This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

footnotetext: ©  Nikolai  V.  Ivanov,  2023.   footnotetext: The author  is  grateful  to  M.  Prokhorova  for careful  reading of  this paper and  pointing out  some infelicities.

Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems

Nikolai  V.  Ivanov

Contents
1.   Introduction 1  
2.   Boundary  triplets and self-adjoint  extensions 5   
3.   Gelfand  triples 9   
4.   Abstract  boundary  problems 12   
5.   Families of  abstract  boundary  problems 22   
6.   Differential  boundary  problems of  order one 28   
7.   Dirac-like  boundary  problems 33   
8.   Comparing  two boundary conditions 38   
9.   Rellich  example 43   
References 44

1. Introduction

The  Lagrange  identity  (Green  formula).   Let  XX  be a compact  manifold  with  the boundary  Y=XY\hskip 3.99994pt=\hskip 3.99994pt\partial\hskip 1.00006ptX.   Let  DD be a differential  operator acting on section of  a  Hermitian  bundle EE over XX,   and  DD^{\prime}  be  the operator  formally adjoint  to DD.   The  theory of  boundary  problems for DD crucially depends on an  identity of  the form

(1) Du,vu,Dv=γ1u,γ0vγ0u,γ1v,\quad\langle\hskip 1.49994pt\hskip 1.00006ptD\hskip 0.50003ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptD^{\prime}\hskip 0.50003ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt,

where u,vu\hskip 0.50003pt,\hskip 1.99997ptv are sections of  EE.   It  is  known as  the  Lagrange  identity  or  the  Green  formula.   The scalar  products  ,\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle  and  ,\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004pt\partial}  are obtained  by  taking  the scalar product  in EE and  integrating over XX and  YY respectively.   The operators γ0,γ1\gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1} are  the  boundary operators  taking  sections of  EE over XX  to sections of  the restriction  E|YE\hskip 1.49994pt|\hskip 1.49994ptY of  EE  to YY.   The identity  (1)  is  established  first  for smooth sections u,vu\hskip 0.50003pt,\hskip 1.99997ptv  and  then extended  to sections  in  Sobolev  spaces.

When DD  is  a differential  operator of  order 22,   it  is  only  natural  to take as  γ0\gamma_{0}  the restriction of  sections  to YY and as  γ1\gamma_{1}  the normal  derivative along  YY.   M.I.  Vishik  [V]  discovered  that  this  “naïve”  choice of  γ0,γ1\gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1}  is  not  the most  efficient  one.   Namely,   it  is  advantageous  to adjust  the operator γ1\gamma_{1} by  replacing  it  by γ1P\gamma_{1}\hskip 1.99997pt-\hskip 1.99997ptP,   where  PP,   nowadays  known as  the  Dirichlet–to–Neumann  operator,   takes a section  ff over  YY  to  γ1u\gamma_{1}\hskip 1.00006ptu,   where  uu  is  the solution of  boundary  problem  Du=0D\hskip 1.00006ptu\hskip 3.99994pt=\hskip 3.99994pt0,  γ0u=f\gamma_{0}\hskip 1.00006ptu\hskip 3.99994pt=\hskip 3.99994ptf.   Then  the identity  (1)  still  holds,   and,   moreover,   is  valid  for u,vu\hskip 0.50003pt,\hskip 1.99997ptv  belonging  to  the maximal  domains of  definition of  D,DD\hskip 0.50003pt,\hskip 1.99997ptD^{\prime} respectively.

G.  Grubb  [G1G_{\hskip 0.70004pt1}]  extended  Vishik’s  theory  to operators of  even  order 2m2m  (and strengthened  it  in some  respects).   Both  Vishik  and  Grubb  considered only operators acting  on  functions,   but  the generalization  to sections of  bundles  is  routine.   At  the same  time  the assumption  of  the even order was used  throughout  and was even  build  into  the notations.   There are 2m2m  boundary operators and  they are split  into  to  two groups of  mm  operators each,   one leading  to γ0\gamma_{0} and  the other  to γ1\gamma_{1}.   Much  later  B.M.  Brown,   G.  Grubb  and  I.G.  Wood  [BGW]  indicated  that  Grubb’s  theory can  be adapted  to some matrix operators of  order 11.

Self-adjoint  operators and  boundary  triplets.   In  the present  paper we are interested only  in  formally self-adjoint  operators,   and  their realizations by self-adjoint  operators  in  Hilbert  spaces.   The  theory of  boundary  triplets provides an abstract  axiomatic framework for using  the  Lagrange  identity  to construct  self-adjoint  operators in  Hilbert  spaces.   Let  H0H_{\hskip 0.70004pt0}  and  KK^{\hskip 0.70004pt\partial}  be Hilbert spaces and TT be a densely defined  symmetric operator  in H0H_{\hskip 0.70004pt0},   TT^{\hskip 0.70004pt*} be its adjoint  operator,  and  𝒟=𝒟(T)\mathcal{D}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt) be  its domain.   Let  γ0,γ1:𝒟K\gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1}\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial}  be  two  linear maps.   The  triple (𝒟,γ0,γ1)(\hskip 1.49994pt\mathcal{D}\hskip 0.50003pt,\hskip 3.00003pt\gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1}\hskip 1.49994pt)  is  a  boundary  triplet  for TT^{\hskip 0.70004pt*}  if  γ0γ1:𝒟KK\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1}\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}  is  surjective and

Tu,vu,Tv=γ1u,γ0vγ0u,γ1v\quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}

for every  u,v𝒟u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}.   Here  ,\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle  is  the scalar product  in H0H_{\hskip 0.70004pt0} and  ,\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004pt\partial}  is  the scalar product  in KK^{\hskip 0.70004pt\partial}.   A boundary  triplet  for TT^{\hskip 0.70004pt*} exists if  and  only  if  TT admits a self-adjoint  extension,   and  then  the self-adjoint  extensions of  TT are in a natural  one-to-one correspondence with  self-adjoint  relations  KK\mathcal{B}\hskip 1.99997pt\subset\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial},   which should  be understood as boundary conditions for TT or TT^{\hskip 0.70004pt*}.   Such self-adjoint  relations are a minor  but  essential  generalization  of  self-adjoint  operators  KKK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial}.   Also,   if  a boundary  triplet  exists,   then  𝒟(T¯)=Kerγ0γ1\mathcal{D}\hskip 1.00006pt(\hskip 1.99997pt\overline{T}\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1}.   We refer  to  the book of  K.  Schmüdgen  [Schm],   Chapter  14,   for  the details.   An outline of  this  theory,   sufficient  for our  purposes,   is  contained  in  [I2I_{\hskip 1.04996pt2}],   Sections  11  and  12.

Let  DD  be a formally self-adjoint  differential  operator.   In  this case  the  Lagrange  identity  (1)  leads  to a description of  some self-adjoint  boundary conditions,   i.e.   of  relations between  γ0u\gamma_{0}\hskip 1.00006ptu  and  γ1u\gamma_{1}\hskip 1.00006ptu  leading  to self-adjoint  realisations of  DD  in  a  Hilbert  space,   usually  in  the  Sobolev  space  H0(X,E)H_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt),   where  X=XYX^{\hskip 0.70004pt\circ}\hskip 3.99994pt=\hskip 3.99994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY.   In  fact,   the most  interesting  self-adjoint  boundary conditions are defined  in  terms of  “naïve”  boundary operators,   not  the ones adjusted according  to  Vishik and  Grubb.   But  the  “naïve”  boundary operators do not  form a boundary  triplet  and by  this reason are not  good enough.   The results of  Vishik  [V]  and  Grubb  [G1G_{\hskip 0.70004pt1}]  concerned  with  adjusting  the  “naïve”  boundary operators for DD can  be understood  as a construction of  a boundary  triplet  for  DD^{\hskip 0.35002pt*} starting  with  the  “naïve”  Lagrange  identity  (1).   But  they  were proved  before  the notion of  boundary  triplets appeared.

The index of  families of  self-adjoint  operators.   The  theory of  boundary  triplets  turns out  be a very efficient  tool  to study  the index of  families of  self-adjoint  operators.   It  was already used  by  the author  in  [I2I_{\hskip 1.04996pt2}]  to explain why  the index  theorem of  [I2I_{\hskip 1.04996pt2}]  applies only  to bundle-like boundary conditions.   See  [I2I_{\hskip 1.04996pt2}],   Section  13.   The key result  for  the applications  to  the index  theory  is  a corollary of  one of  the main  results of  the  theory of  boundary  triplets,   namely,   of  the  Krein–Naimark  resolvent  formula.   See  the identities  (5)  and  (6)  below.   Originally  the  Krein–Naimark  resolvent  formula and  this corollary are proved  for  the boundary  triplets constructed  abstractly  in  terms of  the operator  theory.   But  the boundary  triplets are unique in a very strong sense,   and  this allows  to apply  this corollary  to families of  differential  operators  after  the  Lagrange  identity  is  adjusted.

The  Krein–Naimark  resolvent  formula  is  concerned  with extensions of  symmetric operators,   but  in all  sources known  to  the author  it  is  proved without  referring  to  von  Neumann  theory of  extensions.   For  the sake of  the readers who may be,   like  the author,   not  quite comfortable about  such state of  affairs,   we provided  in  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  a direct  proof  of  the identities  (5)  and  (6)  based on  von  Neumann  theory and  bypassing  the Krein–Naimark  resolvent  formula.   For a proof  based on  the  Krein–Naimark  resolvent  formula see  [I2I_{\hskip 1.04996pt2}],   Section  12.

An abstract  construction of  boundary  triplets.   In  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  we develop an abstract  axiomatic version of  the adjustment  procedure of  Vishik  and  Grubb.   The starting  point  is  an axiomatic version of  the  “naïve”  Lagrange  identity,   closely  related  to  the abstract  boundary  problems  framework of  [I2I_{\hskip 1.04996pt2}],   Section  5.   Another  key  ingredient  is  a  reference operator,   a self-adjoint  and  invertible extension AA of  DD,   which  is  assumed  to be naïvely defined  by  the boundary  condition  γ0=0\gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0.   Under appropriate assumptions we construct  a boundary  triplet  generalizing  the boundary  triplet  implicitly  present  in  the results of  Vishik  and  Grubb.   An  important  role in  the construction of  Grubb  [G1G_{\hskip 0.70004pt1}]  is  played  by  two results of  J.L.  Lions  and  E.  Magenes  [LM2LM_{\hskip 0.35002pt2}],  [LM3LM_{\hskip 0.35002pt3}].   We prove an abstract  version of  them.   See  Theorems  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  and  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems.   These  two  theorems are proved  by an adaptation of  arguments of  Lions  and  Magenes.   Most  of  the other  proofs in  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  are adapted  from  arguments of  Grubb  [G1G_{\hskip 0.70004pt1}].

Our axiomatic approach  involves  the notion of  Gelfand  triples  in an essential  manner.   We need  only  the relevant  definitions and a couple of  the most  basic properties,   and we included  in  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  a self-contained exposition of  what  is  needed.

Families of  abstract  boundary  problems.   In  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  we add  parameters  to  the  theory developed  in  Sections  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  –  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  and apply  the parameterized  theory  to  the index.   Let  WW  be a reasonable  topological  space.   Suppose  that  everything  in  sight  depends on  the parameter  wWw\hskip 1.99997pt\in\hskip 1.99997ptW.   We indicate  this dependence by a subscript.   The index of  the family  Aw,wWA_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  of  reference operators  is  equal  to 0  because  these operators are invertible.   By  our assumptions  these operators are defined  by  the boundary conditions γw0=0\gamma_{w\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994pt0.   Let  w,wW\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  be a family of  naïve  boundary  conditions.   Replacing  the boundary conditions  γw0=0\gamma_{w\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994pt0  by  the boundary conditions  w\mathcal{B}_{\hskip 0.35002ptw} results in a family of  self-adjoint  operators with  the index equal  to  the index of  wMw,wW\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997pt-\hskip 1.99997ptM_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW,   where  MwM_{\hskip 0.70004ptw} are  the adjusting operators,   analogues of  the  Dirichlet–to–Neumann  ones.   See  the  last  subsection of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  for  the precise statement.   The appearance of  the summand  Mw-\hskip 1.99997ptM_{\hskip 0.70004ptw}  is  fairly surprising,   but  the operators  w\mathcal{B}_{\hskip 0.35002ptw} are usually  invertible and  then  the index of  the uncorrected  family  w,wW\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  0.

Differential  boundary  problems of  order one.   Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  is  devoted  to  the application of  the abstract  theory  to differential  operators of  order one.   The key  role  is  played  by  the results related  to  the  Calderón  projector.   They  are used  to prove  that  the adjusting operators MwM_{\hskip 0.70004ptw} are pseudo-differential  operators of  order zero continuously depending on wWw\hskip 1.99997pt\in\hskip 1.99997ptW.   We identify  the symbols of  the adjusting operators MwM_{\hskip 0.70004ptw} and  prove  that  the graph of  MwM_{\hskip 0.70004ptw}  is  the space of  the  Cauchy  data of  solutions of  the equation  Du=0D^{\hskip 0.35002pt*}\hskip 1.00006ptu\hskip 3.99994pt=\hskip 3.99994pt0.

In  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  we use  the results of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  to give an analytic and  fairly  elementary  proof  of  the index  theorem  for  Dirac-like boundary problems from  [I2I_{\hskip 1.04996pt2}],   Section  15.   See  Theorem  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems.   In  [I2I_{\hskip 1.04996pt2}]  this  theorem  was deduced  from  its analogue for  the  topological  index and  the general  index  theorem  for operators of  order one.   In a sense  the proof  from  [I2I_{\hskip 1.04996pt2}]  provides  topological  reasons for  the need  to adjust  the boundary operators and  predicts  the symbols of  adjusting  operators.   The desire  to find  a direct  analytic proof  of  this  theorem was  the starting  point  of  the present  paper.

In  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  we modify  the arguments of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  in order  to prove an  Agranovich–Dynin  type  theorem computing  the difference of  indices of  two families of  self-adjoint  problems differing only  by  the boundary conditions.   The formula for  the difference  is  more complicated  than  the classical  one and  involves an appropriate form of  the adjusting  operators MwM_{\hskip 0.70004ptw}.

We  limited ourselves  by  the differential  operators of  order one in  order  to avoid  technical  complications and  present  the main  ideas in  the most  transparent  form.   Most  of  the results can  be extended  to pseudo-differential  operators satisfying  the  transmission condition.

Rellich  example.   In  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  we illustrate  our abstract  theory by an example,   due  to  F.  Rellich,   of  a family of  self-adjoint  boundary problems parameterized  by  the circle for  a fixed operator  of  order 22.   The operator  is  d2/dx2-\hskip 1.99997ptd^{\hskip 0.70004pt2}/\hskip 1.00006ptdx^{\hskip 0.70004pt2} on  the interval  [0,1][\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt].   The index of  this family can be computed  by  brute force and  is  equal  to 11.   We prove  this result  as an application of  our abstract  theory.   In  dimension one  there  is  no need  to adjust  the  Lagrange  identity,   but  one can still  do  this.   Each way  leads  to a proof  that  the index  is  equal  to 11.

2. Boundary  triplets  and  self-adjoint  extensions

The main abstract  example.   Let  us consider  the following abstract  situation  taken  from  [Schm],   Example  14.5.   Let HH be a separable  Hilbert  space,  TT be a densely defined closed symmetric operator in HH,   and AA be a fixed self-adjoint  extension of  TT.   By  \dotplus we will  denote  the direct,   but  not  necessarily orthogonal,   sum of  subspaces of  HH.   Let  us fix a number  μ𝐂𝐑\mu\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{C}\hskip 1.99997pt\smallsetminus\hskip 1.99997pt\mathbf{R}.   Then  the numbers μ,μ¯\mu\hskip 1.00006pt,\hskip 3.99994pt\overline{\mu}  belong  to  the resolvent  set  of  AA.   In particular,   the operators  (Aμ)1(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}  and  (Aμ¯)1(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}  are well  defined.   Let

𝒦+=Ker(Tμ)=Im(Tμ¯)and\quad\mathcal{K}_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.99997pt-\hskip 1.99997pt\hskip 0.24994pt\mu\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)^{\hskip 0.70004pt\perp}\quad\mbox{and}\quad
𝒦=Ker(Tμ¯)=Im(Tμ).\quad\mathcal{K}_{\hskip 0.70004pt-}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.99997pt)^{\hskip 0.70004pt\perp}\hskip 3.00003pt.

Then  the domain  𝒟(T)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)  of  TT^{\hskip 0.70004pt*}  is  equal  to

(2) 𝒟(T)=𝒟(T)A(Aμ)1𝒦(Aμ)1𝒦.\quad\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt)\hskip 1.99997pt\dotplus\hskip 1.99997ptA\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.99997pt\dotplus\hskip 1.99997pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 3.99994pt.

See  [Schm],   Proposition  14.11.   Hence every  z𝒟(T)z\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)  can be uniquely  written as

(3) z=zT+A(Aμ)1z0+(Aμ)1z1\quad z\hskip 3.99994pt=\hskip 3.99994ptz_{\hskip 1.04996ptT}\hskip 1.99997pt+\hskip 1.99997ptA\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt0}\hskip 1.99997pt+\hskip 1.99997pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt1}\hskip 3.99994pt

with zT𝒟(T)z_{\hskip 1.04996ptT}\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt) and  z0,z1𝒦z_{\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 1.99997ptz_{\hskip 0.70004pt1}\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}.   Then K=𝒦K\hskip 3.99994pt=\hskip 3.99994pt\mathcal{K}_{\hskip 0.70004pt-} and  the maps  Γi:zzi\Gamma_{i}\hskip 1.00006pt\colon\hskip 1.00006ptz\hskip 3.99994pt\longmapsto\hskip 3.99994ptz_{\hskip 0.70004pti},  i=0,1i\hskip 3.99994pt=\hskip 3.99994pt0\hskip 0.50003pt,\hskip 1.99997pt1  form a boundary  triplet  for TT^{\hskip 0.70004pt*}.   This  is  the boundary  triplet  from  [Schm],   Example  14.5.

The main example from  the point  of  view of  von  Neumann  theory.   By  von  Neuman  theory

𝒟(T)=𝒟(T)𝒦+𝒦\quad\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt)\hskip 1.99997pt\dotplus\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt+}\hskip 1.99997pt\dotplus\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 3.00003pt

and  AA defines an  isometry V:𝒦+𝒦V\hskip 1.00006pt\colon\mathcal{K}_{\hskip 0.70004pt+}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-} such  that  AA  is  the restriction of  TT^{\hskip 0.70004pt*}  to

{x+yVy|x𝒟(T),y𝒦+}.\quad\bigl{\{}\hskip 3.00003ptx\hskip 1.99997pt+\hskip 1.99997pty\hskip 1.99997pt-\hskip 1.99997ptVy\hskip 3.00003pt\bigl{|}\hskip 3.00003ptx\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.99994pty\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt+}\hskip 3.00003pt\bigr{\}}\hskip 3.99994pt.

2.1. Lemma.   Vy=AμAμ¯y\displaystyle Vy\hskip 3.99994pt=\hskip 3.99994pt\frac{A\hskip 1.99997pt-\hskip 1.99997pt\mu}{\hskip 1.00006ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.00006pt}\hskip 1.99997pty   for every  y𝒦+y\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt+}.   

Proof.   If  y𝒦+y\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt+},   then

(Aμ¯)(yVy)=μyμ¯Vyμ¯y+μ¯Vy=(μμ¯)y,\quad(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)\hskip 1.99997pt(\hskip 1.49994pty\hskip 1.99997pt-\hskip 1.99997ptVy\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994pt\mu\hskip 1.99997pty\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 3.00003ptVy\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pty\hskip 1.99997pt+\hskip 1.99997pt\overline{\mu}\hskip 3.00003ptVy\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\mu\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)\hskip 1.99997pty\hskip 3.00003pt,
yVy=(Aμ¯)1(μμ¯)y,\quad y\hskip 1.99997pt-\hskip 1.99997ptVy\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mu\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)\hskip 1.99997pty\hskip 3.00003pt,

and  hence  Vy=y(Aμ¯)1(μμ¯)y=AμAμ¯y\displaystyle Vy\hskip 3.99994pt=\hskip 3.99994pty\hskip 1.99997pt-\hskip 1.99997pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mu\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)\hskip 1.99997pty\hskip 3.99994pt=\hskip 3.99994pt\frac{A\hskip 1.99997pt-\hskip 1.99997pt\mu}{\hskip 1.00006ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.00006pt}\hskip 1.99997pty.    \blacksquare

2.2. Lemma.   Suppose  that  z=zT+z++zz\hskip 3.99994pt=\hskip 3.99994ptz_{\hskip 1.04996ptT}\hskip 1.99997pt+\hskip 1.99997ptz_{\hskip 0.70004pt+}\hskip 1.99997pt+\hskip 1.99997ptz_{\hskip 0.70004pt-}  with  zT𝒟(T)z_{\hskip 1.04996ptT}\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt),  z+𝒦+z_{\hskip 0.70004pt+}\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt+},   and  z𝒦z_{\hskip 0.70004pt-}\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}.   Let  z0=z+Vz+z_{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 3.00003ptV\hskip 0.50003ptz_{\hskip 0.70004pt+} and  z1=μzμ¯Vz+z_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt\mu\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 3.00003ptV\hskip 0.50003ptz_{\hskip 0.70004pt+}.   Then  the equality  (3)  holds.   

Proof.   Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that

z0=z+Vz+=z+AμAμ¯z+and\quad z_{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 3.00003ptV\hskip 0.50003ptz_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 1.99997pt\frac{A\hskip 1.99997pt-\hskip 1.99997pt\mu}{\hskip 1.00006ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.00006pt}\hskip 3.99994ptz_{\hskip 0.70004pt+}\quad\mbox{and}
z1=μzμ¯Vz+=μzμ¯AμAμ¯z+.\quad z_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt\mu\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 3.00003ptV\hskip 0.50003ptz_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt\mu\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 3.99994pt\frac{A\hskip 1.99997pt-\hskip 1.99997pt\mu}{\hskip 1.00006ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.00006pt}\hskip 3.99994ptz_{\hskip 0.70004pt+}\hskip 3.00003pt.

It  follows  that

A(Aμ)1z0=A(Aμ)1z+A(Aμ¯)1z+,\quad A\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994ptA\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 1.99997ptA\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt+}\hskip 3.00003pt,
(Aμ)1z1=(Aμ)1μzμ¯(Aμ¯)1z+,\quad(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\mu\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt+}\hskip 3.00003pt,

and  hence

A(Aμ)1z0+(Aμ)1z1\quad A\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt0}\hskip 1.99997pt+\hskip 1.99997pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt1}
=A(Aμ)1z(Aμ)1μz+A(Aμ¯)1z+μ¯(Aμ¯)1z+\quad=\hskip 3.99994ptA\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt-}\hskip 1.99997pt-\hskip 1.99997pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\mu\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 3.99994pt+\hskip 3.99994ptA\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt+}\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006ptz_{\hskip 0.70004pt+}
=z+z+.\quad=\hskip 3.99994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 1.99997ptz_{\hskip 0.70004pt+}\hskip 3.00003pt.

The equality  (3)  follows.    \blacksquare

The  Lagrange  identity.   In  the notations of  Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems,   let

Γ0z=z+Vz+andΓ1z=μzμ¯Vz+.\quad\Gamma_{0}\hskip 1.00006ptz\hskip 3.99994pt=\hskip 3.99994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 3.00003ptV\hskip 0.50003ptz_{\hskip 0.70004pt+}\quad\mbox{and}\quad\Gamma_{1}\hskip 1.00006ptz\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt\mu\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 3.00003ptV\hskip 0.50003ptz_{\hskip 0.70004pt+}\hskip 3.00003pt.

We claim  that  then  for every  x,y𝒟(T)x\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)

(4) Tx,yx,Ty=Γ1x,Γ0yΓ0x,Γ1y,\quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}x\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptx\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}y\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{1}\hskip 1.00006ptx\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006pty\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.00006ptx\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{1}\hskip 1.00006pty\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt,

where all  scalar products are  taken  in  HH.   In order  to prove  this,   let  us write xx  and  yy  in  the form of  Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems,  x=xT+x++xx\hskip 3.99994pt=\hskip 3.99994ptx_{\hskip 1.04996ptT}\hskip 1.99997pt+\hskip 1.99997ptx_{\hskip 0.70004pt+}\hskip 1.99997pt+\hskip 1.99997ptx_{\hskip 0.70004pt-}  and  y=yT+y++yy\hskip 3.99994pt=\hskip 3.99994pty_{\hskip 1.04996ptT}\hskip 1.99997pt+\hskip 1.99997pty_{\hskip 0.70004pt+}\hskip 1.99997pt+\hskip 1.99997pty_{\hskip 0.70004pt-}.   Since  TT  is  symmetric,  xTx_{\hskip 1.04996ptT} and  yTy_{\hskip 1.04996ptT} do not  affect  the validity of  the  Lagrange  identity and  hence we can assume  that  xT=yT=0x_{\hskip 1.04996ptT}\hskip 3.99994pt=\hskip 3.99994pty_{\hskip 1.04996ptT}\hskip 3.99994pt=\hskip 3.99994pt0.   Then  Tx=μx++μ¯xT^{\hskip 0.70004pt*}\hskip 1.00006ptx\hskip 3.99994pt=\hskip 3.99994pt\mu\hskip 1.00006ptx_{\hskip 0.70004pt+}\hskip 1.99997pt+\hskip 3.00003pt\overline{\mu}\hskip 1.99997ptx_{\hskip 0.70004pt-} and  Ty=μy++μ¯yT^{\hskip 0.70004pt*}\hskip 1.00006pty\hskip 3.99994pt=\hskip 3.99994pt\mu\hskip 1.00006pty_{\hskip 0.70004pt+}\hskip 1.99997pt+\hskip 3.00003pt\overline{\mu}\hskip 1.99997pty_{\hskip 0.70004pt-}.   Therefore  the  left  hand side of  (4)  is  equal  to

μx+,y++μx+,y+μ¯x,y++μ¯x,y\quad\mu\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt+}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt\mu\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt+}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle
μ¯x+,y+μx+,yμ¯x,y+μx,y\quad-\hskip 3.99994pt\overline{\mu}\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt+}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt+}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle
=(μμ¯)x+,y+(μμ¯)x,y.\quad=\hskip 3.99994pt(\hskip 1.49994pt\mu\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 1.99997pt)\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt+}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt-\hskip 1.99997pt(\hskip 1.49994pt\mu\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 1.99997pt)\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt.

The right  hand side of  (4)  is  equal  to

μxμ¯Vx+,y+Vy+x+Vx+,μyμ¯Vy+\quad\left\langle\hskip 1.49994pt\hskip 1.49994pt-\hskip 1.99997pt\mu\hskip 1.49994ptx_{\hskip 0.70004pt-}\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 3.00003ptV\hskip 0.50003ptx_{\hskip 0.70004pt+}\hskip 1.00006pt,\hskip 3.99994pty_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 3.00003ptV\hskip 0.50003pty_{\hskip 0.70004pt+}\hskip 1.49994pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.49994ptx_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 3.00003ptV\hskip 0.50003ptx_{\hskip 0.70004pt+}\hskip 1.00006pt,\hskip 3.99994pt-\hskip 1.99997pt\mu\hskip 1.49994pty_{\hskip 0.70004pt-}\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 3.00003ptV\hskip 0.50003pty_{\hskip 0.70004pt+}\hskip 1.49994pt\hskip 1.49994pt\right\rangle
=μx,yμx,Vy+μ¯Vx,yμ¯Vx+,Vy+\quad=\hskip 3.99994pt-\hskip 1.99997pt\mu\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 1.99997ptVy_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptVx_{\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptVx_{\hskip 0.70004pt+}\hskip 1.00006pt,\hskip 1.99997ptVy_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle
+μ¯x,y+μx,Vy++μ¯Vx+,y+μVx+,Vy+\quad\phantom{=\hskip 3.99994pt}+\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt\mu\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 1.99997ptVy_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptVx_{\hskip 0.70004pt+}\hskip 1.00006pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt\mu\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptVx_{\hskip 0.70004pt+}\hskip 1.00006pt,\hskip 1.99997ptVy_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle
=(μμ¯)x,y+(μμ¯)Vx+,Vy+\quad=\hskip 3.99994pt-\hskip 1.99997pt(\hskip 1.49994pt\mu\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 1.99997pt)\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt(\hskip 1.49994pt\mu\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 1.99997pt)\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptVx_{\hskip 0.70004pt+}\hskip 0.50003pt,\hskip 1.99997ptVy_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle
=(μμ¯)x,y+(μμ¯)x+,y+\quad=\hskip 3.99994pt-\hskip 1.99997pt(\hskip 1.49994pt\mu\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 1.99997pt)\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt-}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt-}\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt(\hskip 1.49994pt\mu\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 1.99997pt)\hskip 1.00006pt\langle\hskip 1.49994pt\hskip 1.00006ptx_{\hskip 0.70004pt+}\hskip 0.50003pt,\hskip 1.99997pty_{\hskip 0.70004pt+}\hskip 1.00006pt\hskip 1.49994pt\rangle

because  VV  is  an  isometry.   The  identity  (4)  follows.

The boundary  triplet.   Clearly,   the map  z(z,z+)z\hskip 3.99994pt\longmapsto\hskip 3.99994pt(\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 1.99997ptz_{\hskip 0.70004pt+}\hskip 1.49994pt)  from 𝒟(T)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)  to  𝒦𝒦+\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt+}  is  surjective.   Since  μ𝐑\mu\hskip 1.99997pt\not\in\hskip 1.99997pt\mathbf{R},   this implies  that  the map

Γ0Γ1:𝒟(T)𝒦𝒦\quad\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\Gamma_{1}\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-}

is  also surjective.   In view of  (4)  this implies  that  (𝒦,Γ0,Γ1)(\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 3.99994pt\Gamma_{0}\hskip 1.00006pt,\hskip 3.99994pt\Gamma_{1}\hskip 1.49994pt)  is  a boundary  triplet  for  TT^{\hskip 0.70004pt*}.   Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that  this  is  the same boundary  triplet  as  in  [Schm],   Example  14.5.

Isometries  between subspaces.   Let  W:𝒦𝒦W\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{K}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}\hskip 0.50003pt^{\prime}  be an  isometry  between  two closed subspaces 𝒦,𝒦H\mathcal{K},\hskip 3.99994pt\mathcal{K}\hskip 0.50003pt^{\prime}\hskip 1.99997pt\subset\hskip 1.99997ptH.   We will  denote by  W0W_{\hskip 0.70004pt0}  the corresponding  partial  isometry  of  HH,   i.e.  the operator equal  to WW on  𝒦\mathcal{K} and  to 0 on  𝒦\mathcal{K}^{\hskip 0.70004pt\perp}.   When  𝒦=𝒦\mathcal{K}\hskip 3.00003pt=\hskip 3.99994pt\mathcal{K}\hskip 0.50003pt^{\prime},   we will  denote by  WHW_{\hskip 0.70004ptH}  the operator  HHH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH equal  to WW on  𝒦\mathcal{K} and  to  the identity on  𝒦\mathcal{K}^{\hskip 0.70004pt\perp}.

The  Cayley  transforms.   As above,   let  μ𝐂𝐑\mu\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{C}\hskip 1.99997pt\smallsetminus\hskip 1.99997pt\mathbf{R} and  TT  be a symmetric operator in  HH.   The  μ\mu-Cayley  transform  Uμ(T)U_{\hskip 0.70004pt\mu}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt) of  TT  is  the partial  isometry equal  to

TμTμ¯\quad\frac{T\hskip 1.99997pt-\hskip 1.99997pt\mu}{\hskip 1.00006ptT\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.00006pt}

on  Im(Tμ¯)\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt) and as 0 on  the orthogonal  complement  Im(Tμ¯)=𝒦+\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)^{\hskip 0.70004pt\perp}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{K}_{\hskip 0.70004pt+}.   It  induces an  isometry  Im(Tμ¯)Im(Tμ)\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT\hskip 1.99997pt-\hskip 1.99997pt\mu\hskip 1.49994pt).   If  AA  is  a self-adjoint  extension of  TT as above,   then  Uμ(A)U_{\hskip 0.70004pt\mu}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt) agrees with  Uμ(T)U_{\hskip 0.70004pt\mu}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt) on  Im(Tμ¯)\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt).   In  this case  Im(Aμ¯)=H\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptA\hskip 1.99997pt-\hskip 1.99997pt\overline{\mu}\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994ptH and  Uμ(A)U_{\hskip 0.70004pt\mu}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)  is  an  isometry  HHH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH.   Let  VV be related  to AA as above.

2.3. Lemma.   Uμ(A)=Uμ(T)+V0U_{\hskip 0.70004pt\mu}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptU_{\hskip 0.70004pt\mu}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptV_{\hskip 0.35002pt0}.

Proof.   This immediately  follows  from  Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems.    \blacksquare

Changing  the extension AA.   Let  B:𝒦𝒦B\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}  be a self-adjoint  operator.   Together with our boundary  triplet  BB defines another self-adjoint  extension AA^{\prime} of  TT,   namely  the restriction of  TT^{\hskip 0.70004pt*}  to  Ker(Γ1BΓ0)\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994pt\Gamma_{1}\hskip 1.99997pt-\hskip 1.99997ptB\hskip 1.49994pt\Gamma_{0}\hskip 1.49994pt).   The domain  𝒟(A)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA^{\prime}\hskip 1.49994pt)  is  described  by  the equation

μzμ¯Vz+=B(z+Vz+),\quad-\hskip 1.99997pt\mu\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt-\hskip 3.00003pt\overline{\mu}\hskip 3.00003ptV\hskip 0.50003ptz_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994ptB\hskip 1.49994pt(\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 3.00003ptV\hskip 0.50003ptz_{\hskip 0.70004pt+}\hskip 1.49994pt)\hskip 3.00003pt,

or,   equivalently,   by either of  the equations

(B+μ)z+(B+μ¯)Vz+=0,z+B+μ¯B+μVz+=0.\quad(\hskip 1.49994ptB\hskip 1.99997pt+\hskip 1.99997pt\mu\hskip 1.49994pt)\hskip 1.49994ptz_{\hskip 0.70004pt-}\hskip 1.99997pt+\hskip 1.99997pt(\hskip 1.49994ptB\hskip 1.99997pt+\hskip 3.00003pt\overline{\mu}\hskip 1.99997pt)\hskip 1.49994ptV\hskip 0.50003ptz_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994pt0\hskip 3.00003pt,\quad z_{\hskip 0.70004pt-}\hskip 3.00003pt+\hskip 3.00003pt\frac{B\hskip 1.99997pt+\hskip 3.00003pt\overline{\mu}\hskip 0.50003pt}{B\hskip 1.99997pt+\hskip 1.99997pt\mu}\hskip 3.00003ptV\hskip 0.50003ptz_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994pt0\hskip 3.00003pt.

Let  VV\hskip 0.50003pt^{\prime} be  related  to AA^{\prime}  in  the same way as VV  to AA.   The  last  formula shows  that

V=B+μ¯B+μV\quad V\hskip 0.50003pt^{\prime}\hskip 3.99994pt=\hskip 3.99994pt\frac{B\hskip 1.99997pt+\hskip 3.00003pt\overline{\mu}\hskip 0.50003pt}{B\hskip 1.99997pt+\hskip 1.99997pt\mu}\hskip 3.00003ptV

Together  with  Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  this  implies  that

Uμ(A)=(B+μ¯B+μ)HUμ(A).\quad U_{\hskip 0.70004pt\mu}\hskip 1.00006pt(\hskip 1.49994ptA^{\prime}\hskip 1.49994pt)\hskip 3.99994pt\hskip 0.50003pt=\hskip 3.99994pt\hskip 1.00006pt\left(\hskip 1.99997pt\frac{B\hskip 1.99997pt+\hskip 3.00003pt\overline{\mu}\hskip 0.50003pt}{B\hskip 1.99997pt+\hskip 1.99997pt\mu}\hskip 1.99997pt\right)_{\hskip 0.70004ptH}U_{\hskip 0.70004pt\mu}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.00003pt.

Now,   let  us  take  μ=i\mu\hskip 3.99994pt=\hskip 3.99994pti  and observe  that  Ui()U_{\hskip 0.35002pti}\hskip 1.49994pt(\hskip 1.49994pt\bullet\hskip 1.49994pt)  is  the usual  Cayley  transform,   which we will  denote by  U()U\hskip 1.49994pt(\hskip 1.49994pt\bullet\hskip 1.49994pt).   Hence  the  last  formula  implies  that

(5) U(A)=U(B)HU(A).\quad U\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.49994pt(\hskip 1.49994ptB\hskip 1.49994pt)_{\hskip 0.70004ptH}\hskip 1.49994ptU\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.00003pt.

Since  Ui()=U()1U_{\hskip 0.35002pt-\hskip 0.70004pti}\hskip 1.49994pt(\hskip 1.49994pt\bullet\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.49994pt(\hskip 1.49994pt\bullet\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1},   for  μ=i\mu\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pti  we get  U(A)1=U(B)H1U(A)1U\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.49994pt(\hskip 1.49994ptB\hskip 1.49994pt)_{\hskip 0.70004ptH}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994ptU\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}  and  hence

(6) U(A)=U(A)U(B)H.\quad U\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 1.49994ptU\hskip 1.49994pt(\hskip 1.49994ptB\hskip 1.49994pt)_{\hskip 0.70004ptH}\hskip 3.00003pt.

Here  U(A),U(A)U\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptU\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}\hskip 1.49994pt) have  the same meaning as before,   but  BB  is  a operator  in  Ker(Ti)\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.99997pt) and  not  in  Ker(T+i)\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.99997pt+\hskip 1.99997pti\hskip 1.99997pt) as before.   The identity  (6)  is  a minor  generalization of  the  last  identity  in  [Schm],   Theorem  14.20.   The same arguments work  for self-adjoint  relations  𝒦𝒦\mathcal{B}\hskip 1.99997pt\subset\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.99997pt\oplus\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}.   In  this case we get  U(A)=U()HU(A)U\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt)_{\hskip 0.70004ptH}\hskip 1.49994ptU\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)  for  μ=i\mu\hskip 3.99994pt=\hskip 3.99994pti.

3. Gelfand  triples

Gelfand  triples.   Let  HH  be a separable  Hilbert  space and  KHK\hskip 1.99997pt\subset\hskip 1.99997ptH  be a dense vector subspace which  is  also a  Hilbert  space in  its own  right.   Let  ι:KH\iota\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH  be  the inclusion.   It  is  assumed  that  ι\iota  is  bounded.   Let  KK\hskip 0.50003pt^{\prime}  be  the space of  anti-linear  maps  K𝐂K\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{C}.   Then  the dual  of  ι\iota  is  the map  ι:HK\iota\hskip 0.50003pt^{\prime}\hskip 1.00006pt\colon\hskip 1.00006ptH\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}.   Since ι\iota  is  injective,  ι(H)\iota\hskip 0.50003pt^{\prime}\hskip 1.00006pt(\hskip 1.49994ptH\hskip 1.49994pt)  is  dense in  KK\hskip 0.50003pt^{\prime}.   Since ι(K)\iota\hskip 1.49994pt(\hskip 1.49994ptK\hskip 1.49994pt)  is  dense in  HH,   the map  ι\iota\hskip 0.50003pt^{\prime}  is  injective.   We will  identify  HH  with  HH\hskip 0.50003pt^{\prime} in  the usual  manner,   but  not  KK  with  KK\hskip 0.50003pt^{\prime},   despite  the fact  that  KK  is  a  Hilbert  space.   In  fact,   it  is  impossible  to satisfactory  identify  both  HH  with  HH\hskip 0.50003pt^{\prime} and  KK  with  KK\hskip 0.50003pt^{\prime}  simultaneously.   Still,   since KK  is  a  Hilbert  space,  KK\hskip 0.50003pt^{\prime}  is  also a  Hilbert  space.   Usually  we  will  treat  the maps  ι\iota  and  ι\iota\hskip 0.50003pt^{\prime} as inclusions  (of  sets).   Then we  get  a  triple  KHKK\hskip 1.99997pt\subset\hskip 1.99997ptH\hskip 1.99997pt\subset\hskip 1.99997ptK\hskip 0.50003pt^{\prime}  of  Hilbert  spaces,   called  the  Gelfand  triple  associated  with  the pair  K,HK\hskip 0.50003pt,\hskip 1.99997ptH.   We will  denote  the  Hilbert  scalar  product  in  KK  by  ,K\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK} and use similar notations for other  Hilbert  spaces.   Let

,K,K:K×K𝐂\quad\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 1.99997pt\colon\hskip 1.99997ptK\hskip 0.50003pt^{\prime}\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{C}

be  the canonical  pairing y,xK,K=y(x)\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.99994pt=\hskip 3.99994pty\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt),   If  (y,x)H×K(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptx\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptH\hskip 1.00006pt\times\hskip 1.00006ptK,   then

y,xK,K=ιy(x)=y,ιxH=y,xH.\quad\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.99994pt=\hskip 3.99994pt\iota\hskip 0.50003pt^{\prime}\hskip 0.50003pty\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 3.00003pt\iota\hskip 1.00006ptx\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptH}\hskip 3.00003pt.

In other words,  ,K,K\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}  is  equal  to  ,H\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptH}  on  H×KH\hskip 1.00006pt\times\hskip 1.00006ptK.   Let

,K,K:K×K𝐂\quad\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 1.99997pt\colon\hskip 1.99997ptK\hskip 1.00006pt\times\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{C}

be  the pairing  x,yK,K=y(x)¯\langle\hskip 1.49994pt\hskip 1.00006ptx\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.99994pt=\hskip 3.99994pt\overline{y\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)}.   If  (x,y)K×H(\hskip 1.49994ptx\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptK\hskip 1.00006pt\times\hskip 1.00006ptH,   then

x,yK,K=ιy(x)¯=y,x¯H=x,yH.\quad\langle\hskip 1.49994pt\hskip 1.00006ptx\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.99994pt=\hskip 3.99994pt\overline{\iota\hskip 0.50003pt^{\prime}\hskip 0.50003pty\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)}\hskip 3.99994pt=\hskip 3.99994pt\overline{\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\rangle}_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptx\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptH}\hskip 3.00003pt.

In other words,  ,K,K\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}  is  equal  to  ,H\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptH}  on  K×HK\hskip 1.00006pt\times\hskip 1.00006ptH.   The  Hilbert  space KK\hskip 0.50003pt^{\prime} can be also constructed as  the completion of  HH  with  respect  to  a new scalar  product.   Let  ι:HK\iota^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  be  the operator adjoint  to ι\iota,   i.e.  such  that

ιx,yH=x,ιyK\quad\left\langle\hskip 1.49994pt\hskip 1.00006pt\iota\hskip 1.49994ptx\hskip 0.50003pt,\hskip 3.00003pty\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006ptx\hskip 0.50003pt,\hskip 3.00003pt\iota^{\hskip 0.70004pt*}y\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK}

for every  xKx\hskip 1.99997pt\in\hskip 1.99997ptK,  yHy\hskip 1.99997pt\in\hskip 1.99997ptH.   For yHy\hskip 1.99997pt\in\hskip 1.99997ptH the  linear  functional  ιy:K𝐂\iota\hskip 0.50003pt^{\prime}\hskip 0.50003pty\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{C}  is  equal  to

ιy:xy,ιxH=ιy,xK.\quad\iota\hskip 0.50003pt^{\prime}\hskip 0.50003pty\hskip 1.00006pt\colon\hskip 1.00006ptx\hskip 3.99994pt\longmapsto\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 3.00003pt\iota\hskip 1.00006ptx\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\iota^{\hskip 0.70004pt*}y\hskip 0.50003pt,\hskip 3.00003ptx\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK}\hskip 3.00003pt.

It  follows  that  for every  u,vHu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997ptH  the scalar  product  in  KK\hskip 0.50003pt^{\prime}  is

ιu,ιvK=ιu,ιvK.\quad\left\langle\hskip 1.49994pt\hskip 1.00006pt\iota\hskip 0.50003pt^{\prime}\hskip 0.50003ptu\hskip 0.50003pt,\hskip 3.00003pt\iota\hskip 0.50003pt^{\prime}\hskip 0.50003ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\iota^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 3.00003pt\iota^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK}\hskip 3.00003pt.

Therefore  KK\hskip 0.50003pt^{\prime}  can  be identified with  the completion of  HH  with respect  to  the scalar  product

(7) u,v=ιu,ιvK.\quad\left\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle^{\prime}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\iota^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 3.00003pt\iota^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK}\hskip 3.00003pt.

In  particular,  ,K=,\left\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\right\rangle^{\prime}.   The equality  (7)  implies  that  the operator  ι\iota^{\hskip 0.70004pt*}  defines an  isometry  from  the subspace  HH  of  KK\hskip 0.50003pt^{\prime}  into  KK.   Extending  ι\iota^{\hskip 0.70004pt*}  by continuity,   we get  an  isometric operator  𝐈:KK\mathbf{I}\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK.   In  fact,  𝐈\mathbf{I}  is  surjective.   Indeed,   the image  Im𝐈\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\mathbf{I}  is  closed,   and  if  xKx\hskip 1.99997pt\in\hskip 1.99997ptK  is  orthogonal  to  this image,   then xx  is  orthogonal  to  Imι\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\iota^{\hskip 0.70004pt*} and  hence x=0x\hskip 3.99994pt=\hskip 3.99994pt0.

It  turns out  that  𝐈\mathbf{I}  admits a canonical  presentation as  the composition of  two isometries  KHKK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK.   In order  to see  this,   let  us consider  the operator  j=ιι:HHj\hskip 3.99994pt=\hskip 3.99994pt\iota\hskip 1.00006pt\circ\hskip 1.00006pt\iota^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH.   Clearly,  jj  is  self-adjoint  and  ju,uH=ιu,ιuK0\langle\hskip 1.49994pt\hskip 1.00006ptj\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006pt\iota^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997pt\iota^{\hskip 0.70004pt*}u\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK}\hskip 1.99997pt\geqslant\hskip 1.99997pt0  for every  uHu\hskip 1.99997pt\in\hskip 1.99997ptH,   i.e  jj  is  a non-negative operator.   Hence  the square root  Λ=j\Lambda\hskip 3.99994pt=\hskip 3.99994pt\sqrt{j}  is  well  defined.   Clearly,

Λu,ΛvH=Λ2u,vH=ju,vH=ιu,ιvK=u,vK\quad\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997pt\Lambda\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda^{2}\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006ptj\hskip 0.50003ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\iota^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997pt\iota^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}}

for every  u,vHu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997ptH.   Hence  Λ\Lambda defines an  isometry  from  the subspace  HKH\hskip 1.99997pt\subset\hskip 1.99997ptK\hskip 0.50003pt^{\prime}  into  HH.   Extending Λ\Lambda  by continuity  to  KK\hskip 0.50003pt^{\prime}  we get  an  isometric operator  Λ:KH\Lambda^{\prime}\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH.   We claim  that  it  is  surjective.   Indeed,   the image  ImΛ\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\Lambda^{\prime}  is  closed,   and  if  uHu\hskip 1.99997pt\in\hskip 1.99997ptH  is  orthogonal  to  this image,   then uu  is  orthogonal  to  ImΛ=Λ(H)\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\Lambda\hskip 3.99994pt=\hskip 3.99994pt\Lambda\hskip 1.00006pt(\hskip 1.49994ptH\hskip 1.49994pt).   Since Λ\Lambda  is  self-adjoint,   in  this case  Λu=0\Lambda\hskip 1.00006ptu\hskip 3.99994pt=\hskip 3.99994pt0 and  hence  ιu=0\iota^{\hskip 0.70004pt*}u\hskip 3.99994pt=\hskip 3.99994pt0.   In  turn,   this implies  that  u=0u\hskip 3.99994pt=\hskip 3.99994pt0.   It  follows  that  Λ\Lambda^{\prime}  is  surjective,   and  hence  is  an  isomorphism  KHK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH.   Next,   we claim  that

ΛΛ=ι𝐈.\quad\Lambda\hskip 1.00006pt\circ\hskip 1.00006pt\Lambda^{\prime}\hskip 3.99994pt=\hskip 3.99994pt\iota\hskip 1.00006pt\circ\hskip 1.00006pt\mathbf{I}\hskip 3.00003pt.

Indeed,   on  the subspace HKH\hskip 1.99997pt\subset\hskip 1.99997ptK\hskip 0.50003pt^{\prime}  both compositions are equal  to  j=ιιj\hskip 3.99994pt=\hskip 3.99994pt\iota\hskip 1.00006pt\circ\hskip 1.00006pt\iota^{\hskip 0.70004pt*}.   By continuity  this equality extends  to  the whole space KK\hskip 0.50003pt^{\prime}.   This equality  implies  that  the image  ImΛ\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\Lambda  is  contained  in  Imι=K\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\iota\hskip 3.99994pt=\hskip 3.99994ptK.   Hence we may consider  Λ\Lambda as an operator  HKH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK.   Then  the above equality  turns into  ΛΛ=𝐈\Lambda\hskip 1.00006pt\circ\hskip 1.00006pt\Lambda^{\prime}\hskip 3.99994pt=\hskip 3.99994pt\mathbf{I},   where Λ\Lambda  is  a map HKH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK and  Λ\Lambda^{\prime}  is  a map  KHK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH.   Since  Λ\Lambda^{\prime} and  𝐈\mathbf{I} are isometric  isomorphisms,   this implies  that  Λ\Lambda  is  also an  isometric  isomorphism.   The equality  𝐈=ΛΛ\mathbf{I}\hskip 3.99994pt=\hskip 3.99994pt\Lambda\hskip 1.00006pt\circ\hskip 1.00006pt\Lambda^{\prime}  is  the promised  presentation of  𝐈\mathbf{I} as  the composition of  two isometries  KHKK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK.

3.1. Lemma.   For every  xKx\hskip 1.99997pt\in\hskip 1.99997ptK,  yKy\hskip 1.99997pt\in\hskip 1.99997ptK\hskip 0.50003pt^{\prime}.   

y,xK,K=Λy,Λ1xH.\quad\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda^{\prime}\hskip 1.00006pty\hskip 1.00006pt,\hskip 1.99997pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.00006ptx\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.00003pt.

Proof.   Let  u=Λ1xu\hskip 3.99994pt=\hskip 3.99994pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.00006ptx.   If  yHy\hskip 1.99997pt\in\hskip 1.99997ptH,   then

y,xK,K=y,xH=y,ΛuH=Λy,uH=Λy,uH.\quad\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 1.00006pt,\hskip 1.99997pt\Lambda\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda\hskip 1.00006pty\hskip 1.00006pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda^{\prime}\hskip 1.00006pty\hskip 1.00006pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.00003pt.

This proves  the  lemma for yHy\hskip 1.99997pt\in\hskip 1.99997ptH.   The  general  case follows by continuity.    \blacksquare

3.2. Lemma.   The operators  Λ:HK\Lambda\hskip 1.00006pt\colon\hskip 1.00006ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  and  Λ:KH\Lambda^{\prime}\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH  are adjoint  to each other.   

Proof.   We need  to check  that  Λy(u)=y(Λu)\Lambda^{\prime}\hskip 1.00006pty\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pty\hskip 1.49994pt(\hskip 1.49994pt\Lambda\hskip 1.00006ptu\hskip 1.49994pt)  for every  yKy\hskip 1.99997pt\in\hskip 1.99997ptK\hskip 0.50003pt^{\prime},  uHu\hskip 1.99997pt\in\hskip 1.99997ptH.   Recall  that  we identify HH with HH\hskip 0.50003pt^{\prime} in  the standard way.   In view of  this identification

Λy(u)=Λy,uH.\quad\Lambda^{\prime}\hskip 1.00006pty\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda^{\prime}\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.00003pt.

Also,  y(Λu)=y,ΛuK,Ky\hskip 1.49994pt(\hskip 1.49994pt\Lambda\hskip 1.00006ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997pt\Lambda\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}  by  the definition.   If  yHy\hskip 1.99997pt\in\hskip 1.99997ptH,   then  Λy=Λy\Lambda^{\prime}\hskip 1.00006pty\hskip 3.99994pt=\hskip 3.99994pt\Lambda\hskip 1.00006pty and

y,ΛuK,K=y,ΛuH.\quad\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997pt\Lambda\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997pt\Lambda\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.00003pt.

The operator Λ\Lambda,   considered as an operator  HHH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH,   is  the square root  of  a self-adjoint  positive operator and  hence  is  self-adjoint.   Therefore,   if  yHy\hskip 1.99997pt\in\hskip 1.99997ptH,   then

Λy,uH=Λy,uH=y,ΛuH=y,ΛuK,K.\quad\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda^{\prime}\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997pt\Lambda\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pty\hskip 0.50003pt,\hskip 1.99997pt\Lambda\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.00003pt.

It  follows  that  Λy(u)=y(Λu)\Lambda^{\prime}\hskip 1.00006pty\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pty\hskip 1.49994pt(\hskip 1.49994pt\Lambda\hskip 1.00006ptu\hskip 1.49994pt)  for every  y,uHy\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.99997pt\in\hskip 1.99997ptH.   By continuity  this equality  holds for every  yKy\hskip 1.99997pt\in\hskip 1.99997ptK\hskip 0.50003pt^{\prime},  uHu\hskip 1.99997pt\in\hskip 1.99997ptH.   The  lemma  follows.    \blacksquare

Adjoints  in  the context  of  Gelfand  triples.   Let  us define  the  adjoint  of  a closed densely defined operator  B:KKB\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK as  the operator B:KK′′=KB^{\hskip 0.35002pt*}\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime\prime}\hskip 3.99994pt=\hskip 3.99994ptK  having as its domain of  definition  𝒟(B)\mathcal{D}\hskip 1.49994pt(\hskip 1.49994ptB^{\hskip 0.35002pt*}\hskip 1.49994pt)  the subspace of  xKx\hskip 1.99997pt\in\hskip 1.99997ptK\hskip 0.50003pt^{\prime} such  that  the  linear  functional  aBa,xK,Ka\hskip 1.99997pt\longmapsto\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptB\hskip 1.00006pta\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}  on  𝒟(B)\mathcal{D}\hskip 1.49994pt(\hskip 1.49994ptB\hskip 1.49994pt)  extends  to a continuous functional  on KK\hskip 0.50003pt^{\prime} and such  that

Ba,xK,K=a,BxK,K\quad\langle\hskip 1.49994pt\hskip 1.00006ptB\hskip 1.00006pta\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006pta\hskip 1.00006pt,\hskip 1.99997ptB^{\hskip 0.35002pt*}x\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.00003pt

for every  a𝒟(B),x𝒟(B)a\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.49994pt(\hskip 1.49994ptB\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.49994pt(\hskip 1.49994ptB^{\hskip 0.35002pt*}\hskip 1.49994pt).   Since 𝒟(B)\mathcal{D}\hskip 1.49994pt(\hskip 1.49994ptB\hskip 1.49994pt) is  dense,   this uniquely determines BxB^{\hskip 0.35002pt*}x.   This notion  is  different  from  the usual  notion of  the adjoint  of  BB as an operator between  two  Hilbert  spaces,   the  latter  being an operator  KKK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}.   An operator B:KKB\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  is  said  to be  self-adjoint  if  it  is  equal  to  its adjoint.   Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that  BB  is  self-adjoint  if  and  only  if  the operator  Λ1B(Λ)1:HH\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006ptB\hskip 1.00006pt\circ\hskip 1.00006pt(\hskip 1.49994pt\Lambda^{\prime}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH  is  self-adjoint  in  the usual  sense.

These definitions naturally extend  to relations  KK\mathcal{B}\hskip 1.99997pt\subset\hskip 1.99997ptK\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006ptK.   Namely,   the  adjoint  relation  \mathcal{B}^{\hskip 0.35002pt*}  is  defined as  the space of  pairs  (x,y)KK(\hskip 1.49994ptx\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptK\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006ptK such  that

b,xK,K=a,yK,K\quad\langle\hskip 1.49994pt\hskip 1.00006ptb\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006pta\hskip 1.00006pt,\hskip 1.99997pty\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}

for every  (a,b)(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{B}.   Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that  (x,y)(\hskip 1.49994ptx\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{B}^{\hskip 0.35002pt*}  if  and only  if

Λ1b,ΛxH=Λa,Λ1yH\quad\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.00006ptb\hskip 1.00006pt,\hskip 1.99997pt\Lambda^{\prime}\hskip 1.00006ptx\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Lambda^{\prime}\hskip 1.00006pta\hskip 1.00006pt,\hskip 1.99997pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.00006pty\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptH}

for every    (a,b)(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{B}.   Then \mathcal{B}  is  a  self-adjoint  relation,   i.e.  is  equal  to its adjoint,   if  and  only  if  its  image  ΛΛ1()\Lambda\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt)  in  HHH\hskip 1.00006pt\oplus\hskip 1.00006ptH  is  a self-adjoint  relation.

4. Abstract  boundary  problems

The operator AA.   Let  H0H_{\hskip 0.70004pt0}  be a separable  Hilbert  space  and  let  TT  be a closed densely defined symmetric operator in  H0H_{\hskip 0.70004pt0}.   We need  to  fix a closed self-adjoint  extension AA of  TT,   which we will  call  the  reference operator.   The operator AA  is contained  in  TT^{\hskip 0.70004pt*}.   We will  say  that  AA  is  invertible  if  AA has a bounded everywhere defined  inverse  A1:H0H0A^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt0}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0}.

4.1. Lemma.   If  the operator AA  is  invertible,   then  there  is  a  topological  direct  sum decomposition  𝒟(T)=𝒟(A)KerT\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt)\hskip 1.99997pt\dotplus\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*},   where  the domains  𝒟(T)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt) and  𝒟(A)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt) are equipped  with  graph  topologies.   The associated  projection  𝒟(T)𝒟(A)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt)  is  equal  to  A1TA^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.49994ptT^{\hskip 0.70004pt*}.   

Proof.   See  Grubb  [G1G_{\hskip 0.70004pt1}],   Lemma  II.1.1.   Let  us reproduce  the key part  of  the proof.   Clearly,   the right  hand side  is  contained  in  the  left  hand side.   If  u𝒟(T)u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt) and u=a+zu\hskip 3.99994pt=\hskip 3.99994pta\hskip 1.99997pt+\hskip 1.99997ptz  with a𝒟(A)a\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt) and  zKerTz\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*},   then  Tu=AaT^{\hskip 0.70004pt*}u\hskip 3.99994pt=\hskip 3.99994ptA\hskip 1.00006pta and  hence a=A1Tua\hskip 3.99994pt=\hskip 3.99994ptA^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.49994ptT^{\hskip 0.70004pt*}u.   It  follows  that  the presentation  u=a+zu\hskip 3.99994pt=\hskip 3.99994pta\hskip 1.99997pt+\hskip 1.99997ptz,   if  exists,   is  unique.   If  a=A1Tua\hskip 3.99994pt=\hskip 3.99994ptA^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.49994ptT^{\hskip 0.70004pt*}u and  z=uaz\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.99997pt-\hskip 1.99997pta,   then

Tz=TuAa=TuTa=0\quad T^{\hskip 0.70004pt*}z\hskip 3.99994pt=\hskip 3.99994ptT^{\hskip 0.70004pt*}u\hskip 1.99997pt-\hskip 1.99997ptA\hskip 1.00006pta\hskip 3.99994pt=\hskip 3.99994ptT^{\hskip 0.70004pt*}u\hskip 1.99997pt-\hskip 1.99997ptT^{\hskip 0.70004pt*}a\hskip 3.99994pt=\hskip 3.99994pt0

and  hence  zKerTz\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}.   This proves  the above decomposition on  the algebraic  level.   Passing  to  the  topological  decomposition  is  fairly  routine.    \blacksquare

Notations.   When  the operator  AA  is  invertible,   we will  denote by  p:𝒟(T)𝒟(A)p\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt)  and  k:𝒟(T)KerTk\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}  the projections associated with  the decomposition of  Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems.   We will  denote  ,H0\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptH_{\hskip 0.50003pt0}}  simply  by  ,\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle.

4.2. Lemma.   Suppose  that  AA  is  a reference operator.   If  u,v𝒟(T)u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt),   then

Tu,vu,Tv=Tu,k(v)k(u),Tv.\quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 1.00006pt,\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt.

Proof.   Since  u=p(u)+k(u)u\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt) and  v=p(v)+k(v)v\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt),   the  left  hand side  is  equal  to

Tu,p(v)+k(v)p(u)+k(u),Tv\quad\left\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 1.00006pt,\hskip 1.99997ptp\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle
=Tu,p(v)+Tu,k(v)p(u),Tvk(u),Tv.\quad=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 1.00006pt,\hskip 1.99997ptp\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 1.99997pt+\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 1.00006pt,\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt.

Since  Tk(u)=Tk(v)=0T^{\hskip 0.70004pt*}k\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptT^{\hskip 0.70004pt*}k\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0,   the  last  expression  is  equal  to

Tp(u),p(v)+Tu,k(v)p(u),Tp(v)k(u),Tv\quad\left\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}p\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptp\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 1.99997pt+\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 1.00006pt,\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}p\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt
=Ap(u),p(v)p(u),Ap(v)+Tu,k(v)k(u),Tv.\quad=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006ptA\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptp\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptA\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 1.99997pt+\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 1.00006pt,\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt.

Since AA  is  a self-adjoint  operator and  p(u),p(v)𝒟(A)p\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptp\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt),

Ap(u),p(v)p(u),Ap(v)=0.\quad\left\langle\hskip 1.49994pt\hskip 1.00006ptA\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptp\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptA\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.99994pt=\hskip 3.99994pt0\hskip 3.00003pt.

The  lemma follows.    \blacksquare

Boundary  operators.   Let  H1H_{\hskip 0.35002pt1}  be a dense subspace of  H0H_{\hskip 0.70004pt0},   which  is  a  Hilbert  space in  its own  right.   Let  KK^{\hskip 0.70004pt\partial}  be another separable  Hilbert  space and  and  KK  be a dense subspace of  KK^{\hskip 0.70004pt\partial},   which  is  a  Hilbert  space in  its own  right.   Suppose  that  the inclusion maps  H1H0H_{\hskip 0.35002pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0}  and  KKK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial}  are bounded operators with  respect  to  these  Hilbert  space structures.   Let  KKKK\hskip 1.99997pt\subset\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\subset\hskip 1.99997ptK\hskip 0.50003pt^{\prime}  be  the  Gelfand  triple associated  with  the pair  K,KK\hskip 0.50003pt,\hskip 3.00003ptK^{\hskip 0.70004pt\partial}.

We will  denote by  ,\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 1.00006pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004pt\partial}  the scalar product  in  KK^{\hskip 0.70004pt\partial}.   Suppose  that  H1𝒟(T)H_{\hskip 0.70004pt1}\hskip 1.99997pt\subset\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt),  H1H_{\hskip 0.70004pt1}  is  dense in  𝒟(T)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt),   the operator  H1H0H_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0}  induced  by  TT^{\hskip 0.70004pt*} is  bounded,   and

γ0,γ1:H1KK\quad\gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 3.99994pt\subset\hskip 3.99994ptK^{\hskip 0.70004pt\partial}

are bounded operators such  that  γ=γ0γ1:H1KK\gamma\hskip 3.99994pt=\hskip 3.99994pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK  is  surjective and

(8) Tu,vu,Tv=γ1u,γ0vγ0u,γ1v\quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}

for every u,vH1u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1}.   Then γ:H1KK\gamma\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.35002pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK  admits a continuous section,   i.e.  there exists a bounded operator  κ:KKH1\kappa\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.35002pt1}  such  that  γκ\gamma\hskip 1.00006pt\circ\hskip 1.00006pt\kappa  is  equal  to  the identity  map.   Suppose further  that  Kerγ\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma  is  dense in  H0H_{\hskip 0.70004pt0}.   We will  also assume  that  𝒟(T)=Kerγ=Kerγ0γ1\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1}.   The subspace  H1H_{\hskip 0.70004pt1}  is  usually strictly smaller  than 𝒟(T)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt),   and  the map  γ=γ0γ1\gamma\hskip 3.99994pt=\hskip 3.99994pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1} considered as a map  H1KKH_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}  is  not  surjective unless K=KK\hskip 3.99994pt=\hskip 3.99994ptK^{\hskip 0.70004pt\partial}.   By  these reasons  the  boundary  operators  γ0,γ1\gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1}  do not  define a boundary  triplet  for TT^{\hskip 0.70004pt*}.

4.3. Theorem.   The operators  γ0,γ1\gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1}  extend  by continuity  to bounded operators

Γ0,Γ1:𝒟(T)K\quad\Gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\Gamma_{1}\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}

(where  𝒟(T)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)  is  equipped  with  the graph  topology)  such  that  the  Lagrange  identity

(9) Tu,vu,Tv=Γ1u,Γ0vK,KΓ0u,Γ1vK,K\quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}

holds  for every  u𝒟(T),vH1u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1}.

Proof.   The proof  is  based on  ideas of  Lions  and  Magenes  [LM3LM_{\hskip 0.35002pt3}].   See  [LM3LM_{\hskip 0.35002pt3}],   the proof  of  Theorem  3.1.   Let  us  temporarily  fix some  u𝒟(T)u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt).   Given  φK\varphi\hskip 1.99997pt\in\hskip 1.99997ptK,   let  us  choose some  wH1w\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1} such  that  γ0w=0\gamma_{0}\hskip 1.00006ptw\hskip 3.99994pt=\hskip 3.99994pt0 and  γ1w=φ\gamma_{1}\hskip 1.00006ptw\hskip 3.99994pt=\hskip 3.99994pt\varphi  and  set

Yw(φ)=u,TwTu,w.\quad Y^{\hskip 0.70004ptw}\hskip 1.00006pt(\hskip 1.49994pt\varphi\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}w\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptw\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt.

We claim  that  Yw(φ)Y^{\hskip 0.70004ptw}\hskip 1.00006pt(\hskip 1.49994pt\varphi\hskip 1.49994pt) does not  depend on  the choice of  ww.   Indeed,   if  w1w_{\hskip 0.70004pt1}  is  some other choice and  d=ww1d\hskip 3.99994pt=\hskip 3.99994ptw\hskip 1.99997pt-\hskip 1.99997ptw_{\hskip 0.70004pt1},   then  γ0d=γ1d=0\gamma_{0}\hskip 1.00006ptd\hskip 3.99994pt=\hskip 3.99994pt\gamma_{1}\hskip 1.00006ptd\hskip 3.99994pt=\hskip 3.99994pt0  and  hence  d𝒟(T)d\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt).   It  follows  that  u,TdTu,d=0\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT\hskip 1.00006ptd\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptd\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt0.   At  the same  time

Tu,du,Td=Yw(φ)Yw1(φ),\quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptd\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT\hskip 1.00006ptd\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994ptY^{\hskip 0.70004ptw}\hskip 1.00006pt(\hskip 1.49994pt\varphi\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptY^{\hskip 0.70004ptw_{\hskip 0.50003pt1}}\hskip 1.00006pt(\hskip 1.49994pt\varphi\hskip 1.49994pt)\hskip 3.00003pt,

and  therefore  Yw(φ)=Yw1(φ)Y^{\hskip 0.70004ptw}\hskip 1.00006pt(\hskip 1.49994pt\varphi\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptY^{\hskip 0.70004ptw_{\hskip 0.50003pt1}}\hskip 1.00006pt(\hskip 1.49994pt\varphi\hskip 1.49994pt).   The claim  follows.   Now we can  set  Y(φ)=Yw(φ)Y\hskip 1.49994pt(\hskip 1.49994pt\varphi\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptY^{\hskip 0.70004ptw}\hskip 1.00006pt(\hskip 1.49994pt\varphi\hskip 1.49994pt)  for an arbitrary choice of  ww.   Clearly,   the map  φY(φ)\varphi\hskip 3.99994pt\longmapsto\hskip 3.99994ptY\hskip 1.49994pt(\hskip 1.49994pt\varphi\hskip 1.49994pt)  is  anti-linear.   Moreover,   it  is  continuous because  the section  κ\kappa  allows  to choose ww continuously depending on φ\varphi.   Therefore  the map  φY(φ)\varphi\hskip 3.99994pt\longmapsto\hskip 3.99994ptY\hskip 1.49994pt(\hskip 1.49994pt\varphi\hskip 1.49994pt)  belongs  to  KK\hskip 0.50003pt^{\prime}.   In other  terms,

Y(φ)=τu,φK,K\quad Y\hskip 1.49994pt(\hskip 1.49994pt\varphi\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006pt\tau\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997pt\varphi\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}

for some  τuK\tau\hskip 1.00006ptu\hskip 1.99997pt\in\hskip 1.99997ptK\hskip 0.50003pt^{\prime}.   Let  us denote by  T\|\hskip 1.99997pt\bullet\hskip 1.99997pt\|_{\hskip 1.04996ptT^{\hskip 0.50003pt*}}  the graph  norm  in  𝒟(T)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt),   by  \|\hskip 1.99997pt\bullet\hskip 1.99997pt\|  the norm  in  H0H_{\hskip 0.70004pt0},   and  by  K\|\hskip 1.99997pt\bullet\hskip 1.99997pt\|_{\hskip 0.70004ptK}  the norm  in  KK.   If  w=κ(φ)w\hskip 3.99994pt=\hskip 3.99994pt\kappa\hskip 1.49994pt(\hskip 1.49994pt\varphi\hskip 1.49994pt),   then

|τu,φK,K||u,Tw|+|Tu,w|\quad|\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006pt\tau\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997pt\varphi\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 1.99997pt|\hskip 3.99994pt\leqslant\hskip 3.99994pt|\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}w\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt|\hskip 3.99994pt+\hskip 3.99994pt|\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptw\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt|
uTw+TuwuT(Tw+w)\quad\leqslant\hskip 3.99994pt\|\hskip 1.99997pt\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.99997pt\|\hskip 1.00006pt\cdot\hskip 1.00006pt\|\hskip 1.99997pt\hskip 1.00006ptT^{\hskip 0.70004pt*}w\hskip 1.00006pt\hskip 1.99997pt\|\hskip 3.99994pt+\hskip 3.99994pt\|\hskip 1.99997pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 1.00006pt\hskip 1.99997pt\|\hskip 1.00006pt\cdot\hskip 1.00006pt\|\hskip 1.99997ptw\hskip 1.99997pt\|\hskip 3.99994pt\leqslant\hskip 3.99994pt\|\hskip 1.99997pt\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.99997pt\|_{\hskip 1.04996ptT^{\hskip 0.50003pt*}}\hskip 1.99997pt\left(\hskip 1.99997pt\|\hskip 1.99997pt\hskip 1.00006ptT^{\hskip 0.70004pt*}w\hskip 1.00006pt\hskip 1.99997pt\|\hskip 3.99994pt+\hskip 3.99994pt\|\hskip 1.99997ptw\hskip 1.99997pt\|\hskip 1.99997pt\right)
=uT(Tκ(0,φ)+κ(0,φ))uT(CφK+CφK),\quad=\hskip 3.99994pt\|\hskip 1.99997pt\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.99997pt\|_{\hskip 1.04996ptT^{\hskip 0.50003pt*}}\hskip 1.99997pt\left(\hskip 1.99997pt\|\hskip 1.99997pt\hskip 1.00006ptT^{\hskip 0.70004pt*}\kappa\hskip 1.49994pt(\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt\varphi\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.99997pt\|\hskip 3.99994pt+\hskip 3.99994pt\|\hskip 1.99997pt\kappa\hskip 1.49994pt(\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt\varphi\hskip 1.49994pt)\hskip 1.99997pt\|\hskip 1.99997pt\right)\hskip 3.99994pt\leqslant\hskip 3.99994pt\|\hskip 1.99997pt\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.99997pt\|_{\hskip 1.04996ptT^{\hskip 0.50003pt*}}\hskip 1.99997pt\left(\hskip 1.99997ptC\hskip 1.99997pt\|\hskip 1.99997pt\varphi\hskip 1.99997pt\|_{\hskip 0.70004ptK}\hskip 3.99994pt+\hskip 3.99994ptC\hskip 0.50003pt^{\prime}\hskip 1.99997pt\|\hskip 1.99997pt\varphi\hskip 1.99997pt\|_{\hskip 0.70004ptK}\hskip 1.99997pt\right)\hskip 1.99997pt,

where  CC  and  CC\hskip 0.50003pt^{\prime} are  the norms of  the composition of  the section  κ:KKH1\kappa\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt1}  with  the map  H1H0H_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0} induced  by  TT^{\hskip 0.70004pt*}  and  with  the inclusion  H1H0H_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0}  respectively.   It  follows  that  uτuu\hskip 3.99994pt\longmapsto\hskip 3.99994pt\tau\hskip 1.00006ptu  is  a continuous map  𝒟(T)K\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}.

Let  us  prove now  that  τ\tau  extends γ0\gamma_{0}.   If  uH1u\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1},  φK\varphi\hskip 1.99997pt\in\hskip 1.99997ptK,   and ww  is  as above,   then

τu,φK,K=u,TwTu,w\quad\langle\hskip 1.49994pt\hskip 1.00006pt\tau\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997pt\varphi\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}w\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptw\hskip 1.00006pt\hskip 1.49994pt\rangle
=γ0u,γ1wγ1u,γ0w=γ0u,φ=γ0u,φK,K,\quad\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{1}\hskip 1.00006ptw\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{0}\hskip 1.00006ptw\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\varphi\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\varphi\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.99994pt,

where  the  last  equality  holds because  γ0uK\gamma_{0}\hskip 1.00006ptu\hskip 1.99997pt\in\hskip 1.99997ptK^{\hskip 0.70004pt\partial} and  φK\varphi\hskip 1.99997pt\in\hskip 1.99997ptK.   Since  φK\varphi\hskip 1.99997pt\in\hskip 1.99997ptK,   it  follows  that  τu=γ0u\tau\hskip 1.00006ptu\hskip 3.99994pt=\hskip 3.99994pt\gamma_{0}\hskip 1.00006ptu.   Therefore  τ\tau  is  a continuous extension of  γ0\gamma_{0}.   Let  us set  Γ0=τ\Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt\tau  and  let  us construct  the extension  Γ1\Gamma_{1}  in  the same way.   Since H1H_{\hskip 0.70004pt1}  is  dense in  𝒟(T)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)  by our assumptions,   these extensions are unique and are  the extensions by  the continuity.   Since  ,K,K\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}  is  equal  to  ,\langle\hskip 1.49994pt\hskip 1.00006pt\bullet\hskip 0.50003pt,\hskip 1.99997pt\bullet\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004pt\partial}  on  K×KK\hskip 1.00006pt\times\hskip 1.00006ptK^{\hskip 0.70004pt\partial},   the identity  (8)  implies  that

Tu,vu,Tv=Γ1u,Γ0vK,KΓ0u,Γ1vK,K\quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}

for every u,vH1u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1}.   In contrast  with  (8)  both sides of  this equality make sense also for  u𝒟(T)u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt) and  vH1v\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1}.   By continuity  this equality  extends  to such u,vu\hskip 0.50003pt,\hskip 1.99997ptv.   In other words  (9)  holds for every  u𝒟(T),vH1u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1}.    \blacksquare

4.4. Lemma.   If  𝒟(A)=Kerγ0\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0},   then KerΓ0=Kerγ0\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}  and  hence  KerΓ0H1\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0}\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1}.   

Proof.   If  uKerγ0u\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0} and  vKerΓ0v\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0},   then  (9)  implies  that  Au,vu,Tv=0\langle\hskip 1.49994pt\hskip 1.00006ptA\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt0.   It  follows  that  the map  uAu,vu\hskip 3.99994pt\longmapsto\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptA\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle  extends  to a continuous map  H𝐂H\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{C}.   Hence  uu belongs  to  the domain 𝒟(A)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA^{*}\hskip 1.00006pt) of  AA^{*}.   Since  AA  is  self-adjoint,   it  follows  that  u𝒟(A)u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt) and  hence uKerγ0u\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}.   Therefore  KerΓ0Kerγ0\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0}\hskip 1.99997pt\subset\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}.   The opposite inclusion  is  obvious.    \blacksquare

4.5. Theorem.   If  𝒟(A)=Kerγ0\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}  and AA  is  invertible,   then  Γ0\Gamma_{0}  induces a  topological  isomorphism  KerTK\operatorname{Ker}\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime},   and  TΓ0:𝒟(T)HKT^{\hskip 0.70004pt*}\oplus\hskip 1.00006pt\Gamma_{0}\hskip 1.99997pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 0.50003pt^{\prime}  is  a  topological  isomorphism.   

Proof.   The proof  is  based on  ideas of  Lions  and  Magenes  [LM2LM_{\hskip 0.35002pt2}].   See  [LM2LM_{\hskip 0.35002pt2}],   the proof  of  Theorem  9.2.   Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that  A=T|KerΓ0A\hskip 3.99994pt=\hskip 3.99994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0}.   By our assumptions AA induces a  topological  isomorphism  𝒟(A)H0\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0}.   By combining  this with  Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems,   we see  that  it  is  sufficient  to prove  that  Γ0|KerT\Gamma_{0}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}  is  a  topological  isomorphism  KerTK\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}.   The kernel  of  Γ0|KerT\Gamma_{0}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}  is  equal  to  the kernel  of  AA and  hence  is  equal  to 0  by our assumptions.   Since  Γ0\Gamma_{0}  is  continuous,   it  is  sufficient  to prove  that  the induced  map  is  surjective.   Given xKx\hskip 1.99997pt\in\hskip 1.99997ptK\hskip 0.50003pt^{\prime},   let  us consider  the anti-linear functional  l:𝒟(A)𝐂l\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{C} defined  by

l:vx,γ1vK,K.\quad l\hskip 1.00006pt\colon\hskip 1.00006ptv\hskip 3.99994pt\longmapsto\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptx\hskip 1.00006pt,\hskip 1.99997pt\gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.00003pt.

Since γ1\gamma_{1}  is  continuous,  ll  is  also continuous.   Since AA induces a  topological  isomorphism  𝒟(A)H0\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0},   the functional  ll  is  equal  to  the functional  vu,Avv\hskip 3.99994pt\longmapsto\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\rangle  for a unique uH0u\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt0}.   If  vKerγ=Kerγ0Kerγ1v\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}\hskip 1.99997pt\cap\hskip 1.99997pt\hskip 0.50003pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{1},   then  l(v)=0l\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0 and  hence  u,Av=0\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt0.   In view of  our assumptions  this means  that  u,Tv=0\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptT\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt0  for every  v𝒟(T)v\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt).   Therefore  u𝒟(T)u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt) and  Tu=0T^{\hskip 0.70004pt*}u\hskip 3.99994pt=\hskip 3.99994pt0,   i.e.  uKerTu\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}.   Now  (9)  implies  that

u,Tv=Γ1u,Γ0vK,KΓ0u,Γ1vK,K\quad-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}

for every  vH1v\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1}.   If  v𝒟(A)=Kerγ0v\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0},   then  u,Tv=l(v)\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994ptl\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt),   and  hence

x,γ1vK,K=Γ0u,Γ1vK,K=Γ0u,γ1vK,K.\quad\langle\hskip 1.49994pt\hskip 1.00006ptx\hskip 1.00006pt,\hskip 1.99997pt\gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.00003pt.

Since γ=γ0γ1\gamma\hskip 3.99994pt=\hskip 3.99994pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1}  is  a map onto  KKK\hskip 1.00006pt\oplus\hskip 1.00006ptK,   the boundary map γ1\gamma_{1} maps Kerγ0\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}  onto  KK.   Therefore  the  last  displayed equality  implies  that  x=Γ0ux\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{0}\hskip 1.00006ptu.   The surjectivity  follows.    \blacksquare

The reference operator and  the boundary operators.   Let  us say  that  an  unbounded self-adjoint  operator PP  in  H0H_{\hskip 0.70004pt0}  is  elliptic regular  if  𝒟(P)H1\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptP\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1}.   For  the rest  of  this section we will  assume  that  the reference operator AA  is  elliptic regular.   Moreover,   we will  assume  that  𝒟(A)=Kerγ0\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}.   The  last  assumption  has  technical  character and  usually can be achieved  by changing  the boundary operators  γ0,γ1\gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1}.   We will  also assume  that  AA  is  invertible and  that  𝒟(T)=Kerγ=Kerγ0γ1\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1}.   

Where such  reference operators come from ?   Let  H=KKH^{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial} and  H1/2=KKH^{\hskip 0.70004pt\partial}_{\hskip 0.70004pt1/2}\hskip 3.99994pt=\hskip 3.99994ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK,   and  let  Σ:HH\Sigma\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt\partial}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt\partial}  be  the operator such  that

iΣ=(0110)\quad i\hskip 1.49994pt\Sigma\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994pt0&1\hskip 1.99997pt\hskip 3.99994pt\vspace{4.5pt}\\ \hskip 3.99994pt\hskip 1.00006pt-\hskip 1.99997pt1&0\hskip 1.99997pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt

with respect  to  the decomposition  H=KKH^{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}.   Clearly,  Σ\Sigma  leaves H1/2H^{\hskip 0.70004pt\partial}_{\hskip 0.70004pt1/2} invariant.   In  these  terms  the  Lagrange  identity  (8)  takes  the form

Tu,vu,Tv=iΣγu,γv,\quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.49994pt\Sigma\hskip 1.49994pt\gamma\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt,

where u,vH1u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1}.   Let  Π:HH\Pi\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt\partial}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt\partial}  be  the projection onto  the second summand of  the decomposition  H=KKH^{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}.   Then  the pair  T|H1,ΠT^{\hskip 0.70004pt*}\hskip 1.49994pt|\hskip 1.49994ptH_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994pt\Pi  is  a  boundary  problem  in  the sense of  [I2I_{\hskip 1.04996pt2}],   Section  5.   Since,   clearly,  Σ(ImΠ)=KerΠ\Sigma\hskip 1.49994pt(\hskip 1.49994pt\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\Pi\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Pi,   this boundary  problem  is  self-adjoint  in  the sense of  [I2I_{\hskip 1.04996pt2}].   The unbounded operator  induced  by  this boundary  problem  is  nothing else but  A=T|Kerγ0A\hskip 3.99994pt=\hskip 3.99994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}  (in  [I2I_{\hskip 1.04996pt2}]  it  is  denoted  by  AΓA_{\hskip 0.70004pt\Gamma}).

Suppose now  that  the boundary  problem  T|H1,ΠT^{\hskip 0.70004pt*}\hskip 1.49994pt|\hskip 1.49994ptH_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994pt\Pi  is  elliptic  regular  in  the sense of  [I2I_{\hskip 1.04996pt2}]  (we will  not  need  the precise definition).   Suppose also  that  the inclusion  H1H0H_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0}  is  a compact  operator.   If,   furthermore,   the operator

(T|H1)γ0:H1H0K\quad(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt|\hskip 1.49994ptH_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{0}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006ptK

is  Fredholm,   then  A=T|Kerγ0A\hskip 3.99994pt=\hskip 3.99994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}  is  an  unbounded self-adjoint  Fredholm  operator in  H0H_{\hskip 0.70004pt0}.   Moreover,   it  has discrete spectrum and  is  an operator with compact  resolvent.   See  [I2I_{\hskip 1.04996pt2}],   Theorem  5.4.   All  these assumptions hold when  the  Hilbert  spaces involved are  Sobolev  spaces,  TT  is  a differential  operator,   and  the boundary condition  γ0=0\gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0 satisfies  the  Shapiro–Lopatinskii  condition  for  TT,   as  it  will  be  the case in  Sections  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  –  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems.

Under  the assumptions of  the previous paragraph,   the operator  AA can serve as  the reference operator  if  its kernel  is  equal  to 0.   Indeed,   since under  these assumptions AA  is  self-adjoint,   the injectivity of  AA  implies  that  AA  is  an  isomorphism  𝒟(A)H0\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0}.

The reduced  boundary operator.   Let  us denote  the inverse of  the isomorphism  Γ0|KerT\Gamma_{0}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}  by  𝜸(0):KKerT\bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}  and  set  M(0)=Γ1𝜸(0):KKM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt\circ\hskip 1.49994pt\bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}.   The operators  𝜸(0)\bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) and  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) are analogues of  the values at  z=0z\hskip 3.99994pt=\hskip 3.99994pt0 of  the gamma field γ(z)\gamma\hskip 1.49994pt(\hskip 1.49994ptz\hskip 1.49994pt) and  the  Weyl  function  M(z)M\hskip 1.49994pt(\hskip 1.49994ptz\hskip 1.49994pt)  from  the  theory of  boundary  triplets.   Since  Γ1\Gamma_{1}  is  continuous in  the graph  topology of  𝒟(T)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt),   the operator  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)  is  continuous.   The  reduced  boundary operator  is  the operator

𝚪1=Γ1M(0)Γ0:𝒟(T)K.\quad\bm{\Gamma}_{1}\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma_{0}\hskip 1.99997pt\colon\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}\hskip 3.00003pt.

The continuity of  Γ0,Γ1\Gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\Gamma_{1}  and  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)  implies  that  𝚪1\bm{\Gamma}_{1}  is  continuous.

4.6. Lemma.   𝚪1=Γ1p\bm{\Gamma}_{1}\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt\circ\hskip 1.00006ptp,   where pp  is  the projection  𝒟(T)𝒟(A)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt),   and  Im𝚪1K\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\bm{\Gamma}_{1}\hskip 1.99997pt\subset\hskip 1.99997ptK.   

Proof.   By  Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems,   if  u𝒟(T)u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.49994pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt),   then  u=p(u)+zu\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptz  for some zKerTz\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}.   Since  𝒟(A)=KerΓ0|H1\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0}\hskip 1.99997pt|\hskip 1.99997ptH_{\hskip 0.70004pt1}  and  pp  is  the projection  to 𝒟(A)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt),   we see  that  Γ0(p(u))=0\Gamma_{0}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0.   Hence

𝚪1(u)=Γ1(p(u))+Γ1(z)M(0)Γ0(z)=Γ1(p(u))\quad\bm{\Gamma}_{1}\hskip 1.00006pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997pt\Gamma_{1}\hskip 1.00006pt(\hskip 1.49994ptz\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma_{0}\hskip 1.00006pt(\hskip 1.49994ptz\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt)

because  M(0)Γ0(z)=Γ1(z)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma_{0}\hskip 1.00006pt(\hskip 1.49994ptz\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt(\hskip 1.49994ptz\hskip 1.49994pt)  by  the definition.   This proves  that  𝚪1=Γ1p\bm{\Gamma}_{1}\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt\circ\hskip 1.00006ptp.   Since  pp  maps  𝒟(T)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)  into  𝒟(A)H1\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt)\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1} and  Γ1\Gamma_{1}  maps H1H_{\hskip 0.70004pt1}  to KK,   this implies  that  Im𝚪1K\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\bm{\Gamma}_{1}\hskip 1.99997pt\subset\hskip 1.99997ptK.    \blacksquare

4.7. Lemma.   If  u𝒟(T)u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)  and  vKerTv\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*},   then

Tu,v=𝚪1u,Γ0vK,K.\quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\bm{\Gamma}_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.00003pt.

Proof.   Since  Tv=0T^{\hskip 0.70004pt*}v\hskip 3.99994pt=\hskip 3.99994pt0,

Tu,v=Tp(u),v=Tp(u),vp(u),Tv.\quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}p\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}p\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt.

Since  p(u)𝒟(A)H1p\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt)\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1},   the  Lagrange  identity  (9)  applies with p(u)p\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt) in  the role of  uu,   and  hence  the  last  expression  is  equal  to

Γ1p(u),Γ0vK,KΓ0p(u),Γ1vK,K.\quad\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{1}\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.00003pt.

Since  Γ0p(u)=0\Gamma_{0}\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0,   it  is  also equal  to

Γ1p(u),Γ0vK,K=𝚪1u,Γ0vK,K.\quad\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{1}\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\bm{\Gamma}_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.00003pt.

The  lemma  follows.    \blacksquare

4.8. Lemma.   Suppose  that  u,v𝒟(T)u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt).   Then

Tu,vu,Tv=𝚪1u,Γ0vK,KΓ0u,𝚪1vK,K\quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\bm{\Gamma}_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\bm{\Gamma}_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.00003pt

Proof.   Since  k(u),k(v)KerTk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*},   Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that

Tu,k(v)=𝚪1u,Γ0k(v)K,Kandk(u),Tv=Γ0k(u),𝚪1vK,K.\quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\bm{\Gamma}_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 8.00003pt\mbox{and}\hskip 8.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997pt\bm{\Gamma}_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 1.99997pt.

Also,  Γ0p(u)=0\Gamma_{0}\hskip 1.00006ptp\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0  implies  that

Γ0u=Γ0k(u).\quad\Gamma_{0}\hskip 1.00006ptu\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{0}\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.00003pt.

Similarly,  Γ0v=Γ0k(v)\Gamma_{0}\hskip 1.00006ptv\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{0}\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt).   Hence

Tu,k(v)k(u),Tv=𝚪1u,Γ0vK,KΓ0u,𝚪1vK,K.\quad\left\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 1.00006pt,\hskip 1.99997ptk\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006ptk\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\bm{\Gamma}_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt,\hskip 1.39998ptK\hskip 0.35002pt^{\prime}}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\bm{\Gamma}_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004ptK\hskip 0.35002pt^{\prime}\hskip 0.35002pt,\hskip 1.39998ptK}\hskip 3.00003pt.

It  remains  to combine  this equality  with  Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems.    \blacksquare

4.9. Lemma.   The map  Γ0𝚪1:𝒟(T)KK\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\bm{\Gamma}_{1}\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006ptK  is  surjective.   

Proof.   Recall  that  the restriction  Γ0|KerT\Gamma_{0}\hskip 1.99997pt|\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}  is  an  isomorphism  KerTK\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}.   Therefore in order  to prove surjectivity,   it  is  sufficient  to prove  that  𝚪1\bm{\Gamma}_{1} maps  KerΓ0\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0} onto  KK.

By our assumptions,   the map  Γ0Γ1\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\Gamma_{1} restricted  to  H1H_{\hskip 0.70004pt1}  is  surjective onto  KKK\hskip 1.00006pt\oplus\hskip 1.00006ptK.   Therefore  Γ1\Gamma_{1}  maps  H1KerΓ0H_{\hskip 0.70004pt1}\hskip 1.99997pt\cap\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0} onto KK.   If  uH1KerΓ0u\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1}\hskip 1.99997pt\cap\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0},   then  u𝒟(A)u\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt) and  hence p(u)=up\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu.   It  follows  that  𝚪1(u)=Γ1p(u)=Γ1(u)\bm{\Gamma}_{1}\hskip 1.00006pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt\circ\hskip 1.00006ptp\hskip 1.00006pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt(\hskip 1.49994ptu\hskip 1.49994pt).   This  implies  that  𝚪1\bm{\Gamma}_{1}  maps  H1KerΓ0H_{\hskip 0.70004pt1}\hskip 1.99997pt\cap\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0} onto KK.   Together with  the previous paragraph  this proves surjectivity.    \blacksquare

The reduced  boundary  triplet.   Let

Γ¯0=ΛΓ0:𝒟(T)Kand\quad\overline{\Gamma}_{0}\hskip 3.99994pt=\hskip 3.99994pt\Lambda^{\prime}\hskip 1.00006pt\circ\hskip 1.49994pt\Gamma_{0}\hskip 1.99997pt\colon\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\quad\mbox{and}\quad
𝚪¯1=Λ1𝚪1:𝒟(T)K,\quad\overline{\bm{\Gamma}}_{1}\hskip 3.99994pt=\hskip 3.99994pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.49994pt\bm{\Gamma}_{1}\hskip 1.99997pt\colon\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 3.00003pt,

where  Λ,Λ\Lambda\hskip 0.50003pt,\hskip 3.99994pt\Lambda^{\prime} are  the operators associated  with  the  Gelfand  triple  KKKK\hskip 3.99994pt\subset\hskip 3.99994ptK^{\hskip 0.70004pt\partial}\hskip 3.99994pt\subset\hskip 3.99994ptK\hskip 0.50003pt^{\prime}.   Using  Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  we can  rewrite  the  Lagrange  identity of  Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  as

Tu,vu,Tv=𝚪¯1u,Γ¯0vΓ¯0u,𝚪¯1v,\quad\left\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\overline{\bm{\Gamma}}_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\overline{\Gamma}_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\overline{\Gamma}_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\overline{\bm{\Gamma}}_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt,

i.e.  in  the standard  form of  the  theory of  boundary  triplets.   Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that

Γ¯0𝚪¯1:𝒟(T)KK\quad\overline{\Gamma}_{0}\hskip 1.99997pt\oplus\hskip 1.99997pt\overline{\bm{\Gamma}}_{1}\hskip 1.99997pt\colon\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}

is  surjective.   Therefore

(K,Γ¯0,𝚪¯1)\quad\left(\hskip 1.99997ptK^{\hskip 0.70004pt\partial},\hskip 3.99994pt\overline{\Gamma}_{0}\hskip 1.00006pt,\hskip 3.99994pt\overline{\bm{\Gamma}}_{1}\hskip 1.99997pt\right)

is  a boundary  triplet  for  TT^{\hskip 0.70004pt*},   called  the  reduced  boundary  triplet.

4.10. Lemma.   Ker𝚪1=𝒟(T)KerT\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\bm{\Gamma}_{1}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt)\hskip 1.99997pt\dotplus\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} and  KerΓ0𝚪1=𝒟(T)\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\bm{\Gamma}_{1}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt).

Proof.   Lemmas  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  and  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  imply  that  Ker𝚪1\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\bm{\Gamma}_{1}  is  equal  to  the direct  sum of  KerT\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} and  the kernel  of  the restriction  Γ1|𝒟(A)\Gamma_{1}\hskip 1.49994pt|\hskip 1.99997pt\hskip 0.50003pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt).   Since  𝒟(A)=KerΓ0\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0},   the  latter  kernel  is  equal  to  KerΓ0Γ1=𝒟(T)\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\Gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt).   This proves  the first  claim of  the  lemma.   Since  the restriction  Γ0|KerT\Gamma_{0}\hskip 1.99997pt|\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}  is  injective,   the second claim  follows.    \blacksquare

Comparing  boundary  triplets.   Let  us apply  to  the extension AA of  TT and  μ=i\mu\hskip 3.99994pt=\hskip 3.99994pti  the construction of  boundary  triplets from  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems,   and  let

(10) (𝒦,Γ0,Γ1)\quad\left(\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 3.99994pt\Gamma^{\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994pt\Gamma^{\hskip 1.04996pt1}\hskip 3.00003pt\right)

be  the resulting  boundary  triplet.   Then  𝒟(A)=KerΓ0\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma^{\hskip 1.04996pt0}  and  Γ0:𝒟(T)𝒦\Gamma^{\hskip 1.04996pt0}\hskip 1.99997pt\colon\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}  is  a continuous surjective map.   Therefore  Γ0\Gamma^{\hskip 1.04996pt0}  induces an  isomorphism  between  the quotient  space  𝒟(T)/𝒟(A)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.00006pt/\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt) and  𝒦\mathcal{K}_{\hskip 0.70004pt-}.   By  the same reasons  Γ¯0\overline{\Gamma}_{0}  induces an  isomorphism  between  the same quotient  space  𝒟(T)/𝒟(A)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.00006pt/\hskip 1.00006pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)  and  KK^{\hskip 0.70004pt\partial}.   It  follows  that  there  is  a unique  topological  isomorphism  D:K𝒦D\hskip 1.00006pt\colon\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}  such  that  the  triangle

   𝒟(T){\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)}K{K^{\hskip 0.70004pt\partial}}𝒦{\mathcal{K}_{\hskip 0.70004pt-}}Γ¯0\scriptstyle{\displaystyle\overline{\Gamma}_{0}}Γ0\scriptstyle{\displaystyle\Gamma^{\hskip 1.04996pt0}}D\scriptstyle{\displaystyle D}

is  commutative.   Similarly,   the kernels of  Γ0Γ1\Gamma^{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\Gamma^{\hskip 1.04996pt1}  and  Γ¯0𝚪¯1\overline{\Gamma}_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\overline{\bm{\Gamma}}_{1} are equal  to 𝒟(T)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT\hskip 1.49994pt)  and  there  is  a unique  topological  isomorphism  𝒲:KK𝒦𝒦\mathcal{W}\hskip 1.00006pt\colon\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-}  such  that  the  triangle

   𝒟(T){\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt)}KK{K^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}}𝒦𝒦{\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-}}Γ¯0𝚪¯1\scriptstyle{\displaystyle\overline{\Gamma}_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\overline{\bm{\Gamma}}_{1}}Γ0Γ1\scriptstyle{\displaystyle\Gamma^{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\Gamma^{\hskip 1.04996pt1}}𝒲\scriptstyle{\displaystyle\mathcal{W}}

is  commutative.   The uniqueness of  DD  implies  that  the square

   KK{K^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}}𝒦𝒦{\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-}}K{K^{\hskip 0.70004pt\partial}}𝒦,{\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt,}𝒲\scriptstyle{\displaystyle\mathcal{W}}D\scriptstyle{\displaystyle D}

where  the vertical  arrows are projections on  the  first  summand,   is  commutative.   By  the uniqueness of  boundary  triplets  𝒲\mathcal{W}  is  an  isometry  between  the  Hermitian  scalar product

[(u,v),(a,b)]=iu,biv,a.\quad[\hskip 1.49994pt(\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997pt(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.49994pt]_{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994pti\hskip 1.49994pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.49994pt\langle\hskip 1.49994pt\hskip 1.00006ptv\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt.

on  KKK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}  and similarly defined  product on  𝒦𝒦\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-}.   See  [BHS],   Section  1.8  and  Theorem  2.5.1.   Together  with  the fact  that  KerΓ0=KerΓ¯0\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma^{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\overline{\Gamma}_{0}  this implies  that  there exists a bounded self-adjoint  operator  P:𝒦𝒦P\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}  such  that

(11) Γ¯0=D1Γ0and𝚪¯1=DΓ1+PD1Γ0.\quad\overline{\Gamma}_{0}\hskip 3.99994pt=\hskip 3.99994ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\Gamma^{\hskip 1.04996pt0}\quad\mbox{and}\quad\overline{\bm{\Gamma}}_{1}\hskip 3.99994pt=\hskip 3.99994ptD^{\hskip 0.70004pt*}\hskip 1.49994pt\Gamma^{\hskip 1.04996pt1}\hskip 1.99997pt+\hskip 1.99997ptP\hskip 1.49994ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\Gamma^{\hskip 1.04996pt0}\hskip 3.00003pt.

See  [BHS],   Corollary  2.5.6.

Two examples.   The first  one  is  the reference operator AA  itself.   By our assumptions  it  is  the self-adjoint  extension of  TT  defined  by either  the boundary condition  γ0=0\gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0,   or  by  the boundary condition  Γ0=0\Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0.   The  latter  is  obviously equivalent  to  Γ¯0=0\overline{\Gamma}_{0}\hskip 3.99994pt=\hskip 3.99994pt0.   Therefore AA can  be defined  in  terms of  the reduced  boundary  triplet  as  the extension defined  by  the self-adjoint  relation  0KKK0\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\subset\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}.   In  the notations of  [Schm],   AA  is  the extension  T0T_{\hskip 0.70004pt0}.

The second example  is  A=T|Kerγ1A^{\prime}\hskip 3.99994pt=\hskip 3.99994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{1}.   Suppose  that  AA^{\prime} is  self-adjoint.   By  Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  with  the roles of  γ0\gamma_{0} and  γ1\gamma_{1}  interchanged,   we see  that  KerΓ1=Kerγ1H1\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{1}\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1}.   Clearly,

KerΓ1=Ker(𝚪1+M(0)Γ0).\quad\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 1.00006pt\bigl{(}\hskip 1.99997pt\bm{\Gamma}_{1}\hskip 1.99997pt+\hskip 1.99997ptM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma_{0}\hskip 1.99997pt\bigr{)}\hskip 3.00003pt.

If  uKerΓ1u\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{1},   then  uH1u\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1}  and  hence  Γ0u=γ0uK\Gamma_{0}\hskip 1.00006ptu\hskip 3.99994pt=\hskip 3.99994pt\gamma_{0}\hskip 1.00006ptu\hskip 1.99997pt\in\hskip 1.99997ptK.   Therefore we can  replace  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)  by  M=M(0)|KM\hskip 3.99994pt=\hskip 3.99994ptM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt|\hskip 1.49994ptK considered as a densely defined operator  in  KK\hskip 0.50003pt^{\prime}.   More precisely,

KerΓ1=Ker(𝚪1+MΓ0).\quad\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 1.00006pt\bigl{(}\hskip 1.99997pt\bm{\Gamma}_{1}\hskip 1.99997pt+\hskip 1.99997ptM\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma_{0}\hskip 1.99997pt\bigr{)}\hskip 3.00003pt.

Let  us assume  that  the operator  M(0):KKM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}  leaves KK  invariant  and  that  the induced operator  KKK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  is  Fredholm.    Then  M=M(0)|KM\hskip 3.99994pt=\hskip 3.99994ptM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt|\hskip 1.49994ptK  is  a closed densely defined operator  from  KK\hskip 0.50003pt^{\prime}  to  KK  ( but  MM  is  not  closed as an operator  from  KK\hskip 0.50003pt^{\prime}  to  KK\hskip 0.50003pt^{\prime}).   Clearly,

𝚪1+MΓ0=Λ𝚪¯1+M(Λ)1Γ¯0.\quad\bm{\Gamma}_{1}\hskip 1.99997pt+\hskip 1.99997ptM\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt\Lambda\hskip 1.00006pt\circ\hskip 1.00006pt\overline{\bm{\Gamma}}_{1}\hskip 1.99997pt+\hskip 1.99997ptM\hskip 1.00006pt\circ\hskip 1.00006pt(\hskip 1.49994pt\Lambda^{\prime}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006pt\overline{\Gamma}_{0}\hskip 3.00003pt.

Since Λ\Lambda  is  an  isomorphism,   it  follows  that

Ker(𝚪1+MΓ0)=Ker(𝚪¯1+M¯Γ¯0),\quad\operatorname{Ker}\hskip 1.49994pt\hskip 1.00006pt\bigl{(}\hskip 1.99997pt\bm{\Gamma}_{1}\hskip 1.99997pt+\hskip 1.99997ptM\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma_{0}\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 1.00006pt\bigl{(}\hskip 1.99997pt\overline{\bm{\Gamma}}_{1}\hskip 1.99997pt+\hskip 1.99997pt\overline{M}\hskip 1.00006pt\circ\hskip 1.00006pt\overline{\Gamma}_{0}\hskip 1.99997pt\bigr{)}\hskip 3.00003pt,

where  M¯=Λ1M(Λ)1\overline{M}\hskip 3.99994pt=\hskip 3.99994pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006ptM\hskip 1.00006pt\circ\hskip 1.00006pt(\hskip 1.49994pt\Lambda^{\prime}\hskip 1.99997pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}  is  a closed densely defined operator  in  KK^{\hskip 0.70004pt\partial}.   We see  that  AA^{\prime}  can  be defined  in  terms of  the reduced  boundary  triplet  as  the extension of  TT  corresponding  to  the operator  M¯-\hskip 1.99997pt\overline{M},   or,   rather,   its  graph considered as a relation  in  KK^{\hskip 0.70004pt\partial}.   Hence,   by  the  theory of  boundary  triplets,   the self-adjointness of  AA^{\prime}  implies  that  M¯\overline{M}  is  a self-adjoint  operator  in  KK^{\hskip 0.70004pt\partial}.   By  the discussion at  the end of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  the operator  M¯\overline{M}  is  self-adjoint  if  and  only  if  the operator  MM  is  self-adjoint  as an operator  from  KK\hskip 0.50003pt^{\prime}  to KK.

Remark.   If  the inclusion  KKK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}  is  a compact  operator,   then  M¯\overline{M}  is  an operator with compact  resolvent.   Indeed,   under our assumptions MM  is  Fredholm  and  hence  MλM\hskip 1.99997pt-\hskip 1.99997pt\lambda  is  an  isomorphism  KKK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  for some λ𝐑\lambda\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{R}.   The inverse of  M¯λ\overline{M}\hskip 1.99997pt-\hskip 1.99997pt\lambda  is  Λ(Mλ)1Λ\Lambda^{\prime}\hskip 1.00006pt\circ\hskip 1.00006pt(\hskip 1.49994ptM\hskip 1.99997pt-\hskip 1.99997pt\lambda\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006pt\Lambda.   Hence  (Mλ)1(\hskip 1.49994ptM\hskip 1.99997pt-\hskip 1.99997pt\lambda\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}  is  the composition of  a  topological  isomorphism  KKK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  and  the compact  inclusion  KKK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}.   Since Λ\Lambda and  Λ\Lambda^{\prime} are  topological  isomorphisms,   this  implies  that  the inverse of  M¯λ\overline{M}\hskip 1.99997pt-\hskip 1.99997pt\lambda  is  compact.

Boundary problems defined  in  terms of  γ0,γ1\gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1}.   Let  γ=γ0γ1\gamma\hskip 3.99994pt=\hskip 3.99994pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1}.   Let  KK\mathcal{B}\hskip 3.99994pt\subset\hskip 3.99994ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}  be a closed  relation and  let TT_{\hskip 0.35002pt\mathcal{B}}  be  the restriction of  TT^{\hskip 0.70004pt*} to  γ1()H1\gamma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1}.   Recall  that  H1𝒟(T)H_{\hskip 0.70004pt1}\hskip 1.99997pt\subset\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt).   Suppose  that  TT_{\hskip 0.35002pt\mathcal{B}} is  a self-adjoint  operator in  H0H_{\hskip 1.04996pt0}.   Then  TT_{\hskip 0.35002pt\mathcal{B}}  can  be defined  in  terms of  the reduced  boundary  triplet.   The corresponding  boundary condition  is

Γ¯0𝚪¯1(𝒟(T))=Γ¯0𝚪¯1(γ1()).\quad\overline{\Gamma}_{0}\hskip 1.99997pt\oplus\hskip 1.99997pt\overline{\bm{\Gamma}}_{1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT_{\hskip 0.35002pt\mathcal{B}}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\overline{\Gamma}_{0}\hskip 1.99997pt\oplus\hskip 1.99997pt\overline{\bm{\Gamma}}_{1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\gamma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.00003pt.

It  is  equal  to  the image under  the map  ΛΛ1\Lambda^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}  of

Γ0𝚪1(γ1())KK.\quad\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\bm{\Gamma}_{1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\gamma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.99994pt\subset\hskip 3.99994ptK\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 3.00003pt.

Let  |K=KK\mathcal{B}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 3.99994pt=\hskip 3.99994pt\mathcal{B}\hskip 1.99997pt\cap\hskip 1.99997ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK  be  the restriction of  \mathcal{B}  to KK.   Since  γ1()H1\gamma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1},

Γ0𝚪1(γ1())=γ0𝜸1(γ1(|K)),\quad\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\bm{\Gamma}_{1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\gamma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\bm{\gamma}_{1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\gamma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.00003pt,

where  𝜸1=γ1Mγ0\bm{\gamma}_{1}\hskip 3.99994pt=\hskip 3.99994pt\gamma_{1}\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.00006pt\circ\hskip 1.00006pt\gamma_{0}  and  M=M(0)|KM\hskip 3.99994pt=\hskip 3.99994ptM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt|\hskip 1.49994ptK  as above.   Since γ\gamma  is  a map onto KKK\hskip 1.00006pt\oplus\hskip 1.00006ptK,

γ0𝜸1(γ1(|K))={(u,vMu)|(u,v)|K}=|KM.\quad\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\bm{\gamma}_{1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\gamma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\left\{\hskip 3.00003pt(\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.00006ptu\hskip 1.49994pt)\hskip 3.00003pt\bigl{|}\hskip 3.00003pt(\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{B}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 3.00003pt\right\}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{B}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.99997pt.

Therefore in  terms of  the reduced  boundary  triplet  TT_{\hskip 0.35002pt\mathcal{B}}  is  defined  by  the boundary condition

ΛΛ1(|KM).\quad\Lambda^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\mathcal{B}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.99997pt\bigr{)}\hskip 3.00003pt.

If  |K\mathcal{B}\hskip 1.49994pt|\hskip 1.49994ptK  is  the graph of  an operator  BKB_{\hskip 0.70004ptK},   then  this boundary condition  is  the graph of

Λ1(BKM)(Λ)1.\quad\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\circ\hskip 1.99997pt\bigl{(}\hskip 1.99997ptB_{\hskip 0.70004ptK}\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.99997pt\bigr{)}\hskip 1.99997pt\circ\hskip 1.99997pt(\hskip 1.49994pt\Lambda^{\prime}\hskip 1.49994pt)^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 3.00003pt.

In our applications  |K\mathcal{B}\hskip 1.49994pt|\hskip 1.49994ptK  will  be usually a proper  relation,   not  a  graph.   Note  that  the assumption  of  self-adjointness of  TT_{\hskip 0.35002pt\mathcal{B}}  implies,   by  the  theory of  boundary  triplets and  the remarks at  the end of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems,   that  the relation  |KM\mathcal{B}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 1.99997pt-\hskip 1.99997ptM  is  self-adjoint.   In applications,   the self-adjointness of  TT_{\hskip 0.35002pt\mathcal{B}}  is  established  in  the same way as  the self-adjointness of  AA.

5. Families  of  abstract  boundary  problems

Families of  extensions.   Let  WW  be a  reasonable  (say,   compactly  generated and  paracompact)  topological  space.   Let HH be a separable  Hilbert  space,  Tw,wWT_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  be a family of  densely defined closed symmetric operators in HH,   and Aw,wWA_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  be a family of  self-adjoint  operators such  that  TwAwTwT_{w}\hskip 1.99997pt\subset\hskip 1.99997ptA_{\hskip 0.70004ptw}\hskip 1.99997pt\subset\hskip 1.99997ptT_{w}^{\hskip 0.70004pt*}  for every  wWw\hskip 1.99997pt\in\hskip 1.99997ptW.   We will  assume  that  the family  Aw,wWA_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  continuous in  the  topology of  uniform  resolvent  convergence.   Let

𝒦w+=Ker(Twi)=Im(Tw+i)and\quad\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.99997pt-\hskip 1.99997pt\hskip 0.24994pti\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT_{w}\hskip 1.99997pt+\hskip 1.99997pti\hskip 1.99997pt)^{\hskip 0.70004pt\perp}\quad\mbox{and}\quad
𝒦w=Ker(Tw+i)=Im(Twi).\quad\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.99997pt+\hskip 1.99997pti\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT_{w}\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.99997pt)^{\hskip 0.70004pt\perp}\hskip 3.00003pt.

Let  Vw:𝒦w+𝒦wV_{w}\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt+}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}  be  the isometry corresponding  to A=AwA\hskip 3.99994pt=\hskip 3.99994ptA_{\hskip 0.70004ptw} and  μ=i\mu\hskip 3.99994pt=\hskip 3.99994pti  as in  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems.   By  Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  the isometry  VwV_{w}  is  equal  to  the restriction of  U(Aw)U\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004ptw}\hskip 1.49994pt)  to  𝒦w+\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt+}.   Similarly,   the constructions of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  lead  to boundary operators

Γw0,Γw1:𝒟(Tw)𝒦w,wW\quad\Gamma_{w\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994pt\Gamma_{w\hskip 1.04996pt1}\hskip 1.99997pt\colon\hskip 1.99997pt\mathcal{D}\hskip 1.49994pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 3.00003pt,\quad w\hskip 1.99997pt\in\hskip 1.99997ptW\hskip 3.00003pt

such  that  the analogue of  the  Lagrange  identity  (4)  with subscripts ww holds for every ww.

Let  w,wW\mathcal{B}_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  be a  family  of  self-adjoint  relations  w𝒦w𝒦w\mathcal{B}_{w}\hskip 1.99997pt\subset\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}.   We will  impose a continuity assumption on  this  family  a  little bit  later.   The boundary  triplets

(𝒦w,Γw0,Γw1)\quad\bigl{(}\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 3.99994pt\Gamma_{w\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994pt\Gamma_{w\hskip 1.04996pt1}\hskip 3.00003pt\bigr{)}

together with  relations w\mathcal{B}_{w} define a new  family  Aw,wWA^{\prime}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  of  extensions of  the operators Tw,wWT_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  such  that  TwAwTwT_{w}\hskip 1.99997pt\subset\hskip 1.99997ptA^{\prime}_{\hskip 0.70004ptw}\hskip 1.99997pt\subset\hskip 1.99997ptT_{w}^{\hskip 0.70004pt*}  for every  wWw\hskip 1.99997pt\in\hskip 1.99997ptW.   As we saw  in  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems,

(12) U(Aw)=U(w)HU(Aw)\quad U\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}_{\hskip 0.70004ptw}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{w}\hskip 1.49994pt)_{\hskip 0.70004ptH}\hskip 1.49994ptU\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004ptw}\hskip 1.49994pt)\hskip 3.00003pt

for every  wWw\hskip 1.99997pt\in\hskip 1.99997ptW.   The continuity of  the family  Aw,wWA_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  in  the  topology of  uniform  resolvent  convergence  is  equivalent  to  the continuity of  the family  U(Aw),wWU\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004ptw}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  in  the norm  topology.   Therefore  the family  U(Aw),wWU\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}_{\hskip 0.70004ptw}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  continuous in  the  topology of  uniform  resolvent  convergence  if  and  only  if  the family  U(w)H,wWU\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{w}\hskip 1.49994pt)_{\hskip 0.70004ptH}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  continuous in  the norm  topology.   The following assumptions ensure  such continuity.

The continuity assumptions.   Let  us assume  that  the subspace  𝒦w\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-} of  HH continuously depends on ww.   Since  𝒦w+=U(Aw)1(𝒦w)\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004ptw}\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 1.49994pt),   under  this assumption  𝒦w+\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt+}  also continuously depends on ww.   Since  𝒦w\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-} continuously depends on ww,   it  makes sense  to speak about  the continuity of  the family  w,wW\mathcal{B}_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW,   and we will  assume  that  it  is  continuous.   These continuity assumptions imply  that  the family  U(w)H,wWU\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{w}\hskip 1.49994pt)_{\hskip 0.70004ptH}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  continuous  in  the norm  topology,   and  hence  the family  U(Aw),wWU\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}_{\hskip 0.70004ptw}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  also continuous.   Hence  the family  Aw,wWA^{\prime}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  continuous in  in  the  topology of  uniform  resolvent  convergence.

Fredholm  families of  operators and  relations.   Suppose now  that  Aw,wWA_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  a  family of  Fredholm  operators.   Since  this family  is  continuous  in  the  topology of  uniform  resolvent  convergence,   this  implies  that  Aw,wWA_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  a  Fredholm  family  in  the sense of  [I1I_{\hskip 1.04996pt1}].   Suppose also  that  w,wW\mathcal{B}_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  a  family of  Fredholm  relations in  the sense of  [I2I_{\hskip 1.04996pt2}].   Then  the analytical  index  is  defined  for each of  the families  Aw,wWA_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  and  w,wW\mathcal{B}_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW.   We will  denote  these analytical  indices by  aind(A)\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004pt\bullet}\hskip 1.49994pt) and  aind()\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{\hskip 0.35002pt\bullet}\hskip 1.49994pt)  respectively.

As in  [I2I_{\hskip 1.04996pt2}],   we denote by  UFredU^{\hskip 0.70004pt\operatorname{Fred}}  the space of  Fredholm-unitary  operators in HH,   i.e.  of  unitary operators in HH such  that  1-\hskip 1.99997pt1  does not  belongs  to  the essential  spectrum.   Equivalently,   an operator belongs  to UFredU^{\hskip 0.70004pt\operatorname{Fred}}  if  and  only  if  it  is  equal  to  the  Cayley  transform of  a self-adjoint  Fredholm  relation in HH.   Unfortunately,  UFredU^{\hskip 0.70004pt\operatorname{Fred}}  is  not  closed under  the composition.   By  this reason  (12)  alone  is  not  sufficient  to conclude  that  the operators  AwA^{\prime}_{\hskip 0.70004ptw} are  Fredholm.

As in  [I2I_{\hskip 1.04996pt2}],   we denote by  UcompU^{\hskip 0.70004pt\mathrm{comp}}  the group of  unitary operators HHH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH which differ  from  idH\operatorname{id}_{\hskip 1.04996ptH}  by a compact  operator.   It  is  easy  to see  that  UcompU^{\hskip 0.70004pt\mathrm{comp}} acts on UFredU^{\hskip 0.70004pt\operatorname{Fred}}  by composition  from either side,   i.e.  that  VUcompV\hskip 1.99997pt\in\hskip 1.99997ptU^{\hskip 0.70004pt\mathrm{comp}},  VUFredV\hskip 0.50003pt^{\prime}\hskip 1.99997pt\in\hskip 1.99997ptU^{\hskip 0.70004pt\operatorname{Fred}}  implies  VVV\hskip 1.00006pt\circ\hskip 1.00006ptV\hskip 0.50003pt^{\prime} and  VVV\hskip 0.50003pt^{\prime}\hskip 1.00006pt\circ\hskip 1.00006ptV  belong  to UFredU^{\hskip 0.70004pt\operatorname{Fred}}.   Together  with  (12)  this implies  that  if  Aw,wWA_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  a  family of  Fredholm  operators with compact  resolvent,   then  Aw,wWA^{\prime}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  a family of  Fredholm  operators.   The same conclusion  holds  if  we impose a similar condition on  w,wW\mathcal{B}_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW instead of  Aw,wWA_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW.

In more details,   let  us say  that  a self-adjoint  relation  HH\mathcal{B}\hskip 1.99997pt\subset\hskip 1.99997ptH\hskip 1.00006pt\oplus\hskip 1.00006ptH  has compact  resolvent  if  its operator part  has compact  resolvent.   It  is  easy  to see  that  \mathcal{B}  has compact  resolvent  if  and  only  if  U()UcompU\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptU^{\hskip 0.70004pt\mathrm{comp}}.   Clearly,   if  𝒦𝒦\mathcal{B}\hskip 1.99997pt\subset\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004pt-}  is  a relation with compact  resolvent,   then U()HU\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}\hskip 1.49994pt)_{\hskip 0.70004ptH}  belongs  to UcompU^{\hskip 0.70004pt\mathrm{comp}} of  HH.   Therefore  if  w,wW\mathcal{B}_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  a  family of  Fredholm  relations with compact  resolvent,   then  Aw,wWA^{\prime}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  a family of  Fredholm  operators.

5.1. Theorem.   Suppose  that  either  every operator  Aw,wWA_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  has compact  resolvent,   or every  relation w,wW\mathcal{B}_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  has compact  resolvent.   Then

aind(A)=aind(A)+aind().\quad\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}_{\hskip 0.70004pt\bullet}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004pt\bullet}\hskip 1.49994pt)\hskip 3.00003pt+\hskip 3.00003pt\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{\hskip 0.35002pt\bullet}\hskip 1.49994pt)\hskip 3.00003pt.

Proof.   The discussion  preceding  the  theorem shows  that  aind(A)\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}_{\hskip 0.70004pt\bullet}\hskip 1.49994pt)  is  well-defined.   The analytical  index of  the family  w,wW\mathcal{B}_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  equal  to  the analytical  index of  the family  U(w),wWU\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{w}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  of  Fredholm-unitary  operators.   See  [I2I_{\hskip 1.04996pt2}],   the end of  Section  11.   Clearly,   the families  U(w),wWU\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{w}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  and  U(w)H,wWU\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{w}\hskip 1.49994pt)_{\hskip 0.70004ptH}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  of  Fredholm-unitary  operators have  the same analytical  index.   Now  the  theorem  follows  from  (12)  and  [I2I_{\hskip 1.04996pt2}],   Lemma  11.2.    \blacksquare

Families of  self-adjoint  boundary  problems.   I.   Let  us  pass  to  the framework of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  and  keep all  assumptions of  that  section.   Let  w,wW\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  be a continuous family of  self-adjoint  Fredholm  relations in  KK^{\hskip 0.70004pt\partial},  wKK\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997pt\subset\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}  for every  wWw\hskip 1.99997pt\in\hskip 1.99997ptW.   Then  w,wW\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  a  Fredholm  family  and  its analytical  index  is  defined.   See  [I2I_{\hskip 1.04996pt2}],   Section  11.   The  family  w,wW\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW defines a family of  self-adjoint  extensions

𝒯w=Tw,wW\quad\mathcal{T}_{w}\hskip 3.99994pt=\hskip 3.99994ptT_{\hskip 0.35002pt\mathcal{B}_{\hskip 0.25002ptw}}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW

of  TT,   where  𝒯w=Tw\mathcal{T}_{w}\hskip 3.99994pt=\hskip 3.99994ptT_{\hskip 0.35002pt\mathcal{B}_{\hskip 0.25002ptw}}  is  the restriction of  TT^{\hskip 0.70004pt*}  to  the subspace

𝒟(Tw)={x𝒟(T)|(Γ¯0x,𝚪¯1x)w}.\quad\mathcal{D}\hskip 1.00006pt\left(\hskip 1.99997ptT_{\hskip 0.35002pt\mathcal{B}_{\hskip 0.25002ptw}}\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994pt\left\{\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 3.00003pt\left|\hskip 3.99994pt\left(\hskip 1.99997pt\overline{\Gamma}_{0}\hskip 1.00006ptx\hskip 0.50003pt,\hskip 3.00003pt\overline{\bm{\Gamma}}_{1}\hskip 1.00006ptx\hskip 1.99997pt\right)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{B}_{\hskip 0.35002ptw}\right.\hskip 3.00003pt\right\}\hskip 3.99994pt.

We will  say  that  𝒯w\mathcal{T}_{w}  is  defined  by  the equation  𝚪¯1=wΓ¯0\overline{\bm{\Gamma}}_{1}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997pt\overline{\Gamma}_{0},   and similarly for other relations and  boundary  triplets.   The extensions  𝒯w\mathcal{T}_{w}  can  be also defined  in  terms of  the boundary  triplet  (10).   In  view of  (11)  the corresponding equations are

DΓ1+PD1Γ0=wD1Γ0,\quad D^{\hskip 0.70004pt*}\hskip 1.49994pt\Gamma^{\hskip 1.04996pt1}\hskip 1.99997pt+\hskip 1.99997ptP\hskip 1.49994ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\Gamma^{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\Gamma^{\hskip 1.04996pt0}\hskip 3.00003pt,

or,   equivalently,   Γ1=𝒞wΓ0\Gamma^{\hskip 1.04996pt1}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{C}_{\hskip 0.35002ptw}\hskip 1.99997pt\Gamma^{\hskip 1.04996pt0},   where

𝒞w=(D)1(wD1PD1).\quad\mathcal{C}_{\hskip 0.35002ptw}\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.99997ptD^{\hskip 0.70004pt*}\hskip 1.99997pt\right)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\left(\hskip 1.99997pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\hskip 1.49994pt-\hskip 3.00003ptP\hskip 1.49994ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\right)\hskip 3.00003pt.

The family  𝒞w,wW\mathcal{C}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  continuous  together  with  w,wW\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW.

5.2. Theorem.   Suppose  that  w\mathcal{B}_{\hskip 0.35002ptw}  is  a relation with compact  resolvent  for every  wWw\hskip 1.99997pt\in\hskip 1.99997ptW.   Then  the family  𝒯w,wW\mathcal{T}_{w}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  Fredholm  and  its analytical  index  is  equal  to  the analytical  index of  the family  w,wW\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW.   

Proof.   The relation 𝒞w\mathcal{C}_{\hskip 0.35002ptw}  is  equal  to  the difference

(D)1wD1(D)1PD1\quad\left(\hskip 1.99997ptD^{\hskip 0.70004pt*}\hskip 1.99997pt\right)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\hskip 1.49994pt-\hskip 3.00003pt\left(\hskip 1.99997ptD^{\hskip 0.70004pt*}\hskip 1.99997pt\right)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997ptP\hskip 1.49994ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}

of  a relation with compact  resolvent  and  a bounded operator.   It  follows  that  𝒞w\mathcal{C}_{\hskip 0.35002ptw}  is  a relation with compact  resolvent  and  hence  U(𝒞w)UcompU\hskip 1.49994pt(\hskip 1.49994pt\mathcal{C}_{\hskip 0.35002ptw}\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptU^{\hskip 0.70004pt\mathrm{comp}}  for every ww.   By  the equality  (5)

(13) U(𝒯w)=U(𝒞w)HU(A)\quad U\hskip 1.49994pt(\hskip 1.49994pt\mathcal{T}_{w}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.49994pt(\hskip 1.49994pt\mathcal{C}_{\hskip 0.35002ptw}\hskip 1.49994pt)_{\hskip 0.70004ptH}\hskip 1.49994ptU\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.00003pt

for every ww.   Since AA  is  a  Fredholm  operator and  U(𝒞w)UcompU\hskip 1.49994pt(\hskip 1.49994pt\mathcal{C}_{\hskip 0.35002ptw}\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptU^{\hskip 0.70004pt\mathrm{comp}},   this implies  that  𝒯w\mathcal{T}_{w}  is  Fredholm  for every ww.   See  [I2I_{\hskip 1.04996pt2}],   the discussion  preceding  Lemma  11.2.   Moreover,   the equality  (13)  implies  that  the family  U(𝒯w),wWU\hskip 1.49994pt(\hskip 1.49994pt\mathcal{T}_{w}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  continuous and  hence  𝒯w,wW\mathcal{T}_{w}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  not  only a  family of  Fredholm  operators,   but  is  a  Fredholm  family.   Since  U(A)U\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)  does not  depend on ww,   the equality  (13)  together  with  Lemma  11.2  from  [I2I_{\hskip 1.04996pt2}]  implies  that  the analytical  index of  the family  𝒯w,wW\mathcal{T}_{w}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  Fredholm  and  its analytical  index  is  equal  to  the analytical  index of  the family  𝒞w,wW\mathcal{C}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW.   It  remains  to prove  that  the analytical  indices of  families  𝒞w,wW\mathcal{C}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW and  w,wW\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW are equal.   The homotopy

𝒞w,t=(D)1(wD1tPD1),t[0,1]\quad\mathcal{C}_{\hskip 0.35002ptw\hskip 0.35002pt,\hskip 1.39998ptt}\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.99997ptD^{\hskip 0.70004pt*}\hskip 1.99997pt\right)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\left(\hskip 1.99997pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\hskip 1.49994pt-\hskip 3.00003ptt\hskip 1.49994ptP\hskip 1.49994ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\right)\hskip 1.00006pt,\quad t\hskip 1.99997pt\in\hskip 1.99997pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt]

connects  the family  𝒞w,wW\mathcal{C}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  with  the family

(D)1wD1,wW\quad\left(\hskip 1.99997ptD^{\hskip 0.70004pt*}\hskip 1.99997pt\right)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997ptD^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt,\quad w\hskip 1.99997pt\in\hskip 1.99997ptW\hskip 3.00003pt

and  hence  the index of  𝒞w,wW\mathcal{C}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  equal  to  the index of  the  latter  family.   But  the  latter  family  is  conjugate  to  w,wW\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  and  hence has  the same index.    \blacksquare

Allowing  T,A,γ0,γ1T{},\hskip 3.00003ptA\hskip 1.00006pt,\hskip 3.00003pt\gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1}  depending  on parameters.   Again,   let  Tw,wWT_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  be a family of  densely defined closed symmetric operators in HH,   and Aw,wWA_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  be a family self-adjoint  operators such  that  TwAwTwT_{w}\hskip 1.99997pt\subset\hskip 1.99997ptA_{\hskip 0.70004ptw}\hskip 1.99997pt\subset\hskip 1.99997ptT_{w}^{\hskip 0.70004pt*}  for every  wWw\hskip 1.99997pt\in\hskip 1.99997ptW.   Suppose  that  the family  Aw,wWA_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  continuous in  the  topology of  the uniform  resolvent  convergence.   Let

γw0,γw1:H1K,wW\quad\gamma_{w\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{w\hskip 1.04996pt1}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 1.00006pt,\quad w\hskip 1.99997pt\in\hskip 1.99997ptW

be norm-continuous families of  bounded operators.   Suppose  that  for every  wWw\hskip 1.99997pt\in\hskip 1.99997ptW  all  assumptions of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  hold  for  T=TwT\hskip 3.99994pt=\hskip 3.99994ptT_{w},  A=AwA\hskip 3.99994pt=\hskip 3.99994ptA_{\hskip 0.70004ptw},  γ0=γw0\gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt\gamma_{w\hskip 1.04996pt0} and  γ1=γw1\gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt\gamma_{w\hskip 1.04996pt1}.   In  particular,   the operators  γw0,γw1\gamma_{w\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{w\hskip 1.04996pt1}  extend  by continuity  to bounded operators  𝒟(Tw)K\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime},   which we will  denote  by  Γw0,Γw1\Gamma_{w\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994pt\Gamma_{w\hskip 1.04996pt1}  respectively.   Then  Γw0\Gamma_{w\hskip 1.04996pt0}  induces a  topological  isomorphism  KerTwK\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT_{w}^{\hskip 0.70004pt*}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime} for every  wWw\hskip 1.99997pt\in\hskip 1.99997ptW.   Let

𝜸w(0):KKerTw\quad\bm{\gamma}_{w}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT_{w}^{\hskip 0.70004pt*}

be  its  inverse and  let

Mw(0)=Γw1𝜸w(0):KK.\quad M_{\hskip 0.70004ptw}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{w\hskip 1.04996pt1}\hskip 1.00006pt\circ\hskip 1.49994pt\bm{\gamma}_{w}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}\hskip 3.00003pt.

We need  the family  𝜸w(0),wW\bm{\gamma}_{w}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  be norm-continuous as  a  a family of  bounded operators  KHK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH  and  the family  Mw(0),wWM_{\hskip 0.70004ptw}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  to be norm-continuous as a family of  bounded operators in  KK\hskip 0.50003pt^{\prime}.   In  the present  abstract  setting  we will  simply assume  that  this  is  the case.   Then  the family of  reduced  boundary operators  𝚪w1=Γw1Mw(0)Γw0\bm{\Gamma}_{w\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{w\hskip 0.70004pt1}\hskip 1.99997pt-\hskip 1.99997ptM_{\hskip 0.70004ptw}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma_{w\hskip 0.70004pt0}  is  norm-continuous,   as also  the families  Γ¯w0\overline{\Gamma}_{w\hskip 0.70004pt0}  and  𝚪¯w1\overline{\bm{\Gamma}}_{w\hskip 0.70004pt1},  wWw\hskip 1.99997pt\in\hskip 1.99997ptW.

The family  𝒟(Tw),wW\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptw\hskip 1.99997pt\in\hskip 1.99997ptW.   Recall  that  the domains  𝒟(Tw)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.49994pt) are equipped  with  the graph  topology.   We may even equip  them  with  the structure of  Hilbert  spaces induced  from  the graphs of  operators  TwT_{w}^{\hskip 0.70004pt*}.   By  Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems

𝒟(Tw)=𝒟(Aw)KerTw.\quad\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA_{\hskip 0.70004ptw}\hskip 1.00006pt)\hskip 1.99997pt\dotplus\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT_{w}^{\hskip 0.70004pt*}\hskip 3.00003pt.

Moreover,   replacing \dotplus by  the orthogonal  direct  sum \oplus does not  affect  the underlying  topology.   By our assumptions,   the domains  𝒟(Aw)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA_{\hskip 0.70004ptw}\hskip 1.00006pt) are contained  in  H1H_{\hskip 0.70004pt1} and  their  graph  topology  is  the same as  the  topology  induced  from  H1H_{\hskip 0.70004pt1}.   Moreover,   these domains are equal  to  the kernels of  bounded operators  Γw0:H1K\Gamma_{w\hskip 1.04996pt0}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  continuously depending on  ww.   Therefore  𝒟(Aw),wW\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA_{\hskip 0.70004ptw}\hskip 1.00006pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  a continuous  family of  closed subspaces of  H1H_{\hskip 0.70004pt1}.   On  the kernel  KerTw\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT_{w}^{\hskip 0.70004pt*}  the graph  topology of  𝒟(Tw)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.00006pt)  is  equal  to  the  topology  induced  from  HH.   The continuity of  the family  𝜸w(0),wW\bm{\gamma}_{w}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  implies  that  the  family  KerTw,wW\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT_{w}^{\hskip 0.70004pt*}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  a continuous family  of  subspaces of  HH.   It  follows  that  the family  of  domains  𝒟(Tw)=𝒟(Aw)KerTw\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA_{\hskip 0.70004ptw}\hskip 1.00006pt)\hskip 1.99997pt\dotplus\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT_{w}^{\hskip 0.70004pt*} has a natural  structure of  a  Hilbert  bundle over WW with  the structure group GL(H)GL\hskip 1.49994pt(\hskip 1.49994ptH\hskip 1.49994pt) in  the norm  topology.   The fibers may  be not  isometric,   but  are  topologically  isomorphic  to  the spaces 𝒟(Tw)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.00006pt)  with  the  Hilbert  space structures induced  from  graphs.

Comparing  families  of  boundary  triplets.   Let  us apply  to  the extension AwA_{\hskip 0.70004ptw} of  TwT_{w} and  μ=i\mu\hskip 3.99994pt=\hskip 3.99994pti  the construction of  boundary  triplets from  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems,   and  let

(14) (𝒦w,Γw0,Γw1)\quad\left(\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 3.99994pt\Gamma_{w}^{\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994pt\Gamma_{w}^{\hskip 1.04996pt1}\hskip 3.00003pt\right)

be  the resulting  boundary  triplets.   Let  us assume  that  𝒦w,wW\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  a continuous family  of  subspaces of  HH.   The discussion of  comparing  boundary  triplets  in  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  leads  to families of  topological  isomorphisms

Dw:K𝒦w,wWand\quad D_{w}\hskip 1.00006pt\colon\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 1.00006pt,\quad w\hskip 1.99997pt\in\hskip 1.99997ptW\qquad\mbox{and}\quad
𝒲w:KK𝒦w𝒦w,wW\quad\mathcal{W}_{w}\hskip 1.49994pt\colon\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 1.00006pt,\quad w\hskip 1.99997pt\in\hskip 1.99997ptW\hskip 3.00003pt

Moreover,   there exist  bounded self-adjoint  operators  Pw:𝒦w𝒦P_{w}\hskip 1.00006pt\colon\hskip 1.00006pt\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathcal{K}_{\hskip 0.70004pt\hskip 0.70004pt-}  such  that

Γ¯w0=Dw1Γw0and\quad\overline{\Gamma}_{w\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994ptD_{w}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\Gamma_{w}^{\hskip 1.04996pt0}\quad\hskip 1.00006pt\mbox{and}\quad\hskip 1.00006pt
𝚪¯w1=DwΓw1+PwDw1Γw0,\quad\overline{\bm{\Gamma}}_{w\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptD_{w}^{\hskip 0.70004pt*}\hskip 1.99997pt\Gamma_{w}^{\hskip 1.04996pt1}\hskip 3.99994pt+\hskip 3.99994ptP_{w}\hskip 1.49994ptD_{w}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\Gamma_{w}^{\hskip 1.04996pt0}\hskip 3.99994pt,

where  Γ¯w0\overline{\Gamma}_{w\hskip 0.70004pt0} and  𝚪¯w1\overline{\bm{\Gamma}}_{w\hskip 0.70004pt1} are defined  in  the same way as  Γ¯0\overline{\Gamma}_{0} and  𝚪¯1\overline{\bm{\Gamma}}_{1}.

5.3. Lemma.   The families  Dw,𝒲w,Pw,wWD_{w}\hskip 1.00006pt,\hskip 3.99994pt\mathcal{W}_{w}\hskip 1.00006pt,\hskip 3.99994ptP_{w}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW  are continuous in  the norm  topology.   

Proof.   By  Kuiper’s  theorem we can  trivialize  the bundles  𝒟(Tw),wW\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.00006pt)\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  and  𝒦,wW\mathcal{K}_{\hskip 0.70004pt\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  as  the bundles with  the structure group  GL(H)GL\hskip 1.49994pt(\hskip 1.49994ptH\hskip 1.49994pt) in  the norm  topology.   Therefore  the continuity  of  the families  Dw,𝒲w,wWD_{w}\hskip 1.00006pt,\hskip 3.99994pt\mathcal{W}_{w}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW  follows from  the commutative diagrams at  the end of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  (with  the parameters ww added ).   In order  to prove  the continuity of  Pw,wWP_{w}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW,   let  us  write  𝒲w\mathcal{W}_{w} as a 2×22\hskip 1.00006pt\times\hskip 1.00006pt2 matrix.   Then  the operator  PwDw1P_{w}\hskip 1.49994ptD_{w}^{\hskip 0.70004pt-\hskip 0.70004pt1}  is  one of  the entries of  this matrix.   Therefore  the continuity of  the family  Pw,wWP_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  follows from  the already  proved continuity of  the families  Dw,𝒲w,wWD_{w}\hskip 1.00006pt,\hskip 3.99994pt\mathcal{W}_{w}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW.    \blacksquare

Families of  self-adjoint  boundary  problems.   II.   As above,   let  w,wW\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  be a continuous family of  self-adjoint  Fredholm  relations in  KK^{\hskip 0.70004pt\partial}.   For wWw\hskip 1.99997pt\in\hskip 1.99997ptW  let  𝒯w\mathcal{T}_{w}  be  the extension of  TwT_{w} defined  by  the equation  𝚪¯w1=wΓ¯w0\overline{\bm{\Gamma}}_{w\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997pt\overline{\Gamma}_{w\hskip 0.70004pt0}.

5.4. Theorem.   Suppose  that  either  every operator  Aw,wWA_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  has compact  resolvent,   or every  relation w,wW\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  has compact  resolvent.   Then  the family  𝒯w,wW\mathcal{T}_{w}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  Fredholm  and  its analytical  index  is  equal  to  the analytical  index of  the family  w,wW\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW.   

Proof.   The proof  is  similar  to  the proof  of  Theorem  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems.   Now  the definition of  relations 𝒞w\mathcal{C}_{\hskip 0.35002ptw}  has a subscript  ww at  each  letter.   Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that  the family  𝒞w,wW\mathcal{C}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  continuous.   The equality  (13)  is  replaced  by

U(𝒯w)=U(𝒞w)HU(Aw).\quad U\hskip 1.49994pt(\hskip 1.49994pt\mathcal{T}_{w}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.49994pt(\hskip 1.49994pt\mathcal{C}_{\hskip 0.35002ptw}\hskip 1.49994pt)_{\hskip 0.70004ptH}\hskip 1.49994ptU\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004ptw}\hskip 1.49994pt)\hskip 3.00003pt.

The discussion  preceding  Theorem  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  shows  that  the family  𝒯w,wW\mathcal{T}_{w}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  Fredholm.   Arguing as in  the proof  of  Theorem  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems,   we see  that

aind(𝒯)=aind(A)+aind(𝒞).\quad\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994pt\mathcal{T}_{\hskip 0.70004pt\bullet}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004pt\bullet}\hskip 1.49994pt)\hskip 3.00003pt+\hskip 3.00003pt\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994pt\mathcal{C}_{\hskip 0.35002pt\bullet}\hskip 1.49994pt)\hskip 3.00003pt.

But  aind(𝒞)=aind()\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994pt\mathcal{C}_{\hskip 0.35002pt\bullet}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{\hskip 0.35002pt\bullet}\hskip 1.49994pt)  and  aind(A)=0\operatorname{a-ind}\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.35002pt\bullet}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0  because  the operators AwA_{\hskip 0.70004ptw} are assumed  to be invertible.   The  theorem  follows.    \blacksquare

Families of  boundary  problems defined  in  terms of  γw0,γw1\gamma_{w\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{w\hskip 1.04996pt1}.   Let  γw=γw0γw1\gamma_{w}\hskip 3.99994pt=\hskip 3.99994pt\gamma_{w\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{w\hskip 1.04996pt1}.   Let  wKK\mathcal{B}_{\hskip 0.35002ptw}\hskip 3.99994pt\subset\hskip 3.99994ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial},   where ww runs over  WW,   be a family of  self-adjoint  closed  relations.   It  is  only  natural  to assume  that  this family  is  continuous,   say,   in  the sense of  [I2I_{\hskip 1.04996pt2}],   Section  11.   But  what  is  really  needed  is  the continuity of  the family of  restrictions w|K=wKK\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 3.99994pt=\hskip 3.99994pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.99997pt\cap\hskip 1.99997ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK.   In our  the applications both continuity  properties will  be hold  by  the same reason.

For wWw\hskip 1.99997pt\in\hskip 1.99997ptW  let  𝒯w\mathcal{T}_{\hskip 0.35002ptw}  be  the restriction of  TT^{\hskip 0.70004pt*} to  γw1(w)H1\gamma_{w}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1}.   Suppose  that  𝒯w\mathcal{T}_{\hskip 0.35002ptw} is  a self-adjoint  operator  in  HH  for every wWw\hskip 1.99997pt\in\hskip 1.99997ptW.   The discussion at  the end of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  shows  that  𝒯w\mathcal{T}_{\hskip 0.35002ptw}  is  defined  in  terms of  the boundary  triplet  (K,Γ¯w0,𝚪¯w1)(\hskip 1.49994ptK\hskip 1.00006pt,\hskip 3.99994pt\overline{\Gamma}_{w\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 3.00003pt\overline{\bm{\Gamma}}_{w\hskip 0.70004pt1}\hskip 1.49994pt)  by  the boundary conditions

w=ΛΛ1(w|KMw),\quad\mathcal{R}_{\hskip 0.35002ptw}\hskip 3.99994pt=\hskip 3.99994pt\Lambda^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\mathcal{B}_{\hskip 0.35002ptw}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 1.99997pt-\hskip 1.99997ptM_{\hskip 0.70004ptw}\hskip 1.99997pt\bigr{)}\hskip 3.00003pt,

where  Mw=Mw(0)|KM_{\hskip 0.70004ptw}\hskip 3.99994pt=\hskip 3.99994ptM_{\hskip 0.70004ptw}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt|\hskip 1.49994ptK.   By  Theorem  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  the family  𝒯w,wW\mathcal{T}_{w}\hskip 1.00006pt,\hskip 3.99994ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  Fredholm  and  its analytical  index  is  equal  to  the analytical  index of  w,wW\mathcal{R}_{\hskip 0.35002ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  if  either  every operator  Aw,wWA_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  has compact  resolvent,   or every  relation w,wW\mathcal{R}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  has compact  resolvent.

In our applications  to differential  boundary problems the operators  AwA_{\hskip 0.70004ptw} will  be defined  by self-adjoint  elliptic boundary problems of  order 11.   Such operators are known  to have compact  resolvent.   While  this  is  sufficient  for our purposes,   we note  that  the relations  w\mathcal{R}_{\hskip 0.70004ptw}  will  also have compact  resolvent  because  the inclusion  KKK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}  will  be a compact  operator.

6. Differential  boundary  problems  of  order  one

Sobolev  spaces and  trace operators.   Let  XX  be a compact  manifold  with non-empty  boundary YY,   and  let  X=XYX^{\hskip 0.70004pt\circ}\hskip 3.99994pt=\hskip 3.99994ptX\hskip 1.99997pt\smallsetminus\hskip 1.99997ptY.   Let  EE  be a  Hermitian  bundle over  XX  equipped  with  an orthogonal  decomposition  E|Y=FFE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 3.99994pt=\hskip 3.99994ptF\hskip 1.00006pt\oplus\hskip 1.00006ptF,   where FF  is  a  Hermitian  bundle over  YY.   Let  H0H_{\hskip 0.70004pt0} and  H1H_{\hskip 0.70004pt1}  be  the  Sobolev  spaces  H0(X,E)H_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt) and  H1(X,E)H_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt)  respectively.   Let

K=H0(Y,F)andK=H1/2(Y,F).\quad K^{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptF\hskip 1.49994pt)\quad\mbox{and}\quad K\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptF\hskip 1.49994pt)\hskip 3.00003pt.

Then  the anti-dual  space KK\hskip 0.50003pt^{\prime}  is  canonically  isomorphic  to  H1/2(Y,F)H_{\hskip 0.70004pt-\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptF\hskip 1.49994pt) and  KKKK\hskip 1.99997pt\subset\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\subset\hskip 1.99997ptK\hskip 0.50003pt^{\prime}  is  a  Gelfand  triple.   The decomposition  E|Y=FFE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 3.99994pt=\hskip 3.99994ptF\hskip 1.00006pt\oplus\hskip 1.00006ptF shows  that

H1/2(Y,E|Y)=KK,\quad H_{\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 1.99997pt,\quad
H1/2(Y,E|Y)=KK,and\quad H_{\hskip 0.70004pt-\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptK\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt,\quad\mbox{and}\quad
H0(Y,E|Y)=KK.\quad H_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt.\quad

Let  us denote by  Π0,Π1\Pi_{\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 3.00003pt\Pi_{\hskip 0.70004pt1}  the projections onto  the first  and  the second summands respectively  in each of  these decompositions.   Let

γ:H1(X,E)H1/2(Y,E|Y)\quad\gamma\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.49994pt)

be  the  trace operator and  let  γ0,γ1\gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1}  be  its compositions with  the projections  Π0,Π1\Pi_{\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 3.00003pt\Pi_{\hskip 0.70004pt1}  respectively.   Then γ=γ0γ1\gamma\hskip 3.99994pt=\hskip 3.99994pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1}.   As  is  well  known,   the map γ\gamma  is  surjective,   admits a continuous section,   and  its kernel  Kerγ\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma  is  dense in  H0=H0(X,E)H_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt).

The reference operator.   Let  PP  be a formally self-adjoint  differential  operator  of  order 11 acting on sections of  EE.   Then  PP  satisfies  the  Lagrange  identity

Pu,vu,Pv=iΣγu,γv,\quad\langle\hskip 1.49994pt\hskip 1.00006ptP\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptP\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.49994pt\Sigma\hskip 1.49994pt\gamma\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt,

where  u,vH1u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1}  and  Σ\Sigma  is  the coefficient  of  the normal  derivative  Dn=ixnD_{\hskip 0.35002ptn}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pti\hskip 1.99997pt\partial\hskip 0.50003ptx_{\hskip 0.70004ptn} to YY in  PP  (as usual,  n=dimXn\hskip 3.99994pt=\hskip 3.99994pt\dim\hskip 1.00006ptX and xnx_{\hskip 0.70004ptn}  is  the normal  coordinate).   Suppose  that  PP  is  an elliptic operator and  that  iΣi\hskip 1.49994pt\Sigma  has  the form

(15) iΣ=(0110)\quad i\hskip 1.49994pt\Sigma\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994pt0&1\hskip 1.99997pt\hskip 3.99994pt\vspace{4.5pt}\\ \hskip 3.99994pt\hskip 1.00006pt-\hskip 1.99997pt1&0\hskip 1.99997pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt

with respect  to  some decomposition  E|Y=FFE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 3.99994pt=\hskip 3.99994ptF\hskip 1.00006pt\oplus\hskip 1.00006ptF.   Without  any  loss of  generality  we can assume  that  the decomposition  from  the previous subsection  is  equal  to  this one.   Then  the  Lagrange  identity  for  PP  takes  the standard  form

(16) Pu,vu,Pv=γ1u,γ0vγ0u,γ1v\quad\langle\hskip 1.49994pt\hskip 1.00006ptP\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptP\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma_{0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma_{1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt

from  the  theory of  boundary  triplets.   Let  TT  be  the restriction of  PP  to  Kerγ\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma.   The domain 𝒟(T)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt) of  the  Hilbert  space adjoint  TT^{\hskip 0.70004pt*}  is  equal  to  the space 𝒟P0\mathcal{D}^{\hskip 0.35002pt0}_{\hskip 1.04996ptP}  of  all  distributions uu such  that  PuH0(X,E)P\hskip 0.50003ptu\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt),   where PuP\hskip 0.50003ptu  is  understood  in  the distributional  sense,   and  the action of  TT^{\hskip 0.70004pt*} agrees with  the action of  PP on distributions.   See  [G2G_{\hskip 0.70004pt2}],   Section  4.1.   The  Lagrange  identity  implies  that  H1=H1(X,E)H_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt)  is  contained  in  𝒟(T)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt).   Moreover,  H1H_{\hskip 0.70004pt1}  is  dense in  𝒟(T)\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt) equipped  with  the graph  topology.   This  is  a classical  result  essentially  due  to  Lions  and  Magenes  [LM1LM_{\hskip 0.35002pt1}]  (see  [LM1LM_{\hskip 0.35002pt1}],   footnote  (6\stackrel{{\scriptstyle 6}}{{}})  on  p.  147 ).   The corresponding result  for  P=1ΔP\hskip 3.99994pt=\hskip 3.99994pt1\hskip 1.99997pt-\hskip 1.99997pt\Delta,   where Δ\Delta  is  the  Laplace  operator,   is  proved  in  [G2G_{\hskip 0.70004pt2}],   Theorem  9.8.   Mutatis mutandis  this proof  applies in  the present  context.

Let  AA be  the restriction of  PP  to  Kerγ0\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}.   Suppose  that  each of  the boundary conditions  γ0=0\gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0  and  γ1=0\gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt0  satisfies  the  Shapiro–Lopatinskii  condition  for PP.   Then  the operators AA  and  A=P|Kerγ1A^{\prime}\hskip 3.99994pt=\hskip 3.99994ptP\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{1}  are unbounded  Fredholm  operators in  H0=H0(X,E)H_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt)  and are self-adjoint  operators with  the domains  𝒟(A),𝒟(A)H1\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA^{\prime}\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1}.   See  [I2I_{\hskip 1.04996pt2}],   Sections  5  and  7.   In  particular,  AA  is  contained  in  TT^{\hskip 0.70004pt*} and  the kernel  of  AA  is  finitely dimensional.   In order  to use AA as  the reference operator we have  to  assume  that  KerA=0\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptA\hskip 3.99994pt=\hskip 3.99994pt0.   Then  AA  has a bounded everywhere defined  inverse  A1:HHA^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH.

This completes  the verification of  assumptions of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems,   except  of  the assumptions concerned  with  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt).   Therefore  the results of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems,   in  particular  Theorems  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  and  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems,   and  the construction of  the reduced  boundary  triplet  apply  in  the present  situation.

Calderón’s  method.   We would  like  to give a more explicit  description of  the reduced  boundary  triplet  in  the above context,   and,   in  particular,   to determine  the operator M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt).   To  this end  we will  apply  the  Calderón’s  method as presented  by  G.  Grubb  in  [G2G_{\hskip 0.70004pt2}],   Chapter  11.   In order  to be able  to freely  refer  to  G.  Grubb  [G2G_{\hskip 0.70004pt2}]  we will  assume  that  PP extends  to an  invertible differential  operator over  the double  X^\widehat{X}  of  XX  acting on  the sections of  the double  E^\widehat{E}  of  the bundle EE.   We will  denote  the extended operator still  by PP,   and  its  inverse by  QQ.   We will  use  the notation  γ\gamma  also for  the  trace operator  taking  the sections over  X^\widehat{X}  to  their restrictions  to YY,   and denote by  r+r_{\hskip 0.70004pt+}  the  operator  taking  the sections over  X^\widehat{X}  to  their restrictions  to XX^{\hskip 0.70004pt\circ}.   Note  that  the difference between XX and XX^{\hskip 0.70004pt\circ}  is  essential :   some sections are generalized ones with singularities along YY;   the operator r+r_{\hskip 0.70004pt+} erases such singularities.   Let

𝔄=iΣandK+=r+Qγ𝔄,\quad\mathfrak{A}\hskip 3.99994pt=\hskip 3.99994pti\hskip 1.49994pt\Sigma\quad\mbox{and}\quad K_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997ptr_{\hskip 0.70004pt+}\hskip 1.00006pt\circ\hskip 1.49994ptQ\hskip 1.00006pt\circ\hskip 1.00006pt\gamma^{\hskip 0.70004pt*}\circ\hskip 1.49994pt\mathfrak{A}\hskip 3.00003pt,

where  γ:H1/2(Y,E|Y)H1(X^,E^)\gamma^{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt-\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.99997pt\widehat{X}\hskip 0.50003pt,\hskip 1.99997pt\widehat{E}\hskip 1.49994pt)  is  the adjoint  (dual )  operator of  γ\gamma.   Following  G.  Grubb  [G2G_{\hskip 0.70004pt2}],   let  us set  Z0=KerTZ_{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}.   Let  Γ=Γ0Γ1\Gamma\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\Gamma_{1}.   Since  Z0𝒟(T)Z_{\hskip 1.04996pt0}\hskip 1.99997pt\subset\hskip 1.99997pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptT^{\hskip 0.70004pt*}\hskip 1.00006pt),   the extended  trace operator  Γ\Gamma  is  well  defined on  Z0Z_{\hskip 0.70004pt0} and  maps  Z0Z_{\hskip 1.04996pt0}  into  H1/2(Y,E|Y)H_{\hskip 0.70004pt-\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.49994pt).   Let  N0=Γ(Z0)N_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994pt\Gamma\hskip 1.49994pt(\hskip 1.49994ptZ_{\hskip 1.04996pt0}\hskip 1.49994pt).   Note  that  the support  of  every section in  the image of  γ\gamma^{\hskip 0.70004pt*}  is  contained  in YY  (they are δ\delta-functions in  the direction  transverse  to YY).   This implies  that  the image of

K+:H1/2(Y,E|Y)H0(X,E)\quad K_{\hskip 0.70004pt+}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt-\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt)

is  contained  in  the kernel  of  PP  over XX^{\hskip 0.70004pt\circ},   or,   equivalently,   in  Z0Z_{\hskip 1.04996pt0}.   Moreover,  K+K_{\hskip 0.70004pt+} induces an  isomorphism  N0Z0N_{\hskip 0.70004pt0}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptZ_{\hskip 1.04996pt0},   and  its  inverse is  induced  by Γ\Gamma.   See  [G2G_{\hskip 0.70004pt2}],   Proposition  11.5.

The composition  C+=ΓK+C_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994pt\Gamma\hskip 1.49994pt\circ\hskip 1.49994ptK_{\hskip 0.70004pt+}  is  known as  the  Calderón  projector.   It  is  indeed a projection,   i.e.  C+C+=C+C_{\hskip 0.70004pt+}\hskip 0.50003pt\circ\hskip 1.49994ptC_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994ptC_{\hskip 0.70004pt+},   and  is  a pseudo-differential  operator of  order 0.   See  [G2G_{\hskip 0.70004pt2}],   Proposition  11.7.   The symbol  c+c_{\hskip 0.70004pt+} of  C+C_{\hskip 0.70004pt+}  can be expressed  in  terms of  the  plus-integral  of  the symbol  qq  of  QQ.   We refer  to  Hörmander  [H],   Lemma  18.2.16  for  the definition of  the plus-integral  +f(t)𝑑t\int^{\hskip 0.70004pt+}f\hskip 1.49994pt(\hskip 1.49994ptt\hskip 1.49994pt)\hskip 1.99997ptdt.   If  we write qq  locally  in  terms of  the coordinates  (y,xn,u,t)(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptx_{\hskip 0.70004ptn}\hskip 0.50003pt,\hskip 1.99997ptu\hskip 0.50003pt,\hskip 1.99997ptt\hskip 1.49994pt),   where yy  is  the coordinates on YY,  xnx_{\hskip 0.70004ptn}  is  the normal  coordinate,   and  u,tu\hskip 0.50003pt,\hskip 1.99997ptt are dual  to  y,xny\hskip 0.50003pt,\hskip 1.99997ptx_{\hskip 0.70004ptn},   then

c+(y,u)=(2π)1(+q(y,0,u,t)𝑑t)𝔄.\quad c_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt(\hskip 1.49994pt2\hskip 1.00006pt\pi\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\left(\hskip 1.99997pt\int^{\hskip 0.70004pt+}q\hskip 1.49994pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997pt0\hskip 0.50003pt,\hskip 1.99997ptu\hskip 0.50003pt,\hskip 1.99997ptt\hskip 1.49994pt)\hskip 1.99997ptdt\hskip 1.99997pt\right)\hskip 1.99997pt\circ\hskip 1.99997pt\mathfrak{A}\hskip 3.00003pt.

This follows  from  Hörmander  [H],   Theorem  18.2.17.   This  theorem determines  the symbol  of  operators of  the form  Γr+Rγ\Gamma\hskip 1.00006pt\circ\hskip 1.00006ptr_{\hskip 0.70004pt+}\hskip 1.00006pt\circ\hskip 1.49994ptR\hskip 1.49994pt\circ\hskip 1.00006pt\gamma^{\hskip 0.70004pt*},   where RR  is  a polyhomogeneous pseudo-differential  operator satisfying  the  transmission condition.   Since QQ  is  the inverse of  a differential  operator,   it  applies  to  R=QR\hskip 3.99994pt=\hskip 3.99994ptQ.   The boundary operator Γ\Gamma,   being  the extension of  γ\gamma  by  the continuity,   agrees with  Hörmander’s  one.

Computing  the plus-integral.   At  the boundary YY  the symbol  pp of  PP  has  the form

(17) p(y,0,u,t)=tσy+τu(y),\quad p\hskip 1.49994pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997pt0\hskip 0.50003pt,\hskip 1.99997ptu\hskip 0.50003pt,\hskip 1.99997ptt\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptt\hskip 1.49994pt\sigma_{y}\hskip 1.99997pt+\hskip 1.99997pt\tau_{\hskip 0.35002ptu}\hskip 1.49994pt(\hskip 1.49994pty\hskip 1.49994pt)\hskip 3.00003pt,

where σy\sigma_{y}  is  the coefficient  of  DnD_{\hskip 0.35002ptn} at  yYy\hskip 1.99997pt\in\hskip 1.99997ptY  (so,   in  fact,  σy=Σ\sigma_{y}\hskip 3.99994pt=\hskip 3.99994pt\Sigma)  and  τu(y)\tau_{\hskip 0.35002ptu}\hskip 1.49994pt(\hskip 1.49994pty\hskip 1.49994pt)  is  a self-adjoint  operator  EyEyE_{\hskip 0.70004pty}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptE_{\hskip 0.70004pty}  linearly depending on uu for every  yYy\hskip 1.99997pt\in\hskip 1.99997ptY.   We will  write simply  τu\tau_{\hskip 0.35002ptu} for  τu(y)\tau_{\hskip 0.35002ptu}\hskip 1.49994pt(\hskip 1.49994pty\hskip 1.49994pt).   As in  [I2I_{\hskip 1.04996pt2}],   let  ρu=σy1τu\rho_{\hskip 0.70004ptu}\hskip 3.99994pt=\hskip 3.99994pt\sigma_{y}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\tau_{\hskip 0.35002ptu}.   Then

q(y,0,t,u)=p(y,0,u,t)1=(tσy+τu)1and\quad q\hskip 1.49994pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997pt0\hskip 0.50003pt,\hskip 1.99997ptt\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.49994pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997pt0\hskip 0.50003pt,\hskip 1.99997ptu\hskip 0.50003pt,\hskip 1.99997ptt\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994ptt\hskip 1.49994pt\sigma_{\hskip 0.35002pty}\hskip 1.99997pt+\hskip 1.99997pt\tau_{\hskip 0.70004ptu}\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\quad\mbox{and}
c+(y,u)=(2π)1+iσytσy+τu𝑑t=(2π)1i+1t+ρu𝑑t.\quad c_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt(\hskip 1.49994pt2\hskip 1.00006pt\pi\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\int^{\hskip 0.70004pt+}\frac{i\hskip 1.49994pt\sigma_{\hskip 0.35002pty}}{t\hskip 1.49994pt\sigma_{\hskip 0.35002pty}\hskip 1.99997pt+\hskip 1.99997pt\tau_{\hskip 0.70004ptu}}\hskip 1.99997ptdt\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt(\hskip 1.49994pt2\hskip 1.00006pt\pi\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pti\hskip 1.99997pt\int^{\hskip 0.70004pt+}\frac{1}{t\hskip 1.99997pt+\hskip 1.99997pt\rho_{\hskip 0.70004ptu}}\hskip 1.99997ptdt\hskip 3.00003pt.

By  [H],   Remark after  Lemma  18.2.16,   the  last  plus-integral  is  equal  to 2πi2\hskip 1.00006pt\pi\hskip 1.00006pti  times  the sum of  residues of  (z+ρu)1(\hskip 1.49994ptz\hskip 1.99997pt+\hskip 1.99997pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}  in  the upper half-plane.   The poles of  (z+ρu)1(\hskip 1.49994ptz\hskip 1.99997pt+\hskip 1.99997pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}  in  the upper half-plane correspond  to  the eigenvalues of  ρu\rho_{\hskip 0.70004ptu}  in  the  lower half-plane.   It  follows  that  the operator  c+(y,u)c_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt)  is  equal  to  ( because  (2π)1i2πi=1-\hskip 1.99997pt(\hskip 1.49994pt2\hskip 1.00006pt\pi\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pti\hskip 1.00006pt\cdot\hskip 1.00006pt2\hskip 1.00006pt\pi\hskip 1.00006pti\hskip 3.99994pt=\hskip 3.99994pt1)  the projection onto  the subspace  (ρu)\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt) having  +(ρu)\mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt) as  its kernel,   where,   as in  [I2I_{\hskip 1.04996pt2}],   we denote by  (ρu)\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt) and  +(ρu)\mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt) the sums of  the generalized eigenspaces of  ρu\rho_{\hskip 0.70004ptu}  corresponding  to eigenvalues λ\lambda  with  Imλ<0\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\lambda\hskip 1.99997pt<\hskip 1.99997pt0 and  Imλ<0\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\lambda\hskip 1.99997pt<\hskip 1.99997pt0  respectively.

The matrix of  the  Calderón  projector.   Let  us write C+C_{\hskip 0.70004pt+} as  the matrix

C+=(C+00C+01C+10C+11)\quad C_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994ptC_{\hskip 0.70004pt+\hskip 0.70004pt0\hskip 0.70004pt0}&C_{\hskip 0.70004pt+\hskip 0.70004pt0\hskip 0.70004pt1}\hskip 1.99997pt\hskip 3.99994pt\vspace{4.5pt}\\ \hskip 3.99994pt\hskip 1.00006ptC_{\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.70004pt0}&C_{\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.70004pt1}\hskip 1.99997pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt

with respect  to  the decomposition E=FFE\hskip 3.99994pt=\hskip 3.99994ptF\hskip 1.00006pt\oplus\hskip 1.00006ptF.

6.1. Lemma.   Each of  the blocks  C+ijC_{\hskip 0.70004pt+\hskip 0.70004pti\hskip 0.35002ptj}  is  an elliptic operator.

Proof.   Cf.  Grubb  [G2G_{\hskip 0.70004pt2}],   Lemma  11.16.   Let  IjI_{\hskip 0.70004ptj}, j=0,1j\hskip 3.99994pt=\hskip 3.99994pt0\hskip 0.50003pt,\hskip 1.99997pt1  be  the inclusions of  sections of  FF  into  the sections  of  E=FFE\hskip 3.99994pt=\hskip 3.99994ptF\hskip 1.00006pt\oplus\hskip 1.00006ptF as  the sections of  the first  and  the second summands respectively.   Then C+ij=ΠiC+IjC_{\hskip 0.70004pt+\hskip 0.70004pti\hskip 0.35002ptj}\hskip 3.99994pt=\hskip 3.99994pt\Pi_{\hskip 0.70004pti}\hskip 1.00006pt\circ\hskip 1.99997ptC_{\hskip 0.70004pt+}\hskip 1.00006pt\circ\hskip 1.99997ptI_{\hskip 0.70004ptj}.   The symbol  s+ij(y,u)s_{\hskip 0.70004pt+\hskip 0.70004pti\hskip 0.35002ptj}\hskip 1.00006pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt)  of  C+ijC_{\hskip 0.70004pt+\hskip 0.70004pti\hskip 0.35002ptj}  is  related  in  the same way  to  the symbol c+(y,u)c_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt) of  C+C_{\hskip 0.70004pt+}.   We need  to check  that  s+ij(y,u)s_{\hskip 0.70004pt+\hskip 0.70004pti\hskip 0.35002ptj}\hskip 1.00006pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt)  is  an isomorphism  if  u0u\hskip 3.99994pt\neq\hskip 3.99994pt0.   Since  the boundary condition γ1=0\gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt0  satisfies  the  Shapiro–Lopatinskii  condition,   the subspace (ρu)\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)  is  transverse  to K0K\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt0 for u0u\hskip 3.99994pt\neq\hskip 3.99994pt0.   Since PP  is  a differential  operator,  +(ρu)=(ρu)=(ρu)\mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt-\hskip 1.99997pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004pt-\hskip 0.70004ptu}\hskip 1.49994pt)  is  also  transverse  to K0K\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt0.   Similarly,   since γ0=0\gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0  satisfies  the  Shapiro–Lopatinskii  condition,   the subspaces (ρu)\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)  and  +(ρu)\mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)  are  transverse  to  0K0\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 0.50003pt^{\prime}.   Together  with  the description of  c+(y,u)c_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt) given above  these  transversality  properties  imply  that  s+ij(y,u)s_{\hskip 0.70004pt+\hskip 0.70004pti\hskip 0.35002ptj}\hskip 1.00006pt(\hskip 1.49994pty\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt)  is  an isomorphism  if  u0u\hskip 3.99994pt\neq\hskip 3.99994pt0.   The  lemma  follows.    \blacksquare

6.2. Lemma.   N0N_{\hskip 0.70004pt0}  is  equal  to  the graph of  an operator  KKK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}  induced  by a pseudo-differential  operator  φ\varphi of  order 0.   Moreover,  φ\varphi  is  elliptic.   

Proof.   First,   let  us prove  that  N00K=0N_{\hskip 1.04996pt0}\hskip 1.99997pt\cap\hskip 1.99997pt0\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 3.99994pt=\hskip 3.99994pt0.   If  uN00Ku\hskip 1.99997pt\in\hskip 1.99997ptN_{\hskip 1.04996pt0}\hskip 1.99997pt\cap\hskip 1.99997pt0\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 0.50003pt^{\prime},   then  u=Γxu\hskip 3.99994pt=\hskip 3.99994pt\Gamma\hskip 1.00006ptx  for some  xKerTx\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} and  xKerΓ0x\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0}.   Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that  KerΓ0=Kerγ0\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}.   It  follows  that  xKerγ0=𝒟(A)x\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt\mathcal{D}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt).   In  turn,   this implies  xKerAx\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptA  and  hence x=0x\hskip 3.99994pt=\hskip 3.99994pt0.   This proves  that  N00K=0N_{\hskip 1.04996pt0}\hskip 1.99997pt\cap\hskip 1.99997pt0\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 3.99994pt=\hskip 3.99994pt0.   Next,   Theorem  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that  the projection of  N0N_{\hskip 1.04996pt0}  to  K0K\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt0  is  surjective.   It  follows  that  N0N_{\hskip 1.04996pt0}  is  equal  to  the graph of  an operator  φ:KK\varphi\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}.

The fact  that  C+C_{\hskip 0.70004pt+} is  a projection onto  the graph of  φ\varphi  implies  that  C+10=φC+00C_{\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.35002pt0}\hskip 3.99994pt=\hskip 3.99994pt\varphi\hskip 1.00006pt\circ\hskip 1.49994ptC_{\hskip 0.70004pt+\hskip 0.70004pt0\hskip 0.35002pt0}.   Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that  there exists a parametrix  SS for C+00C_{\hskip 0.70004pt+\hskip 0.70004pt0\hskip 0.35002pt0},   i.e.   a pseudo-differential  operator of  order 0  such  that  C+00S=1RC_{\hskip 0.70004pt+\hskip 0.70004pt0\hskip 0.35002pt0}\hskip 1.00006pt\circ\hskip 1.00006ptS\hskip 3.99994pt=\hskip 3.99994pt1\hskip 1.99997pt-\hskip 1.99997ptR,   where RR  is  a smoothing operator of  finite rank.   It  follows  that  C+10S=φC+00RC_{\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.35002pt0}\hskip 1.00006pt\circ\hskip 1.00006ptS\hskip 3.99994pt=\hskip 3.99994pt\varphi\hskip 1.99997pt-\hskip 1.99997ptC_{\hskip 0.70004pt+\hskip 0.70004pt0\hskip 0.35002pt0}\hskip 1.00006pt\circ\hskip 1.00006ptR  and  hence  φ=C+10S+C+00R\varphi\hskip 3.99994pt=\hskip 3.99994ptC_{\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.35002pt0}\hskip 1.00006pt\circ\hskip 1.00006ptS\hskip 1.99997pt+\hskip 1.99997ptC_{\hskip 0.70004pt+\hskip 0.70004pt0\hskip 0.35002pt0}\hskip 1.00006pt\circ\hskip 1.00006ptR.   The operator  C+00RC_{\hskip 0.70004pt+\hskip 0.70004pt0\hskip 0.35002pt0}\hskip 1.00006pt\circ\hskip 1.00006ptR  is  a smoothing operator of  finite rank  together with RR.   Since  C+10SC_{\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.35002pt0}\hskip 1.00006pt\circ\hskip 1.00006ptS  is  a pseudo-differential  operator of  order 0,   this implies  that  φ\varphi  is  also such an operator.   Since  C+10C_{\hskip 0.70004pt+\hskip 0.70004pt1\hskip 0.35002pt0} and SS are elliptic,   this implies  that  φ\varphi  is  also elliptic.    \blacksquare

The operators  γ(0),M(0)\bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 0.50003pt,\hskip 3.00003ptM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)  and  φ\varphi.   Let  φ\varphi be  the operator  from  Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems,   and  let

φ¯=idφ:KKK\quad\overline{\varphi}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{id}\hskip 1.00006pt\oplus\hskip 1.99997pt\varphi\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 0.50003pt^{\prime}

be  the map  x(x,φ(x))x\hskip 3.99994pt\longmapsto\hskip 3.99994pt(\hskip 1.49994ptx\hskip 0.50003pt,\hskip 1.99997pt\varphi\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)\hskip 1.49994pt).

Since  K+|N0K_{\hskip 0.70004pt+}\hskip 1.49994pt|\hskip 1.49994ptN_{\hskip 1.04996pt0}  is  the inverse of  Γ\Gamma,

Γ0K+φ¯=Π0ΓK+φ¯=Π0φ¯=idand\quad\Gamma_{0}\hskip 1.00006pt\circ\hskip 1.00006ptK_{\hskip 0.70004pt+}\hskip 1.00006pt\circ\hskip 1.99997pt\overline{\varphi}\hskip 3.99994pt=\hskip 3.99994pt\Pi_{\hskip 0.70004pt0}\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma\hskip 1.00006pt\circ\hskip 1.00006ptK_{\hskip 0.70004pt+}\hskip 1.00006pt\circ\hskip 1.99997pt\overline{\varphi}\hskip 3.99994pt=\hskip 3.99994pt\Pi_{\hskip 0.70004pt0}\hskip 1.00006pt\circ\hskip 1.99997pt\overline{\varphi}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{id}\quad\mbox{and}
Γ1K+φ¯=Π1ΓK+φ¯=Π1φ¯=φ.\quad\Gamma_{1}\hskip 1.00006pt\circ\hskip 1.00006ptK_{\hskip 0.70004pt+}\hskip 1.00006pt\circ\hskip 1.99997pt\overline{\varphi}\hskip 3.99994pt=\hskip 3.99994pt\Pi_{\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma\hskip 1.00006pt\circ\hskip 1.00006ptK_{\hskip 0.70004pt+}\hskip 1.00006pt\circ\hskip 1.99997pt\overline{\varphi}\hskip 3.99994pt=\hskip 3.99994pt\Pi_{\hskip 0.70004pt1}\hskip 1.00006pt\circ\hskip 1.99997pt\overline{\varphi}\hskip 3.99994pt=\hskip 3.99994pt\varphi\hskip 3.00003pt.

Since  𝜸(0)\bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)  is  the inverse of  the restriction  Γ0|KerT\Gamma_{0}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*},   it  follows  that

𝜸(0)=(Γ0|KerT)1=K+φ¯\quad\bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.99997pt\Gamma_{0}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}\hskip 1.99997pt\right)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptK_{\hskip 0.70004pt+}\hskip 1.00006pt\circ\hskip 1.99997pt\overline{\varphi}

and  hence  M(0)=Γ1𝜸(0)=Γ1K+φ¯=φM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt\circ\hskip 1.00006pt\bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt\circ\hskip 1.00006ptK_{\hskip 0.70004pt+}\hskip 1.00006pt\circ\hskip 1.99997pt\overline{\varphi}\hskip 1.00006pt\hskip 3.99994pt=\hskip 3.99994pt\varphi.

The operators  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) and  MM.   Since  M(0)=φM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\varphi,   Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)  is  induced  by a pseudo-differential  operator of  order 0,   which we will,   by an abuse of  notations,   still  denote by  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt).   This implies,   in  particular,   that  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)  leaves KK  invariant.   The symbol  of  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)  is  related  to  the symbol  of  C+C_{\hskip 0.70004pt+}  in  the same way as M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)  is  related  to C+C_{\hskip 0.70004pt+}  and  hence  is  the bundle map  having as  its  graph  the graph of  c+c_{\hskip 0.70004pt+}.   It  follows  that  over a point  uSYu\hskip 1.99997pt\in\hskip 1.99997ptS\hskip 0.50003ptY,   where  SYS\hskip 0.50003ptY  is  the unite sphere bundle of  YY,   the symbol  of  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)  is  equal  to  the map  having  (ρu)\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt) as its graph.   It  follows  that  this symbol  is  an  isomorphism,   i.e.  the operator  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)  is  elliptic.   In  particular,   M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)  is  Fredholm  as an operator  KKK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}.

The restriction  M=M(0)|KM\hskip 3.99994pt=\hskip 3.99994ptM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt|\hskip 1.49994ptK  is  essentially  the same pseudo-differential  operator,   or,   more precisely,   is  induced  by  it.   It  follows  that  the operator KKK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  induced  by  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)  is  Fredholm.   This verifies  the assumptions of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  concerned  with  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt).   As we saw in  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems,   this implies  that  MM  is  a self-adjoint  as an  unbounded  operator  from  KK\hskip 0.50003pt^{\prime}  to KK.

6.3. Lemma.   The boundary  map  γ0\gamma_{0}  maps  (KerT)H1(\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.00006pt\cap\hskip 1.00006ptH_{\hskip 0.70004pt1} onto KK.   

Proof.   The operator  K+K_{\hskip 0.70004pt+}  is  known  to continuously  map  H1/2(Y,E|Y)H_{\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.49994pt)  into  H1(X,E)H_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt).   See  G.  Grubb  [G2G_{\hskip 0.70004pt2}],   (11.17).   Since  φ¯\overline{\varphi}  together  with  φ\varphi  is  a pseudo-differential  operator of  order 0,   the operator  𝜸(0)=K+φ¯\bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptK_{\hskip 0.70004pt+}\hskip 0.50003pt\circ\hskip 1.99997pt\overline{\varphi}  maps  K=H1/2(Y,F)K\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptF\hskip 1.49994pt)  into  H1=H1(X,E)H_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX^{\hskip 0.70004pt\circ}\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt)  and  hence  into  (KerT)H1(\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.00006pt\cap\hskip 1.00006ptH_{\hskip 0.70004pt1}.   Since  𝜸(0)\bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)  is  the inverse of  Γ0|KerT\Gamma_{0}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}  and  γ0=Γ0|H1\gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{0}\hskip 1.49994pt|\hskip 1.49994ptH_{\hskip 0.70004pt1},   it  follows  that  γ0\gamma_{0}  maps (KerT)H1(\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}\hskip 1.49994pt)\hskip 1.00006pt\cap\hskip 1.00006ptH_{\hskip 0.70004pt1} onto KK.    \blacksquare

The operators  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) and  MM and  the spaces of  Cauchy  data.   Since  M(0)=φM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\varphi,   Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that  the operator  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)  can  be characterized as  the operator  KKK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK\hskip 0.50003pt^{\prime}  having as its graph  the image  N0N_{\hskip 0.70004pt0} of  Z0=KerTZ_{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}  under  the map  Γ=Γ0Γ1\Gamma\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\Gamma_{1},   i.e.  the space of  Cauchy  data of  the equation  Tu=0T^{\hskip 0.70004pt*}u\hskip 3.99994pt=\hskip 3.99994pt0.

The operator MM admits a similar characterization.   Namely,   let  Z1=H1Z0Z_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt1}\hskip 1.00006pt\cap\hskip 1.00006ptZ_{\hskip 1.04996pt0} be  the space of  solutions of  Tu=0T^{\hskip 0.70004pt*}u\hskip 3.99994pt=\hskip 3.99994pt0 belonging  to H1H_{\hskip 0.70004pt1}.   Let  N1=γ(Z1)KKN_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt\gamma\hskip 1.49994pt(\hskip 1.49994ptZ_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK  be  the space of  the corresponding  Cauchy  data.   Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that  N1(0K)=0N_{\hskip 0.70004pt1}\hskip 1.00006pt\cap\hskip 1.00006pt(\hskip 1.49994pt0\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0,   and  Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that  the projection of  N1N_{\hskip 0.70004pt1}  to  K0K\hskip 1.00006pt\oplus\hskip 1.00006pt0  is  surjective.   Therefore  N1N_{\hskip 0.70004pt1}  is  equal  to  the graph of  an operator  KKK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK.   Clearly,   this  is  the operator  induced  by M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt),   i.e.  MM.   It  follows  that  MM  considered as an  operator  from  KK\hskip 0.50003pt^{\prime}  to KK  can  be characterized as  the operator  having as its graph  the image  N1N_{\hskip 0.70004pt1} of  Z1=H1KerTZ_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt1}\hskip 1.00006pt\cap\hskip 1.00006pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}  under  the map  γ=γ0γ1\gamma\hskip 3.99994pt=\hskip 3.99994pt\gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma_{1}.

Families of  differential  boundary  problems.   Suppose  that  the manifold  X=XwX\hskip 3.99994pt=\hskip 3.99994ptX_{\hskip 0.70004ptw},   the bundle  E=EwE\hskip 3.99994pt=\hskip 3.99994ptE_{\hskip 0.70004ptw},   the operator P=PwP\hskip 3.99994pt=\hskip 3.99994ptP_{\hskip 0.70004ptw},   the extension of  PP  to X^\widehat{X},   etc.  continuously depend on a parameter wWw\hskip 1.99997pt\in\hskip 1.99997ptW as in  [I2I_{\hskip 1.04996pt2}].   The explicit  definition of  the operators  K+=K+wK_{\hskip 0.70004pt+}\hskip 3.99994pt=\hskip 3.99994ptK_{\hskip 0.70004pt+\hskip 0.70004ptw} shows  that  they continuously depend on ww in  the norm  topology.   This  implies  that  the kernels Z0=Z0w=KerTZ_{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994ptZ_{\hskip 1.04996pt0\hskip 0.70004ptw}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*} and  the operators φ=φw\varphi\hskip 3.99994pt=\hskip 3.99994pt\varphi_{\hskip 0.70004ptw} continuously depend on ww in  the norm  topology.   In  turn,   this implies  that  𝜸w(0)\bm{\gamma}_{w}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) and  Mw(0)M_{\hskip 0.70004ptw}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) also continuously depend on ww in  the norm  topology.   By applying  Calderón’s  method  to  the operators Pw+iP_{\hskip 0.70004ptw}\hskip 1.99997pt+\hskip 1.99997pti  instead of  PwP_{\hskip 0.70004ptw} we see  that  the kernels  𝒦w=Ker(Tw+i)\mathcal{K}_{\hskip 0.70004ptw\hskip 0.70004pt-}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptT_{w}^{\hskip 0.70004pt*}\hskip 1.99997pt+\hskip 1.99997pti\hskip 1.99997pt) continuously depend on ww.   This verifies  the continuity assumption of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  in  the present  situation.

7. Dirac-like  boundary  problems

Graded  boundary  problems.   Let  X,Y,E,FX\hskip 0.50003pt,\hskip 1.99997ptY,\hskip 1.99997ptE\hskip 0.50003pt,\hskip 1.99997ptF  be as in  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems.   Suppose  that  the decomposition  E|Y=FFE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 3.99994pt=\hskip 3.99994ptF\hskip 1.00006pt\oplus\hskip 1.00006ptF  extends  to a decomposition  E=GGE\hskip 3.99994pt=\hskip 3.99994ptG\hskip 1.00006pt\oplus\hskip 1.00006ptG  over  the whole manifold  XX.   So,   in  particular,  F=G|YF\hskip 3.99994pt=\hskip 3.99994ptG\hskip 1.49994pt|\hskip 1.49994ptY.   Let  PP  be a formally self-adjoint  elliptic differential  operator  of  order 11 acting on sections of  EE and  having  the form

(18) P=(0RR0)\quad P\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994pt0&R^{\prime}\hskip 1.99997pt\hskip 3.99994pt\vspace{4.5pt}\\ \hskip 3.99994pt\hskip 1.00006ptR&0\hskip 1.99997pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt

with respect  to  the decomposition  E=GGE\hskip 3.99994pt=\hskip 3.99994ptG\hskip 1.00006pt\oplus\hskip 1.00006ptG,   i.e.  being  odd  with respect  to  this decomposition.   Suppose  that  the coefficient  Σ\Sigma  of  the normal  derivative  in  PP  has  the form

Σ=(0110)\quad\Sigma\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994pt0&1\hskip 1.99997pt\hskip 3.99994pt\vspace{4.5pt}\\ \hskip 3.99994pt\hskip 1.00006pt1&0\hskip 1.99997pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt

with respect  to  the decomposition  E|Y=FFE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 3.99994pt=\hskip 3.99994ptF\hskip 1.00006pt\oplus\hskip 1.00006ptF.   This convention agrees with  [I2I_{\hskip 1.04996pt2}],   Section  15,   and does not  agree with  the convention of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems.   Below we will  pass  to another direct  sum decomposition of  EE which  will  match  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems.   Let  γ\gamma  be  the  trace operator as in  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems,   and  let  π0\pi_{\hskip 0.70004pt0} and  π1\pi_{\hskip 0.70004pt1}  be its compositions with  the projections  Π0,Π1\Pi_{\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 3.00003pt\Pi_{\hskip 0.70004pt1}  onto  the first  and  the second summands of  the decomposition

H1/2(Y,E|Y)=H1/2(Y,F)H1/2(Y,F),\quad H_{\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptF\hskip 1.49994pt)\hskip 1.99997pt\oplus\hskip 1.99997ptH_{\hskip 0.70004pt1/2}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 1.99997ptF\hskip 1.49994pt)\hskip 1.99997pt,\quad

Let  f:FFf\hskip 1.00006pt\colon\hskip 1.00006ptF\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptF  be a bundle map and  let  πf=π1fπ0\pi_{\hskip 0.35002ptf}\hskip 3.99994pt=\hskip 3.99994pt\pi_{\hskip 0.70004pt1}\hskip 1.99997pt-\hskip 1.99997ptf\hskip 1.00006pt\circ\hskip 1.00006pt\pi_{\hskip 0.70004pt0}.   We would  like  to combine PP with  the boundary condition  πf=0\pi_{\hskip 0.35002ptf}\hskip 3.99994pt=\hskip 3.99994pt0,   i.e.  to consider  the unbounded operator  P|KerπfP\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\pi_{\hskip 0.35002ptf}.   If  ff  is  skew-adjoint,   then  this boundary condition  is  self-adjoint.   See  [I2I_{\hskip 1.04996pt2}],   the discussion before  Lemma  15.3.   Let  us write  the symbol  of  the operator PP in  the form  (17).   Since PP  is  odd,   the operators  τu=τu(y)\tau_{\hskip 0.35002ptu}\hskip 3.99994pt=\hskip 3.99994pt\tau_{\hskip 0.35002ptu}\hskip 1.49994pt(\hskip 1.49994pty\hskip 1.49994pt) have  the form

τu=(0𝝉u𝝉u0)\quad\tau_{u}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994pt0&\bm{\tau}_{u}^{\hskip 0.70004pt*}\hskip 1.00006pt\hskip 3.99994pt\vspace{4.5pt}\\ \hskip 3.99994pt\bm{\tau}_{u}&0\hskip 1.00006pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt

for some operators  𝝉u:FyFy\bm{\tau}_{u}\hskip 1.00006pt\colon\hskip 1.00006ptF_{\hskip 0.70004pty}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptF_{\hskip 0.70004pty}.   As  in  [I2I_{\hskip 1.04996pt2}],   Section  15,   we will  say  that ff is  equivariant  if  endomorphisms  fy:FyFyf_{\hskip 0.70004pty}\hskip 1.00006pt\colon\hskip 1.00006ptF_{\hskip 0.70004pty}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptF_{\hskip 0.70004pty} induced  by  ff  commute with  𝝉u\bm{\tau}_{u}  for every  y,uy\hskip 0.50003pt,\hskip 1.99997ptu.   If  ff  is  equivariant,   then  the boundary condition  πf=0\pi_{\hskip 0.35002ptf}\hskip 3.99994pt=\hskip 3.99994pt0  is  a  Shapiro–Lopatinskii  boundary condition,   as also  the boundary  condition  π1+fπ0=0\pi_{\hskip 0.70004pt1}\hskip 1.99997pt+\hskip 1.99997ptf\hskip 1.00006pt\circ\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994pt0.   See  [I2I_{\hskip 1.04996pt2}],   Lemma  15.3.   For  the rest  of  this section  we will  assume  that  ff  is  skew-adjoint  and equivariant.

In  general,  P|KerπfP\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\pi_{\hskip 0.35002ptf}  is  not  invertible and  hence cannot  be used as a reference operator.   But  under natural  assumptions a simple modification of  P|KerπfP\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\pi_{\hskip 0.35002ptf}  is  invertible.   Let

ε=(1001)\quad\varepsilon\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994pt1&0\hskip 1.99997pt\hskip 3.99994pt\vspace{4.5pt}\\ \hskip 3.99994pt\hskip 1.00006pt0&-\hskip 1.99997pt1\hskip 1.99997pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt

be  the endomorphism of  E=GGE\hskip 3.99994pt=\hskip 3.99994ptG\hskip 1.00006pt\oplus\hskip 1.00006ptG defined  by  the above matrix.   We will  consider ε\varepsilon as a differential  operator of  order 0.   It  tuns out  that  if  the endomorphism ifif  is  positive definite,   then  (P+ε)|Kerπf(\hskip 1.49994ptP\hskip 1.99997pt+\hskip 1.99997pt\varepsilon\hskip 1.49994pt)\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\pi_{\hskip 0.35002ptf}  is  an  isomorphism  KerπfH0\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\pi_{\hskip 0.35002ptf}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0}.   Similarly,   if  the endomorphism ifif  is  negative definite,   then  (Pε)|Kerπf(\hskip 1.49994ptP\hskip 1.99997pt-\hskip 1.99997pt\varepsilon\hskip 1.49994pt)\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\pi_{\hskip 0.35002ptf}  is  an  isomorphism.   See  [I2I_{\hskip 1.04996pt2}],   Theorem  15.1.   A similar result  holds also for closed  manifolds,   as  the following  lemma shows.

7.1. Lemma.   Suppose  that  P^\widehat{P}  is  a formally self-adjoint  elliptic differential  operator  of  order 11 acting in  a bundle  E=GGE\hskip 3.99994pt=\hskip 3.99994ptG\hskip 1.00006pt\oplus\hskip 1.00006ptG  over a closed  manifold  X^\widehat{X}.   If  P^\widehat{P} is  odd,   then  P^ε\widehat{P}\hskip 1.99997pt-\hskip 1.99997pt\varepsilon  induces an  isomorphism  H1(X,E)H0(X,E)H_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt).   

Proof.   Under  these assumptions  the operator  H1(X,E)H0(X,E)H_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt)  induced  by  P^ε\widehat{P}\hskip 1.99997pt-\hskip 1.99997pt\varepsilon  is  Fredholm  and  is  self-adjoint  as an  unbounded operator  in  H0(X,E)H_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt).   Therefore  it  is  sufficient  to prove  that  its  kernel  is 0.   If  we consider P^\widehat{P} as an  unbounded operator  in  H0(X,E)H_{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptE\hskip 1.49994pt) and  write it  in  the form  (18),   then  RR^{\prime}  will  be equal  to  the adjoint  operator RR^{\hskip 0.35002pt*} of  RR.   Therefore,   if  (u,v)Ker(P^ε)(\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.99997pt\widehat{P}\hskip 1.99997pt-\hskip 1.99997pt\varepsilon\hskip 1.49994pt),   then  u+Rv=0-\hskip 1.99997ptu\hskip 1.99997pt+\hskip 1.99997ptR^{\hskip 0.35002pt*}\hskip 0.50003ptv\hskip 3.99994pt=\hskip 3.99994pt0 and  Ru+v=0R\hskip 1.00006ptu\hskip 1.99997pt+\hskip 1.99997ptv\hskip 3.99994pt=\hskip 3.99994pt0.   This implies  that  u+RRu=0u\hskip 1.99997pt+\hskip 1.99997ptR^{\hskip 0.35002pt*}\hskip 0.50003ptR\hskip 1.00006ptu\hskip 3.99994pt=\hskip 3.99994pt0 and  hence  0=u+RRu,u=u,u+Ru,Ru0\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.99997pt+\hskip 1.99997ptR^{\hskip 0.35002pt*}\hskip 0.50003ptR\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptR\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptR\hskip 1.00006ptu\hskip 1.00006pt\hskip 1.49994pt\rangle.   It  follows  that  u,u=0\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt0  and  hence  u=0u\hskip 3.99994pt=\hskip 3.99994pt0.   This proves  that  Ker(P^ε)=0\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.99997pt\widehat{P}\hskip 1.99997pt-\hskip 1.99997pt\varepsilon\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0.    \blacksquare

Changing  the decomposition E|Y=FFE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 3.99994pt=\hskip 3.99994ptF\hskip 1.00006pt\oplus\hskip 1.00006ptF.   The  Lagrange  identity for  PP  is

Pu,v0u,Pv0=iπ1u,π0vπ0u,iπ1v.\quad\langle\hskip 1.49994pt\hskip 1.00006ptP\hskip 1.00006ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004pt0}\hskip 1.99997pt-\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptP\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\rangle_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pti\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt.

Let  us define  the new boundary operators  γ0\gamma_{0} and  γ1\gamma_{1} as

γ0=(π1iπ0)/2andγ1=(π1+iπ0)/2.\quad\gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.49994pt)\bigl{/}\sqrt{2}\quad\mbox{and}\quad\gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.99997pt+\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.49994pt)\bigl{/}\sqrt{2}\hskip 3.99994pt.

The calculation

π1u+iπ0u,π1viπ0vπ1uiπ0u,π1v+iπ0v\quad\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.99997pt+\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.99997pt+\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
=π1u,iπ0v+iπ0u,π1vπ1u,iπ0viπ0u,π1v\quad=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt+\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt-\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
=2iπ0u,π1v2π1u,iπ0v=2iπ1u,π0v2π0u,iπ1v\quad=\hskip 3.99994pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt

shows  that  we can rewrite  the  Lagrange  identity  in  the standard  form  (16).   Clearly,   γ0\gamma_{0} and  γ1\gamma_{1} are  the boundary operators related  as in  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  with a unique decomposition E|Y=FFE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 3.99994pt=\hskip 3.99994ptF\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006ptF\hskip 0.50003pt^{\prime}.   The bundle  FF\hskip 0.50003pt^{\prime}  is  canonically  isomorphic  to FF,   but  the decomposition of  E|YE\hskip 1.49994pt|\hskip 1.49994ptY  is  different  from  the original  one.   In  terms of  this new decomposition  iΣi\hskip 1.49994pt\Sigma  takes  the form  (15)  and  the boundary condition  π1fπ0=0\pi_{\hskip 0.70004pt1}\hskip 1.99997pt-\hskip 1.99997ptf\hskip 1.00006pt\circ\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994pt0  takes  the form

γ1+γ0=f(γ1γ0i),\quad\gamma_{1}\hskip 1.99997pt+\hskip 1.99997pt\gamma_{0}\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.00006pt\circ\hskip 1.99997pt\left(\hskip 1.99997pt\frac{\gamma_{1}\hskip 1.99997pt-\hskip 1.99997pt\gamma_{0}}{i}\hskip 1.99997pt\right)\hskip 3.00003pt,

or,   equivalently,   either  (fi)γ1=(f+i)γ0\left(\hskip 1.49994ptf\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.49994pt\right)\hskip 1.00006pt\circ\hskip 1.00006pt\gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.49994ptf\hskip 1.99997pt+\hskip 1.99997pti\hskip 1.49994pt\right)\hskip 1.00006pt\circ\hskip 1.00006pt\gamma_{0},   or

γ1=f+ifiγ0.\quad\gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt\frac{f\hskip 1.99997pt+\hskip 1.99997pti}{f\hskip 1.99997pt-\hskip 1.99997pti}\hskip 1.99997pt\circ\hskip 1.99997pt\gamma_{0}\hskip 3.00003pt.

In  general,   this boundary condition  is  defined  by a  relation  between  γ0,γ1\gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1}.   In  particular,   the boundary condition  γ0=0\gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0  corresponds  to  ff  being  the multiplication  by ii  and  is  defined  by a relation.   The boundary condition  γ1=0\gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt0  corresponds  to  ff  being  the multiplication  by i-\hskip 1.99997pti.   Both of  them satisfy  the  Shapiro–Lopatinskii  condition.

Replacing  PP  by  PεP\hskip 1.99997pt-\hskip 1.99997pt\varepsilon.   Let  f0f_{\hskip 0.70004pt0}  be  the operator of  multiplication  by  ii.   The corresponding boundary condition  is  π1iπ0=0\pi_{\hskip 0.70004pt1}\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994pt0,   or,   equivalently,  γ0=0\gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0.   Since  the operator  if0=idi\hskip 0.50003ptf_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt\operatorname{id}  is  negative definite,   the operator  A=(Pε)|Kerγ0A\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994ptP\hskip 1.99997pt-\hskip 1.99997pt\varepsilon\hskip 1.49994pt)\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}  is  an  isomorphism  Kerγ0H0\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt0}  and  hence can  be used as a reference operator.   This amounts  to replacing  PP  by  PεP\hskip 1.99997pt-\hskip 1.99997pt\varepsilon.   Such a replacement  does not  affect  the  Lagrange  identity  and  the boundary conditions defined  in  terms of  γ0,γ1\gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1}.   In  particular,   a boundary condition  is  self-adjoint  or  has  the  Shapiro–Lopatinskii  property  for  PP  if  and  only  if  it  has  the same property  for  PεP\hskip 1.99997pt-\hskip 1.99997pt\varepsilon.   At  the same  time,   when our manifold,   operators,   etc.  depend on a parameter,   replacing  PP  by  PεP\hskip 1.99997pt-\hskip 1.99997pt\varepsilon  does not  affect  the analytical  index  because PP can  be connected  with  PεP\hskip 1.99997pt-\hskip 1.99997pt\varepsilon  by  the homotopy  PtεP\hskip 1.99997pt-\hskip 1.99997ptt\hskip 1.49994pt\varepsilon,  t[0,1]t\hskip 1.99997pt\in\hskip 1.99997pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt].   By  these reasons we can  work with PεP\hskip 1.99997pt-\hskip 1.99997pt\varepsilon instead of  PP.

The reduced  boundary  triplet.   As suggested  by  the previous subsection,   we will  take  the operator  A=(Pε)|Kerγ0A\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994ptP\hskip 1.99997pt-\hskip 1.99997pt\varepsilon\hskip 1.49994pt)\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}  as  the reference operator.   Naturally,   we will  also  take  the operators  γ0,γ1:H1K\gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\gamma_{1}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  as  the boundary operators.   Then all  assumptions of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  hold.   In  particular,   the operators  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)  and  M=M(0)|KM\hskip 3.99994pt=\hskip 3.99994ptM\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt|\hskip 1.49994ptK  are defined,   and  MM  is  a self-adjoint  densely defined operator  from  KK\hskip 0.50003pt^{\prime}  to  KK.

The boundary conditions  in  terms of  the reduced  boundary  triplet.   The boundary conditions corresponding  to ff are defined  in  terms of  γ0,γ1\gamma_{0}\hskip 0.50003pt,\hskip 1.99997pt\gamma_{1}  by an obvious  relation  KK\mathcal{F}\hskip 1.99997pt\subset\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}.   In  terms of  the reduced  boundary  triplet  these boundary conditions  take  the form

ΛΛ1(|KM),\quad\Lambda^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\mathcal{F}\hskip 1.49994pt|\hskip 1.49994ptK\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.99997pt\bigr{)}\hskip 3.00003pt,

where  Λ:KK\Lambda\hskip 1.00006pt\colon\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  and  Λ:KK\Lambda^{\prime}\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 0.50003pt^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial} are  the operators from  the  theory of  Gelfand  triples.   As  is  well  known,   both  Λ\Lambda and  Λ\Lambda^{\prime}  are pseudo-differential  operators of  order 1/2-\hskip 1.99997pt1/2  with  the symbol  equal  to  the identity  over  the unit  sphere bundle of  YY.   When fif\hskip 1.99997pt-\hskip 1.99997pti  is  invertible,   these boundary conditions can be written as  the equation

𝚪¯1=Λ1(f+ifiM)(Λ)1Γ¯0.\quad\overline{\bm{\Gamma}}_{1}\hskip 3.99994pt=\hskip 3.99994pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\circ\hskip 3.00003pt\left(\hskip 1.99997pt\frac{f\hskip 1.99997pt+\hskip 1.99997pti}{f\hskip 1.99997pt-\hskip 1.99997pti}\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.99997pt\right)\hskip 1.99997pt\circ\hskip 1.99997pt(\hskip 1.49994pt\Lambda^{\prime}\hskip 1.49994pt)^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\circ\hskip 1.99997pt\overline{\Gamma}_{0}\hskip 3.00003pt.

In  particular,   the boundary conditions are given  by a pseudo-differential  operator of  order 11.   Informally,   one can use  this form of  boundary conditions even when fif\hskip 1.99997pt-\hskip 1.99997pti  is  not  invertible.   In  fact,   the case when ff has only ii and i-\hskip 1.99997pti as eigenvalues  is  the most  important  one.

The decomposition of  FF defined  by ff.   Since the bundle map ff  is  skew-adjoint,   it  defines  the decomposition  F=+(f)(f)F\hskip 3.99994pt=\hskip 3.99994pt\mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)  into subbundles generated  by  eigenvectors of  ff  corresponding  to eigenvalues λ\lambda  with  Imλ>0\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\lambda\hskip 1.99997pt>\hskip 1.99997pt0 and  Imλ<0\operatorname{Im}\hskip 1.49994pt\hskip 0.50003pt\lambda\hskip 1.99997pt<\hskip 1.99997pt0 respectively.   Clearly,  ifif  is  negative definite on  +(f)\mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt) and  is  positive definite on  (f)\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt).   Since ff  is  equivariant,   the subbundles  +(f),(f)\mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.99994pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)  are invariant  under  the operators  𝝉u\bm{\tau}_{u}.   Let  𝝉u+,𝝉u\bm{\tau}_{u}^{\hskip 0.70004pt+}\hskip 1.00006pt,\hskip 3.99994pt\bm{\tau}_{u}^{\hskip 0.70004pt-}  be  the operators induced  by  𝝉u\bm{\tau}_{u}  in  the fibers of  +(f),(f)\mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.99994pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)  respectively.   The families of  operators  𝝉u+,𝝉u\bm{\tau}_{u}^{\hskip 0.70004pt+}\hskip 1.00006pt,\hskip 3.99994pt\bm{\tau}_{u}^{\hskip 0.70004pt-}  can  be considered as symbols of  some pseudo-differential  operators 𝝉+,𝝉\bm{\tau}^{\hskip 0.70004pt+}\hskip 1.00006pt,\hskip 3.99994pt\bm{\tau}^{\hskip 0.70004pt-}  of  order 11 acting  in  bundles +(f),(f)\mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.99994pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf\hskip 1.49994pt)  respectively.

Dirac-like  boundary  problems.   Suppose  that  PP and ff define a  Dirac-like  boundary problem  in  the sense of  [I2I_{\hskip 1.04996pt2}],   i.e.  that  the operators  𝝉u\bm{\tau}_{u} are skew-adjoint.   A routine calculation shows  that  in  the decomposition  E|Y=FFE\hskip 1.49994pt|\hskip 1.49994ptY\hskip 3.99994pt=\hskip 3.99994ptF\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006ptF\hskip 0.50003pt^{\prime} the operators ρu=σy1τu\rho_{\hskip 0.35002ptu}\hskip 3.99994pt=\hskip 3.99994pt\sigma_{y}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\tau_{\hskip 0.35002ptu} have  the form

ρu=(0𝝉u𝝉u0).\quad\rho_{\hskip 0.35002ptu}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994pt0&-\hskip 1.99997pt\bm{\tau}_{u}\hskip 1.00006pt\hskip 3.99994pt\vspace{4.5pt}\\ \hskip 3.99994pt-\hskip 1.99997pt\bm{\tau}_{u}&0\hskip 1.00006pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt.

Let  |𝝉u|=(𝝉u𝝉u)1/2|\hskip 1.99997pt\bm{\tau}_{u}\hskip 1.99997pt|\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\bm{\tau}_{u}^{\hskip 0.70004pt*}\hskip 1.00006pt\bm{\tau}_{u}\hskip 1.49994pt)^{\hskip 0.70004pt1/2} and  let  𝝊u\bm{\upsilon}_{\hskip 0.35002ptu}  be such  that  i𝝉u=𝝊u|𝝉u|i\hskip 1.49994pt\bm{\tau}_{u}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt\bm{\upsilon}_{\hskip 0.35002ptu}\hskip 1.99997pt|\hskip 1.99997pt\bm{\tau}_{u}\hskip 1.99997pt|.

7.2. Lemma.   The symbol  of  MM  is  equal  to  the bundle map defined  by operators  𝛖u\bm{\upsilon}_{\hskip 0.35002ptu}.   

Proof.   Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that  the results of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  apply  to  the present  situation.   By  the discussion at  the end of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems,   it  is  sufficient  to prove  that  (ρu)\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.35002ptu}\hskip 1.49994pt)  is  equal  to  the graph of  𝝊u\bm{\upsilon}_{\hskip 0.35002ptu}.   If  aa  is  an eigenvector  of  𝝉u\bm{\tau}_{u}  with an eigenvalue  iλi\hskip 1.49994pt\lambda,   then

ρu(a,𝝊u(a))=(𝝉u𝝊u(a),𝝉u(a))\quad\rho_{\hskip 0.35002ptu}\hskip 1.49994pt\bigl{(}\hskip 1.49994pta\hskip 0.50003pt,\hskip 3.00003pt\bm{\upsilon}_{\hskip 0.35002ptu}\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 1.49994pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.49994pt-\hskip 1.99997pt\bm{\tau}_{u}\hskip 1.00006pt\bm{\upsilon}_{\hskip 0.35002ptu}\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003pt-\hskip 1.99997pt\bm{\tau}_{u}\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 1.49994pt\bigr{)}
=(i|λ|a,iλa)=(i|λ|a,i|λ|𝝊u(a))\quad\phantom{\rho_{\hskip 0.35002ptu}\hskip 1.49994pt\bigl{(}\hskip 1.49994pta\hskip 0.50003pt,\hskip 3.00003pt\bm{\upsilon}_{\hskip 0.35002ptu}\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 1.49994pt\bigr{)}\hskip 3.99994pt}=\hskip 3.99994pt\bigl{(}\hskip 1.49994pt-\hskip 1.99997pti\hskip 1.49994pt|\hskip 1.99997pt\lambda\hskip 1.99997pt|\hskip 1.00006pta\hskip 0.50003pt,\hskip 3.00003pt-\hskip 1.99997pti\hskip 1.49994pt\lambda\hskip 1.00006pta\hskip 1.49994pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.49994pt-\hskip 1.99997pti\hskip 1.49994pt|\hskip 1.99997pt\lambda\hskip 1.99997pt|\hskip 1.00006pta\hskip 0.50003pt,\hskip 3.00003pt-\hskip 1.99997pti\hskip 1.49994pt|\hskip 1.99997pt\lambda\hskip 1.99997pt|\hskip 1.00006pt\bm{\upsilon}_{\hskip 0.35002ptu}\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 1.49994pt\bigr{)}
=i|λ|(a,𝝊u(a))\quad\phantom{\rho_{\hskip 0.35002ptu}\hskip 1.49994pt\bigl{(}\hskip 1.49994pta\hskip 0.50003pt,\hskip 3.00003pt\bm{\upsilon}_{\hskip 0.35002ptu}\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 1.49994pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.49994pt-\hskip 1.99997pti\hskip 1.49994pt|\hskip 1.99997pt\lambda\hskip 1.99997pt|\hskip 1.00006pta\hskip 0.50003pt,\hskip 3.00003pt-\hskip 1.99997pti\hskip 1.49994pt\lambda\hskip 1.00006pta\hskip 1.49994pt\bigr{)}\hskip 3.99994pt}=\hskip 3.99994pt-\hskip 1.99997pti\hskip 1.49994pt|\hskip 1.99997pt\lambda\hskip 1.99997pt|\hskip 1.99997pt\bigl{(}\hskip 1.49994pta\hskip 0.50003pt,\hskip 3.00003pt\bm{\upsilon}_{\hskip 0.35002ptu}\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 1.49994pt\bigr{)}

and  hence  (a,𝝊u(a))(ρu)(\hskip 1.49994pta\hskip 0.50003pt,\hskip 3.00003pt\bm{\upsilon}_{\hskip 0.35002ptu}\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.35002ptu}\hskip 1.49994pt).   Therefore (ρu)\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.35002ptu}\hskip 1.49994pt)  is  equal  to  the graph of  𝝊u\bm{\upsilon}_{\hskip 0.35002ptu}.    \blacksquare

Families of  Dirac-like  boundary  problems.   Suppose  that  the manifold  X=XwX\hskip 3.99994pt=\hskip 3.99994ptX_{\hskip 0.70004ptw},   the bundle  E=EwE\hskip 3.99994pt=\hskip 3.99994ptE_{\hskip 0.70004ptw},   the operator P=PwP\hskip 3.99994pt=\hskip 3.99994ptP_{\hskip 0.70004ptw},   the bundle map  f=fwf\hskip 3.99994pt=\hskip 3.99994ptf_{\hskip 0.70004ptw}  etc.  continuously depend on a parameter wWw\hskip 1.99997pt\in\hskip 1.99997ptW as in  [I2I_{\hskip 1.04996pt2}],   and  for each value of  ww  have all  the properties assumed above.   The subscript  ww in fwf_{\hskip 0.70004ptw} should  not  be confused  with  the subscript  yy used  above:  wWw\hskip 1.99997pt\in\hskip 1.99997ptW,   but  yYy\hskip 1.99997pt\in\hskip 1.99997ptY.   For each ww  let  AwA_{\hskip 0.70004ptw}  be  the self-adjoint  operator defined  by  PwP_{\hskip 0.70004ptw} and  the boundary condition corresponding  to fwf_{\hskip 0.70004ptw}.   Clearly,   the bundles  +(fw),(fw)\mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004ptw}\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.99994pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004ptw}\hskip 1.49994pt)  continuously depend on ww  and  one can define continuous families 𝝉w+,𝝉w\bm{\tau}^{\hskip 0.70004pt+}_{\hskip 0.70004ptw}\hskip 1.49994pt,\hskip 3.99994pt\bm{\tau}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}  of  skew-adjoint  pseudo-differential  operators  of  order 11.

7.3. Theorem.   The analytical  index of  the family  Aw,wWA_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  equal  to  the analytical  index of  the family  i𝛕w,wWi\hskip 1.49994pt\bm{\tau}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW,   as also of  the family  i𝛕w+,wW-\hskip 1.99997pti\hskip 1.49994pt\bm{\tau}^{\hskip 0.70004pt+}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW.   

Proof.   As we pointed out  above,   we can replace  the operators  PwP_{\hskip 0.70004ptw}  by  the operators  PwεP_{\hskip 0.70004ptw}\hskip 1.99997pt-\hskip 1.99997pt\varepsilon.   Also,   without  affecting  the analytical  indices,   we can  deform  the bundle maps  fwf_{\hskip 0.70004ptw}  to skew-adjoint  bundle maps having only ii and i-\hskip 1.99997pti as eigenvalues.   Then

fw+ifwi\quad\frac{f_{\hskip 0.70004ptw}\hskip 1.99997pt+\hskip 1.99997pti}{f_{\hskip 0.70004ptw}\hskip 1.99997pt-\hskip 1.99997pti}\hskip 3.00003pt

is  equal  to 0  on  (fw)\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004ptw}\hskip 1.49994pt) and  to \infty  on  +(fw)\mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004ptw}\hskip 1.49994pt).   Of  course,   the boundary condition  γ1=γ0\gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt\infty\hskip 1.99997pt\gamma_{0}  should  be interpreted as  γ0=0\gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0.   Next,   let  us  pass  to  the reduced  boundary  triplets and  rewrite  the boundary conditions in  the form

𝚪¯1=Λ1(fw+ifwiMw)(Λ)1Γ¯0,\quad\overline{\bm{\Gamma}}_{1}\hskip 3.99994pt=\hskip 3.99994pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\circ\hskip 3.00003pt\left(\hskip 1.99997pt\frac{f_{\hskip 0.70004ptw}\hskip 1.99997pt+\hskip 1.99997pti}{f_{\hskip 0.70004ptw}\hskip 1.99997pt-\hskip 1.99997pti}\hskip 1.99997pt-\hskip 1.99997ptM_{\hskip 0.70004ptw}\hskip 1.99997pt\right)\hskip 1.99997pt\circ\hskip 1.99997pt(\hskip 1.49994pt\Lambda^{\prime}\hskip 1.49994pt)^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\circ\hskip 1.99997pt\overline{\Gamma}_{0}\hskip 3.00003pt,

where we omitted  the dependence on ww of  Γ¯0,𝚪¯1\overline{\Gamma}_{0}\hskip 1.00006pt,\hskip 3.99994pt\overline{\bm{\Gamma}}_{1} and  Λ,Λ\Lambda\hskip 0.50003pt,\hskip 1.99997pt\Lambda^{\prime}.   The continuity assumptions of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  were verified at  the end of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems.   Also,   the operators AwA_{\hskip 0.70004ptw} are operators with compact  resolvent.   Hence  the results of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  apply.   It  follows  that  the analytical  index of  the family  Aw,wWA_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  equal  to  the analytical  index of  the family of  relations

Λ1(fw+ifwiMw)(Λ)1,wW.\quad\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\circ\hskip 3.00003pt\left(\hskip 1.99997pt\frac{f_{\hskip 0.70004ptw}\hskip 1.99997pt+\hskip 1.99997pti}{f_{\hskip 0.70004ptw}\hskip 1.99997pt-\hskip 1.99997pti}\hskip 1.99997pt-\hskip 1.99997ptM_{\hskip 0.70004ptw}\hskip 1.99997pt\right)\hskip 1.99997pt\circ\hskip 1.99997pt(\hskip 1.49994pt\Lambda^{\prime}\hskip 1.49994pt)^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt,\quad w\hskip 1.99997pt\in\hskip 1.99997ptW\hskip 3.00003pt.

This family  is  equal  to  the direct  sum of  two families,   one in  the bundles  +(fw)\mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004ptw}\hskip 1.49994pt) and  the other one in  the bundles  (fw)\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004ptw}\hskip 1.49994pt).   The family  in  the bundles +(fw)\mathcal{L}_{\hskip 0.70004pt+}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004ptw}\hskip 1.49994pt)  is

Λ1(Mw+)(Λ)1,wW,\quad\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\circ\hskip 3.00003pt\bigl{(}\hskip 1.99997pt\infty\hskip 1.99997pt-\hskip 1.99997ptM^{\hskip 0.70004pt+}_{\hskip 0.70004ptw}\hskip 1.99997pt\bigr{)}\hskip 1.99997pt\circ\hskip 1.99997pt(\hskip 1.49994pt\Lambda^{\prime}\hskip 1.49994pt)^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt,\quad w\hskip 1.99997pt\in\hskip 1.99997ptW\hskip 3.00003pt,

where Mw+M^{\hskip 0.70004pt+}_{\hskip 0.70004ptw}  is  induced  by  MwM_{\hskip 0.70004ptw}.   As a relation,  Mw+\infty\hskip 1.99997pt-\hskip 1.99997ptM^{\hskip 0.70004pt+}_{\hskip 0.70004ptw}  is  equal  to \infty,   and  the boundary conditions defined  by  the above relations should  be interpreted as  Γ¯0=0\overline{\Gamma}_{0}\hskip 3.99994pt=\hskip 3.99994pt0.   The index of  this  family of  relations  is  equal  to 0.   The family  in  the bundles (fw)\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.70004ptw}\hskip 1.49994pt)  is

Λ1Mw(Λ)1,wW,\quad-\hskip 3.00003pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\circ\hskip 3.00003ptM^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 1.99997pt\circ\hskip 1.99997pt(\hskip 1.49994pt\Lambda^{\prime}\hskip 1.49994pt)^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt,\quad w\hskip 1.99997pt\in\hskip 1.99997ptW\hskip 3.00003pt,

where  MwM^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}  is  induced  by  MwM_{\hskip 0.70004ptw}.   Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that  for every wWw\hskip 1.99997pt\in\hskip 1.99997ptW  the symbol  of  the above operator  is  equal  to  𝝊w-\hskip 1.99997pt\bm{\upsilon}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw},   where  𝝊w\bm{\upsilon}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}  is  determined  by  the equality

i𝝉w=𝝊w|𝝉w|.\quad i\hskip 1.99997pt\bm{\tau}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt\bm{\upsilon}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 3.99994pt\bigl{|}\hskip 1.99997pt\bm{\tau}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 1.99997pt\bigr{|}\hskip 3.00003pt.

Clearly,   the family  𝝊w,wW-\hskip 1.99997pt\bm{\upsilon}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  canonically  homotopic  to  the family  i𝝉w,wWi\hskip 1.99997pt\bm{\tau}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW.   The first  statement  of  the  theorem  follows.

In order  to prove  the second statement,   it  is  sufficient  to prove  that  the sum of  the analytical  indices of  the families  i𝝉w,wWi\hskip 1.49994pt\bm{\tau}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW and  i𝝉w+,wWi\hskip 1.49994pt\bm{\tau}^{\hskip 0.70004pt+}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  equal  to 0.   This sum  is  equal  to  the analytical  index of  the direct  sum of  these families,   i.e.  to  the analytical  index of  the family  i𝝉w,wWi\hskip 1.49994pt\bm{\tau}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW.   If  we  take as  fwf_{\hskip 0.35002ptw}  for every ww the multiplication  by i-\hskip 1.99997pti,   then  (fw)=Fw\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994ptf_{\hskip 0.35002ptw}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptF_{\hskip 0.35002ptw}  and  𝝉w=𝝉w\bm{\tau}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 3.99994pt=\hskip 3.99994pt\bm{\tau}_{\hskip 0.70004ptw}  for every ww.   Since  the bundle maps  ifw=idif_{\hskip 0.35002ptw}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{id}  are positive definite,   the index of  the corresponding  family  Aw,wWA_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  equal  to 0.   At  the same,   by  the already  proved  first  statement  of  the  theorem,   the index of  this family  is  equal  to  the index of  the family  i𝝉w=i𝝉w,wWi\hskip 1.49994pt\bm{\tau}^{\hskip 0.70004pt-}_{\hskip 0.70004ptw}\hskip 3.99994pt=\hskip 3.99994pti\hskip 1.49994pt\bm{\tau}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW.   Therefore  the index of  the family  i𝝉w,wWi\hskip 1.49994pt\bm{\tau}_{\hskip 0.70004ptw}\hskip 1.00006pt,\hskip 3.00003ptw\hskip 1.99997pt\in\hskip 1.99997ptW  is  indeed equal  to 0.   The second statement  of  the  theorem  follows.    \blacksquare

8. Comparing  two  boundary  conditions

The operator  S=TTS\hskip 3.99994pt=\hskip 3.99994ptT\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT.   Suppose  that  the assumptions of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  hold,   except  of  the assumptions concerned  with  the reference operator AA  and  the  Lagrange  identity  (8).   We will  assume  that  a weaker  form of  the  Lagrange  identity  holds,   namely,   that

Tu,vu,Tv=iΣγu,γv\quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.49994pt\Sigma\hskip 1.99997pt\gamma\hskip 0.50003ptu\hskip 1.00006pt,\hskip 1.99997pt\gamma\hskip 0.50003ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt

for every u,vH1u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.99997pt\in\hskip 1.99997ptH_{\hskip 0.70004pt1}  and some self-adjoint  invertible bounded operator

Σ:KKKK\quad\Sigma\hskip 1.00006pt\colon\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}

leaving KKK\hskip 1.00006pt\oplus\hskip 1.00006ptK  invariant.   Cf.  [I2I_{\hskip 1.04996pt2}],   Section  5.   Let

H^0=H0H0,\quad\widehat{H}_{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006ptH_{\hskip 1.04996pt0}\hskip 1.99997pt,\quad
H^1=H1H1,\quad\widehat{H}_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt1}\hskip 1.00006pt\oplus\hskip 1.00006ptH_{\hskip 0.70004pt1}\hskip 1.99997pt,\quad
K^=KK,\quad\widehat{K}^{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt,\quad
KK^=(KK)(KK),\quad\widehat{K\hskip 1.00006pt\oplus\hskip 1.00006ptK}\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.49994ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 1.49994pt\bigr{)}\hskip 1.99997pt\oplus\hskip 1.99997pt\bigl{(}\hskip 1.49994ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 1.49994pt\bigr{)}\hskip 1.99997pt,\quad
γ^=γγ:H^1KK^.\quad\widehat{\gamma}\hskip 3.99994pt=\hskip 3.99994pt\gamma\hskip 1.00006pt\oplus\hskip 1.00006pt\gamma\hskip 1.99997pt\colon\hskip 1.99997pt\widehat{H}_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\widehat{K\hskip 1.00006pt\oplus\hskip 1.00006ptK}\hskip 1.99997pt.

We are interested  in  the operator  S=TTS\hskip 3.99994pt=\hskip 3.99994ptT\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT.   It  is  an  unbounded operator  in  H^0\widehat{H}_{\hskip 1.04996pt0}  having as its domain  Kerγ^H^1\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\widehat{\gamma}\hskip 3.99994pt\subset\hskip 3.99994pt\widehat{H}_{\hskip 0.70004pt1}.   Let  Σ^=ΣΣ\widehat{\Sigma}\hskip 3.99994pt=\hskip 3.99994pt\Sigma\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997pt\Sigma.   The  Lagrange  identity  for SS^{*}  is

Su,vu,Sv=iΣ^γ^u,γ^v.\quad\langle\hskip 1.49994pt\hskip 1.00006ptS^{*}u\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997ptS^{*}v\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.99997pt\widehat{\Sigma}\hskip 3.00003pt\widehat{\gamma}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\widehat{\gamma}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt.

We will  need also  the operator  S+εS^{*}\hskip 1.99997pt+\hskip 1.99997pt\varepsilon,   where ε\varepsilon  is  given  by  the matrix

ε=(0110)\quad\varepsilon\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994pt0\hskip 1.00006pt&1\hskip 3.99994pt\vspace{4.5pt}\\ \hskip 3.99994pt1&0\hskip 1.99997pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt

in  the decomposition  H^0=H0H0\widehat{H}_{\hskip 1.04996pt0}\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006ptH_{\hskip 1.04996pt0}.

A  boundary  condition for operators SS^{*} and  S+εS^{*}\hskip 1.99997pt+\hskip 1.99997pt\varepsilon.   Let  Π0,Π1:H^1H1\Pi_{\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 3.00003pt\Pi_{\hskip 0.70004pt1}\hskip 1.00006pt\colon\hskip 1.00006pt\widehat{H}_{\hskip 0.70004pt1}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt1}  be  the projections onto  the first  and  the second summands respectively.   Let

π0=γΠ0,π1=γΠ1,andπ=π0π1.\quad\pi_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994pt\gamma\hskip 1.00006pt\circ\hskip 1.00006pt\Pi_{\hskip 0.70004pt0}\hskip 1.99997pt,\quad\pi_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt\gamma\hskip 1.00006pt\circ\hskip 1.00006pt\Pi_{\hskip 0.70004pt1}\hskip 1.99997pt,\quad\mbox{and}\quad\pi\hskip 3.99994pt=\hskip 3.99994pt\pi_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 3.00003pt.

Let  Υ:KKKK\Upsilon\hskip 1.00006pt\colon\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}  be a unitary operator  leaving  KKK\hskip 1.00006pt\oplus\hskip 1.00006ptK  invariant,   and  let  us impose on SS^{*}  the boundary condition  π1=Υπ0\pi_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt\Upsilon\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0},   i.e.  consider  the restriction PP of  SS^{*}  to  Ker(π1Υπ0)\operatorname{Ker}\hskip 1.49994pt\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.99997pt-\hskip 1.99997pt\Upsilon\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.49994pt).   Equivalently,  PP  is  the restriction of  SS^{*}  to  π1(𝒞)\pi^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.00006pt\mathcal{C}\hskip 1.49994pt),   where  𝒞\mathcal{C}  is  the space  of  pairs of  the form  (u,Υ(u))(\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997pt\Upsilon\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt).   We will  further assume  that  Υ\Upsilon  commutes with Σ\Sigma.   The next  lemma shows  that  then  this boundary condition  is  self-adjoint  in  the sense of  [I2I_{\hskip 1.04996pt2}],   Section  5.   We will  assume  that,   moreover,   the operator PP  is  self-adjoint  and  Fredholm.   

8.1. Lemma.   The above boundary condition  is  self-adjoint,   i.e.  Σ^(𝒞)\widehat{\Sigma}\hskip 1.99997pt(\hskip 1.49994pt\mathcal{C}\hskip 1.49994pt)  is  equal  to  the orthogonal  complement  of  𝒞\mathcal{C}.   

Proof.   Let  (u,Υ(u)),(v,Υ(v))𝒞(\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997pt\Upsilon\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.99994pt(\hskip 1.49994ptv\hskip 0.50003pt,\hskip 1.99997pt\Upsilon\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{C}.   Then

Σ^(u,Υ(u)),(v,Υ(v))\quad\left\langle\hskip 1.49994pt\hskip 1.00006pt\widehat{\Sigma}\hskip 1.99997pt(\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997pt\Upsilon\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.99994pt(\hskip 1.49994ptv\hskip 0.50003pt,\hskip 1.99997pt\Upsilon\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
=(Σu,ΣΥ(u)),(v,Υ(v))\quad=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt(\hskip 1.49994pt\Sigma\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997pt-\hskip 1.99997pt\Sigma\hskip 1.00006pt\circ\hskip 1.00006pt\Upsilon\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.99994pt(\hskip 1.49994ptv\hskip 0.50003pt,\hskip 1.99997pt\Upsilon\hskip 1.49994pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
=Σu,vΥ(Σ(u)),Υ(v)=Σu,vΣu,v=0\quad=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Sigma\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon\hskip 1.00006pt(\hskip 1.49994pt\Sigma\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997pt\Upsilon\hskip 1.00006pt(\hskip 1.49994ptv\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Sigma\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Sigma\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994pt0

because Υ\Upsilon  commutes with Σ\Sigma and  is  unitary.   It  follows  that  Σ^(𝒞)\widehat{\Sigma}\hskip 1.99997pt(\hskip 1.49994pt\mathcal{C}\hskip 1.49994pt)  is  orthogonal  to 𝒞\mathcal{C}.   Conversely,   suppose  that  (a,b)(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  is  orthogonal  to  𝒞\mathcal{C}.   Then  for every  uKKu\hskip 1.99997pt\in\hskip 1.99997ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK

0=(a,b),(u,Υ(u))=a,u+b,Υ(u)).\quad 0\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997pt(\hskip 1.49994ptu\hskip 0.50003pt,\hskip 3.99994pt\Upsilon\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 1.99997pt+\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006ptb\hskip 0.50003pt,\hskip 1.99997pt\Upsilon\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle\hskip 3.00003pt.

Since  Υ\Upsilon  is  unitary and  KK  is  dense in  KK^{\hskip 0.70004pt\partial},   this implies  that  b=Υ(a)b\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt\Upsilon\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt).   Since  Σ\Sigma  is  invertible,   this implies  that  (a,b)=(a,Υ(a))Σ^(𝒞)(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997pt-\hskip 1.99997pt\Upsilon\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 3.00003pt\widehat{\Sigma}\hskip 1.99997pt(\hskip 1.49994pt\mathcal{C}\hskip 1.49994pt).   The  lemma follows.    \blacksquare

8.2. Theorem.   If  the operator  iΣΥ-\hskip 1.99997pti\hskip 1.49994pt\Sigma^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.00006pt\Upsilon  is  positive  definite,   then  the operator  P+εP\hskip 1.99997pt+\hskip 1.99997pt\varepsilon  is  an  isomorphism  𝒟(P)H^0\mathcal{D}\hskip 1.49994pt(\hskip 1.49994ptP\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\widehat{H}_{\hskip 0.70004pt0}.   

Proof.   Since PP  is  assumed  to be self-adjoint  and ε\varepsilon  is  bounded,  P+εP\hskip 1.99997pt+\hskip 1.99997pt\varepsilon  is  a self-adjoint  operator  in H^0\widehat{H}_{\hskip 0.70004pt0}.   Therefore it  is  sufficient  to prove  that  the kernel  of  P+εP\hskip 1.99997pt+\hskip 1.99997pt\varepsilon  is  equal  to 0.   Suppose  that  (a,b)Ker(P+ε)(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptP\hskip 1.99997pt+\hskip 1.99997pt\varepsilon\hskip 1.49994pt).   Then  Ta+b=0T^{\hskip 0.70004pt*}\hskip 0.50003pta\hskip 1.99997pt+\hskip 1.99997ptb\hskip 3.99994pt=\hskip 3.99994pt0 and  aTb=0a\hskip 1.99997pt-\hskip 1.99997ptT^{\hskip 0.70004pt*}\hskip 0.50003ptb\hskip 3.99994pt=\hskip 3.99994pt0.   Let  us apply  the  Lagrange  identity  for SS^{*}  to  u=(a,a)u\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.49994pt) and  v=(b,b)v\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994ptb\hskip 0.50003pt,\hskip 1.99997pt-\hskip 1.99997ptb\hskip 1.49994pt).   Since  ε\varepsilon  is  self-adjoint,  ε\varepsilon  does not  affect  the  left  hand  side of  the  Lagrange  identity and  hence  the  latter  is  equal  to

Ta,ba,Tb+Ta,ba,T(b)\quad\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}a\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006pta\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}b\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt+\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006pt-\hskip 1.99997ptT^{\hskip 0.70004pt*}a\hskip 0.50003pt,\hskip 1.99997pt-\hskip 1.99997ptb\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt\langle\hskip 1.49994pt\hskip 1.00006pta\hskip 1.00006pt,\hskip 1.99997pt-\hskip 1.99997ptT^{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006pt-\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\rangle
=2Ta,b2a,Tb=2b,b2a,a,\quad=\hskip 3.99994pt2\hskip 1.49994pt\langle\hskip 1.49994pt\hskip 1.00006ptT^{\hskip 0.70004pt*}a\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt2\hskip 1.49994pt\langle\hskip 1.49994pt\hskip 1.00006pta\hskip 1.00006pt,\hskip 1.99997ptT^{\hskip 0.70004pt*}b\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt2\hskip 1.49994pt\langle\hskip 1.49994pt\hskip 1.00006ptb\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt-\hskip 3.00003pt2\hskip 1.49994pt\langle\hskip 1.49994pt\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.00003pt,

where at  the  last  step we used  the fact  that  Ta=bT^{\hskip 0.70004pt*}\hskip 0.50003pta\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997ptb and  Tb=aT^{\hskip 0.70004pt*}\hskip 0.50003ptb\hskip 3.99994pt=\hskip 3.99994pta.   In  particular,   the  left  hand side  is  0\leqslant\hskip 1.99997pt0.   The right  hand side of  the  Lagrange  identity  is  equal  to

iΣγa,γb+i(Σ)γa,γb=2iΣγa,γb.\quad\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.99997pt\Sigma\hskip 1.49994pt\gamma\hskip 0.50003pta\hskip 1.00006pt,\hskip 1.99997pt\gamma\hskip 1.00006ptb\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt+\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.49994pt(\hskip 1.00006pt-\hskip 1.99997pt\Sigma\hskip 1.49994pt)\hskip 1.49994pt\gamma\hskip 0.50003pta\hskip 1.00006pt,\hskip 1.99997pt-\hskip 1.99997pt\gamma\hskip 1.00006ptb\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994pt2\hskip 1.49994pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.99997pt\Sigma\hskip 1.49994pt\gamma\hskip 0.50003pta\hskip 1.00006pt,\hskip 1.99997pt\gamma\hskip 1.00006ptb\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt.

At  the same  time  (a,b)𝒟(P)(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{D}\hskip 1.49994pt(\hskip 1.49994ptP\hskip 1.49994pt)  and  hence  γb=Υ(γa)\gamma\hskip 0.50003ptb\hskip 3.99994pt=\hskip 3.99994pt\Upsilon\hskip 1.00006pt(\hskip 1.00006pt\gamma\hskip 0.50003pta\hskip 1.49994pt).   Therefore

iΣγa,γb=iΣγa,Υγa=γa,iΣΥ(γa).\quad\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.99997pt\Sigma\hskip 1.49994pt\gamma\hskip 0.50003pta\hskip 1.00006pt,\hskip 1.99997pt\gamma\hskip 1.00006ptb\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.99997pt\Sigma\hskip 1.49994pt\gamma\hskip 0.50003pta\hskip 1.00006pt,\hskip 1.99997pt\Upsilon\hskip 1.00006pt\gamma\hskip 0.50003pta\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\gamma\hskip 0.50003pta\hskip 1.00006pt,\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.49994pt\Sigma^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.00006pt\Upsilon\hskip 1.00006pt(\hskip 1.00006pt\gamma\hskip 0.50003pta\hskip 1.49994pt)\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt.

It  follows  that  the right  hand side  is  0\geqslant\hskip 1.99997pt0  if  iΣΥ-\hskip 1.99997pti\hskip 1.49994pt\Sigma^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.00006pt\Upsilon  is  positive  definite.   Since  the  left  hand side  is  0\leqslant\hskip 1.99997pt0,   in  this case both sides are equal  to 0.   This implies  that  b,b+a,a=0\langle\hskip 1.49994pt\hskip 1.00006ptb\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 1.99997pt+\hskip 1.99997pt\langle\hskip 1.49994pt\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.00006pt\hskip 1.49994pt\rangle\hskip 3.99994pt=\hskip 3.99994pt0 and  hence a=b=0a\hskip 3.99994pt=\hskip 3.99994ptb\hskip 3.99994pt=\hskip 3.99994pt0.   It  follows  that  Ker(P+ε)=0\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt(\hskip 1.49994ptP\hskip 1.99997pt+\hskip 1.99997pt\varepsilon\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0.    \blacksquare

Changing  the boundary operators.   Suppose  that  Σ\Sigma  is  unitary and  let  us  take Υ=iΣ\Upsilon\hskip 3.99994pt=\hskip 3.99994pti\hskip 1.49994pt\Sigma.   Then  iΣΥ=ΣΣ-\hskip 1.99997pti\hskip 1.49994pt\Sigma^{\hskip 0.70004pt*}\hskip 1.00006pt\circ\hskip 1.00006pt\Upsilon\hskip 3.99994pt=\hskip 3.99994pt\Sigma^{\hskip 0.70004pt*}\hskip 0.50003pt\circ\hskip 1.49994pt\Sigma  is  positive  definite and  Υ\Upsilon  is  skew-adjoint.   Let

Γ0=(π0Υ1π1)/2andΓ1=(Υπ0+π1)/2.\quad\Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.99997pt-\hskip 1.99997pt\Upsilon^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt)\bigl{/}\sqrt{2}\quad\mbox{and}\quad\Gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pt\Upsilon\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.99997pt+\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt)\bigl{/}\sqrt{2}\hskip 3.99994pt.

Using  the facts  that  Υ\Upsilon  is  skew-adjoint  and  unitary,   we see  that

2Γ1u,Γ0v2Γ0u,Γ1v2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt-\hskip 3.00003pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Gamma_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Gamma_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
=Υπ0u+π1u,π0vΥ1π1vπ0uΥ1π1u,Υπ0v+π1v=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.99997pt+\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.99997pt-\hskip 1.99997pt\Upsilon^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.00003pt-\hskip 3.00003pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.99997pt-\hskip 1.99997pt\Upsilon^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Upsilon\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.99997pt+\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
=Υπ0u,π0vΥπ0u,Υ1π1v+π1u,π0vπ1u,Υ1π1v=\hskip 3.99994pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon\vphantom{{}^{-\hskip 0.70004pt1}}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Upsilon^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt+\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\vphantom{{}^{-\hskip 0.70004pt1}}\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Upsilon^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
π0u,Υπ0vπ0u,π1v+Υ1π1u,Υπ0v+Υ1π1u,π1v-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Upsilon\vphantom{{}^{-\hskip 0.70004pt1}}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\vphantom{{}^{-\hskip 0.70004pt1}}\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt+\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\Upsilon\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt+\hskip 1.99997pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
=2Υπ0u,π0v+2Υ1π1u,π1v=\hskip 3.99994pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon\vphantom{{}^{-\hskip 0.70004pt1}}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt+\hskip 1.99997pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}
=2Υπ0u,π0v2Υπ1u,π1v=2iΣ^γ^u,γ^v.=\hskip 3.99994pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon\vphantom{{}^{-\hskip 0.70004pt1}}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt0}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 1.99997pt-\hskip 1.99997pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pt\Upsilon\vphantom{{}^{-\hskip 0.70004pt1}}\hskip 0.50003pt\circ\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt\hskip 1.99997pt=\hskip 3.99994pt\hskip 1.99997pt2\hskip 1.00006pt\left\langle\hskip 1.49994pt\hskip 1.00006pti\hskip 1.99997pt\widehat{\Sigma}\hskip 3.00003pt\widehat{\gamma}\hskip 1.00006ptu\hskip 1.00006pt,\hskip 1.99997pt\widehat{\gamma}\hskip 1.00006ptv\hskip 1.00006pt\hskip 1.49994pt\right\rangle_{\hskip 0.70004pt\partial}\hskip 3.99994pt.

This shows  that  the  Lagrange  identity  in  terms of  Γ0,Γ1\Gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\Gamma_{1}  has  the standard  form.   The operator  A=P+εA\hskip 3.99994pt=\hskip 3.99994ptP\hskip 1.99997pt+\hskip 1.99997pt\varepsilon  is  defined  by  the boundary condition  ΥΓ0=0\Upsilon\hskip 1.00006pt\circ\hskip 1.00006pt\Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0,   which  is  equivalent  to  Γ0=0\Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0.   Theorem  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that  we can  take  A=P+εA\hskip 3.99994pt=\hskip 3.99994ptP\hskip 1.99997pt+\hskip 1.99997pt\varepsilon  as  the reference operator.

The difference of  two boundary conditions.   Now we will  return  to  the situation of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  and assume  that  the  Lagrange  identity  for TT^{\hskip 0.70004pt*}  has  the form  (8).   Equivalently,

iΣ=(0110)\quad i\hskip 1.49994pt\Sigma\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\begin{pmatrix}\hskip 3.99994pt0&1\hskip 1.99997pt\hskip 3.99994pt\vspace{4.5pt}\\ \hskip 3.99994pt\hskip 1.00006pt-\hskip 1.99997pt1&0\hskip 1.99997pt\hskip 3.99994pt\end{pmatrix}\hskip 3.99994pt

with respect  to  the direct  sum  KKK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}.   Let  0,1KK\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994pt\mathcal{B}_{\hskip 0.70004pt1}\hskip 3.99994pt\subset\hskip 3.99994ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}  be  two closed  relations.   Let T0,T1T_{\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 1.99997ptT_{\hskip 0.35002pt1}  be  the restrictions of  TT^{\hskip 0.70004pt*} to  π1(0),π1(1)H1\pi^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.99994pt\pi^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\mathcal{B}_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptH_{\hskip 0.70004pt1}  respectively.   Let  us assume  that  T0,T1T_{\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 1.99997ptT_{\hskip 0.35002pt1} are self-adjoint  operators in  H0H_{\hskip 1.04996pt0}.    But  we will  not  assume  that  T0T_{\hskip 0.70004pt0} or  T1T_{\hskip 0.35002pt1}  is  invertible.   The direct  sum  T0T1T_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT_{\hskip 0.35002pt1}  is  the  formal  difference  of  operators T0T_{\hskip 0.70004pt0} and  T1T_{\hskip 0.35002pt1}.

The formal  difference  T0T1T_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT_{\hskip 0.35002pt1}  is  the self-adjoint  extension of  S=TTS\hskip 3.99994pt=\hskip 3.99994ptT\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT defined  by  the boundary condition  01\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{B}_{\hskip 0.70004pt1}.   This extension  can be defined also in  terms of  boundary operators  Γ0,Γ1\Gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\Gamma_{1}.   Namely,   let  Γ=Γ0Γ1\Gamma\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\Gamma_{1} and  let  Φ\Phi  be  the automorphism of

(KK)(KK)\quad\bigl{(}\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\bigr{)}\hskip 1.99997pt\oplus\hskip 1.99997pt\bigl{(}\hskip 1.99997ptK^{\hskip 0.70004pt\partial}\hskip 1.00006pt\oplus\hskip 1.00006ptK^{\hskip 0.70004pt\partial}\hskip 1.99997pt\bigr{)}

defined  by  the formula  Φ(a,b)=(aΥ1(b),Υ(a)+b)\Phi\hskip 1.49994pt(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.49994pta\hskip 1.99997pt-\hskip 1.99997pt\Upsilon^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptb\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.00003pt\Upsilon\hskip 1.00006pt(\hskip 1.49994pta\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptb\hskip 1.49994pt\bigr{)}.   Then  Φ(01)\Phi\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{B}_{\hskip 0.70004pt1}\hskip 1.49994pt)  is  a closed  self-adjoint  relation and  T0T1T_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT_{\hskip 0.35002pt1}  is  the restriction of  SS^{*}  to

Γ1(Φ(01)).\quad\Gamma^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\bigl{(}\hskip 1.99997pt\Phi\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{B}_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 3.00003pt.

In other words,  T0T1T_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT_{\hskip 0.35002pt1}  is  equal  to  the extension of  SS defined  in  terms of  Γ0,Γ1\Gamma_{0}\hskip 1.00006pt,\hskip 3.00003pt\Gamma_{1} by  the boundary condition  Φ(01)\Phi\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{B}_{\hskip 0.70004pt1}\hskip 1.49994pt).   When parameters are present,   the index of  T0T1T_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT_{\hskip 0.35002pt1}  is  equal  to  the difference of  indices of  T0T_{\hskip 0.70004pt0} and T1T_{\hskip 0.35002pt1},   and we will  assume  that  everything continuously depends on parameters,   but  will  omit  the parameters from  notations.

For  the purposes of  determining  the index,   we can replace SS^{*}  by  S+εS^{*}\hskip 1.99997pt+\hskip 1.99997pt\varepsilon,   or,   equivalently,   to consider  ( the family of  operators)  (T0T1)+ε(\hskip 1.49994ptT_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT_{\hskip 0.35002pt1}\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997pt\varepsilon.   Then we can use  A=P+εA\hskip 3.99994pt=\hskip 3.99994ptP\hskip 1.99997pt+\hskip 1.99997pt\varepsilon  as  the reference operators and construct  the reduced  boundary  triplets.   We can also define  the  (families of )  operators  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) and  MM.   In order  to be able  to apply  the results of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  we need  to assume  that  either  the operators  P+εP\hskip 1.99997pt+\hskip 1.99997pt\varepsilon have compact  resolvent,   or  that  the relations  0,1\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994pt\mathcal{B}_{\hskip 0.70004pt1}  are self-adjoint  Fredholm  relations with compact  resolvent.   We need also  the continuity assumptions from  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems.   Then  the index of  the family  (T0T1)+ε(\hskip 1.49994ptT_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT_{\hskip 0.35002pt1}\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997pt\varepsilon,   and  hence  the index of  the family  T0T1T_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT_{\hskip 0.35002pt1},   is  equal  to  the index of  the family

ΛΛ1(Φ(01)|(KK)M).\quad\Lambda^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\Phi\hskip 1.49994pt(\hskip 1.49994pt\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{B}_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.49994pt\bigl{|}\hskip 1.49994pt(\hskip 1.49994ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptM\hskip 1.99997pt\bigr{)}\hskip 3.00003pt.

In  this computation of  the index one can return  to  the original  direct  sum  01\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{B}_{\hskip 0.70004pt1}.   In order  to do  this,   let  us consider  MM  as a closed  relation  in  KKK\hskip 1.00006pt\oplus\hskip 1.00006ptK  and  let  M=Φ1(M)M_{\hskip 0.70004pt\oplus}\hskip 3.99994pt=\hskip 3.99994pt\Phi^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptM\hskip 1.49994pt).   Then  the index of  the family  T0T1T_{\hskip 0.70004pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT_{\hskip 0.35002pt1}  is  equal  to  the index of  the family

(19) ΛΛ1((01)|(KK)M),\quad\Lambda^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006pt\Lambda^{\hskip 0.35002pt-\hskip 0.70004pt1}\hskip 1.99997pt\bigl{(}\hskip 1.99997pt(\hskip 1.49994pt\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{B}_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.49994pt\bigl{|}\hskip 1.49994pt(\hskip 1.49994ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptM_{\hskip 0.70004pt\oplus}\hskip 1.99997pt\bigr{)}\hskip 3.00003pt,

and  hence  the difference of  the indices of  the families  T0T_{\hskip 0.70004pt0} and  T1T_{\hskip 0.35002pt1}  is  also equal  to  this index.

At  the end of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  we defined self-adjoint  relations from  KK  to  KK\hskip 0.50003pt^{\prime}.   One can also define  the index of  families of  such self-adjoint  relations.   We  leave  this  to  the reader.   By  Lemma  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  the operators Λ\Lambda and  Λ\Lambda^{\prime} are adjoint  to each other.   It  follows  that  the  latter  index,   and  hence  the difference of  the indices,   is  equal  to  the index of  the family

(20) (01)|(KK)M\quad(\hskip 1.49994pt\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{B}_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.49994pt\bigl{|}\hskip 1.49994pt(\hskip 1.49994ptK\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptM_{\hskip 0.70004pt\oplus}\hskip 3.00003pt

of  relations from  KKK\hskip 1.00006pt\oplus\hskip 1.00006ptK  to  KKK\hskip 0.50003pt^{\prime}\hskip 1.00006pt\oplus\hskip 1.00006ptK\hskip 0.50003pt^{\prime}.   Here  the relation  MM_{\hskip 0.70004pt\oplus} mixes  the summands preserved  by  01\mathcal{B}_{\hskip 1.04996pt0}\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{B}_{\hskip 0.70004pt1},   and  the fact  that  we are dealing  with  the difference  is  reflected only  in  MM_{\hskip 0.70004pt\oplus}.   Of  course,   there  is  no similar result  for  the sum.   The above arguments do not  work  for  the sum  because  there  is  no analogue of  Theorem  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  if  TTT\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT  is  replaced  by  TTT\hskip 1.00006pt\oplus\hskip 1.00006ptT.

The differential  boundary  problems of  order one.   Suppose now  that  we are in  the situation of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  Let  ρu=σy1τu\rho_{\hskip 0.70004ptu}\hskip 3.99994pt=\hskip 3.99994pt\sigma_{y}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\tau_{\hskip 0.35002ptu}  be related  to  TT,   and  let  ρu\rho^{\prime}_{\hskip 0.35002ptu} and ρ^u=ρuρu\widehat{\rho}_{\hskip 0.70004ptu}\hskip 3.99994pt=\hskip 3.99994pt\rho_{\hskip 0.70004ptu}\hskip 1.00006pt\oplus\hskip 1.00006pt\rho^{\prime}_{\hskip 0.35002ptu}  be similar operators related  to  T-\hskip 1.99997ptT and  S=TTS\hskip 3.99994pt=\hskip 3.99994ptT\hskip 1.00006pt\oplus\hskip 1.00006pt-\hskip 1.99997ptT  respectively.   Then  ρu=(σy1)(τu)=ρu\rho^{\prime}_{\hskip 0.35002ptu}\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.00006pt-\hskip 1.99997pt\sigma_{y}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt)\hskip 1.99997pt(\hskip 1.00006pt-\hskip 1.99997pt\tau_{\hskip 0.35002ptu}\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\rho_{\hskip 0.70004ptu} and  hence  ρ^u=ρuρu\widehat{\rho}_{\hskip 0.70004ptu}\hskip 3.99994pt=\hskip 3.99994pt\rho_{\hskip 0.70004ptu}\hskip 1.00006pt\oplus\hskip 1.00006pt\rho_{\hskip 0.70004ptu}.   It  follows  that

(ρ^u)=(ρu)(ρu).\quad\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\widehat{\rho}_{\hskip 0.70004ptu}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)\hskip 1.00006pt\oplus\hskip 1.00006pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)\hskip 1.99997pt.

Recall  that  the subspace (ρu)\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)  is  lagrangian and  hence  iΣ((ρu))(ρu)=0i\hskip 1.49994pt\Sigma\hskip 1.49994pt(\hskip 1.49994pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)\hskip 1.49994pt)\hskip 1.99997pt\cap\hskip 1.99997pt\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\rho_{\hskip 0.70004ptu}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0.   It  follows  that  the kernel  of  the map  (u,v)iΣ(u)v(\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994pti\hskip 1.49994pt\Sigma\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997ptv  intersects  (ρ^u)\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\widehat{\rho}_{\hskip 0.70004ptu}\hskip 1.49994pt) only  by 0.   Similarly,   the kernel  of  the map  (u,v)iΣ(u)+v(\hskip 1.49994ptu\hskip 0.50003pt,\hskip 1.99997ptv\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994pti\hskip 1.49994pt\Sigma\hskip 1.49994pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptv  intersects  (ρ^u)\mathcal{L}_{\hskip 0.70004pt-}\hskip 1.00006pt(\hskip 1.49994pt\widehat{\rho}_{\hskip 0.70004ptu}\hskip 1.49994pt) only  by 0.   This implies  that  the boundary conditions  Γ0=0\Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0  and  Γ1=0\Gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt0  satisfy  the  Shapiro–Lopatinskii  condition.   Since  the operators PP  is  defined  by  the boundary condition  Γ0=0\Gamma_{0}\hskip 3.99994pt=\hskip 3.99994pt0,   it  follows  that  the operators PP  are self-adjoint  and  Fredholm.   Similarly,   the operators  PP^{\prime}  defined  by  the boundary conditions Γ1=0\Gamma_{1}\hskip 3.99994pt=\hskip 3.99994pt0  are also self-adjoint  and  Fredholm.

Suppose now  that  everything depends on a parameter wWw\hskip 1.99997pt\in\hskip 1.99997ptW as at  the end of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems.   The continuity assumptions of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  hold  by  the same reasons as in  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems.   Also,   the operators AA are operators with compact  resolvent.   Hence,   as in  the proof  of  Theorem  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems,   the results of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  apply  and  the difference of  the indices of  the families  T0T_{\hskip 0.70004pt0} and  T1T_{\hskip 0.35002pt1}  is  equal  to  the index of  the family  (19),   as also  to  the index of  the family  (20).

In  the present  context  one can describe MM and  MM_{\hskip 0.70004pt\oplus}  in  terms of  the Cauchy  data of  the equation  (S+ε)u=0(\hskip 1.49994ptS^{*}\hskip 1.99997pt+\hskip 1.99997pt\varepsilon\hskip 1.49994pt)\hskip 1.49994ptu\hskip 3.99994pt=\hskip 3.99994pt0.   Namely,  by  the results of  Section  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  the operator  MM  is  the operator  having  as its graph  the image of  H^1Ker(S+ε)\widehat{H}_{\hskip 0.70004pt1}\hskip 1.99997pt\cap\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 1.00006pt(\hskip 1.49994ptS^{*}\hskip 1.99997pt+\hskip 1.99997pt\varepsilon\hskip 1.49994pt)  under  the map  Γ=Γ0Γ1\Gamma\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{0}\hskip 1.00006pt\oplus\hskip 1.00006pt\Gamma_{1}.   Clearly,  Γ=Φπ\Gamma\hskip 3.99994pt=\hskip 3.99994pt\Phi\hskip 1.00006pt\circ\hskip 1.00006pt\pi.   It  follows  that  M=Φ1(M)M_{\hskip 0.70004pt\oplus}\hskip 3.99994pt=\hskip 3.99994pt\Phi^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptM\hskip 1.49994pt)  is  the relation  having  as  its graph  ( i.e.  equal  to)  the image of  H^1Ker(S+ε)\widehat{H}_{\hskip 0.70004pt1}\hskip 1.99997pt\cap\hskip 1.99997pt\operatorname{Ker}\hskip 1.49994pt\hskip 1.00006pt(\hskip 1.49994ptS^{*}\hskip 1.99997pt+\hskip 1.99997pt\varepsilon\hskip 1.49994pt)  under  the map  π\pi.

9. Rellich  example

Rellich  example.   Let  H0=L2[0,1]H_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994ptL_{\hskip 0.70004pt2}\hskip 1.00006pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt].   Let  TT  be  the differential  operator  d2/dx2-\hskip 1.99997ptd^{\hskip 0.70004pt2}/\hskip 1.00006ptdx^{\hskip 0.70004pt2} with  the domain  H20[0,1]H_{\hskip 1.04996pt2}^{\hskip 1.04996pt0}\hskip 1.99997pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt],   the subspace of  the  Sobolev  space  H2[0,1]H_{\hskip 1.04996pt2}\hskip 1.99997pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt]  defined  by  the boundary conditions  u(0)=u(1)=u(0)=u(1)=0u\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptu^{\prime}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptu^{\prime}\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt0.   For  κ𝐑{}\kappa\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{R}\hskip 1.49994pt\cup\hskip 1.00006pt\{\hskip 1.49994pt\infty\hskip 1.49994pt\}  let  T(κ)T\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt)  be  the restriction of  TT^{\hskip 0.70004pt*} defined  by  the boundary conditions  u(0)=0u\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt0,  κu(1)=u(1)\kappa\hskip 1.00006ptu^{\prime}\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt).   For  κ=\kappa\hskip 3.99994pt=\hskip 3.99994pt\infty  the condition  κu(1)=u(1)\kappa\hskip 1.00006ptu^{\prime}\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)  is  interpreted as  u(1)=0u^{\prime}\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt0.   The family of  operators  T(κ)T\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt)  is  an  important  example in  the  theory of  self-adjoint  operators.   See  Kato  [K],   Example  V.4.14.   This family  is  continuous in  the  topology of  the uniform  resolvent  convergence,   even at  κ=\kappa\hskip 3.99994pt=\hskip 3.99994pt\infty  if  we consider  𝐑{}\mathbf{R}\hskip 1.49994pt\cup\hskip 1.00006pt\{\hskip 1.49994pt\infty\hskip 1.49994pt\}  as  the one-point  compactification of  𝐑\mathbf{R}.   This one-point  compactification can  be identified  with  the circle S1S^{\hskip 0.35002pt1},   say,   by  the stereographic  projection.   Hence  the index of  this family  belongs  to  K1(S1)=𝐙K^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptS^{\hskip 0.35002pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathbf{Z}.   Alternatively,   this index  is  equal  to  the spectral  flow of  the family  T(κ)T\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt),  κ𝐑{}\kappa\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{R}\hskip 1.49994pt\cup\hskip 1.00006pt\{\hskip 1.49994pt\infty\hskip 1.49994pt\}.   The behavior of  eigenvalues in  this family  is  known.   See  the picture in  [K],   loc.  cit.   It  is  clear  from  this picture  that  the spectral  flow,   and  hence  the index,   is  equal  to 11.   It  is  instructive  to deduce  this not  from explicit  computations outlined  in  [K],   but  from  our general  theory.

The boundary  triplet.   In order  to apply  the results of  Sections  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  and  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems,   let  us  take  the  Sobolev  space H2[0,1]H_{\hskip 1.04996pt2}\hskip 1.99997pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt] as H1H_{\hskip 0.70004pt1},   and 𝐂2\mathbf{C}^{\hskip 0.70004pt2} with  the standard  Hermitian  structure as K,KK^{\hskip 0.70004pt\partial},\hskip 1.99997ptK.   Let

γ0(u)=(u(0),u(1))andγ1(u)=(u(0),u(1)).\quad\gamma_{0}\hskip 1.00006pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.99997ptu\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.99997pt)\quad\mbox{and}\quad\gamma_{1}\hskip 1.00006pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.99997ptu^{\prime}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 0.50003pt,\hskip 1.99997pt-\hskip 1.99997ptu^{\prime}\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.99997pt)\hskip 3.00003pt.

The integration  by parts shows  that  the identity  (8)  holds.   See  [Schm],   Example  14.2.   Let  us  take as  the reference operator AκA_{\hskip 1.04996pt\kappa}  for every value of  κ\kappa  the restriction  A=T|Kerγ0A\hskip 3.99994pt=\hskip 3.99994ptT^{\hskip 0.70004pt*}\hskip 1.49994pt|\hskip 1.49994pt\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003pt\gamma_{0}.   As  is  well  known,   the operator AA  is  self-adjoint  and  invertible.   Since  the  Hilbert  spaces  K,KK^{\hskip 0.70004pt\partial},\hskip 1.99997ptK are finitely dimensional  and equal,   there  is  no  need  to pass  to  the reduced  boundary  triplet.   In  fact,   already  Theorem  Boundary  triplets  and  the  index  of  families  of  self-adjoint  elliptic  boundary  problems  implies  that  the index of  the family  T(κ)T\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt),  κ𝐑{}\kappa\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{R}\hskip 1.49994pt\cup\hskip 1.00006pt\{\hskip 1.49994pt\infty\hskip 1.49994pt\}  is  equal  to  the index of  the family of  the corresponding  boundary conditions.   The computation of  the  latter  is  a finitely dimensional  problem.   The relation  (κ)\mathcal{R}\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt) defining  T(κ)T\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt)  is

(κ)={(0,b,c,κb)|b,c𝐂}.\quad\mathcal{R}\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\bigl{\{}\hskip 3.00003pt(\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997ptb\hskip 0.50003pt,\hskip 1.99997ptc\hskip 0.50003pt,\hskip 1.99997pt-\hskip 1.99997pt\kappa\hskip 1.00006ptb\hskip 1.49994pt)\hskip 1.99997pt\bigl{|}\hskip 1.99997ptb\hskip 0.50003pt,\hskip 1.99997ptc\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{C}\hskip 3.99994pt\bigr{\}}\hskip 3.00003pt.

It  is  equal  to  the direct  sum of  relations  0𝐂0\hskip 1.00006pt\oplus\hskip 1.00006pt\mathbf{C}  and  1(κ)={(b,κb)|b𝐂}\mathcal{R}_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\bigl{\{}\hskip 3.00003pt(\hskip 1.49994ptb\hskip 0.50003pt,\hskip 1.99997pt-\hskip 1.99997pt\kappa\hskip 1.00006ptb\hskip 1.49994pt)\hskip 1.99997pt\bigl{|}\hskip 1.99997ptb\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{C}\hskip 3.99994pt\bigr{\}}.   It  follows  that  the index  is  equal  to  the index of  the family  1(κ)\mathcal{R}_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt),  κ𝐑{}\kappa\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{R}\hskip 1.49994pt\cup\hskip 1.00006pt\{\hskip 1.49994pt\infty\hskip 1.49994pt\}.   It  is  easy  to see  that  the  latter  generates  the group  K1(S1)K^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptS^{\hskip 0.35002pt1}\hskip 1.49994pt).   Therefore  the index  is  equal  to 11,   up  to  the choice of  the identification  K1(S1)=𝐙K^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptS^{\hskip 0.35002pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathbf{Z}.   It  is  worth  to point  out  that  1()=0𝐂\mathcal{R}_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\infty\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt0\hskip 1.00006pt\oplus\hskip 1.00006pt\mathbf{C}  is  only a relation,   not  the graph of  an operator.   In  finite dimension  the index of  any  family of  self-adjoint  operators  is  equal  to 0  because all  such families are homotopic.

The reduced  boundary  triplet.   While  it  is  not  needed  for  the computation of  the index,   the reduced  boundary  triplet  is  still  defined.   The kernel  KerT\operatorname{Ker}\hskip 1.49994pt\hskip 0.50003ptT^{\hskip 0.70004pt*}  consists of  polynomials  of  degree 11.   Clearly,  𝜸(0)\bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt) maps  (a,b)(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  to  the polynomial  x(ba)x+ax\hskip 3.99994pt\longmapsto\hskip 3.99994pt(\hskip 1.49994ptb\hskip 1.99997pt-\hskip 1.99997pta\hskip 1.49994pt)\hskip 1.49994ptx\hskip 1.99997pt+\hskip 1.99997pta.   Therefore  M(0)=Γ1𝜸(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\Gamma_{1}\hskip 1.00006pt\circ\hskip 1.49994pt\bm{\gamma}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)  maps  (a,b)(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  to  (ba,ab)(\hskip 1.49994ptb\hskip 1.99997pt-\hskip 1.99997pta\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.99997pt-\hskip 1.99997ptb\hskip 1.49994pt)  and  hence  the graph \mathcal{M} of  M(0)M\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)  is  equal  to  {(a,b,ba,ab)|a,b𝐂}\bigl{\{}\hskip 3.00003pt(\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.99997pt-\hskip 1.99997pta\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.99997pt-\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\bigl{|}\hskip 1.99997pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{C}\hskip 3.99994pt\bigr{\}}.   It  follows  that

(κ)={(0,b,cb,bκb)|b,c𝐂}.\quad\mathcal{R}\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt)\hskip 1.99997pt-\hskip 1.99997pt\mathcal{M}\hskip 3.99994pt=\hskip 3.99994pt\bigl{\{}\hskip 3.00003pt(\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997ptb\hskip 0.50003pt,\hskip 1.99997ptc\hskip 1.99997pt-\hskip 1.99997ptb\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.99997pt-\hskip 1.99997pt\kappa\hskip 1.00006ptb\hskip 1.49994pt)\hskip 1.99997pt\bigl{|}\hskip 1.99997ptb\hskip 0.50003pt,\hskip 1.99997ptc\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{C}\hskip 3.99994pt\bigr{\}}\hskip 3.00003pt.

This relation  is  equal  to  the direct  sum of  relations  0𝐂0\hskip 1.00006pt\oplus\hskip 1.00006pt\mathbf{C}  and  {(b,(1κ)b)|b𝐂}\bigl{\{}\hskip 3.00003pt(\hskip 1.49994ptb\hskip 0.50003pt,\hskip 1.99997pt(\hskip 1.49994pt1\hskip 1.99997pt-\hskip 1.99997pt\kappa\hskip 1.49994pt)\hskip 1.49994ptb\hskip 1.49994pt)\hskip 1.99997pt\bigl{|}\hskip 1.99997ptb\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{C}\hskip 3.99994pt\bigr{\}}.   Clearly,   the index of  this family of  relations  is  the same as  the index of  the family  1(κ)\mathcal{R}_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994pt\kappa\hskip 1.49994pt),  κ𝐑{}\kappa\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{R}\hskip 1.49994pt\cup\hskip 1.00006pt\{\hskip 1.49994pt\infty\hskip 1.49994pt\}.   Not  surprisingly,   the reduced  boundary  triplet  leads to  the same answer.

References

  • [BHS] J.  Behrndt,   S.  Hassi,   H.  de Snoo,   Boundary  value problems,   Weyl  functions,   and differential  operators,   Birkhäuser,   2020,   viii,  772  pp.   
  • [BGW] B.M.  Brown,   G.  Grubb,   I.G.  Wood,   MM-functions  for closed extensions of  adjoint  pairs of  operators with applications  to elliptic boundary  problems,   Mathematische  Nachrichten,   V.  282,   No.  3  (2009),   314  –347.   
  • [G1G_{\hskip 0.70004pt1}] G.  Grubb,   A characterization of  the non-local  boundary value problems associated with an elliptic operator,   Ann.  Sc.  Norm.  Sup. di  Pisa,   t.  22,   No.  3  (1968),   435–513.   
  • [G2G_{\hskip 0.70004pt2}] G.  Grubb,   Distributions and  operators,   Springer,   2009,   xii,  461  pp.   
  • [H] L.  Hörmander,   The analysis of  linear  partial  differential  operators,   V.  III,   Springer,   1985,   vii,  525  pp.   
  • [I1I_{\hskip 1.04996pt1}] N.V.  Ivanov,   Topological  categories  related  to  Fredholm  operators :   II.   The analytical  index,   2021,   53  pp.   arXiv:2111.15081v3.
  • [I2I_{\hskip 1.04996pt2}] N.V.  Ivanov,   The  index  of  self-adjoint  Shapiro-Lopatinskii  boundary  problems of  order  one,   2022,   120  pp.   arXiv:2207.09574v3.
  • [K] T.  Kato,   Perturbation  theory of  linear operators,   Springer,   1980,   1995,   xxi,  619  pp.   
  • [LM1LM_{\hskip 0.35002pt1}] J.L.  Lions,   E.  Magenes,   Problémes aux  limites non  homogénes.   II,   Annales de  l’institut  Fourier,   t.  11  (1961),   137–178.   
  • [LM2LM_{\hskip 0.35002pt2}] J.L.  Lions,   E.  Magenes,   Problemi ai  limiti  non omogenei  (III),   Annali  della  Scuola  Normale  Superiore di  Pisa,   t.  15,   No.  1–2  (1961),   41–103.   
  • [LM3LM_{\hskip 0.35002pt3}] J.L.  Lions,   E.  Magenes,   Problemi ai  limiti  non omogenei  (V),   Annali  della  Scuola  Normale  Superiore di  Pisa,   t.  16,   No.  1  (1962),   1– 44.   
  • [Schm] K.  Schmüdgen,   Unbounded self-adjoint  operators on  Hilbert  space,   Springer,   2012,   xx,  432  pp.   
  • [V] M.I.  Vishik,   On  general  boundary  problems for elliptic differential  equations,   Proc.  of  the  Moscow  Mathematical  Society,   V.  1  (1952),   187– 246.

First  version  –  June  16 ,   2023

Present  version  –  July  20 ,   2023

https :/​/​nikolaivivanov.com

E-mail :   nikolai.v.ivanov @ icloud.com,   ivanov @ msu.edu

Department  of  Mathematics,   Michigan  State  University