\hskip 1.99997ptP\hskip 1.49994ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\Gamma^{\hskip 1.04996pt0}\hskip 3.00003pt.
See [BHS ] , Corollary 2.5.6.
Two examples.
The first one is the reference operator A A itself. By our assumptions it is the self-adjoint extension of T T defined by either the boundary condition γ 0 = 0 \gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0 , or by the boundary condition Γ 0 = 0 \Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0 . The latter is obviously equivalent to Γ ¯ 0 = 0 \overline{\Gamma}_{0}\hskip 3.99994pt=\hskip 3.99994pt0 . Therefore A A can be defined in terms of the reduced boundary triplet as the extension defined by the self-adjoint relation 0 ⊕ K ∂ ⊂ K ∂ ⊕ K ∂ 0\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\subset\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial} . In the notations of [Schm ] , A A is the extension T 0 T_{\hskip 0.70004pt0} .
The second example is A ′ = T ∗ | Ker γ 1 A^{\prime}\hskip 3.99994pt=\hskip 3.99994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{1} . Suppose that A ′ A^{\prime}
is self-adjoint. By Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems with the roles of γ 0 \gamma_{0} and γ 1 \gamma_{1} interchanged, we see that Ker Γ 1 = Ker γ 1 ⊂ H 1 \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{1}\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1} . Clearly,
Ker Γ 1 = Ker ( 𝚪 1 + M ( 0 ) ∘ Γ 0 ) . \quad\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 1.00006pt\bigl{(}\hskip 1.99997pt\bm{\Gamma}_{1}\hskip 1.99997pt+\hskip 1.99997ptM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma_{0}\hskip 1.99997pt\bigr{)}\hskip 3.00003pt.
If u ∈ Ker Γ 1 u\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{1} , then u ∈ H 1 u\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1} and hence Γ 0 u = γ 0 u ∈ K \Gamma_{0}\hskip 1.00006ptu\hskip 3.99994pt=\hskip 3.99994pt\gamma_{0}\hskip 1.00006ptu\hskip 1.99997pt\in\hskip 1.99997ptK . Therefore we can replace M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) by M = M ( 0 ) | K M\hskip 3.99994pt=\hskip 3.99994ptM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt|\hskip 1.49994ptK
considered as a densely defined operator in K ′ K\hskip 0.50003pt^{\prime} . More precisely,
Ker Γ 1 = Ker ( 𝚪 1 + M ∘ Γ 0 ) . \quad\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 1.00006pt\bigl{(}\hskip 1.99997pt\bm{\Gamma}_{1}\hskip 1.99997pt+\hskip 1.99997ptM\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma_{0}\hskip 1.99997pt\bigr{)}\hskip 3.00003pt.
Let us assume that the operator M ( 0 ) : K ′ ⟶ K ′ M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime} leaves K K invariant and that the induced operator K ⟶ K K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK is Fredholm.
Then M = M ( 0 ) | K M\hskip 3.99994pt=\hskip 3.99994ptM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt|\hskip 1.49994ptK is a closed
densely defined operator from K ′ K\hskip 0.50003pt^{\prime} to K K ( but M M is not closed as an operator from K ′ K\hskip 0.50003pt^{\prime} to K ′ K\hskip 0.50003pt^{\prime} ). Clearly,
𝚪 1 + M ∘ Γ 0 = Λ ∘ 𝚪 ¯ 1 + M ∘ ( Λ ′ ) − 1 ∘ Γ ¯ 0 . \quad\bm{\Gamma}_{1}\hskip 1.99997pt+\hskip 1.99997ptM\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt\Lambda\hskip 1.00006pt\circ\hskip 1.00006pt\overline{\bm{\Gamma}}_{1}\hskip 1.99997pt+\hskip 1.99997ptM\hskip 1.00006pt\circ\hskip 1.00006pt(\hskip 1.49994pt\Lambda^{\prime}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006pt\overline{\Gamma}_{0}\hskip 3.00003pt.
Since Λ \Lambda is an isomorphism, it follows that
Ker ( 𝚪 1 + M ∘ Γ 0 ) = Ker ( 𝚪 ¯ 1 + M ¯ ∘ Γ ¯ 0 ) , \quad\operatorname{Ker}\hskip 1.49994pt\hskip 1.00006pt\bigl{(}\hskip 1.99997pt\bm{\Gamma}_{1}\hskip 1.99997pt+\hskip 1.99997ptM\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma_{0}\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 1.00006pt\bigl{(}\hskip 1.99997pt\overline{\bm{\Gamma}}_{1}\hskip 1.99997pt+\hskip 1.99997pt\overline{M}\hskip 1.00006pt\circ\hskip 1.00006pt\overline{\Gamma}_{0}\hskip 1.99997pt\bigr{)}\hskip 3.00003pt,
where M ¯ = Λ − 1 ∘ M ∘ ( Λ ′ ) − 1 \overline{M}\hskip 3.99994pt=\hskip 3.99994pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006ptM\hskip 1.00006pt\circ\hskip 1.00006pt(\hskip 1.49994pt\Lambda^{\prime}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1} is a closed densely defined operator in K ∂ K^{\hskip 0.70004pt\partial} . We see that A ′ A^{\prime} can be defined in terms of the
reduced boundary triplet as the extension of T T corresponding to the operator − M ¯ -\hskip 1.99997pt\overline{M} , or, rather, its graph considered as a relation in K ∂ K^{\hskip 0.70004pt\partial} . Hence, by the theory of boundary triplets, the self-adjointness of A ′ A^{\prime} implies that M ¯ \overline{M} is a self-adjoint operator in K ∂ K^{\hskip 0.70004pt\partial} . By the discussion at the end of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems the operator M ¯ \overline{M} is self-adjoint if and only if the operator M M is self-adjoint as an operator from K ′ K\hskip 0.50003pt^{\prime} to K K .
Remark.
If the inclusion K ⟶ K ′ K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime} is a compact operator, then M ¯ \overline{M} is an operator with compact resolvent. Indeed, under our assumptions M M is Fredholm and hence M − λ M\hskip 1.99997pt-\hskip 1.99997pt\lambda is an isomorphism K ⟶ K K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK for some λ ∈ 𝐑 \lambda\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{R} . The inverse of M ¯ − λ \overline{M}\hskip 1.99997pt-\hskip 1.99997pt\lambda is Λ ′ ∘ ( M − λ ) − 1 ∘ Λ \Lambda^{\prime}\hskip 1.00006pt\circ\hskip 1.00006pt(\hskip 1.49994ptM\hskip 1.99997pt-\hskip 1.99997pt\lambda\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006pt\Lambda . Hence ( M − λ ) − 1 (\hskip 1.49994ptM\hskip 1.99997pt-\hskip 1.99997pt\lambda\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1} is the composition of a topological isomorphism K ⟶ K K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK and the compact inclusion K ⟶ K ′ K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime} . Since Λ \Lambda and Λ ′ \Lambda^{\prime} are topological isomorphisms, this implies that the inverse of M ¯ − λ \overline{M}\hskip 1.99997pt-\hskip 1.99997pt\lambda is compact.
Boundary problems defined in terms of γ 0 , γ 1 \gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1} .
Let γ = γ 0 ⊕ γ 1 \gamma\hskip 3.99994pt=\hskip 3.99994pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1} . Let ℬ ⊂ K ∂ ⊕ K ∂ \mathcal{B}\hskip 3.99994pt\subset\hskip 3.99994ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial} be a closed relation and let T ℬ T_{\hskip 0.35002pt\mathcal{B}} be the restriction of T ∗ T^{\hskip 0.70004pt*} to γ − 1 ( ℬ ) ⊂ H 1 \gamma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1} . Recall that H 1 ⊂ 𝒟 ( T ∗ ) H_{\hskip 0.70004pt1}\hskip 1.99997pt\subset\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt) . Suppose that T ℬ T_{\hskip 0.35002pt\mathcal{B}} is a self-adjoint operator in H 0 H_{\hskip 1.04996pt0} . Then T ℬ T_{\hskip 0.35002pt\mathcal{B}} can be defined in terms of the reduced boundary triplet. The corresponding boundary condition is
Γ ¯ 0 ⊕ 𝚪 ¯ 1 ( 𝒟 ( T ℬ ) ) = Γ ¯ 0 ⊕ 𝚪 ¯ 1 ( γ − 1 ( ℬ ) ) . \quad\overline{\Gamma}_{0}\hskip 1.99997pt\oplus\hskip 1.99997pt\overline{\bm{\Gamma}}_{1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT_{\hskip 0.35002pt\mathcal{B}}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\overline{\Gamma}_{0}\hskip 1.99997pt\oplus\hskip 1.99997pt\overline{\bm{\Gamma}}_{1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\gamma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.00003pt.
It is equal to the image under the map Λ ′ ⊕ Λ − 1 \Lambda^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1} of
Γ 0 ⊕ 𝚪 1 ( γ − 1 ( ℬ ) ) ⊂ K ′ ⊕ K . \quad\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\bm{\Gamma}_{1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\gamma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.99994pt\subset\hskip 3.99994ptK\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 3.00003pt.
Let ℬ | K = ℬ ∩ K ⊕ K \mathcal{B}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 3.99994pt=\hskip 3.99994pt\mathcal{B}\hskip 1.99997pt\cap\hskip 1.99997ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK be the restriction of ℬ \mathcal{B} to K K . Since γ − 1 ( ℬ ) ⊂ H 1 \gamma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1} ,
Γ 0 ⊕ 𝚪 1 ( γ − 1 ( ℬ ) ) = γ 0 ⊕ 𝜸 1 ( γ − 1 ( ℬ | K ) ) , \quad\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\bm{\Gamma}_{1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\gamma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\bm{\gamma}_{1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\gamma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.00003pt,
where 𝜸 1 = γ 1 − M ∘ γ 0 \bm{\gamma}_{1}\hskip 3.99994pt=\hskip 3.99994pt\gamma_{1}\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.00006pt\circ\hskip 1.00006pt\gamma_{0} and M = M ( 0 ) | K M\hskip 3.99994pt=\hskip 3.99994ptM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt|\hskip 1.49994ptK as above. Since γ \gamma is a map onto K ⊕ K K\hskip 1.00006pt\oplus\hskip 1.00006ptK ,
γ 0 ⊕ 𝜸 1 ( γ − 1 ( ℬ | K ) ) = { ( u , v − M u ) | ( u , v ) ∈ ℬ | K } = ℬ | K − M . \quad\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\bm{\gamma}_{1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\gamma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\left\{\hskip 3.00003pt(\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.00006ptu\hskip 1.49994pt)\hskip 3.00003pt\bigl{|}\hskip 3.00003pt(\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{B}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 3.00003pt\right\}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{B}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.99997pt.
Therefore in terms of the reduced boundary triplet T ℬ T_{\hskip 0.35002pt\mathcal{B}} is defined by the boundary condition
Λ ′ ⊕ Λ − 1 ( ℬ | K − M ) . \quad\Lambda^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\mathcal{B}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.99997pt\bigr{)}\hskip 3.00003pt.
If ℬ | K \mathcal{B}\hskip 1.49994pt|\hskip 1.49994ptK is the graph of an operator B K B_{\hskip 0.70004ptK} , then this boundary condition is the graph of
Λ − 1 ∘ ( B K − M ) ∘ ( Λ ′ ) − 1 . \quad\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\circ\hskip 1.99997pt\bigl{(}\hskip 1.99997ptB_{\hskip 0.70004ptK}\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.99997pt\bigr{)}\hskip 1.99997pt\circ\hskip 1.99997pt(\hskip 1.49994pt\Lambda^{\prime}\hskip 1.49994pt)^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 3.00003pt.
In our applications ℬ | K \mathcal{B}\hskip 1.49994pt|\hskip 1.49994ptK will be usually a proper relation, not a graph. Note that the assumption of self-adjointness of T ℬ T_{\hskip 0.35002pt\mathcal{B}} implies, by the theory of boundary triplets and the remarks
at the end of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems , that the relation ℬ | K − M \mathcal{B}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 1.99997pt-\hskip 1.99997ptM is self-adjoint. In applications, the self-adjointness of T ℬ T_{\hskip 0.35002pt\mathcal{B}} is established in the same way as the self-adjointness of A A .
5. Families of abstract boundary problems
Families of extensions.
Let W W be a reasonable (say, compactly generated and paracompact) topological space. Let H H be a separable Hilbert space, T w , w ∈ W T_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW be a family of densely defined closed symmetric operators in H H , and A w , w ∈ W A_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW be a family of self-adjoint operators
such that T w ⊂ A w ⊂ T w ∗ T_{w}\hskip 1.99997pt\subset\hskip 1.99997ptA_{\hskip 0.70004ptw}\hskip 1.99997pt\subset\hskip 1.99997ptT_{w}^{\hskip 0.70004pt*} for every w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW . We will assume that the family A w , w ∈ W A_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is continuous in the topology of uniform resolvent convergence. Let
𝒦 w + = Ker ( T w ∗ − i ) = Im ( T w + i ) ⟂ and \quad\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.99997pt-\hskip 1.99997pt\hskip 0.24994pti\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT_{w}\hskip 1.99997pt+\hskip 1.99997pti\hskip 1.99997pt)^{\hskip 0.70004pt\perp}\quad\mbox{and}\quad
𝒦 w − = Ker ( T w ∗ + i ) = Im ( T w − i ) ⟂ . \quad\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.99997pt+\hskip 1.99997pti\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT_{w}\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.99997pt)^{\hskip 0.70004pt\perp}\hskip 3.00003pt.
Let V w : 𝒦 w + ⟶ 𝒦 w − V_{w}\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt+}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-} be the isometry corresponding to A = A w A\hskip 3.99994pt=\hskip 3.99994ptA_{\hskip 0.70004ptw}
and μ = i \mu\hskip 3.99994pt=\hskip 3.99994pti as
in Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems . By Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems the isometry V w V_{w} is equal to the restriction of U ( A w ) U\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004ptw}\hskip 1.49994pt) to 𝒦 w + \mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt+} . Similarly, the constructions of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems lead to boundary operators
Γ w 0 , Γ w 1 : 𝒟 ( T w ∗ ) ⟶ 𝒦 w − , w ∈ W \quad\Gamma_{w\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994pt\Gamma_{w\hskip 1.04996pt1}\hskip 1.99997pt\colon\hskip 1.99997pt\mathcal{D}\hskip 1.49994pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 3.00003pt,\quad w\hskip 1.99997pt\in\hskip 1.99997ptW\hskip 3.00003pt
such that the analogue of the Lagrange identity (4 ) with subscripts w w holds
for every w w .
Let ℬ w , w ∈ W \mathcal{B}_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW be a family of self-adjoint relations ℬ w ⊂ 𝒦 w − ⊕ 𝒦 w − \mathcal{B}_{w}\hskip 1.99997pt\subset\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-} . We will impose a continuity assumption on this family a little bit later. The boundary triplets
( 𝒦 w − , Γ w 0 , Γ w 1 ) \quad\bigl{(}\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 3.99994pt\Gamma_{w\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994pt\Gamma_{w\hskip 1.04996pt1}\hskip 3.00003pt\bigr{)}
together with relations ℬ w \mathcal{B}_{w}
define a new family A w ′ , w ∈ W A^{\prime}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW of extensions of the operators T w , w ∈ W T_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW such that T w ⊂ A w ′ ⊂ T w ∗ T_{w}\hskip 1.99997pt\subset\hskip 1.99997ptA^{\prime}_{\hskip 0.70004ptw}\hskip 1.99997pt\subset\hskip 1.99997ptT_{w}^{\hskip 0.70004pt*} for every w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW . As we saw in Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems ,
(12)
U ( A w ′ ) = U ( ℬ w ) H U ( A w ) \quad U\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}_{\hskip 0.70004ptw}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{w}\hskip 1.49994pt)_{\hskip 0.70004ptH}\hskip 1.49994ptU\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004ptw}\hskip 1.49994pt)\hskip 3.00003pt
for every w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW . The continuity of the family A w , w ∈ W A_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW in the topology of uniform resolvent convergence is equivalent to the continuity of the family U ( A w ) , w ∈ W U\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004ptw}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW in the norm topology. Therefore the family U ( A w ′ ) , w ∈ W U\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}_{\hskip 0.70004ptw}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is continuous in the topology of uniform resolvent convergence if and only if the family U ( ℬ w ) H , w ∈ W U\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{w}\hskip 1.49994pt)_{\hskip 0.70004ptH}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is continuous in the norm topology. The following assumptions ensure such continuity.
The continuity assumptions.
Let us assume that the subspace 𝒦 w − \mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}
of H H continuously depends on w w . Since 𝒦 w + = U ( A w ) − 1 ( 𝒦 w − ) \mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004ptw}\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 1.49994pt) , under this assumption 𝒦 w + \mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt+} also continuously depends on w w . Since 𝒦 w − \mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}
continuously depends on w w , it makes sense to speak about the continuity of the family ℬ w , w ∈ W \mathcal{B}_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW , and we will assume that it is continuous. These continuity assumptions imply that the family U ( ℬ w ) H , w ∈ W U\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{w}\hskip 1.49994pt)_{\hskip 0.70004ptH}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is continuous in the norm topology, and hence the family U ( A w ′ ) , w ∈ W U\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}_{\hskip 0.70004ptw}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is also continuous. Hence the family A w ′ , w ∈ W A^{\prime}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is continuous in in the topology of uniform resolvent convergence.
Fredholm families of operators and relations.
Suppose now that A w , w ∈ W A_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is a family of Fredholm operators. Since this family is continuous in the topology of uniform resolvent convergence, this implies that A w , w ∈ W A_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is a Fredholm family in the sense of [I 1 I_{\hskip 1.04996pt1} ] . Suppose also that ℬ w , w ∈ W \mathcal{B}_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is a family of Fredholm relations in the sense of [I 2 I_{\hskip 1.04996pt2} ] . Then the analytical index is defined for each of the families A w , w ∈ W A_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW and ℬ w , w ∈ W \mathcal{B}_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW . We will denote these analytical indices by a − ind ( A ∙ ) \operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004pt\bullet}\hskip 1.49994pt) and a − ind ( ℬ ∙ ) \operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{\hskip 0.35002pt\bullet}\hskip 1.49994pt) respectively.
As in [I 2 I_{\hskip 1.04996pt2} ] , we denote by U Fred U^{\hskip 0.70004pt\operatorname{Fred}} the space of Fredholm-unitary operators in H H , i.e. of unitary operators in H H such that − 1 -\hskip 1.99997pt1 does not belongs to the essential spectrum. Equivalently, an operator belongs to U Fred U^{\hskip 0.70004pt\operatorname{Fred}} if and only if it is equal to the Cayley transform of a self-adjoint Fredholm relation in H H . Unfortunately, U Fred U^{\hskip 0.70004pt\operatorname{Fred}} is not closed under the composition. By this reason (12 ) alone is not sufficient to conclude that the operators A w ′ A^{\prime}_{\hskip 0.70004ptw} are Fredholm.
As in [I 2 I_{\hskip 1.04996pt2} ] , we denote by U comp U^{\hskip 0.70004pt\mathrm{comp}} the group of unitary operators H ⟶ H H\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH which differ from id H \operatorname{id}_{\hskip 1.04996ptH} by a compact operator. It is easy to see that U comp U^{\hskip 0.70004pt\mathrm{comp}}
acts on U Fred U^{\hskip 0.70004pt\operatorname{Fred}} by composition from either side, i.e. that V ∈ U comp V\hskip 1.99997pt\in\hskip 1.99997ptU^{\hskip 0.70004pt\mathrm{comp}} , V ′ ∈ U Fred V\hskip 0.50003pt^{\prime}\hskip 1.99997pt\in\hskip 1.99997ptU^{\hskip 0.70004pt\operatorname{Fred}} implies V ∘ V ′ V\hskip 1.00006pt\circ\hskip 1.00006ptV\hskip 0.50003pt^{\prime} and V ′ ∘ V V\hskip 0.50003pt^{\prime}\hskip 1.00006pt\circ\hskip 1.00006ptV belong to U Fred U^{\hskip 0.70004pt\operatorname{Fred}} . Together with (12 ) this implies that if A w , w ∈ W A_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is a family of Fredholm operators with compact resolvent, then A w ′ , w ∈ W A^{\prime}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is a family of Fredholm operators. The same conclusion holds if we impose a similar condition on ℬ w , w ∈ W \mathcal{B}_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW instead of A w , w ∈ W A_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW .
In more details, let us say that a self-adjoint relation ℬ ⊂ H ⊕ H \mathcal{B}\hskip 1.99997pt\subset\hskip 1.99997ptH\hskip 1.00006pt\oplus\hskip 1.00006ptH has compact resolvent if its operator part has compact resolvent. It is easy to see that ℬ \mathcal{B} has compact resolvent if and only if U ( ℬ ) ∈ U comp U\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptU^{\hskip 0.70004pt\mathrm{comp}} . Clearly, if ℬ ⊂ 𝒦 − ⊕ 𝒦 − \mathcal{B}\hskip 1.99997pt\subset\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-} is a relation with compact resolvent, then
U ( ℬ ) H U\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt)_{\hskip 0.70004ptH} belongs to U comp U^{\hskip 0.70004pt\mathrm{comp}} of H H . Therefore if ℬ w , w ∈ W \mathcal{B}_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is a family of Fredholm relations with compact resolvent, then A w ′ , w ∈ W A^{\prime}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is a family of Fredholm operators.
5.1. Theorem.
Suppose that either every operator A w , w ∈ W A_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW has compact resolvent, or every relation ℬ w , w ∈ W \mathcal{B}_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW has compact resolvent. Then
a − ind ( A ∙ ′ ) = a − ind ( A ∙ ) + a − ind ( ℬ ∙ ) . \quad\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}_{\hskip 0.70004pt\bullet}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004pt\bullet}\hskip 1.49994pt)\hskip 3.00003pt+\hskip 3.00003pt\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{\hskip 0.35002pt\bullet}\hskip 1.49994pt)\hskip 3.00003pt.
Proof . The discussion preceding the theorem shows that a − ind ( A ∙ ′ ) \operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}_{\hskip 0.70004pt\bullet}\hskip 1.49994pt) is well-defined. The analytical index of the family ℬ w , w ∈ W \mathcal{B}_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is equal to the analytical index of the family U ( ℬ w ) , w ∈ W U\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{w}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW of Fredholm-unitary operators. See [I 2 I_{\hskip 1.04996pt2} ] , the end of Section 11. Clearly, the families U ( ℬ w ) , w ∈ W U\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{w}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW and U ( ℬ w ) H , w ∈ W U\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{w}\hskip 1.49994pt)_{\hskip 0.70004ptH}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW of Fredholm-unitary operators have the same analytical index. Now the theorem follows from (12 ) and [I 2 I_{\hskip 1.04996pt2} ] , Lemma 11.2. ■ \blacksquare
Families of self-adjoint boundary problems. I.
Let us pass to the framework of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems and keep all assumptions of that section. Let ℬ w , w ∈ W \mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW be a continuous family of self-adjoint Fredholm relations in K ∂ K^{\hskip 0.70004pt\partial} , ℬ w ⊂ K ∂ ⊕ K ∂ \mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997pt\subset\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial} for every w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW . Then ℬ w , w ∈ W \mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is a Fredholm family and its analytical index is defined. See [I 2 I_{\hskip 1.04996pt2} ] , Section 11. The family ℬ w , w ∈ W \mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW
defines a family of self-adjoint extensions
𝒯 w = T ℬ w , w ∈ W \quad\mathcal{T}_{w}\hskip 3.99994pt=\hskip 3.99994ptT_{\hskip 0.35002pt\mathcal{B}_{\hskip 0.25002ptw}}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW
of T T , where 𝒯 w = T ℬ w \mathcal{T}_{w}\hskip 3.99994pt=\hskip 3.99994ptT_{\hskip 0.35002pt\mathcal{B}_{\hskip 0.25002ptw}} is the restriction of T ∗ T^{\hskip 0.70004pt*} to the subspace
𝒟 ( T ℬ w ) = { x ∈ 𝒟 ( T ∗ ) | ( Γ ¯ 0 x , 𝚪 ¯ 1 x ) ∈ ℬ w } . \quad\mathcal{D}\hskip 1.00006pt\left(\hskip 1.99997ptT_{\hskip 0.35002pt\mathcal{B}_{\hskip 0.25002ptw}}\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994pt\left\{\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 3.00003pt\left|\hskip 3.99994pt\left(\hskip 1.99997pt\overline{\Gamma}_{0}\hskip 1.00006ptx\hskip 0.50003pt,\hskip 3.00003pt\overline{\bm{\Gamma}}_{1}\hskip 1.00006ptx\hskip 1.99997pt\right)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{B}_{\hskip 0.35002ptw}\right.\hskip 3.00003pt\right\}\hskip 3.99994pt.
We will say that 𝒯 w \mathcal{T}_{w} is defined by the equation 𝚪 ¯ 1 = ℬ w Γ ¯ 0 \overline{\bm{\Gamma}}_{1}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997pt\overline{\Gamma}_{0} , and similarly for other relations and boundary triplets. The extensions 𝒯 w \mathcal{T}_{w} can be also defined in terms of the boundary triplet (10 ). In view of (11 ) the corresponding equations are
D ∗ Γ 1 + P D − 1 Γ 0 = ℬ w D − 1 Γ 0 , \quad D^{\hskip 0.70004pt*}\hskip 1.49994pt\Gamma^{\hskip 1.04996pt1}\hskip 1.99997pt+\hskip 1.99997ptP\hskip 1.49994ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\Gamma^{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\Gamma^{\hskip 1.04996pt0}\hskip 3.00003pt,
or, equivalently, Γ 1 = 𝒞 w Γ 0 \Gamma^{\hskip 1.04996pt1}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{C}_{\hskip 0.35002ptw}\hskip 1.99997pt\Gamma^{\hskip 1.04996pt0} , where
𝒞 w = ( D ∗ ) − 1 ( ℬ w D − 1 − P D − 1 ) . \quad\mathcal{C}_{\hskip 0.35002ptw}\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.99997ptD^{\hskip 0.70004pt*}\hskip 1.99997pt\right)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\left(\hskip 1.99997pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\hskip 1.49994pt-\hskip 3.00003ptP\hskip 1.49994ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\right)\hskip 3.00003pt.
The family 𝒞 w , w ∈ W \mathcal{C}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is continuous together with ℬ w , w ∈ W \mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW .
5.2. Theorem.
Suppose that ℬ w \mathcal{B}_{\hskip 0.35002ptw} is a relation with compact resolvent for every w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW . Then the family 𝒯 w , w ∈ W \mathcal{T}_{w}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW is Fredholm and its
analytical index is equal to the analytical index of the family ℬ w , w ∈ W \mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW .
Proof . The relation 𝒞 w \mathcal{C}_{\hskip 0.35002ptw} is equal to the difference
( D ∗ ) − 1 ℬ w D − 1 − ( D ∗ ) − 1 P D − 1 \quad\left(\hskip 1.99997ptD^{\hskip 0.70004pt*}\hskip 1.99997pt\right)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\hskip 1.49994pt-\hskip 3.00003pt\left(\hskip 1.99997ptD^{\hskip 0.70004pt*}\hskip 1.99997pt\right)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997ptP\hskip 1.49994ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}
of a relation with compact resolvent and a bounded operator. It follows that 𝒞 w \mathcal{C}_{\hskip 0.35002ptw} is a relation with
compact resolvent and hence U ( 𝒞 w ) ∈ U comp U\hskip 1.49994pt(\hskip 1.49994pt\mathcal{C}_{\hskip 0.35002ptw}\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptU^{\hskip 0.70004pt\mathrm{comp}} for every w w . By the equality (5 )
(13)
U ( 𝒯 w ) = U ( 𝒞 w ) H U ( A ) \quad U\hskip 1.49994pt(\hskip 1.49994pt\mathcal{T}_{w}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.49994pt(\hskip 1.49994pt\mathcal{C}_{\hskip 0.35002ptw}\hskip 1.49994pt)_{\hskip 0.70004ptH}\hskip 1.49994ptU\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.00003pt
for every w w . Since A A is a Fredholm operator and U ( 𝒞 w ) ∈ U comp U\hskip 1.49994pt(\hskip 1.49994pt\mathcal{C}_{\hskip 0.35002ptw}\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptU^{\hskip 0.70004pt\mathrm{comp}} , this implies that 𝒯 w \mathcal{T}_{w} is Fredholm for every w w . See [I 2 I_{\hskip 1.04996pt2} ] , the discussion preceding Lemma 11.2. Moreover, the equality (13 ) implies that the family U ( 𝒯 w ) , w ∈ W U\hskip 1.49994pt(\hskip 1.49994pt\mathcal{T}_{w}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is continuous and hence 𝒯 w , w ∈ W \mathcal{T}_{w}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW is not only a family of Fredholm operators, but is a Fredholm family. Since U ( A ) U\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt) does not depend on w w , the equality (13 ) together with Lemma 11.2 from [I 2 I_{\hskip 1.04996pt2} ] implies that the analytical index of the family 𝒯 w , w ∈ W \mathcal{T}_{w}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW is Fredholm and its
analytical index is equal to the analytical index of the family 𝒞 w , w ∈ W \mathcal{C}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW . It remains to prove that the analytical indices of families 𝒞 w , w ∈ W \mathcal{C}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW and ℬ w , w ∈ W \mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW are equal. The homotopy
𝒞 w , t = ( D ∗ ) − 1 ( ℬ w D − 1 − t P D − 1 ) , t ∈ [ 0 , 1 ] \quad\mathcal{C}_{\hskip 0.35002ptw\hskip 0.35002pt,\hskip 1.39998ptt}\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.99997ptD^{\hskip 0.70004pt*}\hskip 1.99997pt\right)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\left(\hskip 1.99997pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\hskip 1.49994pt-\hskip 3.00003ptt\hskip 1.49994ptP\hskip 1.49994ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\right)\hskip 1.00006pt,\quad t\hskip 1.99997pt\in\hskip 1.99997pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt]
connects the family 𝒞 w , w ∈ W \mathcal{C}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW with the family
( D ∗ ) − 1 ℬ w D − 1 , w ∈ W \quad\left(\hskip 1.99997ptD^{\hskip 0.70004pt*}\hskip 1.99997pt\right)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt,\quad w\hskip 1.99997pt\in\hskip 1.99997ptW\hskip 3.00003pt
and hence the index of 𝒞 w , w ∈ W \mathcal{C}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is equal to the index of the latter family. But the latter family is conjugate to ℬ w , w ∈ W \mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW and hence has the same index. ■ \blacksquare
Allowing T , A , γ 0 , γ 1 T{},\hskip 3.00003ptA\hskip 1.00006pt,\hskip 3.00003pt\gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1} depending on parameters.
Again, let T w , w ∈ W T_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW be a family of densely defined closed symmetric operators in H H , and A w , w ∈ W A_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW be a family self-adjoint operators
such that T w ⊂ A w ⊂ T w ∗ T_{w}\hskip 1.99997pt\subset\hskip 1.99997ptA_{\hskip 0.70004ptw}\hskip 1.99997pt\subset\hskip 1.99997ptT_{w}^{\hskip 0.70004pt*} for every w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW . Suppose that the family A w , w ∈ W A_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is continuous in the topology of the uniform resolvent convergence. Let
γ w 0 , γ w 1 : H 1 ⟶ K , w ∈ W \quad\gamma_{w\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{w\hskip 1.04996pt1}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt,\quad w\hskip 1.99997pt\in\hskip 1.99997ptW
be norm-continuous families of bounded operators. Suppose that for every w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW all assumptions of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems hold for T = T w T\hskip 3.99994pt=\hskip 3.99994ptT_{w} , A = A w A\hskip 3.99994pt=\hskip 3.99994ptA_{\hskip 0.70004ptw} , γ 0 = γ w 0 \gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt\gamma_{w\hskip 1.04996pt0} and γ 1 = γ w 1 \gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt\gamma_{w\hskip 1.04996pt1} . In particular, the operators γ w 0 , γ w 1 \gamma_{w\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{w\hskip 1.04996pt1} extend by continuity to bounded operators 𝒟 ( T w ∗ ) ⟶ K ′ \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime} , which we will denote by Γ w 0 , Γ w 1 \Gamma_{w\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994pt\Gamma_{w\hskip 1.04996pt1} respectively. Then Γ w 0 \Gamma_{w\hskip 1.04996pt0} induces a topological isomorphism Ker T w ∗ ⟶ K ′ \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT_{w}^{\hskip 0.70004pt*}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}
for every w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW . Let
𝜸 w ( 0 ) : K ′ ⟶ Ker T w ∗ \quad\bm{\gamma}_{w}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT_{w}^{\hskip 0.70004pt*}
be its inverse
and let
M w ( 0 ) = Γ w 1 ∘ 𝜸 w ( 0 ) : K ′ ⟶ K ′ . \quad M_{\hskip 0.70004ptw}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{w\hskip 1.04996pt1}\hskip 1.00006pt\circ\hskip 1.49994pt\bm{\gamma}_{w}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}\hskip 3.00003pt.
We need the family 𝜸 w ( 0 ) , w ∈ W \bm{\gamma}_{w}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW be norm-continuous as a a family of bounded operators K ′ ⟶ H K\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH and the family M w ( 0 ) , w ∈ W M_{\hskip 0.70004ptw}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW to be norm-continuous as a family of bounded operators in K ′ K\hskip 0.50003pt^{\prime} . In the present abstract setting we will simply
assume that this is the case. Then the family of reduced boundary operators 𝚪 w 1 = Γ w 1 − M w ( 0 ) ∘ Γ w 0 \bm{\Gamma}_{w\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{w\hskip 0.70004pt1}\hskip 1.99997pt-\hskip 1.99997ptM_{\hskip 0.70004ptw}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma_{w\hskip 0.70004pt0} is norm-continuous, as also the families Γ ¯ w 0 \overline{\Gamma}_{w\hskip 0.70004pt0} and 𝚪 ¯ w 1 \overline{\bm{\Gamma}}_{w\hskip 0.70004pt1} , w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW .
The family 𝒟 ( T w ∗ ) , w ∈ W \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptw\hskip 1.99997pt\in\hskip 1.99997ptW .
Recall that the domains 𝒟 ( T w ∗ ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.49994pt)
are equipped with the graph topology. We may even equip them with the structure of Hilbert spaces
induced from the graphs of operators T w ∗ T_{w}^{\hskip 0.70004pt*} . By Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems
𝒟 ( T w ∗ ) = 𝒟 ( A w ) ∔ Ker T w ∗ . \quad\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA_{\hskip 0.70004ptw}\hskip 1.00006pt)\hskip 1.99997pt\dotplus\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT_{w}^{\hskip 0.70004pt*}\hskip 3.00003pt.
Moreover, replacing ∔ \dotplus by the orthogonal direct sum ⊕ \oplus does not affect the underlying topology. By our assumptions, the domains 𝒟 ( A w ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA_{\hskip 0.70004ptw}\hskip 1.00006pt)
are contained in H 1 H_{\hskip 0.70004pt1} and their graph topology is the same as the topology induced from H 1 H_{\hskip 0.70004pt1} . Moreover, these domains are equal to the kernels of bounded operators Γ w 0 : H 1 ⟶ K \Gamma_{w\hskip 1.04996pt0}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK continuously depending on w w . Therefore 𝒟 ( A w ) , w ∈ W \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA_{\hskip 0.70004ptw}\hskip 1.00006pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is a continuous family of closed subspaces of H 1 H_{\hskip 0.70004pt1} . On the kernel Ker T w ∗ \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT_{w}^{\hskip 0.70004pt*} the graph topology of 𝒟 ( T w ∗ ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.00006pt) is equal to the topology induced from H H . The continuity of the family 𝜸 w ( 0 ) , w ∈ W \bm{\gamma}_{w}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW implies that the family Ker T w ∗ , w ∈ W \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT_{w}^{\hskip 0.70004pt*}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is a continuous family of subspaces of H H . It follows that the family of domains 𝒟 ( T w ∗ ) = 𝒟 ( A w ) ∔ Ker T w ∗ \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA_{\hskip 0.70004ptw}\hskip 1.00006pt)\hskip 1.99997pt\dotplus\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT_{w}^{\hskip 0.70004pt*}
has a natural structure of a Hilbert bundle over W W
with the structure group G L ( H ) GL\hskip 1.49994pt(\hskip 1.49994ptH\hskip 1.49994pt) in the norm topology. The fibers may be not isometric, but are topologically isomorphic to the spaces 𝒟 ( T w ∗ ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.00006pt) with the Hilbert space structures induced from graphs.
Comparing families of boundary triplets.
Let us apply to the extension A w A_{\hskip 0.70004ptw} of T w T_{w} and μ = i \mu\hskip 3.99994pt=\hskip 3.99994pti the construction of boundary triplets
from Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems , and let
(14)
( 𝒦 w − , Γ w 0 , Γ w 1 ) \quad\left(\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 3.99994pt\Gamma_{w}^{\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994pt\Gamma_{w}^{\hskip 1.04996pt1}\hskip 3.00003pt\right)
be the resulting boundary triplets. Let us assume that 𝒦 w − , w ∈ W \mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is a continuous family of subspaces of H H . The discussion of comparing boundary triplets in Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems leads to families of topological isomorphisms
D w : K ∂ ⟶ 𝒦 w − , w ∈ W and \quad D_{w}\hskip 1.00006pt\colon\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 1.00006pt,\quad w\hskip 1.99997pt\in\hskip 1.99997ptW\qquad\mbox{and}\quad
𝒲 w : K ∂ ⊕ K ∂ ⟶ 𝒦 w − ⊕ 𝒦 w − , w ∈ W \quad\mathcal{W}_{w}\hskip 1.49994pt\colon\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 1.00006pt,\quad w\hskip 1.99997pt\in\hskip 1.99997ptW\hskip 3.00003pt
Moreover, there exist bounded self-adjoint operators P w : 𝒦 w − ⟶ 𝒦 − P_{w}\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt\hskip 0.70004pt-} such that
Γ ¯ w 0 = D w − 1 Γ w 0 and \quad\overline{\Gamma}_{w\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994ptD_{w}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\Gamma_{w}^{\hskip 1.04996pt0}\quad\hskip 1.00006pt\mbox{and}\quad\hskip 1.00006pt
𝚪 ¯ w 1 = D w ∗ Γ w 1 + P w D w − 1 Γ w 0 , \quad\overline{\bm{\Gamma}}_{w\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptD_{w}^{\hskip 0.70004pt*}\hskip 1.99997pt\Gamma_{w}^{\hskip 1.04996pt1}\hskip 3.99994pt+\hskip 3.99994ptP_{w}\hskip 1.49994ptD_{w}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\Gamma_{w}^{\hskip 1.04996pt0}\hskip 3.99994pt,
where Γ ¯ w 0 \overline{\Gamma}_{w\hskip 0.70004pt0} and 𝚪 ¯ w 1 \overline{\bm{\Gamma}}_{w\hskip 0.70004pt1}
are defined in the same way as Γ ¯ 0 \overline{\Gamma}_{0} and 𝚪 ¯ 1 \overline{\bm{\Gamma}}_{1} .
5.3. Lemma.
The families D w , 𝒲 w , P w , w ∈ W D_{w}\hskip 1.00006pt,\hskip 3.99994pt\mathcal{W}_{w}\hskip 1.00006pt,\hskip 3.99994ptP_{w}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW are continuous in the norm topology.
Proof . By Kuiper’s theorem we can trivialize the bundles 𝒟 ( T w ∗ ) , w ∈ W \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW and 𝒦 − , w ∈ W \mathcal{K}_{\hskip 0.70004pt\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW as the bundles with the structure group G L ( H ) GL\hskip 1.49994pt(\hskip 1.49994ptH\hskip 1.49994pt) in the norm topology. Therefore the continuity of the families D w , 𝒲 w , w ∈ W D_{w}\hskip 1.00006pt,\hskip 3.99994pt\mathcal{W}_{w}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW follows from the commutative diagrams at the end of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems (with the parameters w w added ). In order to prove the continuity of P w , w ∈ W P_{w}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW , let us write 𝒲 w \mathcal{W}_{w} as a 2 × 2 2\hskip 1.00006pt\times\hskip 1.00006pt2 matrix. Then the operator P w D w − 1 P_{w}\hskip 1.49994ptD_{w}^{\hskip 0.70004pt-\hskip 0.70004pt1} is one of the
entries of this matrix. Therefore the continuity of the family P w , w ∈ W P_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW follows from the already proved continuity of the families D w , 𝒲 w , w ∈ W D_{w}\hskip 1.00006pt,\hskip 3.99994pt\mathcal{W}_{w}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW . ■ \blacksquare
Families of self-adjoint boundary problems. II.
As above, let ℬ w , w ∈ W \mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW be a continuous family of self-adjoint Fredholm relations in K ∂ K^{\hskip 0.70004pt\partial} . For w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW let 𝒯 w \mathcal{T}_{w} be the extension of T w T_{w}
defined by the equation 𝚪 ¯ w 1 = ℬ w Γ ¯ w 0 \overline{\bm{\Gamma}}_{w\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997pt\overline{\Gamma}_{w\hskip 0.70004pt0} .
5.4. Theorem.
Suppose that either every operator A w , w ∈ W A_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW has compact resolvent, or every relation ℬ w , w ∈ W \mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW has compact resolvent. Then the family 𝒯 w , w ∈ W \mathcal{T}_{w}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW is Fredholm and its
analytical index is equal to the analytical index of the family ℬ w , w ∈ W \mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW .
Proof . The proof is similar to the proof of Theorem Boundary triplets and the index of families of self-adjoint elliptic boundary problems . Now the definition of relations 𝒞 w \mathcal{C}_{\hskip 0.35002ptw} has a subscript w w at each letter. Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that the family 𝒞 w , w ∈ W \mathcal{C}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is continuous. The equality (13 ) is replaced by
U ( 𝒯 w ) = U ( 𝒞 w ) H U ( A w ) . \quad U\hskip 1.49994pt(\hskip 1.49994pt\mathcal{T}_{w}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.49994pt(\hskip 1.49994pt\mathcal{C}_{\hskip 0.35002ptw}\hskip 1.49994pt)_{\hskip 0.70004ptH}\hskip 1.49994ptU\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004ptw}\hskip 1.49994pt)\hskip 3.00003pt.
The discussion preceding Theorem Boundary triplets and the index of families of self-adjoint elliptic boundary problems shows that the family 𝒯 w , w ∈ W \mathcal{T}_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is Fredholm. Arguing as in the proof of Theorem Boundary triplets and the index of families of self-adjoint elliptic boundary problems , we see that
a − ind ( 𝒯 ∙ ) = a − ind ( A ∙ ) + a − ind ( 𝒞 ∙ ) . \quad\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994pt\mathcal{T}_{\hskip 0.70004pt\bullet}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004pt\bullet}\hskip 1.49994pt)\hskip 3.00003pt+\hskip 3.00003pt\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994pt\mathcal{C}_{\hskip 0.35002pt\bullet}\hskip 1.49994pt)\hskip 3.00003pt.
But a − ind ( 𝒞 ∙ ) = a − ind ( ℬ ∙ ) \operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994pt\mathcal{C}_{\hskip 0.35002pt\bullet}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{\hskip 0.35002pt\bullet}\hskip 1.49994pt) and a − ind ( A ∙ ) = 0 \operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.35002pt\bullet}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0 because the operators A w A_{\hskip 0.70004ptw} are assumed to be invertible. The theorem follows. ■ \blacksquare
Families of boundary problems
defined in terms of γ w 0 , γ w 1 \gamma_{w\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{w\hskip 1.04996pt1} .
Let γ w = γ w 0 ⊕ γ w 1 \gamma_{w}\hskip 3.99994pt=\hskip 3.99994pt\gamma_{w\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{w\hskip 1.04996pt1} . Let ℬ w ⊂ K ∂ ⊕ K ∂ \mathcal{B}_{\hskip 0.35002ptw}\hskip 3.99994pt\subset\hskip 3.99994ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial} , where w w runs over W W , be a family of self-adjoint closed relations. It is only natural to assume that this family is continuous, say, in the sense of [I 2 I_{\hskip 1.04996pt2} ] , Section 11. But what is really needed is the continuity
of the family of restrictions
ℬ w | K = ℬ w ∩ K ⊕ K \mathcal{B}_{\hskip 0.35002ptw}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 3.99994pt=\hskip 3.99994pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997pt\cap\hskip 1.99997ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK . In our the applications both continuity properties will be hold by the same reason.
For w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW let 𝒯 w \mathcal{T}_{\hskip 0.35002ptw} be the restriction of T ∗ T^{\hskip 0.70004pt*} to γ w − 1 ( ℬ w ) ⊂ H 1 \gamma_{w}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1} . Suppose that 𝒯 w \mathcal{T}_{\hskip 0.35002ptw} is a self-adjoint operator in H H for every w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW . The discussion at the end of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems shows that 𝒯 w \mathcal{T}_{\hskip 0.35002ptw} is defined in terms of the boundary triplet ( K , Γ ¯ w 0 , 𝚪 ¯ w 1 ) (\hskip 1.49994ptK\hskip 1.00006pt,\hskip 3.99994pt\overline{\Gamma}_{w\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 3.00003pt\overline{\bm{\Gamma}}_{w\hskip 0.70004pt1}\hskip 1.49994pt) by the boundary conditions
ℛ w = Λ ′ ⊕ Λ − 1 ( ℬ w | K − M w ) , \quad\mathcal{R}_{\hskip 0.35002ptw}\hskip 3.99994pt=\hskip 3.99994pt\Lambda^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 1.99997pt-\hskip 1.99997ptM_{\hskip 0.70004ptw}\hskip 1.99997pt\bigr{)}\hskip 3.00003pt,
where M w = M w ( 0 ) | K M_{\hskip 0.70004ptw}\hskip 3.99994pt=\hskip 3.99994ptM_{\hskip 0.70004ptw}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt|\hskip 1.49994ptK . By Theorem Boundary triplets and the index of families of self-adjoint elliptic boundary problems the family 𝒯 w , w ∈ W \mathcal{T}_{w}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW is Fredholm and its
analytical index is equal to the analytical index of ℛ w , w ∈ W \mathcal{R}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW if either every operator A w , w ∈ W A_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW has compact resolvent, or every relation ℛ w , w ∈ W \mathcal{R}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW has compact resolvent.
In our applications to differential boundary problems
the operators A w A_{\hskip 0.70004ptw} will be defined by
self-adjoint elliptic boundary problems of order 1 1 . Such operators are known to have compact resolvent. While this is sufficient for our purposes, we note that the relations ℛ w \mathcal{R}_{\hskip 0.70004ptw} will also have compact resolvent because the inclusion K ⟶ K ′ K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime} will be a compact operator.
6. Differential boundary problems of order one
Sobolev spaces and trace operators.
Let X X be a compact manifold with non-empty boundary Y Y , and let X ∘ = X ∖ Y X^{\hskip 0.70004pt\circ}\hskip 3.99994pt=\hskip 3.99994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY . Let E E be a Hermitian bundle over X X equipped with an orthogonal decomposition E | Y = F ⊕ F E\hskip 1.49994pt|\hskip 1.49994ptY\hskip 3.99994pt=\hskip 3.99994ptF\hskip 1.00006pt\oplus\hskip 1.00006ptF , where F F is a Hermitian bundle over Y Y . Let H 0 H_{\hskip 0.70004pt0} and H 1 H_{\hskip 0.70004pt1} be the Sobolev spaces H 0 ( X ∘ , E ) H_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt)
and H 1 ( X ∘ , E ) H_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt) respectively. Let
K ∂ = H 0 ( Y , F ) and K = H 1 / 2 ( Y , F ) . \quad K^{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptF\hskip 1.49994pt)\quad\mbox{and}\quad K\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptF\hskip 1.49994pt)\hskip 3.00003pt.
Then the anti-dual space K ′ K\hskip 0.50003pt^{\prime} is canonically isomorphic to H − 1 / 2 ( Y , F ) H_{\hskip 0.70004pt-\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptF\hskip 1.49994pt)
and K ⊂ K ∂ ⊂ K ′ K\hskip 1.99997pt\subset\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\subset\hskip 1.99997ptK\hskip 0.50003pt^{\prime} is a Gelfand triple. The decomposition E | Y = F ⊕ F E\hskip 1.49994pt|\hskip 1.49994ptY\hskip 3.99994pt=\hskip 3.99994ptF\hskip 1.00006pt\oplus\hskip 1.00006ptF
shows that
H 1 / 2 ( Y , E | Y ) = K ⊕ K , \quad H_{\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 1.99997pt,\quad
H − 1 / 2 ( Y , E | Y ) = K ′ ⊕ K ′ , and \quad H_{\hskip 0.70004pt-\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptK\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt,\quad\mbox{and}\quad
H 0 ( Y , E | Y ) = K ∂ ⊕ K ∂ . \quad H_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt.\quad
Let us denote by Π 0 , Π 1 \Pi_{\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 3.00003pt\Pi_{\hskip 0.70004pt1} the projections onto the first and the second summands respectively in each of these decompositions. Let
γ : H 1 ( X ∘ , E ) ⟶ H 1 / 2 ( Y , E | Y ) \quad\gamma\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.49994pt)
be the trace operator and let γ 0 , γ 1 \gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1} be its compositions with the projections Π 0 , Π 1 \Pi_{\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 3.00003pt\Pi_{\hskip 0.70004pt1} respectively. Then γ = γ 0 ⊕ γ 1 \gamma\hskip 3.99994pt=\hskip 3.99994pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1} . As is well known, the map γ \gamma is surjective, admits a continuous section, and its kernel Ker γ \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma is dense in H 0 = H 0 ( X ∘ , E ) H_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt) .
The reference operator.
Let P P be
a formally self-adjoint differential operator of order 1 1 acting on sections of E E . Then P P satisfies the Lagrange identity
⟨ P u , v ⟩ − ⟨ u , P v ⟩ = ⟨ i Σ γ u , γ v ⟩ ∂ , \quad\langle\hskip 1.49994pt\hskip 1.00006ptP\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptP\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.49994pt\Sigma\hskip 1.49994pt\gamma\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt,
where u , v ∈ H 1 u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1} and Σ \Sigma is the coefficient of the normal derivative D n = − i ∂ x n D_{\hskip 0.35002ptn}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pti\hskip 1.99997pt\partial\hskip 0.50003ptx_{\hskip 0.70004ptn} to Y Y
in P P (as usual, n = dim X n\hskip 3.99994pt=\hskip 3.99994pt\dim\hskip 1.00006ptX and x n x_{\hskip 0.70004ptn} is the normal coordinate). Suppose that P P is an elliptic operator
and that i Σ i\hskip 1.49994pt\Sigma has the form
(15)
i Σ = ( 0 1 − 1 0 ) \quad i\hskip 1.49994pt\Sigma\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994pt0&1\hskip 1.99997pt\hskip 3.99994pt\vspace{4.5pt}\\
\hskip 3.99994pt\hskip 1.00006pt-\hskip 1.99997pt1&0\hskip 1.99997pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt
with respect to some decomposition E | Y = F ⊕ F E\hskip 1.49994pt|\hskip 1.49994ptY\hskip 3.99994pt=\hskip 3.99994ptF\hskip 1.00006pt\oplus\hskip 1.00006ptF . Without any loss of generality we can assume that the decomposition from the previous subsection is equal to this one. Then the Lagrange identity for P P takes the standard form
(16)
⟨ P u , v ⟩ − ⟨ u , P v ⟩ = ⟨ γ 1 u , γ 0 v ⟩ ∂ − ⟨ γ 0 u , γ 1 v ⟩ ∂ \quad\langle\hskip 1.49994pt\hskip 1.00006ptP\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptP\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt
from the theory of boundary triplets. Let T T be the restriction of P P to Ker γ \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma . The domain 𝒟 ( T ∗ ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt) of the Hilbert space adjoint T ∗ T^{\hskip 0.70004pt*} is equal to the space 𝒟 P 0 \mathcal{D}^{\hskip 0.35002pt0}_{\hskip 1.04996ptP} of all distributions u u such that P u ∈ H 0 ( X ∘ , E ) P\hskip 0.50003ptu\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt) , where P u P\hskip 0.50003ptu is understood in the distributional sense, and the action of T ∗ T^{\hskip 0.70004pt*} agrees with the action of P P on distributions. See [G 2 G_{\hskip 0.70004pt2} ] , Section 4.1. The Lagrange identity implies that H 1 = H 1 ( X ∘ , E ) H_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt) is contained in 𝒟 ( T ∗ ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt) . Moreover, H 1 H_{\hskip 0.70004pt1} is dense in 𝒟 ( T ∗ ) \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)
equipped with the graph topology. This is a classical result essentially due to Lions and Magenes [L M 1 LM_{\hskip 0.35002pt1} ] (see [L M 1 LM_{\hskip 0.35002pt1} ] , footnote (6 \stackrel{{\scriptstyle 6}}{{}} ) on p. 147 ). The corresponding result for P = 1 − Δ P\hskip 3.99994pt=\hskip 3.99994pt1\hskip 1.99997pt-\hskip 1.99997pt\Delta , where Δ \Delta is the Laplace operator, is proved in [G 2 G_{\hskip 0.70004pt2} ] , Theorem 9.8. Mutatis mutandis this proof applies in the present context.
Let A A be the restriction of P P to Ker γ 0 \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0} . Suppose that each of the boundary conditions γ 0 = 0 \gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0 and γ 1 = 0 \gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt0 satisfies the Shapiro–Lopatinskii condition for P P . Then the operators A A and A ′ = P | Ker γ 1 A^{\prime}\hskip 3.99994pt=\hskip 3.99994ptP\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{1} are unbounded Fredholm operators in H 0 = H 0 ( X ∘ , E ) H_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt) and are self-adjoint operators with the domains 𝒟 ( A ) , 𝒟 ( A ′ ) ⊂ H 1 \mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA^{\prime}\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1} . See [I 2 I_{\hskip 1.04996pt2} ] , Sections 5 and 7. In particular, A A is contained in T ∗ T^{\hskip 0.70004pt*}
and the kernel of A A is finitely dimensional. In order to use A A as the reference operator we have to assume that Ker A = 0 \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptA\hskip 3.99994pt=\hskip 3.99994pt0 . Then A A has a bounded everywhere defined inverse A − 1 : H ⟶ H A^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH .
This completes the verification of assumptions of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems , except of the assumptions concerned with M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) . Therefore the results of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems , in particular Theorems Boundary triplets and the index of families of self-adjoint elliptic boundary problems and Boundary triplets and the index of families of self-adjoint elliptic boundary problems , and the construction of the reduced boundary triplet apply in the present situation.
Calderón’s method.
We would like to give a more explicit description of the reduced boundary triplet in the above context, and, in particular, to determine the operator M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) . To this end we will apply the Calderón’s method
as presented by G. Grubb in [G 2 G_{\hskip 0.70004pt2} ] , Chapter 11. In order to be able to freely refer to G. Grubb [G 2 G_{\hskip 0.70004pt2} ] we will assume that P P extends to an invertible differential operator over the double X ^ \widehat{X} of X X acting on the sections of the double E ^ \widehat{E} of the bundle E E . We will denote the extended operator still by P P , and its inverse by Q Q . We will use the notation γ \gamma also for the trace operator taking the sections over X ^ \widehat{X} to their restrictions to Y Y , and denote by r + r_{\hskip 0.70004pt+} the operator taking the sections over X ^ \widehat{X} to their restrictions to X ∘ X^{\hskip 0.70004pt\circ} . Note that the difference between X X and X ∘ X^{\hskip 0.70004pt\circ} is essential : some sections are generalized ones
with singularities along Y Y ; the operator r + r_{\hskip 0.70004pt+} erases such singularities. Let
𝔄 = i Σ and K + = − r + ∘ Q ∘ γ ∗ ∘ 𝔄 , \quad\mathfrak{A}\hskip 3.99994pt=\hskip 3.99994pti\hskip 1.49994pt\Sigma\quad\mbox{and}\quad K_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997ptr_{\hskip 0.70004pt+}\hskip 1.00006pt\circ\hskip 1.49994ptQ\hskip 1.00006pt\circ\hskip 1.00006pt\gamma^{\hskip 0.70004pt*}\circ\hskip 1.49994pt\mathfrak{A}\hskip 3.00003pt,
where γ ∗ : H − 1 / 2 ( Y , E | Y ) ⟶ H − 1 ( X ^ , E ^ ) \gamma^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt-\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997pt\widehat{X}\hskip 0.50003pt,\hskip 1.99997pt\widehat{E}\hskip 1.49994pt) is the adjoint (dual ) operator of γ \gamma . Following G. Grubb [G 2 G_{\hskip 0.70004pt2} ] , let us set Z 0 = Ker T ∗ Z_{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} . Let Γ = Γ 0 ⊕ Γ 1 \Gamma\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\Gamma_{1} . Since Z 0 ⊂ 𝒟 ( T ∗ ) Z_{\hskip 1.04996pt0}\hskip 1.99997pt\subset\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt) , the extended trace operator Γ \Gamma is well defined on Z 0 Z_{\hskip 0.70004pt0} and maps Z 0 Z_{\hskip 1.04996pt0} into H − 1 / 2 ( Y , E | Y ) H_{\hskip 0.70004pt-\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.49994pt) . Let N 0 = Γ ( Z 0 ) N_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994pt\Gamma\hskip 1.49994pt(\hskip 1.49994ptZ_{\hskip 1.04996pt0}\hskip 1.49994pt) . Note that the support of every section in the image of γ ∗ \gamma^{\hskip 0.70004pt*} is contained in Y Y (they are δ \delta -functions
in the direction transverse to Y Y ). This implies that the image of
K + : H − 1 / 2 ( Y , E | Y ) ⟶ H 0 ( X ∘ , E ) \quad K_{\hskip 0.70004pt+}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt-\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt)
is contained in the kernel of P P over X ∘ X^{\hskip 0.70004pt\circ} , or, equivalently, in Z 0 Z_{\hskip 1.04996pt0} . Moreover, K + K_{\hskip 0.70004pt+} induces an isomorphism N 0 ⟶ Z 0 N_{\hskip 0.70004pt0}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptZ_{\hskip 1.04996pt0} , and its inverse is induced by Γ \Gamma . See [G 2 G_{\hskip 0.70004pt2} ] , Proposition 11.5.
The composition C + = Γ ∘ K + C_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994pt\Gamma\hskip 1.49994pt\circ\hskip 1.49994ptK_{\hskip 0.70004pt+} is known as the Calderón projector . It is indeed a projection, i.e. C + ∘ C + = C + C_{\hskip 0.70004pt+}\hskip 0.50003pt\circ\hskip 1.49994ptC_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994ptC_{\hskip 0.70004pt+} , and is a pseudo-differential operator of order 0 . See [G 2 G_{\hskip 0.70004pt2} ] , Proposition 11.7. The symbol c + c_{\hskip 0.70004pt+} of C + C_{\hskip 0.70004pt+} can be expressed in terms of the plus-integral of the symbol q q of Q Q . We refer to Hörmander [H ] , Lemma 18.2.16 for the definition of the plus-integral ∫ + f ( t ) 𝑑 t \int^{\hskip 0.70004pt+}f\hskip 1.49994pt(\hskip 1.49994ptt\hskip 1.49994pt)\hskip 1.99997ptdt . If we write q q locally in terms of the coordinates ( y , x n , u , t ) (\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptx_{\hskip 0.70004ptn}\hskip 0.50003pt,\hskip 1.99997ptu\hskip 0.50003pt,\hskip 1.99997ptt\hskip 1.49994pt) , where y y is the coordinates on Y Y , x n x_{\hskip 0.70004ptn} is the normal coordinate, and u , t u\hskip 0.50003pt,\hskip 1.99997ptt are dual to y , x n y\hskip 0.50003pt,\hskip 1.99997ptx_{\hskip 0.70004ptn} , then
c + ( y , u ) = − ( 2 π ) − 1 ( ∫ + q ( y , 0 , u , t ) 𝑑 t ) ∘ 𝔄 . \quad c_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt(\hskip 1.49994pt2\hskip 1.00006pt\pi\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\left(\hskip 1.99997pt\int^{\hskip 0.70004pt+}q\hskip 1.49994pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997pt0\hskip 0.50003pt,\hskip 1.99997ptu\hskip 0.50003pt,\hskip 1.99997ptt\hskip 1.49994pt)\hskip 1.99997ptdt\hskip 1.99997pt\right)\hskip 1.99997pt\circ\hskip 1.99997pt\mathfrak{A}\hskip 3.00003pt.
This follows from Hörmander [H ] , Theorem 18.2.17. This theorem determines the symbol of operators of the form Γ ∘ r + ∘ R ∘ γ ∗ \Gamma\hskip 1.00006pt\circ\hskip 1.00006ptr_{\hskip 0.70004pt+}\hskip 1.00006pt\circ\hskip 1.49994ptR\hskip 1.49994pt\circ\hskip 1.00006pt\gamma^{\hskip 0.70004pt*} , where R R is a polyhomogeneous pseudo-differential operator
satisfying the transmission condition. Since Q Q is the inverse of a differential operator, it applies to R = Q R\hskip 3.99994pt=\hskip 3.99994ptQ . The boundary operator Γ \Gamma , being the extension of γ \gamma by the continuity, agrees with Hörmander’s one.
Computing the plus-integral.
At the boundary Y Y the symbol p p of P P has the form
(17)
p ( y , 0 , u , t ) = t σ y + τ u ( y ) , \quad p\hskip 1.49994pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997pt0\hskip 0.50003pt,\hskip 1.99997ptu\hskip 0.50003pt,\hskip 1.99997ptt\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptt\hskip 1.49994pt\sigma_{y}\hskip 1.99997pt+\hskip 1.99997pt\tau_{\hskip 0.35002ptu}\hskip 1.49994pt(\hskip 1.49994pty\hskip 1.49994pt)\hskip 3.00003pt,
where σ y \sigma_{y} is the coefficient of D n D_{\hskip 0.35002ptn} at y ∈ Y y\hskip 1.99997pt\in\hskip 1.99997ptY (so, in fact, σ y = Σ \sigma_{y}\hskip 3.99994pt=\hskip 3.99994pt\Sigma ) and τ u ( y ) \tau_{\hskip 0.35002ptu}\hskip 1.49994pt(\hskip 1.49994pty\hskip 1.49994pt) is a self-adjoint operator E y ⟶ E y E_{\hskip 0.70004pty}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE_{\hskip 0.70004pty} linearly depending on u u for every y ∈ Y y\hskip 1.99997pt\in\hskip 1.99997ptY . We will write simply τ u \tau_{\hskip 0.35002ptu} for τ u ( y ) \tau_{\hskip 0.35002ptu}\hskip 1.49994pt(\hskip 1.49994pty\hskip 1.49994pt) . As in [I 2 I_{\hskip 1.04996pt2} ] , let ρ u = σ y − 1 τ u \rho_{\hskip 0.70004ptu}\hskip 3.99994pt=\hskip 3.99994pt\sigma_{y}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\tau_{\hskip 0.35002ptu} . Then
q ( y , 0 , t , u ) = p ( y , 0 , u , t ) − 1 = ( t σ y + τ u ) − 1 and \quad q\hskip 1.49994pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997pt0\hskip 0.50003pt,\hskip 1.99997ptt\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.49994pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997pt0\hskip 0.50003pt,\hskip 1.99997ptu\hskip 0.50003pt,\hskip 1.99997ptt\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994ptt\hskip 1.49994pt\sigma_{\hskip 0.35002pty}\hskip 1.99997pt+\hskip 1.99997pt\tau_{\hskip 0.70004ptu}\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\quad\mbox{and}
c + ( y , u ) = − ( 2 π ) − 1 ∫ + i σ y t σ y + τ u 𝑑 t = − ( 2 π ) − 1 i ∫ + 1 t + ρ u 𝑑 t . \quad c_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt(\hskip 1.49994pt2\hskip 1.00006pt\pi\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\int^{\hskip 0.70004pt+}\frac{i\hskip 1.49994pt\sigma_{\hskip 0.35002pty}}{t\hskip 1.49994pt\sigma_{\hskip 0.35002pty}\hskip 1.99997pt+\hskip 1.99997pt\tau_{\hskip 0.70004ptu}}\hskip 1.99997ptdt\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt(\hskip 1.49994pt2\hskip 1.00006pt\pi\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pti\hskip 1.99997pt\int^{\hskip 0.70004pt+}\frac{1}{t\hskip 1.99997pt+\hskip 1.99997pt\rho_{\hskip 0.70004ptu}}\hskip 1.99997ptdt\hskip 3.00003pt.
By [H ] , Remark after Lemma 18.2.16, the last plus-integral is equal to
2 π i 2\hskip 1.00006pt\pi\hskip 1.00006pti times the sum of residues of ( z + ρ u ) − 1 (\hskip 1.49994ptz\hskip 1.99997pt+\hskip 1.99997pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1} in the upper half-plane. The poles of ( z + ρ u ) − 1 (\hskip 1.49994ptz\hskip 1.99997pt+\hskip 1.99997pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1} in the upper half-plane correspond to the eigenvalues of ρ u \rho_{\hskip 0.70004ptu} in the lower half-plane. It follows that the operator c + ( y , u ) c_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt) is equal to ( because − ( 2 π ) − 1 i ⋅ 2 π i = 1 -\hskip 1.99997pt(\hskip 1.49994pt2\hskip 1.00006pt\pi\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pti\hskip 1.00006pt\cdot\hskip 1.00006pt2\hskip 1.00006pt\pi\hskip 1.00006pti\hskip 3.99994pt=\hskip 3.99994pt1 ) the projection onto the subspace ℒ − ( ρ u ) \mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)
having ℒ + ( ρ u ) \mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)
as its kernel, where, as in [I 2 I_{\hskip 1.04996pt2} ] , we denote by ℒ − ( ρ u ) \mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt) and ℒ + ( ρ u ) \mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)
the sums of the generalized eigenspaces of ρ u \rho_{\hskip 0.70004ptu} corresponding to eigenvalues λ \lambda with Im λ < 0 \operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\lambda\hskip 1.99997pt<\hskip 1.99997pt0
and Im λ < 0 \operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\lambda\hskip 1.99997pt<\hskip 1.99997pt0 respectively.
The matrix of the Calderón projector.
Let us write C + C_{\hskip 0.70004pt+} as the matrix
C + = ( C + 0 0 C + 0 1 C + 1 0 C + 1 1 ) \quad C_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994ptC_{\hskip 0.70004pt+\hskip 0.70004pt0\hskip 0.70004pt0}&C_{\hskip 0.70004pt+\hskip 0.70004pt0\hskip 0.70004pt1}\hskip 1.99997pt\hskip 3.99994pt\vspace{4.5pt}\\
\hskip 3.99994pt\hskip 1.00006ptC_{\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.70004pt0}&C_{\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.70004pt1}\hskip 1.99997pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt
with respect to the decomposition E = F ⊕ F E\hskip 3.99994pt=\hskip 3.99994ptF\hskip 1.00006pt\oplus\hskip 1.00006ptF .
6.1. Lemma.
Each of the blocks C + i j C_{\hskip 0.70004pt+\hskip 0.70004pti\hskip 0.35002ptj} is an elliptic operator.
Proof . Cf. Grubb [G 2 G_{\hskip 0.70004pt2} ] , Lemma 11.16. Let I j I_{\hskip 0.70004ptj} , j = 0 , 1 j\hskip 3.99994pt=\hskip 3.99994pt0\hskip 0.50003pt,\hskip 1.99997pt1 be the inclusions of sections of F F into the sections of E = F ⊕ F E\hskip 3.99994pt=\hskip 3.99994ptF\hskip 1.00006pt\oplus\hskip 1.00006ptF as the sections of the first and the second summands respectively. Then
C + i j = Π i ∘ C + ∘ I j C_{\hskip 0.70004pt+\hskip 0.70004pti\hskip 0.35002ptj}\hskip 3.99994pt=\hskip 3.99994pt\Pi_{\hskip 0.70004pti}\hskip 1.00006pt\circ\hskip 1.99997ptC_{\hskip 0.70004pt+}\hskip 1.00006pt\circ\hskip 1.99997ptI_{\hskip 0.70004ptj} . The symbol s + i j ( y , u ) s_{\hskip 0.70004pt+\hskip 0.70004pti\hskip 0.35002ptj}\hskip 1.00006pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt) of C + i j C_{\hskip 0.70004pt+\hskip 0.70004pti\hskip 0.35002ptj} is related in the same way to the symbol c + ( y , u ) c_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt) of C + C_{\hskip 0.70004pt+} . We need to check that s + i j ( y , u ) s_{\hskip 0.70004pt+\hskip 0.70004pti\hskip 0.35002ptj}\hskip 1.00006pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt) is an isomorphism if u ≠ 0 u\hskip 3.99994pt\neq\hskip 3.99994pt0 . Since the boundary condition γ 1 = 0 \gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt0 satisfies the Shapiro–Lopatinskii condition, the subspace ℒ − ( ρ u ) \mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt) is transverse to
K ′ ⊕ 0 K\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt0 for u ≠ 0 u\hskip 3.99994pt\neq\hskip 3.99994pt0 . Since P P is a differential operator, ℒ + ( ρ u ) = ℒ − ( − ρ u ) = ℒ − ( ρ − u ) \mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt-\hskip 1.99997pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004pt-\hskip 0.70004ptu}\hskip 1.49994pt) is also transverse to K ′ ⊕ 0 K\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt0 . Similarly, since γ 0 = 0 \gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0 satisfies the Shapiro–Lopatinskii condition, the subspaces ℒ − ( ρ u ) \mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt) and ℒ + ( ρ u ) \mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt) are transverse to 0 ⊕ K ′ 0\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 0.50003pt^{\prime} . Together with the description of c + ( y , u ) c_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt) given above these transversality properties imply that s + i j ( y , u ) s_{\hskip 0.70004pt+\hskip 0.70004pti\hskip 0.35002ptj}\hskip 1.00006pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt) is an isomorphism if u ≠ 0 u\hskip 3.99994pt\neq\hskip 3.99994pt0 . The lemma follows. ■ \blacksquare
6.2. Lemma.
N 0 N_{\hskip 0.70004pt0} is equal to the graph of an operator K ′ ⟶ K ′ K\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime} induced by a pseudo-differential operator φ \varphi of order 0 . Moreover, φ \varphi is elliptic.
Proof . First, let us prove that N 0 ∩ 0 ⊕ K ′ = 0 N_{\hskip 1.04996pt0}\hskip 1.99997pt\cap\hskip 1.99997pt0\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 3.99994pt=\hskip 3.99994pt0 . If u ∈ N 0 ∩ 0 ⊕ K ′ u\hskip 1.99997pt\in\hskip 1.99997ptN_{\hskip 1.04996pt0}\hskip 1.99997pt\cap\hskip 1.99997pt0\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 0.50003pt^{\prime} , then u = Γ x u\hskip 3.99994pt=\hskip 3.99994pt\Gamma\hskip 1.00006ptx for some x ∈ Ker T ∗ x\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}
and x ∈ Ker Γ 0 x\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0} . Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that Ker Γ 0 = Ker γ 0 \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0} . It follows that x ∈ Ker γ 0 = 𝒟 ( A ) x\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt) . In turn, this implies x ∈ Ker A x\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptA and hence x = 0 x\hskip 3.99994pt=\hskip 3.99994pt0 . This proves that N 0 ∩ 0 ⊕ K ′ = 0 N_{\hskip 1.04996pt0}\hskip 1.99997pt\cap\hskip 1.99997pt0\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 3.99994pt=\hskip 3.99994pt0 . Next, Theorem Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that the projection of N 0 N_{\hskip 1.04996pt0} to K ′ ⊕ 0 K\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt0 is surjective. It follows that N 0 N_{\hskip 1.04996pt0} is equal to the graph of an operator φ : K ′ ⟶ K ′ \varphi\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime} .
The fact that C + C_{\hskip 0.70004pt+} is a projection onto the graph of φ \varphi implies that C + 1 0 = φ ∘ C + 0 0 C_{\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.35002pt0}\hskip 3.99994pt=\hskip 3.99994pt\varphi\hskip 1.00006pt\circ\hskip 1.49994ptC_{\hskip 0.70004pt+\hskip 0.70004pt0\hskip 0.35002pt0} . Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that there exists a parametrix S S for C + 0 0 C_{\hskip 0.70004pt+\hskip 0.70004pt0\hskip 0.35002pt0} , i.e. a pseudo-differential operator
of order 0 such that C + 0 0 ∘ S = 1 − R C_{\hskip 0.70004pt+\hskip 0.70004pt0\hskip 0.35002pt0}\hskip 1.00006pt\circ\hskip 1.00006ptS\hskip 3.99994pt=\hskip 3.99994pt1\hskip 1.99997pt-\hskip 1.99997ptR , where R R is a smoothing operator of finite rank. It follows that C + 1 0 ∘ S = φ − C + 0 0 ∘ R C_{\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.35002pt0}\hskip 1.00006pt\circ\hskip 1.00006ptS\hskip 3.99994pt=\hskip 3.99994pt\varphi\hskip 1.99997pt-\hskip 1.99997ptC_{\hskip 0.70004pt+\hskip 0.70004pt0\hskip 0.35002pt0}\hskip 1.00006pt\circ\hskip 1.00006ptR and hence φ = C + 1 0 ∘ S + C + 0 0 ∘ R \varphi\hskip 3.99994pt=\hskip 3.99994ptC_{\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.35002pt0}\hskip 1.00006pt\circ\hskip 1.00006ptS\hskip 1.99997pt+\hskip 1.99997ptC_{\hskip 0.70004pt+\hskip 0.70004pt0\hskip 0.35002pt0}\hskip 1.00006pt\circ\hskip 1.00006ptR . The operator C + 0 0 ∘ R C_{\hskip 0.70004pt+\hskip 0.70004pt0\hskip 0.35002pt0}\hskip 1.00006pt\circ\hskip 1.00006ptR is a smoothing operator of finite rank together with R R . Since C + 1 0 ∘ S C_{\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.35002pt0}\hskip 1.00006pt\circ\hskip 1.00006ptS is a pseudo-differential operator of order 0 , this implies that φ \varphi is also such an operator. Since C + 1 0 C_{\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.35002pt0} and S S are elliptic, this implies that φ \varphi is also elliptic. ■ \blacksquare
The operators γ ( 0 ) , M ( 0 ) \bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 0.50003pt,\hskip 3.00003ptM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) and φ \varphi .
Let φ \varphi be the operator from Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems , and let
φ ¯ = id ⊕ φ : K ′ ⟶ K ′ ⊕ K ′ \quad\overline{\varphi}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{id}\hskip 1.00006pt\oplus\hskip 1.99997pt\varphi\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 0.50003pt^{\prime}
be the map x ⟼ ( x , φ ( x ) ) x\hskip 3.99994pt\longmapsto\hskip 3.99994pt(\hskip 1.49994ptx\hskip 0.50003pt,\hskip 1.99997pt\varphi\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)\hskip 1.49994pt) .
Since K + | N 0 K_{\hskip 0.70004pt+}\hskip 1.49994pt|\hskip 1.49994ptN_{\hskip 1.04996pt0} is the inverse of Γ \Gamma ,
Γ 0 ∘ K + ∘ φ ¯ = Π 0 ∘ Γ ∘ K + ∘ φ ¯ = Π 0 ∘ φ ¯ = id and \quad\Gamma_{0}\hskip 1.00006pt\circ\hskip 1.00006ptK_{\hskip 0.70004pt+}\hskip 1.00006pt\circ\hskip 1.99997pt\overline{\varphi}\hskip 3.99994pt=\hskip 3.99994pt\Pi_{\hskip 0.70004pt0}\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma\hskip 1.00006pt\circ\hskip 1.00006ptK_{\hskip 0.70004pt+}\hskip 1.00006pt\circ\hskip 1.99997pt\overline{\varphi}\hskip 3.99994pt=\hskip 3.99994pt\Pi_{\hskip 0.70004pt0}\hskip 1.00006pt\circ\hskip 1.99997pt\overline{\varphi}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{id}\quad\mbox{and}
Γ 1 ∘ K + ∘ φ ¯ = Π 1 ∘ Γ ∘ K + ∘ φ ¯ = Π 1 ∘ φ ¯ = φ . \quad\Gamma_{1}\hskip 1.00006pt\circ\hskip 1.00006ptK_{\hskip 0.70004pt+}\hskip 1.00006pt\circ\hskip 1.99997pt\overline{\varphi}\hskip 3.99994pt=\hskip 3.99994pt\Pi_{\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma\hskip 1.00006pt\circ\hskip 1.00006ptK_{\hskip 0.70004pt+}\hskip 1.00006pt\circ\hskip 1.99997pt\overline{\varphi}\hskip 3.99994pt=\hskip 3.99994pt\Pi_{\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.99997pt\overline{\varphi}\hskip 3.99994pt=\hskip 3.99994pt\varphi\hskip 3.00003pt.
Since 𝜸 ( 0 ) \bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) is the inverse of the restriction Γ 0 | Ker T ∗ \Gamma_{0}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} , it follows that
𝜸 ( 0 ) = ( Γ 0 | Ker T ∗ ) − 1 = K + ∘ φ ¯ \quad\bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.99997pt\Gamma_{0}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}\hskip 1.99997pt\right)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptK_{\hskip 0.70004pt+}\hskip 1.00006pt\circ\hskip 1.99997pt\overline{\varphi}
and hence M ( 0 ) = Γ 1 ∘ 𝜸 ( 0 ) = Γ 1 ∘ K + ∘ φ ¯ = φ M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt\circ\hskip 1.00006pt\bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt\circ\hskip 1.00006ptK_{\hskip 0.70004pt+}\hskip 1.00006pt\circ\hskip 1.99997pt\overline{\varphi}\hskip 1.00006pt\hskip 3.99994pt=\hskip 3.99994pt\varphi .
The operators M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) and M M .
Since M ( 0 ) = φ M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\varphi , Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) is induced by a pseudo-differential operator of order 0 , which we will, by an abuse of notations, still denote by M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) . This implies, in particular, that M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) leaves K K invariant. The symbol of M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) is related to the symbol of C + C_{\hskip 0.70004pt+} in the same way as M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) is related to C + C_{\hskip 0.70004pt+} and hence is the bundle map having as its graph the graph of c + c_{\hskip 0.70004pt+} . It follows that over a point u ∈ S Y u\hskip 1.99997pt\in\hskip 1.99997ptS\hskip 0.50003ptY , where S Y S\hskip 0.50003ptY is the unite sphere bundle of Y Y , the symbol of M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) is equal to the map having ℒ − ( ρ u ) \mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)
as its graph. It follows that this symbol is an isomorphism, i.e. the operator M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) is elliptic. In particular, M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) is Fredholm as an operator K ′ ⟶ K ′ K\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime} .
The restriction M = M ( 0 ) | K M\hskip 3.99994pt=\hskip 3.99994ptM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt|\hskip 1.49994ptK is essentially the same pseudo-differential operator, or, more precisely, is induced by it. It follows that the operator K ⟶ K K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK induced by M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) is Fredholm. This verifies the assumptions of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems concerned with M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) . As we saw in Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems , this implies that M M is a self-adjoint as an unbounded operator from K ′ K\hskip 0.50003pt^{\prime} to K K .
6.3. Lemma.
The boundary map γ 0 \gamma_{0} maps ( Ker T ∗ ) ∩ H 1 (\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.00006pt\cap\hskip 1.00006ptH_{\hskip 0.70004pt1} onto K K .
Proof . The operator K + K_{\hskip 0.70004pt+} is known to continuously map H 1 / 2 ( Y , E | Y ) H_{\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.49994pt) into H 1 ( X ∘ , E ) H_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt) . See G. Grubb [G 2 G_{\hskip 0.70004pt2} ] , (11.17). Since φ ¯ \overline{\varphi} together with φ \varphi is a pseudo-differential operator of order 0 , the operator 𝜸 ( 0 ) = K + ∘ φ ¯ \bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptK_{\hskip 0.70004pt+}\hskip 0.50003pt\circ\hskip 1.99997pt\overline{\varphi} maps K = H 1 / 2 ( Y , F ) K\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptF\hskip 1.49994pt) into H 1 = H 1 ( X ∘ , E ) H_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt) and hence into ( Ker T ∗ ) ∩ H 1 (\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.00006pt\cap\hskip 1.00006ptH_{\hskip 0.70004pt1} . Since 𝜸 ( 0 ) \bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) is the inverse of Γ 0 | Ker T ∗ \Gamma_{0}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} and γ 0 = Γ 0 | H 1 \gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{0}\hskip 1.49994pt|\hskip 1.49994ptH_{\hskip 0.70004pt1} , it follows that γ 0 \gamma_{0} maps
( Ker T ∗ ) ∩ H 1 (\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.00006pt\cap\hskip 1.00006ptH_{\hskip 0.70004pt1} onto K K . ■ \blacksquare
The operators M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) and M M
and the spaces of Cauchy data.
Since M ( 0 ) = φ M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\varphi , Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that the operator M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) can be characterized as the operator K ′ ⟶ K ′ K\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime} having as its graph the image N 0 N_{\hskip 0.70004pt0} of Z 0 = Ker T ∗ Z_{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} under the map Γ = Γ 0 ⊕ Γ 1 \Gamma\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\Gamma_{1} , i.e. the space of Cauchy data of the equation T ∗ u = 0 T^{\hskip 0.70004pt*}u\hskip 3.99994pt=\hskip 3.99994pt0 .
The operator M M admits a similar characterization. Namely, let Z 1 = H 1 ∩ Z 0 Z_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt1}\hskip 1.00006pt\cap\hskip 1.00006ptZ_{\hskip 1.04996pt0}
be the space of solutions of T ∗ u = 0 T^{\hskip 0.70004pt*}u\hskip 3.99994pt=\hskip 3.99994pt0
belonging to H 1 H_{\hskip 0.70004pt1} . Let N 1 = γ ( Z 1 ) ⊂ K ⊕ K N_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt\gamma\hskip 1.49994pt(\hskip 1.49994ptZ_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK be the space of the corresponding Cauchy data. Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that N 1 ∩ ( 0 ⊕ K ) = 0 N_{\hskip 0.70004pt1}\hskip 1.00006pt\cap\hskip 1.00006pt(\hskip 1.49994pt0\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0 , and Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that the projection of N 1 N_{\hskip 0.70004pt1} to K ⊕ 0 K\hskip 1.00006pt\oplus\hskip 1.00006pt0 is surjective. Therefore N 1 N_{\hskip 0.70004pt1} is equal to the graph of an operator K ⟶ K K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK . Clearly, this is the operator induced by M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) , i.e. M M . It follows that M M considered as an operator from K ′ K\hskip 0.50003pt^{\prime} to K K can be characterized as the operator having as its graph the image N 1 N_{\hskip 0.70004pt1} of Z 1 = H 1 ∩ Ker T ∗ Z_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt1}\hskip 1.00006pt\cap\hskip 1.00006pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} under the map γ = γ 0 ⊕ γ 1 \gamma\hskip 3.99994pt=\hskip 3.99994pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1} .
Families of differential boundary problems.
Suppose that the manifold X = X w X\hskip 3.99994pt=\hskip 3.99994ptX_{\hskip 0.70004ptw} , the bundle E = E w E\hskip 3.99994pt=\hskip 3.99994ptE_{\hskip 0.70004ptw} , the operator P = P w P\hskip 3.99994pt=\hskip 3.99994ptP_{\hskip 0.70004ptw} , the extension of P P to X ^ \widehat{X} , etc. continuously depend on a parameter w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW as in [I 2 I_{\hskip 1.04996pt2} ] . The explicit definition of the operators K + = K + w K_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994ptK_{\hskip 0.70004pt+\hskip 0.70004ptw} shows that they
continuously depend on w w in the norm topology. This implies that the kernels
Z 0 = Z 0 w = Ker T ∗ Z_{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994ptZ_{\hskip 1.04996pt0\hskip 0.70004ptw}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}
and the operators φ = φ w \varphi\hskip 3.99994pt=\hskip 3.99994pt\varphi_{\hskip 0.70004ptw}
continuously depend on w w in the norm topology. In turn, this implies that 𝜸 w ( 0 ) \bm{\gamma}_{w}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)
and M w ( 0 ) M_{\hskip 0.70004ptw}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)
also continuously depend on w w in the norm topology. By applying Calderón’s method to the operators
P w + i P_{\hskip 0.70004ptw}\hskip 1.99997pt+\hskip 1.99997pti instead of P w P_{\hskip 0.70004ptw} we see that the kernels 𝒦 w − = Ker ( T w ∗ + i ) \mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.99997pt+\hskip 1.99997pti\hskip 1.99997pt)
continuously depend on w w . This verifies the continuity assumption of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems in the present situation.
7. Dirac-like boundary problems
Graded boundary problems.
Let X , Y , E , F X\hskip 0.50003pt,\hskip 1.99997ptY,\hskip 1.99997ptE\hskip 0.50003pt,\hskip 1.99997ptF be as
in Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems . Suppose that the decomposition E | Y = F ⊕ F E\hskip 1.49994pt|\hskip 1.49994ptY\hskip 3.99994pt=\hskip 3.99994ptF\hskip 1.00006pt\oplus\hskip 1.00006ptF extends to a decomposition E = G ⊕ G E\hskip 3.99994pt=\hskip 3.99994ptG\hskip 1.00006pt\oplus\hskip 1.00006ptG over the whole manifold X X . So, in particular, F = G | Y F\hskip 3.99994pt=\hskip 3.99994ptG\hskip 1.49994pt|\hskip 1.49994ptY . Let P P be
a formally self-adjoint elliptic differential operator of order 1 1 acting on sections of E E
and having the form
(18)
P = ( 0 R ′ R 0 ) \quad P\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994pt0&R^{\prime}\hskip 1.99997pt\hskip 3.99994pt\vspace{4.5pt}\\
\hskip 3.99994pt\hskip 1.00006ptR&0\hskip 1.99997pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt
with respect to the decomposition E = G ⊕ G E\hskip 3.99994pt=\hskip 3.99994ptG\hskip 1.00006pt\oplus\hskip 1.00006ptG , i.e. being odd with respect to this decomposition. Suppose that the coefficient Σ \Sigma of the normal derivative in P P has the form
Σ = ( 0 1 1 0 ) \quad\Sigma\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994pt0&1\hskip 1.99997pt\hskip 3.99994pt\vspace{4.5pt}\\
\hskip 3.99994pt\hskip 1.00006pt1&0\hskip 1.99997pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt
with respect to the decomposition E | Y = F ⊕ F E\hskip 1.49994pt|\hskip 1.49994ptY\hskip 3.99994pt=\hskip 3.99994ptF\hskip 1.00006pt\oplus\hskip 1.00006ptF . This convention agrees with [I 2 I_{\hskip 1.04996pt2} ] , Section 15, and does not agree with the convention of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems . Below we will pass to another direct sum decomposition of E E which will match Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems . Let γ \gamma be the trace operator as in Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems , and let π 0 \pi_{\hskip 0.70004pt0} and π 1 \pi_{\hskip 0.70004pt1} be its compositions with the projections Π 0 , Π 1 \Pi_{\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 3.00003pt\Pi_{\hskip 0.70004pt1} onto the first and the second summands of the decomposition
H 1 / 2 ( Y , E | Y ) = H 1 / 2 ( Y , F ) ⊕ H 1 / 2 ( Y , F ) , \quad H_{\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptF\hskip 1.49994pt)\hskip 1.99997pt\oplus\hskip 1.99997ptH_{\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptF\hskip 1.49994pt)\hskip 1.99997pt,\quad
Let f : F ⟶ F f\hskip 1.00006pt\colon\hskip 1.00006ptF\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptF be a bundle map
and let π f = π 1 − f ∘ π 0 \pi_{\hskip 0.35002ptf}\hskip 3.99994pt=\hskip 3.99994pt\pi_{\hskip 0.70004pt1}\hskip 1.99997pt-\hskip 1.99997ptf\hskip 1.00006pt\circ\hskip 1.00006pt\pi_{\hskip 0.70004pt0} . We would like to combine P P with the boundary condition π f = 0 \pi_{\hskip 0.35002ptf}\hskip 3.99994pt=\hskip 3.99994pt0 , i.e. to consider the unbounded operator P | Ker π f P\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\pi_{\hskip 0.35002ptf} . If f f is skew-adjoint, then this boundary condition is self-adjoint. See [I 2 I_{\hskip 1.04996pt2} ] , the discussion before Lemma 15.3. Let us write the symbol of the operator P P in the form (17 ). Since P P is odd, the operators τ u = τ u ( y ) \tau_{\hskip 0.35002ptu}\hskip 3.99994pt=\hskip 3.99994pt\tau_{\hskip 0.35002ptu}\hskip 1.49994pt(\hskip 1.49994pty\hskip 1.49994pt)
have the form
τ u = ( 0 𝝉 u ∗ 𝝉 u 0 ) \quad\tau_{u}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994pt0&\bm{\tau}_{u}^{\hskip 0.70004pt*}\hskip 1.00006pt\hskip 3.99994pt\vspace{4.5pt}\\
\hskip 3.99994pt\bm{\tau}_{u}&0\hskip 1.00006pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt
for some operators 𝝉 u : F y ⟶ F y \bm{\tau}_{u}\hskip 1.00006pt\colon\hskip 1.00006ptF_{\hskip 0.70004pty}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptF_{\hskip 0.70004pty} . As in [I 2 I_{\hskip 1.04996pt2} ] , Section 15, we will say that f f is equivariant if endomorphisms f y : F y ⟶ F y f_{\hskip 0.70004pty}\hskip 1.00006pt\colon\hskip 1.00006ptF_{\hskip 0.70004pty}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptF_{\hskip 0.70004pty}
induced by f f commute with 𝝉 u \bm{\tau}_{u} for every y , u y\hskip 0.50003pt,\hskip 1.99997ptu . If f f is equivariant, then the boundary condition π f = 0 \pi_{\hskip 0.35002ptf}\hskip 3.99994pt=\hskip 3.99994pt0 is a Shapiro–Lopatinskii boundary condition, as also the boundary condition π 1 + f ∘ π 0 = 0 \pi_{\hskip 0.70004pt1}\hskip 1.99997pt+\hskip 1.99997ptf\hskip 1.00006pt\circ\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994pt0 . See [I 2 I_{\hskip 1.04996pt2} ] , Lemma 15.3. For the rest of this section we will assume that f f is skew-adjoint and equivariant.
In general, P | Ker π f P\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\pi_{\hskip 0.35002ptf} is not invertible
and hence cannot be used as a reference operator. But under natural assumptions
a simple modification of P | Ker π f P\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\pi_{\hskip 0.35002ptf} is invertible. Let
ε = ( 1 0 0 − 1 ) \quad\varepsilon\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994pt1&0\hskip 1.99997pt\hskip 3.99994pt\vspace{4.5pt}\\
\hskip 3.99994pt\hskip 1.00006pt0&-\hskip 1.99997pt1\hskip 1.99997pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt
be the endomorphism of E = G ⊕ G E\hskip 3.99994pt=\hskip 3.99994ptG\hskip 1.00006pt\oplus\hskip 1.00006ptG defined by the above matrix. We will consider ε \varepsilon as a differential operator of order 0 . It tuns out that if the endomorphism i f if is positive definite, then ( P + ε ) | Ker π f (\hskip 1.49994ptP\hskip 1.99997pt+\hskip 1.99997pt\varepsilon\hskip 1.49994pt)\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\pi_{\hskip 0.35002ptf} is an isomorphism Ker π f ⟶ H 0 \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\pi_{\hskip 0.35002ptf}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0} . Similarly, if the endomorphism i f if is negative definite, then ( P − ε ) | Ker π f (\hskip 1.49994ptP\hskip 1.99997pt-\hskip 1.99997pt\varepsilon\hskip 1.49994pt)\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\pi_{\hskip 0.35002ptf} is an isomorphism. See [I 2 I_{\hskip 1.04996pt2} ] , Theorem 15.1. A similar result holds also for closed manifolds, as the following lemma shows.
7.1. Lemma.
Suppose that P ^ \widehat{P} is a formally self-adjoint elliptic differential operator of order 1 1 acting in a bundle E = G ⊕ G E\hskip 3.99994pt=\hskip 3.99994ptG\hskip 1.00006pt\oplus\hskip 1.00006ptG over a closed manifold X ^ \widehat{X} . If P ^ \widehat{P} is odd, then P ^ − ε \widehat{P}\hskip 1.99997pt-\hskip 1.99997pt\varepsilon induces an isomorphism H 1 ( X , E ) ⟶ H 0 ( X , E ) H_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt) .
Proof . Under these assumptions the operator H 1 ( X , E ) ⟶ H 0 ( X , E ) H_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt) induced by P ^ − ε \widehat{P}\hskip 1.99997pt-\hskip 1.99997pt\varepsilon is Fredholm and is self-adjoint as an unbounded operator in H 0 ( X , E ) H_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt) . Therefore it is sufficient to prove that its kernel is 0 . If we consider P ^ \widehat{P} as an unbounded operator in H 0 ( X , E ) H_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt)
and write it in the form (18 ), then R ′ R^{\prime} will be equal to the adjoint operator R ∗ R^{\hskip 0.35002pt*} of R R . Therefore, if ( u , v ) ∈ Ker ( P ^ − ε ) (\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.99997pt\widehat{P}\hskip 1.99997pt-\hskip 1.99997pt\varepsilon\hskip 1.49994pt) , then − u + R ∗ v = 0 -\hskip 1.99997ptu\hskip 1.99997pt+\hskip 1.99997ptR^{\hskip 0.35002pt*}\hskip 0.50003ptv\hskip 3.99994pt=\hskip 3.99994pt0
and R u + v = 0 R\hskip 1.00006ptu\hskip 1.99997pt+\hskip 1.99997ptv\hskip 3.99994pt=\hskip 3.99994pt0 . This implies that u + R ∗ R u = 0 u\hskip 1.99997pt+\hskip 1.99997ptR^{\hskip 0.35002pt*}\hskip 0.50003ptR\hskip 1.00006ptu\hskip 3.99994pt=\hskip 3.99994pt0
and hence 0 = ⟨ u + R ∗ R u , u ⟩ = ⟨ u , u ⟩ + ⟨ R u , R u ⟩ 0\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.99997pt+\hskip 1.99997ptR^{\hskip 0.35002pt*}\hskip 0.50003ptR\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptR\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptR\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.49994pt\rangle . It follows that ⟨ u , u ⟩ = 0 \langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt0 and hence u = 0 u\hskip 3.99994pt=\hskip 3.99994pt0 . This proves that Ker ( P ^ − ε ) = 0 \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.99997pt\widehat{P}\hskip 1.99997pt-\hskip 1.99997pt\varepsilon\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0 . ■ \blacksquare
Changing the decomposition E | Y = F ⊕ F E\hskip 1.49994pt|\hskip 1.49994ptY\hskip 3.99994pt=\hskip 3.99994ptF\hskip 1.00006pt\oplus\hskip 1.00006ptF .
The Lagrange identity for P P is
⟨ P u , v ⟩ 0 − ⟨ u , P v ⟩ 0 = ⟨ i π 1 u , π 0 v ⟩ ∂ − ⟨ π 0 u , i π 1 v ⟩ ∂ . \quad\langle\hskip 1.49994pt\hskip 1.00006ptP\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004pt0}\hskip 1.99997pt-\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptP\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pti\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt.
Let us define the new boundary operators γ 0 \gamma_{0}
and γ 1 \gamma_{1} as
γ 0 = ( π 1 − i π 0 ) / 2 and γ 1 = ( π 1 + i π 0 ) / 2 . \quad\gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.49994pt)\bigl{/}\sqrt{2}\quad\mbox{and}\quad\gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.99997pt+\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.49994pt)\bigl{/}\sqrt{2}\hskip 3.99994pt.
The calculation
⟨ π 1 u + i π 0 u , π 1 v − i π 0 v ⟩ ∂ − ⟨ π 1 u − i π 0 u , π 1 v + i π 0 v ⟩ ∂ \quad\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.99997pt+\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.99997pt+\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
= ⟨ π 1 u , − i π 0 v ⟩ ∂ + ⟨ i π 0 u , π 1 v ⟩ ∂ − ⟨ π 1 u , i π 0 v ⟩ ∂ − ⟨ − i π 0 u , π 1 v ⟩ ∂ \quad=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt+\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt-\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
= 2 ⟨ i π 0 u , π 1 v ⟩ ∂ − 2 ⟨ π 1 u , i π 0 v ⟩ ∂ = 2 ⟨ i π 1 u , π 0 v ⟩ ∂ − 2 ⟨ π 0 u , i π 1 v ⟩ ∂ \quad=\hskip 3.99994pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt
shows that we can rewrite the Lagrange identity in the standard form (16 ). Clearly, γ 0 \gamma_{0} and γ 1 \gamma_{1} are the boundary operators related as in Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems with a unique decomposition E | Y = F ′ ⊕ F ′ E\hskip 1.49994pt|\hskip 1.49994ptY\hskip 3.99994pt=\hskip 3.99994ptF\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006ptF\hskip 0.50003pt^{\prime} . The bundle F ′ F\hskip 0.50003pt^{\prime} is canonically isomorphic to F F , but the decomposition of E | Y E\hskip 1.49994pt|\hskip 1.49994ptY is different from the original one. In terms of this new decomposition i Σ i\hskip 1.49994pt\Sigma takes the form (15 ) and the boundary condition π 1 − f ∘ π 0 = 0 \pi_{\hskip 0.70004pt1}\hskip 1.99997pt-\hskip 1.99997ptf\hskip 1.00006pt\circ\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994pt0 takes the form
γ 1 + γ 0 = f ∘ ( γ 1 − γ 0 i ) , \quad\gamma_{1}\hskip 1.99997pt+\hskip 1.99997pt\gamma_{0}\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt\circ\hskip 1.99997pt\left(\hskip 1.99997pt\frac{\gamma_{1}\hskip 1.99997pt-\hskip 1.99997pt\gamma_{0}}{i}\hskip 1.99997pt\right)\hskip 3.00003pt,
or, equivalently, either ( f − i ) ∘ γ 1 = ( f + i ) ∘ γ 0 \left(\hskip 1.49994ptf\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.49994pt\right)\hskip 1.00006pt\circ\hskip 1.00006pt\gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.49994ptf\hskip 1.99997pt+\hskip 1.99997pti\hskip 1.49994pt\right)\hskip 1.00006pt\circ\hskip 1.00006pt\gamma_{0} , or
γ 1 = f + i f − i ∘ γ 0 . \quad\gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt\frac{f\hskip 1.99997pt+\hskip 1.99997pti}{f\hskip 1.99997pt-\hskip 1.99997pti}\hskip 1.99997pt\circ\hskip 1.99997pt\gamma_{0}\hskip 3.00003pt.
In general, this boundary condition is defined by a relation between γ 0 , γ 1 \gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1} . In particular, the boundary condition γ 0 = 0 \gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0 corresponds to f f being the multiplication by i i and is defined by a relation. The boundary condition γ 1 = 0 \gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt0 corresponds to f f being the multiplication by − i -\hskip 1.99997pti . Both of them satisfy the Shapiro–Lopatinskii condition.
Replacing P P by P − ε P\hskip 1.99997pt-\hskip 1.99997pt\varepsilon .
Let f 0 f_{\hskip 0.70004pt0} be the operator of multiplication by i i . The corresponding boundary condition is π 1 − i π 0 = 0 \pi_{\hskip 0.70004pt1}\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994pt0 , or, equivalently, γ 0 = 0 \gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0 . Since the operator i f 0 = − id i\hskip 0.50003ptf_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt\operatorname{id} is negative definite, the operator A = ( P − ε ) | Ker γ 0 A\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994ptP\hskip 1.99997pt-\hskip 1.99997pt\varepsilon\hskip 1.49994pt)\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0} is an isomorphism Ker γ 0 ⟶ H 0 \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0} and hence can be used as a reference operator. This amounts to replacing P P by P − ε P\hskip 1.99997pt-\hskip 1.99997pt\varepsilon . Such a replacement does not affect the Lagrange identity and the boundary conditions defined in terms of γ 0 , γ 1 \gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1} . In particular, a boundary condition is self-adjoint or has the Shapiro–Lopatinskii property for P P if and only if it has the same property for P − ε P\hskip 1.99997pt-\hskip 1.99997pt\varepsilon . At the same time, when our manifold, operators, etc. depend on a parameter, replacing P P by P − ε P\hskip 1.99997pt-\hskip 1.99997pt\varepsilon does not affect the analytical index because P P can be connected with P − ε P\hskip 1.99997pt-\hskip 1.99997pt\varepsilon by the homotopy P − t ε P\hskip 1.99997pt-\hskip 1.99997ptt\hskip 1.49994pt\varepsilon , t ∈ [ 0 , 1 ] t\hskip 1.99997pt\in\hskip 1.99997pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt] . By these reasons we can work with P − ε P\hskip 1.99997pt-\hskip 1.99997pt\varepsilon instead of P P .
The reduced boundary triplet.
As suggested by the previous subsection, we will take the operator A = ( P − ε ) | Ker γ 0 A\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994ptP\hskip 1.99997pt-\hskip 1.99997pt\varepsilon\hskip 1.49994pt)\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0} as the reference operator. Naturally, we will also take the operators γ 0 , γ 1 : H 1 ⟶ K \gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK as the boundary operators. Then all assumptions of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems hold. In particular, the operators M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) and M = M ( 0 ) | K M\hskip 3.99994pt=\hskip 3.99994ptM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt|\hskip 1.49994ptK are defined, and M M is a self-adjoint densely defined operator from K ′ K\hskip 0.50003pt^{\prime} to K K .
The boundary conditions in terms of the reduced boundary triplet.
The boundary conditions corresponding to f f are defined in terms of γ 0 , γ 1 \gamma_{0}\hskip 0.50003pt,\hskip 1.99997pt\gamma_{1} by an obvious relation ℱ ⊂ K ∂ ⊕ K ∂ \mathcal{F}\hskip 1.99997pt\subset\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial} . In terms of the reduced boundary triplet these boundary conditions take the form
Λ ′ ⊕ Λ − 1 ( ℱ | K − M ) , \quad\Lambda^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\mathcal{F}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.99997pt\bigr{)}\hskip 3.00003pt,
where Λ : K ∂ ⟶ K \Lambda\hskip 1.00006pt\colon\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK and Λ ′ : K ′ ⟶ K ∂ \Lambda^{\prime}\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial}
are the operators from the theory of Gelfand triples. As is well known, both Λ \Lambda and Λ ′ \Lambda^{\prime} are pseudo-differential operators of order − 1 / 2 -\hskip 1.99997pt1/2 with the symbol equal to the identity over the unit sphere bundle of Y Y . When f − i f\hskip 1.99997pt-\hskip 1.99997pti is invertible, these boundary conditions can be written as the equation
𝚪 ¯ 1 = Λ − 1 ∘ ( f + i f − i − M ) ∘ ( Λ ′ ) − 1 ∘ Γ ¯ 0 . \quad\overline{\bm{\Gamma}}_{1}\hskip 3.99994pt=\hskip 3.99994pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\circ\hskip 3.00003pt\left(\hskip 1.99997pt\frac{f\hskip 1.99997pt+\hskip 1.99997pti}{f\hskip 1.99997pt-\hskip 1.99997pti}\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.99997pt\right)\hskip 1.99997pt\circ\hskip 1.99997pt(\hskip 1.49994pt\Lambda^{\prime}\hskip 1.49994pt)^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\circ\hskip 1.99997pt\overline{\Gamma}_{0}\hskip 3.00003pt.
In particular, the boundary conditions are given by a
pseudo-differential operator of order 1 1 . Informally, one can use this form of boundary conditions
even when f − i f\hskip 1.99997pt-\hskip 1.99997pti is not invertible. In fact, the case when f f has only i i and − i -\hskip 1.99997pti as eigenvalues is the most important one.
The decomposition of F F defined by f f .
Since the bundle map f f is skew-adjoint, it defines the decomposition F = ℒ + ( f ) ⊕ ℒ − ( f ) F\hskip 3.99994pt=\hskip 3.99994pt\mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt) into subbundles generated by eigenvectors of f f corresponding to eigenvalues λ \lambda with Im λ > 0 \operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\lambda\hskip 1.99997pt>\hskip 1.99997pt0
and Im λ < 0 \operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\lambda\hskip 1.99997pt<\hskip 1.99997pt0 respectively. Clearly, i f if is negative definite on ℒ + ( f ) \mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)
and is positive definite on ℒ − ( f ) \mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt) . Since f f is equivariant, the subbundles ℒ + ( f ) , ℒ − ( f ) \mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.99994pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt) are invariant under the operators 𝝉 u \bm{\tau}_{u} . Let 𝝉 u + , 𝝉 u − \bm{\tau}_{u}^{\hskip 0.70004pt+}\hskip 1.00006pt,\hskip 3.99994pt\bm{\tau}_{u}^{\hskip 0.70004pt-} be the operators induced by 𝝉 u \bm{\tau}_{u} in the fibers of ℒ + ( f ) , ℒ − ( f ) \mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.99994pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt) respectively. The families of operators 𝝉 u + , 𝝉 u − \bm{\tau}_{u}^{\hskip 0.70004pt+}\hskip 1.00006pt,\hskip 3.99994pt\bm{\tau}_{u}^{\hskip 0.70004pt-} can be considered as symbols of some pseudo-differential operators
𝝉 + , 𝝉 − \bm{\tau}^{\hskip 0.70004pt+}\hskip 1.00006pt,\hskip 3.99994pt\bm{\tau}^{\hskip 0.70004pt-} of order 1 1 acting in bundles
ℒ + ( f ) , ℒ − ( f ) \mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.99994pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt) respectively.
Dirac-like boundary problems.
Suppose that P P and f f define a Dirac-like boundary problem in the sense of [I 2 I_{\hskip 1.04996pt2} ] , i.e. that the operators 𝝉 u \bm{\tau}_{u} are skew-adjoint. A routine calculation shows that in the decomposition E | Y = F ′ ⊕ F ′ E\hskip 1.49994pt|\hskip 1.49994ptY\hskip 3.99994pt=\hskip 3.99994ptF\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006ptF\hskip 0.50003pt^{\prime}
the operators
ρ u = σ y − 1 τ u \rho_{\hskip 0.35002ptu}\hskip 3.99994pt=\hskip 3.99994pt\sigma_{y}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\tau_{\hskip 0.35002ptu}
have the form
ρ u = ( 0 − 𝝉 u − 𝝉 u 0 ) . \quad\rho_{\hskip 0.35002ptu}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994pt0&-\hskip 1.99997pt\bm{\tau}_{u}\hskip 1.00006pt\hskip 3.99994pt\vspace{4.5pt}\\
\hskip 3.99994pt-\hskip 1.99997pt\bm{\tau}_{u}&0\hskip 1.00006pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt.
Let | 𝝉 u | = ( 𝝉 u ∗ 𝝉 u ) 1 / 2 |\hskip 1.99997pt\bm{\tau}_{u}\hskip 1.99997pt|\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\bm{\tau}_{u}^{\hskip 0.70004pt*}\hskip 1.00006pt\bm{\tau}_{u}\hskip 1.49994pt)^{\hskip 0.70004pt1/2}
and let 𝝊 u \bm{\upsilon}_{\hskip 0.35002ptu} be such that i 𝝉 u = − 𝝊 u | 𝝉 u | i\hskip 1.49994pt\bm{\tau}_{u}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt\bm{\upsilon}_{\hskip 0.35002ptu}\hskip 1.99997pt|\hskip 1.99997pt\bm{\tau}_{u}\hskip 1.99997pt| .
7.2. Lemma.
The symbol of M M is equal to the bundle map defined by operators 𝛖 u \bm{\upsilon}_{\hskip 0.35002ptu} .
Proof . Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that the results of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems apply to the present situation. By the discussion at the end of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems , it is sufficient to prove that ℒ − ( ρ u ) \mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.35002ptu}\hskip 1.49994pt) is equal to the graph of 𝝊 u \bm{\upsilon}_{\hskip 0.35002ptu} . If a a is an eigenvector of 𝝉 u \bm{\tau}_{u} with an eigenvalue i λ i\hskip 1.49994pt\lambda , then
ρ u ( a , 𝝊 u ( a ) ) = ( − 𝝉 u 𝝊 u ( a ) , − 𝝉 u ( a ) ) \quad\rho_{\hskip 0.35002ptu}\hskip 1.49994pt\bigl{(}\hskip 1.49994pta\hskip 0.50003pt,\hskip 3.00003pt\bm{\upsilon}_{\hskip 0.35002ptu}\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 1.49994pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.49994pt-\hskip 1.99997pt\bm{\tau}_{u}\hskip 1.00006pt\bm{\upsilon}_{\hskip 0.35002ptu}\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003pt-\hskip 1.99997pt\bm{\tau}_{u}\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 1.49994pt\bigr{)}
= ( − i | λ | a , − i λ a ) = ( − i | λ | a , − i | λ | 𝝊 u ( a ) ) \quad\phantom{\rho_{\hskip 0.35002ptu}\hskip 1.49994pt\bigl{(}\hskip 1.49994pta\hskip 0.50003pt,\hskip 3.00003pt\bm{\upsilon}_{\hskip 0.35002ptu}\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 1.49994pt\bigr{)}\hskip 3.99994pt}=\hskip 3.99994pt\bigl{(}\hskip 1.49994pt-\hskip 1.99997pti\hskip 1.49994pt|\hskip 1.99997pt\lambda\hskip 1.99997pt|\hskip 1.00006pta\hskip 0.50003pt,\hskip 3.00003pt-\hskip 1.99997pti\hskip 1.49994pt\lambda\hskip 1.00006pta\hskip 1.49994pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.49994pt-\hskip 1.99997pti\hskip 1.49994pt|\hskip 1.99997pt\lambda\hskip 1.99997pt|\hskip 1.00006pta\hskip 0.50003pt,\hskip 3.00003pt-\hskip 1.99997pti\hskip 1.49994pt|\hskip 1.99997pt\lambda\hskip 1.99997pt|\hskip 1.00006pt\bm{\upsilon}_{\hskip 0.35002ptu}\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 1.49994pt\bigr{)}
= − i | λ | ( a , 𝝊 u ( a ) ) \quad\phantom{\rho_{\hskip 0.35002ptu}\hskip 1.49994pt\bigl{(}\hskip 1.49994pta\hskip 0.50003pt,\hskip 3.00003pt\bm{\upsilon}_{\hskip 0.35002ptu}\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 1.49994pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.49994pt-\hskip 1.99997pti\hskip 1.49994pt|\hskip 1.99997pt\lambda\hskip 1.99997pt|\hskip 1.00006pta\hskip 0.50003pt,\hskip 3.00003pt-\hskip 1.99997pti\hskip 1.49994pt\lambda\hskip 1.00006pta\hskip 1.49994pt\bigr{)}\hskip 3.99994pt}=\hskip 3.99994pt-\hskip 1.99997pti\hskip 1.49994pt|\hskip 1.99997pt\lambda\hskip 1.99997pt|\hskip 1.99997pt\bigl{(}\hskip 1.49994pta\hskip 0.50003pt,\hskip 3.00003pt\bm{\upsilon}_{\hskip 0.35002ptu}\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 1.49994pt\bigr{)}
and hence ( a , 𝝊 u ( a ) ) ∈ ℒ − ( ρ u ) (\hskip 1.49994pta\hskip 0.50003pt,\hskip 3.00003pt\bm{\upsilon}_{\hskip 0.35002ptu}\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.35002ptu}\hskip 1.49994pt) . Therefore
ℒ − ( ρ u ) \mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.35002ptu}\hskip 1.49994pt) is equal to the graph of 𝝊 u \bm{\upsilon}_{\hskip 0.35002ptu} . ■ \blacksquare
Families of Dirac-like boundary problems.
Suppose that the manifold X = X w X\hskip 3.99994pt=\hskip 3.99994ptX_{\hskip 0.70004ptw} , the bundle E = E w E\hskip 3.99994pt=\hskip 3.99994ptE_{\hskip 0.70004ptw} , the operator P = P w P\hskip 3.99994pt=\hskip 3.99994ptP_{\hskip 0.70004ptw} , the bundle map f = f w f\hskip 3.99994pt=\hskip 3.99994ptf_{\hskip 0.70004ptw} etc. continuously depend on a parameter w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW as in [I 2 I_{\hskip 1.04996pt2} ] , and for each value of w w have all the properties assumed above. The subscript w w in f w f_{\hskip 0.70004ptw} should not be confused with the
subscript y y used above: w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW , but y ∈ Y y\hskip 1.99997pt\in\hskip 1.99997ptY . For each w w let A w A_{\hskip 0.70004ptw} be the self-adjoint operator
defined by P w P_{\hskip 0.70004ptw}
and the boundary condition corresponding to f w f_{\hskip 0.70004ptw} . Clearly, the bundles ℒ + ( f w ) , ℒ − ( f w ) \mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004ptw}\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.99994pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004ptw}\hskip 1.49994pt) continuously depend on w w and one can define continuous families
𝝉 w + , 𝝉 w − \bm{\tau}^{\hskip 0.70004pt+}_{\hskip 0.70004ptw}\hskip 1.49994pt,\hskip 3.99994pt\bm{\tau}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw} of skew-adjoint pseudo-differential operators of order 1 1 .
7.3. Theorem.
The analytical index of the family A w , w ∈ W A_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is equal to the analytical index of the family i 𝛕 w − , w ∈ W i\hskip 1.49994pt\bm{\tau}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW , as also of the family − i 𝛕 w + , w ∈ W -\hskip 1.99997pti\hskip 1.49994pt\bm{\tau}^{\hskip 0.70004pt+}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW .
Proof . As we pointed out above, we can replace the operators P w P_{\hskip 0.70004ptw} by the operators P w − ε P_{\hskip 0.70004ptw}\hskip 1.99997pt-\hskip 1.99997pt\varepsilon . Also, without affecting the analytical indices, we can deform the bundle maps f w f_{\hskip 0.70004ptw} to skew-adjoint bundle maps having only i i and − i -\hskip 1.99997pti as eigenvalues. Then
f w + i f w − i \quad\frac{f_{\hskip 0.70004ptw}\hskip 1.99997pt+\hskip 1.99997pti}{f_{\hskip 0.70004ptw}\hskip 1.99997pt-\hskip 1.99997pti}\hskip 3.00003pt
is equal to 0 on ℒ − ( f w ) \mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004ptw}\hskip 1.49994pt)
and to ∞ \infty on ℒ + ( f w ) \mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004ptw}\hskip 1.49994pt) . Of course, the boundary condition γ 1 = ∞ γ 0 \gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt\infty\hskip 1.99997pt\gamma_{0} should be interpreted as γ 0 = 0 \gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0 . Next, let us pass to the reduced boundary triplets
and rewrite the boundary conditions
in the form
𝚪 ¯ 1 = Λ − 1 ∘ ( f w + i f w − i − M w ) ∘ ( Λ ′ ) − 1 ∘ Γ ¯ 0 , \quad\overline{\bm{\Gamma}}_{1}\hskip 3.99994pt=\hskip 3.99994pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\circ\hskip 3.00003pt\left(\hskip 1.99997pt\frac{f_{\hskip 0.70004ptw}\hskip 1.99997pt+\hskip 1.99997pti}{f_{\hskip 0.70004ptw}\hskip 1.99997pt-\hskip 1.99997pti}\hskip 1.99997pt-\hskip 1.99997ptM_{\hskip 0.70004ptw}\hskip 1.99997pt\right)\hskip 1.99997pt\circ\hskip 1.99997pt(\hskip 1.49994pt\Lambda^{\prime}\hskip 1.49994pt)^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\circ\hskip 1.99997pt\overline{\Gamma}_{0}\hskip 3.00003pt,
where we omitted the dependence on w w of Γ ¯ 0 , 𝚪 ¯ 1 \overline{\Gamma}_{0}\hskip 1.00006pt,\hskip 3.99994pt\overline{\bm{\Gamma}}_{1}
and Λ , Λ ′ \Lambda\hskip 0.50003pt,\hskip 1.99997pt\Lambda^{\prime} . The continuity assumptions of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems were
verified at the end of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems . Also, the operators A w A_{\hskip 0.70004ptw} are operators with compact resolvent. Hence the results of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems apply. It follows that the analytical index of the family A w , w ∈ W A_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is equal to the analytical index of the family
of relations
Λ − 1 ∘ ( f w + i f w − i − M w ) ∘ ( Λ ′ ) − 1 , w ∈ W . \quad\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\circ\hskip 3.00003pt\left(\hskip 1.99997pt\frac{f_{\hskip 0.70004ptw}\hskip 1.99997pt+\hskip 1.99997pti}{f_{\hskip 0.70004ptw}\hskip 1.99997pt-\hskip 1.99997pti}\hskip 1.99997pt-\hskip 1.99997ptM_{\hskip 0.70004ptw}\hskip 1.99997pt\right)\hskip 1.99997pt\circ\hskip 1.99997pt(\hskip 1.49994pt\Lambda^{\prime}\hskip 1.49994pt)^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt,\quad w\hskip 1.99997pt\in\hskip 1.99997ptW\hskip 3.00003pt.
This family is equal to the direct sum of two families, one in the bundles ℒ + ( f w ) \mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004ptw}\hskip 1.49994pt)
and the other one in the bundles ℒ − ( f w ) \mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004ptw}\hskip 1.49994pt) . The family in the bundles ℒ + ( f w ) \mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004ptw}\hskip 1.49994pt) is
Λ − 1 ∘ ( ∞ − M w + ) ∘ ( Λ ′ ) − 1 , w ∈ W , \quad\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\circ\hskip 3.00003pt\bigl{(}\hskip 1.99997pt\infty\hskip 1.99997pt-\hskip 1.99997ptM^{\hskip 0.70004pt+}_{\hskip 0.70004ptw}\hskip 1.99997pt\bigr{)}\hskip 1.99997pt\circ\hskip 1.99997pt(\hskip 1.49994pt\Lambda^{\prime}\hskip 1.49994pt)^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt,\quad w\hskip 1.99997pt\in\hskip 1.99997ptW\hskip 3.00003pt,
where M w + M^{\hskip 0.70004pt+}_{\hskip 0.70004ptw} is induced by M w M_{\hskip 0.70004ptw} . As a relation, ∞ − M w + \infty\hskip 1.99997pt-\hskip 1.99997ptM^{\hskip 0.70004pt+}_{\hskip 0.70004ptw} is equal to ∞ \infty , and the boundary conditions defined by the above relations should be interpreted as Γ ¯ 0 = 0 \overline{\Gamma}_{0}\hskip 3.99994pt=\hskip 3.99994pt0 . The index of this family of relations is equal to 0 . The family in the bundles ℒ − ( f w ) \mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004ptw}\hskip 1.49994pt) is
− Λ − 1 ∘ M w − ∘ ( Λ ′ ) − 1 , w ∈ W , \quad-\hskip 3.00003pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\circ\hskip 3.00003ptM^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 1.99997pt\circ\hskip 1.99997pt(\hskip 1.49994pt\Lambda^{\prime}\hskip 1.49994pt)^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt,\quad w\hskip 1.99997pt\in\hskip 1.99997ptW\hskip 3.00003pt,
where M w − M^{\hskip 0.70004pt-}_{\hskip 0.70004ptw} is induced by M w M_{\hskip 0.70004ptw} . Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that for every w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW the symbol of the above operator is equal to − 𝝊 w − -\hskip 1.99997pt\bm{\upsilon}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw} , where 𝝊 w − \bm{\upsilon}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw} is determined by the equality
i 𝝉 w − = − 𝝊 w − | 𝝉 w − | . \quad i\hskip 1.99997pt\bm{\tau}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt\bm{\upsilon}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 3.99994pt\bigl{|}\hskip 1.99997pt\bm{\tau}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 1.99997pt\bigr{|}\hskip 3.00003pt.
Clearly, the family − 𝝊 w − , w ∈ W -\hskip 1.99997pt\bm{\upsilon}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is canonically homotopic to the family i 𝝉 w − , w ∈ W i\hskip 1.99997pt\bm{\tau}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW . The first statement of the theorem follows.
In order to prove the second statement, it is sufficient to prove that the sum
of the analytical indices of the families i 𝝉 w − , w ∈ W i\hskip 1.49994pt\bm{\tau}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW
and i 𝝉 w + , w ∈ W i\hskip 1.49994pt\bm{\tau}^{\hskip 0.70004pt+}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is equal to 0 . This sum is equal to the analytical index of the direct sum of these families, i.e. to the analytical index of the family i 𝝉 w , w ∈ W i\hskip 1.49994pt\bm{\tau}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW . If we take as f w f_{\hskip 0.35002ptw} for every w w the multiplication by − i -\hskip 1.99997pti , then ℒ − ( f w ) = F w \mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.35002ptw}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptF_{\hskip 0.35002ptw} and 𝝉 w − = 𝝉 w \bm{\tau}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 3.99994pt=\hskip 3.99994pt\bm{\tau}_{\hskip 0.70004ptw} for every w w . Since the bundle maps i f w = id if_{\hskip 0.35002ptw}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{id} are positive definite, the index of the corresponding family A w , w ∈ W A_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is equal to 0 . At the same, by the already proved first statement of the theorem, the index of this family is equal to the index of the family i 𝝉 w − = i 𝝉 w , w ∈ W i\hskip 1.49994pt\bm{\tau}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 3.99994pt=\hskip 3.99994pti\hskip 1.49994pt\bm{\tau}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW . Therefore the index of the family i 𝝉 w , w ∈ W i\hskip 1.49994pt\bm{\tau}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW is indeed equal to 0 . The second statement of the theorem follows. ■ \blacksquare
8. Comparing two boundary conditions
The operator S = T ⊕ − T S\hskip 3.99994pt=\hskip 3.99994ptT\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT .
Suppose that the assumptions of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems hold, except of the assumptions concerned with the reference
operator A A and the Lagrange identity (8 ). We will assume that a weaker form of the Lagrange identity holds, namely, that
⟨ T ∗ u , v ⟩ − ⟨ u , T ∗ v ⟩ = ⟨ i Σ γ u , γ v ⟩ ∂ \quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.49994pt\Sigma\hskip 1.99997pt\gamma\hskip 0.50003ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma\hskip 0.50003ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt
for every u , v ∈ H 1 u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1} and some self-adjoint invertible bounded operator
Σ : K ∂ ⊕ K ∂ ⟶ K ∂ ⊕ K ∂ \quad\Sigma\hskip 1.00006pt\colon\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}
leaving K ⊕ K K\hskip 1.00006pt\oplus\hskip 1.00006ptK invariant. Cf. [I 2 I_{\hskip 1.04996pt2} ] , Section 5. Let
H ^ 0 = H 0 ⊕ H 0 , \quad\widehat{H}_{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006ptH_{\hskip 1.04996pt0}\hskip 1.99997pt,\quad
H ^ 1 = H 1 ⊕ H 1 , \quad\widehat{H}_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt1}\hskip 1.00006pt\oplus\hskip 1.00006ptH_{\hskip 0.70004pt1}\hskip 1.99997pt,\quad
K ^ ∂ = K ∂ ⊕ K ∂ , \quad\widehat{K}^{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt,\quad
K ⊕ K ^ = ( K ⊕ K ) ⊕ ( K ⊕ K ) , \quad\widehat{K\hskip 1.00006pt\oplus\hskip 1.00006ptK}\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.49994ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 1.49994pt\bigr{)}\hskip 1.99997pt\oplus\hskip 1.99997pt\bigl{(}\hskip 1.49994ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 1.49994pt\bigr{)}\hskip 1.99997pt,\quad
γ ^ = γ ⊕ γ : H ^ 1 ⟶ K ⊕ K ^ . \quad\widehat{\gamma}\hskip 3.99994pt=\hskip 3.99994pt\gamma\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma\hskip 1.99997pt\colon\hskip 1.99997pt\widehat{H}_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\widehat{K\hskip 1.00006pt\oplus\hskip 1.00006ptK}\hskip 1.99997pt.
We are interested in the operator S = T ⊕ − T S\hskip 3.99994pt=\hskip 3.99994ptT\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT . It is an unbounded operator in H ^ 0 \widehat{H}_{\hskip 1.04996pt0} having as its domain Ker γ ^ ⊂ H ^ 1 \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\widehat{\gamma}\hskip 3.99994pt\subset\hskip 3.99994pt\widehat{H}_{\hskip 0.70004pt1} . Let Σ ^ = Σ ⊕ − Σ \widehat{\Sigma}\hskip 3.99994pt=\hskip 3.99994pt\Sigma\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997pt\Sigma . The Lagrange identity for S ∗ S^{*} is
⟨ S ∗ u , v ⟩ − ⟨ u , S ∗ v ⟩ = ⟨ i Σ ^ γ ^ u , γ ^ v ⟩ ∂ . \quad\langle\hskip 1.49994pt\hskip 1.00006ptS^{*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptS^{*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.99997pt\widehat{\Sigma}\hskip 3.00003pt\widehat{\gamma}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\widehat{\gamma}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt.
We will need also the operator S ∗ + ε S^{*}\hskip 1.99997pt+\hskip 1.99997pt\varepsilon , where ε \varepsilon is given by the matrix
ε = ( 0 1 1 0 ) \quad\varepsilon\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994pt0\hskip 1.00006pt&1\hskip 3.99994pt\vspace{4.5pt}\\
\hskip 3.99994pt1&0\hskip 1.99997pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt
in the decomposition H ^ 0 = H 0 ⊕ H 0 \widehat{H}_{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006ptH_{\hskip 1.04996pt0} .
A boundary condition for operators S ∗ S^{*} and S ∗ + ε S^{*}\hskip 1.99997pt+\hskip 1.99997pt\varepsilon .
Let Π 0 , Π 1 : H ^ 1 ⟶ H 1 \Pi_{\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 3.00003pt\Pi_{\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006pt\widehat{H}_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt1} be the projections onto the first and the second summands respectively. Let
π 0 = γ ∘ Π 0 , π 1 = γ ∘ Π 1 , and π = π 0 ⊕ π 1 . \quad\pi_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994pt\gamma\hskip 1.00006pt\circ\hskip 1.00006pt\Pi_{\hskip 0.70004pt0}\hskip 1.99997pt,\quad\pi_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt\gamma\hskip 1.00006pt\circ\hskip 1.00006pt\Pi_{\hskip 0.70004pt1}\hskip 1.99997pt,\quad\mbox{and}\quad\pi\hskip 3.99994pt=\hskip 3.99994pt\pi_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 3.00003pt.
Let Υ : K ∂ ⊕ K ∂ ⟶ K ∂ ⊕ K ∂ \Upsilon\hskip 1.00006pt\colon\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial} be a unitary operator leaving K ⊕ K K\hskip 1.00006pt\oplus\hskip 1.00006ptK invariant, and let us impose on S ∗ S^{*} the boundary condition π 1 = Υ ∘ π 0 \pi_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt\Upsilon\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0} , i.e. consider the restriction P P of S ∗ S^{*} to Ker ( π 1 − Υ ∘ π 0 ) \operatorname{Ker}\hskip 1.49994pt\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.99997pt-\hskip 1.99997pt\Upsilon\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.49994pt) . Equivalently, P P is the restriction of S ∗ S^{*} to π − 1 ( 𝒞 ) \pi^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.00006pt\mathcal{C}\hskip 1.49994pt) , where 𝒞 \mathcal{C} is the space of pairs of the form ( u , Υ ( u ) ) (\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997pt\Upsilon\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt) . We will further assume that Υ \Upsilon commutes with Σ \Sigma . The next lemma shows that then this boundary condition is self-adjoint in the sense of [I 2 I_{\hskip 1.04996pt2} ] , Section 5. We will assume that, moreover, the operator P P is self-adjoint and Fredholm.
8.1. Lemma.
The above boundary condition is self-adjoint, i.e. Σ ^ ( 𝒞 ) \widehat{\Sigma}\hskip 1.99997pt(\hskip 1.49994pt\mathcal{C}\hskip 1.49994pt) is equal to the orthogonal complement of 𝒞 \mathcal{C} .
Proof . Let ( u , Υ ( u ) ) , ( v , Υ ( v ) ) ∈ 𝒞 (\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997pt\Upsilon\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.99994pt(\hskip 1.49994ptv\hskip 0.50003pt,\hskip 1.99997pt\Upsilon\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{C} . Then
⟨ Σ ^ ( u , Υ ( u ) ) , ( v , Υ ( v ) ) ⟩ ∂ \quad\left\langle\hskip 1.49994pt\hskip 1.00006pt\widehat{\Sigma}\hskip 1.99997pt(\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997pt\Upsilon\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.99994pt(\hskip 1.49994ptv\hskip 0.50003pt,\hskip 1.99997pt\Upsilon\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
= ⟨ ( Σ u , − Σ ∘ Υ ( u ) ) , ( v , Υ ( v ) ) ⟩ ∂ \quad=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt(\hskip 1.49994pt\Sigma\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997pt-\hskip 1.99997pt\Sigma\hskip 1.00006pt\circ\hskip 1.00006pt\Upsilon\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.99994pt(\hskip 1.49994ptv\hskip 0.50003pt,\hskip 1.99997pt\Upsilon\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
= ⟨ Σ u , v ⟩ ∂ − ⟨ Υ ( Σ ( u ) ) , Υ ( v ) ⟩ ∂ = ⟨ Σ u , v ⟩ ∂ − ⟨ Σ u , v ⟩ ∂ = 0 \quad=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Sigma\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon\hskip 1.00006pt(\hskip 1.49994pt\Sigma\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997pt\Upsilon\hskip 1.00006pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Sigma\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Sigma\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994pt0
because Υ \Upsilon commutes with Σ \Sigma and is unitary. It follows that Σ ^ ( 𝒞 ) \widehat{\Sigma}\hskip 1.99997pt(\hskip 1.49994pt\mathcal{C}\hskip 1.49994pt) is orthogonal to 𝒞 \mathcal{C} . Conversely, suppose that ( a , b ) (\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) is orthogonal to 𝒞 \mathcal{C} . Then for every u ∈ K ⊕ K u\hskip 1.99997pt\in\hskip 1.99997ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK
0 = ⟨ ( a , b ) , ( u , Υ ( u ) ) ⟩ = ⟨ a , u ⟩ + ⟨ b , Υ ( u ) ) ⟩ . \quad 0\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997pt(\hskip 1.49994ptu\hskip 0.50003pt,\hskip 3.99994pt\Upsilon\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 1.99997pt+\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006ptb\hskip 0.50003pt,\hskip 1.99997pt\Upsilon\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt.
Since Υ \Upsilon is unitary and K K is dense in K ∂ K^{\hskip 0.70004pt\partial} , this implies that b = − Υ ( a ) b\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt\Upsilon\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt) . Since Σ \Sigma is invertible, this implies that ( a , b ) = ( a , − Υ ( a ) ) ∈ Σ ^ ( 𝒞 ) (\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997pt-\hskip 1.99997pt\Upsilon\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 3.00003pt\widehat{\Sigma}\hskip 1.99997pt(\hskip 1.49994pt\mathcal{C}\hskip 1.49994pt) . The lemma follows. ■ \blacksquare
8.2. Theorem.
If the operator − i Σ ∗ ∘ Υ -\hskip 1.99997pti\hskip 1.49994pt\Sigma^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.00006pt\Upsilon is positive definite, then the operator P + ε P\hskip 1.99997pt+\hskip 1.99997pt\varepsilon is an isomorphism 𝒟 ( P ) ⟶ H ^ 0 \mathcal{D}\hskip 1.49994pt(\hskip 1.49994ptP\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\widehat{H}_{\hskip 0.70004pt0} .
Proof . Since P P is assumed to be self-adjoint and ε \varepsilon is bounded, P + ε P\hskip 1.99997pt+\hskip 1.99997pt\varepsilon is a self-adjoint operator in H ^ 0 \widehat{H}_{\hskip 0.70004pt0} . Therefore it is sufficient to prove that the kernel of P + ε P\hskip 1.99997pt+\hskip 1.99997pt\varepsilon is equal to 0 . Suppose that ( a , b ) ∈ Ker ( P + ε ) (\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptP\hskip 1.99997pt+\hskip 1.99997pt\varepsilon\hskip 1.49994pt) . Then T ∗ a + b = 0 T^{\hskip 0.70004pt*}\hskip 0.50003pta\hskip 1.99997pt+\hskip 1.99997ptb\hskip 3.99994pt=\hskip 3.99994pt0
and a − T ∗ b = 0 a\hskip 1.99997pt-\hskip 1.99997ptT^{\hskip 0.70004pt*}\hskip 0.50003ptb\hskip 3.99994pt=\hskip 3.99994pt0 . Let us apply the Lagrange identity for S ∗ S^{*} to u = ( a , a ) u\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.49994pt) and v = ( b , − b ) v\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994ptb\hskip 0.50003pt,\hskip 1.99997pt-\hskip 1.99997ptb\hskip 1.49994pt) . Since ε \varepsilon is self-adjoint, ε \varepsilon does not affect the left hand side of the Lagrange identity and hence the latter is equal to
⟨ T ∗ a , b ⟩ − ⟨ a , T ∗ b ⟩ + ⟨ − T ∗ a , − b ⟩ − ⟨ a , − T ∗ ( − b ) ⟩ \quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}a\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006pta\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}b\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt+\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006pt-\hskip 1.99997ptT^{\hskip 0.70004pt*}a\hskip 0.50003pt,\hskip 1.99997pt-\hskip 1.99997ptb\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006pta\hskip 1.00006pt,\hskip 1.99997pt-\hskip 1.99997ptT^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt-\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\rangle
= 2 ⟨ T ∗ a , b ⟩ − 2 ⟨ a , T ∗ b ⟩ = − 2 ⟨ b , b ⟩ − 2 ⟨ a , a ⟩ , \quad=\hskip 3.99994pt2\hskip 1.49994pt\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}a\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt2\hskip 1.49994pt\langle\hskip 1.49994pt\hskip 1.00006pta\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}b\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt2\hskip 1.49994pt\langle\hskip 1.49994pt\hskip 1.00006ptb\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt2\hskip 1.49994pt\langle\hskip 1.49994pt\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt,
where at the last step we used the fact that T ∗ a = − b T^{\hskip 0.70004pt*}\hskip 0.50003pta\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997ptb and T ∗ b = a T^{\hskip 0.70004pt*}\hskip 0.50003ptb\hskip 3.99994pt=\hskip 3.99994pta . In particular, the left hand side is ⩽ 0 \leqslant\hskip 1.99997pt0 . The right hand side of the Lagrange identity is equal to
⟨ i Σ γ a , γ b ⟩ ∂ + ⟨ i ( − Σ ) γ a , − γ b ⟩ ∂ = 2 ⟨ i Σ γ a , γ b ⟩ ∂ . \quad\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.99997pt\Sigma\hskip 1.49994pt\gamma\hskip 0.50003pta\hskip 1.00006pt,\hskip 1.99997pt\gamma\hskip 1.00006ptb\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt+\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.49994pt(\hskip 1.00006pt-\hskip 1.99997pt\Sigma\hskip 1.49994pt)\hskip 1.49994pt\gamma\hskip 0.50003pta\hskip 1.00006pt,\hskip 1.99997pt-\hskip 1.99997pt\gamma\hskip 1.00006ptb\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994pt2\hskip 1.49994pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.99997pt\Sigma\hskip 1.49994pt\gamma\hskip 0.50003pta\hskip 1.00006pt,\hskip 1.99997pt\gamma\hskip 1.00006ptb\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt.
At the same time ( a , b ) ∈ 𝒟 ( P ) (\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.49994pt(\hskip 1.49994ptP\hskip 1.49994pt) and hence γ b = Υ ( γ a ) \gamma\hskip 0.50003ptb\hskip 3.99994pt=\hskip 3.99994pt\Upsilon\hskip 1.00006pt(\hskip 1.00006pt\gamma\hskip 0.50003pta\hskip 1.49994pt) . Therefore
⟨ i Σ γ a , γ b ⟩ ∂ = ⟨ i Σ γ a , Υ γ a ⟩ ∂ = ⟨ γ a , − i Σ ∗ ∘ Υ ( γ a ) ⟩ ∂ . \quad\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.99997pt\Sigma\hskip 1.49994pt\gamma\hskip 0.50003pta\hskip 1.00006pt,\hskip 1.99997pt\gamma\hskip 1.00006ptb\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.99997pt\Sigma\hskip 1.49994pt\gamma\hskip 0.50003pta\hskip 1.00006pt,\hskip 1.99997pt\Upsilon\hskip 1.00006pt\gamma\hskip 0.50003pta\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma\hskip 0.50003pta\hskip 1.00006pt,\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.49994pt\Sigma^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.00006pt\Upsilon\hskip 1.00006pt(\hskip 1.00006pt\gamma\hskip 0.50003pta\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt.
It follows that the right hand side is ⩾ 0 \geqslant\hskip 1.99997pt0 if − i Σ ∗ ∘ Υ -\hskip 1.99997pti\hskip 1.49994pt\Sigma^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.00006pt\Upsilon is positive definite. Since the left hand side is ⩽ 0 \leqslant\hskip 1.99997pt0 , in this case both sides are equal to 0 . This implies that ⟨ b , b ⟩ + ⟨ a , a ⟩ = 0 \langle\hskip 1.49994pt\hskip 1.00006ptb\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt0
and hence a = b = 0 a\hskip 3.99994pt=\hskip 3.99994ptb\hskip 3.99994pt=\hskip 3.99994pt0 . It follows that Ker ( P + ε ) = 0 \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptP\hskip 1.99997pt+\hskip 1.99997pt\varepsilon\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0 . ■ \blacksquare
Changing the boundary operators.
Suppose that Σ \Sigma is unitary and let us take Υ = i Σ \Upsilon\hskip 3.99994pt=\hskip 3.99994pti\hskip 1.49994pt\Sigma . Then − i Σ ∗ ∘ Υ = Σ ∗ ∘ Σ -\hskip 1.99997pti\hskip 1.49994pt\Sigma^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.00006pt\Upsilon\hskip 3.99994pt=\hskip 3.99994pt\Sigma^{\hskip 0.70004pt*}\hskip 0.50003pt\circ\hskip 1.49994pt\Sigma is positive definite and Υ \Upsilon is skew-adjoint. Let
Γ 0 = ( π 0 − Υ − 1 ∘ π 1 ) / 2 and Γ 1 = ( Υ ∘ π 0 + π 1 ) / 2 . \quad\Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.99997pt-\hskip 1.99997pt\Upsilon^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt)\bigl{/}\sqrt{2}\quad\mbox{and}\quad\Gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\Upsilon\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.99997pt+\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt)\bigl{/}\sqrt{2}\hskip 3.99994pt.
Using the facts that Υ \Upsilon is skew-adjoint and unitary, we see that
2 ⟨ Γ 1 u , Γ 0 v ⟩ ∂ − 2 ⟨ Γ 0 u , Γ 1 v ⟩ ∂ 2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt-\hskip 3.00003pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
= ⟨ Υ ∘ π 0 u + π 1 u , π 0 v − Υ − 1 ∘ π 1 v ⟩ ∂ − ⟨ π 0 u − Υ − 1 ∘ π 1 u , Υ ∘ π 0 v + π 1 v ⟩ ∂ =\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.99997pt+\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.99997pt-\hskip 1.99997pt\Upsilon^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.99997pt-\hskip 1.99997pt\Upsilon^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Upsilon\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.99997pt+\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
= ⟨ Υ ∘ π 0 u , π 0 v ⟩ ∂ − ⟨ Υ ∘ π 0 u , Υ − 1 ∘ π 1 v ⟩ ∂ + ⟨ π 1 u , π 0 v ⟩ ∂ − ⟨ π 1 u , Υ − 1 ∘ π 1 v ⟩ ∂ =\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon\vphantom{{}^{-\hskip 0.70004pt1}}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Upsilon^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt+\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\vphantom{{}^{-\hskip 0.70004pt1}}\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Upsilon^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
− ⟨ π 0 u , Υ ∘ π 0 v ⟩ ∂ − ⟨ π 0 u , π 1 v ⟩ ∂ + ⟨ Υ − 1 ∘ π 1 u , Υ ∘ π 0 v ⟩ ∂ + ⟨ Υ − 1 ∘ π 1 u , π 1 v ⟩ ∂ -\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Upsilon\vphantom{{}^{-\hskip 0.70004pt1}}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\vphantom{{}^{-\hskip 0.70004pt1}}\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt+\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Upsilon\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt+\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
= 2 ⟨ Υ ∘ π 0 u , π 0 v ⟩ ∂ + 2 ⟨ Υ − 1 ∘ π 1 u , π 1 v ⟩ ∂ =\hskip 3.99994pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon\vphantom{{}^{-\hskip 0.70004pt1}}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt+\hskip 1.99997pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
= 2 ⟨ Υ ∘ π 0 u , π 0 v ⟩ ∂ − 2 ⟨ Υ ∘ π 1 u , π 1 v ⟩ ∂ = 2 ⟨ i Σ ^ γ ^ u , γ ^ v ⟩ ∂ . =\hskip 3.99994pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon\vphantom{{}^{-\hskip 0.70004pt1}}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon\vphantom{{}^{-\hskip 0.70004pt1}}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt\hskip 1.99997pt=\hskip 3.99994pt\hskip 1.99997pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.99997pt\widehat{\Sigma}\hskip 3.00003pt\widehat{\gamma}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\widehat{\gamma}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt.
This shows that the Lagrange identity in terms of Γ 0 , Γ 1 \Gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\Gamma_{1} has the standard form. The operator A = P + ε A\hskip 3.99994pt=\hskip 3.99994ptP\hskip 1.99997pt+\hskip 1.99997pt\varepsilon is defined by the boundary condition Υ ∘ Γ 0 = 0 \Upsilon\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0 , which is equivalent to Γ 0 = 0 \Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0 . Theorem Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that we can take A = P + ε A\hskip 3.99994pt=\hskip 3.99994ptP\hskip 1.99997pt+\hskip 1.99997pt\varepsilon as the reference operator.
The difference of two boundary conditions.
Now we will return to the situation of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems and assume that the Lagrange identity for T ∗ T^{\hskip 0.70004pt*} has the form (8 ). Equivalently,
i Σ = ( 0 1 − 1 0 ) \quad i\hskip 1.49994pt\Sigma\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994pt0&1\hskip 1.99997pt\hskip 3.99994pt\vspace{4.5pt}\\
\hskip 3.99994pt\hskip 1.00006pt-\hskip 1.99997pt1&0\hskip 1.99997pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt
with respect to the direct sum K ∂ ⊕ K ∂ K^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial} . Let ℬ 0 , ℬ 1 ⊂ K ∂ ⊕ K ∂ \mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994pt\mathcal{B}_{\hskip 0.70004pt1}\hskip 3.99994pt\subset\hskip 3.99994ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial} be two closed relations. Let T 0 , T 1 T_{\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 1.99997ptT_{\hskip 0.35002pt1} be the restrictions of T ∗ T^{\hskip 0.70004pt*} to π − 1 ( ℬ 0 ) , π − 1 ( ℬ 1 ) ⊂ H 1 \pi^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.99994pt\pi^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{B}_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1} respectively. Let us assume that T 0 , T 1 T_{\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 1.99997ptT_{\hskip 0.35002pt1}
are self-adjoint operators in H 0 H_{\hskip 1.04996pt0} .
But we will not assume that T 0 T_{\hskip 0.70004pt0} or T 1 T_{\hskip 0.35002pt1} is invertible. The direct sum T 0 ⊕ − T 1 T_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT_{\hskip 0.35002pt1} is the formal difference of operators T 0 T_{\hskip 0.70004pt0} and T 1 T_{\hskip 0.35002pt1} .
The formal difference T 0 ⊕ − T 1 T_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT_{\hskip 0.35002pt1} is the self-adjoint extension of S = T ⊕ − T S\hskip 3.99994pt=\hskip 3.99994ptT\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT
defined by the boundary condition ℬ 0 ⊕ ℬ 1 \mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{B}_{\hskip 0.70004pt1} . This extension can be defined also in terms of boundary operators Γ 0 , Γ 1 \Gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\Gamma_{1} . Namely, let Γ = Γ 0 ⊕ Γ 1 \Gamma\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\Gamma_{1}
and let Φ \Phi be the automorphism of
( K ∂ ⊕ K ∂ ) ⊕ ( K ∂ ⊕ K ∂ ) \quad\bigl{(}\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\bigr{)}\hskip 1.99997pt\oplus\hskip 1.99997pt\bigl{(}\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\bigr{)}
defined by the formula Φ ( a , b ) = ( a − Υ − 1 ( b ) , Υ ( a ) + b ) \Phi\hskip 1.49994pt(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.49994pta\hskip 1.99997pt-\hskip 1.99997pt\Upsilon^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptb\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.00003pt\Upsilon\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptb\hskip 1.49994pt\bigr{)} . Then Φ ( ℬ 0 ⊕ ℬ 1 ) \Phi\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{B}_{\hskip 0.70004pt1}\hskip 1.49994pt) is a closed self-adjoint relation and T 0 ⊕ − T 1 T_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT_{\hskip 0.35002pt1} is the restriction of S ∗ S^{*} to
Γ − 1 ( Φ ( ℬ 0 ⊕ ℬ 1 ) ) . \quad\Gamma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\bigl{(}\hskip 1.99997pt\Phi\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{B}_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.00003pt.
In other words, T 0 ⊕ − T 1 T_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT_{\hskip 0.35002pt1} is equal to the extension of S S defined in terms of Γ 0 , Γ 1 \Gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\Gamma_{1} by the boundary condition Φ ( ℬ 0 ⊕ ℬ 1 ) \Phi\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{B}_{\hskip 0.70004pt1}\hskip 1.49994pt) . When parameters are present, the index of T 0 ⊕ − T 1 T_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT_{\hskip 0.35002pt1} is equal to the difference of indices of T 0 T_{\hskip 0.70004pt0} and T 1 T_{\hskip 0.35002pt1} , and we will assume that everything continuously depends on parameters, but will omit the parameters from notations.
For the purposes of determining the index, we can replace S ∗ S^{*} by S ∗ + ε S^{*}\hskip 1.99997pt+\hskip 1.99997pt\varepsilon , or, equivalently, to consider ( the family of operators) ( T 0 ⊕ − T 1 ) + ε (\hskip 1.49994ptT_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT_{\hskip 0.35002pt1}\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997pt\varepsilon . Then we can use A = P + ε A\hskip 3.99994pt=\hskip 3.99994ptP\hskip 1.99997pt+\hskip 1.99997pt\varepsilon as the reference operators and construct the reduced boundary triplets. We can also define the (families of ) operators M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) and M M . In order to be able to apply the results of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems we need to assume that either the operators P + ε P\hskip 1.99997pt+\hskip 1.99997pt\varepsilon have compact resolvent, or that the relations ℬ 0 , ℬ 1 \mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994pt\mathcal{B}_{\hskip 0.70004pt1} are self-adjoint Fredholm relations with compact resolvent. We need also the continuity assumptions from Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems . Then the index of the family ( T 0 ⊕ − T 1 ) + ε (\hskip 1.49994ptT_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT_{\hskip 0.35002pt1}\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997pt\varepsilon , and hence the index of the family T 0 ⊕ − T 1 T_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT_{\hskip 0.35002pt1} , is equal to the index of the family
Λ ′ ⊕ Λ − 1 ( Φ ( ℬ 0 ⊕ ℬ 1 ) | ( K ⊕ K ) − M ) . \quad\Lambda^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\Phi\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{B}_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.49994pt\bigl{|}\hskip 1.49994pt(\hskip 1.49994ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.99997pt\bigr{)}\hskip 3.00003pt.
In this computation of the index
one can return to the original direct sum ℬ 0 ⊕ ℬ 1 \mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{B}_{\hskip 0.70004pt1} . In order to do this, let us consider M M as a closed relation in K ⊕ K K\hskip 1.00006pt\oplus\hskip 1.00006ptK and let M ⊕ = Φ − 1 ( M ) M_{\hskip 0.70004pt\oplus}\hskip 3.99994pt=\hskip 3.99994pt\Phi^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptM\hskip 1.49994pt) . Then the index of the family T 0 ⊕ − T 1 T_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT_{\hskip 0.35002pt1} is equal to the index of the family
(19)
Λ ′ ⊕ Λ − 1 ( ( ℬ 0 ⊕ ℬ 1 ) | ( K ⊕ K ) − M ⊕ ) , \quad\Lambda^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt(\hskip 1.49994pt\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{B}_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.49994pt\bigl{|}\hskip 1.49994pt(\hskip 1.49994ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptM_{\hskip 0.70004pt\oplus}\hskip 1.99997pt\bigr{)}\hskip 3.00003pt,
and hence the difference of the indices of the families T 0 T_{\hskip 0.70004pt0} and T 1 T_{\hskip 0.35002pt1} is also equal to this index.
At the end of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems we defined
self-adjoint relations
from K K to K ′ K\hskip 0.50003pt^{\prime} . One can also define the index of families of such self-adjoint relations. We leave this to the reader. By Lemma Boundary triplets and the index of families of self-adjoint elliptic boundary problems the operators Λ \Lambda and Λ ′ \Lambda^{\prime}
are adjoint to each other. It follows that the latter index, and hence the difference of the indices, is equal to the index of the family
(20)
( ℬ 0 ⊕ ℬ 1 ) | ( K ⊕ K ) − M ⊕ \quad(\hskip 1.49994pt\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{B}_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.49994pt\bigl{|}\hskip 1.49994pt(\hskip 1.49994ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptM_{\hskip 0.70004pt\oplus}\hskip 3.00003pt
of relations from K ⊕ K K\hskip 1.00006pt\oplus\hskip 1.00006ptK to K ′ ⊕ K ′ K\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 0.50003pt^{\prime} . Here the relation M ⊕ M_{\hskip 0.70004pt\oplus} mixes the summands preserved by ℬ 0 ⊕ ℬ 1 \mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{B}_{\hskip 0.70004pt1} , and the fact that we are dealing with the difference is reflected only in M ⊕ M_{\hskip 0.70004pt\oplus} . Of course, there is no similar result for the sum. The above arguments do not work for the sum because there is no analogue of Theorem Boundary triplets and the index of families of self-adjoint elliptic boundary problems if T ⊕ − T T\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT is replaced by T ⊕ T T\hskip 1.00006pt\oplus\hskip 1.00006ptT .
The differential boundary problems of order one.
Suppose now that we are in the situation of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems Let ρ u = σ y − 1 τ u \rho_{\hskip 0.70004ptu}\hskip 3.99994pt=\hskip 3.99994pt\sigma_{y}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\tau_{\hskip 0.35002ptu} be related to T T , and let ρ u ′ \rho^{\prime}_{\hskip 0.35002ptu} and
ρ ^ u = ρ u ⊕ ρ u ′ \widehat{\rho}_{\hskip 0.70004ptu}\hskip 3.99994pt=\hskip 3.99994pt\rho_{\hskip 0.70004ptu}\hskip 1.00006pt\oplus\hskip 1.00006pt\rho^{\prime}_{\hskip 0.35002ptu} be similar operators related to − T -\hskip 1.99997ptT and S = T ⊕ − T S\hskip 3.99994pt=\hskip 3.99994ptT\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT respectively. Then ρ u ′ = ( − σ y − 1 ) ( − τ u ) = ρ u \rho^{\prime}_{\hskip 0.35002ptu}\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.00006pt-\hskip 1.99997pt\sigma_{y}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt)\hskip 1.99997pt(\hskip 1.00006pt-\hskip 1.99997pt\tau_{\hskip 0.35002ptu}\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\rho_{\hskip 0.70004ptu}
and hence ρ ^ u = ρ u ⊕ ρ u \widehat{\rho}_{\hskip 0.70004ptu}\hskip 3.99994pt=\hskip 3.99994pt\rho_{\hskip 0.70004ptu}\hskip 1.00006pt\oplus\hskip 1.00006pt\rho_{\hskip 0.70004ptu} . It follows that
ℒ − ( ρ ^ u ) = ℒ − ( ρ u ) ⊕ ℒ − ( ρ u ) . \quad\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\widehat{\rho}_{\hskip 0.70004ptu}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)\hskip 1.99997pt.
Recall that the subspace
ℒ − ( ρ u ) \mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt) is lagrangian
and hence i Σ ( ℒ − ( ρ u ) ) ∩ ℒ − ( ρ u ) = 0 i\hskip 1.49994pt\Sigma\hskip 1.49994pt(\hskip 1.49994pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.99997pt\cap\hskip 1.99997pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0 . It follows that the kernel of the map ( u , v ) ⟼ i Σ ( u ) − v (\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994pti\hskip 1.49994pt\Sigma\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptv intersects ℒ − ( ρ ^ u ) \mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\widehat{\rho}_{\hskip 0.70004ptu}\hskip 1.49994pt)
only by 0 . Similarly, the kernel of the map ( u , v ) ⟼ i Σ ( u ) + v (\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994pti\hskip 1.49994pt\Sigma\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptv intersects ℒ − ( ρ ^ u ) \mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\widehat{\rho}_{\hskip 0.70004ptu}\hskip 1.49994pt)
only by 0 . This implies that the boundary conditions Γ 0 = 0 \Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0 and Γ 1 = 0 \Gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt0 satisfy the Shapiro–Lopatinskii condition. Since the operators P P is defined by the boundary condition Γ 0 = 0 \Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0 , it follows that the operators P P are self-adjoint and Fredholm. Similarly, the operators P ′ P^{\prime} defined by the boundary conditions
Γ 1 = 0 \Gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt0 are also self-adjoint and Fredholm.
Suppose now that everything depends on a parameter w ∈ W w\hskip 1.99997pt\in\hskip 1.99997ptW
as at the end of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems . The continuity assumptions of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems hold by the same reasons as in Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems . Also, the operators A A are operators with compact resolvent. Hence, as in the proof of Theorem Boundary triplets and the index of families of self-adjoint elliptic boundary problems , the results of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems apply and the difference of the indices of the families T 0 T_{\hskip 0.70004pt0} and T 1 T_{\hskip 0.35002pt1} is equal to the index of the family (19 ), as also to the index of the family (20 ).
In the present context one can describe M M and M ⊕ M_{\hskip 0.70004pt\oplus} in terms of the Cauchy data of the equation ( S ∗ + ε ) u = 0 (\hskip 1.49994ptS^{*}\hskip 1.99997pt+\hskip 1.99997pt\varepsilon\hskip 1.49994pt)\hskip 1.49994ptu\hskip 3.99994pt=\hskip 3.99994pt0 . Namely, by the results of Section Boundary triplets and the index of families of self-adjoint elliptic boundary problems the operator M M is the operator having as its graph the image of H ^ 1 ∩ Ker ( S ∗ + ε ) \widehat{H}_{\hskip 0.70004pt1}\hskip 1.99997pt\cap\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 1.00006pt(\hskip 1.49994ptS^{*}\hskip 1.99997pt+\hskip 1.99997pt\varepsilon\hskip 1.49994pt) under the map Γ = Γ 0 ⊕ Γ 1 \Gamma\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\Gamma_{1} . Clearly, Γ = Φ ∘ π \Gamma\hskip 3.99994pt=\hskip 3.99994pt\Phi\hskip 1.00006pt\circ\hskip 1.00006pt\pi . It follows that M ⊕ = Φ − 1 ( M ) M_{\hskip 0.70004pt\oplus}\hskip 3.99994pt=\hskip 3.99994pt\Phi^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptM\hskip 1.49994pt) is the relation having as its graph ( i.e. equal to) the image of H ^ 1 ∩ Ker ( S ∗ + ε ) \widehat{H}_{\hskip 0.70004pt1}\hskip 1.99997pt\cap\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 1.00006pt(\hskip 1.49994ptS^{*}\hskip 1.99997pt+\hskip 1.99997pt\varepsilon\hskip 1.49994pt) under the map π \pi .
Rellich example.
Let H 0 = L 2 [ 0 , 1 ] H_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994ptL_{\hskip 0.70004pt2}\hskip 1.00006pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt] . Let T T be the differential operator − d 2 / d x 2 -\hskip 1.99997ptd^{\hskip 0.70004pt2}/\hskip 1.00006ptdx^{\hskip 0.70004pt2} with the domain H 2 0 [ 0 , 1 ] H_{\hskip 1.04996pt2}^{\hskip 1.04996pt0}\hskip 1.99997pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt] , the subspace of the Sobolev space H 2 [ 0 , 1 ] H_{\hskip 1.04996pt2}\hskip 1.99997pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt] defined by the boundary conditions u ( 0 ) = u ( 1 ) = u ′ ( 0 ) = u ′ ( 1 ) = 0 u\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptu^{\prime}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptu^{\prime}\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt0 . For κ ∈ 𝐑 ∪ { ∞ } \kappa\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{R}\hskip 1.49994pt\cup\hskip 1.00006pt\{\hskip 1.49994pt\infty\hskip 1.49994pt\} let T ( κ ) T\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt) be the restriction of T ∗ T^{\hskip 0.70004pt*}
defined by the boundary conditions u ( 0 ) = 0 u\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt0 , κ u ′ ( 1 ) = u ( 1 ) \kappa\hskip 1.00006ptu^{\prime}\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt) . For κ = ∞ \kappa\hskip 3.99994pt=\hskip 3.99994pt\infty the condition κ u ′ ( 1 ) = u ( 1 ) \kappa\hskip 1.00006ptu^{\prime}\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt) is interpreted as u ′ ( 1 ) = 0 u^{\prime}\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt0 . The family of operators T ( κ ) T\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt) is an important example in the theory of self-adjoint operators. See Kato [K ] , Example V.4.14. This family is continuous in the topology of the uniform resolvent convergence, even at κ = ∞ \kappa\hskip 3.99994pt=\hskip 3.99994pt\infty if we consider 𝐑 ∪ { ∞ } \mathbf{R}\hskip 1.49994pt\cup\hskip 1.00006pt\{\hskip 1.49994pt\infty\hskip 1.49994pt\} as the one-point compactification of 𝐑 \mathbf{R} . This one-point compactification can be identified with the circle S 1 S^{\hskip 0.35002pt1} , say, by the stereographic projection. Hence the index of this family belongs to K 1 ( S 1 ) = 𝐙 K^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptS^{\hskip 0.35002pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathbf{Z} . Alternatively, this index is equal to the spectral flow
of the family T ( κ ) T\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt) , κ ∈ 𝐑 ∪ { ∞ } \kappa\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{R}\hskip 1.49994pt\cup\hskip 1.00006pt\{\hskip 1.49994pt\infty\hskip 1.49994pt\} . The behavior of eigenvalues in this family is known. See the picture in [K ] , loc. cit. It is clear from this picture that the spectral flow, and hence the index, is equal to 1 1 . It is instructive to deduce this not from explicit computations
outlined in [K ] , but from our general theory.
The boundary triplet.
In order to apply the results of Sections Boundary triplets and the index of families of self-adjoint elliptic boundary problems and Boundary triplets and the index of families of self-adjoint elliptic boundary problems , let us take the Sobolev space
H 2 [ 0 , 1 ] H_{\hskip 1.04996pt2}\hskip 1.99997pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt] as H 1 H_{\hskip 0.70004pt1} , and 𝐂 2 \mathbf{C}^{\hskip 0.70004pt2}
with the standard Hermitian structure as K ∂ , K K^{\hskip 0.70004pt\partial},\hskip 1.99997ptK . Let
γ 0 ( u ) = ( u ( 0 ) , u ( 1 ) ) and γ 1 ( u ) = ( u ′ ( 0 ) , − u ′ ( 1 ) ) . \quad\gamma_{0}\hskip 1.00006pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.99997ptu\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.99997pt)\quad\mbox{and}\quad\gamma_{1}\hskip 1.00006pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.99997ptu^{\prime}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 0.50003pt,\hskip 1.99997pt-\hskip 1.99997ptu^{\prime}\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.99997pt)\hskip 3.00003pt.
The integration by parts shows that the identity (8 ) holds. See [Schm ] , Example 14.2. Let us take as the reference operator A κ A_{\hskip 1.04996pt\kappa} for every value of κ \kappa the restriction A = T ∗ | Ker γ 0 A\hskip 3.99994pt=\hskip 3.99994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0} . As is well known, the operator A A is self-adjoint and invertible. Since the Hilbert spaces K ∂ , K K^{\hskip 0.70004pt\partial},\hskip 1.99997ptK
are finitely dimensional and equal, there is no need to pass to the reduced boundary triplet. In fact, already Theorem Boundary triplets and the index of families of self-adjoint elliptic boundary problems implies that the index of the family T ( κ ) T\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt) , κ ∈ 𝐑 ∪ { ∞ } \kappa\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{R}\hskip 1.49994pt\cup\hskip 1.00006pt\{\hskip 1.49994pt\infty\hskip 1.49994pt\} is equal to the index of the family of the corresponding boundary conditions. The computation of the latter is a finitely dimensional problem. The relation ℛ ( κ ) \mathcal{R}\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt) defining T ( κ ) T\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt) is
ℛ ( κ ) = { ( 0 , b , c , − κ b ) | b , c ∈ 𝐂 } . \quad\mathcal{R}\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\bigl{\{}\hskip 3.00003pt(\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997ptb\hskip 0.50003pt,\hskip 1.99997ptc\hskip 0.50003pt,\hskip 1.99997pt-\hskip 1.99997pt\kappa\hskip 1.00006ptb\hskip 1.49994pt)\hskip 1.99997pt\bigl{|}\hskip 1.99997ptb\hskip 0.50003pt,\hskip 1.99997ptc\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{C}\hskip 3.99994pt\bigr{\}}\hskip 3.00003pt.
It is equal to the direct sum of relations 0 ⊕ 𝐂 0\hskip 1.00006pt\oplus\hskip 1.00006pt\mathbf{C} and ℛ 1 ( κ ) = { ( b , − κ b ) | b ∈ 𝐂 } \mathcal{R}_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\bigl{\{}\hskip 3.00003pt(\hskip 1.49994ptb\hskip 0.50003pt,\hskip 1.99997pt-\hskip 1.99997pt\kappa\hskip 1.00006ptb\hskip 1.49994pt)\hskip 1.99997pt\bigl{|}\hskip 1.99997ptb\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{C}\hskip 3.99994pt\bigr{\}} . It follows that the index is equal to the index
of the family ℛ 1 ( κ ) \mathcal{R}_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt) , κ ∈ 𝐑 ∪ { ∞ } \kappa\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{R}\hskip 1.49994pt\cup\hskip 1.00006pt\{\hskip 1.49994pt\infty\hskip 1.49994pt\} . It is easy to see that the latter generates the group K 1 ( S 1 ) K^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptS^{\hskip 0.35002pt1}\hskip 1.49994pt) . Therefore the index is equal to 1 1 , up to the choice of the identification K 1 ( S 1 ) = 𝐙 K^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptS^{\hskip 0.35002pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathbf{Z} . It is worth to point out that ℛ 1 ( ∞ ) = 0 ⊕ 𝐂 \mathcal{R}_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\infty\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0\hskip 1.00006pt\oplus\hskip 1.00006pt\mathbf{C} is only a relation, not the graph of an operator. In finite dimension the index of any family of self-adjoint operators is equal to 0 because all such families are homotopic.
The reduced boundary triplet.
While it is not needed for the computation
of the index, the reduced boundary triplet is still defined. The kernel Ker T ∗ \operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} consists of polynomials of degree 1 1 . Clearly, 𝜸 ( 0 ) \bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) maps ( a , b ) (\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) to the polynomial x ⟼ ( b − a ) x + a x\hskip 3.99994pt\longmapsto\hskip 3.99994pt(\hskip 1.49994ptb\hskip 1.99997pt-\hskip 1.99997pta\hskip 1.49994pt)\hskip 1.49994ptx\hskip 1.99997pt+\hskip 1.99997pta . Therefore M ( 0 ) = Γ 1 ∘ 𝜸 ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt\circ\hskip 1.49994pt\bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) maps ( a , b ) (\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) to ( b − a , a − b ) (\hskip 1.49994ptb\hskip 1.99997pt-\hskip 1.99997pta\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.99997pt-\hskip 1.99997ptb\hskip 1.49994pt) and hence the graph ℳ \mathcal{M} of M ( 0 ) M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) is equal to { ( a , b , b − a , a − b ) | a , b ∈ 𝐂 } \bigl{\{}\hskip 3.00003pt(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.99997pt-\hskip 1.99997pta\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.99997pt-\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\bigl{|}\hskip 1.99997pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{C}\hskip 3.99994pt\bigr{\}} . It follows that
ℛ ( κ ) − ℳ = { ( 0 , b , c − b , b − κ b ) | b , c ∈ 𝐂 } . \quad\mathcal{R}\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997pt\mathcal{M}\hskip 3.99994pt=\hskip 3.99994pt\bigl{\{}\hskip 3.00003pt(\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997ptb\hskip 0.50003pt,\hskip 1.99997ptc\hskip 1.99997pt-\hskip 1.99997ptb\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.99997pt-\hskip 1.99997pt\kappa\hskip 1.00006ptb\hskip 1.49994pt)\hskip 1.99997pt\bigl{|}\hskip 1.99997ptb\hskip 0.50003pt,\hskip 1.99997ptc\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{C}\hskip 3.99994pt\bigr{\}}\hskip 3.00003pt.
This relation is equal to the direct sum of relations 0 ⊕ 𝐂 0\hskip 1.00006pt\oplus\hskip 1.00006pt\mathbf{C} and { ( b , ( 1 − κ ) b ) | b ∈ 𝐂 } \bigl{\{}\hskip 3.00003pt(\hskip 1.49994ptb\hskip 0.50003pt,\hskip 1.99997pt(\hskip 1.49994pt1\hskip 1.99997pt-\hskip 1.99997pt\kappa\hskip 1.49994pt)\hskip 1.49994ptb\hskip 1.49994pt)\hskip 1.99997pt\bigl{|}\hskip 1.99997ptb\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{C}\hskip 3.99994pt\bigr{\}} . Clearly, the index of this family of relations is the same as the index of the family ℛ 1 ( κ ) \mathcal{R}_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt) , κ ∈ 𝐑 ∪ { ∞ } \kappa\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{R}\hskip 1.49994pt\cup\hskip 1.00006pt\{\hskip 1.49994pt\infty\hskip 1.49994pt\} . Not surprisingly, the reduced boundary triplet leads to the same answer.
References
[BHS]
J. Behrndt, S. Hassi, H. de Snoo, Boundary value problems, Weyl functions, and differential operators , Birkhäuser, 2020, viii, 772 pp.
[BGW]
B.M. Brown, G. Grubb, I.G. Wood, M M -functions for closed extensions of adjoint pairs
of operators with applications to elliptic boundary problems, Mathematische Nachrichten , V. 282, No. 3 (2009), 314 –347.
[G 1 G_{\hskip 0.70004pt1} ]
G. Grubb, A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Sc. Norm. Sup. di Pisa , t. 22, No. 3 (1968), 435–513.
[G 2 G_{\hskip 0.70004pt2} ]
G. Grubb, Distributions and operators , Springer, 2009, xii, 461 pp.
[H]
L. Hörmander, The analysis of linear partial differential operators, V. III , Springer, 1985, vii, 525 pp.
[I 1 I_{\hskip 1.04996pt1} ]
N.V. Ivanov, Topological categories related to Fredholm operators : II. The analytical index, 2021, 53 pp. arXiv:2111.15081v3.
[I 2 I_{\hskip 1.04996pt2} ]
N.V. Ivanov, The index of self-adjoint Shapiro-Lopatinskii boundary problems of order one, 2022, 120 pp. arXiv:2207.09574v3.
[K]
T. Kato, Perturbation theory of linear operators , Springer, 1980, 1995, xxi, 619 pp.
[L M 1 LM_{\hskip 0.35002pt1} ]
J.L. Lions, E. Magenes, Problémes aux limites non homogénes. II, Annales de l’institut Fourier, t. 11 (1961), 137–178.
[L M 2 LM_{\hskip 0.35002pt2} ]
J.L. Lions, E. Magenes, Problemi ai limiti non omogenei (III), Annali della Scuola Normale Superiore di Pisa , t. 15, No. 1–2 (1961), 41–103.
[L M 3 LM_{\hskip 0.35002pt3} ]
J.L. Lions, E. Magenes, Problemi ai limiti non omogenei (V), Annali della Scuola Normale Superiore di Pisa , t. 16, No. 1 (1962), 1– 44.
[Schm]
K. Schmüdgen, Unbounded self-adjoint operators on Hilbert space , Springer, 2012, xx, 432 pp.
[V]
M.I. Vishik, On general boundary problems for elliptic differential equations, Proc. of the Moscow Mathematical Society , V. 1 (1952), 187– 246.
First version – June 16 , 2023
Present version – July 20 , 2023
https ://nikolaivivanov.com
E-mail : nikolai.v.ivanov @ icloud.com, ivanov @ msu.edu
Department of Mathematics, Michigan State University