This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\slugger

sicon202200000–000

Boundary Stabilization and Observation of a Multi-dimensional Unstable Heat Equation thanks: This work is supported by the National Natural Science Foundation of China (12071463,61873153,12130008). Corresponding author: Hongyinping Feng.

Yusen Meng 111School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China. 222Key Laboratory of Systems and Control, Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P.R. China. Email: [email protected].   Hongyinping Feng 333School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi, 030006, P.R. China. Email: [email protected].
Abstract

In this paper, we consider the boundary stabilization and observation of the multi-dimensional unstable heat equation. Since we consider the heat equation in a general domain, the usual partial differential equation backstepping method is hard to apply to the considered problems. The unstable dynamics of the heat equation are treated by combining the finite-dimensional spectral truncation method and the dynamics compensation method. By introducing additional finite-dimensional actuator/sensor dynamics, the unbounded stabilization/observation turns to be a bounded one. As a result, the controller/observer design becomes more easier. Both the full state feedback stabilizer and the state observer are designed. The exponential stability of the closed-loop and the well-posedness of the observer are obtained.

keywords:
Dynamic compensation, unstable heat equation, observer, stabilization.
AMS:
93B07, 37N35, 34C28, 35L10.

1 Introduction

When there is at least one point spectrum in the right-half complex plane, the system is referred to as an unstable system. Owing to the pole assignment theorem, stabilization of the finite-dimensional unstable system is almost trivial. However, the problem may become pretty difficult for the infinite-dimensional unstable system. When there are only finite point spectrums in the right-half complex plane, the system can be stabilized by the finite spectral truncation technique [17], [18]. Since heat equation with the boundary or interior source term is usually an unstable system which has finite unstable point spectrums, the finite spectral truncation technique can be used to stabilize the unstable heat system. See, for instance, [4], [13] and [14], to name just a few.

The partial differential equation (PDE) backstepping method is another way to stabilize the infinite-dimensional unstable system. It has been used to stabilize the unstable heat equations in [15], [19] and [21]. The PDE backstepping method can also cope with other infinite-dimensional systems such as the first order hyperbolic equation system [11], the unstable wave equation system [10] and even for ODE-PDE cascade system [22]. Although the PDE backstepping is powerful, it is still hard to apply to the general multi-dimensional infinite-dimensional system. Very recently, [8] has considered the stabilization and observation of the unstable heat equation in a general multi-dimensional region. By using the dynamic compensation method [5], [6] and the finite dimensional spectral truncation method [4], both the full state feedback and the state observer are proposed for the unstable multi-dimensional heat equation under the assumption that the unstable point spectrums are algebraic simple. In this paper, we shall extend the results in [8] to the more general case.

Let Ωn(n2)\Omega\subset{\mathbb{R}}^{n}(n\geq 2) be a bounded domain with C2C^{2}-boundary Γ\Gamma. Suppose that Γ\Gamma consists of two parts: Γ0\Gamma_{0} and Γ1\Gamma_{1}, Γ0Γ1=Γ\Gamma_{0}\cup\Gamma_{1}=\Gamma, with Γ0\Gamma_{0} is a non-empty connected open set in Γ\Gamma. Let ν\nu be the unit outward normal vector of Γ1\Gamma_{1} and let Δ\Delta be the usual Laplacian. We consider the following system

(1) {wt(x,t)=Δw(x,t)+μw(x,t),(x,t)Ω×(0,+),w(x,t)=0,(x,t)Γ0×(0,+),w(x,t)ν=u(x,t),(x,t)Γ1×(0,+),y(x,t)=w(x,t),(x,t)Γ1×(0,+),\begin{cases}w_{t}(x,t)=\Delta w(x,t)+\mu w(x,t),\qquad(x,t)\in\Omega\times(0,+\infty),\cr\vskip 3.69885pt\cr w(x,t)=0,\qquad(x,t)\in\Gamma_{0}\times(0,+\infty),\cr\vskip 3.69885pt\cr\displaystyle\frac{\partial w(x,t)}{\partial\nu}=u(x,t),\qquad(x,t)\in\Gamma_{1}\times(0,+\infty),\cr\vskip 3.69885pt\cr y(x,t)=w(x,t),\qquad(x,t)\in\Gamma_{1}\times(0,+\infty),\end{cases}

where μ>0\mu>0 is a positive constant, uu is the control and yy is the output. Owing to the source term μw(x,t)\mu w(x,t), system (1) is unstable provided μ\mu is large enough. The main goal of this paper is to design an output feedback to stabilize system (1) exponentially. By the separation principle of the linear systems, the output feedback will be available once we address the following two problems: (i) stabilize system (1) by a full state feedback; (ii) design a state observer to estimate the state online. We will consider these two problems separately.

We consider system (1) in state space L2(Ω)L^{2}(\Omega). Define

(2) {Af=Δf,fD(A)={fH2(Ω)HΓ01(Ω)|fν(x)=0,xΓ1},HΓ01(Ω)={fH1(Ω)|f(x)=0,xΓ0}.\begin{cases}Af=\Delta f,\ \ \forall f\in D(A)\displaystyle=\left\{f\in H^{2}(\Omega)\cap H^{1}_{\Gamma_{0}}(\Omega)\ |\ \frac{\partial f}{\partial\nu}(x)=0,x\in{\Gamma_{1}}\right\},\cr\vskip 3.69885pt\cr\displaystyle H^{1}_{\Gamma_{0}}(\Omega)=\{f\in H^{1}(\Omega)\ |\ f(x)=0,x\in{\Gamma_{0}}\}.\end{cases}

Then AA generates an exponentially stable analytic semigroup on L2(Ω)L^{2}(\Omega). It is well known (e.g. [12, p.668]) that D((A)1/2)=HΓ01(Ω)D((-A)^{1/2})=H_{\Gamma_{0}}^{1}(\Omega) and (A)1/2(-A)^{1/2} is a canonical isomorphism from HΓ01(Ω)H^{1}_{\Gamma_{0}}(\Omega) onto L2(Ω)L^{2}(\Omega). Let [D((A)1/2)]=HΓ01(Ω)[D((-A)^{1/2})]^{\prime}=H^{-1}_{\Gamma_{0}}(\Omega) be the dual space of HΓ01(Ω)H^{1}_{\Gamma_{0}}(\Omega) with the pivot space L2(Ω)L^{2}(\Omega). We obtain the following Gelfand triple compact inclusions:

(3) D((A)1/2)L2(Ω)=[L2(Ω)][D((A)1/2)].\begin{array}[]{l}D((-A)^{1/2})\hookrightarrow L^{2}(\Omega)=[L^{2}(\Omega)]^{\prime}\hookrightarrow[D((-A)^{1/2})]^{\prime}.\end{array}

An extension A~(HΓ01(Ω),HΓ01(Ω))\tilde{A}\in{\mathcal{L}}(H^{1}_{\Gamma_{0}}(\Omega),H^{-1}_{\Gamma_{0}}(\Omega)) of AA is defined by

(4) A~x,zHΓ01(Ω),HΓ01(Ω)=(A)12x,(A)12zL2(Ω),x,zHΓ01(Ω).\langle\tilde{A}x,z\rangle_{H^{-1}_{\Gamma_{0}}(\Omega),H^{1}_{\Gamma_{0}}(\Omega)}=-\langle(-A)^{\frac{1}{2}}x,(-A)^{\frac{1}{2}}z\rangle_{L^{2}(\Omega)},\ \ \forall\;x,z\in H^{1}_{\Gamma_{0}}(\Omega).

By a simple computation, the eigenpairs {(ϕj(),λj)}j=1\{(\phi_{j}(\cdot),\lambda_{j})\}_{j=1}^{\infty} of AA satisfy

(5) {Δϕj=λjϕj,xΩ,ϕj(x)=0,xΓ0;ϕj(x)ν=0,xΓ1,j=1,2,.\begin{cases}\Delta\phi_{j}=\lambda_{j}\phi_{j},\qquad x\in\Omega,\cr\vskip 3.69885pt\cr\displaystyle\phi_{j}(x)=0,x\in\Gamma_{0};\ \ \ \frac{\partial\phi_{j}(x)}{\partial\nu}=0,x\in\Gamma_{1},\end{cases}\qquad j=1,2,\cdots.

Since the operator AA defined by (2) is self-adjoint and negative with compact resolvents, it follows from [20, p.76, Proposition 3.2.12] that the eigenvalues {λj}j=1\{\lambda_{j}\}_{j=1}^{\infty} are real and we can repeat each eigenvalue according to its finite multiplicity to get

(6) 0>λ1λ2λN>λN+1.0>\lambda_{1}\geq\lambda_{2}\geq\ldots\geq\lambda_{N}>\lambda_{N+1}\ldots\rightarrow-\infty.

Without loss of the generality, we assume that

Assumption 1.1.

Let the operator AA be given by (2). Suppose that the eigenpairs {(ϕj(),λj)}j=1\{(\phi_{j}(\cdot),\lambda_{j})\}_{j=1}^{\infty} of AA satisfy (6) and ϕjL2(Ω)=1\|\phi_{j}\|_{L^{2}(\Omega)}=1. Suppose that there exists a constant N>0N>0 such that

(7) λN+μ0andλN+1+μ<0.\lambda_{N}+\mu\geq 0\ \ \mbox{and}\ \ \lambda_{N+1}+\mu<0.

Define the Neumann map Υ(L2(Γ1),\Upsilon\in\mathcal{L}(L^{2}(\Gamma_{1}), H3/2(Ω))H^{3/2}(\Omega)) [12, p.668] by Υu=ψ\Upsilon u=\psi if and only if

(8) {Δψ=0 in Ω,ψ|Γ0=0;ψν|Γ1=u.\left\{\begin{array}[]{l}\displaystyle\Delta\psi=0\ \hbox{ in }\ \Omega,\cr\vskip 3.69885pt\cr\displaystyle\psi|_{\Gamma_{0}}=0;\qquad\frac{\partial\psi}{\partial\nu}\big{|}_{\Gamma_{1}}=u.\end{array}\right.

Using the Neumann map, one can write (1) abstractly in HΓ01(Ω)H^{-1}_{\Gamma_{0}}(\Omega) as

(9) {wt(,t)=(A~+μ)w(,t)+Bu(,t),t>0,y(,t)=Bw(,t),t0,\begin{cases}w_{t}(\cdot,t)=(\tilde{A}+\mu)w(\cdot,t)+Bu(\cdot,t),\qquad t>0,\cr\vskip 3.69885pt\cr y(\cdot,t)=B^{*}w(\cdot,t),\qquad t\geq 0,\end{cases}

where A~\tilde{A} is the extension of AA given by (4), B(L2(Γ1),HΓ01(Ω))B\in\mathcal{L}(L^{2}(\Gamma_{1}),H^{-1}_{\Gamma_{0}}(\Omega)) is defined by

(10) Bu=A~Υu,uL2(Γ1),Bu=-\tilde{A}\Upsilon u,\qquad\forall\ u\in L^{2}(\Gamma_{1}),

and BB^{*} is the adjoint of BB, given by

(11) Bf=f|Γ1,fHΓ01(Ω).B^{*}f=f|_{\Gamma_{1}},\qquad\forall\ f\in H^{1}_{\Gamma_{0}}(\Omega).

The rest of the paper is organized as follows: In Section 2, we give some preliminaries for the full state feedback design. Section 3 is devoted to the full state feedback design. The exponential stability of the closed-loop system is also demonstrated in Section 3. Section 4 gives some preliminaries for the observer design which will be considered in Section 5. Section 6 concludes our paper and presents an outlook for future work. Some results that are less relevant to stabilizer and observer design are arranged in the Appendix.

Throughout of this paper, the space (X1,X2)\mathcal{L}(X_{1},X_{2}) represents all the bounded linear operators from the space X1X_{1} to X2X_{2}. The space of bounded linear operators from XX to itself is denoted by (X)\mathcal{L}(X). The spectrum, resolvent set and the domain of the operator AA are denoted by σ(A)\sigma(A), ρ(A)\rho(A) and D(A)D(A), respectively. The point spectrum of AA is represented by σp(A)\sigma_{p}(A). The set of positive integers is denoted by +\mathbb{Z}_{+}. We define inner product in N{\mathbb{R}}^{N} by

(12) a,bN=i=1Naibi,a=(a1,a2,,aN),b=(b1,b2,,bN)N.\langle a,b\rangle_{{\mathbb{R}}^{N}}=\sum_{i=1}^{N}a_{i}b_{i},\ \ \forall\ a=(a_{1},a_{2},\cdots,a_{N})^{\top},b=(b_{1},b_{2},\cdots,b_{N})^{\top}\in{\mathbb{R}}^{N}.

2 Preliminaries for full state feedback design

In this section, we will give some preliminaries that are very important to the state feedback design for system (1). For any positive integer ii, we can define, in terms of the function ϕi(x)\phi_{i}(x) of (5), the operator PϕiP_{\phi_{i}}: \σ(A)L2(Ω)\mathbb{R}\backslash\sigma(A)\rightarrow L^{2}(\Omega) by

(13) Pϕiθ=ζϕi,θ\σ(A),i=1,2,,N,P_{\phi_{i}}\theta=\zeta_{\phi_{i}},\qquad\forall\ \theta\in\mathbb{R}\backslash\sigma(A),\qquad i=1,2,\cdots,N,

where ζϕi\zeta_{\phi_{i}} is the solution of following elliptic equation:

(14) {Δζϕi(x)=θζϕi(x),xΩ,ζϕi(x)=0,xΓ0;ζϕi(x)ν=ϕi(x),xΓ1.\begin{cases}\Delta\zeta_{\phi_{i}}(x)=\theta\zeta_{\phi_{i}}(x),\qquad x\in\Omega,\cr\vskip 3.69885pt\cr\displaystyle\zeta_{\phi_{i}}(x)=0,\ \ x\in\Gamma_{0};\qquad\frac{\partial\zeta_{\phi_{i}}(x)}{\partial\nu}=\phi_{i}(x),\ \ x\in\Gamma_{1}.\end{cases}
Lemma 1.

Suppose that θ\theta\in\mathbb{R} satisfies

(15) θλj,j+.\theta\neq\lambda_{j},\qquad j\in\mathbb{Z}_{+}.

Then the function PϕiP_{\phi_{i}} defined by (13) satisfies

(16) Pϕiθ,ϕjL2(Ω)=1θλjϕi,ϕjL2(Γ1),i,j+.\langle P_{\phi_{i}}\theta,\phi_{j}\rangle_{L^{2}(\Omega)}=\frac{1}{\theta-\lambda_{j}}\langle\phi_{i},\phi_{j}\rangle_{L^{2}(\Gamma_{1})},\qquad i,j\in\mathbb{Z}_{+}.
Proof.

A straightforward computation shows that

(17) θΩζϕiϕj(x)𝑑x=ΩΔζϕiϕj(x)𝑑x=Γ1ϕi(x)ϕj(x)𝑑x+λjΩζϕiϕj(x)𝑑x,\theta\int_{\Omega}\zeta_{\phi_{i}}\phi_{j}(x)dx=\int_{\Omega}\Delta\zeta_{\phi_{i}}\phi_{j}(x)dx=\int_{\Gamma_{1}}\phi_{i}(x)\phi_{j}(x)dx+\lambda_{j}\int_{\Omega}\zeta_{\phi_{i}}\phi_{j}(x)dx,

which, together with (13), yields (16) easily. ∎


Inspired by [8], the controller design is closely related to the following system:

(18) {zt(x,t)=Δz(x,t)+μz(x,t)+i=1N(Pϕiθ)(x)ui(t),(x,t)Ω×(0,+)z(x,t)=0,(x,t)Γ0×(0,+),z(x,t)ν=0,(x,t)Γ1×(0,+),\begin{cases}\displaystyle z_{t}(x,t)=\Delta z(x,t)+\mu z(x,t)+\sum_{i=1}^{N}(P_{\phi_{i}}\theta)(x)u_{i}(t),\ \ (x,t)\in\Omega\times(0,+\infty)\cr\vskip 3.69885pt\cr\displaystyle z(x,t)=0,\ \ (x,t)\in\Gamma_{0}\times(0,+\infty),\cr\vskip 3.69885pt\cr\displaystyle\frac{\partial z(x,t)}{\partial\nu}=0,\ \ (x,t)\in\Gamma_{1}\times(0,+\infty),\end{cases}

where PϕiθP_{\phi_{i}}\theta is defined by (13), μ>0\mu>0, NN is a positive integer satisfies Assumption 1.1 and u1,u2,,uNu_{1},u_{2},\cdots,u_{N} are new controls. Since the sequence {ϕj()}j=1\{\phi_{j}(\cdot)\}_{j=1}^{\infty} under the Assumption 1.1 forms an orthonormal basis for L2(Ω)L^{2}(\Omega), PϕiθP_{\phi_{i}}\theta and z(,t)z(\cdot,t) can be represented by

(19) Pϕiθ=k=1fkiϕk,fki=Ω(Pϕiθ)(x)ϕk(x)𝑑xP_{\phi_{i}}\theta=\sum_{k=1}^{\infty}f_{ki}\phi_{k},\ \ f_{ki}=\int_{\Omega}(P_{\phi_{i}}\theta)(x)\phi_{k}(x)dx

and

(20) z(,t)=k=1zk(t)ϕk().z(\cdot,t)=\sum_{k=1}^{\infty}z_{k}(t)\phi_{k}(\cdot).

In view of (18), the function zk(t)z_{k}(t) in (20) satisfies

(21) z˙k(t)=\displaystyle\dot{z}_{k}(t)= Ωzt(x,t)ϕk(x)𝑑x\displaystyle\int_{\Omega}z_{t}(x,t)\phi_{k}(x)dx
=\displaystyle= Ω[Δz(x,t)+μz(x,t)+i=1N(Pϕiθ)(x)ui(t)]ϕk(x)𝑑x\displaystyle\int_{\Omega}\left[\Delta z(x,t)+\mu z(x,t)+\sum_{i=1}^{N}(P_{\phi_{i}}\theta)(x)u_{i}(t)\right]\phi_{k}(x)dx
=\displaystyle= (λk+μ)zk(t)+i=1Nfkiui(t),k=1,2,.\displaystyle(\lambda_{k}+\mu)z_{k}(t)+\sum_{i=1}^{N}f_{ki}u_{i}(t),\ \ \ k=1,2,\cdots.

Since λk+μ<0\lambda_{k}+\mu<0 provided k>Nk>N, zk(t)z_{k}(t) is stable for all k>Nk>N. Consequently, it is sufficient to consider zk(t)z_{k}(t) for kNk\leq N, which satisfy the following finite-dimensional system:

(22) Z˙N(t)=ΛNZN(t)+FNu(t),ZN(t)=(z1(t)z2(t)zN(t)),u(t)=(u1(t)u2(t)uN(t)),\dot{Z}_{N}(t)=\Lambda_{N}Z_{N}(t)+F_{N}u(t),\ \ Z_{N}(t)=\begin{pmatrix}z_{1}(t)\\ z_{2}(t)\\ \vdots\\ z_{N}(t)\end{pmatrix},\ \ u(t)=\begin{pmatrix}u_{1}(t)\\ u_{2}(t)\\ \vdots\\ u_{N}(t)\end{pmatrix},

where ΛN\Lambda_{N} and FNF_{N} are defined by

(23) {ΛN=diag(λ1+μ,,λN+μ),FN=(f11f12f1Nf21f22f2NfN1fN2fNN)N×N,fki=Ω(Pϕiθ)(x)ϕk(x)𝑑x,i,k=1,2,,N.\begin{cases}\Lambda_{N}={\rm diag}(\lambda_{1}+\mu,\cdots,\lambda_{N}+\mu),\cr\vskip 3.69885pt\cr F_{N}=\begin{pmatrix}f_{11}&f_{12}&\cdots&f_{1N}\\ f_{21}&f_{22}&\cdots&f_{2N}\\ \vdots&\vdots&\cdots&\vdots\\ f_{N1}&f_{N2}&\cdots&f_{NN}\\ \end{pmatrix}_{N\times N},\cr\vskip 3.69885pt\cr\displaystyle f_{ki}=\int_{\Omega}(P_{\phi_{i}}\theta)(x)\phi_{k}(x)dx,\qquad i,k=1,2,\cdots,N.\end{cases}
Lemma 2.

In addition to Assumption 1.1, assume that θ\theta\in\mathbb{R} satisfies (15). Then, there exists a matrix LN=(lij)N×NL_{N}=(l_{ij})_{N\times N} such that ΛN+FNLN\Lambda_{N}+F_{N}L_{N} is Hurwitz, where ΛN\Lambda_{N} and FNF_{N} are defined by (23). Moreover, the operator A+μ+i=1N(Pϕiθ)KiA+\mu+\sum_{i=1}^{N}(P_{\phi_{i}}\theta)K_{i} generates an exponentially stable C0C_{0}-semigroup on L2(Ω)L^{2}(\Omega), where PϕiθP_{\phi_{i}}\theta is given by (13) and KiK_{i} is given by

(24) Ki:gΩg(x)k=1Nlikϕk(x)dx,gL2(Ω),i=1,2,N.K_{i}:g\rightarrow\int_{\Omega}g(x)\sum_{k=1}^{N}l_{ik}\phi_{k}(x)dx,\ \ \forall\ g\in L^{2}(\Omega),\ \ \forall\ i=1,2\cdots,N.
Proof.

Since the sequence {ϕj()}j=1\{\phi_{j}(\cdot)\}_{j=1}^{\infty} under the Assumption 1.1 are linearly independent on L2(Ω)L^{2}(\Omega), it follows from Lemmas 7 and 8 in Appendix and (16) that the pair (ΛN,FN)(\Lambda_{N},F_{N}) is controllable. Hence, there exists a matrix LNL_{N} such that ΛN+FNLN\Lambda_{N}+F_{N}L_{N} is Hurwitz. Since A+μA+\mu generates an analytic semigroup e(A+μ)te^{(A+\mu)t} on L2(Ω)L^{2}(\Omega) and i=1NPϕiθKi(L2(Ω))\sum_{i=1}^{N}P_{\phi_{i}}\theta K_{i}\in\mathcal{L}(L^{2}(\Omega)), it follows from [16, Corollary 2.2, p.81] that A+μ+i=1NPϕiθKiA+\mu+\sum_{i=1}^{N}P_{\phi_{i}}\theta K_{i} generates an analytic semigroup on L2(Ω)L^{2}(\Omega) as well. By a straightforward computation, A+μ+i=1NPϕiθKiA+\mu+\sum_{i=1}^{N}P_{\phi_{i}}\theta K_{i} is the inverse of a compact operator. Thanks to [16, Theorem 4.3, p.118], the proof will be accomplished if we can show that the point spectrum of A+μ+i=1NPϕiθKiA+\mu+\sum_{i=1}^{N}P_{\phi_{i}}\theta K_{i} satisfies

(25) σp(A+μ+i=1NPϕiθKi){s|Res<0}.\sigma_{p}(A+\mu+\sum_{i=1}^{N}P_{\phi_{i}}\theta K_{i})\subset\{s\ |\ {\rm Re}\,s<0\}.

Actually, for all λσp(A+μ+i=1NPϕiθKi)\lambda\in\sigma_{p}(A+\mu+\sum_{i=1}^{N}P_{\phi_{i}}\theta K_{i}), we consider following characteristic equation (A+μ+i=1NPϕiθKi)g=λg(A+\mu+\sum_{i=1}^{N}P_{\phi_{i}}\theta K_{i})g=\lambda g with g0g\neq 0. Since the sequence {ϕj()}j=1\{\phi_{j}(\cdot)\}_{j=1}^{\infty} forms an orthonormal basis for L2(Ω)L^{2}(\Omega), we can suppose that

(26) 0g=k=1gkϕk,gk=g,ϕkL2(Ω),k=1,2,.0\neq g=\sum_{k=1}^{\infty}g_{k}\phi_{k},\ \ g_{k}=\langle g,\phi_{k}\rangle_{L^{2}(\Omega)},\quad k=1,2,\cdots.

As a result, the characteristic equation becomes

(27) k=1λgkϕk=\displaystyle\sum_{k=1}^{\infty}\lambda g_{k}\phi_{k}= k=1gk(A+μ)ϕk+i=1Nk=1(Pϕiθ)gkKiϕk\displaystyle\sum_{k=1}^{\infty}g_{k}(A+\mu)\phi_{k}+\sum_{i=1}^{N}\sum_{k=1}^{\infty}(P_{\phi_{i}}\theta)g_{k}K_{i}\phi_{k}
=\displaystyle= k=1gk(λk+μ)ϕk+i,k=1N(Pϕiθ)likgk.\displaystyle\sum_{k=1}^{\infty}g_{k}(\lambda_{k}+\mu)\phi_{k}+\sum_{i,k=1}^{N}(P_{\phi_{i}}\theta)l_{ik}g_{k}.

When (g1,g2,,gN)0(g_{1},g_{2},\cdots,g_{N})\neq 0, we take the inner product with ϕj\phi_{j}, j=1,2,,Nj=1,2,\cdots,N on equation (27) to obtain

(28) λgj=gj(λj+μ)+i,k=1Nfjilikgk,\lambda g_{j}=g_{j}(\lambda_{j}+\mu)+\sum_{i,k=1}^{N}f_{ji}l_{ik}g_{k},

which, together with (23), leads to

(29) (λΛNFNLN)(g1,g2,,gN)=0.(\lambda-\Lambda_{N}-F_{N}L_{N})(g_{1},g_{2},\cdots,g_{N})^{\top}=0.

Since (g1,g2,,gN)0(g_{1},g_{2},\cdots,g_{N})^{\top}\neq 0, (29) implies that

(30) Det(λΛNFNLN)=0.{\rm Det}(\lambda-\Lambda_{N}-F_{N}L_{N})=0.

Hence, λσ(ΛN+FNLN){s|Res<0}\lambda\in\sigma(\Lambda_{N}+F_{N}L_{N})\subset\{s\ |\ {\rm Re}\,s<0\} due to that ΛN+FNLN\Lambda_{N}+F_{N}L_{N} is Hurwitz.

When (g1,g2,,gN)=0(g_{1},g_{2},\cdots,g_{N})=0, there exists a j0>Nj_{0}>N such that Ωg(x)ϕj0(x)𝑑x0\int_{\Omega}g(x)\phi_{j_{0}}(x)dx\neq 0 due to g0g\neq 0, and at the same time, (27) is reduced to

(31) k=1λgkϕk=k=1gk(λk+μ)ϕk.\sum_{k=1}^{\infty}\lambda g_{k}\phi_{k}=\sum_{k=1}^{\infty}g_{k}(\lambda_{k}+\mu)\phi_{k}.

Take the inner product with ϕj0\phi_{j_{0}} on equation (31) to get

(32) (λj0+μ)gj0=λgj0,\displaystyle(\lambda_{j_{0}}+\mu)g_{j_{0}}=\lambda g_{j_{0}},

which, together with (7), implies that λ=λj0+μ<0\lambda=\lambda_{j_{0}}+\mu<0. So Reλ<0{\rm Re}\,\lambda<0. Therefore, we can get (25). ∎

3 State feedback

This section is devoted to the full state feedback design for system (1). To this end, we first define, in terms of the eigenfunctions ϕ1,ϕ2,,ϕN\phi_{1},\phi_{2},\cdots,\phi_{N} that are given by (5), the operator Bv(N,L2(Γ1))B_{v}\in\mathcal{L}\big{(}{\mathbb{R}}^{N},L^{2}(\Gamma_{1})\big{)} by following equation

(33) Bvc=j=1Ncjϕj(x),xΓ1,c=(c1,c2,,cN)N.B_{v}c=\sum_{j=1}^{N}c_{j}\phi_{j}(x),\quad x\in\Gamma_{1},\ \ \ \ \forall\ c=\begin{pmatrix}c_{1},c_{2},\cdots,c_{N}\end{pmatrix}^{\top}\in\mathbb{R}^{N}.

Inspired by [5], we consider the following dynamics feedback

(34) {u(x,t)=v(x,t),xΓ1,vt(,t)=αIv(,t)+Bvuv(t)inL2(Γ1),\begin{cases}\displaystyle u(x,t)=v(x,t),\qquad x\in\Gamma_{1},\cr\vskip 3.69885pt\cr\displaystyle{v}_{t}(\cdot,t)=-\alpha Iv(\cdot,t)+B_{v}u_{v}(t)\quad\mbox{in}\quad L^{2}(\Gamma_{1}),\end{cases}

where α>0\alpha>0 is a tuning parameter, II is the identity operator in L2(Γ1)L^{2}(\Gamma_{1}) and

(35) uv(t)=(u1(t),u2(t),,uN(t))N,u_{v}(t)=\begin{pmatrix}u_{1}(t),u_{2}(t),\cdots,u_{N}(t)\end{pmatrix}^{\top}\in{\mathbb{R}}^{N},

is a new control to be designed later. Under the controller (34), the control plant (1) becomes

(36) {wt(,t)=(A~+μ)w(,t)+Bv(,t)inHΓ01(Ω),vt(,t)=αIv(,t)+Bvuv(t)inL2(Γ1),\begin{cases}\displaystyle w_{t}(\cdot,t)=(\tilde{A}+\mu)w(\cdot,t)+Bv(\cdot,t)\quad\mbox{in}\ \ H^{-1}_{\Gamma_{0}}(\Omega),\cr\vskip 3.69885pt\cr\displaystyle v_{t}(\cdot,t)=-\alpha Iv(\cdot,t)+B_{v}u_{v}(t)\quad\mbox{in}\ \ L^{2}(\Gamma_{1}),\end{cases}

where A~\tilde{A} is the extension of AA given by (4) and B(L2(Γ1),H1(Ω))B\in\mathcal{L}\big{(}L^{2}(\Gamma_{1}),H^{-1}(\Omega)\big{)} is given by (10).

Since (36) is a cascade system, the “vv-system” can be regarded as the actuator dynamics of the control plant “ww-system”. Therefore, we can use the actuator dynamics compensation method proposed in [5] to stabilize the system (36). Actually, the controller (35) can be designed as

(37) ui(t)=[Kiw(,t)+KiSv(,t)],i=1,2,,N,u_{i}(t)=-[K_{i}w(\cdot,t)+K_{i}Sv(\cdot,t)],\quad i=1,2,\cdots,N,

where KiK_{i} are given by (24), S(L2(Γ1),L2(Ω))S\in\mathcal{L}\big{(}L^{2}(\Gamma_{1}),L^{2}(\Omega)\big{)} solves the Sylvester equation

(38) (A~+μ)S+αS=B.(\tilde{A}+\mu)S+\alpha S=B.

Combining (24) and (43), the controller (37) turns to be

(39) ui(t)=Ω[w(x,t)φv(x,t)][k=1Nlikϕk(x)]𝑑x,\displaystyle u_{i}(t)=-\int_{\Omega}\big{[}w(x,t)-\varphi_{v}(x,t)\big{]}\left[\sum_{k=1}^{N}l_{ik}\phi_{k}(x)\right]dx,

where φv\varphi_{v} satisfies following equation

(40) {Δφv(,t)=(αμ)φv(,t)inΩ,φv(x,t)=0,xΓ0,φv(x,t)ν=v(x,t),xΓ1.\begin{cases}\Delta\varphi_{v}(\cdot,t)=(-\alpha-\mu)\varphi_{v}(\cdot,t)\qquad{\mbox{in}}\quad\Omega,\cr\vskip 3.69885pt\cr\displaystyle\varphi_{v}(x,t)=0,\qquad x\in\Gamma_{0},\cr\vskip 3.69885pt\cr\displaystyle\frac{\partial\varphi_{v}(x,t)}{\partial\nu}=v(x,t),\qquad x\in\Gamma_{1}.\end{cases}

Combining (1), (33), (34), (35) and (39), we obtain the closed-loop system

(41) {wt(x,t)=Δw(x,t)+μw(x,t),(x,t)Ω×(0,+),w(x,t)=0,(x,t)Γ0×(0,+),w(x,t)ν=v(x,t),(x,t)Γ1×(0,+),vt(x,t)=αv(x,t)j=1Nϕj(x)Ω[w(x,t)φv(x,t)][i=1Nljiϕi(x)]𝑑x,(x,t)Γ1×(0,+),Δφv(,t)=(αμ)φv(,t)inΩ,φv(x,t)=0,xΓ0,φv(x,t)ν=v(x,t),xΓ1.\begin{cases}w_{t}(x,t)=\Delta w(x,t)+\mu w(x,t),\qquad(x,t)\in\Omega\times(0,+\infty),\cr\vskip 3.69885pt\cr w(x,t)=0,\qquad(x,t)\in\Gamma_{0}\times(0,+\infty),\cr\vskip 3.69885pt\cr\displaystyle\frac{\partial w(x,t)}{\partial\nu}=v(x,t),\qquad(x,t)\in\Gamma_{1}\times(0,+\infty),\cr\vskip 3.69885pt\cr\displaystyle v_{t}(x,t)=-\alpha v(x,t)-\sum_{j=1}^{N}\phi_{j}(x)\displaystyle\int_{\Omega}\big{[}w(x,t)-\varphi_{v}(x,t)\big{]}\left[\sum_{i=1}^{N}l_{ji}\phi_{i}(x)\right]dx,\cr\vskip 3.69885pt\cr\hskip 142.26378pt(x,t)\in\Gamma_{1}\times(0,+\infty),\cr\Delta\varphi_{v}(\cdot,t)=(-\alpha-\mu)\varphi_{v}(\cdot,t)\quad\hbox{in}\ \ \Omega,\cr\vskip 3.69885pt\cr\varphi_{v}(x,t)=0,\qquad x\in\Gamma_{0},\cr\vskip 3.69885pt\cr\displaystyle\frac{\partial\varphi_{v}(x,t)}{\partial\nu}=v(x,t),\qquad x\in\Gamma_{1}.\end{cases}

Lemma 3.

Let the operators A~\tilde{A} and BB be given by (4) and (10), respectively. Suppose that α\alpha satisfies

(42) α+μρ(A).\alpha+\mu\in\rho(-A).

Then the solution of Sylvester equation (38) satisfies

(43) Sg=φgL2(Ω),gL2(Γ1),Sg=-\varphi_{g}\in L^{2}(\Omega),\qquad\forall\ g\in L^{2}(\Gamma_{1}),

where φg\varphi_{g} satisfies following equation

(44) {Δφg(x)=(αμ)φg(x),xΩ,φg(x)=0,xΓ0;φg(x)ν=g(x),xΓ1.\begin{cases}\Delta\varphi_{g}(x)=(-\alpha-\mu)\varphi_{g}(x),\quad x\in\Omega,\cr\vskip 3.69885pt\cr\displaystyle\varphi_{g}(x)=0,\ x\in\Gamma_{0};\ \ \frac{\partial\varphi_{g}(x)}{\partial\nu}=g(x),\ x\in\Gamma_{1}.\end{cases}

Moreover, for any c=(c1,c2,,cN)Nc=(c_{1},c_{2},\cdots,c_{N})^{\top}\in\mathbb{R}^{N}

(45) SBvc=i=1NciPϕiθ,θ=αμ,SB_{v}c=-\sum_{i=1}^{N}c_{i}P_{\phi_{i}}\theta,\qquad\theta=-\alpha-\mu,

where BvB_{v} is given by (33) and PϕiθP_{\phi_{i}}\theta are given by (13).


Proof.

By (38) and (42), we get

(46) S=(α+μ+A~)1B.S=(\alpha+\mu+\tilde{A})^{-1}B.

It follows from (8), (10) and (44) that

(47) (α+μ+A~)φg=(α+μ+A~)φgA~Υg+A~Υg\displaystyle(\alpha+\mu+\tilde{A})\varphi_{g}=(\alpha+\mu+\tilde{A})\varphi_{g}-\tilde{A}\Upsilon g+\tilde{A}\Upsilon g
=(α+μ)φg+A~(φgΥg)+A~Υg=A~Υg=Bg,\displaystyle=(\alpha+\mu)\varphi_{g}+\tilde{A}(\varphi_{g}-\Upsilon g)+\tilde{A}\Upsilon g=\tilde{A}\Upsilon g=-Bg,

which together with (46), leads to Sg=φgSg=-\varphi_{g}. Consequently, we combine (13) and (33) to get (45). ∎

Theorem 4.

In addition to Assumption 1.1, suppose that α>0\alpha>0 satisfies

(48) α+μ+λj0,j+.\alpha+\mu+\lambda_{j}\neq 0,\qquad j\in\mathbb{Z}_{+}.

Then, there exists a matrix LN=(lij)N×NL_{N}=(l_{ij})_{N\times N} such that ΛN+FNLN\Lambda_{N}+F_{N}L_{N} is Hurwitz, where ΛN\Lambda_{N} and FNF_{N} are defined by (23). Moreover, for any initial value (w(,0),v(,0))L2(Ω)×L2(Γ1)\big{(}w(\cdot,0),v(\cdot,0)\big{)}^{\top}\in L^{2}(\Omega)\times L^{2}(\Gamma_{1}), system (41) admits a unique solution (w,v)C([0,);L2(Ω)×L2(Γ1))(w,v)^{\top}\in C\big{(}[0,\infty);L^{2}(\Omega)\times L^{2}(\Gamma_{1})\big{)} that decays to zero exponentially in L2(Ω)×L2(Γ1)L^{2}(\Omega)\times L^{2}(\Gamma_{1}) as t+t\rightarrow+\infty.

Proof.

We combine the (35) and (37) to get

(49) uv(t)=Kw(,t)KSv(,t),u_{v}(t)=-Kw(\cdot,t)-KSv(\cdot,t),

where K(L2(Ω),N)K\in\mathcal{L}(L^{2}(\Omega),{\mathbb{R}}^{N}) is defined by

(50) Kg=(K1g,K2g,,KNg),gL2(Ω).Kg=(K_{1}g,K_{2}g,\cdots,K_{N}g)^{\top},\qquad\forall g\in L^{2}(\Omega).

In view of the operators given by (2), (10), (33), (43) and (50), the closed-loop system (41) can be written as the abstract form:

(51) ddt(w(,t),v(,t))=𝒜(w(,t),v(,t)),\frac{d}{dt}\big{(}w(\cdot,t),v(\cdot,t)\big{)}^{\top}=\mathcal{A}\big{(}w(\cdot,t),v(\cdot,t)\big{)}^{\top},

where the operator 𝒜\mathcal{A}: D(𝒜)L2(Ω)×L2(Γ1)L2(Ω)×L2(Γ1)D(\mathcal{A})\subset L^{2}(\Omega)\times L^{2}(\Gamma_{1})\rightarrow L^{2}(\Omega)\times L^{2}(\Gamma_{1}) is defined by

(52) 𝒜=(A+μBBvKBvKSαI),D(𝒜)=D(A)×L2(Γ1).\mathcal{A}=\begin{pmatrix}A+\mu&B\\ -B_{v}K&-B_{v}KS-\alpha I\\ \end{pmatrix},\ \ D(\mathcal{A})=D(A)\times L^{2}(\Gamma_{1}).

It is sufficient to prove that the operator 𝒜\mathcal{A} generates an exponentially stable C0C_{0}-semigroup on L2(Ω)×L2(Γ1)L^{2}(\Omega)\times L^{2}(\Gamma_{1}).

Inspired by [5], we introduce following transformation

(53) 𝕊(f,g)=(f+Sg,g),(f,g)L2(Ω)×L2(Γ1),\mathbb{S}(f,g)^{\top}=(f+Sg,g)^{\top},\qquad(f,g)^{\top}\in L^{2}(\Omega)\times L^{2}(\Gamma_{1}),

where S(L2(Γ1),L2(Ω))S\in\mathcal{L}(L^{2}(\Gamma_{1}),L^{2}(\Omega)) solves the Sylvester equation (38). By a simple computation, 𝕊L2(Ω)×L2(Γ1)\mathbb{S}\in L^{2}(\Omega)\times L^{2}(\Gamma_{1}) is invertible and its inverse is

(54) 𝕊1(f,g)=(fSg,g),(f,g)L2(Ω)×L2(Γ1).\mathbb{S}^{-1}(f,g)^{\top}=(f-Sg,g)^{\top},\qquad(f,g)^{\top}\in L^{2}(\Omega)\times L^{2}(\Gamma_{1}).

Moreover,

(55) 𝕊𝒜𝕊1=𝒜𝕊,D(𝒜𝕊)=𝕊D(𝒜),\mathbb{S}\mathcal{A}\mathbb{S}^{-1}=\mathcal{A}_{\mathbb{S}},\qquad D(\mathcal{A}_{\mathbb{S}})=\mathbb{S}D(\mathcal{A}),

where 𝒜𝕊\mathcal{A}_{\mathbb{S}} satisfies

(56) 𝒜𝕊=(A+μSBvK0BvKα).\mathcal{A}_{\mathbb{S}}=\begin{pmatrix}A+\mu-SB_{v}K&0\\ B_{v}K&-\alpha\\ \end{pmatrix}.

Here SBvSB_{v} is given by (45) and KK is given by (50). According to the Lemma 2, the operator A+μSBvK=A+μ+i=1NPϕiθKiA+\mu-SB_{v}K=A+\mu+\sum_{i=1}^{N}P_{\phi_{i}}\theta K_{i} generates an exponentially stable C0C_{0}-semigroup on L2(Ω)L^{2}(\Omega) with θ=αμ\theta=-\alpha-\mu. Owing to the block-triangle structure and [23, Lemma 5.1], the operator 𝒜𝕊\mathcal{A}_{\mathbb{S}} generates an exponentially stable C0C_{0}-semigroup e𝒜𝕊te^{\mathcal{A}_{\mathbb{S}}t} on L2(Ω)×L2(Γ1)L^{2}(\Omega)\times L^{2}(\Gamma_{1}). Therefore, the operator 𝒜\mathcal{A} also generates an exponentially stable C0C_{0}-semigroup on L2(Ω)×L2(Γ1)L^{2}(\Omega)\times L^{2}(\Gamma_{1}) due to the similarity (55). ∎

Remark 3.1.

We point out that Theorems 4 is better than the results in [2] and [3], where the additional assumption that the eigenfunctions ϕj,jN\phi_{j},\ j\leq N are independent on L2(Γ1)L^{2}(\Gamma_{1}) must be required.

4 Preliminaries for observer design

This section is devoted to the preliminaries on the observer design that is closely related to the adjoint of the operator 𝒜\mathcal{A} given by (52). We first compute the adjoint operators of the AA, BB, BvB_{v}, KK and SS. Since the adjoint of BB has been given by (11) and A=AA^{*}=A, we only need to compute the adjoint operators of BvB_{v}, KK and SS.

By (33), the adjoint operator Bv(L2(Γ1),N)B_{v}^{*}\in\mathcal{L}\big{(}L^{2}(\Gamma_{1}),\mathbb{R}^{N}\big{)} of BvB_{v} satisfies

(57) c,BvgN=Bvc,gL2(Γ1)=Γ1j=1Ncjϕj(x)g(x)dx=j=1NcjΓ1ϕj(x)g(x)𝑑x\begin{array}[]{ll}\displaystyle\langle c,B_{v}^{*}g\rangle_{{\mathbb{R}}^{N}}&\displaystyle=\langle B_{v}c,g\rangle_{L^{2}(\Gamma_{1})}=\int_{\Gamma_{1}}\sum_{j=1}^{N}c_{j}\phi_{j}(x)g(x)dx\cr\vskip 3.69885pt\cr&\displaystyle=\sum_{j=1}^{N}c_{j}\int_{\Gamma_{1}}\phi_{j}(x)g(x)dx\end{array}

for all c=(c1,c2,,cN)Nc=(c_{1},c_{2},\cdots,c_{N})^{\top}\in{\mathbb{R}}^{N} and gL2(Γ1)g\in L^{2}(\Gamma_{1}). As a result,

(58) Bvg=(Γ1ϕ1(x)g(x)𝑑x,,Γ1ϕN(x)g(x)𝑑x),gL2(Γ1).B_{v}^{*}g=\left(\int_{\Gamma_{1}}\phi_{1}(x)g(x)dx,\cdots,\int_{\Gamma_{1}}\phi_{N}(x)g(x)dx\right)^{\top},\quad\forall\ g\in L^{2}(\Gamma_{1}).

Similarly, it follows from (50) that K(N,L2(Ω))K^{*}\in\mathcal{L}\big{(}{\mathbb{R}}^{N},L^{2}(\Omega)\big{)} satisfies

(59) f,KcL2(Ω)=Kf,cN=i=1NciΩf(x)j=1Nlijϕj(x)dx=Ωf(x)i,j=1Ncilijϕj(x)dx\begin{array}[]{ll}\langle f,K^{*}c\rangle_{L^{2}(\Omega)}&\displaystyle=\langle Kf,c\rangle_{{\mathbb{R}}^{N}}=\sum_{i=1}^{N}c_{i}\int_{\Omega}f(x)\sum_{j=1}^{N}l_{ij}\phi_{j}(x)dx\cr\vskip 3.69885pt\cr&\displaystyle=\int_{\Omega}f(x)\sum_{i,j=1}^{N}c_{i}l_{ij}\phi_{j}(x)dx\end{array}

for all c=(c1,c2,,cN)Nc=(c_{1},c_{2},\cdots,c_{N})^{\top}\in{\mathbb{R}}^{N} and fL2(Ω)f\in L^{2}(\Omega). (59) implies that

(60) Kc=i,j=1Ncilijϕj(x),c=(c1,c2,,cN)N.K^{*}c=\sum_{i,j=1}^{N}c_{i}l_{ij}\phi_{j}(x),\quad\forall\ c=(c_{1},c_{2},\cdots,c_{N})^{\top}\in{\mathbb{R}}^{N}.

To compute SS^{*}, we suppose that ξf(x)\xi_{f}(x) is the solution of the following elliptic equation

(61) {Δξf(x)=(α+μ)ξf(x)+f(x)xΩ,ξf(x)=0,xΓ0;ξf(x)ν=0,xΓ1,\begin{cases}\displaystyle\Delta\xi_{f}(x)=-(\alpha+\mu)\xi_{f}(x)+f(x)\ \ x\in\Omega,\cr\vskip 3.69885pt\cr\displaystyle\xi_{f}(x)=0,\ x\in\Gamma_{0};\ \ \frac{\partial\xi_{f}(x)}{\partial\nu}=0,\ x\in\Gamma_{1},\end{cases}

where α\alpha and μ\mu satisfy (42). Owing to Fredholm alternative theorem, equation (61) admits a unique solution ξf\xi_{f} for each inhomogeneous term fL2(Ω)f\in L^{2}(\Omega). So the function ξf(x)\xi_{f}(x) makes sense. In view of (43), for any gL2(Γ1)g\in L^{2}(\Gamma_{1}) and fL2(Ω)f\in L^{2}(\Omega), the adjoint operator S(L2(Ω),L2(Γ1))S^{*}\in\mathcal{L}\big{(}L^{2}(\Omega),L^{2}(\Gamma_{1})\big{)} satisfies

(62) g,SfL2(Γ1)=Sg,fL2(Ω)=Ωφg(x)f(x)dx=Ωφg(x)(Δξf(x)+(α+μ)ξf(x))dx=Ω(Δφg(x)ξf(x)φg(x)Δξf(x))𝑑x=Γ(φg(x)νξf(x)ξf(x)νφg(x))𝑑x=Γ1g(x)ξf(x)𝑑x,\begin{array}[]{ll}\langle g,S^{*}f\rangle_{L^{2}(\Gamma_{1})}&\displaystyle=\langle Sg,f\rangle_{L^{2}(\Omega)}=\int_{\Omega}-\varphi_{g}(x)f(x)dx\cr\vskip 3.69885pt\cr&\displaystyle=\int_{\Omega}-\varphi_{g}(x)(\Delta\xi_{f}(x)+(\alpha+\mu)\xi_{f}(x))dx\cr\vskip 3.69885pt\cr&\displaystyle=\int_{\Omega}(\Delta\varphi_{g}(x)\xi_{f}(x)-\varphi_{g}(x)\Delta\xi_{f}(x))dx\cr\vskip 3.69885pt\cr&\displaystyle=\int_{\Gamma}\left(\frac{\partial\varphi_{g}(x)}{\partial\nu}\xi_{f}(x)-\frac{\partial\xi_{f}(x)}{\partial\nu}\varphi_{g}(x)\right)dx\cr\vskip 3.69885pt\cr&\displaystyle=\int_{\Gamma_{1}}g(x)\xi_{f}(x)dx,\end{array}

which yields

(63) Sf=ξf,fL2(Ω),S^{*}f=\xi_{f},\qquad\forall\ f\in L^{2}(\Omega),

where ξf\xi_{f} satisfies (61).

With the operators B,AB^{*},A^{*}, BvB_{v}^{*}, KK^{*} and SS^{*} at hand, a simple computation shows that the operator 𝒜:D(𝒜)L2(Ω)×L2(Γ1)L2(Ω)×L2(Γ1)\mathcal{A}^{*}:D(\mathcal{A}^{*})\subset L^{2}(\Omega)\times L^{2}(\Gamma_{1})\rightarrow L^{2}(\Omega)\times L^{2}(\Gamma_{1}), the adjoint of the operator 𝒜\mathcal{A} given by (52), is

(64) 𝒜=(A+μKBvBαISKBv),D(𝒜)=D(A)×L2(Γ1).\displaystyle\mathcal{A}^{*}=\begin{pmatrix}\displaystyle A+\mu&\displaystyle-K^{*}B_{v}^{*}\\ \displaystyle B^{*}&\displaystyle-\alpha I-S^{*}K^{*}B_{v}^{*}\\ \end{pmatrix},\quad D(\mathcal{A}^{*})=D(A)\times L^{2}(\Gamma_{1}).
Lemma 5.

In addition to Assumption 1.1, suppose that α>0\alpha>0 satisfies

(65) αμλj,j+.-\alpha-\mu\neq\lambda_{j},\quad j\in\mathbb{Z}_{+}.

Then, the operator 𝒜\mathcal{A}^{*} given by (64) generates an exponentially stable C0C_{0}-semigroup on L2(Ω)×L2(Γ1)L^{2}(\Omega)\times L^{2}(\Gamma_{1}), where BB^{*}, BvB_{v}^{*}, KK^{*} and SS^{*} are given by (11), (58), (60) and (63), respectively.

Proof.

Similarly to the proof in Theorem 4, we introduce the following transformation

(66) 𝕋(f,g)=(f,gSf),(f,g)L2(Ω)×L2(Γ1),\mathbb{T}(f,g)^{\top}=(f,g-S^{*}f)^{\top},\quad\forall\ (f,g)^{\top}\in L^{2}(\Omega)\times L^{2}(\Gamma_{1}),

where S(L2(Γ1),L2(Ω))S^{*}\in\mathcal{L}\big{(}L^{2}(\Gamma_{1}),L^{2}(\Omega)\big{)} is given by (63). By a simple computation, we can conclude that 𝕋L2(Ω)×L2(Γ1)\mathbb{T}\in L^{2}(\Omega)\times L^{2}(\Gamma_{1}) is invertible and its inverse is

(67) 𝕋1(f,g)=(f,g+Sf),(f,g)L2(Ω)×L2(Γ1).\mathbb{T}^{-1}(f,g)^{\top}=(f,g+S^{*}f)^{\top},\qquad\forall\ (f,g)^{\top}\in L^{2}(\Omega)\times L^{2}(\Gamma_{1}).

Furthermore, we obtain

(68) 𝕋𝒜𝕋1=𝒜𝕋,D(𝒜𝕋)=𝕋D(𝒜),\mathbb{T}\mathcal{A}^{*}\mathbb{T}^{-1}=\mathcal{A}^{*}_{\mathbb{T}},\qquad D(\mathcal{A}^{*}_{\mathbb{T}})=\mathbb{T}D(\mathcal{A}^{*}),

where 𝒜𝕋\mathcal{A}^{*}_{\mathbb{T}} satisfies

(69) 𝒜𝕋=(A+μKBvSKBvS(A+μ)αS+Bα).\displaystyle\mathcal{A}^{*}_{\mathbb{T}}=\begin{pmatrix}\displaystyle A+\mu-K^{*}B_{v}^{*}S^{*}&-K^{*}B_{v}^{*}\\ \displaystyle-S^{*}(A+\mu)-\alpha S^{*}+B^{*}&-\alpha\\ \end{pmatrix}.

Owing to (38), we have S(A+μ)αS+B=0-S^{*}(A+\mu)-\alpha S^{*}+B^{*}=0 and hence

(70) 𝒜𝕋=(A+μKBvSKBv0α).\displaystyle\mathcal{A}^{*}_{\mathbb{T}}=\begin{pmatrix}\displaystyle A+\mu-K^{*}B_{v}^{*}S^{*}&-K^{*}B_{v}^{*}\\ \displaystyle 0&-\alpha\\ \end{pmatrix}.

Since A+μA+\mu generates an analytic semigroup e(A+μ)te^{(A+\mu)t} on L2(Ω)L^{2}(\Omega) and KBvSK^{*}B_{v}^{*}S^{*} is bounded, it follows from [16, Corollary 2.2, p.81] that A+μKBvSA+\mu-K^{*}B_{v}^{*}S^{*} also generates an analytic semigroup on L2(Ω)L^{2}(\Omega). The point spectrum satisfies σp(A+μKBvS)=σp(A+μSBvK){s|Res<0}\sigma_{p}(A+\mu-K^{*}B_{v}^{*}S^{*})=\sigma_{p}(A+\mu-SB_{v}K)\subset\{s\ |\ {\rm Re}\,s<0\}. Noting that A+μKBvSA+\mu-K^{*}B_{v}^{*}S^{*} is the inverse of a compact operator, it follows from [16, Theorem4.3, p.118] that the operator A+μKBvSA+\mu-K^{*}B_{v}^{*}S^{*} generates an exponentially stable C0C_{0}-semigroup on L2(Ω)L^{2}(\Omega). Owing to the block-triangle structure and [23, Lemma 5.1], the operator 𝒜𝕋\mathcal{A}^{*}_{\mathbb{T}} generates an exponentially stable C0C_{0}-semigroup e𝒜𝕋te^{\mathcal{A}^{*}_{\mathbb{T}}t} on L2(Ω)×L2(Γ1)L^{2}(\Omega)\times L^{2}(\Gamma_{1}). Therefore, the operator 𝒜\mathcal{A}^{*} also generates an exponentially stable C0C_{0}-semigroup on L2(Ω)×L2(Γ1)L^{2}(\Omega)\times L^{2}(\Gamma_{1}) due to the similarity (68). ∎

5 Observer design

Inspired by the dynamic compensation method in [8], we add, in terms of ϕ1,ϕ2,,ϕN\phi_{1},\phi_{2},\cdots,\phi_{N} given by (5), the sensor dynamic to system (1):

(71) {wt(x,t)Δw(x,t)μw(x,t)=0,(x,t)Ω×(0,+),w(x,t)=0,(x,t)Γ0×(0,+),w(x,t)ν=u(x,t),(x,t)Γ1×(0,+),pt(,t)=αp(,t)+Bw(,t),inΓ1,yp(t)=(y1(t),y2(t),,yN(t)),t(0,+),\begin{cases}w_{t}(x,t)-\Delta w(x,t)-\mu w(x,t)=0,\qquad(x,t)\in\Omega\times(0,+\infty),\cr\vskip 3.69885pt\cr w(x,t)=0,\qquad\qquad(x,t)\in\Gamma_{0}\times(0,+\infty),\cr\vskip 3.69885pt\cr\displaystyle\frac{\partial w(x,t)}{\partial\nu}=u(x,t),\qquad(x,t)\in\Gamma_{1}\times(0,+\infty),\cr\vskip 3.69885pt\cr\displaystyle p_{t}(\cdot,t)=-\alpha p(\cdot,t)+B^{*}w(\cdot,t),\qquad\mbox{in}\ \ \Gamma_{1},\cr\vskip 3.69885pt\cr y_{p}(t)=\big{(}y_{1}(t),y_{2}(t),\cdots,y_{N}(t)\big{)}^{\top},\qquad t\in(0,+\infty),\end{cases}

where α>0\alpha>0 is a tuning parameter, p(,t)p(\cdot,t) is an extended state, BB^{*} is given by (11) and

(72) yi(t)=Γ1p(x,t)ϕi(x)𝑑x,i=1,2,,N.y_{i}(t)=\int_{\Gamma_{1}}p(x,t)\phi_{i}(x)dx,\ \ i=1,2,\cdots,N.

By (2), (10), (11) and (58), system (71) can be written abstractly as

(73) {wt(,t)=(A~+μ)w(,t)+Bu(,t),pt(,t)=αp(,t)+Bw(,t),yp(t)=Bvp(,t).\begin{cases}w_{t}(\cdot,t)=(\tilde{A}+\mu)w(\cdot,t)+Bu(\cdot,t),\cr\vskip 3.69885pt\cr\displaystyle p_{t}(\cdot,t)=-\alpha p(\cdot,t)+B^{*}w(\cdot,t),\cr\vskip 3.69885pt\cr y_{p}(t)=B_{v}^{*}p(\cdot,t).\end{cases}

Inspired by the method in [8], the observer of system (73) can be designed as

(74) {w^t(x,t)=Δw^(x,t)+μw^(x,t)+KBv[p(,t)p^(,t)],xΩ,w^(x,t)=0,xΓ0,w^(x,t)ν=u(x,t),xΓ1,p^t(,t)=αp^(,t)+Bw^(,t)+SKBv[p(,t)p^(,t)]inΓ1,\begin{cases}\hat{w}_{t}(x,t)=\Delta\hat{w}(x,t)+\mu\hat{w}(x,t)\displaystyle+K^{*}B_{v}^{*}[p(\cdot,t)-\hat{p}(\cdot,t)],\quad x\in\Omega,\cr\vskip 3.69885pt\cr\hat{w}(x,t)=0,\qquad x\in\Gamma_{0},\cr\vskip 3.69885pt\cr\displaystyle\frac{\partial\hat{w}(x,t)}{\partial\nu}=u(x,t),\qquad x\in\Gamma_{1},\cr\vskip 3.69885pt\cr\hat{p}_{t}(\cdot,t)=-\alpha\hat{p}(\cdot,t)+B^{*}\hat{w}(\cdot,t)+S^{*}K^{*}B_{v}^{*}[p(\cdot,t)-\hat{p}(\cdot,t)]\quad\mbox{in}\ \ \Gamma_{1},\end{cases}

where BvB_{v}^{*}, KK^{*} and SS^{*} are given by (58), (60) and (63), respectively. Combining (11), (58), (60), (61), (63) and (71), the abstract observer (74) can be written concretely

(75) {w^t(x,t)=Δw^(x,t)+μw^(x,t)+i,j=1Nlijϕj(x)Γ1ϕi(x)(p(x,t)p^(x,t))𝑑x,xΩ,w^(x,t)=0,xΓ0,w^(x,t)ν=u(x,t),xΓ1,p^t(x,t)=αp^(x,t)+w^(x,t)+i,j=1Nlijξϕj(x)Γ1ϕi(x)(p(x,t)p^(x,t))𝑑x,xΓ1,\begin{cases}\hat{w}_{t}(x,t)=\Delta\hat{w}(x,t)+\mu\hat{w}(x,t)\cr\vskip 3.69885pt\cr\displaystyle\qquad\quad\ \ +\sum_{i,j=1}^{N}l_{ij}\phi_{j}(x)\int_{\Gamma_{1}}\phi_{i}(x)\big{(}p(x,t)-\hat{p}(x,t)\big{)}dx,\qquad x\in\Omega,\cr\vskip 3.69885pt\cr\hat{w}(x,t)=0,\qquad x\in\Gamma_{0},\cr\vskip 3.69885pt\cr\displaystyle\frac{\partial\hat{w}(x,t)}{\partial\nu}=u(x,t),\qquad x\in\Gamma_{1},\cr\vskip 3.69885pt\cr\displaystyle\hat{p}_{t}(x,t)=-\alpha\hat{p}(x,t)+\hat{w}(x,t)\cr\vskip 3.69885pt\cr\displaystyle\qquad\quad\ \ +\sum_{i,j=1}^{N}l_{ij}\xi_{\phi_{j}}(x)\int_{\Gamma_{1}}\phi_{i}(x)\big{(}p(x,t)-\hat{p}(x,t)\big{)}dx,\quad x\in\Gamma_{1},\qquad\end{cases}

where ξϕj(x)\xi_{\phi_{j}}(x), satisfies

(76) {Δξϕj(x)=(αμ)ξϕj(x)+ϕj(x),xΩ,ξϕj(x)=0,xΓ0;ξϕj(x)ν=0,xΓ1,j=1,2,,N.\begin{cases}\displaystyle\Delta\xi_{\phi_{j}}(x)=(-\alpha-\mu)\xi_{\phi_{j}}(x)+\phi_{j}(x),\ \ x\in\Omega,\cr\vskip 3.69885pt\cr\displaystyle\xi_{\phi_{j}}(x)=0,\ x\in\Gamma_{0};\ \ \frac{\partial\xi_{\phi_{j}}(x)}{\partial\nu}=0,\ x\in\Gamma_{1},\end{cases}j=1,2,\cdots,N.
Theorem 6.

In addition to Assumption 1.1, let α>0\alpha>0 satisfy

(77) αμλj,j+.-\alpha-\mu\neq\lambda_{j},\quad j\in\mathbb{Z}_{+}.

Then, for any initial value (w(,0),p(,0),w^(,0),p^(,0))[L2(Ω)×L2(Γ1)]2\big{(}w(\cdot,0),p(\cdot,0),\hat{w}(\cdot,0),\hat{p}(\cdot,0)\big{)}^{\top}\in[L^{2}(\Omega)\times L^{2}(\Gamma_{1})]^{2} and uLloc2([0,),L2(Γ1))\displaystyle u\in L^{2}_{\rm loc}\big{(}[0,\infty),L^{2}(\Gamma_{1})\big{)}, the observer (75) of system (71) admits a unique solution (w^,p^)C([0,),L2(Ω)×L2(Γ1))\displaystyle(\hat{w},\hat{p})^{\top}\in C\left([0,\infty),L^{2}(\Omega)\times L^{2}(\Gamma_{1})\right) such that

(78) limteωtw(,t)w^(,t),p(,t)p^(,t)L2(Ω)×L2(Γ1)=0,\displaystyle\lim_{t\rightarrow\infty}e^{\omega t}\|w(\cdot,t)-\hat{w}(\cdot,t),p(\cdot,t)-\hat{p}(\cdot,t)\|_{L^{2}(\Omega)\times L^{2}(\Gamma_{1})}=0,

where ω\omega is a positive constant that is independent of tt.

Proof.

For any (w(,0),p(,0))L2(Ω)×L2(Γ1)\big{(}w(\cdot,0),p(\cdot,0)\big{)}^{\top}\in L^{2}(\Omega)\times L^{2}(\Gamma_{1}) and uLloc2([0,),L2(Γ1))u\in L^{2}_{\rm loc}\left([0,\infty),L^{2}(\Gamma_{1})\right), it is well known that the control plant (71) admits a unique solution (w,p)C([0,),L2(Ω)×L2(Γ1))(w,p)^{\top}\in C\big{(}[0,\infty),L^{2}(\Omega)\times L^{2}(\Gamma_{1})\big{)} such that yjLloc2[0,)y_{j}\in L^{2}_{\rm loc}[0,\infty) for any j=1,2,,Nj=1,2,\cdots,N. Let

(79) {w~(x,t)=w(x,t)w^(x,t),(x,t)Ω×[0,),p~(s,t)=p(s,t)p^(s,t),(s,t)Γ1×[0,).\begin{cases}\tilde{w}(x,t)=w(x,t)-\hat{w}(x,t),\quad(x,t)\in\Omega\times[0,\infty),\cr\vskip 3.69885pt\cr\tilde{p}(s,t)=p(s,t)-\hat{p}(s,t),\qquad(s,t)\in\Gamma_{1}\times[0,\infty).\end{cases}

Then the errors are governed by

(80) {w~t(x,t)=Δw~(x,t)+μw~(x,t)KBvp~(,t),xΩ,w~(x,t)=0,xΓ0,w~(x,t)ν=0,xΓ1,p~t(,t)=αp~(,t)+Bw~(,t)SKBvp~(,t)inΓ1.\begin{cases}\tilde{w}_{t}(x,t)=\Delta\tilde{w}(x,t)+\mu\tilde{w}(x,t)-K^{*}B_{v}^{*}\ \tilde{p}(\cdot,t),\ \ x\in\Omega,\cr\vskip 3.69885pt\cr\displaystyle\tilde{w}(x,t)=0,\qquad x\in\Gamma_{0},\cr\vskip 3.69885pt\cr\displaystyle\frac{\partial\tilde{w}(x,t)}{\partial\nu}=0,\qquad x\in\Gamma_{1},\cr\vskip 3.69885pt\cr\displaystyle\tilde{p}_{t}(\cdot,t)=-\alpha\tilde{p}(\cdot,t)+B^{*}\tilde{w}(\cdot,t)-S^{*}K^{*}B_{v}^{*}\ \tilde{p}(\cdot,t)\quad\mbox{in}\ \ \Gamma_{1}.\end{cases}

In terms of the operator 𝒜\mathcal{A}^{*} given by (64), system (80) can be written as

(81) ddt(w~(,t),p~(,t))=𝒜(w~(,t),p~(,t)).\frac{d}{dt}\big{(}\tilde{w}(\cdot,t),\tilde{p}(\cdot,t)\big{)}^{\top}=\mathcal{A}^{*}\big{(}\tilde{w}(\cdot,t),\tilde{p}(\cdot,t)\big{)}^{\top}.

By Lemma 5, the operator 𝒜\mathcal{A}^{*} generates an exponentially stable analytic semigroup e𝒜te^{\mathcal{A}^{*}t} on L2(Ω)×L2(Γ1)L^{2}(\Omega)\times L^{2}(\Gamma_{1}). Hence, the error system (80) with initial state (w~(,0),p~(,0))L2(Ω)×L2(Γ1)\big{(}\tilde{w}(\cdot,0),\tilde{p}(\cdot,0)\big{)}^{\top}\in L^{2}(\Omega)\times L^{2}(\Gamma_{1}) admits a unique solution (w~(,t),p~(,t))C([0,);L2(Ω)×L2(Γ1))\big{(}\tilde{w}(\cdot,t),\tilde{p}(\cdot,t)\big{)}^{\top}\in C\big{(}[0,\infty);L^{2}(\Omega)\times L^{2}(\Gamma_{1})\big{)} such that

(82) limteωtw~(,t),p~(,t)L2(Ω)×L2(Γ1)=0,\lim_{t\rightarrow\infty}e^{\omega t}\|\tilde{w}(\cdot,t),\tilde{p}(\cdot,t)\|_{L^{2}(\Omega)\times L^{2}(\Gamma_{1})}=0,

where ω\omega is a positive constant that is independent of tt. Let (w^(,t),p^(,t))=(w(,t)w~(,t),p(,t)p~(,t))\big{(}\hat{w}(\cdot,t),\hat{p}(\cdot,t)\big{)}=\big{(}w(\cdot,t)-\tilde{w}(\cdot,t),p(\cdot,t)-\tilde{p}(\cdot,t)\big{)}, it shows that such a defined (w^,p^)C([0,);L2(Ω)×L2(Γ1))(\hat{w},\hat{p})^{\top}\in C\big{(}[0,\infty);L^{2}(\Omega)\times L^{2}(\Gamma_{1})\big{)} is a solution of system (75) or equivalently system (74). Moreover, (78) holds due to (79) and (82). Owing to the linearity of system (75), the solution is unique. ∎

6 Conclusions

In this paper, we extend the results in [8] to the general multi-domain. By introducing the ODE actuator/sensor dynamics, the difficulties caused by instability can be solved by the newly developed dynamics compensation approach [5], [6]. Since both the full state feedback law and the state observer are designed, the observer based output feedback is actually proposed to stabilize exponentially the unstable multi-dimensional heat system. The dynamics compensation approach may also used to the other multi-dimensional PDEs. Our future work is the stabilization and observation of the multi-dimensional unstable wave equation.

References

  • [1]
  • [2] V. Barbu, Stabilization of Navier-Stokes equations by oblique boundary feedback controllers, SIAM Journal on Control and Optimization, 50(2012), 2288–2307.
  • [3] V. Barbu, Boundary stabilization of equilibrium solutions to parabolic equations, IEEE Transactions on Automatic Control, 58(2013), 2416-2420.
  • [4] J.M. Coron and E. Trélat, Global steady-state controllability of one-dimensional semilinear heat equations, SIAM Journal on Control and Optimization, 43(2004), 549-569.
  • [5] H. Feng, X.H. Wu and B.Z. Guo, Actuator dynamics compensation in stabilization of abstract linear systems, arXiv:2008.11333, https://arxiv.org/abs/2008.11333.
  • [6] H. Feng, X.H. Wu and B.Z. Guo, Dynamics compensation in observation of abstract linear systems, arXiv:2009.01643, https://arxiv.org/abs/2009.01643.
  • [7] H. Feng and B.Z. Guo, On stability equivalence between dynamic output feedback and static output feedback for a class of second order infinite-dimensional systems, SIAM Journal on Control and Optimization, 53(2015), 1934-1955.
  • [8] H. Feng, P.H. Lang and J.K. Liu, Boundary stabilization and observation of an unstable heat equation in a general multi-dimensional domain, Automatia, 138(2022), 110152.
  • [9] Roger A. Horn, Charles R. Johnson. Matrix Analysis, Cambridge University Press, 2013.
  • [10] M. Krstic, B.Z. Guo, A. Balogh and A. Smyshlyaev, Output-feedback stabilization of an unstable wave equation, Automatica, 44(2008), 63-74.
  • [11] M. Krstic and A. Smyshlyaev, Backstepping boundary control for first order hyperbolic PDEs and application to systems with actuator and sensor delays, Systems &\& Control Letters, 57(2008), 750-758.
  • [12] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Vol. II, Cambridge University Press, 2000.
  • [13] H. Lhachemi and C. Prieur, Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control, IEEE Transactions Automatic Control, 66(2020), 105-120.
  • [14] H. Lhachemi, C. Prieur and E. Trélat, PI regulation of a reaction-diffusion equation with delayed boundary control, IEEE Transactions Automatic Control, 66(2021), 1573-1587.
  • [15] W. Liu, Boundary feedback stabilization of an untable heat equation, SIAM Journal on Control and Optimization, 42(2003), 1033-1043.
  • [16] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
  • [17] T. Roberto, Boundary feedback stabilizability of parabolic equations, Applied Mathematics and Optimization, 6(1980), 201-220.
  • [18] D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions, SIAM Review, 20(1978), 639-739.
  • [19] A. Smyshlyaev and M. Krstic, Backstepping observers for a class of parabolic PDEs, Systems &\& Control Letters, 54(2005), 613-625.
  • [20] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhauser, Basel, 2009.
  • [21] J.M. Wang, L. Su and H.X. Li, Stabilization of an unstable reaction-diffusion PDE cascaded with a heat equation, Systems &\& Control Letters, 76(2015), 8-18.
  • [22] J.M. Wang, J. Liu, B. Ren and J. Chen, Sliding mode control to stabilization of cascaded heat PDE-ODE systems subject to boundary control matched disturbance, Automatica, 52(2015), 23-34.
  • [23] G. Weiss and R. Curtain, Dynamic stabilization of regular linear systems, IEEE Transactions on Automatic Control, 42(1997), 4-21.

7 Appendix

Lemma 7.

Let the operator AA be given by (2). For any λσ(A)\lambda\in\sigma(A), suppose that ψ1,ψ2,,ψmλ\psi_{1},\psi_{2},\cdots,\psi_{m_{\lambda}} are the eigenfunctions corresponding to eigenvalue λ\lambda of AA, where mλm_{\lambda} is the geometric multiplicity of λ\lambda. If ψ1,ψ2,,ψmλ\psi_{1},\psi_{2},\cdots,\psi_{m_{\lambda}} are linearly independent on L2(Ω)L^{2}(\Omega), then the following matrix is invertible

(83) (ψ1,ψ1L2(Γ1)ψ1,ψ2L2(Γ1)ψ1,ψmλL2(Γ1)ψ2,ψ1L2(Γ1)ψ2,ψ2L2(Γ1)ψ2,ψmλL2(Γ1)ψmλ,ψ1L2(Γ1)ψmλ,ψ2L2(Γ1)ψmλ,ψmλL2(Γ1)).\begin{pmatrix}\langle\psi_{1},\psi_{1}\rangle_{L^{2}(\Gamma_{1})}&\langle\psi_{1},\psi_{2}\rangle_{L^{2}(\Gamma_{1})}&\cdots&\langle\psi_{1},\psi_{m_{\lambda}}\rangle_{L^{2}(\Gamma_{1})}\\ \langle\psi_{2},\psi_{1}\rangle_{L^{2}(\Gamma_{1})}&\langle\psi_{2},\psi_{2}\rangle_{L^{2}(\Gamma_{1})}&\cdots&\langle\psi_{2},\psi_{m_{\lambda}}\rangle_{L^{2}(\Gamma_{1})}\\ \vdots&\vdots&\cdots&\vdots\\ \langle\psi_{m_{\lambda}},\psi_{1}\rangle_{L^{2}(\Gamma_{1})}&\langle\psi_{m_{\lambda}},\psi_{2}\rangle_{L^{2}(\Gamma_{1})}&\cdots&\langle\psi_{m_{\lambda}},\psi_{m_{\lambda}}\rangle_{L^{2}(\Gamma_{1})}\\ \end{pmatrix}.
Proof.

Since the operator AA is self-adjoint and negative with compact resolvents, σ(A)\sigma(A) consists of isolated eigenvalues of finite geometric multiplicity only. Hence, ψk\psi_{k} satisfies

(84) {Δψk(x)=λψk(x),xΩ,ψk(x)=0,xΓ0,ψk(x)ν=0,xΓ1,,k=1,2,,mλ.\begin{cases}\displaystyle\Delta\psi_{k}(x)=\lambda\psi_{k}(x),\quad x\in\Omega,\cr\vskip 3.69885pt\cr\displaystyle\psi_{k}(x)=0,\quad x\in\Gamma_{0},\cr\vskip 3.69885pt\cr\displaystyle\frac{\partial\psi_{k}(x)}{\partial\nu}=0,\quad x\in\Gamma_{1},\end{cases},\ \ k=1,2,\cdots,m_{\lambda}.

Noting that the matrix in (83) happens to be a Gram matrix of the sequence ψ1,ψ2,,ψmλ\psi_{1},\psi_{2},\cdots,\psi_{m_{\lambda}}, the proof will be accomplished if we can prove that ψ1,ψ2,,ψmλ\psi_{1},\psi_{2},\cdots,\psi_{m_{\lambda}} are linearly independent on L2(Γ1)L^{2}(\Gamma_{1}) ([9, p.441, Theorem 7.2.10]).

Actually, suppose there exist 1,2,,mλ\ell_{1},\ell_{2},\cdots,\ell_{m_{\lambda}}\in{\mathbb{R}} such that

(85) 1ψ1(x)+2ψ2(x)++mλψmλ(x)=0,xΓ1.\ell_{1}\psi_{1}(x)+\ell_{2}\psi_{2}(x)+\cdots+\ell_{{m_{\lambda}}}\psi_{m_{\lambda}}(x)=0,\quad x\in\Gamma_{1}.

If we let

(86) β(x)=1ψ1(x)+2ψ2(x)++mλψmλ(x),xΩ,\beta_{\ell}(x)=\ell_{1}\psi_{1}(x)+\ell_{2}\psi_{2}(x)+\cdots+\ell_{m_{\lambda}}\psi_{m_{\lambda}}(x),\quad x\in\Omega,

then it follows from (84) that

(87) {Δβ(x)=λβ(x),xΩ,β(x)=0,xΓ,β(x)ν=0,xΓ1,\begin{cases}\displaystyle\Delta\beta_{\ell}(x)=\lambda\beta_{\ell}(x),\quad x\in\Omega,\cr\vskip 3.69885pt\cr\displaystyle\beta_{\ell}(x)=0,\quad x\in\Gamma,\cr\vskip 3.69885pt\cr\displaystyle\frac{\partial\beta_{\ell}(x)}{\partial\nu}=0,\quad x\in\Gamma_{1},\end{cases}

which admits a unique solution β(x)0\beta_{\ell}(x)\equiv 0, xΩx\in\Omega ([7, Theorem 2.4]). Since ψ1,ψ2,,ψmλ\psi_{1},\psi_{2},\cdots,\psi_{m_{\lambda}} are linearly independent on L2(Ω)L^{2}(\Omega), we can conclude that 1=2==mλ=0\ell_{1}=\ell_{2}=\cdots=\ell_{m_{\lambda}}=0. As a result, ψ1,ψ2,,ψmλ\psi_{1},\psi_{2},\cdots,\psi_{m_{\lambda}} are linearly independent on L2(Γ1)L^{2}(\Gamma_{1}). ∎

Lemma 8.

Let NN be a positive integer, FNN×NF_{N}\in{\mathbb{R}}^{N\times N} and

(88) ΛN=diag(J1,,Jp),Jj=diag(λj,,λj)nj×nj,j=1,2,,p,\Lambda_{N}={\rm diag}(J_{1},\cdots,J_{p}),\ \ J_{j}={\rm diag}(\lambda_{j},\cdots,\lambda_{j})\in{\mathbb{R}}^{n_{j}\times n_{j}},\ \ j=1,2,\cdots,p,

where n1,n2,,npn_{1},n_{2},\cdots,n_{p} are pp positive integers such that n1+n2++np=Nn_{1}+n_{2}+\cdots+n_{p}=N. Suppose that

(89) λkλjif and only ifkj,k,j=1,2,,p\lambda_{k}\neq\lambda_{j}\ \mbox{if and only if}\ \ k\neq j,\ \ \ k,j=1,2,\cdots,p

and the matrix FNF_{N} can be written as

(90) FN=(P1P2Pp),Pjnj×nj,j=1,2,,p.F_{N}=\begin{pmatrix}P_{1}&*&\cdots&*\\ *&P_{2}&\cdots&*\\ \vdots&\vdots&\ddots&\vdots\\ *&*&\cdots&P_{p}\\ \end{pmatrix},\ \ P_{j}\in{\mathbb{R}}^{n_{j}\times n_{j}},\ \ j=1,2,\cdots,p.

Then, the pair (ΛN,FN)(\Lambda_{N},F_{N}) is controllable provided the matrix determinant of PjP_{j} satisfies

(91) |Pj|0,j=1,2,,p.\left|P_{j}\right|\neq 0,\ \ \ j=1,2,\cdots,p.
Proof.

Otherwise, we can conclude that (ΛN,FN)(\Lambda_{N}^{\top},F^{\top}_{N}) is not observable. By the Hautus test [20, p.15, Remark 1.5.2], there exist 0VN0\neq V\in{\mathbb{R}}^{N} and k{1,2,,p}k\in\{1,2,\cdots,p\} such that

(92) ΛNV=λkVandFNV=0.\Lambda_{N}V=\lambda_{k}V\ \ \mbox{and}\ \ F_{N}^{\top}V=0.

Without loss of generality, we suppose that

(93) V=(V1V2Vp),Vj=(v1j,,vnjj),j=1,2,,nj.V=\begin{pmatrix}V_{1}\\ V_{2}\\ \vdots\\ V_{p}\end{pmatrix},\ \ V_{j}=(v^{j}_{1},\cdots,v_{n_{j}}^{j})^{\top},\ \ j=1,2,\cdots,n_{j}.

The first equation of (92) becomes

(94) ΛNVλkV=((λ1λk)V1(λkλk)V2(λpλk)Vp)=0.\Lambda_{N}V-\lambda_{k}V=\begin{pmatrix}(\lambda_{1}-\lambda_{k})V_{1}\\ \vdots\\ (\lambda_{k}-\lambda_{k})V_{2}\\ \vdots\\ (\lambda_{p}-\lambda_{k})V_{p}\end{pmatrix}=0.\ \

By the assumption (89), Vi=0V_{i}=0 when iki\neq k. As a result, FNV=0F_{N}^{\top}V=0 implies that PkVk=0P_{k}^{\top}V_{k}=0. Owing to the assumption (91), we can conclude that Vk=0V_{k}=0 and hence V=0V=0. This is contradict to the fact V0V\neq 0. Therefore, the pair (ΛN,FN)(\Lambda_{N},F_{N}) is controllable. ∎