This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Bound on the running maximum of a random walk with small drift

Ofer Busani Ofer Busani
University of Bristol
School of Mathematics
Fry Building
Woodland Rd.
Bristol BS8 1UG
UK.
[email protected] https://people.maths.bris.ac.uk/ di18476/
 and  Timo Seppäläinen Timo Seppäläinen
University of Wisconsin-Madison
Mathematics Department
Van Vleck Hall
480 Lincoln Dr.
Madison WI 53706-1388
USA.
[email protected] http://www.math.wisc.edu/ seppalai
Abstract.

We derive a lower bound for the probability that a random walk with i.i.d. increments and small negative drift μ\mu exceeds the value x>0x>0 by time NN. When the moment generating functions are bounded in an interval around the origin, this probability can be bounded below by 1O(x|μ|logN)1-O(x|\mu|\log N). The approach is elementary and does not use strong approximation theorems.

2000 Mathematics Subject Classification:
60K35, 60K37
O. Busani was supported by EPSRC’s EP/R021449/1 Standard Grant.
T. Seppäläinen was partially supported by National Science Foundation grant DMS-1854619 and by the Wisconsin Alumni Research Foundation.

1. Introduction

1.1. Background

This paper arose from the need of a random walk estimate for the authors’ article [2] on directed polymers. This estimate is a positive lower bound on the running maximum of a random walk with a small negative drift. Importantly, the bound had to come with sufficient control over its constants so that it would apply to an infinite sequence of random walks whose drift scales to zero as the maximum is taken over expanding time intervals. The natural approach via a Brownian motion embedding appeared to not give either the desired precision or the uniformity. Hence we resorted to a proof from scratch. For possible wider use we derive the result here under general hypotheses on the distribution of the step of the walk.

The polymer application of the result pertains to the exactly solvable log-gamma polymer on the plane. The objective of [2] is to prove that there are no bi-infinite polymer paths on the planar lattice 2\mathbb{Z}^{2}. The technical result is that there does not exist any nontrivial Gibbs measures on bi-infinite paths that satisfy the Dobrushin-Lanford-Ruelle (DLR) equations under the Gibbsian specification defined by the quenched polymer measures. In terms of limits of finite polymer distributions, this means that as the southwest and northeast endpoints of a random polymer path are taken to opposite infinities, the middle portion of the path escapes. This is proved by showing that in the limit the probability that the path crosses the yy-axis along a given edge decays to zero. This probability in turn is controlled by considering stationary polymer processes from the two endpoints to an interval along the yy-axis. The crossing probability can be controlled in terms of a maximum of a random walk. In the case of the log-gamma polymer, the steps of this random walk are distributed as the difference of two independent log-gamma variables. The case needed for [2] is treated in Example 2.7 below.

1.2. The question considered

We seek a lower bound on the probability that the running maximum of a random walk with negative drift reaches a level x>0x>0. To set the stage, we discuss the matter through Brownian motion. Let SnN=i=1nXiNS^{N}_{n}=\sum_{i=1}^{n}X^{N}_{i} be a random walk with drift 𝔼(X1N)=μN=μN1/2<0\mathbb{E}(X^{N}_{1})=\mu_{N}=\mu N^{-1/2}<0, and such that the random walks SNS^{N} converge weakly to a Brownian motion with drift μ<0\mu<0. The probability of the event

sup1nNSnN>x\displaystyle\sup_{1\leq n\leq N}S^{N}_{n}>x

should be approximately the same as that of

(1.1) sup0s1(Bs+sμ)>xN1/2.\displaystyle\sup_{0\leq s\leq 1}(B_{s}+s\mu)>xN^{-1/2}.

This latter can be computed (see (3.7)) to be

(1.2) {sup0s1(Bs+sμ)>xN1/2}=1O(|μ|xN1/2).\displaystyle\mathbb{P}\big{\{}\sup_{0\leq s\leq 1}(B_{s}+s\mu)>xN^{-1/2}\hskip 0.7pt\big{\}}=1-O(|\mu|xN^{-1/2}\hskip 0.7pt).

This suggests that we should aim for an estimate of the type

(1.3) (sup1nNSnN>x)1O(|μN|x).\displaystyle\mathbb{P}\Big{(}\sup_{1\leq n\leq N}S^{N}_{n}>x\Big{)}\geq 1-O(|\mu_{N}|x).

To reach this precision weak convergence is not powerful enough, for a weak approximation of random walk by Brownian motion reaches only a precision of O(N1/4)O(N^{-1/4}) [12, 7]. Our estimate (2.4) below does almost capture (1.3): we have to allow an additional logN\log N factor inside the O()O(\cdot) and consider xx of order at least (logN)2(\log N)^{2}.

The by-now classical Komlós-Major-Tusnády (KMT) coupling [9] gives a strong approximation of random walk with Brownian motion with a discrepancy that grows logarithmically in time. This precision is sufficient for us, as we illustrate in Section 3. The problem is now the control of the constants in the approximation. Uniformity of the constants is necessary for our application in [2]. But verifying this uniformity from the original work [9] appeared to be a highly nontrivial task. In the end it was more efficient to derive the estimate (Theorem 2.2 below) from the ground up.

The difficulty of the original KMT proof has motivated several recent attempts at simplification and better understanding of the result, such as Bhattacharjee and Goldstein [1], Chatterjee [3], and Krishnapur [10]. There is another strong approximation result due to Sakhanenko [11] which, according to p. 232 of [3], “is so complex that some researchers are hesitant to use it”.

1.3. Sketch of the proof

Our proof is elementary. The most sophisticated result used is the Berry-Esseen theorem. Given a random walk of small drift μ<0\mu<0, our approach can be summarized in two main steps:

  1. (1)

    Up to the time the random walk hits the level ε|μ|1-\varepsilon|\mu|^{-1} it behaves like an unbiased random walk.

  2. (2)

    By the time the random walk hits the level ε|μ|1-\varepsilon|\mu|^{-1} it will have had about log2(ε|μ|1x1)\log_{2}(\varepsilon|\mu|^{-1}x^{-1}) independent opportunities to hit the level xx. By the previous step this implies that the probability on the left-hand side of (1.3) is of order 1(1/2)log2(ε|μ|1x1)=1O(|μ|ε1x)1-(1/2)^{\log_{2}(\varepsilon|\mu|^{-1}x^{-1})}=1-O(|\mu|\varepsilon^{-1}x).

As we will take ε=(logN)1\varepsilon=(\log N)^{-1} in the proof, we will obtain the right order in (1.3) up to a logarithmic factor (Theorem 2.2). After the statement of the theorem we illustrate it with examples. Then we demonstrate that even if we knew that the constants in the KMT approximation can be taken uniform, the result would not be essentially stronger in the regime in which we apply our result.

2. Main result

For each N>0N\in\mathbb{Z}_{>0}, let {XiN}i1\{X^{N}_{i}\}_{i\geq 1} be a sequence of non-degenerate i.i.d. random variables. Denote their moment generating function by

MN(θ)\displaystyle M_{N}(\theta) =𝔼(eθX1N).\displaystyle=\mathbb{E}\big{(}e^{\theta X^{N}_{1}}\big{)}.

Write MN(0)=MNM_{N}^{(0)}=M_{N} and MN(i+1)=(d/dθ)MN(i)M_{N}^{(i+1)}=(d/d\theta)M_{N}^{(i)}.

Assumption 2.1.
  1. We assume that the random variables {XiN}i1\{X^{N}_{i}\}_{i\geq 1} satisfy the following:

  2. (i)

    There exists an open interval (θ0,θ0)(-\theta_{0},\theta_{0}) around the origin on which each moment generating function MNM_{N} is finite. Furthermore, there exists a finite constant CMC_{M} and θ1>0\theta_{1}>0 such that we have the uniform bounds

    (2.1) |MN(i)(θ)|\displaystyle|M_{N}^{(i)}(\theta)| CMfor all N0i3, and θ[θ1,θ1]\displaystyle\leq C_{M}\quad\text{for all $N$, $0\leq i\leq 3$, and $\theta\in[-\theta_{1},\theta_{1}]$}

    for the compact interval [θ1,θ1](θ0,θ0)[-\theta_{1},\theta_{1}]\subset(-\theta_{0},\theta_{0}).

  3. (ii)

    There exists a finite constant σ>0\sigma_{*}>0 such that

    (2.2) 𝔼[(X1N)2]σN2=𝕍ar(X1N)σ2for all N.\displaystyle\mathbb{E}\big{[}(X^{N}_{1})^{2}\big{]}\geq\sigma_{N}^{2}={\rm\mathbb{V}ar}(X^{N}_{1})\geq{\sigma^{2}_{*}}\quad\text{for all $N$.}
  4. (iii)

    There exists a finite constant Dμ>0D_{\mu}>0 such that the expectations μN=𝔼(X1N)\mu_{N}=\mathbb{E}\big{(}X^{N}_{1}\big{)} satisfy

    (2.3) Dμ(logN)3μN0for all N.\displaystyle-D_{\mu}(\log N)^{-3}\leq\mu_{N}\leq 0\quad\text{for all $N$.}

The conditions in Assumption 2.1 are fairly natural. Note that (2.1) has to be checked only for i=0i=0 at the expense of shrinking the interval [θ1,θ1][-\theta_{1},\theta_{1}] and increasing CMC_{M}. To make a positive maximum possible, condition (2.2) ensures enough diffusivity and condition (2.3) limits the strength of the negative drift. The bound (2.4) below shows that DμD_{\mu} has to be vanishingly small in order for the result to be nontrivial.

For m1m\geq 1 let SmN=k=1mXkNS^{N}_{m}=\sum_{k=1}^{m}X^{N}_{k} be the random walk associated with the steps {XiN}i1\{X^{N}_{i}\}_{i\geq 1}. Here is the main theorem.

Theorem 2.2.

There exist finite constants CC and N0N_{0} that depend on θ1,σ2,Dμ\theta_{1},{\sigma^{2}_{*}},D_{\mu} and CMC_{M} such that, for every NN0N\geq N_{0} and x(logN)2x\geq(\log N)^{2},

(2.4) (max1mNSmNx)Cx(logN)(|μN|N1/2).\displaystyle\mathbb{P}\Big{(}\max_{1\leq m\leq N}S^{N}_{m}\leq x\Big{)}\leq C\hskip 0.7ptx(\log N)(\hskip 0.7pt|\mu_{N}|\vee N^{-1/2}\hskip 0.7pt).
Remark 2.3 (The constants in the theorem).

The constant CC in the upper bound (2.4) is given by

(2.5) C=4exp{4(C0+4cτ1)(1+Dμ)+8θ11(1+log(eθ1CM+1))+4CM}+3C=4\exp\bigl{\{}4(C_{0}+4c_{\tau}^{-1})(1+D_{\mu})+8\theta_{1}^{-1}\bigl{(}1+\log(e^{\theta_{1}}C_{M}+1)\bigr{)}+4C_{M}\bigr{\}}+3

where

(2.6) C0=2(σ1+9eθ1σ3CM5/2)+2e8CMσ4+8σ2cτ1+12σ2,C_{0}=2(\sigma_{*}^{-1}+9e^{\theta_{1}}\sigma_{*}^{-3}C_{M}^{\hskip 0.7pt5/2})+2e^{8C_{M}\sigma_{*}^{-4}+8\sigma_{*}^{-2}}c_{\tau}^{-1}+12\sigma_{*}^{-2}\,,
(2.7) cτ=log21+Φσ2[2,2],c_{\tau}=\log\frac{2}{1+\Phi_{{\sigma^{2}_{*}}}[-2,2]}\,,

and Φσ2\Phi_{{\sigma^{2}_{*}}} is the mean zero Gaussian distribution with variance σ2{\sigma^{2}_{*}}.

Throughout the proof we state explicitly the various conditions NN0N\geq N_{0} required along the way. Let us assume that N2N\geq 2 so that logN\log N does not vanish. Then all the conditions NN0N\geq N_{0} can be combined into a single condition of the form

(2.8) f(CM,Dμ,σ2,θ1,N)1f(C_{M},D_{\mu},{\sigma^{2}_{*}},\theta_{1},N)\geq 1

where the function ff is a strictly positive continuous function on >04×2\mathbb{R}_{>0}^{4}\times\mathbb{R}_{\geq 2}, nondecreasing in θ1\theta_{1}, nonincreasing in CMC_{M} and DμD_{\mu}, but depends on σ2{\sigma^{2}_{*}} in both directions. When (CM,Dμ,σ2,θ1)(C_{M},D_{\mu},{\sigma^{2}_{*}},\theta_{1}) is restricted to a compact subset 𝒦\mathcal{K} of >04\mathbb{R}_{>0}^{4}, there exists a finite index N𝒦N_{\mathcal{K}} such that f(CM,Dμ,σ2,θ1,N)f(C_{M},D_{\mu},{\sigma^{2}_{*}},\theta_{1},N) is a nondecreasing function of NN𝒦N\geq N_{\mathcal{K}} for any fixed (CM,Dμ,σ2,θ1)𝒦(C_{M},D_{\mu},{\sigma^{2}_{*}},\theta_{1})\in\mathcal{K}, and

limNinf(CM,Dμ,σ2,θ1)𝒦f(CM,Dμ,σ2,θ1,N)=.\lim_{N\to\infty}\;\inf_{(C_{M},D_{\mu},{\sigma^{2}_{*}},\theta_{1})\hskip 0.55pt\in\hskip 0.55pt\mathcal{K}}f(C_{M},D_{\mu},{\sigma^{2}_{*}},\theta_{1},N)=\infty.

In particular, for each compact subset 𝒦>04\mathcal{K}\subset\mathbb{R}_{>0}^{4} there exists a finite index N0,𝒦N_{0,\mathcal{K}} such that (2.8) holds for all NN0,𝒦N\geq N_{0,\mathcal{K}} and all (CM,Dμ,σ2,θ1)𝒦(C_{M},D_{\mu},{\sigma^{2}_{*}},\theta_{1})\in\mathcal{K}. Furthermore, it is evident from (2.5)-(2.7) that CC is a continuous function of (CM,Dμ,σ2,θ1)>04(C_{M},D_{\mu},{\sigma^{2}_{*}},\theta_{1})\in\mathbb{R}_{>0}^{4}. We conclude with the following local uniformity statement.

Corollary 2.4.

For each compact subset 𝒦>04\mathcal{K}\subset\mathbb{R}_{>0}^{4} there exist finite constants C0,𝒦C_{0,\mathcal{K}} and N0,𝒦N_{0,\mathcal{K}} such that the following holds: the estimate (2.4) with C=C0,𝒦C=C_{0,\mathcal{K}} on the right-hand side is valid whenever NN0,𝒦N\geq N_{0,\mathcal{K}}, simultaneously for all walks {SmN}m1\{S^{N}_{m}\}_{m\geq 1} that satisfy Assumption 2.1 with parameters (CM,Dμ,σ2,θ1)𝒦(C_{M},D_{\mu},{\sigma^{2}_{*}},\theta_{1})\in\mathcal{K}.

We illustrate the result with some examples.

Example 2.5 (Gaussian random walk).

Let BtB_{t} be a Brownian motion, μ<0\mu<0, and define the random walk SmN=Bm+mN1/2μS^{N}_{m}=B_{m}+mN^{-1/2}\mu . We can verify that the bound (2.4) is off by a logarithmic factor in this case, by comparison with the running maximum of the Brownian motion. For x>0x>0 and large enough NN

(2.9) (max1mNSmNx)\displaystyle\mathbb{P}\big{(}\max_{1\leq m\leq N}S^{N}_{m}\leq x\big{)} (sup0tNBt+tN1/2μx)\displaystyle\geq\mathbb{P}\big{(}\sup_{0\leq t\leq N}B_{t}+tN^{-1/2}\mu\leq x\big{)}
1e2xN1/2|μ|x|μN|=xN1/2|μ|.\displaystyle\geq 1-e^{-2xN^{-1/2}|\mu|}\geq x|\mu_{N}|=xN^{-1/2}|\mu|.

where the middle inequality follows from (3.7) with μ(N)=μ\mu(N)=\mu and b(N)=xN1/2b(N)=xN^{-1/2}.(2.9) shows that the optimal error is at most O(x|μN|)O(x|\mu_{N}|), and that Theorem 2.2, if not optimal, is only logN\log N away from being so.

A natural way to produce examples is to take XiNX^{N}_{i} as the difference of two independent random variables whose means come closer as NN grows and whose variances stay bounded and bounded away from zero.

Example 2.6 (Exponential walk).

Consider a random walk Sn=k=1nXkS_{n}=\sum_{k=1}^{n}X_{k} with step distribution Xk=𝑑YαYβX_{k}\overset{d}{=}Y_{\alpha}-Y_{\beta} where YαY_{\alpha} and YβY_{\beta} are two independent exponential random variables with rates α\alpha and β\beta, respectively. μ=𝔼[Xk]=βααβ\mu=\mathbb{E}[X_{k}]=\frac{\beta-\alpha}{\alpha\beta} so we assume that α>β\alpha>\beta. The distribution of the supremum of SnS_{n} is well-known and also feasible to compute (Example (b) in Section XII.5 of Feller [6]): for x>0x>0,

(supn0Snx)=1βαe(αβ)x=β|μ|(1+βx)+O(μ2x2)\displaystyle\mathbb{P}\bigl{(}\sup_{n\geq 0}S_{n}\leq x)=1-\frac{\beta}{\alpha}e^{-(\alpha-\beta)x}=\beta|\mu|\bigl{(}1+\beta x\bigr{)}+O(\mu^{2}x^{2})

where we assume |μ|x|\mu|x small and expand es=1+s+O(s2)e^{s}=1+s+O(s^{2}). We obtain a lower bound:

(max1nNSnx)\displaystyle\mathbb{P}\bigl{(}\max_{1\leq n\leq N}S_{n}\leq x) P(supn0Snx)=β|μ|(1+βx)+O(μ2x2)\displaystyle\geq P\bigl{(}\sup_{n\geq 0}S_{n}\leq x)=\beta|\mu|\bigl{(}1+\beta x\bigr{)}+O(\mu^{2}x^{2})
β2|μ|x+O(μ2x2).\displaystyle\geq\beta^{2}|\mu|x+O(\mu^{2}x^{2}).

Thus for |μ|N1/2|\mu|\geq N^{-1/2} and small x|μ|x|\mu|, the upper bound (2.4) loses only a logarithmic factor.

That max1nNSn\max_{1\leq n\leq N}S_{n} is close to the overall maximum supn0Sn\sup_{n\geq 0}S_{n} in the case |μ|N1/2|\mu|\geq N^{-1/2} is a consequence of the fact that the overall maximum is taken at a random time of order μ2\mu^{-2}. This claim is seen conveniently through ladder intervals {Ti}i1\{T_{i}\}_{i\geq 1}. These are the intervals Ti=τiτi1T_{i}=\tau_{i}-\tau_{i-1} between successive ladder epochs defined by τ0=0\tau_{0}=0 and

τi=inf{n>τi1:Sn>Sτi1}.\tau_{i}=\inf\{n>\tau_{i-1}:S_{n}>S_{\tau_{i-1}}\}.

The distribution of TiT_{i} is given by

(Ti=)=1βαand(Ti=n)=Cn1αn1βn(α+β)2n1for n>0,\mathbb{P}(T_{i}=\infty)=1-\frac{\beta}{\alpha}\quad\text{and}\quad\mathbb{P}(T_{i}=n)=C_{n-1}\frac{\alpha^{n-1}\beta^{n}}{(\alpha+\beta)^{2n-1}}\quad\text{for }n\in\mathbb{Z}_{>0},

where {Ck}k0\{C_{k}\}_{k\geq 0} are the Catalan numbers. (This calculation can be found in Lemma B.3 in the appendix of [5].) Set T0=0T_{0}=0 and let N=max{n0:Tn<}N=\max\{n\geq 0:T_{n}<\infty\} be the number of finite ladder intervals. The maximum supn0Sn\sup_{n\geq 0}S_{n} is taken at time ζ=i=1NTi\zeta=\sum_{i=1}^{N}T_{i}. One calculates 𝔼[ζ]=1αβμ2\mathbb{E}[\zeta]=\frac{1}{\alpha\beta}\mu^{-2} and 𝕍ar[ζ]=cα,βμ4{\rm\mathbb{V}ar}[\zeta]=c_{\alpha,\beta}\mu^{-4}. Thus for large enough kk, (ζ>kμ2)Cα,βk2\mathbb{P}(\zeta>k\mu^{-2})\leq C_{\alpha,\beta}k^{-2}.

Example 2.7 (Log-gamma walk).

This is the application of Theorem 2.2 used in [2].

Let GλG^{\lambda} denote generically a parameter λ\lambda gamma random variable, that is, GλG^{\lambda} has density function f(x)=Γ(λ)1xλ1exf(x)=\Gamma(\lambda)^{-1}x^{\lambda-1}e^{-x} on >0\mathbb{R}_{>0}. For α,β>0\alpha,\beta>0 let Smα,β=i=1mXiα,βS^{\alpha,\beta}_{m}=\sum_{i=1}^{m}X^{\alpha,\beta}_{i} denote the random walk where the distribution of the i.i.d. steps {Xiα,β}i1\{X^{\alpha,\beta}_{i}\}_{i\geq 1} is specified by

X1α,β=𝑑logGαlogGβX^{\alpha,\beta}_{1}\;\overset{d}{=}\;\log G^{\alpha}-\log G^{\beta}

with two independent gamma variables GαG^{\alpha} and GβG^{\beta} on the right.

Let ψ0(s)=Γ(s)/Γ(s)\psi_{0}(s)=\Gamma^{\prime}(s)/\Gamma(s) be the digamma function and ψ1(s)=ψ0(s)\psi_{1}(s)=\psi_{0}^{\prime}(s) the trigamma function on >0\mathbb{R}_{>0}. Their key properties are that ψ0\psi_{0} is strictly increasing with ψ0(0+)=\psi_{0}(0+)=-\infty and ψ0()=\psi_{0}(\infty)=\infty, while ψ1\psi_{1} is strictly decreasing and strictly convex with ψ1(0+)=\psi_{1}(0+)=\infty and ψ1()=0\psi_{1}(\infty)=0.

Fix a compact interval [ρmin,ρmax](0,)[\rho_{\rm min},\rho_{\rm max}]\subset(0,\infty). Fix a positive constant a0a_{0} and let {sN}N1\{s_{N}\}_{N\geq 1} be a sequence of nonnegative reals such that 0sNa0(logN)30\leq s_{N}\leq a_{0}(\log N)^{-3}. Define a set of admissible pairs

𝒮N={(α,β):α,β[ρmin,ρmax],sNαβ0}.\mathcal{S}_{N}=\{(\alpha,\beta):\alpha,\beta\in[\rho_{\rm min},\rho_{\rm max}],\;-s_{N}\leq\alpha-\beta\leq 0\}.

For (α,β)𝒮N(\alpha,\beta)\in\mathcal{S}_{N}, the mean step satisfies

(2.10) μα,β\displaystyle\mu_{\alpha,\beta} =𝔼[X1α,β]=𝔼[logGα]𝔼[logGβ]=ψ0(α)ψ0(β)\displaystyle=\mathbb{E}[X^{\alpha,\beta}_{1}]=\mathbb{E}[\log G^{\alpha}]-\mathbb{E}[\log G^{\beta}]=\psi_{0}(\alpha)-\psi_{0}(\beta)
=ψ1(λ)(αβ)[a0ψ1(ρmin)(logN)3,0]\displaystyle=\psi_{1}(\lambda)(\alpha-\beta)\;\in\;[-a_{0}\hskip 0.7pt\psi_{1}(\rho_{\rm min})(\log N)^{-3},0]

where we used the mean value theorem with some λ(ρmin,ρmax)\lambda\in(\rho_{\rm min},\rho_{\rm max}). We take Dμ=a0ψ1(ρmin)D_{\mu}=a_{0}\hskip 0.7pt\psi_{1}(\rho_{\rm min}).

The MGF of X1α,βX^{\alpha,\beta}_{1} is

(2.11) Mα,β(θ)\displaystyle M_{\alpha,\beta}(\theta) =𝔼[eθX1α,β]=𝔼[(Gα)θ]𝔼[(Gβ)θ]=Γ(α+θ)Γ(βθ)Γ(α)Γ(β)\displaystyle=\mathbb{E}\big{[}e^{\theta X^{\alpha,\beta}_{1}}\big{]}=\mathbb{E}\big{[}(G^{\alpha})^{\theta}\hskip 0.9pt\big{]}\,\mathbb{E}\big{[}(G^{\beta})^{-\theta}\hskip 0.9pt\big{]}=\frac{\Gamma(\alpha+\theta)\Gamma(\beta-\theta)}{\Gamma(\alpha)\Gamma(\beta)}

for θ(α,β)\theta\in(-\alpha\hskip 0.9pt,\beta). For the interval in assumption (2.1) we can take [θ1,θ1]=[12ρmin,12ρmin][-\theta_{1},\theta_{1}]=[-\tfrac{1}{2}\rho_{\rm min},\tfrac{1}{2}\rho_{\rm min}]. Now (2.1) holds with a single constant CM=CM(ρmin,ρmax)C_{M}=C_{M}(\rho_{\rm min},\rho_{\rm max}) for all choices of α,β[ρmin,ρmax]\alpha,\beta\in[\rho_{\rm min},\rho_{\rm max}].

The variance satisfies

𝕍ar(X1α,β)=𝕍ar(logGα)+𝕍ar(logGβ)=ψ1(α)+ψ1(β)2ψ1(ρmax)=σ2.{\rm\mathbb{V}ar}(X^{\alpha,\beta}_{1})={\rm\mathbb{V}ar}(\log G^{\alpha})+{\rm\mathbb{V}ar}(\log G^{\beta})=\psi_{1}(\alpha)+\psi_{1}(\beta)\geq 2\psi_{1}(\rho_{\rm max})={\sigma^{2}_{*}}.

The constants (CM,Dμ,σ2,θ1)(C_{M},D_{\mu},{\sigma^{2}_{*}},\theta_{1}) have been fixed and they work simultaneously for all (α,β)𝒮N(\alpha,\beta)\in\mathcal{S}_{N} and all N1N\geq 1. Define CC through (2.5)–(2.7). Choose N0N_{0} so that (2.8) holds for all NN0N\geq N_{0}. Now CC and N0N_{0} are entirely determined by (a0,ρmin,ρmax)(a_{0},\rho_{\rm min},\rho_{\rm max}). We state the result as a corollary of Theorem 2.2.

Corollary 2.8.

In the setting described above the bound below holds for all NN0N\geq N_{0}, (α,β)𝒮N(\alpha,\beta)\in\mathcal{S}_{N}, and x(logN)2x\geq(\log N)^{2}:

{max1mNSmα,βx}Cx(logN)(μα,βN1/2).\displaystyle\mathbb{P}\Big{\{}\hskip 0.7pt\max_{1\leq m\leq N}S^{\alpha,\beta}_{m}\leq x\Big{\}}\leq C\hskip 0.55ptx\hskip 0.55pt(\log N)(\mu_{\alpha,\beta}\vee N^{-1/2}\hskip 0.9pt).

3. Comparison with the KMT coupling

As a counterpoint to our Theorem 2.2 we derive here an estimate for a single random walk with the Komlós-Major-Tusnády (KMT) [9] coupling with Brownian motion. We emphasize though that Theorem 3.1 below is not an alternative to our Theorem 2.2 because we do not know how the constants C,K,λC,K,\lambda below depend on the distribution of the walk. Hence without further work we cannot apply the resulting estimate (3.2) to an infinite family of random walks.

However, this section does illustrate that in a certain regime of vanishing drift the estimates (2.4) and (3.2) are essentially equivalent, as explained below in Remark 3.2. So even if one were to conclude that the constants C,K,λC,K,\lambda below can be taken uniform, the result remains the same.

Let S¯n=k=1nX¯k\overline{S}_{n}=\sum_{k=1}^{n}\overline{X}_{k} be a mean-zero random walk with i.i.d. steps {X¯k}\{\overline{X}_{k}\} and unit variance E[X¯2]=1E[\,\overline{X}^{\hskip 0.7pt2}\,]=1. The KMT coupling (Theorem 1 in [9]) constructs this walk together with a standard Brownian motion B\scaleobj0.6∙B_{\raisebox{0.5pt}{\scaleobj{0.6}{\bullet}}} on a probability space such that the following bound holds:

(3.1) P(max1kN|S¯kBk|ClogN+z)Keλzfor all N>0 and z>0,P\bigl{(}\;\max_{1\leq k\leq N}|\overline{S}_{k}-B_{k}|\geq C\log N+z\hskip 0.7pt\bigr{)}\leq Ke^{-\lambda z}\qquad\text{for all }N\in\mathbb{Z}_{>0}\ \text{ and }\ z>0,

where C,K,λC,K,\lambda are finite positive constants determined by the distribution of X¯k\overline{X}_{k}.

We apply this to the running maximum of a random walk with a negative drift.

Theorem 3.1.

Let Sn=i=1nXiS_{n}=\sum_{i=1}^{n}X_{i} be a random walk with i.i.d. steps {Xi}\{X_{i}\} that satisfy E[etX]<E[e^{tX}]<\infty for t(δ,δ)t\in(-\delta,\delta) for some δ>0\delta>0. Assume the drift is negative: μ=EX1<0\mu=EX_{1}<0, and the variance σ2=E[(X1μ)2]>0\sigma^{2}=E[\hskip 0.9pt(X_{1}-\mu)^{2}\hskip 0.9pt]>0. Then there exists a constant C1C_{1} determined by the distribution of the normalized variable X¯1=σ1(X1μ)\overline{X}_{1}=\sigma^{-1}(X_{1}-\mu) such that, for all real x>0x>0 and integers N>e4N>e^{4},

(3.2) P{max0kNSk<x}\displaystyle P\bigl{\{}\hskip 0.9pt\max_{0\leq k\leq N}S_{k}<x\bigr{\}} C1(N1(logN)/2+σx+σ2logNN3/2μ2e(σ1x+logN)σ1μ)\displaystyle\leq C_{1}\Bigl{(}\hskip 0.7ptN^{1-(\log N)/2}+\frac{\sigma x+\sigma^{2}\log N}{N^{3/2}\mu^{2}}\hskip 0.9pte^{(\sigma^{-1}x+\log N)\sigma^{-1}\mu}\hskip 0.7pt\Bigr{)}
+1e2(σ1x+C1logN)σ1μ.\displaystyle\qquad+1-e^{2(\sigma^{-1}x+C_{1}\log N)\sigma^{-1}\mu}.
Remark 3.2.

To compare this estimate with Theorem 2.2, imagine that we can let μ\mu vary as a function of NN while preserving the constant C1C_{1} in (3.2). Consider the regime where σ2\sigma^{2} is constant, x>logNx>\log N and |μ||\mu| vanishes fast enough so that x|μ|x|\mu| stays bounded. Then the first parenthetical expression on the right of (3.2) is dominated by a constant multiple of xN3/2μ2xN^{-3/2}\mu^{-2}. To the last part apply 1es|s|1-e^{s}\leq|s| for s<0s<0. The bound (3.2) becomes

(3.3) P{max0kNSk<x}C2x(N3/2μ2+|μ|).P\bigl{\{}\hskip 0.9pt\max_{0\leq k\leq N}S_{k}<x\bigr{\}}\leq C_{2}\hskip 0.9ptx\bigl{(}N^{-3/2}\mu^{-2}+|\mu|\bigr{)}.

The bound (2.4) is worse than the one above by at most a logN\log N factor, and not at all if μ\mu vanishes fast enough. In particular, for the application in [2], the KMT bound cannot give anything substantially better than Theorem 2.2.

Proof of Theorem 3.1.

Apply (3.1) to the mean-zero unit-variance normalized walk S¯N=σ1(SNNμ)\overline{S}_{N}=\sigma^{-1}(S_{N}-N\mu). To simplify some steps below we can assume that C1λ1C\geq 1\vee\lambda^{-1}. Let x>0x>0 and z=λ1logNz=\lambda^{-1}\log N.

P{max0kNSk<x}=P{max0kN(S¯k+kσ1μ)<σ1x}\displaystyle P\bigl{\{}\hskip 0.9pt\max_{0\leq k\leq N}S_{k}<x\bigr{\}}=P\bigl{\{}\hskip 0.9pt\max_{0\leq k\leq N}\bigl{(}\overline{S}_{k}+k\sigma^{-1}\mu\bigr{)}<\sigma^{-1}x\bigr{\}}
(3.4) Keλz+P{max0kN(Bk+kσ1μ)<σ1x+ClogN+z}.\displaystyle\leq Ke^{-\lambda z}+P\bigl{\{}\hskip 0.9pt\max_{0\leq k\leq N}\bigl{(}B_{k}+k\sigma^{-1}\mu\bigr{)}<\sigma^{-1}x+C\log N+z\bigr{\}}.

Let Mk=sup0s1(Bk+sBk)M_{k}=\sup_{0\leq s\leq 1}(B_{k+s}-B_{k}). Since μ<0\mu<0,

sup0tN(Bt+tσ1μ)\displaystyle\sup_{0\leq t\leq N}\bigl{(}B_{t}+t\sigma^{-1}\mu\bigr{)} max0kN(Bk+kσ1μ)+max0kN1Mk.\displaystyle\leq\max_{0\leq k\leq N}\bigl{(}B_{k}+k\sigma^{-1}\mu\bigr{)}+\max_{0\leq k\leq N-1}M_{k}.

With this we continue from above.

(3.5) line (3.4)Keλz+\displaystyle\text{line \eqref{kmt600}}\;\leq\;Ke^{-\lambda z}\;+ P{sup0tN(Bt+tσ1μ)<σ1x+2ClogN+z}\displaystyle P\bigl{\{}\hskip 0.9pt\sup_{0\leq t\leq N}\bigl{(}B_{t}+t\sigma^{-1}\mu\bigr{)}<\sigma^{-1}x+2C\log N+z\bigr{\}}
+P{max0kn1Mk>ClogN}.\displaystyle\qquad+P\bigl{\{}\hskip 0.9pt\max_{0\leq k\leq n-1}M_{k}>C\log N\bigr{\}}.

We bound the two probabilities above separately. Recall that C1C\geq 1. For the running maximum of standard Brownian motion, by (2.8.4) on page 96 of [8],

(3.6) P{max0kN1Mk>logN}\displaystyle P\bigl{\{}\hskip 0.9pt\max_{0\leq k\leq N-1}M_{k}>\log N\bigr{\}} NP{sup0s1Bs>logN}=N2/πlogNey2/2𝑑y\displaystyle\leq N\hskip 0.55ptP\bigl{\{}\hskip 0.7pt\sup_{0\leq s\leq 1}B_{s}>\log N\bigr{\}}=N\sqrt{2/\pi}\int_{\log N}^{\infty}e^{-y^{2}/2}\,dy
N2/πlogNlogNyey2/2𝑑y=2/πlogNN1(logN)/2.\displaystyle\leq\frac{N\sqrt{2/\pi}}{\log N}\int_{\log N}^{\infty}y\hskip 0.7pte^{-y^{2}/2}\,dy=\frac{\sqrt{2/\pi}}{\log N}N^{1-(\log N)/2}.

For the running maximum of Brownian motion with drift, use first Brownian scaling, and then the density of the hitting time Tb(N)T_{b(N)} of the point b(N)=N1/2(σ1x+2ClogN+z)b(N)=N^{-1/2}(\sigma^{-1}x+2C\log N+z) with drift μ(N)=σ1N1/2μ<0\mu(N)=\sigma^{-1}N^{1/2}\mu<0 from (3.5.12) on page 197 of [8].

(3.7) P{sup0tN(Bt+tσ1μ)<σ1x+2ClogN+z}\displaystyle P\bigl{\{}\hskip 0.9pt\sup_{0\leq t\leq N}\bigl{(}B_{t}+t\sigma^{-1}\mu\bigr{)}<\sigma^{-1}x+2C\log N+z\bigr{\}}
=P{sup0t1(Bt+tσ1N1/2μ)<N1/2(σ1x+2ClogN+z)}\displaystyle=P\bigl{\{}\hskip 0.9pt\sup_{0\leq t\leq 1}\bigl{(}B_{t}+t\sigma^{-1}N^{1/2}\mu\bigr{)}<N^{-1/2}(\sigma^{-1}x+2C\log N+z)\bigr{\}}
=P{sup0t1(Bt+tμ(N))<b(N)}=P(μ(N)){Tb(N)>1}\displaystyle=P\bigl{\{}\hskip 0.9pt\sup_{0\leq t\leq 1}\bigl{(}B_{t}+t\mu(N)\bigr{)}<b(N)\bigr{\}}=P^{(\mu(N))}\{T_{b(N)}>1\}
=b(N)112πs3e(b(N)μ(N)s)2/2s𝑑s+P(μ(N)){Tb(N)=}\displaystyle={b(N)}\int_{1}^{\infty}\frac{1}{\sqrt{2\pi s^{3}}}e^{-(b(N)-\mu(N)s)^{2}/2s}\,ds+P^{(\mu(N))}\{T_{b(N)}=\infty\}
=b(N)eb(N)μ(N)112πs3e12b(N)2s112μ(N)2s𝑑s+1e2b(N)μ(N)\displaystyle={b(N)}e^{b(N)\mu(N)}\int_{1}^{\infty}\frac{1}{\sqrt{2\pi s^{3}}}e^{-\tfrac{1}{2}b(N)^{2}s^{-1}-\tfrac{1}{2}\mu(N)^{2}s}\,ds+1-e^{2b(N)\mu(N)}
2eb(N)μ(N)b(N)μ(N)2+1e2b(N)μ(N)\displaystyle\leq 2\hskip 0.55pte^{b(N)\mu(N)}\hskip 0.9pt\frac{b(N)}{\mu(N)^{2}}+1-e^{2b(N)\mu(N)}
2e(σ1x+logN)σ1μσx+3Cσ2logNN3/2μ2+1e2(σ1x+3ClogN)σ1μ.\displaystyle\leq 2\hskip 0.55pte^{(\sigma^{-1}x+\log N)\sigma^{-1}\mu}\hskip 0.9pt\frac{\sigma x+3C\sigma^{2}\log N}{N^{3/2}\mu^{2}}+1-e^{2(\sigma^{-1}x+3C\log N)\sigma^{-1}\mu}.

The second last inequality dropped the denominator 2πs312\pi s^{3}\geq 1 and the term 12b(N)2s1-\tfrac{1}{2}b(N)^{2}s^{-1} from the exponent, and then integrated. The last inequality substituted in z=λ1logNClogNz=\lambda^{-1}\log N\leq C\log N to bound

N1/2(σ1x+logN)b(N)N1/2(σ1x+3ClogN).N^{-1/2}(\sigma^{-1}x+\log N)\leq b(N)\leq N^{-1/2}(\sigma^{-1}x+3C\log N).

The conclusion (3.2) follows from substituting into (3.5) the bounds from above. ∎

4. Auxiliary facts

Before starting the proof proper, we record some simple facts. First, assumptions (2.1) and (2.2) gives these bounds:

(4.1) 0<σ2μ2,N𝔼[(X1N)2]=MN(2)(0)CM,\displaystyle 0<{\sigma^{2}_{*}}\leq\mu_{2,N}\equiv\mathbb{E}\big{[}(X^{N}_{1})^{2}\big{]}=M_{N}^{(2)}(0)\leq C_{M},
|μ3,N||𝔼[(X1N)3]|=|MN(3)(0)|CM,\displaystyle|\mu_{3,N}|\equiv|\mathbb{E}\big{[}(X^{N}_{1})^{3}\big{]}|=|M_{N}^{(3)}(0)|\leq C_{M},
(X1N>t)CMeθ1t.\displaystyle\mathbb{P}(X^{N}_{1}>t)\leq C_{M}e^{-\theta_{1}t}.
Lemma 4.1.

Let {Yi}\{Y_{i}\} be i.i.d. random variables with common marginal distribution ν\nu. Assume that, for two constants 0<c1,C1<0<c_{1},C_{1}<\infty,

(4.2) 𝔼(etY1)C1 for t[0,c1].\displaystyle\mathbb{E}(e^{tY_{1}})\leq C_{1}\quad\text{ for }\quad t\in[0,c_{1}].

Then

μmax=μmax(ν,n)𝔼[max{0,Y1,,Yn}]c11log(C1n+1).\displaystyle\mu_{\rm max}=\mu_{\rm max}(\nu,n)\equiv\mathbb{E}\bigl{[}\max\{0,Y_{1},...,Y_{n}\}]\leq c_{1}^{-1}\log(C_{1}n+1).
Proof.

For 0<tc10<t\leq c_{1},

etμmax𝔼(et(0max1inYi))1+𝔼(i=1netYi)=1+n𝔼(etY1)C1n+1,\displaystyle e^{t\mu_{\rm max}}\leq\mathbb{E}\big{(}e^{t(0\vee\max_{1\leq i\leq n}Y_{i})}\big{)}\leq 1+\mathbb{E}\Big{(}\sum_{i=1}^{n}e^{tY_{i}}\Big{)}=1+n\mathbb{E}\big{(}e^{tY_{1}}\big{)}\leq C_{1}n+1,

and the claim follows by taking t=c1t=c_{1}. ∎

Since MN′′>0M_{N}^{\prime\prime}>0 there is a unique minimizer

(4.3) θ0N=argmin{MN(θ)}.\displaystyle\theta^{N}_{0}=\arg\min\{M_{N}(\theta)\}.
Lemma 4.2.

Let N0N_{0} be such that CM|μN|13σ2C_{M}|\mu_{N}|\leq\tfrac{1}{3}{\sigma^{2}_{*}} for NN0N\geq N_{0} and set cM=2σ2c_{M}=2\sigma_{*}^{-2}. Then for NN0N\geq N_{0},

0θ0NcM|μN|.\displaystyle 0\leq\theta^{N}_{0}\leq c_{M}|\mu_{N}|.
Proof.

If MN(0)=μN=0M^{\prime}_{N}(0)=\mu_{N}=0 then the minimum is taken at θ0N=0\theta^{N}_{0}=0.

So suppose MN(0)=μN<0M^{\prime}_{N}(0)=\mu_{N}<0. Expansion for θ(0,θ1)\theta\in(0,\theta_{1}) gives, with some θ(0,θ)\theta^{\prime}\in(0,\theta),

MN(θ)\displaystyle M^{\prime}_{N}(\theta) =μN+μ2,Nθ+12MN(3)(θ)θ2μN+μ2,Nθ12CMθ2.\displaystyle=\mu_{N}+\mu_{2,N}\theta+\tfrac{1}{2}M^{(3)}_{N}(\theta^{\prime})\hskip 0.7pt\theta^{2}\geq\mu_{N}+\mu_{2,N}\theta-\tfrac{1}{2}C_{M}\theta^{2}.

Since MM^{\prime} is strictly increasing and cM=2/σ22μ2,N1c_{M}=2/{\sigma^{2}_{*}}\geq 2\mu_{2,N}^{-1}, by the choice of N0N_{0} we have for NN0N\geq N_{0}

MN(cMμN)MN(2μNμ2,N)μN2CMμN2μ2,N2μN(123σ2/μ2,N2)>0.\displaystyle M^{\prime}_{N}(-c_{M}\mu_{N})\geq M^{\prime}_{N}\Big{(}-\frac{2\mu_{N}}{\mu_{2,N}}\Big{)}\geq-\mu_{N}-2C_{M}\hskip 0.9pt\frac{\mu_{N}^{2}}{\mu_{2,N}^{2}}\geq-\mu_{N}\bigl{(}1-\tfrac{2}{3}{\sigma^{2}_{*}}/\mu_{2,N}^{2}\bigr{)}>0.

It follows that there exists a unique θ0N(0,cM|μN|)\theta^{N}_{0}\in(0,c_{M}|\mu_{N}|) such that MN(θ0N)=0.M^{\prime}_{N}(\theta^{N}_{0})=0.

Define a tilted measure Q(dω)=fN,nθ0N(ω)(dω)Q(d\omega)=f^{\theta_{0}^{N}}_{N,n}(\omega)\mathbb{P}(d\omega) in terms of the Radon-Nikodym derivative

fN,nθ0N(ω)=eθ0NSnN𝔼(eθ0NSnN).\displaystyle f^{\theta_{0}^{N}}_{N,n}(\omega)=\frac{e^{\theta^{N}_{0}S^{N}_{n}}}{\mathbb{E}\big{(}e^{\theta^{N}_{0}S^{N}_{n}}\big{)}}.

Denote the expectation under QQ by 𝔼Q\mathbb{E}^{Q}. Increase N0N_{0} further so that NN0N\geq N_{0} implies θ0N[θ1/2,θ1/2]\theta^{N}_{0}\in[-\theta_{1}/2,\theta_{1}/2] and μN2-\mu_{N}\leq 2. Then for 0i30\leq i\leq 3 and θ(θ1/2,θ1/2)\theta\in(-\theta_{1}/2,\theta_{1}/2), the MGF under QQ satisfies

(4.4) MQ,N(i)(θ)\displaystyle M^{(i)}_{Q,N}(\theta) =𝔼Q((X1N)ieθXN1)=MN(θ0N)1𝔼((X1N)ie(θ+θ0N)XN1)\displaystyle=\mathbb{E}^{Q}\big{(}(X^{N}_{1})^{i}e^{\theta X^{1}_{N}}\big{)}=M_{N}(\theta^{N}_{0})^{-1}\mathbb{E}\big{(}(X^{N}_{1})^{i}e^{(\theta+\theta^{N}_{0})X^{1}_{N}}\big{)}
=MN(θ0N)1MN(i)(θ0N+θ)eμNθ0NCMeθ1CM,\displaystyle=M_{N}(\theta^{N}_{0})^{-1}M^{(i)}_{N}(\theta^{N}_{0}+\theta)\leq e^{-\mu_{N}\theta_{0}^{N}}C_{M}\leq e^{\theta_{1}}C_{M},

where the first inequality used Jensen’s inequality and (2.1). From this we get moment bounds under QQ: for 0i30\leq i\leq 3,

(4.5) 𝔼Q((X1N)i)\displaystyle\mathbb{E}^{Q}\big{(}(X^{N}_{1})^{i}\big{)} =MQ,N(i)(0)eθ1CM.\displaystyle=M^{(i)}_{Q,N}(0)\leq e^{\theta_{1}}C_{M}.

For |θ|θ1|\theta|\leq\theta_{1}, there exists θ(θ1,θ1)\theta^{\prime}\in(-\theta_{1},\theta_{1})

MN(2)(θ)=μ2,N+MN(3)(θ)θ\displaystyle M_{N}^{(2)}(\theta)=\mu_{2,N}+M_{N}^{(3)}(\theta^{\prime})\theta

Increase N0N_{0} further if necessary so that θ0Nσ22CM\theta^{N}_{0}\leq\frac{{\sigma^{2}_{*}}}{2C_{M}} for NN0N\geq N_{0} and we can write

MN(2)(θ0N)σ2CMθ0Nσ22.\displaystyle M_{N}^{(2)}(\theta_{0}^{N})\geq{\sigma^{2}_{*}}-C_{M}\theta_{0}^{N}\geq\frac{{\sigma^{2}_{*}}}{2}.

Then from 𝔼Q(X1N)=0\mathbb{E}^{Q}(X^{N}_{1})=0 and the third equation in (4.4),

(4.6) 𝕍arQ(X1N)=𝔼Q((X1N)2)\displaystyle{\rm\mathbb{V}ar}^{Q}(X^{N}_{1})=\mathbb{E}^{Q}\big{(}(X^{N}_{1})^{2}\big{)} =MQ,N(2)(0)=MN(θ0N)1MN(2)(θ0N)CM1σ22.\displaystyle=M^{(2)}_{Q,N}(0)=M_{N}(\theta^{N}_{0})^{-1}M^{(2)}_{N}(\theta^{N}_{0})\geq C_{M}^{-1}\frac{{\sigma^{2}_{*}}}{2}.

5. Proof of the main theorem

To lighten the notation we omit the label NN from μ=μN\mu=\mu_{N} and θ0=θ0N\theta_{0}=\theta^{N}_{0}, and from some other notation that obviously depend on NN. For y>0y>0 let

τy=inf{m1:|SmN|y}\displaystyle\tau_{y}=\inf\{m\geq 1:|S^{N}_{m}|\geq y\}

denote the first hitting time of the cylinder of width 2y2y. Let Φσ2\Phi_{\sigma^{2}} denote the centered Gaussian distribution with variance σ2\sigma^{2}.

Lemma 5.1.

For real k0k\geq 0 and yy0y\geq y_{0} we have (τy>ky2)2ecτk,\mathbb{P}(\tau_{y}>ky^{2})\leq 2e^{-c_{\tau}k}, where

(5.1) y0=16CMσ31Φσ2[2,2]andcτ=log21+Φσ2[2,2](0,log2).y_{0}=1\,\vee\,\frac{6C_{M}\sigma_{*}^{-3}}{1-\Phi_{{\sigma^{2}_{*}}}[-2,2]}\qquad\text{and}\qquad c_{\tau}=\log\frac{2}{1+\Phi_{{\sigma^{2}_{*}}}[-2,2]}\,\in\,(0,\log 2).
Proof.

Let S¯mN=SmNmμ\widebar{S}^{N}_{m}=S^{N}_{m}-m\mu be the centered walk. Consider an integer k1k\geq 1 and a real y1y\geq 1. Look at the process along time increments of size y2\lfloor{y}\rfloor^{2}:

(τy>ky2)\displaystyle\mathbb{P}(\tau_{y}>ky^{2}) (τy>ky2)(|Smy2N|y for m=1,,k)\displaystyle\leq\mathbb{P}(\tau_{y}>k\lfloor{y}\rfloor^{2})\leq\mathbb{P}(\,|S^{N}_{m\lfloor{y}\rfloor^{2}}|\leq y\text{ for }m=1,\dotsc,k\,)
(|Smy2NS(m1)y2N|2y for m=1,,k)\displaystyle\leq\mathbb{P}(\,|S^{N}_{m\lfloor{y}\rfloor^{2}}-S^{N}_{(m-1)\lfloor{y}\rfloor^{2}}|\leq 2y\text{ for }m=1,\dotsc,k\,)
=({Sy2N[2y,2y]})k=({y1S¯y2N[2μy,2μy]})k\displaystyle=\bigl{(}\mathbb{P}\{\,S^{N}_{\lfloor{y}\rfloor^{2}}\in[-2y,2y]\}\bigl{)}^{k}=\bigl{(}\mathbb{P}\bigl{\{}\,\lfloor{y}\rfloor^{-1}\overline{S}^{N}_{\!\lfloor{y}\rfloor^{2}}\in[-2-\mu\lfloor{y}\rfloor\hskip 0.7pt,2-\mu\lfloor{y}\rfloor]\bigr{\}}\bigl{)}^{k}
(ΦσN2[2μy,2μy]+3μ3,Nσ3y1)k(ΦσN2[2,2]+6CMσ3y1)k.\displaystyle\leq\Bigl{(}\Phi_{\sigma_{N}^{2}}[-2-\mu\lfloor{y}\rfloor,2-\mu\lfloor{y}\rfloor]+3\frac{\mu_{3,N}}{\sigma^{3}}\lfloor{y}\rfloor^{-1}\Bigr{)}^{k}\leq\bigl{(}\Phi_{\sigma_{N}^{2}}[-2,2]+6C_{M}\sigma_{*}^{-3}y^{-1}\bigl{)}^{k}.

The penultimate inequality is the Berry-Esseen Theorem. We use the version from [4, Section 3.4.4] where the constant is 3. The last inequality is a simple property of a centered Gaussian. Now for yy0y\geq y_{0} and cτc_{\tau} as above,

supσ2σ2CMΦσ2[2,2]+3CMσ3y1\displaystyle\sup_{{\sigma^{2}_{*}}\leq\sigma^{2}\leq C_{M}}\Phi_{\sigma^{2}}[-2,2]+3C_{M}\sigma_{*}^{-3}y^{-1} Φσ2[2,2]+3CMσ3y01\displaystyle\leq\Phi_{{\sigma^{2}_{*}}}[-2,2]+3C_{M}\sigma_{*}^{-3}y_{0}^{-1}
12(1+Φσ2[2,2])=ecτ.\displaystyle\leq\tfrac{1}{2}(1+\Phi_{{\sigma^{2}_{*}}}[-2,2])=e^{-c_{\tau}}.

We have proved (τy>ky2)ecτk\mathbb{P}(\tau_{y}>ky^{2})\leq e^{-c_{\tau}k} for k0k\in\mathbb{Z}_{\geq 0}. Extend this to real k0k\in\mathbb{R}_{\geq 0}:

(τy>ky2)\displaystyle\mathbb{P}(\tau_{y}>ky^{2}) (τy>ky2)ecτkecτ(k1)=2(1+Φσ2[2,2])1ecτk<2ecτk.\displaystyle\leq\mathbb{P}(\tau_{y}>\lfloor{k}\rfloor y^{2})\leq e^{-c_{\tau}\lfloor{k}\rfloor}\leq e^{-c_{\tau}(k-1)}=2(1+\Phi_{{\sigma^{2}_{*}}}[-2,2])^{-1}e^{-c_{\tau}k}<2e^{-c_{\tau}k}.\qed

Let HN=μ2NH_{N}=\mu^{-2}\wedge N. By (2.3)

(5.2) Dμ2(logN)6HNN.\displaystyle D_{\mu}^{-2}(\log N)^{6}\leq H_{N}\leq N.

Define the truncated version of τy\tau_{y}

τ^y=τyHN.\displaystyle\hat{\tau}_{y}=\tau_{y}\wedge H_{N}.

The following result shows that although the random walk SmNS^{N}_{m} has negative drift, up to times of order HNH_{N} it behaves similarly to an unbiased random walk in the following sense: if y>0y>0 is not too small, but small compared to HN1/2H_{N}^{1/2}, the probability that the random walk reaches level yy before level y-y is close to 1/21/2. Our choice of HNH_{N} can be justified by decomposing the random walk into

SnN=i=1n(XiNμ)+nμ.\displaystyle S^{N}_{n}=\sum_{i=1}^{n}\big{(}X_{i}^{N}-\mu\big{)}+n\mu.

For ε>0\varepsilon>0 small and |μ|N1/2|\mu|\geq N^{-1/2} (so that HN=μ2H_{N}=\mu^{-2}),

(5.3) (εHN)1/2SεHNN=(εHN)1/2i=1εHN(XiNμ)+ε1/2.\displaystyle(\varepsilon H_{N})^{-1/2}S^{N}_{\varepsilon H_{N}}=(\varepsilon H_{N})^{-1/2}\sum_{i=1}^{\varepsilon H_{N}}\big{(}X_{i}^{N}-\mu\big{)}+\varepsilon^{1/2}.

As

(εHN)1/2i=1εHN(XiNμ)𝑑N(0,σ),\displaystyle(\varepsilon H_{N})^{-1/2}\sum_{i=1}^{\varepsilon H_{N}}\big{(}X_{i}^{N}-\mu\big{)}\overset{d}{\approx}N(0,\sigma),

we see that the left hand side of (5.3) is dominated by the first term on the right hand side. That is, up to time εHN\varepsilon H_{N} the random walk SNS^{N} behaves approximately like an unbiased random walk.

Lemma 5.2.

Let y0y_{0} be as in (5.1). There exist finite constants N0N_{0} and C0C_{0} such that, for NN0N\geq N_{0} and y0y(logN)1HN1/2y_{0}\leq y\leq(\log N)^{-1}H_{N}^{1/2},

(Sτ^yy)12[1C0HN12(y+(logHN)2)2θ1ylog(eθ1CMHN+1)].\displaystyle\mathbb{P}(S_{\hat{\tau}_{y}}\geq y)\geq\tfrac{1}{2}\Bigl{[}1-C_{0}H_{N}^{-\frac{1}{2}}\big{(}y+(\log H_{N})^{2}\big{)}-\frac{2}{\theta_{1}y}\log(e^{\theta_{1}}C_{M}H_{N}+1)\Bigr{]}.

C0C_{0} depends on θ1,σ2\theta_{1},{\sigma^{2}_{*}} and CMC_{M} while N0N_{0} depends on θ1,σ2\theta_{1},{\sigma^{2}_{*}}, DμD_{\mu} and CMC_{M}.

Proof.

The constant C0C_{0} comes as follows in terms of the constants previously introduced above and new constants C2,C3,C4C_{2},C_{3},C_{4} introduced below in the course of the proof:

(5.4) C0=C2+C4\displaystyle C_{0}=C_{2}+C_{4} =2(σ1+9eθ1σ3CM5/2)+2C3cτ1+6cM\displaystyle=2(\sigma_{*}^{-1}+9e^{\theta_{1}}\sigma_{*}^{-3}C_{M}^{5/2})+2C_{3}c_{\tau}^{-1}+6c_{M}
=2(σ1+9eθ1σ3CM5/2)+2e2CMcM2+4cMcτ1+6cM.\displaystyle=2(\sigma_{*}^{-1}+9e^{\theta_{1}}\sigma_{*}^{-3}C_{M}^{\hskip 0.7pt5/2})+2e^{2C_{M}c_{M}^{2}+4c_{M}}c_{\tau}^{-1}+6c_{M}.

Under the measure QQ, SnS_{n} is a mean-zero random walk and hence a martingale. Furthermore, τ^y{\hat{\tau}_{y}} is a bounded stopping time. From this,

0=Sτ^y𝑑Q=Sτ^yySτ^y𝑑Q+Sτ^yySτ^y𝑑Q+Sτ^y(y,y)Sτ^y𝑑Q.\displaystyle 0=\int S_{\hat{\tau}_{y}}dQ=\int_{S_{\hat{\tau}_{y}}\geq y}S_{\hat{\tau}_{y}}dQ+\int_{S_{\hat{\tau}_{y}}\leq-y}S_{\hat{\tau}_{y}}dQ+\int_{S_{\hat{\tau}_{y}}\in(-y,y)}S_{\hat{\tau}_{y}}dQ.

On the event Sτ^yyS_{\hat{\tau}_{y}}\geq y, we have τ^y=τy\hat{\tau}_{y}=\tau_{y} and Sτ^y1<ySτ^y=Sτ^y1+Xτ^yNy+Xτ^yNS_{\hat{\tau}_{y}-1}<y\leq S_{\hat{\tau}_{y}}=S_{\hat{\tau}_{y}-1}+X^{N}_{\hat{\tau}_{y}}\leq y+X^{N}_{\hat{\tau}_{y}} and so

Sτ^yySτ^y𝑑Q\displaystyle\int_{S_{\hat{\tau}_{y}}\geq y}S_{\hat{\tau}_{y}}\,dQ Sτ^yy(y+Xτ^yN)𝑑QSτ^yy(y+0max1iHNXiN)𝑑Q\displaystyle\leq\int_{S_{\hat{\tau}_{y}}\geq y}\big{(}y+X^{N}_{\hat{\tau}_{y}}\big{)}\,dQ\leq\int_{S_{\hat{\tau}_{y}}\geq y}\big{(}y+0\vee\max_{1\leq i\leq H_{N}}X^{N}_{i}\big{)}\,dQ
yQ(Sτ^yy)+μmax(Q,HN)yQ(Sτ^yy)+2θ11log(eθ1CMHN+1),\displaystyle\leq y\hskip 0.9ptQ(S_{\hat{\tau}_{y}}\geq y)+\mu_{\rm max}(Q,H_{N})\;\leq\;y\hskip 0.9ptQ(S_{\hat{\tau}_{y}}\geq y)+2\theta_{1}^{-1}\log(e^{\theta_{1}}C_{M}H_{N}+1),

where we applied Lemma 4.1 under the distribution QQ with C1=eθ1CM,c1=12θ1C_{1}=e^{\theta_{1}}C_{M},c_{1}=\tfrac{1}{2}\theta_{1} from (4.4). Combine the displays above to obtain

Q(Sτ^yy)\displaystyle Q(S_{\hat{\tau}_{y}}\geq y) y1Sτ^yySτ^y𝑑Qy1Sτ^y(y,y)Sτ^y𝑑Q 2θ11y1log(eθ1CMHN+1)\displaystyle\geq-\,y^{-1}\!\!\!\int\limits_{S_{\hat{\tau}_{y}}\leq-y}S_{\hat{\tau}_{y}}dQ\;-\;y^{-1}\!\!\!\!\!\!\int\limits_{S_{\hat{\tau}_{y}}\in(-y,y)}S_{\hat{\tau}_{y}}dQ\;-\;2\theta_{1}^{-1}y^{-1}\log(e^{\theta_{1}}C_{M}H_{N}+1)
Q(Sτ^yy)Q(Sτ^y(y,y))2θ11y1log(eθ1CMHN+1).\displaystyle\geq Q(S_{\hat{\tau}_{y}}\leq-y)-Q(S_{\hat{\tau}_{y}}\in(-y,y))-2\theta_{1}^{-1}y^{-1}\log(e^{\theta_{1}}C_{M}H_{N}+1).

Use

Q(Sτ^yy)=1Q(Sτ^yy)Q(Sτ^y(y,y))\displaystyle Q(S_{\hat{\tau}_{y}}\leq-y)=1-Q(S_{\hat{\tau}_{y}}\geq y)-Q(S_{\hat{\tau}_{y}}\in(-y,y))

to rewrite the above as

(5.5) Q(Sτ^yy)12[12Q(Sτ^y(y,y))2θ11y1log(eθ1CMHN+1)].\hskip 0.9ptQ(S_{\hat{\tau}_{y}}\geq y)\geq\tfrac{1}{2}[1-2\hskip 0.9ptQ(S_{\hat{\tau}_{y}}\in(-y,y))-2\theta_{1}^{-1}y^{-1}\log(e^{\theta_{1}}C_{M}H_{N}+1)].

It remains to bound the probability on the right. Sτ^y(y,y)S_{\hat{\tau}_{y}}\in(-y,y) forces τ^y=HN\hat{\tau}_{y}=H_{N} and thereby another application of the Berry-Esseen theorem, while using (4.5), (4.6) and yy01y\geq y_{0}\geq 1, gives

Q{Sτ^y(y,y)}\displaystyle Q\bigl{\{}S_{\hat{\tau}_{y}}\in(-y,y)\bigr{\}} =Q{HN1/2SHN(HN1/2y,HN1/2y)}\displaystyle=Q\bigl{\{}H_{N}^{-1/2}S_{H_{N}}\in(-H_{N}^{-1/2}y,H_{N}^{-1/2}y)\bigr{\}}
Φσ2(HN1/2y,HN1/2y)+3eθ1CM23/2CM3/2σ3HN12\displaystyle\leq\Phi_{{\sigma^{2}_{*}}}(-H_{N}^{-1/2}y,H_{N}^{-1/2}y)+3\frac{e^{\theta_{1}}C_{M}}{2^{-3/2}C_{M}^{-3/2}\sigma_{*}^{3}}H_{N}^{-\frac{1}{2}}
2(2πσ2)1/2yHN1/2+9eθ1CMCM3/2σ3HN12(σ1+9eθ1σ3CM5/2)yHN12\displaystyle\leq 2(2\pi{\sigma^{2}_{*}})^{-1/2}yH_{N}^{-1/2}+9\frac{e^{\theta_{1}}C_{M}}{C_{M}^{-3/2}\sigma_{*}^{3}}H_{N}^{-\frac{1}{2}}\leq(\sigma_{*}^{-1}+9e^{\theta_{1}}\sigma_{*}^{-3}C_{M}^{5/2})\hskip 0.55pty\hskip 0.55ptH_{N}^{-\frac{1}{2}}
12C2yHN12.\displaystyle\equiv\tfrac{1}{2}C_{2}\hskip 0.55pty\hskip 0.55ptH_{N}^{-\frac{1}{2}}.

Rewrite (5.5) as

(5.6) Q(Sτ^yy)12[1C2yHN122y1θ11log(eθ1CMHN+1)].\displaystyle Q(S_{\hat{\tau}_{y}}\geq y)\geq\tfrac{1}{2}[1-C_{2}\hskip 0.55pty\hskip 0.55ptH_{N}^{-\frac{1}{2}}-2y^{-1}\theta_{1}^{-1}\log(e^{\theta_{1}}C_{M}H_{N}+1)].

It remains to switch from QQ back to the original distribution \mathbb{P}. Recall the Radon-Nikodym derivative fnθ=M(θ)neθSnf^{\theta}_{n}={M(\theta)^{-n}}{e^{\theta S_{n}}}. Introduce a temporary quantity G0>1G_{0}>1 to be chosen precisely below. Decompose according to the value of τ^y\hat{\tau}_{y} and use Cauchy-Schwarz:

Q(Sτ^yy)\displaystyle Q(S_{\hat{\tau}_{y}}\geq y) =𝔼[fτ^yθ0(𝟏Sτ^yy,τ^yG0+𝟏Sτ^yy,τ^y>G0)]\displaystyle=\mathbb{E}\big{[}f^{\theta_{0}}_{{\hat{\tau}_{y}}}(\mathbf{1}_{S_{\hat{\tau}_{y}}\geq y,\hskip 0.9pt{\hat{\tau}_{y}}\leq G_{0}}+\mathbf{1}_{S_{\hat{\tau}_{y}}\geq y,\hskip 0.9pt{\hat{\tau}_{y}}>G_{0}})\big{]}
(5.7) 𝔼[fτ^yθ0𝟏Sτ^yy,τ^yG0]+(𝔼[(fτ^yθ0)2])12({Sτ^yy,τ^y>G0})12.\displaystyle\leq\mathbb{E}\big{[}f^{\theta_{0}}_{{\hat{\tau}_{y}}}\hskip 0.7pt\mathbf{1}_{S_{\hat{\tau}_{y}}\geq y,\hskip 0.9pt{\hat{\tau}_{y}}\leq G_{0}}\big{]}+\Big{(}\mathbb{E}\big{[}(f^{\theta_{0}}_{{\hat{\tau}_{y}}})^{2}\big{]}\Big{)}^{\frac{1}{2}}\Big{(}\mathbb{P}\{S_{\hat{\tau}_{y}}\geq y,\hskip 0.9pt{\hat{\tau}_{y}}>G_{0}\}\Big{)}^{\frac{1}{2}}.

Let us first bound the second term on line (5.7). Note that fnθf^{\theta}_{n} is a \mathbb{P}-martingale and τ^y{\hat{\tau}_{y}} is a stopping time bounded by HNH_{N}. Hence (fnθ)2(f^{\theta}_{n})^{2} is a submartingale and we have

(𝔼[(fτ^yθ0)2])12({Sτ^yy,τ^y>G0})12\displaystyle\Big{(}\mathbb{E}[(f^{\theta_{0}}_{\hat{\tau}_{y}})^{2}\hskip 0.7pt]\Big{)}^{\frac{1}{2}}\Big{(}\mathbb{P}\{S_{\hat{\tau}_{y}}\geq y,{\hat{\tau}_{y}}>G_{0}\}\Big{)}^{\frac{1}{2}}
(𝔼[(fHNθ0)2])12({Sτ^yy,τ^y>G0})12=(M(2θ0)M(θ0)2)HN/2({Sτ^yy,τ^y>G0})12.\displaystyle\leq\Big{(}\mathbb{E}[(f^{\theta_{0}}_{H_{N}})^{2}\hskip 0.7pt]\Big{)}^{\frac{1}{2}}\Big{(}\mathbb{P}\{S_{\hat{\tau}_{y}}\geq y,{\hat{\tau}_{y}}>G_{0}\}\Big{)}^{\frac{1}{2}}=\bigg{(}\frac{M(2\theta_{0})}{M(\theta_{0})^{2}}\bigg{)}^{H_{N}/2}\Big{(}\mathbb{P}\{S_{\hat{\tau}_{y}}\geq y,{\hat{\tau}_{y}}>G_{0}\}\Big{)}^{\frac{1}{2}}.

To bound the MM-factor on the right, expand MM and use (2.1), (4.1) and μ<0\mu<0. In the numerator, for some η(0,2θ0)\eta\in(0,2\theta_{0}),

M(2θ0)=1+μ2θ0+2μ2θ02+86M(3)(η)θ031+2μ2θ02+43CMθ03M(2\theta_{0})=1+\mu 2\theta_{0}+2\mu_{2}\theta_{0}^{2}+\tfrac{8}{6}M^{(3)}(\eta)\theta_{0}^{3}\leq 1+2\mu_{2}\theta_{0}^{2}+\tfrac{4}{3}C_{M}\theta_{0}^{3}

and similarly in the denominator:

(5.8) [M(2θ0)M(θ0)2]HN/2(1+2μ2θ02+43CMθ03)HN/2(1+μθ0+12μ2θ0216CMθ03)HN\displaystyle\Big{[}M(2\theta_{0})M(\theta_{0})^{-2}\Big{]}^{H_{N}/2}\leq\Big{(}1+2\mu_{2}\theta_{0}^{2}+\tfrac{4}{3}C_{M}\theta_{0}^{3}\Big{)}^{H_{N}/2}\Big{(}1+\mu\theta_{0}+\tfrac{1}{2}\mu_{2}\theta_{0}^{2}-\tfrac{1}{6}C_{M}\theta_{0}^{3}\Big{)}^{-H_{N}}
(1+2CMcM2μ2+43CMcM3|μ|3)12μ2(1cMμ2CMcM3|μ|3)μ2\displaystyle\leq\Big{(}1+2C_{M}c_{M}^{2}\mu^{2}+\tfrac{4}{3}C_{M}c_{M}^{3}|\mu|^{3}\Big{)}^{\tfrac{1}{2}\mu^{-2}}\Big{(}1-c_{M}\mu^{2}-C_{M}c_{M}^{3}|\mu|^{3}\Big{)}^{-\mu^{-2}}
e2CMcM2+4cMC3.\displaystyle\leq e^{2C_{M}c_{M}^{2}+4c_{M}}\equiv C_{3}.

Above we used HNμ2H_{N}\leq\mu^{-2} and increased N0N_{0} once more so that NN0N\geq N_{0} guarantees 23cM|μ|1\tfrac{2}{3}c_{M}|\mu|\leq 1, cMμ2+CMcM3|μ|312c_{M}\mu^{2}+C_{M}c_{M}^{3}|\mu|^{3}\leq\tfrac{1}{2} and CMcM3|μ|1C_{M}c_{M}^{3}|\mu|\leq 1. Then we applied the bounds

(1+2CMcM2μ2+43CMcM3|μ|3)12μ2\displaystyle\Big{(}1+2C_{M}c_{M}^{2}\mu^{2}+\tfrac{4}{3}C_{M}c_{M}^{3}|\mu|^{3}\Big{)}^{\tfrac{1}{2}\mu^{-2}} eCMcM2(1+23cM|μ|)e2CMcM2,\displaystyle\leq e^{C_{M}c_{M}^{2}(1+\frac{2}{3}c_{M}|\mu|)}\leq e^{2C_{M}c_{M}^{2}},
(1cMμ2CMcM3|μ|3)μ2\displaystyle\Big{(}1-c_{M}\mu^{2}-C_{M}c_{M}^{3}|\mu|^{3}\Big{)}^{-\mu^{-2}} (1+2cMμ2(1+CMcM3|μ|))μ2e2cM(1+CMcM3|μ|)e4cM,\displaystyle\leq\Big{(}1+2c_{M}\mu^{2}\bigl{(}1+C_{M}c_{M}^{3}|\mu|\bigr{)}\Big{)}^{\mu^{-2}}\leq e^{2c_{M}(1+C_{M}c_{M}^{3}|\mu|)}\leq e^{4c_{M}},

where the second line also used (1a)11+2a(1-a)^{-1}\leq 1+2a for a[0,12]a\in[0,\tfrac{1}{2}]. Put (5.8) back up, set G0=yHN1/2G_{0}=yH_{N}^{1/2}, and apply Lemma 5.1 (for which we use the assumption yy0y\geq y_{0}):

(5.9) (𝔼[(fτ^yθ0)2])12({Sτ^yy,τ^y>G0})12C3({τ^y>G0})122C3ecτHN1/2y1.\displaystyle\Big{(}\mathbb{E}[(f^{\theta_{0}}_{\hat{\tau}_{y}})^{2}\hskip 0.7pt]\Big{)}^{\frac{1}{2}}\Big{(}\mathbb{P}\{S_{\hat{\tau}_{y}}\geq y,{\hat{\tau}_{y}}>G_{0}\}\Big{)}^{\frac{1}{2}}\leq C_{3}\bigl{(}\mathbb{P}\{{\hat{\tau}_{y}}>G_{0}\}\bigr{)}^{\frac{1}{2}}\leq 2C_{3}e^{-c_{\tau}H_{N}^{1/2}y^{-1}}.

Next we bound the first term on line (5.7). Use M(θ0)1M(\theta_{0})\leq 1. Let n=max1inXiN\mathcal{M}_{n}=\max_{1\leq i\leq n}X^{N}_{i}.

(5.10) 𝔼[fτ^yθ0𝟏Sτ^yy,τ^yG0]=𝔼[eθ0Sτ^yM(θ0)τ^y𝟏Sτ^yy,τ^yG0]\displaystyle\mathbb{E}\big{[}f^{\theta_{0}}_{{\hat{\tau}_{y}}}\hskip 0.7pt\mathbf{1}_{S_{\hat{\tau}_{y}}\geq y,\hskip 0.9pt{\hat{\tau}_{y}}\leq G_{0}}\big{]}=\mathbb{E}\Big{[}\frac{e^{\theta_{0}S_{\hat{\tau}_{y}}}}{M(\theta_{0})^{\hat{\tau}_{y}}}\mathbf{1}_{S_{\hat{\tau}_{y}}\geq y,\hskip 0.9pt{\hat{\tau}_{y}}\leq G_{0}}\Big{]}
𝔼[eθ0Sτ^yM(θ0)G0𝟏Sτ^yy,HN(logHN)2]+𝔼[eθ0Sτ^yM(θ0)τ^y𝟏Sτ^yy,HN>(logHN)2]\displaystyle\leq\mathbb{E}\Big{[}\frac{e^{\theta_{0}S_{\hat{\tau}_{y}}}}{M(\theta_{0})^{G_{0}}}\mathbf{1}_{S_{\hat{\tau}_{y}}\geq y,\hskip 0.9pt\mathcal{M}_{H_{N}}\leq(\log H_{N})^{2}}\Big{]}+\mathbb{E}\Big{[}\frac{e^{\theta_{0}S_{\hat{\tau}_{y}}}}{M(\theta_{0})^{\hat{\tau}_{y}}}\mathbf{1}_{S_{\hat{\tau}_{y}}\geq y,\hskip 0.9pt\mathcal{M}_{H_{N}}>(\log H_{N})^{2}}\Big{]}
𝔼[eθ0(y+HN)M(θ0)G0𝟏Sτ^yy,HN(logHN)2]+𝔼[eθ0Sτ^yM(θ0)τ^y𝟏Sτ^yy,HN>(logHN)2]\displaystyle\leq\mathbb{E}\Big{[}\frac{e^{\theta_{0}(y+\mathcal{M}_{H_{N}})}}{M(\theta_{0})^{G_{0}}}\mathbf{1}_{S_{\hat{\tau}_{y}}\geq y,\hskip 0.9pt\mathcal{M}_{H_{N}}\leq(\log H_{N})^{2}}\Big{]}+\mathbb{E}\Big{[}\frac{e^{\theta_{0}S_{\hat{\tau}_{y}}}}{M(\theta_{0})^{\hat{\tau}_{y}}}\mathbf{1}_{S_{\hat{\tau}_{y}}\geq y,\hskip 0.9pt\mathcal{M}_{H_{N}}>(\log H_{N})^{2}}\Big{]}

Let us first bound the second term. Using Cauchy-Schwarz, the bound

(HN>t)HNCMeθ1t,\displaystyle\mathbb{P}(\mathcal{M}_{H_{N}}>t)\leq H_{N}C_{M}e^{-\theta_{1}t},

the bound (5.8), and the tail bound in (4.1), it follows that

𝔼[eθ0Sτ^yM(θ0)τ^y𝟏Sτ^yy,HN>(logHN)2]\displaystyle\mathbb{E}\Big{[}\frac{e^{\theta_{0}S_{\hat{\tau}_{y}}}}{M(\theta_{0})^{\hat{\tau}_{y}}}\mathbf{1}_{S_{\hat{\tau}_{y}}\geq y,\hskip 0.9pt\mathcal{M}_{H_{N}}>(\log H_{N})^{2}}\Big{]} (𝔼[(fHNθ0)2])12({HN>(logHN)2})12\displaystyle\leq\Big{(}\mathbb{E}[(f^{\theta_{0}}_{H_{N}})^{2}\hskip 0.7pt]\Big{)}^{\frac{1}{2}}\Big{(}\mathbb{P}\{\mathcal{M}_{H_{N}}>(\log H_{N})^{2}\}\Big{)}^{\frac{1}{2}}
C3HN1/2CM1/2e12θ1(logHN)2.\displaystyle\leq C_{3}H_{N}^{1/2}C^{1/2}_{M}e^{-\frac{1}{2}\theta_{1}(\log H_{N})^{2}}.

The first term on the last line of (5.10) is bounded as follows, with G0=yHN1/2G_{0}=yH_{N}^{1/2}.

𝔼[eθ0(y+HN)M(θ0)G0𝟏Sτ^yy,HN(logHN)2]𝔼[eθ0(y+(logHN)2)M(θ0)G0𝟏Sτ^yy]\displaystyle\mathbb{E}\Big{[}\frac{e^{\theta_{0}(y+\mathcal{M}_{H_{N}})}}{M(\theta_{0})^{G_{0}}}\mathbf{1}_{S_{\hat{\tau}_{y}}\geq y,\hskip 0.9pt\mathcal{M}_{H_{N}}\leq(\log H_{N})^{2}}\Big{]}\leq\mathbb{E}\Big{[}\frac{e^{\theta_{0}(y+(\log H_{N})^{2})}}{M(\theta_{0})^{G_{0}}}\mathbf{1}_{S_{\hat{\tau}_{y}}\geq y}\Big{]}
(Sτ^yy)ecMHN1/2[y+(logHN)2]M(θ0)yHN1/2(Sτ^yy)ecMHN1/2[y+(logHN)2]ecMyHN1/2\displaystyle\leq\mathbb{P}(S_{\hat{\tau}_{y}}\geq y){e^{c_{M}H_{N}^{-1/2}[y+(\log H_{N})^{2}]}}M(\theta_{0})^{-\hskip 0.7ptyH_{N}^{1/2}}\leq\mathbb{P}(S_{\hat{\tau}_{y}}\geq y){e^{c_{M}H_{N}^{-1/2}[y+(\log H_{N})^{2}]}}e^{c_{M}yH_{N}^{-1/2}}
=(Sτ^yy)ecMHN1/2[2y+(logHN)2]\displaystyle=\mathbb{P}(S_{\hat{\tau}_{y}}\geq y){e^{c_{M}H_{N}^{-1/2}[2y+(\log H_{N})^{2}]}}
(Sτ^yy)[1+2cMHN1/2[2y+(logHN)2]](Sτ^yy)+2cMHN1/2[2y+(logHN)2].\displaystyle\leq\mathbb{P}(S_{\hat{\tau}_{y}}\geq y)\big{[}1+2c_{M}H_{N}^{-1/2}[2y+(\log H_{N})^{2}]\big{]}\leq\mathbb{P}(S_{\hat{\tau}_{y}}\geq y)+2c_{M}H_{N}^{-1/2}[2y+(\log H_{N})^{2}].

We used above Jensen’s inequality in the form M(θ0)yHN1/2eθ0μyHN1/2M(\theta_{0})^{-yH_{N}^{1/2}}\leq e^{-\theta_{0}\mu yH_{N}^{1/2}}, the definition of HNH_{N} in the form |μ|HN1/21|\mu|H_{N}^{1/2}\leq 1, and then θ0cM|μ|cMH1/2\theta_{0}\leq c_{M}|\mu|\leq c_{M}H^{-1/2}. Furthermore, by (5.2) and our assumption y(logN)1HN1/2y\leq(\log N)^{-1}H_{N}^{1/2} we have

cMHN1/2[2y+(logHN)2]cM(2+Dμ)(logN)1log2c_{M}H_{N}^{-1/2}[2y+(\log H_{N})^{2}]\leq c_{M}(2+D_{\mu})(\log N)^{-1}\leq\log 2

where we choose N0N_{0} large enough so that the last inequality holds for NN0N\geq N_{0}. Then we applied the inequality ex1+2xe^{x}\leq 1+2x for x[0,log2]x\in[0,\log 2].

Going back to (5.10), for NN0N\geq N_{0},

E[fτ^yθ0𝟏Sτ^yy,τ^yG0]\displaystyle E\big{[}f^{\theta_{0}}_{{\hat{\tau}_{y}}}\hskip 0.7pt\mathbf{1}_{S_{\hat{\tau}_{y}}\geq y,\hskip 0.9pt{\hat{\tau}_{y}}\leq G_{0}}\big{]} (Sτ^yy)+2cMHN1/2[2y+(logHN)2]+C3HN1/2CM1/2e12θ1(logHN)2\displaystyle\leq\mathbb{P}(S_{\hat{\tau}_{y}}\geq y)+2c_{M}H_{N}^{-1/2}[2y+(\log H_{N})^{2}]+C_{3}H_{N}^{1/2}C^{1/2}_{M}e^{-\frac{1}{2}\theta_{1}(\log H_{N})^{2}}
(Sτ^yy)+3cMHN1/2[2y+(logHN)2].\displaystyle\leq\mathbb{P}(S_{\hat{\tau}_{y}}\geq y)+3c_{M}H_{N}^{-1/2}[2y+(\log H_{N})^{2}].

The second inequality is guaranteed for example by choosing N0N_{0} large enough so that NN0N\geq N_{0} implies

Dμ2(logN)6eθ11andcMC31CM1/2(log[Dμ2(logN)6])2e12θ11.D_{\mu}^{-2}(\log N)^{6}\geq\hskip 0.9pte^{\theta_{1}^{-1}}\qquad\text{and}\qquad c_{M}C_{3}^{-1}C_{M}^{-1/2}\bigl{(}\log[D_{\mu}^{-2}(\log N)^{6}\hskip 0.7pt]\bigr{)}^{2}\geq e^{\frac{1}{2}\theta_{1}^{-1}}.

This works due to the lower bound (5.2) on HNH_{N} and because the function f(x)=xe12θ1(logx)2f(x)=xe^{-\frac{1}{2}\theta_{1}(\log x)^{2}} achieves its maximum e12θ11e^{\frac{1}{2}\theta_{1}^{-1}} at x=eθ11x=e^{\theta_{1}^{-1}} after which it decreases.

Combine the above with (5.9) on line (5.7) to get this upper bound:

(5.11) Q(Sτ^yy)\displaystyle Q(S_{\hat{\tau}_{y}}\geq y) (Sτ^yy)+2C3ecτHN1/2y1+3cMHN1/2[2y+(logHN)2]\displaystyle\leq\mathbb{P}(S_{\hat{\tau}_{y}}\geq y)+2C_{3}e^{-c_{\tau}H_{N}^{1/2}y^{-1}}+3c_{M}H_{N}^{-1/2}[2y+(\log H_{N})^{2}]
(Sτ^yy)+2C3cτ1HN1/2y+3cMHN1/2[2y+(logHN)2]\displaystyle\leq\mathbb{P}(S_{\hat{\tau}_{y}}\geq y)+2C_{3}c_{\tau}^{-1}H_{N}^{-1/2}y+3c_{M}H_{N}^{-1/2}[2y+(\log H_{N})^{2}]
(Sτ^yy)+C4HN1/2[y+(logHN)2]\displaystyle\leq\mathbb{P}(S_{\hat{\tau}_{y}}\geq y)+C_{4}\hskip 0.55ptH_{N}^{-1/2}[y+(\log H_{N})^{2}]

where C4=2C3cτ1+6cMC_{4}=2C_{3}c_{\tau}^{-1}+6c_{M}. The second inequality above came from xexe1xe^{-x}\leq e^{-1} for x0x\geq 0. Put (5.11) and (5.6) together to obtain the claim of the lemma. ∎

By adjusting a constant we can replace τ^y\hat{\tau}_{y} with τy\tau_{y} in the previous estimate.

Corollary 5.3.

Under the assumptions of Lemma 5.2, with C10=C0+2cτ1C_{10}=C_{0}+2c_{\tau}^{-1},

(5.12) (Sτyy)12[1C10HN12(y+(logHN)2)2θ1ylog(eθ1CMHN+1)]\displaystyle\mathbb{P}(S_{\tau_{y}}\geq y)\geq\tfrac{1}{2}\Bigl{[}1-C_{10}H_{N}^{-\frac{1}{2}}\big{(}y+(\log H_{N})^{2}\big{)}-\frac{2}{\theta_{1}y}\log(e^{\theta_{1}}C_{M}H_{N}+1)\Bigr{]}
Proof.

The assumption y0yHN1/2y_{0}\leq y\leq H_{N}^{1/2} implies that Lemma 5.1 applies to give

(5.13) (τy>HN)ecτHNy2ecτHN1/2y1cτ1HN1/2y.\mathbb{P}(\tau_{y}>H_{N})\leq e^{-c_{\tau}H_{N}y^{-2}}\leq e^{-c_{\tau}H_{N}^{1/2}y^{-1}}\leq c_{\tau}^{-1}H_{N}^{-1/2}y.

The claim then comes from Lemma 5.2 and (Sτyy)(Sτ^yy)(τy>HN).\mathbb{P}(S_{\tau_{y}}\geq y)\geq\mathbb{P}(S_{\hat{\tau}_{y}}\geq y)-\mathbb{P}(\tau_{y}>H_{N}).

For w>0w>0 truncate:

X^iN,w=XiN𝟏{XiNw}w𝟏{XiN<w}andS^nN,w=i=1nX^iN,w.\displaystyle\widehat{X}^{N,w}_{i}=X^{N}_{i}\mathbf{1}_{\{X^{N}_{i}\geq-w\}}-w\mathbf{1}_{\{X^{N}_{i}<-w\}}\qquad\text{and}\qquad\widehat{S}^{N,w}_{n}=\sum_{i=1}^{n}\widehat{X}^{N,w}_{i}.

Define

ty=inf{m1:|S^mN,w|y}.\displaystyle t_{y}=\inf\{m\geq 1:|\widehat{S}^{N,w}_{m}|\geq y\}.

We transfer bound (5.12) to the truncated walk S^\widehat{S}. The reason is that the proof of the forthcoming Lemma 5.5 is easier for the truncated RW.

Corollary 5.4.

Under the assumptions of Lemma 5.2, with C11=C0+4cτ1C_{11}=C_{0}+4c_{\tau}^{-1},

(S^tyN,wy)12[1C11HN12(y+(logHN)2)2θ1ylog(eθ1CMHN+1)HNCMeθ1w].\displaystyle\mathbb{P}(\widehat{S}^{N,w}_{t_{y}}\geq y)\geq\tfrac{1}{2}\Bigl{[}1-C_{11}H_{N}^{-\frac{1}{2}}\big{(}y+(\log H_{N})^{2}\big{)}-\frac{2}{\theta_{1}y}\log(e^{\theta_{1}}C_{M}H_{N}+1)-H_{N}C_{M}e^{-\theta_{1}w}\Bigr{]}.
Proof.

Note that

(5.14) (S^mN,wSmN for some 1mHN)=(X^iN,wXiNfor some 1iHN)\displaystyle\mathbb{P}\big{(}\widehat{S}^{N,w}_{m}\neq S^{N}_{m}\ \text{ for some $1\leq m\leq H_{N}$}\big{)}=\mathbb{P}\big{(}\widehat{X}^{N,w}_{i}\neq X^{N}_{i}\quad\text{for some $1\leq i\leq H_{N}$}\big{)}
=(inf1iHNXiN<w)HNCMeθ1w.\displaystyle=\mathbb{P}\big{(}\inf_{1\leq i\leq H_{N}}X^{N}_{i}<-w\big{)}\leq H_{N}C_{M}e^{-\theta_{1}w}.

Moreover,

(S^tyN,wy)\displaystyle\mathbb{P}(\widehat{S}^{N,w}_{t_{y}}\geq y) (SτyNy,τyHN,S^mN,w=SmNfor all 1mHN)\displaystyle\geq\mathbb{P}(S^{N}_{\tau_{y}}\geq y,\,\tau_{y}\leq H_{N},\,\widehat{S}^{N,w}_{m}=S^{N}_{m}\quad\text{for all $1\leq m\leq H_{N}$})
(SτyNy)(τy>HN)(S^mN,wSmNfor some 1mHN)\displaystyle\geq\mathbb{P}(S^{N}_{\tau_{y}}\geq y)-\mathbb{P}(\tau_{y}>H_{N})-\mathbb{P}(\widehat{S}^{N,w}_{m}\neq S^{N}_{m}\quad\text{for some $1\leq m\leq H_{N}$})
(5.15) (SτyNy)cτ1HN1/2yHNCMeθ1w,\displaystyle\geq\mathbb{P}(S^{N}_{\tau_{y}}\geq y)-c_{\tau}^{-1}H_{N}^{-1/2}y-H_{N}C_{M}e^{-\theta_{1}w},

where we used (5.14) and (5.13). Combine the above with (5.12) to obtain the result. ∎

We turn to the main argument of the proof of Theorem 2.2, that is, to show that the probability of the random walk S^m\widehat{S}_{m} to hit the level xx before hitting the level εH1/2-\varepsilon H^{1/2} is close to x|μ|x|\mu|. This gives rise to the error term in (2.4). We sketch the reasoning.

Let us try to hit the level x>0x>0 starting from the origin. By Corollary 5.4 there is a probability 1/2\approx 1/2 to hit xx before hitting x-x. Suppose we failed and hit x-x first. We have another chance to hit xx by going 2x2x upward from the level x-x. By Corollary 5.4 the probability of going 2x2x up to the level xx before going 2x2x down to the level 4x-4x is 1/2\approx 1/2. We continue this way until we either hit the level xx or the level εHN1/2-\varepsilon H_{N}^{1/2}. How many trials to hit xx do we have before we hit εHN1/2-\varepsilon H_{N}^{1/2}? Approximately K=log2(x1εHN1/2)K=\log_{2}(x^{-1}\varepsilon H_{N}^{1/2}). The trials are independent and so the probability of hitting the level εHN1/2-\varepsilon H_{N}^{1/2} before hitting the level xx is 2K=Cx|μ|\approx 2^{-K}=Cx|\mu|, which is what we seek.

We introduce the notation to make the sketch precise. See Figure 5.1 for an illustration.

Define K=log2(x1(logN)1HN1/2)2K=\lfloor{\log_{2}({x}^{-1}(\log N)^{-1}H_{N}^{1/2})}\rfloor-2. For i0i\geq 0 set Li=2i+23L_{i}=2^{i+2}-3. Inductively these satisfy L0=1L_{0}=1 and Li=2Li1+3L_{i}=2L_{i-1}+3. Furthermore,

xLK(logN)1HN1/2.\displaystyle xL_{K}\leq(\log N)^{-1}H_{N}^{1/2}.

Define the stopping times

T0\displaystyle T_{0} =inf{n:|S^nN,x|xL0}\displaystyle=\inf\{n:|\widehat{S}^{N,x}_{n}|\geq xL_{0}\}
and Ti\displaystyle\text{and }\quad T_{i} =inf{nTi1:S^nN,xxLi or S^nN,xx}.\displaystyle=\inf\{n\geq T_{i-1}:\widehat{S}^{N,x}_{n}\leq-xL_{i}\text{ or }\widehat{S}^{N,x}_{n}\geq x\}.

Note that Ti=Ti1T_{i}=T_{i-1} is possible.

Lemma 5.5.

There exist finite constants C12C_{12} and N0N_{0} such that for NN0N\geq N_{0} and x(logN)2x\geq(\log N)^{2},

(max1mTKS^mN,x<x)C12x(logN)HN1/2,\displaystyle\mathbb{P}\bigl{(}\,\max_{1\leq m\leq T_{K}}\widehat{S}^{N,x}_{m}<x\bigr{)}\leq C_{12}\hskip 0.9ptx\hskip 0.9pt(\log N)H_{N}^{-1/2},

where

C12=4exp{4(C0+4cτ1)(1+Dμ)+8θ11(1+log(eθ1CM+1))+4CM}\displaystyle C_{12}=4\exp\bigl{\{}4(C_{0}+4c_{\tau}^{-1})(1+D_{\mu})+8\theta_{1}^{-1}\bigl{(}1+\log(e^{\theta_{1}}C_{M}+1)\bigr{)}+4C_{M}\bigr{\}}

and C0C_{0} in the expression above is from (5.4).

Proof.

Since C02C_{0}\geq 2, we have C124e8210C_{12}\geq 4e^{8}\geq 2^{10}. Then we can assume that x210(logN)1HN1/2x\leq 2^{-10}(\log N)^{-1}H_{N}^{1/2}, for otherwise the bound on the probability is >1>1. This guarantees that K8K\geq 8. It also implies that unless |μ|210(logN)3|\mu|\leq 2^{-10}(\log N)^{-3}, the result is trivial.

Since X^iN,xx\widehat{X}^{N,x}_{i}\geq-x,

(5.16) {S^TiN,xxLi}={x(Li+1)<S^TiN,xxLi}\{\widehat{S}^{N,x}_{T_{i}}\leq-xL_{i}\}=\{-x(L_{i}+1)<\widehat{S}^{N,x}_{T_{i}}\leq-xL_{i}\}

and

{S^TiN,xxLi,S^Ti+1N,xxLi+1}{Ti<Ti+1}.\displaystyle\big{\{}\widehat{S}^{N,x}_{T_{i}}\leq-xL_{i},\widehat{S}^{N,x}_{T_{i+1}}\leq-xL_{i+1}\big{\}}\subseteq\{T_{i}<T_{i+1}\}.

Note that

(5.17) E{max1mTKS^mN,x<x}1iK{S^TiN,xxLi}.\displaystyle E\equiv\Big{\{}\max_{1\leq m\leq T_{K}}\widehat{S}^{N,x}_{m}<x\Big{\}}\subseteq\bigcap_{1\leq i\leq K}\{\widehat{S}^{N,x}_{T_{i}}\leq-xL_{i}\}.

Due to (5.16)

(5.18) (S^T0N,xxL0,,S^Ti1N,xxLi1,S^TiN,xxLi)\displaystyle\mathbb{P}\big{(}\widehat{S}^{N,x}_{T_{0}}\leq-xL_{0},...,\widehat{S}^{N,x}_{T_{i-1}}\leq-xL_{i-1},\widehat{S}^{N,x}_{T_{i}}\leq-xL_{i}\big{)}
=(S^TiN,xxLi|S^T0N,xxL0,,S^Ti1N,xxLi1)\displaystyle=\mathbb{P}\big{(}\widehat{S}^{N,x}_{T_{i}}\leq-xL_{i}|\widehat{S}^{N,x}_{T_{0}}\leq-xL_{0},...,\widehat{S}^{N,x}_{T_{i-1}}\leq-xL_{i-1}\big{)}
(S^T0N,xxL0,,S^Ti1N,xxLi1)\displaystyle\qquad\qquad\cdot\;\mathbb{P}\big{(}\widehat{S}^{N,x}_{T_{0}}\leq-xL_{0},...,\widehat{S}^{N,x}_{T_{i-1}}\leq-xL_{i-1}\big{)}
(S^TiN,xxLi|S^T0N,xxL0,,S^Ti1N,x=x(Li1+1))\displaystyle\leq\mathbb{P}\big{(}\widehat{S}^{N,x}_{T_{i}}\leq-xL_{i}|\widehat{S}^{N,x}_{T_{0}}\leq-xL_{0},...,\widehat{S}^{N,x}_{T_{i-1}}=-x(L_{i-1}+1)\big{)}
(S^T0N,xxL0,,S^Ti1N,xxLi1)\displaystyle\qquad\qquad\cdot\;\mathbb{P}\big{(}\widehat{S}^{N,x}_{T_{0}}\leq-xL_{0},...,\widehat{S}^{N,x}_{T_{i-1}}\leq-xL_{i-1}\big{)}
=(S^tx(Li1+2)N,xx(Li1+2))(S^T0N,xxL0,,S^Ti1N,xxLi1).\displaystyle=\mathbb{P}\big{(}\widehat{S}^{N,x}_{t_{x(L_{i-1}+2)}}\leq-x(L_{i-1}+2)\big{)}\mathbb{P}\big{(}\widehat{S}^{N,x}_{T_{0}}\leq-xL_{0},...,\widehat{S}^{N,x}_{T_{i-1}}\leq-xL_{i-1}\big{)}.

The last equality used the definition of the stopping time tyt_{y}, the definition of LiL_{i}, and the Markov property. For 1iK1\leq i\leq K define the events

AiN={S^tx(Li1+2)N,xx(Li1+2)}.\displaystyle A^{N}_{i}=\{\widehat{S}^{N,x}_{t_{x(L_{i-1}+2)}}\leq-x(L_{i-1}+2)\}.

Applying (5.18) to (5.17) repeatedly,

(E)(1iK{S^TiN,xxLi})1iK(AiN).\displaystyle\mathbb{P}(E)\leq\mathbb{P}\Big{(}\bigcap_{1\leq i\leq K}\{\widehat{S}^{N,x}_{T_{i}}\leq-xL_{i}\}\Big{)}\leq\prod_{1\leq i\leq K}\mathbb{P}(A^{N}_{i}).

Let x(logN)2x\geq(\log N)^{2}. Recall that by (5.2), (logHN)2HN1/2Dμ(logN)1(\log H_{N})^{2}H_{N}^{-1/2}\leq D_{\mu}(\log N)^{-1} and HNNH_{N}\leq N. Apply Corollary 5.4 with w=xw=x and yi=x(Li1+2)[x,(logN)1HN1/2]y_{i}=x(L_{i-1}+2)\in[x,(\log N)^{-1}H_{N}^{1/2}] for i=1,,Ki=1,\dotsc,K and NN0N\geq N_{0} to get this estimate:

(AiN)\displaystyle\mathbb{P}(A^{N}_{i}) 12[1+C11HN12(yi+(logHN)2)+2θ1yilog(eθ1CMHN+1)+HNCMeθ1x]\displaystyle\leq\tfrac{1}{2}\Bigl{[}1+C_{11}H_{N}^{-\frac{1}{2}}\big{(}y_{i}+(\log H_{N})^{2}\big{)}+\frac{2}{\theta_{1}y_{i}}\log(e^{\theta_{1}}C_{M}H_{N}+1)+H_{N}C_{M}e^{-\theta_{1}x}\Bigr{]}
12[1+C11(1+Dμ)(logN)1+2log(eθ1CMN+1)θ1(logN)2+CMN1θ1(logN)2]\displaystyle\leq\tfrac{1}{2}\Bigl{[}1+C_{11}(1+D_{\mu})(\log N)^{-1}+\frac{2\log(e^{\theta_{1}}C_{M}N+1)}{\theta_{1}(\log N)^{2}}+C_{M}N^{1-\theta_{1}(\log N)^{2}}\Bigr{]}
12[1+CA(logN)1],\displaystyle\leq\tfrac{1}{2}\bigl{[}1+C_{A}(\log N)^{-1}],

where we set

CA=C11(1+Dμ)+2θ11(1+log(eθ1CM+1))+CM\displaystyle C_{A}=C_{11}(1+D_{\mu})+2\theta_{1}^{-1}\bigl{(}1+\log(e^{\theta_{1}}C_{M}+1)\bigr{)}+C_{M}

and if necessary we increase N0N_{0} further so that N1θ1(logN)2(logN)1N^{1-\theta_{1}(\log N)^{2}}\leq(\log N)^{-1} for NN0N\geq N_{0}.

Continue with the above estimate,

(E)\displaystyle\mathbb{P}(E) i=1K(AiN)(12[1+CA(logN)1])K\displaystyle\leq\prod_{i=1}^{K}\mathbb{P}(A_{i}^{N})\leq\Big{(}\tfrac{1}{2}\bigl{[}1+C_{A}(\log N)^{-1}]\Big{)}^{K}
=(12[1+CA(logN)1])log2(x1(logN)1HN1/2)2\displaystyle=\Big{(}\tfrac{1}{2}[1+C_{A}(\log N)^{-1}]\Big{)}^{\lfloor{\log_{2}({x}^{-1}(\log N)^{-1}H_{N}^{1/2})}\rfloor-2}
4x(logN)HN1/2[1+CA(logN)1]log2N\displaystyle\leq 4x(\log N)H_{N}^{-1/2}\hskip 0.55pt[1+C_{A}(\log N)^{-1}]^{\log_{2}\!N}
4e4CAx(logN)HN1/2=4e4CAx(logN)(|μ|N1/2),\displaystyle\leq 4e^{4C_{\!A}}x(\log N)H_{N}^{-1/2}=4e^{4C_{\!A}}x(\log N)(|\mu|\vee N^{-1/2}),

where we used log2N=logNlog24logN\log_{2}\!N=\frac{\log N}{\log 2}\leq 4\log N. ∎

We are ready to prove Theorem 2.2. By Lemma 5.5, by the time S^\widehat{S} hits the level (logN)1HN1/2(\log N)^{-1}H_{N}^{1/2}, with high probability it has hit level xx as well. It remains to verify the two points below.

  1. (i)

    S^\widehat{S} is close to SS on the time interval [1,N][1,N]. This follows from a union bound and the exponential tail of X1NX^{N}_{1}.

  2. (ii)

    With high probability by time NN we hit the boundary of the cylinder of width (logN)1HN1/2(\log N)^{-1}H_{N}^{1/2}. This follows from Lemma 5.1.

xx0xL0=x-xL_{0}=-x2x-2x3x-3x4x-4xxL1=5x-xL_{1}=-5x\vdotsxLK=(logN)1HN1/2-xL_{K}=(\log N)^{-1}H_{N}^{1/2}S^T0N\widehat{S}^{N}_{T_{0}}S^T1N\widehat{S}^{N}_{T_{1}}
Figure 5.1. By the time the random walk S^N\widehat{S}^{N} exits the cylinder of radius (logN)1HN1/2(\log N)^{-1}H_{N}^{1/2} it has had about KK independent opportunities to hit the level xx, each with probability close to 1/21/2.
Proof of Theorem 2.2.

Consider x(logN)2x\geq(\log N)^{2}. Observe that

{max1mN|S^mN,x|(logN)1HN1/2,max1mTKS^mN,x>x}{max1mNS^mN,xx}.\displaystyle\Big{\{}\max_{1\leq m\leq N}|\widehat{S}^{N,x}_{m}|\geq(\log N)^{-1}H_{N}^{1/2},\max_{1\leq m\leq T_{K}}\widehat{S}^{N,x}_{m}>x\Big{\}}\subseteq\Big{\{}\max_{1\leq m\leq N}\widehat{S}^{N,x}_{m}\geq x\Big{\}}.

Indeed, on the event max1mN|S^mN,x|(logN)1HN1/2xLK\max_{1\leq m\leq N}|\widehat{S}^{N,x}_{m}|\geq(\log N)^{-1}H_{N}^{1/2}{\geq xL_{K}} we have TKNT_{K}\leq N.

Next,

(5.19) (S^mN,xSmNfor some 1mN)\displaystyle\mathbb{P}\big{(}\widehat{S}^{N,x}_{m}\neq S^{N}_{m}\quad\text{for some $1\leq m\leq N$}\big{)} =(XiN<xfor some 1iN)\displaystyle=\mathbb{P}\big{(}X^{N}_{i}<-x\quad\text{for some $1\leq i\leq N$}\big{)}
CMNeθ1xCMNeθ1(logN)2.\displaystyle\leq C_{M}Ne^{-\theta_{1}x}\leq C_{M}Ne^{-\theta_{1}(\log N)^{2}}.

By Lemma 5.1, (5.19) and Lemma 5.5,

(max1mNS^mN,xx)1(max1mN|S^mN,x|<(logN)1HN1/2)(max1mTKS^mN,xx)\displaystyle\mathbb{P}\bigl{(}\,\max_{1\leq m\leq N}\widehat{S}^{N,x}_{m}\geq x\bigr{)}\geq 1-\mathbb{P}\bigl{(}\,\max_{1\leq m\leq N}|\widehat{S}^{N,x}_{m}|<(\log N)^{-1}H_{N}^{1/2}\bigr{)}-\mathbb{P}\bigl{(}\,\max_{1\leq m\leq T_{K}}\widehat{S}^{N,x}_{m}\leq x\bigr{)}
1[(max1mN|SmN|<(logN)1HN1/2)+(S^mN,xSmNfor some 1mN)]\displaystyle\geq 1-\Big{[}\mathbb{P}\bigl{(}\,\max_{1\leq m\leq N}|S^{N}_{m}|<(\log N)^{-1}H_{N}^{1/2}\bigr{)}+\mathbb{P}\big{(}\widehat{S}^{N,x}_{m}\neq S^{N}_{m}\quad\text{for some $1\leq m\leq N$}\big{)}\Big{]}
(max1mTKS^mN,xx)\displaystyle\qquad\qquad-\mathbb{P}\bigl{(}\,\max_{1\leq m\leq T_{K}}\widehat{S}^{N,x}_{m}\leq x\bigr{)}
=1[(τ(logN)1HN1/2>N)+(S^mN,xSmNfor some 1mN)]\displaystyle=1-\Big{[}\mathbb{P}\bigl{(}\tau_{(\log N)^{-1}H_{N}^{1/2}}>N\bigr{)}+\mathbb{P}\big{(}\widehat{S}^{N,x}_{m}\neq S^{N}_{m}\quad\text{for some $1\leq m\leq N$}\big{)}\Big{]}
(max1mTKS^mN,x<x)\displaystyle\qquad\qquad-\mathbb{P}\bigl{(}\,\max_{1\leq m\leq T_{K}}\widehat{S}^{N,x}_{m}<x\bigr{)}
1[2ecτN(logN)2HN1+CMNeθ1(logN)2]C12x(logN)HN1/2\displaystyle\geq 1-\big{[}2e^{-c_{\tau}N(\log N)^{2}H_{N}^{-1}}+C_{M}Ne^{-\theta_{1}(\log N)^{2}}\big{]}-C_{12}\hskip 0.55ptx\hskip 0.55pt(\log N)H_{N}^{-1/2}
12ecτ(logN)2CMNeθ1(logN)2C12x(logN)HN1/2\displaystyle\geq 1-2e^{-c_{\tau}(\log N)^{2}}-C_{M}Ne^{-\theta_{1}(\log N)^{2}}-C_{12}\hskip 0.55ptx\hskip 0.55pt(\log N)H_{N}^{-1/2}
1(C12+2)x(logN)HN1/2.\displaystyle\geq 1-(C_{12}+2)x(\log N)H_{N}^{-1/2}.

To get the inequalities above for NN0N\geq N_{0} we increase N0N_{0} if necessary so that NN0N\geq N_{0} guarantees (logN)1HN1/2y0(\log N)^{-1}H_{N}^{1/2}\geq y_{0} to apply Lemma 5.1, and furthermore so that 2ecτ(logN)2CMNeθ1(logN)2(logN)3N1/22e^{-c_{\tau}(\log N)^{2}}\vee C_{M}Ne^{-\theta_{1}(\log N)^{2}}\leq(\log N)^{3}N^{-1/2} to get the last inequality.

Now the final inequality:

(max1mNSmNx)\displaystyle\mathbb{P}\bigl{(}\max_{1\leq m\leq N}S^{N}_{m}\geq x\bigr{)} (max1mNS^mN,xx)(S^mN,xSmNfor some 1mN)\displaystyle\geq\mathbb{P}\bigl{(}\max_{1\leq m\leq N}\widehat{S}^{N,x}_{m}\geq x\bigr{)}-\mathbb{P}\bigl{(}\widehat{S}^{N,x}_{m}\neq S^{N}_{m}\quad\text{for some $1\leq m\leq N$}\bigr{)}
1(C12+2)x(logN)HN1/2CMNeθ1(logN)2\displaystyle\geq 1-(C_{12}+2)x(\log N)H_{N}^{-1/2}-C_{M}Ne^{-\theta_{1}(\log N)^{2}}
1(C12+3)x(logN)(|μ|N1/2).\displaystyle\geq 1-(C_{12}+3)x(\log N)(|\mu|\vee N^{-1/2}).

Theorem 2.2 has been proved. ∎

References

  • [1] Chinmoy Bhattacharjee and Larry Goldstein. On strong embeddings by Stein’s method. Electron. J. Probab., 21:Paper No. 15, 30, 2016.
  • [2] Ofer Busani and Timo Seppäläinen. Non-existence of bi-infinite polymer Gibbs measures in the inverse-gamma polymer model. 2020. arXiv:2010.11279.
  • [3] Sourav Chatterjee. A new approach to strong embeddings. Probab. Theory Related Fields, 152(1-2):231–264, 2012.
  • [4] Rick Durrett. Probability: theory and examples. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, fourth edition, 2010.
  • [5] Wai-Tong (Louis) Fan and Timo Seppäläinen. Joint distribution of Busemann functions in the exactly solvable corner growth model. 2018. arXiv:1808.09069.
  • [6] William Feller. An introduction to probability theory and its applications. Vol. II. Second edition. John Wiley & Sons Inc., New York, 1971.
  • [7] David F. Fraser. The rate of convergence of a random walk to Brownian motion. Ann. Probability, 1:699–701, 1973.
  • [8] Ioannis Karatzas and Steven E. Shreve. Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.
  • [9] J. Komlós, P. Major, and G. Tusnády. An approximation of partial sums of independent RV’s, and the sample DF. II. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 34(1):33–58, 1976.
  • [10] Manjunath Krishnapur. One idea and two proofs of the KMT theorems. 2020. arXiv:2008.03287.
  • [11] A. I. Sakhanenko. Rate of convergence in the invariance principle for variables with exponential moments that are not identically distributed. In Limit theorems for sums of random variables, volume 3 of Trudy Inst. Mat., pages 4–49. “Nauka” Sibirsk. Otdel., Novosibirsk, 1984.
  • [12] Stanley Sawyer. Rates of convergence for some functionals in probability. Ann. Math. Statist., 43:273–284, 1972.