This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Boundary stabilization of a vibrating string with variable length

Seyf Eddine Ghenimi  and  Abdelmouhcene Sengouga Laboratory of Functional Analysis and Geometry of Spaces
Department of mathematics
Faculty of Mathematics and Computer Sciences
University of M’sila
28000 M’sila, Algeria.
Abstract.

We study small vibrations of a string with time-dependent length (t)\ell(t) and boundary damping. The vibrations are described by a 1-d wave equation in an interval with one moving endpoint at a speed (t)\ell^{\prime}(t) slower than the speed of propagation of the wave c=1. With no damping, the energy of the solution decays if the interval is expanding and increases if the interval is shrinking. The energy decays faster when the interval is expanding and a constant damping is applied at the moving end. However, to ensure the energy decay in a shrinking interval, the damping factor η\eta must be close enough to the optimal value η=1\eta=1, corresponding to the transparent condition. In all cases, we establish lower and upper estimates for the energy with explicit constants.

Key words and phrases:
Wave equation, time-dependent domains, generalized Fourier series, boundary stabilization.
2010 Mathematics Subject Classification:
35L05, 35C10, 93D15.

1. Introduction

We consider small transversal vibrations of a uniform string, with a time dependent length. The mechanical setting is sketched in Figure 1 where the left end of the string is fixed while the right moving end is also allowed to move transversely and attached to a damping device (a dash-pot with a damping factor η0\eta\geq 0).

Refer to caption
Figure 1. A string with one moving end subject to a dash-pot damping.

Denoting the displacement function by uu, depending on the position xx along the string and the time tt, the model can be stated as follows

{uttuxx=0,for 0<x<(t) and t>0,(1+η(t))ux((t),t)+(η+(t))ut((t),t)=0,for t>0,u(0,t)=0,for t>0,u(x,0)=u0(x), ut(x,0)=u1(x), for 0<x<L.\left\{\begin{array}[]{ll}u_{tt}-u_{xx}=0,\ \vskip 3.0pt plus 1.0pt minus 1.0pt&\text{for }0<x<\ell(t)\text{ and }t>0,\\ \left(1+\eta\ell^{\prime}\left(t\right)\right)u_{x}\left(\ell\left(t\right),t\right)+\left(\eta+\ell^{\prime}\left(t\right)\right)u_{t}\left(\ell\left(t\right),t\right)=0,\vskip 3.0pt plus 1.0pt minus 1.0pt&\text{for }t>0,\\ u\left(0,t\right)=0\text{,}\vskip 3.0pt plus 1.0pt minus 1.0pt&\text{for }t>0,\\ u(x,0)=u^{0}\left(x\right),\text{ }u_{t}\left(x,0\right)=u^{1}\left(x\right),\text{ \ }&\text{for }0<x<L.\end{array}\right. (WP)

The subscripts tt and xx in (WP) stand for the derivatives in time and space variables respectively. The functions u0u^{0} and u1u^{1} represents the initial shape and the initial transverse speed of the string, respectively. The initial length of the string is denoted by L=(0)L=\ell(0).

We assume that C([0,+[)\ell\in C\left(\left[0,+\infty\right[\right) and that

|(t)|<1,for t0,\left|\ell^{\prime}\left(t\right)\right|<1,\ \ \ \text{for }t\geq 0, (1.1)

which means that the speed of variation of the length of the string (t)\ell^{\prime}\left(t\right) is strictly less then the speed of propagation of the wave (here simplified to c=1c=1).

In this paper, we are mainly interested in the asymptotic behaviour in time of the energy of the solution, defined as

E(t):=120(t)ut2(x,t)+ux2(x,t)dx,for t0.E_{\ell}\left(t\right):=\frac{1}{2}\int_{0}^{\mathbf{\ell}\left(t\right)}u_{t}^{2}\left(x,t\right)+u_{x}^{2}\left(x,t\right)dx,\ \ \ \text{for }t\geq 0. (1.2)

For the time-independent interval, i.e. when (t)=L\ell\left(t\right)=L for t0t\geq 0, it is well known that:

  • If η=0\eta=0, then it is the energy is constant, i.e. EL(t)=EL(0),E_{L}\left(t\right)=E_{L}\left(0\right), for t0t\geq 0.

  • If η0\eta\geq 0 with η1\eta\neq 1\ , then the energy decays exponentially

    EL(t)CEL(0)e1Lln|γη|t, for some constant C>0,E_{L}\left(t\right)\leq CE_{L}\left(0\right)e^{-\frac{1}{L}\ln\left|\gamma_{\eta}\right|t},\text{ for some constant }C>0,

    where γη:=1+η1η\gamma_{\eta}:=\frac{1+\eta}{1-\eta}, see [15, 4, 3, 11]. In [5], the present authors showed that

    1γη2EL(0)e1Lln|γη|tEL(t)γη2EL(0)e1Lln|γη|t,for t0.\frac{1}{\gamma_{\eta}^{2}}E_{L}\left(0\right)e^{-\frac{1}{L}\ln\left|\gamma_{\eta}\right|t}\leq E_{L}\left(t\right)\leq\gamma_{\eta}^{2}E_{L}\left(0\right)e^{-\frac{1}{L}\ln\left|\gamma_{\eta}\right|t},\ \ \ \text{for }t\geq 0. (1.3)

The question of E(t)E_{\ell}\left(t\right) behaviour in time is more delicate if the interval depends on time. For instance, for the Dirichlet boundary conditions (which corresponds to η=+\eta=+\infty in (WP)), the energy decays if the interval is expanding and increases if the interval is shrinking, see [2]. See also [12, 13, 14] when the variation of the length is uniform in time.

Regarding the case with a velocity feedback at the moving endpoint x=(t)x=\ell\left(t\right):

  • Gugat [6] considered the case ux((t),t)+cut((t),t)=0u_{x}\left(\ell\left(t\right),t\right)+cu_{t}\left(\ell\left(t\right),t\right)=0 where cc is as constant. See also [8] for the particular (t)=1+vt\ell(t)=1+vt where vv is a constant, 0<v<10<v<1.

  • Ammari et al. [1] considered the case ux((t),t)+f(t)ut((t),t)=0,u_{x}\left(\ell\left(t\right),t\right)+f\left(t\right)u_{t}\left(\ell\left(t\right),t\right)=0, where fL(0,+)f\in L^{\infty}\left(0,+\infty\right)\ and (t)\ell\left(t\right) is periodic. See also [7] where (t)\ell\left(t\right) is not necessarily periodic. Mokhtari [9] considered the case with two moving endpoints.

For the special case η=1\eta=1, the boundary condition at x=(t)x=\ell\left(t\right) reads

ux((t),t)+ut((t),t)=0.u_{x}\left(\ell\left(t\right),t\right)+u_{t}\left(\ell\left(t\right),t\right)=0.

This is a transparent condition, i.e. there is no reflections of waves from the moving endpoint and consequently all the initial disturbances leave the interval (0,(t))\left(0,\ell\left(t\right)\right) at most after a time

T:=β1(L),T_{\ell}:=\beta^{-1}\left(L\right),

where β(t):=t(t),\beta\left(t\right):=t-\ell\left(t\right), see Figure 2. Hence, wether the interval is expanding or shrinking, the linear velocity feedback ut((t),t)-u_{t}\left(\ell^{\prime}\left(t\right),t\right) steers the solution to the zero state in the finite time TT_{\ell}. See for instance [6, 7], and for the particular case (t)=L\ell\left(t\right)=L see [15, 4]. In the remaining of this paper, we will assume that η0\eta\geq 0 and η1.\eta\neq 1.

Refer to caption
Figure 2. An initial disturbance with a small support leaves the interval at most after time TT_{\ell}.

The approach used in the paper at hands is based on generalized Fourier series. This is possible since the closed form for the solution of (WP) is given by the series

u(x,t)=ncn(eωnφ(t+x)eωnφ(tx)), for 0<x<(t) and t0,u(x,t)=\sum_{n\in\mathbb{Z}}c_{n}\left(e^{\omega_{n}\varphi(t+x)}-e^{\omega_{n}\varphi(t-x)}\right),\text{ \ \ \ for }0<x<\ell(t)\text{ and }t\geq 0, (1.4)

where the coefficients cnc_{n} can be explicitly computed in function of the initial data u0,u1.u^{0},u^{1}.\ We denoted by ωn\omega_{n} a sequence of complex number given by

ωn:=12ln|γη|+{2n+12iπ,if 0η<1,niπ,if η>1,\omega_{n}:=-\frac{1}{2}\ln\left|\gamma_{\eta}\right|+\left\{\begin{array}[]{ll}\displaystyle\frac{2n+1}{2}i\pi,&\text{if }0\leq\eta<1,\vskip 3.0pt plus 1.0pt minus 1.0pt\\ \displaystyle ni\pi,&\text{if }\eta>1,\end{array}\right. (1.5)

Observe that since |γη|1\left|\gamma_{\eta}\right|\geq 1 for every η0,\eta\geq 0, the real part of ωn\omega_{n} is nonpositive.

By φ,\varphi, we denoted a real function satisfying the functional equation

φ(t+(t))φ(t(t))=2.\varphi\left(t+\ell\left(t\right)\right)-\varphi\left(t-\ell\left(t\right)\right)=2. (1.6)

This equation often called Moor’s equation following his paper [10]. Some pairs of solutions (,ϕ)(\ell,\phi) can be found in [17].

We will assume that φ\varphi is differentiable and increasing. More precisely,

φC1([L,+[) and φ>0, for tL.\varphi\in C^{1}\left(\left[-L,+\infty\right[\right)\text{ \ and \ }\varphi^{\prime}>0,\text{ \ for }t\geq-L. (1.7)

The assumption φ>0\varphi^{\prime}>0 is needed in the sequel since φ\varphi^{\prime} will serve as a weight for an L2L^{2} space. Besides, a deacreasing ϕ\phi can not satisfy (1.6) since (t)>0\ell\left(t\right)>0. See [7] for further discussions on the regularity of the solutions of (1.6).

In this work, we demonstrate how the series formulas (1.4) can be used to achieve the following results:

  • For the undamped case, i.e. η=0\eta=0, the energy of the solution satisfies

    m(t)M(t0)E(t0)E(t)M(t)m(t0)E(t0), for 0t0<t,\frac{m\left(t\right)}{M\left(t_{0}\right)}E_{\ell}\left(t_{0}\right)\leq E_{\ell}\left(t\right)\leq\frac{M\left(t\right)}{m\left(t_{0}\right)}E_{\ell}\left(t_{0}\right),\text{ \ \ \ for }0\leq t_{0}<t, (1.8)

    where

    m(t):=minx[0,(t)]{φ(tx),φ(t+x)}and M(t):=maxx[0,(t)]{φ(tx),φ(t+x)}.m\left(t\right):=\min_{x\in\left[0,\ell\left(t\right)\right]}\left\{\varphi^{\prime}(t-x),\varphi^{\prime}(t+x)\right\}\ \text{and }M\left(t\right):=\max_{x\in\left[0,\ell\left(t\right)\right]}\left\{\varphi^{\prime}(t-x),\varphi^{\prime}(t+x)\right\}. (1.9)

    See Theorem 2 and its corollaries for sharper estimates.

  • For the damped case η>0,\eta>0, with η1\eta\neq 1, the energy E(t)E_{\ell}\left(t\right) satisfies

    (eln|γη|φ(t0(t0))M(t0))m(t)eln|γη|φ(t+(t))E(t0)E(t)(eln|γη|φ(t0+(t0))m(t0))M(t)eln|γη|φ(t(t))E(t0), for 0t0<t.\left(\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t_{0}-\ell\left(t_{0}\right))}}{M\left(t_{0}\right)}\right)m\left(t\right)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t+\ell\left(t\right))}E_{\ell}\left(t_{0}\right)\leq E_{\ell}\left(t\right)\\ \leq\left(\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t_{0}+\ell\left(t_{0}\right))}}{m\left(t_{0}\right)}\right)M\left(t\right)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t-\ell\left(t\right))}E_{\ell}\left(t_{0}\right),\text{ \ for }0\leq t_{0}<t. (1.10)

    See Theorem 3 and it corollaries for more estimates. The estimate given in (1.10), with explicit constants, is new to the best to our knowledge.

After the present introduction, we derive the exact solution and the expression for the coefficients of the series formula (1.4). In Section 3, we establish upper and lower estimates for the energy E(t)E_{\ell}(t) of the undamped equation. In Section 4, we deal with the damped case. Some examples will be included as a last section.

2. Exact solution

Let us introduce the following family of Hilbert spaces

V0(0,(t)):={wH1(0,(t))w(0)=0}, for t0V_{0}\left(0,\ell(t)\right):=\left\{w\in H^{1}\left(0,\ell(t)\right)\text{, }w\left(0\right)=0\right\},\ \ \ \text{\ for }t\geq 0

and assume that the initial data satisfies

u0V0(0,L), u1L2(0,L).u^{0}\in V_{0}\left(0,L\right),\text{ \ }u^{1}\in L^{2}\left(0,L\right). (2.1)

Let T>0.T>0. Then, we have the following existence result for Problem (WP).

Theorem 1.

Under the assumptions (1.1), (1.7) and (2.1), Problem (WP) has a unique solution satisfying

uC([0,T];V0(0,(t)))C1([0,T];L2(0,(t))),u\in C\left([0,T];V_{0}\left(0,\ell(t)\right)\right)\cap C^{1}\left([0,T];L^{2}\left(0,\ell(t)\right)\right), (2.2)

  given by the series (1.4) where the coefficients cnc_{n}\in\mathbb{C} are computed as follows

cn=14ωnLL(u~x0+u~1)eωnφ(x)𝑑x,    for n,c_{n}=\frac{1}{4\omega_{n}}\int_{-L}^{L}\left(\tilde{u}_{x}^{0}+\tilde{u}^{1}\right)e^{-\omega_{n}\varphi(x)}dx\text{, \ \ \ for\ }n\in\mathbb{Z},\ (2.3)

where u~x0\tilde{u}_{x}^{0} is an even ((resp. u~1\tilde{u}^{1} is an odd)) extension of the initial data u0u^{0} ((resp. u1)u^{1}) defined on the interval (L,L)\left(-L,L\right). Moreover,

n|ωncn|2=18LL(u~x0+u~1)2eln|γη|φ(x)dxφ(x)<+.\sum_{n\in\mathbb{\mathbb{Z}}}\left|\omega_{n}c_{n}\right|^{2}=\frac{1}{8}\int_{-L}^{L}\left(\tilde{u}_{x}^{0}+\tilde{u}^{1}\right)^{2}e^{\ln\left|\gamma_{\eta}\right|\varphi(x)}\frac{dx}{\varphi^{\prime}(x)}<+\infty. (2.4)
Proof.

\bullet The exact solution: This part of solution is slightly different from the approach in [16] where the author considered 1/η1/\eta instead of η\eta in the boundary condition at x=(t)x=\ell(t). We include it here for the sake clarity. The general solution of (WP) is given by D’Alembert’s formula

u(x,t)=f(t+x)+g(tx),u(x,t)=f(t+x)+g\left(t-x\right), (2.5)

where ff and gg are arbitrary continuous functions. The boundary conditions at the endpoint x=0x=0, we have

f(t)=g(t).f(t)=-g\left(t\right).

The condition at x=(t)x=\ell\left(t\right)\ implies that

(1+η(t))[f(t+(t))g(t(t))]=(η+(t))[f(t+(t))+g(t(t))],\left(1+\eta\ell^{\prime}\left(t\right)\right)\left[f^{\prime}(t+\ell\left(t\right))-g^{\prime}\left(t-\ell\left(t\right)\right)\right]=-\left(\eta+\ell^{\prime}\left(t\right)\right)\left[f^{\prime}(t+\ell\left(t\right))+g^{\prime}\left(t-\ell\left(t\right)\right)\right],

hence

[1+η(t)+η+(t)]f(α(t))=[1+η(t)η(t)]f(β(t)),\left[1+\eta\ell^{\prime}\left(t\right)+\eta+\ell^{\prime}\left(t\right)\right]f^{\prime}\left(\alpha\left(t\right)\right)=-\left[1+\eta\ell^{\prime}\left(t\right)-\eta-\ell^{\prime}\left(t\right)\right]f^{\prime}\left(\beta\left(t\right)\right), (2.6)

where β(t):=t(t)\beta\left(t\right):=t-\ell\left(t\right) and α(t):=t+(t)\alpha\left(t\right):=t+\ell\left(t\right). Then, noting that

1+η(t)η(t)1+η(t)+η+(t)=1γηβ(t)α(t),\frac{1+\eta\ell^{\prime}\left(t\right)-\eta-\ell^{\prime}\left(t\right)}{1+\eta\ell^{\prime}\left(t\right)+\eta+\ell^{\prime}\left(t\right)}=\frac{1}{\gamma_{\eta}}\frac{\beta^{\prime}\left(t\right)}{\alpha^{\prime}\left(t\right)}, (2.7)

we can rewrite (2.6) as

α(t)f(α(t))=1γηβ(t)f(β(t)).\alpha^{\prime}\left(t\right)f^{\prime}\left(\alpha\left(t\right)\right)=-\frac{1}{\gamma_{\eta}}\beta^{\prime}\left(t\right)f^{\prime}\left(\beta\left(t\right)\right). (2.8)

By integration, it follows that

f(α(t))=1γηf(β(t))+C.f\left(\alpha\left(t\right)\right)=-\frac{1}{\gamma_{\eta}}f\left(\beta\left(t\right)\right)+C. (2.9)

Let us assume for the moment that C=0.C=0. Then, it is convenient to search for ff in the form f(ξ)=eωφ(ξ)f(\xi)=e^{\omega\varphi\left(\xi\right)}, for a constant ω\omega and some function φ\varphi. Substituting eωφ(ξ)e^{\omega\varphi\left(\xi\right)} in (2.9), we get

eω[φ(α(t))φ(β(t))]=1/γη.e^{\omega\left[\varphi\left(\alpha\left(t\right)\right)-\varphi\left(\beta\left(t\right)\right)\right]}=-1/\gamma_{\eta}.

Assuming that φ\varphi satisfies (1.6), we are led to the following cases:

  • -

    If 0η<10\leq\eta<1, then γη1\gamma_{\eta}\geq 1 and we get

    eω[φ(α(t))φ(β(t))]=e(2n+1)iπlnγη.e^{\omega\left[\varphi\left(\alpha\left(t\right)\right)-\varphi\left(\beta\left(t\right)\right)\right]}=e^{\left(2n+1\right)i\pi-\ln\gamma_{\eta}}.

    Solving this equation for ω\omega, we obtain a sequence of values ωn,n,\omega_{n},n\in\mathbb{Z}, where

    ωn=2n+12iπ12lnγη.\omega_{n}=\frac{2n+1}{2}i\pi-\frac{1}{2}\ln\gamma_{\eta}.
  • -

    If η>1\eta>1, we have γη<1\gamma_{\eta}<-1 and we obtain this time

    ωn=niπ12ln|γη|, n.\omega_{n}=ni\pi-\frac{1}{2}\ln\left|\gamma_{\eta}\right|,\text{ \ }n\in\mathbb{Z}.

Thus, if η0\eta\geq 0 and η1\eta\neq 1, we always have ln|γη|1\ln\left|\gamma_{\eta}\right|\geq 1 and ωn\omega_{n} given by (1.5).

Due to the superposition principal, it follows that ff can be written as

f(ξ)=ncneωnφ(ξ), cn,f\left(\xi\right)=\sum_{n\in\mathbb{Z}}c_{n}e^{\omega_{n}\varphi\left(\xi\right)},\text{ \ \ \ }c_{n}\in\mathbb{C},

where cnc_{n} are complex coefficients to be determined later. Since f(ξ)=g(ξ),f\left(\xi\right)=-g\left(\xi\right), then D’Alembert’s formula for the solution yields the series

u(x,t)=ncn(eωnφ(t+x)eωnφ(tx)), for 0<x<(t) and t0.u(x,t)=\sum_{n\in\mathbb{Z}}c_{n}\left(e^{\omega_{n}\varphi\left(t+x\right)}-e^{\omega_{n}\varphi\left(t-x\right)}\right),\text{ \ for }0<x<\ell(t)\text{ and }t\geq 0. (2.10)

If C0C\neq 0 in (2.9), then we can check that

f(ξ)=Cγη1+γη+ncneωnφ(ξ),f\left(\xi\right)=\frac{C\gamma_{\eta}}{1+\gamma_{\eta}}+\sum_{n\in\mathbb{Z}}c_{n}e^{\omega_{n}\varphi\left(\xi\right)},

solves (2.9). However, this will not affect the solution of (WP) since f(ξ)=g(ξ)f\left(\xi\right)=-g\left(\xi\right) and thus the constant parts of ff and gg will be cancelled in the expression (2.10).

\bullet Computing the coefficients cnc_{n}: We extend u(,t)u(\cdot,t) to an odd function u~(,t)\tilde{u}(\cdot,t) on the interval ((t),(t)).\left(-\ell\left(t\right),\ell\left(t\right)\right). This ensures in particular that the boundary condition at x=0x=0 is satisfied for t0.t\geq 0. It follows also that u~t(,t)\tilde{u}_{t}(\cdot,t) and u~x(,t)\tilde{u}_{x}(\cdot,t) are respectively an odd and an even function. Going back to (2.10), we infer that

u~x+u~t=2φ(t+x)nωncneωnφ(t+x),\tilde{u}_{x}+\tilde{u}_{t}=2\varphi^{\prime}(t+x)\sum_{n\in\mathbb{Z}}\omega_{n}c_{n}e^{\omega_{n}\varphi(t+x)}\vskip 3.0pt plus 1.0pt minus 1.0pt,

for x((t),(t))x\in\left(-\ell\left(t\right),\ell\left(t\right)\right) and t0t\geq 0. Using the definition of ωn,\omega_{n}, we get

u~x+u~t={2e12(iπlnγη)φ(t+x)φ(t+x)nωncneniπφ(t+x),if 0η<1,2e12ln|γη|φ(t+x)φ(t+x)nωncneniπφ(t+x),if 1<η<+,\tilde{u}_{x}+\tilde{u}_{t}=\left\{\begin{array}[]{ll}\displaystyle 2e^{\frac{1}{2}\left(i\pi-\ln\gamma_{\eta}\right)\varphi(t+x)}\varphi^{\prime}(t+x)\sum_{n\in\mathbb{Z}}\omega_{n}c_{n}e^{ni\pi\varphi(t+x)}\vskip 6.0pt plus 2.0pt minus 2.0pt,&\text{if }0\leq\eta<1,\\ \displaystyle 2e^{-\frac{1}{2}\ln\left|\gamma_{\eta}\right|\varphi(t+x)}\varphi^{\prime}(t+x)\sum_{n\in\mathbb{Z}}\omega_{n}c_{n}e^{ni\pi\varphi(t+x)},&\text{if }1<\eta<+\infty,\end{array}\right. (2.11)

which implies that

nωncneniπφ(t+x)={12φ(t+x)e12(iπ+lnγη)φ(t+x)(u~x+u~t),if 0η<1,12φ(t+x)e12ln|γη|φ(t+x)(u~x+u~t),if 1<η<+.\sum_{n\in\mathbb{Z}}\omega_{n}c_{n}e^{ni\pi\varphi(t+x)}=\left\{\begin{array}[]{ll}\frac{1}{2\varphi^{\prime}(t+x)}\displaystyle e^{\frac{1}{2}\left(-i\pi+\ln\gamma_{\eta}\right)\varphi(t+x)}\left(\tilde{u}_{x}+\tilde{u}_{t}\right)\vskip 6.0pt plus 2.0pt minus 2.0pt,&\text{if }0\leq\eta<1,\\ \frac{1}{2\varphi^{\prime}(t+x)}\displaystyle e^{\frac{1}{2}\ln\left|\gamma_{\eta}\right|\varphi(t+x)}\left(\tilde{u}_{x}+\tilde{u}_{t}\right),&\text{if }1<\eta<+\infty.\end{array}\right. (2.12)

Taking into account that {eniπφ(t+x)/2}n\left\{e^{ni\pi\varphi(t+x)}/\sqrt{2}\right\}_{n\in\mathbb{\mathbb{Z}}} is an orthonormal basis of the weighted space L2((t),(t),φ(t+x)dx),L^{2}\left(-\ell\left(t\right),\ell\left(t\right),\varphi^{\prime}\left(t+x\right)dx\right), we deduce that

ωncn={14(t)(t)e12(iπlnγη)φ(t+x)(u~x+u~t)eniπφ(t+x)𝑑x,if 0η<1,14(t)(t)e12ln|γη|φ(t+x)(u~x+u~t)eniπφ(t+x)𝑑x,if 1<η<+,\omega_{n}c_{n}=\left\{\begin{array}[]{ll}\displaystyle\frac{1}{4}\int_{-\ell\left(t\right)}^{\ell\left(t\right)}e^{-\frac{1}{2}\left(i\pi-\ln\gamma_{\eta}\right)\varphi(t+x)}\left(\tilde{u}_{x}+\tilde{u}_{t}\right)e^{-ni\pi\varphi(t+x)}dx\vskip 6.0pt plus 2.0pt minus 2.0pt,&\text{if }0\leq\eta<1,\\ \displaystyle\frac{1}{4}\int_{-\ell\left(t\right)}^{\ell\left(t\right)}e^{\frac{1}{2}\ln\left|\gamma_{\eta}\right|\varphi(t+x)}\left(\tilde{u}_{x}+\tilde{u}_{t}\right)e^{-ni\pi\varphi(t+x)}dx,&\text{if }1<\eta<+\infty,\end{array}\right.

for nn\in\mathbb{Z}. Whether 0η<10\leq\eta<1 or 1<η<+,1<\eta<+\infty, in both cases, we have

cn=14ωn(t)(t)(u~x+u~t)eωnφ(t+x)𝑑x,    for n.c_{n}=\frac{1}{4\omega_{n}}\int_{-\ell\left(t\right)}^{\ell\left(t\right)}\left(\tilde{u}_{x}+\tilde{u}_{t}\right)e^{-\omega_{n}\varphi(t+x)}dx\text{, \ \ \ for\ }n\in\mathbb{Z}\text{.} (2.13)

Taking t=0t=0, we obtain (2.3) as claimed.

\bullet Regularity of the solution: As a consequence of Parseval’s equality, we get

n|ωncn|2={18(t)(t)|e12(iπlnγη)φ(t+x)|2(u~x+u~t)2dxφ(t+x),if 0η<118(t)(t)|e12ln|γη|φ(t+x)|2(u~x+u~t)2dxφ(t+x),if 1<η<+.\sum_{n\in\mathbb{Z}}\left|\omega_{n}c_{n}\right|^{2}=\left\{\begin{array}[]{ll}\displaystyle\frac{1}{8}\int_{-\ell\left(t\right)}^{\ell\left(t\right)}\left|e^{-\frac{1}{2}\left(i\pi-\ln\gamma_{\eta}\right)\varphi(t+x)}\right|^{2}\left(\tilde{u}_{x}+\tilde{u}_{t}\right)^{2}\frac{dx}{\varphi^{\prime}(t+x)}\vskip 6.0pt plus 2.0pt minus 2.0pt,&\text{if }0\leq\eta<1\\ \displaystyle\frac{1}{8}\int_{-\ell\left(t\right)}^{\ell\left(t\right)}\left|e^{\frac{1}{2}\ln\left|\gamma_{\eta}\right|\varphi(t+x)}\right|^{2}\left(\tilde{u}_{x}+\tilde{u}_{t}\right)^{2}\frac{dx}{\varphi^{\prime}(t+x)},&\text{if }1<\eta<+\infty.\end{array}\right.

Whether 0η<10\leq\eta<1 or 1<η<+,1<\eta<+\infty, the two cases of the precedent identity can be written as

n|ωncn|2=18(t)(t)(u~x+u~t)2eln|γη|φ(t+x)dxφ(t+x).\sum_{n\in\mathbb{Z}}\left|\omega_{n}c_{n}\right|^{2}=\frac{1}{8}\int_{-\ell\left(t\right)}^{\ell\left(t\right)}\left(\tilde{u}_{x}+\tilde{u}_{t}\right)^{2}e^{\ln\left|\gamma_{\eta}\right|\varphi(t+x)}\frac{dx}{\varphi^{\prime}(t+x)}. (2.14)

Due to (1.7) and (2.1), we have for t=0,t=0,

1φ(x)eln|γη|φ(t+x)(u~x0+u~1)L2(L,L)\frac{1}{\sqrt{\varphi^{\prime}(x)}}e^{\ln\left|\gamma_{\eta}\right|\varphi(t+x)}\left(\tilde{u}_{x}^{0}+\tilde{u}^{1}\right)\in L^{2}\left(-L,L\right)

and (2.4) follows.

Due to the continuity and differentiability of φ(t+x)\varphi\left(t+x\right) and the exponential function, and since |wn|=O(n)\left|w_{n}\right|=O\left(n\right) for large values of nn, the regularity result (2.2) follows from the convergences of the series of the solution (2.10) and its derivatives. ∎

3. The undamped case

In this section, we show some results for the undamped case, i.e. η=0\eta=0 in Problem (WP). To know wether the energy is increasing or in creasing, we compute E(t).E_{\ell}^{\prime}\left(t\right). Thus, using Leibniz’s rule for differentiation under the integral sign, we get

E(t)=12(t)[ux2((t),t)+ut2((t),t)]+0(t)ututt+uxutxdx.E_{\ell}^{\prime}\left(t\right)=\frac{1}{2}\ell^{\prime}(t)\left[u_{x}^{2}\left(\ell(t),t\right)+u_{t}^{2}\left(\ell(t),t\right)\right]+\int_{0}^{\ell\left(t\right)}u_{t}u_{tt}+u_{x}u_{tx}dx.

Since utt=uxxu_{tt}=u_{xx} , then ututt+uxutx=(utux)xu_{t}u_{tt}+u_{x}u_{tx}=\left(u_{t}u_{x}\right)_{x}\ and it follows

E(t)=12(t)[ux2((t),t)+ut2((t),t)]+utux((t),t).E_{\ell}^{\prime}\left(t\right)=\frac{1}{2}\ell^{\prime}(t)\left[u_{x}^{2}\left(\ell(t),t\right)+u_{t}^{2}\left(\ell(t),t\right)\right]+u_{t}u_{x}\left(\ell(t),t\right). (3.1)

Then, we have the following result.

Lemma 1.

The energy of solution of Problem (WP), with η=0\eta=0, satisfies

E(t)=(t)2(1|(t)|2)ut2((t),t),for t>0.E_{\ell}^{\prime}\left(t\right)=-\frac{\ell^{\prime}(t)}{2}\left(1-\left|\ell^{\prime}\left(t\right)\right|^{2}\right)u_{t}^{2}\left(\ell\left(t\right),t\right),\ \ \text{for }t>0.
Proof.

The boundary condition at x=(t),x=\ell\left(t\right), with η=0,\eta=0, reads

ux((t),t)=ut((t),t),for t>0.u_{x}\left(\ell\left(t\right),t\right)=-u_{t}\left(\ell\left(t\right),t\right),\ \ \text{for }t>0.

Reporting this in (3.1), we get

E(t)=12(t)(|(t)|2+1)ut2((t),t)(t)ut2((t),t)E_{\ell}^{\prime}\left(t\right)=\frac{1}{2}\ell^{\prime}(t)\left(\left|\ell^{\prime}\left(t\right)\right|^{2}+1\right)u_{t}^{2}\left(\ell\left(t\right),t\right)-\ell^{\prime}\left(t\right)u_{t}^{2}\left(\ell(t),t\right)

and the lemma follows. ∎

Remark 1.

The above lemma means that

 E(t) is nondeacreasing if 1<(t)0, and nonincreasing if 0(t)<1.\|\text{ \ \ }E_{\ell}\left(t\right)\text{ is nondeacreasing if }-1<\ell^{\prime}\left(t\right)\leq 0,\text{ and nonincreasing if }0\leq\ell^{\prime}\left(t\right)<1. (3.2)

The same result holds for the multidimensional wave equation, in a time-dependent domain, with homogenous Dirichlet boundary conditions, see [2].

The next theorem show that the asymptotic behaviour of E(t)E_{\ell}\left(t\right) is dictated by φ.\varphi^{\prime}.

Theorem 2.

Under the assumptions (1.1), (1.7) and (2.1), the solution of Problem (WP) satisfies

0(t)(1φ(t+x)+1φ(tx))(ux2+ut2)+2(1φ(t+x)1φ(tx))uxutdx=4𝒮0, for t0,\int_{0}^{\ell\left(t\right)}\left(\frac{1}{\varphi^{\prime}(t+x)}+\frac{1}{\varphi^{\prime}(t-x)}\right)\left(u_{x}^{2}+u_{t}^{2}\right)\\ +2\left(\frac{1}{\varphi^{\prime}(t+x)}-\frac{1}{\varphi^{\prime}(t-x)}\right)u_{x}u_{t}\ dx=4\mathcal{S}_{0},\text{ \ \ for }t\geq 0, (3.3)

where 𝒮0:=π22n|(2n+1)cn|2\mathcal{S}_{0}:=\frac{\pi^{2}}{2}\sum_{n\in\mathbb{Z}}\left|\left(2n+1\right)c_{n}\right|^{2}. Moreover, it holds that

𝒮0m(t)E(t)𝒮0M(t), fort0,\mathcal{S}_{0}m\left(t\right)\leq E_{\ell}\left(t\right)\leq\mathcal{S}_{0}M\left(t\right),\text{ \ \ for}\ t\geq 0, (3.4)

where m(t)m\left(t\right) and M(t)M\left(t\right) are defined in (1.9).

Proof.

If η=0\eta=0 then γη=1\gamma_{\eta}=1 and ωn=(2n+1)iπ/2\omega_{n}=\left(2n+1\right)i\pi/2. The identity (2.14) becomes

18(t)(t)(u~x+u~t)2dxφ(t+x)=π24n|(2n+1)cn|2=12𝒮0, fort0.\frac{1}{8}\int_{-\ell\left(t\right)}^{\ell\left(t\right)}\left(\tilde{u}_{x}+\tilde{u}_{t}\right)^{2}\frac{dx}{\varphi^{\prime}(t+x)}=\frac{\pi^{2}}{4}\sum_{n\in\mathbb{Z}}\left|\left(2n+1\right)c_{n}\right|^{2}=\frac{1}{2}\mathcal{S}_{0},\text{ \ \ for}\ t\geq 0. (3.5)

Since u~x\tilde{u}_{x} is an even function of xx and that u~t\tilde{u}_{t} is an odd one, then changing xx by x-x in the last formula, we also obtain

(t)(t)(u~xu~t)2dxφ(tx)=4𝒮0, fort0.\int_{-\ell\left(t\right)}^{\ell\left(t\right)}\left(\tilde{u}_{x}-\tilde{u}_{t}\right)^{2}\frac{dx}{\varphi^{\prime}(t-x)}=4\mathcal{S}_{0},\text{ \ \ for}\ t\geq 0. (3.6)

Taking the sum of (3.5) and (3.6), we obtain

(t)(t)(u~x+u~t)2dxφ(t+x)+(t)(t)(u~xu~t)2dxφ(tx)=8𝒮0.\int_{-\ell\left(t\right)}^{\ell\left(t\right)}\left(\tilde{u}_{x}+\tilde{u}_{t}\right)^{2}\frac{dx}{\varphi^{\prime}(t+x)}+\int_{-\ell\left(t\right)}^{\ell\left(t\right)}\left(\tilde{u}_{x}-\tilde{u}_{t}\right)^{2}\frac{dx}{\varphi^{\prime}(t-x)}=8\mathcal{S}_{0}.

Expanding (ux±ut)2\left(u_{x}\pm u_{t}\right)^{2} and collecting similar terms, we get

(t)(t)(1φ(t+x)+1φ(tx))(u~x2+u~t2)+2(1φ(t+x)1φ(tx))u~xu~tdx=8𝒮0, fort0.\int_{-\ell\left(t\right)}^{\ell\left(t\right)}\left(\frac{1}{\varphi^{\prime}(t+x)}+\frac{1}{\varphi^{\prime}(t-x)}\right)\left(\tilde{u}_{x}^{2}+\tilde{u}_{t}^{2}\right)\\ +2\left(\frac{1}{\varphi^{\prime}(t+x)}-\frac{1}{\varphi^{\prime}(t-x)}\right)\tilde{u}_{x}\tilde{u}_{t}\ dx=8\mathcal{S}_{0},\text{ \ \ for}\ t\geq 0. (3.7)

As the function under the integral sign is even, then (3.3) follows.

Next, we use the algebraic inequality ±2uxutut2+ux2\pm 2u_{x}u_{t}\leq u_{t}^{2}+u_{x}^{2} to obtain

0(t)(1φ(t+x)+1φ(tx)|1φ(t+x)1φ(tx)|)(ux2+ut2)𝑑x4𝒮00(t)(1φ(t+x)+1φ(tx)+|1φ(t+x)1φ(tx)|)(ux2+ut2)𝑑x,\int_{0}^{\ell\left(t\right)}\left(\frac{1}{\varphi^{\prime}(t+x)}+\frac{1}{\varphi^{\prime}(t-x)}-\left|\frac{1}{\varphi^{\prime}(t+x)}-\frac{1}{\varphi^{\prime}(t-x)}\right|\right)\left(u_{x}^{2}+u_{t}^{2}\right)\ dx\leq 4\mathcal{S}_{0}\\ \leq\int_{0}^{\ell\left(t\right)}\left(\frac{1}{\varphi^{\prime}(t+x)}+\frac{1}{\varphi^{\prime}(t-x)}+\left|\frac{1}{\varphi^{\prime}(t+x)}-\frac{1}{\varphi^{\prime}(t-x)}\right|\right)\left(u_{x}^{2}+u_{t}^{2}\right)\ dx,

fort0.\ t\geq 0. Recalling that

(a+b)|ab|=2min{a,b}and(a+b)+|ab|=2max{a,b},\left(a+b\right)-\left|a-b\right|=2\min\left\{a,b\right\}\ \ \ \text{and}\ \ \ \left(a+b\right)+\left|a-b\right|=2\max\left\{a,b\right\}, (3.8)

for a,b,a,b\in\mathbb{R}, then

0(t)min{1φ(t+x),1φ(tx)}(ux2+ut2)𝑑x2𝒮00(t)max{1φ(t+x),1φ(tx)}(ux2+ut2)𝑑x,\int_{0}^{\ell\left(t\right)}\min\left\{\frac{1}{\varphi^{\prime}(t+x)},\frac{1}{\varphi^{\prime}(t-x)}\right\}\left(u_{x}^{2}+u_{t}^{2}\right)\ dx\leq 2\mathcal{S}_{0}\\ \leq\int_{0}^{\ell\left(t\right)}\max\left\{\frac{1}{\varphi^{\prime}(t+x)},\frac{1}{\varphi^{\prime}(t-x)}\right\}\left(u_{x}^{2}+u_{t}^{2}\right)\ dx,

fort0.\ t\geq 0. Recalling that E(t)E_{\ell}\left(t\right) is defined by (1.2), we deduce that

minx[0,(t)]{1φ(t+x),1φ(tx)}E(t)𝒮0maxx[0,(t)]{1φ(t+x),1φ(tx)}E(t),\min_{x\in\left[0,\ell\left(t\right)\right]}\left\{\frac{1}{\varphi^{\prime}(t+x)},\frac{1}{\varphi^{\prime}(t-x)}\right\}E_{\ell}\left(t\right)\leq\mathcal{S}_{0}\leq\max_{x\in\left[0,\ell\left(t\right)\right]}\left\{\frac{1}{\varphi^{\prime}(t+x)},\frac{1}{\varphi^{\prime}(t-x)}\right\}E_{\ell}\left(t\right),

hence

minx[0,(t)]{φ(t+x),φ(tx)}𝒮0E(t)maxx[0,(t)]{φ(t+x),φ(tx)}𝒮0,\min_{x\in\left[0,\ell\left(t\right)\right]}\left\{\varphi^{\prime}(t+x),\varphi^{\prime}(t-x)\right\}\mathcal{S}_{0}\leq E_{\ell}\left(t\right)\leq\max_{x\in\left[0,\ell\left(t\right)\right]}\left\{\varphi^{\prime}(t+x),\varphi^{\prime}(t-x)\right\}\mathcal{S}_{0},

which is (3.4). ∎

Remark 2.

An estimation analogue to (3.4) was obtained for the case of homogeneous boundary conditions at both ends, see [7].

If φ\varphi^{\prime} is monotone then the asymptotic behaviour is dictated by (t)\ell\left(t\right) and we have the following refinements.

Corollary 1.

Under the assumption of Theorem 2, assume that

φ is monotone for t[t0,t1], 0t0<t1.\varphi^{\prime}\text{ is monotone for }t\in[t_{0},t_{1}],\text{ }0\leq t_{0}<t_{1}. (3.9)
  • If 1<(t)0-1<\ell^{\prime}\left(t\right)\leq 0 on [t0,t1][t_{0},t_{1}], then φ\varphi^{\prime}and E(t)E_{\ell}\left(t\right) are nondeacreasing and

    𝒮0φ(t(t))E(t)𝒮0φ(t+(t)), fort[t0,t1].\mathcal{S}_{0}\varphi^{\prime}(t-\ell\left(t\right))\leq E_{\ell}\left(t\right)\leq\mathcal{S}_{0}\varphi^{\prime}(t+\ell\left(t\right)),\text{ \ \ for}\ t\in[t_{0},t_{1}]. (3.10)
  • If 0(t)<10\leq\ell^{\prime}\left(t\right)<1 on [t0,t1][t_{0},t_{1}], then φ\varphi^{\prime}and E(t)E_{\ell}\left(t\right) are nonincreasing and

    𝒮0φ(t+(t))E(t)𝒮0φ(t(t)), fort[t0,t1].\mathcal{S}_{0}\varphi^{\prime}(t+\ell\left(t\right))\leq E_{\ell}\left(t\right)\leq\mathcal{S}_{0}\varphi^{\prime}\left(t-\ell\left(t\right)\right),\text{ \ \ for}\ t\in[t_{0},t_{1}]. (3.11)
Proof.

We already have (3.2). The derivation of the identity (1.6) yields

1+(t)1(t)φ(t+(t))=φ(t(t)).\frac{1+\ell^{\prime}\left(t\right)}{1-\ell^{\prime}\left(t\right)}\varphi^{\prime}(t+\ell\left(t\right))=\varphi^{\prime}(t-\ell\left(t\right)). (3.12)

Taking into consideration the variation of the function s(1+s)/(1s)s\mapsto\left(1+s\right)/\left(1-s\right) on the interval (1,1)\left(-1,1\right), it follows that

0<1+(t)1(t)1 if 1<(t)0and 11+(t)1(t) if 0(t)<1,0<\frac{1+\ell^{\prime}\left(t\right)}{1-\ell^{\prime}\left(t\right)}\leq 1\text{ \ if }-1<\ell^{\prime}\left(t\right)\leq 0\ \ \ \text{and \ \ }1\leq\frac{1+\ell^{\prime}\left(t\right)}{1-\ell^{\prime}\left(t\right)}\ \text{ \ if }0\leq\ell^{\prime}\left(t\right)<1,

hence

if 1<(t)0, then m(t)=φ(t(t))φ(t+(t))=M(t),\displaystyle\text{if \ }-1<\ell^{\prime}\left(t\right)\leq 0,\text{ then \ }m\left(t\right)=\varphi^{\prime}(t-\ell\left(t\right))\leq\varphi^{\prime}(t+\ell\left(t\right))=M\left(t\right), (3.13)
if 0(t)<1, then M(t)=φ(t(t))φ(t+(t))=m(t).\displaystyle\text{if \ }0\leq\ell^{\prime}\left(t\right)<1,\text{ then \ }M\left(t\right)=\varphi^{\prime}(t-\ell\left(t\right))\geq\varphi^{\prime}(t+\ell\left(t\right))=m\left(t\right). (3.14)

Of course, if φ\varphi^{\prime} is monotone and 1<(t)0-1<\ell^{\prime}\left(t\right)\leq 0 then (3.13) means that φ\varphi^{\prime} is necessarily nondecreasing, and so is φ(t±(t))\varphi^{\prime}(t\pm\ell\left(t\right))\ and E(t).E_{\ell}\left(t\right). The same argument can be made when 0(t)<10\leq\ell^{\prime}\left(t\right)<1. This shows the corollary. ∎

Remark 3.

The assumption (3.9) is satisfied in all the examples of the last section.

Recall that 𝒮0\mathcal{S}_{0} can be computed using the initial data by setting t=0t=0 in (3.4). If one needs to compare E(t)E_{\ell}\left(t\right) with E(t0)E_{\ell}\left(t_{0}\right)\ for 0t0<t,0\leq t_{0}<t, then we have the next result.

Corollary 2.

Under the assumption of Theorem 2, we have

m(t)M(t0)E(t0)E(t)M(t)m(t0)E(t0), for 0t0<t.\frac{m\left(t\right)}{M\left(t_{0}\right)}E_{\ell}\left(t_{0}\right)\leq E_{\ell}\left(t\right)\leq\frac{M\left(t\right)}{m\left(t_{0}\right)}E_{\ell}\left(t_{0}\right),\text{ \ \ \ for }0\leq t_{0}<t\text{.} (3.15)

Moreover, if φ\varphi satisfies (3.9), then:

  • If 1<(t)0-1<\ell^{\prime}\left(t\right)\leq 0 on [t0,t1][t_{0},t_{1}], then φ\varphi^{\prime}and E(t)E_{\ell}\left(t\right) are nondecreasing and satisfy

    φ(t(t))φ(t0+(t0))E(t0)E(t)φ(t+(t))φ(t0(t0))E(t0), for t[t0,t1].\frac{\varphi^{\prime}\left(t-\ell\left(t\right)\right)}{\varphi^{\prime}\left(t_{0}+\ell\left(t_{0}\right)\right)}E_{\ell}\left(t_{0}\right)\leq E_{\ell}\left(t\right)\leq\frac{\varphi^{\prime}\left(t+\ell\left(t\right)\right)}{\varphi^{\prime}\left(t_{0}-\ell\left(t_{0}\right)\right)}E_{\ell}\left(t_{0}\right),\text{ \ \ for }t\in[t_{0},t_{1}]. (3.16)
  • If 0(t)<10\leq\ell^{\prime}\left(t\right)<1 on [t0,t1][t_{0},t_{1}], then φ\varphi^{\prime}and E(t)E_{\ell}\left(t\right) are nonincreasing and

    φ(t+(t))φ(t0(t0))E(t0)E(t)φ(t(t))φ(t0+(t0))E(t0), for t[t0,t1].\frac{\varphi^{\prime}\left(t+\ell\left(t\right)\right)}{\varphi^{\prime}\left(t_{0}-\ell\left(t_{0}\right)\right)}E_{\ell}\left(t_{0}\right)\leq E_{\ell}\left(t\right)\leq\frac{\varphi^{\prime}\left(t-\ell\left(t\right)\right)}{\varphi^{\prime}\left(t_{0}+\ell\left(t_{0}\right)\right)}E_{\ell}\left(t_{0}\right),\text{ \ \ for }t\in[t_{0},t_{1}]. (3.17)
Proof.

Since (3.4) holds also for t=t0t=t_{0}, then the corollary follows from the inequalities

E(t)M(t)𝒮0E(t0)m(t0) and E(t0)M(t0)𝒮0E(t)m(t).\frac{E_{\ell}\left(t\right)}{M\left(t\right)}\leq\mathcal{S}_{0}\leq\frac{E_{\ell}\left(t_{0}\right)}{m\left(t_{0}\right)}\text{ \ \ and \ \ }\frac{E_{\ell}\left(t_{0}\right)}{M\left(t_{0}\right)}\leq\mathcal{S}_{0}\leq\frac{E_{\ell}\left(t\right)}{m\left(t\right)}.

4. The damped case

In this section, we investigate the case with boundary damping when

η>0 and η1\eta>0\text{ \ and \ }\eta\neq 1

in Problem (WP). Let us recall that we still have (3.1), i.e.

E(t)=12(t)[ux2((t),t)+ut2((t),t)]+utux((t),t), fort0.E_{\ell}^{\prime}\left(t\right)=\frac{1}{2}\ell^{\prime}(t)\left[u_{x}^{2}\left(\ell(t),t\right)+u_{t}^{2}\left(\ell(t),t\right)\right]+u_{t}u_{x}\left(\ell(t),t\right),\ \ \text{\ for}\ t\geq 0.

but now the boundary condition at x=(t)x=\ell\left(t\right) is

(1+η(t))ux((t),t)+(η+(t))ut((t),t)=0, fort0\left(1+\eta\ell^{\prime}\left(t\right)\right)u_{x}\left(\ell\left(t\right),t\right)+\left(\eta+\ell^{\prime}\left(t\right)\right)u_{t}\left(\ell\left(t\right),t\right)=0,\ \ \text{\ for}\ t\geq 0

Let us discuss the sign of E(t)E_{\ell}^{\prime}\left(t\right) for different values of (t).\ell^{\prime}\left(t\right).

  • If the interval is shrinking 1<(t)<0,-1<\ell^{\prime}\left(t\right)<0, for t[t1,t2]t\in\left[t_{1},t_{2}\right]\ where 0t1<t2,0\leq t_{1}<t_{2}, then we have the following cases:

    - If (t)=1/η,\ell^{\prime}\left(t\right)=-1/\eta, then the boundary condition at x=(t)x=\ell\left(t\right) reads ut((t),t)=0u_{t}\left(\ell(t),t\right)=0 and thus

    E(t)=12ηux2((t),t)0, for t[t1,t2].E_{\ell}^{\prime}\left(t\right)=-\frac{1}{2\eta}u_{x}^{2}\left(\ell(t),t\right)\leq 0,\text{ \ for }t\in\left[t_{1},t_{2}\right].

    - If (t)=η,\ell^{\prime}\left(t\right)=-\eta, then ux((t),t)=0u_{x}\left(\ell(t),t\right)=0 and thus

    E(t)=12ηut2((t),t)0, for t[t1,t2].E_{\ell}^{\prime}\left(t\right)=-\frac{1}{2}\eta u_{t}^{2}\left(\ell(t),t\right)\leq 0,\text{ \ for }t\in\left[t_{1},t_{2}\right].

    - Assume that (t){1/η,0,η},\ell^{\prime}\left(t\right)\notin\left\{-1/\eta,0,-\eta\right\}, then after some computation we can rewrite (3.1) as

    E(t)=12((t)η2+2η+(t))1|(t)|2(1+η(t))2ut2((t),t), for t[t1,t2].E_{\ell}^{\prime}\left(t\right)=-\frac{1}{2}\left(\ell^{\prime}\left(t\right)\eta^{2}+2\eta+\ell^{\prime}\left(t\right)\right)\frac{1-\left|\ell^{\prime}\left(t\right)\right|^{2}}{\left(1+\eta\ell^{\prime}\left(t\right)\right)^{2}}u_{t}^{2}\left(\ell\left(t\right),t\right),\text{ \ for }t\in\left[t_{1},t_{2}\right]. (4.1)

    The sign of E(t)E_{\ell}^{\prime}\left(t\right) is opposite to the sign of

    P(η)=(t)η2+2η+(t).P_{\ell}\left(\eta\right)=\ell^{\prime}\left(t\right)\eta^{2}+2\eta+\ell^{\prime}\left(t\right).

    Due to (1.1), the polynomial P(η)P_{\ell}\left(\eta\right) has a discriminant Δ=4(1|(t)|2)>0\Delta=4(1-\left|\ell^{\prime}\left(t\right)\right|^{2})>0 and thus P(η)P_{\ell}\left(\eta\right) has two real roots

    η1:=(1+1|(t)|2)/(t) and η2:=(11|(t)|2)/(t).\eta_{1}:=\left(-1+\sqrt{1-\left|\ell^{\prime}\left(t\right)\right|^{2}}\right)/\ell^{\prime}\left(t\right)\text{ \ and \ }\eta_{2}:=\left(-1-\sqrt{1-\left|\ell^{\prime}\left(t\right)\right|^{2}}\right)/\ell^{\prime}\left(t\right). (4.2)
    Refer to caption
    Figure 3. Variation of η1\eta_{1} and η2\eta_{2} in function of \ell^{\prime} when 1<<0-1<\ell^{\prime}<0.

    Both η1\eta_{1} and η2\eta_{2} have the opposite sign of (t),\ell^{\prime}\left(t\right), for t[t1,t2]t\in\left[t_{1},t_{2}\right] and in particular

    0<η1<1<η2.0<\eta_{1}<1<\eta_{2}.

    We deduce from (4.1) that:

    • If η1<η<η2,\eta_{1}<\eta<\eta_{2}, for t[t1,t2],t\in\left[t_{1},t_{2}\right], then P(η)>0P_{\ell}\left(\eta\right)>0 and by consequence E(t)<0.E_{\ell}^{\prime}\left(t\right)<0.

    • If η=η1\eta=\eta_{1} or η=η2,\eta=\eta_{2}, for t[t1,t2],t\in\left[t_{1},t_{2}\right], then P(η)=E(t)=0,P_{\ell}\left(\eta\right)=E_{\ell}^{\prime}\left(t\right)=0, i.e. the energy is constant.

    • If η]0,η1[]η2,[,\eta\in\left]0,\eta_{1}\right[\cup\left]\eta_{2},\infty\right[, for t[t1,t2],t\in\left[t_{1},t_{2}\right], then P(η)<0P_{\ell}\left(\eta\right)<0 and we have E(t)>0.E_{\ell}^{\prime}\left(t\right)>0.

  • If the interval is independent of time, i.e. (t)=0\ell^{\prime}\left(t\right)=0\ for t[t1,t2],t\in\left[t_{1},t_{2}\right], then ux((t),t)=ηut((t),t)u_{x}\left(\ell\left(t\right),t\right)=-\eta u_{t}\left(\ell\left(t\right),t\right) and thus

    E(t)=ηut2((t),t)0,for t[t1,t2].E_{\ell}^{\prime}\left(t\right)=-\eta u_{t}^{2}\left(\ell\left(t\right),t\right)\leq 0,\ \ \text{for }t\in\left[t_{1},t_{2}\right].
  • If the interval is expanding, i.e. 0<(t)<10<\ell^{\prime}\left(t\right)<1\ for t[t1,t2],t\in\left[t_{1},t_{2}\right], then P(η)>0P_{\ell}\left(\eta\right)>0 for η>0.\eta>0. Taking into account (1.1) and (4.1), we deduce that E(t)0,E_{\ell}^{\prime}\left(t\right)\leq 0,  for t[t1,t2].t\in\left[t_{1},t_{2}\right].

Remark 4.

To summarize, under the assumption (1.1),(\ref{tlike}),

 If the interval is expanding, then E(t) is nonincreasing for any η>0.If the interval is shrinking, then E(t) is nonincreasing if the dampingfactor can be taken close enough to the optimal value η=1.\left\|\text{\ \ \ \ }\begin{array}[]{l}\text{If the interval is expanding, then }E_{\ell}\left(t\right)\text{ is nonincreasing for any }\eta>0\text{.}\\ \text{If the interval is shrinking, then }E_{\ell}\left(t\right)\text{ is nonincreasing if the damping}\\ \text{factor can be taken close enough to the optimal value }\eta=1.\end{array}\right. (4.3)

Let us now estimate E(t)E_{\ell}\left(t\right) is using φ\varphi^{\prime} and exp(ln|γη|φ)\exp\left(-\ln\left|\gamma_{\eta}\right|\varphi\right).

Theorem 3.

Under the assumptions (1.1), (1.7) and (2.1), the solution of Problem (WP) satisfies

0(t)(eln|γη|φ(t+x)φ(t+x)+eln|γη|φ(tx)φ(tx))(ux2+ut2)+2(eln|γη|φ(t+x)φ(t+x)eln|γη|φ(tx)φ(tx))uxutdx=4𝒮η,\int_{0}^{\ell\left(t\right)}\left(\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t+x)}}{\varphi^{\prime}(t+x)}+\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t-x)}}{\varphi^{\prime}(t-x)}\right)\left(u_{x}^{2}+u_{t}^{2}\right)\\ +2\left(\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t+x)}}{\varphi^{\prime}(t+x)}-\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t-x)}}{\varphi^{\prime}(t-x)}\right)u_{x}u_{t}dx=4\mathcal{S}_{\eta}, (4.4)

fort0\ t\geq 0, where 𝒮η:=2n|ωncn|2\mathcal{S}_{\eta}:=2\sum_{n\in\mathbb{Z}}\left|\omega_{n}c_{n}\right|^{2}. Moreover, it holds that

𝒮ηm~(t)E(t)𝒮ηM~(t), fort0,\mathcal{S}_{\eta}\tilde{m}\left(t\right)\leq E_{\ell}\left(t\right)\leq\mathcal{S}_{\eta}\tilde{M}\left(t\right),\text{ \ \ for}\ t\geq 0, (4.5)

where

m~(t)\displaystyle\tilde{m}\left(t\right) :\displaystyle: =minx[0,(t)]{φ(tx)eln|γη|φ(tx),φ(t+x)eln|γη|φ(t+x)},\displaystyle=\min_{x\in\left[0,\ell\left(t\right)\right]}\left\{\varphi^{\prime}(t-x)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t-x)},\varphi^{\prime}(t+x)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t+x)}\right\},
M~(t)\displaystyle\tilde{M}\left(t\right) :\displaystyle: =maxx[0,(t)]{φ(tx)eln|γη|φ(tx),φ(t+x)eln|γη|φ(t+x)}.\displaystyle=\max_{x\in\left[0,\ell\left(t\right)\right]}\left\{\varphi^{\prime}(t-x)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t-x)},\varphi^{\prime}(t+x)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t+x)}\right\}.
Proof.

We argue as in the proof of Theorem 2. Noting that u~x\tilde{u}_{x} is an even function of xx and that u~t\tilde{u}_{t} is an odd one, then the identity (2.14) yields

(t)(t)eln|γη|φ(t±x)(u~x±u~t)2dxφ(t±x)=4𝒮η, fort0.\int_{-\ell\left(t\right)}^{\ell\left(t\right)}e^{\ln\left|\gamma_{\eta}\right|\varphi(t\pm x)}\left(\tilde{u}_{x}\pm\tilde{u}_{t}\right)^{2}\frac{dx}{\varphi^{\prime}(t\pm x)}=4\mathcal{S}_{\eta},\text{ \ \ for}\ t\geq 0. (4.6)

Hence, summing, we get

(t)(t)eln|γη|φ(t+x)(u~x+u~t)2dxφ(t+x)+(t)(t)eln|γη|φ(tx)(u~xu~t)2dxφ(tx)=8𝒮η.\int_{-\ell\left(t\right)}^{\ell\left(t\right)}e^{\ln\left|\gamma_{\eta}\right|\varphi(t+x)}\left(\tilde{u}_{x}+\tilde{u}_{t}\right)^{2}\frac{dx}{\varphi^{\prime}(t+x)}+\int_{-\ell\left(t\right)}^{\ell\left(t\right)}e^{\ln\left|\gamma_{\eta}\right|\varphi(t-x)}\left(\tilde{u}_{x}-\tilde{u}_{t}\right)^{2}\frac{dx}{\varphi^{\prime}(t-x)}=8\mathcal{S}_{\eta}.

Expanding squares, we get

(t)(t)(eln|γη|φ(t+x)φ(t+x)+eln|γη|φ(tx)φ(tx))(u~x2+u~t2)+2(eln|γη|φ(t+x)φ(t+x)eln|γη|φ(tx)φ(tx))u~xu~t dx=8𝒮η, fort0.\int_{-\ell\left(t\right)}^{\ell\left(t\right)}\left(\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t+x)}}{\varphi^{\prime}(t+x)}+\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t-x)}}{\varphi^{\prime}(t-x)}\right)\left(\tilde{u}_{x}^{2}+\tilde{u}_{t}^{2}\right)\\ +2\left(\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t+x)}}{\varphi^{\prime}(t+x)}-\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t-x)}}{\varphi^{\prime}(t-x)}\right)\tilde{u}_{x}\tilde{u}_{t}\text{ }dx=8\mathcal{S}_{\eta},\text{ \ \ for}\ t\geq 0. (4.7)

As the function under the integral sign is even, then (4.4) follows.

For 0x(t)0\leq x\leq\ell\left(t\right) and t0,t\geq 0, let us denote

A(x,t)=eln|γη|φ(tx)φ(tx) and B(x,t)=eln|γη|φ(t+x)φ(t+x).A\left(x,t\right)=\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t-x)}}{\varphi^{\prime}(t-x)}\text{ and \ }B\left(x,t\right)=\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t+x)}}{\varphi^{\prime}(t+x)}.

Then, we can rewrite (4.4) as

0(t)(A(x,t)+B(x,t))(u~t2+u~x2)𝑑x+2(A(x,t)B(x,t))u~tu~xdx=4𝒮η.\int_{0}^{\ell\left(t\right)}\left(A\left(x,t\right)+B\left(x,t\right)\right)\left(\tilde{u}_{t}^{2}+\tilde{u}_{x}^{2}\right)dx+2\left(A\left(x,t\right)-B\left(x,t\right)\right)\tilde{u}_{t}\tilde{u}_{x}dx=4\mathcal{S}_{\eta}.

Using the algebraic inequality

|AB|(ut2+ux2)2(AB)utux|AB|(ut2+ux2),-\left|A-B\right|\left(u_{t}^{2}+u_{x}^{2}\right)\leq 2\left(A-B\right)u_{t}u_{x}\leq\left|A-B\right|\left(u_{t}^{2}+u_{x}^{2}\right),

we get

0(t)((A+B)|AB|)(u~t2+u~x2)𝑑x4𝒮η0(t)((A+B)+|AB|)(u~t2+u~x2)𝑑x.\int_{0}^{\ell\left(t\right)}\left(\left(A+B\right)-\left|A-B\right|\right)\left(\tilde{u}_{t}^{2}+\tilde{u}_{x}^{2}\right)dx\leq 4\mathcal{S}_{\eta}\leq\int_{0}^{\ell\left(t\right)}\left(\left(A+B\right)+\left|A-B\right|\right)\left(\tilde{u}_{t}^{2}+\tilde{u}_{x}^{2}\right)dx.

Thanks to (3.8), the precedent estimation yields

0(t)min{eln|γη|φ(tx)φ(tx),eln|γη|φ(t+x)φ(t+x)}(u~t2+u~x2)𝑑x2𝒮η0(t)max{eln|γη|φ(tx)φ(tx),eln|γη|φ(t+x)φ(t+x)}(u~t2+u~x2)𝑑x,\int_{0}^{\ell\left(t\right)}\min\left\{\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t-x)}}{\varphi^{\prime}(t-x)},\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t+x)}}{\varphi^{\prime}(t+x)}\right\}\left(\tilde{u}_{t}^{2}+\tilde{u}_{x}^{2}\right)dx\leq 2\mathcal{S}_{\eta}\\ \leq\int_{0}^{\ell\left(t\right)}\max\left\{\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t-x)}}{\varphi^{\prime}(t-x)},\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t+x)}}{\varphi^{\prime}(t+x)}\right\}\left(\tilde{u}_{t}^{2}+\tilde{u}_{x}^{2}\right)dx\text{,}

for t0.t\geq 0. By consequence

minx[0,(t)]{eln|γη|φ(tx)φ(tx),eln|γη|φ(t+x)φ(t+x)}E(t)𝒮ηmaxx[0,(t)]{eln|γη|φ(tx)φ(tx),eln|γη|φ(t+x)φ(t+x)}E(t).\min_{x\in\left[0,\ell\left(t\right)\right]}\left\{\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t-x)}}{\varphi^{\prime}(t-x)},\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t+x)}}{\varphi^{\prime}(t+x)}\right\}E_{\ell}\left(t\right)\leq\mathcal{S}_{\eta}\\ \leq\max_{x\in\left[0,\ell\left(t\right)\right]}\left\{\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t-x)}}{\varphi^{\prime}(t-x)},\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t+x)}}{\varphi^{\prime}(t+x)}\right\}E_{\ell}\left(t\right).

This implies (4.5). ∎

Since ln|γη|0\ln\left|\gamma_{\eta}\right|\geq 0 for η0,\eta\geq 0, and φ\varphi is nondecreasing, we have the following immediate corollary.

Corollary 3.

Under the assumption of Theorem 3, it holds that

𝒮ηm(t)eln|γη|φ(t+(t))E(t)𝒮ηM(t)eln|γη|φ(t(t)), fort0,\mathcal{S}_{\eta}m\left(t\right)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t+\ell\left(t\right))}\leq E_{\ell}\left(t\right)\leq\mathcal{S}_{\eta}M\left(t\right)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t-\ell\left(t\right))},\text{ \ \ for}\ t\geq 0, (4.8)

m(t)m\left(t\right) and M(t)M\left(t\right) are given by (1.9).

If φ\varphi^{\prime} is monotone, then (4.8) can be replaced by more explicit estimation.

Corollary 4.

Under the assumption of Theorem 3, assume that φ\varphi satisfies (3.9) on [t0,t1][t_{0},t_{1}], then:

  • If 1<(t)0-1<\ell^{\prime}\left(t\right)\leq 0 on [t0,t1][t_{0},t_{1}], then φ\varphi^{\prime} is nondecreasing and E(t)E_{\ell}\left(t\right) satisfies

    𝒮ηφ(t(t))eln|γη|φ(t+(t))E(t)𝒮ηφ(t+(t))eln|γη|φ(t(t)), for t[t0,t1].\mathcal{S}_{\eta}\varphi^{\prime}(t-\ell\left(t\right))e^{-\ln\left|\gamma_{\eta}\right|\varphi(t+\ell\left(t\right))}\leq E_{\ell}\left(t\right)\leq\mathcal{S}_{\eta}\varphi^{\prime}\left(t+\ell\left(t\right)\right)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t-\ell\left(t\right))},\text{ \ \ for }t\in[t_{0},t_{1}]. (4.9)
  • If 0<(t)<10<\ell^{\prime}\left(t\right)<1 on [t0,t1][t_{0},t_{1}], then φ\varphi^{\prime}and E(t)E_{\ell}\left(t\right) are nonincreasing and

    𝒮ηφ(t+(t))eln|γη|φ(t+(t))E(t)𝒮ηφ(t(t))eln|γη|φ(t(t)), for t[t0,t1].\mathcal{S}_{\eta}\varphi^{\prime}(t+\ell\left(t\right))e^{-\ln\left|\gamma_{\eta}\right|\varphi(t+\ell\left(t\right))}\leq E_{\ell}\left(t\right)\leq\mathcal{S}_{\eta}\varphi^{\prime}\left(t-\ell\left(t\right)\right)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t-\ell\left(t\right))},\text{ \ \ for }t\in[t_{0},t_{1}]. (4.10)
Proof.

It suffices to argue as in the proof of Corollary 1. ∎

Remark 5.

If the interval is shrinking, there is competition between the nondecreasing φ\varphi^{\prime} and eln|γη|φe^{-\ln\left|\gamma_{\eta}\right|\varphi} in estimation (4.9). The behaviour of E(t)E_{\ell}\left(t\right) depends on the value of the damping η\eta as stated in Remark 4.

To compare E(t)E_{\ell}\left(t\right) with the energy E(t0)E_{\ell}\left(t_{0}\right) for 0t0<t,0\leq t_{0}<t, we have the following result.

Corollary 5.

Under the assumption of Theorem 3, we have

m(t)eln|γη|φ(t+(t))M(t0)eln|γη|φ(t0(t0))E(t0)E(t)M(t)eln|γη|φ(t(t))m(t0)eln|γη|φ(t0+(t0))E(t0), for 0t0<t.\frac{m\left(t\right)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t+\ell\left(t\right))}}{M\left(t_{0}\right)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t_{0}-\ell\left(t_{0}\right))}}E_{\ell}\left(t_{0}\right)\leq E_{\ell}\left(t\right)\\ \leq\frac{M\left(t\right)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t-\ell\left(t\right))}}{m\left(t_{0}\right)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t_{0}+\ell\left(t_{0}\right))}}E_{\ell}\left(t_{0}\right),\text{ for }0\leq t_{0}<t. (4.11)

Moreover, if φ\varphi^{\prime} satisfies (3.9) on [t0,t1][t_{0},t_{1}], then:

  • If 1<(t)0-1<\ell^{\prime}\left(t\right)\leq 0 on [t0,t1][t_{0},t_{1}], then φ\varphi^{\prime} is nondecreasing and E(t)E_{\ell}\left(t\right) satisfies

    φ(t(t))eln|γη|φ(t+(t))φ(t0+(t0))eln|γη|φ(t0(t0))E(t0)E(t)φ(t+(t))eln|γη|φ(t(t))φ(t0(t0))eln|γη|φ(t0+(t0))E(t0), for t[t0,t1].\frac{\varphi^{\prime}\left(t-\ell\left(t\right)\right)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t+\ell\left(t\right))}}{\varphi^{\prime}\left(t_{0}+\ell\left(t_{0}\right)\right)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t_{0}-\ell\left(t_{0}\right))}}E_{\ell}\left(t_{0}\right)\leq E_{\ell}\left(t\right)\\ \leq\frac{\varphi^{\prime}\left(t+\ell\left(t\right)\right)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t-\ell\left(t\right))}}{\varphi^{\prime}\left(t_{0}-\ell\left(t_{0}\right)\right)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t_{0}+\ell\left(t_{0}\right))}}E_{\ell}\left(t_{0}\right),\text{ \ \ for }t\in[t_{0},t_{1}]. (4.12)
  • If 0<(t)<10<\ell^{\prime}\left(t\right)<1 on [t0,t1][t_{0},t_{1}], then φ\varphi^{\prime}and E(t)E_{\ell}\left(t\right) are nonincreasing and

    φ(t+(t))eln|γη|φ(t+(t))φ(t0(t0))eln|γη|φ(t0(t0))E(t0)E(t)φ(t(t))eln|γη|φ(t(t))φ(t0+(t0))eln|γη|φ(t0+(t0))E(t0), for t[t0,t1].\frac{\varphi^{\prime}\left(t+\ell\left(t\right)\right)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t+\ell\left(t\right))}}{\varphi^{\prime}\left(t_{0}-\ell\left(t_{0}\right)\right)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t_{0}-\ell\left(t_{0}\right))}}E_{\ell}\left(t_{0}\right)\leq E_{\ell}\left(t\right)\\ \leq\frac{\varphi^{\prime}\left(t-\ell\left(t\right)\right)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t-\ell\left(t\right))}}{\varphi^{\prime}\left(t_{0}+\ell\left(t_{0}\right)\right)e^{-\ln\left|\gamma_{\eta}\right|\varphi(t_{0}+\ell\left(t_{0}\right))}}E_{\ell}\left(t_{0}\right),\text{ \ \ for }t\in[t_{0},t_{1}]. (4.13)
Proof.

Since (4.5) holds also for t=t0t=t_{0}, then the corollary follows by combining the inequalities

eln|γη|φ(t(t))M(t)E(t)𝒮ηeln|γη|φ(t0+(t0))m(t0)E(t0)\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t-\ell\left(t\right))}}{M\left(t\right)}E_{\ell}\left(t\right)\leq\mathcal{S}_{\eta}\leq\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t_{0}+\ell\left(t_{0}\right))}}{m\left(t_{0}\right)}E_{\ell}\left(t_{0}\right)

and

eln|γη|φ(t0(t0))M(t0)E(t0)𝒮ηeln|γη|φ(t+(t))m(t)E(t).\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t_{0}-\ell\left(t_{0}\right))}}{M\left(t_{0}\right)}E_{\ell}\left(t_{0}\right)\leq\mathcal{S}_{\eta}\leq\frac{e^{\ln\left|\gamma_{\eta}\right|\varphi(t+\ell\left(t\right))}}{m\left(t\right)}E_{\ell}\left(t\right).

Acknowledgements

The authors have been supported by the General Direction of Scientific Research and Technological Development (Algerian Ministry of Higher Education and Scientific Research) PRFU # C00L03UN280120220010.

ORCID

Abdelmouhcene Sengouga https://orcid.org/0000-0003-3183-7973.

References

  • [1] K. Ammari, A. Bchatnia, and K. El Mufti. Stabilization of the wave equation with moving boundary. Eur. J. Control, 39:35–38, 2018. ISSN 0947-3580.
  • [2] C. Bardos and G. Chen. Control and stabilization for the wave equation. III: Domain with moving boundary. SIAM J. Control Optim., 19:123–138, 1981.
  • [3] M. Cherkaoui. Estimation optimale du taux de décroissance de l’énergie pour une équation des ondes avec contrôle frontière. Rapport de recherche N°2328 - INRIA, 1994.
  • [4] S. Cox and E. Zuazua. The rate at which energy decays in a string damped at one end. Indiana Univ. Math. J., pages 545–573, 1995.
  • [5] S. E. Ghenimi and A. Sengouga. Energy decay estimates for an axially travelling string damped at one end. Submitted. URL http://arxiv.org/abs/2211.10537. 14 pages.
  • [6] M. Gugat. Optimal boundary feedback stabilization of a string with moving boundary. IMA J. Math. Control Inform., 25(1):111–121, 2008.
  • [7] B. H. Haak and D.-T. Hoang. Exact observability of a 1-dimensional wave equation on a noncylindrical domain. SIAM J. Control Optim., 57(1):570–589, 2019.
  • [8] L. Lu and Y. Feng. Observability and stabilization of 1d1-d wave equations with moving boundary feedback. Acta Appl. Math., 170(1):731–753, 2020.
  • [9] Y. Mokhtari. Boundary controllability and boundary time-varying feedback stabilization of the 1d wave equation in non-cylindrical domains. Evol. Equ. Control Theory, 11(2):373–397, 2022.
  • [10] G. T. Moore. Quantum theory of electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys., 11(9):2679–2691, 1970.
  • [11] J. P. Quinn and D. L. Russell. Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping. Proc. R. Soc. Edinb. A: Math., 77(1-2):97–127, 1977.
  • [12] A. Sengouga. Observability of the 1-D wave equation with mixed boundary conditions in a non-cylindrical domain. Mediterr. J. Math., 15(62):1–22, 2018.
  • [13] A. Sengouga. Observability and controllability of the 1-D wave cquation in domains with moving boundary. Acta Appli. Math., 157:117–128, 2018.
  • [14] H. Sun, H. Li, and L. Lu. Exact controllability for a string equation in domains with moving boundary in one dimension. Electron. J. Diff. Equations, 2015(98):1–7, 2015.
  • [15] K. Veselić. On linear vibrational systems with one dimensional damping. Appl. Anal., 29(1-2):1–18, 1988.
  • [16] A. I. Vesnitskii. The inverse problem for a one-dimensional resonator the dimensions of which vary with time. Radiophysics and Quantum Electronics, 14(10):1209–1215, 1971.
  • [17] A. I. Vesnitskii and A. I. Potapov. Some general properties of wave processes in one-dimensional mechanical systems of variable length. Sov. App. Mechanics, 11(4):422–426, 1975. ISSN 1573-8582.