This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Borel equivalence relations induced by actions of tsi Polish groups

Jan GrebΓ­k
University of Warwick
[email protected]
Abstract

We study Borel equivalence relations induced by Borel actions of tsi Polish groups on standard Borel spaces. We characterize when such an equivalence relation admits classification by countable structures using a variant of the 𝔾0{\mathbbm{G}}_{0}-dichotomy. In particular, we find a class that serves as a base for non-classification by countable structures for these equivalence relations under Borel reducibility. We use this characterization together with the result of Miller [Mila] to show that if such an equivalence relation admits classification by countable structures but it is not essentially countable, then the equivalence relation 𝔼0β„•=𝔼3{{\mathbbm{E}}}^{{\mathbbm{N}}}_{0}={\mathbbm{E}}_{3} Borel reduces to it.

1 Introduction

In this paper we study complexity of Borel equivalence relations induced by Borel actions of tsi Polish groups on standard Borel spaces. This can be seen as part of the program that studies the formalization of the isomorphism problem. The abstract framework for the study of the isomorphism problem is provided by the so-called invariant descriptive set theory. Namely, the class of structures that we want to study is naturally encoded into a Polish topological space XX and the isomorphism relation translates to a definable equivalence relation on XX. The main notion that allows to compare various isomorphism problems throughout mathematics is called Borel reducibility. This is just an abstract version of the well-known strategy of assigning invariants to structures in order to distinguish them in various settings. A classical examples include: (a) topological spaces and fundamental groups or (b) Bernoulli shifts and entropy.

During several decades of study, benchmark examples of equivalence relations and their relationships were discovered, see the books [Gao09, Kan08] for a summary. A particularly important examples are so-called orbit equivalence relations. That is, equivalence relations induced by group actions. One line of research is to understand all possible complexities of equivalence relations that are induced by actions of groups from a given class. In this paper we focus on tsi Polish groups and their actions. Recall that a Polish group is tsi if it admits conjugacy invariant open base at the identity. It is well-known that the condition is equivalent with existence of a two-sided invariant compatible metric. This class includes separable Banach spaces, or, in general, commutative Polish groups. Recently, tsi Polish groups attracted quite a lot of attention from various perspectives [DG17, Mila, AP20, All20]. In this paper, we study possible complexities of equivalence relations induced by actions of tsi Polish groups. In particular, we focus on the situation when they admit classification by countable structures or are essentially countable. Both notions are well studied. The former was studied by Hjorth [Hjo00b], the theory of turbulence provides a dynamical obstacle for a continuous action of a Polish group to be classifiable by countable structures. The latter stems from the work of Kechris [Kec92], is ultimately connected with the theory of countable Borel equivalnce relations [Kec21], and some recent progress shows that this notion is equivalent to a geometrical notion of Οƒ\sigma-lacunarity [Gre20] introduced and characterized by Miller in [Mila].

Our main contribution to the study of Borel equivalence relations induced by actions of tsi Polish groups is two-fold. First, we characterize classification by countable structures with a variant of the 𝔾0{\mathbbm{G}}_{0}-dichotomy and provide a basis for non-classification by countable structures using a natural class of equivalence relations tightly connected to lsc submeasures and c0c_{0}-equalities, see [Far01a, Far01b] and [Kan08, ChaptersΒ 3 andΒ 15]. Second, we show that if such an equivalence relation admits classification by countable structures but is not essentially countable, then there is a Borel reduction from a canonical such equivalence relation, 𝔼0β„•{\mathbbm{E}}_{0}^{{\mathbbm{N}}}. Next, we formulate our results and describe high-level ideas.

1.1 High-level overview of the arguments

Recall that we denote as EGXE^{X}_{G} the orbit equivalence relation that is induced by a Borel action G↷XG\curvearrowright X of a Polish group GG on a standard Borel space XX, that is,

(x,y)∈EGXβ‡”βˆƒg∈G​gβ‹…x=y(x,y)\in E^{X}_{G}\ \Leftrightarrow\ \exists g\in G\ g\cdot x=y

for every x,y∈Xx,y\in X. The main technical tool that we use in this paper are variants of the 𝔾0{\mathbbm{G}}_{0}-dichotomy of Kechris, Solecki and Todorcevic [KST99]. Recall that the 𝔾0{\mathbbm{G}}_{0}-dichotomy characterizes Borel graphs of Borel chromatic number at most β„΅0\aleph_{0}. That is, a Borel graph either admits a decomposition into at most countably many independent sets or a Borel homomorphism from the graph 𝔾0{\mathbbm{G}}_{0}, a canonical example of graph that does not admit such a decomposition. The elementary proof of this dichotomy is due to Miller [Mil12].

Our approach is profoundly influenced by [Kec92, Hjo00a, Hjo00b, Mila]. In particular, the results of Miller [Mila] are not only literally used as a part of the proof of our main result but the ideas are internally present throughout the paper.

The starting goal of this project, also suggested by Miller, was to understand Hjorth’s 𝔼2{\mathbbm{E}}_{2}-dichotomy [Hjo00a]. Recall that the equivalence relation 𝔼2{\mathbbm{E}}_{2} is induced by the canonical action of the Banach space β„“1\ell_{1} on ℝℕ{\mathbbm{R}}^{{\mathbbm{N}}} and that this action is turbulent, i.e., 𝔼2{\mathbbm{E}}_{2} does not admit classification by countable structures. Hjorth’s 𝔼2{\mathbbm{E}}_{2}-dichotomy states that a restriction of 𝔼2{\mathbbm{E}}_{2} to any Borel subset of ℝℕ{\mathbbm{R}}^{{\mathbbm{N}}} is either essentially countable or Borel bi-reducible with 𝔼2{\mathbbm{E}}_{2}. To prove this result one can use a variant of the 𝔾0{\mathbbm{G}}_{0}-dichotomy as follows. The dichotomy is applied to a family of oriented hypergraphs β„‹V,W\mathcal{H}_{V,W}, where for every open neighborhoods WβŠ†VW\subseteq V of the identity in GG we define an oriented hypergraph β„‹V,W\mathcal{H}_{V,W} on XX by declaring x∈X<β„΅0x\in X^{<\aleph_{0}} to be an edge if the consecutive elements are connected by elements in WW and the first and last element of xx are not connected by any element of VV. Fixing VV and applying a variant of the 𝔾0{\mathbbm{G}}_{0}-dichotomy to a decreasing sequence of open neighborhoods of 1G1_{G} gives either a homomorphism from a canonical 𝔾0{\mathbbm{G}}_{0}-like object or a decomposition into β„‹V,W\mathcal{H}_{V,W}-invariant sets. In the case of homomorphism one can use a refinement technique, see [Mila], to find a reduction from 𝔼2{\mathbbm{E}}_{2}. In the other case, it is not hard to see that the corresponding decomposition is made of sets that intersect each orbit in bounded and separated islands (or galaxies, aka grainy sets [Kan08, ChapterΒ 15.2]). Formally, we make the following definition, see SectionΒ 4.

Definition 1.1 (Property (IC)).

We say that EGXE^{X}_{G} satisfies Property (IC) if for every open neighborhood VV of 1G1_{G} there is a sequence of Borel sets (Al)lβˆˆβ„•(A_{l})_{l\in{\mathbbm{N}}} such that

  • β€’

    for every lβˆˆβ„•l\in{\mathbbm{N}} there is an open neighborhood WlW_{l} of 1G1_{G} such that AlA_{l} is β„‹V,Wl\mathcal{H}_{V,W_{l}}-independent,

  • β€’

    X=⋃lβˆˆβ„•AlX=\bigcup_{l\in{\mathbbm{N}}}A_{l}.

To understand why we derive essential countability in this case, it might be illustrative to make a detour and discuss Kechris’ result [Kec92] that says that every equivalence relation induced by a Borel action of a locally compact Polish group is essentially countable. As a first step in the original proof Kechris basically shows that every such action satisfies Property (IC). The reason why we can conclude in both examples that the equivalence relation is essentially countable is a combination of Property (IC) and the following notion. We say that an action Gβ†·XG\curvearrowright X admits a GG-bounded topology if there is a compatible Polish topology Ο„\tau on XX that makes the action continuous111Compatible topology that makes the action continuous is called a GG-Polish topology. and such that for every vertex x∈Xx\in X there is an open neighborhood Ξ”\Delta of 1G1_{G} such that acting with group elements from Ξ”\Delta on xx does not approximate elements from different orbit, i.e., the Ο„\tau-closure of Ξ”β‹…x\Delta\cdot x is a subset of the orbit of xx. It is easy to see that if GG is compact and the action is continuous, then the topology is GG-bounded. Also the canonical topology on ℝℕ{\mathbbm{R}}^{{\mathbbm{N}}} is β„“1\ell_{1}-bounded for the canonical action of the Banach space β„“1\ell_{1}. The proof of Hjorth’s theorem and Kechris’ theorem is then finished by our first result

Theorem 1.2.

Suppose that a Borel equivalence relation EGXE^{X}_{G} satisfies Property (IC). Then EGXE^{X}_{G} is essentially countable if and only if it admits a GG-bounded topology.

A natural question is to understand in which situation we can apply the aforementioned variant of the 𝔾0{\mathbbm{G}}_{0}-dichotomy for the oriented hypergraphs β„‹V,W\mathcal{H}_{V,W} and get similar results. It is not difficult to show that if we have a decomposition into β„‹V,W\mathcal{H}_{V,W}-independent sets, then the action is not turbulent (this result hold for any Polish group). We obtain the following result.

Theorem 1.3.

Suppose that EGXE^{X}_{G} is a Borel equivalence relation induced by a Borel action of a tsi Polish group GG, that is, GG admits a two-sided invariant compatible metric. Then the following are equivalent

  • β€’

    XX satisfies Property (IC),

  • β€’

    EGXE^{X}_{G} admits classification by countable structures.

The reason why Property (IC) implies classification by countable structures is intuitively clear, the corresponding Borel decomposition into β„‹V,W\mathcal{H}_{V,W}-independent sets mimics the behavior of actions of non-archimedean groups. For this class Property (IC) holds trivially, and it is well-known that the corresponding orbit equivalence relations admit classification by countable structures. The other implication is more challenging. By a variant of the 𝔾0{\mathbbm{G}}_{0}-dichotomy we get a homomorphism from some canonical object. We use heavily the assumption that the group is tsi to do several refinements. Ultimately we obtain a Borel reduction from a Borel equivalence relation that is closely connected to tall lsc submeasures, or c0c_{0}-equalities, [Far01a, Far01b, Kan08]. These are known to be induced by turbulent actions and this can be used to show that EGXE^{X}_{G} cannot be classifiable by countable structures. Even though we are not able not show that tall lsc submeasures and c0c_{0}-equalities form a base for non-classification by countable structures, our result serves as an indication that this might be the case for equivalence relations that are induced by actions of tsi Polish groups. For general Borel equivalence relations, in particular, the ones induced by actions of general Polish groups, we do not have any intuition.

Next we turn our attention to our main result. We use results of Miller [Mila] to show that 𝔼0β„•{\mathbbm{E}}_{0}^{{\mathbbm{N}}} is a canonical obstacle for essential countability under the assumption that EGXE^{X}_{G} admits classification by countable structures. In the case of non-archimedean tsi Polish groups, the result was proved by Hjorth and Kechris [HK01]. Recently Miller found a proof that uses a variant of the 𝔾0{\mathbbm{G}}_{0}-dichotomy [Mila]. We manage to weaken the assumption to merely tsi Polish groups but we need to keep the assumption that the equivalence relation admits classification by countable structures. Note that without this assumption the situation is more complicated, e.g., 𝔼2{\mathbbm{E}}_{2} is not essentially countable but there is no reduction from 𝔼0β„•{\mathbbm{E}}_{0}^{{\mathbbm{N}}} to 𝔼2{\mathbbm{E}}_{2}. In general, there is no reduction from 𝔼0β„•{\mathbbm{E}}_{0}^{{\mathbbm{N}}} if the corresponding action admits GG-bounded topology.

Theorem 1.4.

Suppose that EGXE^{X}_{G} is a Borel equivalence relation that admits classification by countable structures and is induced by a Borel action of a tsi Polish group GG, that is, GG admits a two-sided invariant compatible metric. Then the following are equivalent:

  • β€’

    EGXE^{X}_{G} is essentially countable,

  • β€’

    the action admits GG-bounded topology,

  • β€’

    𝔼0β„•β‰°BEGX{\mathbbm{E}}_{0}^{{\mathbbm{N}}}\not\leq_{B}E^{X}_{G}.

The strategy for proving this result is to use the 𝔾0{\mathbbm{G}}_{0}-dichotomy two times. First, by TheoremΒ 1.3 we get that Property (IC) holds, i.e., there is a Borel decomposition that mimics the behavior of non-archimedean groups. Second, we use the result of Miller [Mila] who found a variant of the 𝔾0{\mathbbm{G}}_{0}-dichotomy that characterizes Οƒ\sigma-lacunarity (a formal strengthening of essential countability). If we get a Borel decomposition into independent sets in his result, then we conclude that the action is Οƒ\sigma-lacunary, i.e., essentially countable. In the other case we get a homomorphism from some canonical object. Miller was able to refine the homomorphism to get a reduction from 𝔼0β„•{\mathbbm{E}}_{0}^{{\mathbbm{N}}} under the assumption that the group is non-archimedean. We show that his argument goes through under the weaker assumption of Property (IC).

Acknowledgement

The author is indebted to Ben D. Miller for introducing him into the topic during his AKTION stay at KGRC in Vienna in 2017. Also he would like to thank Ben D. Miller and ZoltΓ‘n VidnyΓ‘szky for many engaging discussions and Ilijas Farah for useful suggestions. The research was supported by Leverhulme Research Project Grant RPG-2018-424 and by the GACR project 17-33849L and RVO: 67985840.

2 Preliminaries

For a set XX we write X<β„•X^{<{\mathbbm{N}}} for the set of all finite sequences of XX. Let x∈X<β„•x\in X^{<{\mathbbm{N}}}. We define |x|βˆˆβ„•|x|\in{\mathbbm{N}} to be the length of xx and write xix_{i} for the ii-th element of xx for every i<|x|i<|x|. That is x0x_{0} is the first element and x|x|βˆ’1x_{|x|-1} is the last element of xx in this notation. We set

diagX={x∈X<β„•:βˆƒiβ‰ j<|x|​xi=xj}βˆͺXβˆͺ{βˆ…}.\operatorname{diag}_{X}=\left\{x\in X^{<{\mathbbm{N}}}:\exists i\not=j<|x|\ x_{i}=x_{j}\right\}\cup X\cup\{\emptyset\}.

A relation RR on XX is any subset of X<β„•X^{<{\mathbbm{N}}}. A relation β„‹\mathcal{H} is a (finite-dimensional) dihypergraph on XX if β„‹βˆ©diagX=βˆ…\mathcal{H}\cap\operatorname{diag}_{X}=\emptyset and it is a digraph if β„‹βŠ†X2\mathcal{H}\subseteq X^{2}. If β„‹\mathcal{H} is a dihypergraph (or digraph) on XX and AβŠ†XA\subseteq X, then we say that AA is β„‹\mathcal{H}-independent if the restriction of β„‹\mathcal{H} to AA, in symbols

β„‹β†ΎA=β„‹βˆ©A<β„•,\mathcal{H}\upharpoonright A=\mathcal{H}\cap A^{<{\mathbbm{N}}},

is empty.

Let X,YX,Y be sets and Ο†:Xβ†’Y\varphi:X\to Y be a map. The coordinate-wise extension φ¯\overline{\varphi} of Ο†\varphi to X<β„•X^{<{\mathbbm{N}}} is defined as

φ¯​(x)i=φ​(xi)\overline{\varphi}(x)_{i}=\varphi(x_{i})

for every x∈X<β„•x\in X^{<{\mathbbm{N}}} and i<|x|i<|x|. We abuse the notation and write Ο†\varphi instead of φ¯\overline{\varphi}. Suppose that we have collections (Rj)j∈I(R_{j})_{j\in I} and (Sj)j∈I(S_{j})_{j\in I} of relations on XX and YY, respectively, where II is some index set. We say that a map Ο†:Xβ†’Y\varphi:X\to Y is a homomorphism from (Rj)j∈I(R_{j})_{j\in I} to (Sj)j∈I(S_{j})_{j\in I} if

x∈Rj⇒φ​(x)∈Sjx\in R_{j}\ \Rightarrow\ \varphi(x)\in S_{j}

for every x∈X<β„•x\in X^{<{\mathbbm{N}}} and j∈Ij\in I. Moreover, it is a reduction if we have

x∈Rj⇔φ​(x)∈Sjx\in R_{j}\ \Leftrightarrow\ \varphi(x)\in S_{j}

for every x∈X<β„•x\in X^{<{\mathbbm{N}}} and j∈Ij\in I.

2.1 Polish GG-space

A topological space XX is a Polish space if the underlying topology is separable and completely metrizable. A standard Borel space XX is a set endowed with a Οƒ\sigma-algebra that is a Οƒ\sigma-algebra of Borel sets for some Polish topology on XX. We call such a Polish topology compatible. A topological group GG is a Polish group if the underlying topology is Polish. We denote the Οƒ\sigma-ideal of meager sets on GG as β„³G\mathcal{M}_{G}. We use the category quantifiers βˆƒβˆ—\exists^{*}, βˆ€βˆ—\forall^{*} in the standard meaning, e.g.,

βˆ€βˆ—g∈U​P​(g)⇔{g∈U:Β¬P​(g)}βˆˆβ„³G\forall^{*}g\in U\ P(g)\ \Leftrightarrow\ \{g\in U:\neg P(g)\}\in\mathcal{M}_{G}
βˆƒβˆ—g∈U​P​(g)⇔{g∈U:P​(g)}βˆ‰β„³G\exists^{*}g\in U\ P(g)\ \Leftrightarrow\ \{g\in U:P(g)\}\not\in\mathcal{M}_{G}

where UβŠ†GU\subseteq G is an open set and PP is some property, see [Gao09].

A Borel action Gβ†·XG\curvearrowright X of a Polish group GG on a standard Borel space XX is an action that is additionally Borel measurable as a function from GΓ—XG\times X to XX. We write (g,x)↦gβ‹…x(g,x)\mapsto g\cdot x for the evaluation of the action at particular elements g∈Gg\in G and x∈Xx\in X. Similarly, we define Vβ‹…xV\cdot x for any VβŠ†GV\subseteq G and x∈Xx\in X. We denote as EGXE^{X}_{G} the induced equivalence relation and as [x]EGX[x]_{E^{X}_{G}} the equivalence class, or orbit, of x∈Xx\in X. A set AβŠ†XA\subseteq X is GG-invariant if it is a union of equivalence classes of EGXE^{X}_{G}. If VβŠ†GV\subseteq G, then we set (x,y)∈RVX(x,y)\in R^{X}_{V} if and only if y∈Vβ‹…xy\in V\cdot x. It is a result of Becker and Kechris [BK96] that one can always find a compatible Polish topology on XX such that the action is continuous. Any such Polish topology is called a GG-Polish topology. If such a topology is fixed we say that Gβ†·XG\curvearrowright X is a Polish GG-space. For x∈Xx\in X and AβŠ†XA\subseteq X we set G​(x,A)={g∈G:gβ‹…x∈A}G(x,A)=\{g\in G:g\cdot x\in A\}.

Definition 2.1.

Let XX be a Polish GG-space. We say that CβŠ†XC\subseteq X is a GG-lg comeager set if Gβˆ–G​(x,C)βˆˆβ„³GG\setminus G(x,C)\in\mathcal{M}_{G} for every x∈Xx\in X. Equivalently,

βˆ€βˆ—g∈G​gβ‹…x∈C\forall^{*}g\in G\ g\cdot x\in C

holds for every x∈Xx\in X

2.2 Borel reducibility

A Borel equivalence relation EE on a standard Borel space XX is is an equivalence relation that is additionally a Borel subset of XΓ—XX\times X. We assume throughout the paper that the orbit equivalence relations of the form EGXE^{X}_{G} that we consider are always Borel equivalence relations. A Borel equivalence relation EE on XX is Borel reducible to a Borel equivalence FF on YY, in symbols E≀BFE\leq_{B}F, if there is a Borel map Ο†:Xβ†’Y\varphi:X\to Y that is a reduction from EE to FF.

We say that a Borel equivalence relation EE is essentially countable if it is Borel reducible to some countable Borel equivalence relation, see [Kec21].222A Borel equivalence relation is countable if the cardinality of each equivalence class is at most countable. In our setting, that is Borel equivalence relations inudeced by Polish group actions, this is equivalent to Οƒ\sigma-lacunarity [Gre20].

We say that a Borel equivalence relation EE is classifiable by countable structures if it is Borel reducible to some equivalence relation induced by a Borel action of S∞S_{\infty}, the permutation group of β„•{\mathbbm{N}}. There are several other equivalent characterizations of classification by countable structures [Kan08, TheoremΒ 12.3.3] or [Gao09].

The benchmark examples of Borel equivalence relations that we consider in this paper are 𝔼0{\mathbbm{E}}_{0}, 𝔼2{\mathbbm{E}}_{2} and 𝔼0β„•{\mathbbm{E}}_{0}^{{\mathbbm{N}}}. The equivalence relation 𝔼0{\mathbbm{E}}_{0} on 2β„•2^{{\mathbbm{N}}} is defined as (x,y)βˆˆπ”Ό0(x,y)\in{\mathbbm{E}}_{0} if and only if |{nβˆˆβ„•:x​(n)β‰ y​(n)}|<β„΅0|\{n\in{\mathbbm{N}}:x(n)\not=y(n)\}|<\aleph_{0}. The equivalence relation 𝔼2{\mathbbm{E}}_{2} is defined in the Introduction. The equivalence relation 𝔼0β„•{\mathbbm{E}}_{0}^{{\mathbbm{N}}} is the countable product of 𝔼0{\mathbbm{E}}_{0}, that is, 𝔼0β„•{\mathbbm{E}}_{0}^{{\mathbbm{N}}} is the equivalence relation on 2β„•Γ—β„•2^{{\mathbbm{N}}\times{\mathbbm{N}}} defined as (x,y)βˆˆπ”Ό0β„•(x,y)\in{\mathbbm{E}}_{0}^{{\mathbbm{N}}} if and only if |{mβˆˆβ„•:x​(n,m)β‰ y​(n,m)}|<β„΅0|\{m\in{\mathbbm{N}}:x(n,m)\not=y(n,m)\}|<\aleph_{0} holds for every nβˆˆβ„•n\in{\mathbbm{N}}. We refer the reader to [Kan08] for more information about these particular examples.

2.3 Turbulence

Let XX be a Polish GG-space, VβŠ†GV\subseteq G, UβŠ†XU\subseteq X and x∈Xx\in X. We introduce some notation that is connected to the definition of local orbit, seeΒ [Gao09, SectionΒ 10.2]. First, we define

π’₯​(V)={x∈X<β„•βˆ–diagX:βˆ€i<|x|βˆ’1​(xi,xi+1)∈RVX},\mathcal{J}(V)=\{x\in X^{<{\mathbbm{N}}}\setminus\operatorname{diag}_{X}:\forall i<|x|-1\ (x_{i},x_{i+1})\in R^{X}_{V}\},

the set of all VV-jumps. Let π’₯​(x,V)={y∈π’₯​(V):y0=x}\mathcal{J}(x,V)=\left\{y\in\mathcal{J}(V):y_{0}=x\right\}. Assuming now that UU and VV are open neighborhoods of x∈Xx\in X and the identity 1G∈G1_{G}\in G, respectively, we define the local orbit

π’ͺ​(x,U,V)={y|y|βˆ’1∈U:y∈π’₯​(x,V)∩U<β„•}.\mathcal{O}(x,U,V)=\left\{y_{|y|-1}\in U:y\in\mathcal{J}(x,V)\cap U^{<{\mathbbm{N}}}\right\}.

That is, π’ͺ​(x,U,V)\mathcal{O}(x,U,V) are those elements of UU that are reachable from xx by VV-jumps within UU.

Definition 2.2 (SectionΒ 10 [Gao09]).

Let GG be a Polish group and XX be a Polish GG-space. We say that the action G↷XG\curvearrowright X is turbulent if

  • β€’

    every equivalence class of EGXE^{X}_{G} is dense and meager in XX,

  • β€’

    the local orbit π’ͺ​(x,U,V)\mathcal{O}(x,U,V) is somewhere dense for every x∈Xx\in X and every open neighborhoods UU and VV of x∈Xx\in X and 1G∈G1_{G}\in G, respectively.

Let EE be an equivalence relation on a Polish space XX. We say that EE is generically S∞S_{\infty}-ergodic if for every Polish S∞S_{\infty}-space YY and every Baire measurable homomorphism Ο†:Xβ†’Y\varphi:X\to Y from EE to ES∞YE^{Y}_{S_{\infty}} there is y∈Yy\in Y such that Ο†βˆ’1​([y]ES∞Y)\varphi^{-1}\left([y]_{E^{Y}_{S_{\infty}}}\right) is comeager in XX.

Theorem 2.3 (Corollary 10.4.3 [Gao09]).

Let GG be a Polish group and XX be a Polish GG-space. Suppose that the action Gβ†·XG\curvearrowright X is turbulent. Then EGXE^{X}_{G} is generically S∞S_{\infty}-ergodic. In particular, EGXE^{X}_{G} is not classifiable by countable structures.

2.4 Tsi Polish groups

A Polish group GG is tsi (states for two-sided invariant) if there is an open basis at 1G1_{G} made of conjugacy invariant open sets. That is, there is a sequence (Ξ”k)kβˆˆβ„•(\Delta_{k})_{k\in{\mathbbm{N}}} of open neighborhoods of 1G1_{G} that is an open base and such that gβ‹…Ξ”kβ‹…gβˆ’1=Ξ”kg\cdot\Delta_{k}\cdot g^{-1}=\Delta_{k} for every g∈Gg\in G and kβˆˆβ„•k\in{\mathbbm{N}}. Equivalently, seeΒ [Gao09, ExerciseΒ 2.1.4], there is a compatible metric dd on GG that is two sided invariant, i.e., d​(g,h)=d​(hβˆ’1β‹…g,1G)=d​(gβ‹…hβˆ’1,1G)d(g,h)=d(h^{-1}\cdot g,1_{G})=d(g\cdot h^{-1},1_{G}) for every g,h∈Gg,h\in G. It follows from [Gao09, ExerciseΒ 2.2.4] that such a metric dd is necessarily complete. We always assume that such a metric dd on GG is fixed and put Δϡ={g∈G:d​(g,1G)<Ο΅}\Delta_{\epsilon}=\{g\in G:d(g,1_{G})<\epsilon\}. We have g⋅Δϡ⋅gβˆ’1=Δϡg\cdot\Delta_{\epsilon}\cdot g^{-1}=\Delta_{\epsilon} for every Ο΅>0\epsilon>0 and g∈Gg\in G. We abuse the notation and define Ξ”k=Ξ”12k\Delta_{k}=\Delta_{\frac{1}{2^{k}}} for every kβˆˆβ„•k\in{\mathbbm{N}}. Note that (Ξ”k)kβˆˆβ„•(\Delta_{k})_{k\in{\mathbbm{N}}} is a conjugacy invariant open base at 1G1_{G} such that Ξ”k+1β‹…Ξ”k+1βŠ†Ξ”k\Delta_{k+1}\cdot\Delta_{k+1}\subseteq\Delta_{k} and Ξ”k=Ξ”kβˆ’1\Delta_{k}=\Delta_{k}^{-1} for every kβˆˆβ„•k\in{\mathbbm{N}}.

We define the dihypergraphs that we use in this paper.

Definition 2.4.

Let XX be a Polish GG-space and k,mβˆˆβ„•k,m\in{\mathbbm{N}}. We set

β„‹k,m={x∈X<β„•:x∈π’₯​(Ξ”m)∧(x0,x|x|βˆ’1)βˆ‰RΞ”kX}.\mathcal{H}_{k,m}=\left\{x\in X^{<{\mathbbm{N}}}:x\in\mathcal{J}(\Delta_{m})\ \wedge\ (x_{0},x_{|x|-1})\not\in R^{X}_{\Delta_{k}}\right\}.

We note that the definition makes sense for any Polish group GG and any sequence of (symmetric) neighborhoods of 1G1_{G}.

2.5 𝔾0{\mathbbm{G}}_{0}-dichotomy

We formulate three versions of the 𝔾0{\mathbbm{G}}_{0}-dichotomy. First version is the original dichotomy and the other two are the versions that we use in this paper. We formulate the statements in bigger generality as it is done in [Milb].

For s∈2<β„•s\in 2^{<{\mathbbm{N}}} define the graph

𝔾s={(sβŒ’β€‹(0)βŒ’β€‹c,sβŒ’β€‹(1)βŒ’β€‹c):c∈2β„•}{\mathbbm{G}}_{s}=\{(s^{\frown}(0)^{\frown}c,s^{\frown}(1)^{\frown}c):c\in 2^{\mathbbm{N}}\}

on 2β„•2^{\mathbbm{N}}. Fix some dense collection (sn)nβˆˆβ„•βŠ†2<β„•(s_{n})_{n\in{\mathbbm{N}}}\subseteq 2^{<{\mathbbm{N}}} such that |sn|=n|s_{n}|=n, i.e., sn∈2ns_{n}\in 2^{n}, for every nβˆˆβ„•n\in{\mathbbm{N}}. Here dense means that for every s∈2<β„•s\in 2^{<{\mathbbm{N}}} there is nβˆˆβ„•n\in{\mathbbm{N}} such that sβŠ‘sns\sqsubseteq s_{n}. Set 𝔾0=⋃nβˆˆβ„•π”Ύsn{\mathbbm{G}}_{0}=\bigcup_{n\in{\mathbbm{N}}}{\mathbbm{G}}_{s_{n}}.

Theorem 2.5 (𝔾0{\mathbbm{G}}_{0}-dichotomy [KST99]).

Suppose that XX is a Hausdorff space and GG is an analytic graph on XX. Then exactly one of the following holds:

  1. 1.

    there is a sequence (Bk)kβˆˆβ„•(B_{k})_{k\in{\mathbbm{N}}} of Borel subsets of XX such that X=⋃kβˆˆβ„•BkX=\bigcup_{k\in{\mathbbm{N}}}B_{k} and BkB_{k} is GG-independent for every kβˆˆβ„•k\in{\mathbbm{N}},

  2. 2.

    there is a continuous homomorphism Ο†:2β„•β†’X\varphi:2^{{\mathbbm{N}}}\to X from 𝔾0{\mathbbm{G}}_{0} to GG.

Next we formulate two versions of the 𝔾0{\mathbbm{G}}_{0}-dichotomy that we use in this paper. For the first one we need to recall some notation from [Mila]. Let knβˆˆβ„•k_{n}\in{\mathbbm{N}} be such that k0=0k_{0}=0, kn+1≀max⁑{km:m≀n}+1k_{n+1}\leq\max\{k_{m}:m\leq n\}+1 for every nβˆˆβ„•n\in{\mathbbm{N}} and for every kβˆˆβ„•k\in{\mathbbm{N}} there are infinitely many nβˆˆβ„•n\in{\mathbbm{N}} such that kn=kk_{n}=k. Fix (sn)nβˆˆβ„•βˆˆ2β„•(s_{n})_{n\in{\mathbbm{N}}}\in 2^{{\mathbbm{N}}} such that |sn|=n|s_{n}|=n for every nβˆˆβ„•n\in{\mathbbm{N}} and {sn:kn=k}\{s_{n}:k_{n}=k\} is dense in 2<β„•2^{<{\mathbbm{N}}} for every kβˆˆβ„•k\in{\mathbbm{N}}. Set

𝔾0,k=⋃{𝔾sn:kn=k}{\mathbbm{G}}_{0,k}=\bigcup\left\{{\mathbbm{G}}_{s_{n}}:k_{n}=k\right\}

for every kβˆˆβ„•k\in{\mathbbm{N}}.

Theorem 2.6 (TheoremΒ 2 [Mila]).

Suppose that XX is a Hausdorff space and (Gi,j)i,jβˆˆβ„•(G_{i,j})_{i,j\in{\mathbbm{N}}} is an increasing-in-jj sequence of analytic digraphs on XX. Then exactly one of the following holds:

  1. 1.

    there is a sequence (Bi)iβˆˆβ„•(B_{i})_{i\in{\mathbbm{N}}} of Borel subsets of XX such that X=⋃iβˆˆβ„•BiX=\bigcup_{i\in{\mathbbm{N}}}B_{i} and the Borel chromatic number of Gi,jβ†ΎBiG_{i,j}\upharpoonright B_{i} is at most countable for every i,jβˆˆβ„•i,j\in{\mathbbm{N}},

  2. 2.

    there exist a function f:β„•β†’β„•f:{\mathbbm{N}}\to{\mathbbm{N}} and a continuous homomorphism Ο†:2β„•β†’X\varphi:2^{{\mathbbm{N}}}\to X from (𝔾0,k)kβˆˆβ„•({\mathbbm{G}}_{0,k})_{k\in{\mathbbm{N}}} to (Gk,f​(k))kβˆˆβ„•(G_{k,f(k)})_{k\in{\mathbbm{N}}}.

We define a generalization of 𝔾0{\mathbbm{G}}_{0} and 𝔼0{\mathbbm{E}}_{0} for special class of finitely branching trees. We say that a tree TβŠ†β„•<β„•T\subseteq{\mathbbm{N}}^{<{\mathbbm{N}}} is finitely uniformly branching if there is a sequence (β„“mT)mβˆˆβ„•(\ell^{T}_{m})_{m\in{\mathbbm{N}}} of natural numbers such that β„“mTβ‰₯2\ell^{T}_{m}\geq 2 for every mβˆˆβ„•m\in{\mathbbm{N}} and we have

β„“|s|T={iβˆˆβ„•:sβŒ’β€‹(i)∈T}\ell^{T}_{|s|}=\{i\in{\mathbbm{N}}:s^{\frown}(i)\in T\}

for every s∈Ts\in T. If TT is a tree and s∈Ts\in T, then we define Ts={tβˆˆβ„•<β„•:sβŒ’β€‹t∈T}T_{s}=\{t\in{\mathbbm{N}}^{<{\mathbbm{N}}}:s^{\frown}t\in T\}. Note that Ts=TtT_{s}=T_{t} whenever t,s∈Tt,s\in T and |t|=|s||t|=|s|. We denote as [T]βŠ†β„•β„•[T]\subseteq{\mathbbm{N}}^{{\mathbbm{N}}} the set of all branches through TT, i.e., α∈[T]\alpha\in[T] if and only if Ξ±β†Ύm∈T\alpha\upharpoonright m\in T for every mβˆˆβ„•m\in{\mathbbm{N}}.

Definition 2.7.

Let TT be a finitely uniformly branching tree and s∈Ts\in T. The dihypergraph 𝔾sT{\mathbbm{G}}^{T}_{s} on [T][T] is defined as

𝔾sT={(sβŒ’β€‹(i)βŒ’β€‹Ξ±)i<β„“|s|T:α∈[TsβŒ’β€‹(0)]}.{\mathbbm{G}}^{T}_{s}=\left\{(s^{\frown}(i)^{\frown}\alpha)_{i<\ell^{T}_{|s|}}:\alpha\in[T_{s^{\frown}(0)}]\right\}.

The equivalence relation 𝔼0T{\mathbbm{E}}^{T}_{0} on [T][T] is defined as

(Ξ±,Ξ²)βˆˆπ”Ό0T⇔|{nβˆˆβ„•:α​(n)≠β​(n)}|<β„΅0(\alpha,\beta)\in{\mathbbm{E}}^{T}_{0}\ \Leftrightarrow\ |\{n\in{\mathbbm{N}}:\alpha(n)\not=\beta(n)\}|<\aleph_{0}

where Ξ±,β∈[T]\alpha,\beta\in[T]. Note that in the case when T=2<β„•T=2^{<{\mathbbm{N}}} we have 𝔼0T=𝔼0{\mathbbm{E}}^{T}_{0}={\mathbbm{E}}_{0}.

Theorem 2.8 (𝔾0{\mathbbm{G}}_{0}-dichotomy for dihypergraphs, Theorem 2.2.12 [Milb]).

Let XX be a Hausdorff space and let (β„‹m)mβˆˆβ„•(\mathcal{H}_{m})_{m\in{\mathbbm{N}}} be a sequence of analytic dihypergraphs on XX. Then at least one of the following holds:

  1. 1.

    there is a sequence (Bk)kβˆˆβ„•(B_{k})_{k\in{\mathbbm{N}}} of Borel subsets of XX such that X=⋃kβˆˆβ„•BkX=\bigcup_{k\in{\mathbbm{N}}}B_{k} and for every kβˆˆβ„•k\in{\mathbbm{N}} there is m​(k)βˆˆβ„•m(k)\in{\mathbbm{N}} such that BkB_{k} is β„‹m​(k)\mathcal{H}_{m(k)}-independent,

  2. 2.

    there is a finitely uniformly branching tree TT, a dense sequence (sm)mβˆˆβ„•βŠ†T(s_{m})_{m\in{\mathbbm{N}}}\subseteq T such that |sm|=m|s_{m}|=m for every mβˆˆβ„•m\in{\mathbbm{N}} and a continuous homomorphism Ο†:[T]β†’X\varphi:[T]\to X from (𝔾smT)mβˆˆβ„•({\mathbbm{G}}^{T}_{s_{m}})_{m\in{\mathbbm{N}}} to (β„‹m)mβˆˆβ„•(\mathcal{H}_{m})_{m\in{\mathbbm{N}}}.

Moreover, if the sequence (β„‹m)mβˆˆβ„•(\mathcal{H}_{m})_{m\in{\mathbbm{N}}} is decreasing then the conditions are mutually exclusive.

2.6 Borel pseudometrics

Definition 2.9.

Let TT be a finitely uniformly branching tree. A function 𝐝:[T]Γ—[T]β†’[0,+∞]{\bf d}:[T]\times[T]\to[0,+\infty] is called a Borel pseudometric if

  1. 1.

    𝐝{\bf d} is pseudometric,

  2. 2.

    πβˆ’1​([0,Ο΅)){\bf d}^{-1}([0,\epsilon)) is a Borel subset of [T]Γ—[T][T]\times[T] for every Ο΅>0\epsilon>0,

  3. 3.

    ({Ξ²:𝐝​(Ξ±,Ξ²)<+∞},𝐝)(\{\beta:{\bf d}(\alpha,\beta)<+\infty\},{\bf d}) is a separable pseudometric space for every α∈[T]\alpha\in[T],

  4. 4.

    if Ξ±nβ†’[T]Ξ±\alpha_{n}\to_{[T]}\alpha and (Ξ±n)nβˆˆβ„•(\alpha_{n})_{n\in{\mathbbm{N}}} is a 𝐝{\bf d}-Cauchy sequence, then 𝐝​(Ξ±n,Ξ±)β†’0{\bf d}(\alpha_{n},\alpha)\to 0.

Moreover, we say that a Borel pseudoemtric is uniform if

  • β€’

    for every mβˆˆβ„•m\in{\mathbbm{N}}, s,t∈Tβˆ©β„•ms,t\in T\cap{\mathbbm{N}}^{m} and Ξ±,β∈[Ts]=[Tt]\alpha,\beta\in[T_{s}]=[T_{t}] we have

    |𝐝​(sβŒ’β€‹Ξ±,tβŒ’β€‹Ξ±)βˆ’πβ€‹(sβŒ’β€‹Ξ²,tβŒ’β€‹Ξ²)|<12m,\left|{\bf d}(s^{\frown}\alpha,t^{\frown}\alpha)-{\bf d}(s^{\frown}\beta,t^{\frown}\beta)\right|<\frac{1}{2^{m}},
    |𝐝​(sβŒ’β€‹Ξ±,sβŒ’β€‹Ξ²)βˆ’πβ€‹(tβŒ’β€‹Ξ±,tβŒ’β€‹Ξ²)|<12m\left|{\bf d}(s^{\frown}\alpha,s^{\frown}\beta)-{\bf d}(t^{\frown}\alpha,t^{\frown}\beta)\right|<\frac{1}{2^{m}}

    where we set |(+∞)βˆ’(+∞)|=0|(+\infty)-(+\infty)|=0.

We describe a canonical way how to find Borel pseudometrics. Recall that if GG is a tsi Polish group, then dd is a fixed compatible two-sided invariant metric on GG.

Proposition 2.10.

Let GG be a tsi Polish group, XX be a Polish GG-space such that EGXE^{X}_{G} is Borel, TT be a finitely uniformly branching tree and Ο†:[T]β†’X\varphi:[T]\to X be a continuous map. Then the function 𝐝:[T]Γ—[T]β†’[0,+∞]{\bf d}:[T]\times[T]\to[0,+\infty] defined as

𝐝​(Ξ±,Ξ²)=inf{d​(g,1G):g∈G∧g⋅φ​(Ξ±)=φ​(Ξ²)}{\bf d}(\alpha,\beta)=\inf\{d(g,1_{G}):g\in G\ \wedge\ g\cdot\varphi(\alpha)=\varphi(\beta)\}

for α,β∈[T]\alpha,\beta\in[T] is a Borel pseudometric.

Proof.

(1.) The invariance of dd guarantees that d​(g,1G)=d​(gβˆ’1,1G)d(g,1_{G})=d(g^{-1},1_{G}) for every g∈Gg\in G and consequently that 𝐝{\bf d} is symmetric. Let Ξ±,Ξ²,γ∈[T]\alpha,\beta,\gamma\in[T]. We may assume that 𝐝​(Ξ±,Ξ²)+𝐝​(Ξ²,Ξ³)<+∞{\bf d}(\alpha,\beta)+{\bf d}(\beta,\gamma)<+\infty. In that case for every Ο΅>0\epsilon>0 there is g,h∈Gg,h\in G such that d​(g,1G)<𝐝​(Ξ±,Ξ²)+Ο΅d(g,1_{G})<{\bf d}(\alpha,\beta)+\epsilon and d​(h,1G)<𝐝​(Ξ²,Ξ³)+Ο΅d(h,1_{G})<{\bf d}(\beta,\gamma)+\epsilon. Then we have

𝐝​(Ξ±,Ξ³)βˆ’2​ϡ≀d​(hβ‹…g,1G)βˆ’2​ϡ≀d​(h,1G)+d​(g,1G)βˆ’2​ϡ<𝐝​(Ξ±,Ξ²)+𝐝​(Ξ²,Ξ³){\bf d}(\alpha,\gamma)-2\epsilon\leq d(h\cdot g,1_{G})-2\epsilon\leq d(h,1_{G})+d(g,1_{G})-2\epsilon<{\bf d}(\alpha,\beta)+{\bf d}(\beta,\gamma)

because d​(hβ‹…g,1G)≀d​(hβ‹…g,g)+d​(g,1G)=d​(h,1G)+d​(g,1G)d(h\cdot g,1_{G})\leq d(h\cdot g,g)+d(g,1_{G})=d(h,1_{G})+d(g,1_{G}) by the invariance of dd.

(2.) Recall that for Ο΅>0\epsilon>0 we defined Δϡ={g∈G:d​(g,1G)<Ο΅}\Delta_{\epsilon}=\{g\in G:d(g,1_{G})<\epsilon\}. It follows from our assumption that EGXE^{X}_{G} is a Borel equivalence relation together with [Gao09, TheoremΒ 7.1.2] that the relation RΔϡXR^{X}_{\Delta_{\epsilon}} is Borel for every Ο΅>0\epsilon>0. We have

πβˆ’1​([0,Ο΅))={(Ξ±,Ξ²)∈[T]Γ—[T]:𝐝​(Ξ±,Ξ²)<Ο΅}=(Ο†βˆ’1Γ—Ο†βˆ’1)​(RΔϡX){\bf d}^{-1}([0,\epsilon))=\left\{(\alpha,\beta)\in[T]\times[T]:{\bf d}(\alpha,\beta)<\epsilon\right\}=\left(\varphi^{-1}\times\varphi^{-1}\right)(R^{X}_{\Delta_{\epsilon}})

and that shows (2).

(3.) Let α∈[T]\alpha\in[T]. The space GΞ±={g∈G:βˆƒΞ²βˆˆ[T]​g⋅φ​(Ξ±)=φ​(Ξ²)}G_{\alpha}=\{g\in G:\exists\beta\in[T]\ g\cdot\varphi(\alpha)=\varphi(\beta)\} endowed with dd is a separable metric space. It is easy to see that the assignment g↦βg\mapsto\beta where g⋅φ​(Ξ±)=φ​(Ξ²)g\cdot\varphi(\alpha)=\varphi(\beta) is a contraction from (GΞ±,d)(G_{\alpha},d) to the quotient metric space ({Ξ²:𝐝​(Ξ±,Ξ²)<+∞}/𝐝,𝐝)(\{\beta:{\bf d}(\alpha,\beta)<+\infty\}/{\bf d},\bf d).

(4.) Let (Ξ±n)nβˆˆβ„•,α∈[T](\alpha_{n})_{n\in{\mathbbm{N}}},\alpha\in[T] satisfy the assumptions of (4). After possibly passing to a subsequence we may suppose that there is a sequence (gn)nβˆˆβ„•βŠ†G(g_{n})_{n\in{\mathbbm{N}}}\subseteq G such that gn⋅φ​(Ξ±n)=φ​(Ξ±n+1)g_{n}\cdot\varphi(\alpha_{n})=\varphi(\alpha_{n+1}) and d​(gn,1G)<12nd(g_{n},1_{G})<\frac{1}{2^{n}}. Define hmn=gnβˆ’1⋅…⋅gmh^{n}_{m}=g_{n-1}\cdot{\dots}\cdot g_{m} for every m<nβˆˆβ„•m<n\in{\mathbbm{N}}. Then it follows that (hmn)nβˆˆβ„•(h^{n}_{m})_{n\in{\mathbbm{N}}} is dd-Cauchy whenever mβˆˆβ„•m\in{\mathbbm{N}} is fixed. Since dd is complete there is (hm)mβˆˆβ„•βˆˆG(h_{m})_{m\in{\mathbbm{N}}}\in G such that hmnβ†’hmh^{n}_{m}\to h_{m} for every mβˆˆβ„•m\in{\mathbbm{N}}. Moreover, we have d​(hm,1G)<12mβˆ’1d(h_{m},1_{G})<\frac{1}{2^{m-1}}. Continuity of the action and of the map Ο†\varphi gives

hm⋅φ​(Ξ±m)←hmn⋅φ​(Ξ±m)=φ​(Ξ±n)→φ​(Ξ±).h_{m}\cdot\varphi(\alpha_{m})\leftarrow h^{n}_{m}\cdot\varphi(\alpha_{m})=\varphi(\alpha_{n})\to\varphi(\alpha).

This finishes the proof. ∎

Every Borel pseudoemtric 𝐝{\bf d} on [T][T] defines a Borel equivalence relation F𝐝F_{\bf d} on [T][T] as

(Ξ±,Ξ²)∈F𝐝⇔𝐝​(Ξ±,Ξ²)<+∞.(\alpha,\beta)\in F_{\bf d}\ \Leftrightarrow\ {\bf d}(\alpha,\beta)<+\infty.

Note that in the case of PropositionΒ 2.10 we have that F𝐝=(Ο†βˆ’1Γ—Ο†βˆ’1)​(EGX)F_{{\bf d}}=\left(\varphi^{-1}\times\varphi^{-1}\right)(E^{X}_{G}).

Theorem 2.11.

Let TT be a finitely uniformly branching tree and 𝐝{\bf d} be a uniform Borel pseudometric such that 𝔼0TβŠ†F𝐝{\mathbbm{E}}^{T}_{0}\subseteq F_{\bf d}. Then the following are equivalent

  • (a)

    F𝐝F_{\bf d} is nonmeager,

  • (b)

    F𝐝=[T]Γ—[T]F_{\bf d}=[T]\times[T].

Proof.

(b) β‡’\Rightarrow (a) is trivial. We show that (a) β‡’\Rightarrow (b). Suppose first, that for every kβˆˆβ„•βˆ–{0}k\in{\mathbbm{N}}\setminus\{0\} there is mkβˆˆβ„•m_{k}\in{\mathbbm{N}} such that 𝐝​(Ξ±,Ξ²)<1k{\bf d}(\alpha,\beta)<\frac{1}{k} for every Ξ±,β∈[T]\alpha,\beta\in[T] such that {nβˆˆβ„•:α​(n)≠β​(n)}∩mk=βˆ…\left\{n\in{\mathbbm{N}}:\alpha(n)\not=\beta(n)\right\}\cap m_{k}=\emptyset and (Ξ±,Ξ²)βˆˆπ”Ό0T(\alpha,\beta)\in{\mathbbm{E}}^{T}_{0}. We may assume that (mk)kβˆˆβ„•βŠ†β„•(m_{k})_{k\in{\mathbbm{N}}}\subseteq{\mathbbm{N}} is strictly increasing and we set m0=0m_{0}=0.

Let x,y∈[T]x,y\in[T] and define yk∈[T]y_{k}\in[T] such that ykβ†Ύmk=yy_{k}\upharpoonright m_{k}=y and yk​(n)=x​(n)y_{k}(n)=x(n) for every nβ‰₯mkn\geq m_{k}. Then clearly y0=xy_{0}=x, (yr,ys)βˆˆπ”Ό0TβŠ†F𝐝(y_{r},y_{s})\in{\mathbbm{E}}^{T}_{0}\subseteq F_{\bf d} for every r,sβˆˆβ„•r,s\in{\mathbbm{N}} and ykβ†’[T]yy_{k}\to_{[T]}y. Let kβˆˆβ„•βˆ–{0}k\in{\mathbbm{N}}\setminus\{0\} and r,sβ‰₯kr,s\geq k. Then we have

|{nβˆˆβ„•:yr​(n)β‰ ys​(n)}|∩mk=βˆ…|\{n\in{\mathbbm{N}}:y_{r}(n)\not=y_{s}(n)\}|\cap m_{k}=\emptyset

and consequently 𝐝​(yr,ys)<1k{\bf d}(y_{r},y_{s})<\frac{1}{k}. This shows that (yk)kβˆˆβ„•(y_{k})_{k\in{\mathbbm{N}}} is a 𝐝{\bf d}-Cauchy sequence and by (4) from the definition of Borel pseudometric we have 𝐝​(yk,y)β†’0{\bf d}(y_{k},y)\to 0. In particular, there is kβˆˆβ„•k\in{\mathbbm{N}} such that 𝐝​(yk,y)<+∞{\bf d}(y_{k},y)<+\infty and therefore (yk,y)∈F𝐝(y_{k},y)\in F_{\bf d}. Altogether we have (x,y)∈F𝐝(x,y)\in F_{\bf d} and since x,y∈[T]x,y\in[T] were arbitrary we have that F𝐝=[T]Γ—[T]F_{\bf d}=[T]\times[T].

Second, suppose that there is Ο΅>0\epsilon>0 such that for every mβˆˆβ„•m\in{\mathbbm{N}} there are Ξ±m,Ξ²m∈[T]\alpha_{m},\beta_{m}\in[T] such that 𝐝​(Ξ±,Ξ²)>Ο΅{\bf d}(\alpha,\beta)>\epsilon, {nβˆˆβ„•:α​(n)≠β​(n)}∩m=βˆ…\{n\in{\mathbbm{N}}:\alpha(n)\not=\beta(n)\}\cap m=\emptyset and (Ξ±m,Ξ²m)βˆˆπ”Ό0T(\alpha_{m},\beta_{m})\in{\mathbbm{E}}^{T}_{0}. We show that this contradicts F𝐝F_{\bf d} being non-meager.

Note that F𝐝F_{\bf d} is a Borel equivalence relation and every F𝐝F_{\bf d}-equivalence class is dense in [T][T] because 𝔼0TβŠ†F𝐝{\mathbbm{E}}^{T}_{0}\subseteq F_{\bf d}. This implies, by [Kec95, TheoremΒ 8.41], that there is α∈[T]\alpha\in[T] such that [Ξ±]F𝐝[\alpha]_{F_{\bf d}} is comeager in [T][T]. By (3.) in the definition of Borel pseudometric, there are Borel sets (Uβ„“)β„“βˆˆβ„•(U_{\ell})_{\ell\in{\mathbbm{N}}} such that β‹ƒβ„“βˆˆβ„•Ul=[Ξ±]F𝐝\bigcup_{\ell\in{\mathbbm{N}}}U_{l}=[\alpha]_{F_{\bf d}} and

𝐝​(x,y)<Ο΅2{\bf d}(x,y)<\frac{\epsilon}{2}

for every β„“βˆˆβ„•\ell\in{\mathbbm{N}} and x,y∈Uβ„“x,y\in U_{\ell}.

By [Kec95, PropositionΒ 8.26], we find tβ€²βˆˆTt^{\prime}\in T and β„“βˆˆβ„•\ell\in{\mathbbm{N}} such that Uβ„“U_{\ell} is comeager in tβ€²βŒ’β€‹[Tt]{t^{\prime}}^{\frown}[T_{t}]. Pick mβˆˆβ„•m\in{\mathbbm{N}} such that mβ‰₯|tβ€²|m\geq|t^{\prime}| and 1m<Ο΅4\frac{1}{m}<\frac{\epsilon}{4}. We may suppose that Ξ±m=sβŒ’β€‹u0βŒ’β€‹x\alpha_{m}=s^{\frown}{u_{0}}^{\frown}x and Ξ²m=sβŒ’β€‹u1βŒ’β€‹x\beta_{m}=s^{\frown}{u_{1}}^{\frown}x where |s|=m|s|=m, |u0|=|u1||u_{0}|=|u_{1}| and x∈[TsβŒ’β€‹u0]=[TsβŒ’β€‹u1]x\in[T_{s^{\frown}u_{0}}]=[T_{s^{\frown}u_{1}}].

Let t∈Tt\in T be such that tβ€²βŠ‘tt^{\prime}\sqsubseteq t and |t|=|s|=m|t|=|s|=m. Then we have that Uβ„“U_{\ell} is comeager in tβŒ’β€‹[Tt]t^{\frown}[T_{t}] and therefore there is y∈[TtβŒ’β€‹u0]=[TtβŒ’β€‹u1]y\in[T_{t^{\frown}u_{0}}]=[T_{t^{\frown}u_{1}}] such that

tβŒ’β€‹u0βŒ’β€‹y,tβŒ’β€‹u1βŒ’β€‹y∈Uβ„“.t^{\frown}{u_{0}}^{\frown}y,t^{\frown}{u_{1}}^{\frown}y\in U_{\ell}.

In particular, we have 𝐝​(tβŒ’β€‹u0βŒ’β€‹y,tβŒ’β€‹u1βŒ’β€‹y)<Ο΅2{\bf d}(t^{\frown}{u_{0}}^{\frown}y,t^{\frown}{u_{1}}^{\frown}y)<\frac{\epsilon}{2}.

We use that 𝐝{\bf d} is uniform. We have

|𝐝​(sβŒ’β€‹(u0βŒ’β€‹x),sβŒ’β€‹(u1βŒ’β€‹x))βˆ’πβ€‹(tβŒ’β€‹(u0βŒ’β€‹x),tβŒ’β€‹(u1βŒ’β€‹x))|<12m<1m<Ο΅4\left|{\bf d}(s^{\frown}({u_{0}}^{\frown}x),s^{\frown}({u_{1}}^{\frown}x))-{\bf d}(t^{\frown}({u_{0}}^{\frown}x),t^{\frown}({u_{1}}^{\frown}x))\right|<\frac{1}{2^{m}}<\frac{1}{m}<\frac{\epsilon}{4}

and

|𝐝​((tβŒ’β€‹u0)βŒ’β€‹x,(tβŒ’β€‹u1)βŒ’β€‹x)βˆ’((tβŒ’β€‹u0)βŒ’β€‹y,(tβŒ’β€‹u1)βŒ’β€‹y)|<12|tβŒ’β€‹u0|<1m<Ο΅4.\left|{\bf d}((t^{\frown}{u_{0}})^{\frown}x,(t^{\frown}{u_{1}})^{\frown}x)-((t^{\frown}{u_{0}})^{\frown}y,(t^{\frown}{u_{1}})^{\frown}y)\right|<\frac{1}{2^{|t^{\frown}u_{0}|}}<\frac{1}{m}<\frac{\epsilon}{4}.

This implies

𝐝​(tβŒ’β€‹u0βŒ’β€‹y,tβŒ’β€‹u1βŒ’β€‹y)β‰₯𝐝​(sβŒ’β€‹u0βŒ’β€‹x,sβŒ’β€‹u1βŒ’β€‹x)βˆ’Ο΅2>Ο΅2{\bf d}(t^{\frown}{u_{0}}^{\frown}y,t^{\frown}{u_{1}}^{\frown}y)\geq{\bf d}(s^{\frown}{u_{0}}^{\frown}x,s^{\frown}{u_{1}}^{\frown}x)-\frac{\epsilon}{2}>\frac{\epsilon}{2}

and that contradicts 𝐝​(tβŒ’β€‹u0βŒ’β€‹y,tβŒ’β€‹u1βŒ’β€‹y)<Ο΅2{\bf d}(t^{\frown}{u_{0}}^{\frown}y,t^{\frown}{u_{1}}^{\frown}y)<\frac{\epsilon}{2}. This finishes the proof. ∎

2.7 Base for non-classification by countable structures

We describe the family of Borel equivalence relations that will serve as a base under Borel reducibility for non-classification by countable structures in the proof of TheoremΒ 1.3. To that end we recall definitions of two types of Borel equivalence relations that are well-studied [Far01a, Far01b] and [Kan08, ChaptersΒ 3 andΒ 15]. We denote the power set of β„•{\mathbbm{N}} as 𝒫​(β„•)\mathcal{P}({\mathbbm{N}}).

A map Θ:𝒫​(β„•)β†’[0,+∞]\Theta:\mathcal{P}({\mathbbm{N}})\to[0,+\infty] is a lsc submeasure if Ξ˜β€‹(βˆ…)=0\Theta(\emptyset)=0, Ξ˜β€‹(MβˆͺN)β‰€Ξ˜β€‹(M)+Ξ˜β€‹(N)\Theta(M\cup N)\leq\Theta(M)+\Theta(N) whenever M,Nβˆˆπ’«β€‹(β„•)M,N\in\mathcal{P}({\mathbbm{N}}), Ξ˜β€‹({m})<+∞\Theta(\{m\})<+\infty for every mβˆˆβ„•m\in{\mathbbm{N}} and

Ξ˜β€‹(M)=limmβ†’βˆžΞ˜β€‹(M∩m)\Theta(M)=\lim_{m\to\infty}\Theta(M\cap m)

for every Mβˆˆπ’«β€‹(β„•)M\in\mathcal{P}({\mathbbm{N}}). We say that Θ\Theta is tall if limmβ†’βˆžΞ˜β€‹({m})=0\lim_{m\to\infty}\Theta(\{m\})=0.

Let Θ\Theta be a tall lsc submeausre. Then the equivalence relation EΘE_{\Theta} on 2β„•2^{{\mathbbm{N}}} is defined as

(x,y)∈EΞ˜β‡”limmβ†’βˆžΞ˜β€‹({nβˆˆβ„•βˆ–m:x​(n)β‰ y​(n)})=0(x,y)\in E_{\Theta}\ \Leftrightarrow\ \lim_{m\to\infty}\Theta(\{n\in{\mathbbm{N}}\setminus m:x(n)\not=y(n)\})=0

for every x,y∈2β„•x,y\in 2^{{\mathbbm{N}}}. Similarly as in TheoremΒ 2.11, we have that EΘE_{\Theta} is non-meager if and only if EΘ=2β„•Γ—2β„•E_{\Theta}=2^{{\mathbbm{N}}}\times 2^{{\mathbbm{N}}}. We refer the reader to [Kan08, ChapterΒ 3] for more information about lsc submeasures and their connection to Borel reducibility.

A sequence of finite metric spaces ((Zm,𝔑m))mβˆˆβ„•((Z_{m},\mathfrak{d}_{m}))_{m\in{\mathbbm{N}}} is called non-trivial if

lim infmβ†’βˆžr​(Zm,𝔑m)>0&limmβ†’βˆžj​(Zm,𝔑m)=0\liminf_{m\to\infty}r(Z_{m},\mathfrak{d}_{m})>0\ \&\ \lim_{m\to\infty}j(Z_{m},\mathfrak{d}_{m})=0

where r​(Z,𝔑)=max⁑𝔑r(Z,\mathfrak{d})=\max\mathfrak{d} and j​(Z,𝔑)j(Z,\mathfrak{d}) is the minimal Ο΅>0\epsilon>0 such that there is β„“βˆˆβ„•\ell\in{\mathbbm{N}} and a sequence (z0,…​zl)(z_{0},\dots z_{l}) that contains every element of ZZ and satisfies 𝔑​(zi,zi+1)<Ο΅\mathfrak{d}(z_{i},z_{i+1})<\epsilon for every i<li<l.

Let 𝒡=((Zm,𝔑m))mβˆˆβ„•\mathcal{Z}=((Z_{m},\mathfrak{d}_{m}))_{m\in{\mathbbm{N}}} be a non-trivial sequence of finite metric spaces and ∏mβˆˆβ„•Zm\prod_{m\in{\mathbbm{N}}}Z_{m} be endowed with the product topology. Then the equivalence relation E𝒡E_{\mathcal{Z}} on ∏mβˆˆβ„•Zm\prod_{m\in{\mathbbm{N}}}Z_{m} is defined as

(x,y)∈E𝒡⇔limmβ†’βˆžπ”‘m​(x​(m),y​(m))=0(x,y)\in E_{\mathcal{Z}}\ \Leftrightarrow\ \lim_{m\to\infty}\mathfrak{d}_{m}(x(m),y(m))=0

for every x,y∈∏mβˆˆβ„•Zmx,y\in\prod_{m\in{\mathbbm{N}}}Z_{m}. We refer the reader to [Far01a, Far01b, Kan08] for more information about these equivalence relations and their connection to Borel reducibility.

Definition 2.12.

Denote as 𝔅\mathfrak{B} the collection of all Borel meager equivalence relations that contain EΘE_{\Theta} for some tall lsc submeasure Θ\Theta or E𝒡E_{\mathcal{Z}} for some non-trivial sequence of finite metric spaces 𝒡\mathcal{Z}. That is for every Eβˆˆπ”…E\in\mathfrak{B} there is either tall lsc submeasure Θ\Theta such that EΞ˜βŠ†EE_{\Theta}\subseteq E and EE is a meager subset of 2β„•Γ—2β„•2^{{\mathbbm{N}}}\times 2^{{\mathbbm{N}}}, or there is a non-trivial sequence of finite metric spaces 𝒡\mathcal{Z} such that Eπ’΅βŠ†EE_{\mathcal{Z}}\subseteq E and EE is a meager subset of ∏mβˆˆβ„•ZmΓ—βˆmβˆˆβ„•Zm\prod_{m\in{\mathbbm{N}}}Z_{m}\times\prod_{m\in{\mathbbm{N}}}Z_{m}.

Theorem 2.13.

Let Eβˆˆπ”…E\in\mathfrak{B}. Then EE is not classifiable by countable structures.

Proof.

We start by recalling the following well-known facts, seeΒ [Gre19, AppendixΒ 3.7] andΒ [Kan08, ChapterΒ 16]. Suppose that Θ\Theta is a tall lsc submeasure and EΘE_{\Theta} is meager. Then EΘE_{\Theta} is induced by a turbulent action of a Polish group on 2β„•2^{\mathbbm{N}}. Similarly, if 𝒡\mathcal{Z} is a non-trivial sequence of finite metric spaces, then E𝒡E_{\mathcal{Z}} is induced by a turbulent action of a Polish group on ∏mβˆˆβ„•Zm\prod_{m\in{\mathbbm{N}}}Z_{m}. In particlar, these equivalence relations do not admit classification by countable structures.

Let Eβˆˆπ”…E\in\mathfrak{B} be an equivalence relation on YY. By the definition we find FβŠ†EF\subseteq E such that either F=EΘF=E_{\Theta} for some tall lsc submeasure Θ\Theta or F=E𝒡F=E_{\mathcal{Z}} for some non-trivial sequence of finite metric spaces 𝒡\mathcal{Z}. Now we use the fact that turbulent actions are generically S∞S_{\infty}-ergodic.

Suppose for a contradiction that EE admits classification by countable structures. That is, there is a Polish S∞S_{\infty}-space WW and a Borel map ψ:Yβ†’W\psi:Y\to W that is a reduction from EE to ES∞WE^{W}_{S_{\infty}}. In particular, ψ\psi is a Borel homomorphism from FF to ES∞WE^{W}_{S_{\infty}}. It follows from TheoremΒ 2.3 that there is y∈Yy\in Y such that Οˆβˆ’1​([Οˆβ€‹(y)]ES∞W)\psi^{-1}([\psi(y)]_{E^{W}_{S_{\infty}}}) is comeager in YY. Since ψ\psi is a reduction we have

Οˆβˆ’1​([Οˆβ€‹(y)]ES∞W)βŠ†[y]E.\psi^{-1}([\psi(y)]_{E^{W}_{S_{\infty}}})\subseteq[y]_{E}.

An application of [Kec95, Theorem 8.41] shows that EE is comeager and that is a contradiction. ∎

3 GG-bounded Topology

In this section we introduce the notion of GG-bounded topology. We show that this property is closed downwards in the Borel reducibility order and that essentially countable equivalence relation induced by group actions always admit such a topology. Our main result is that if a Polish GG-space admits a (finer) GG-bounded topology, then 𝔼0β„•{\mathbbm{E}}_{0}^{{\mathbbm{N}}} is not Borel reducible to EGXE^{X}_{G}. Results in this section hold for all Polish groups, except for CorollaryΒ 3.8.

Let Ο„\tau be a topology on a space XX and AβŠ†XA\subseteq X. We write AΒ―Ο„\overline{A}^{\tau} for the Ο„\tau-closure of AA in XX. If Ο„\tau is understood from the context, we omit the superscript.

Definition 3.1.

Let XX be a Polish GG-space and Ο„\tau be the underlying GG-Polish topology on XX. We say that Ο„\tau is GG-bounded if

  • β€’

    for every x∈Xx\in X there is an open neighborhood Ξ”\Delta of 1G1_{G} such that Ξ”β‹…xΒ―Ο„βŠ†[x]EGX\overline{\Delta\cdot x}^{\tau}\subseteq[x]_{E^{X}_{G}}.

Instead of saying that Ο„\tau is GG-bounded GG-Polish topology, we say simply bounded GG-Polish topology.

We mentioned in the introduction that if GG is a locally compact Polish group, then any GG-Polish topology on XX is GG-bounded. Similarly this holds when GG is a countable discrete group. Next we discuss the example with the Banach space β„“1\ell_{1} in a greater detail.

Example 3.2.

Let β„“1\ell_{1} be the Banach space of all absolutely summable real sequences and consider the canonical action β„“1↷ℝℕ\ell_{1}\curvearrowright{\mathbbm{R}}^{{\mathbbm{N}}} that is given by coordinate-wise summation. Then the product topology turns ℝℕ{\mathbbm{R}}^{{\mathbbm{N}}} into a Polish β„“1\ell_{1}-space. Let x,yβˆˆβ„β„•x,y\in{\mathbbm{R}}^{{\mathbbm{N}}} and (an)nβˆˆβ„•βŠ†β„“1(a_{n})_{n\in{\mathbbm{N}}}\subseteq\ell_{1} be such that β€–anβ€–1≀1\|a_{n}\|_{1}\leq 1 for every nβˆˆβ„•n\in{\mathbbm{N}} and anβ‹…xβ†’ya_{n}\cdot x\to y. Fix Nβˆˆβ„•N\in{\mathbbm{N}}, then we have

βˆ‘k=0N|x​(k)βˆ’y​(k)|β‰€βˆ‘k=0N|x​(k)+an​(k)βˆ’y​(k)|+βˆ‘k=0N|an​(k)|≀\sum_{k=0}^{N}|x(k)-y(k)|\leq\sum_{k=0}^{N}|x(k)+a_{n}(k)-y(k)|+\sum_{k=0}^{N}|a_{n}(k)|\leq
β‰€βˆ‘k=0N|x​(k)+an​(k)βˆ’y​(k)|+1β†’1\leq\sum_{k=0}^{N}|x(k)+a_{n}(k)-y(k)|+1\to 1

as Nβ†’βˆžN\to\infty. This shows that β€–xβˆ’yβ€–1≀1\|x-y\|_{1}\leq 1 and therefore we see that the product topology is β„“1\ell_{1}-bounded.

Next, we show that the existence of a GG-bounded topology is closed downwards in the Borel reducibility order. In the proof we use several technical but elementary results that are collected in AppendixΒ A

Theorem 3.3.

Let XX be a Polish GG-space and YY be a Polish HH-space such that EGXE^{X}_{G} is Borel, EHY≀BEGXE^{Y}_{H}\leq_{B}E^{X}_{G} and the Polish topology on XX is GG-bounded. Then there is a finer HH-Polish topology Ο„\tau on YY that is HH-bounded.

Proof.

Let Ο†:Yβ†’X\varphi:Y\to X be a Borel reduction from EHYE^{Y}_{H} to EGXE^{X}_{G}. It is easy to see that the assumptions of LemmaΒ A.2 and LemmaΒ A.3 are satisfied. Let Ο„\tau be the finer Polish topology on YY that is given by LemmaΒ A.3 and CβŠ†YC\subseteq Y be a Borel HH-lg comeager set that satisfies conclusions of both LemmaΒ A.2 and LemmaΒ A.3. We show that Ο„\tau works as required.

Let y∈Cy\in C and Ξ”\Delta be an open neighborhood of 1G1_{G} such that

Δ⋅φ​(y)Β―βŠ†[φ​(y)]EGX.\overline{\Delta\cdot\varphi(y)}\subseteq[\varphi(y)]_{E^{X}_{G}}.

LemmaΒ A.2 then gives an open neighborhood Ξ”β€²\Delta^{\prime} of 1H1_{H} such that

φ​(Cβˆ©Ξ”β€²β‹…y)βŠ†Ξ”β‹…Ο†β€‹(y).\varphi(C\cap\Delta^{\prime}\cdot y)\subseteq\Delta\cdot\varphi(y).

Let z∈Cβˆ©Ξ”β€²β‹…yΒ―Ο„βˆ©Cz\in\overline{C\cap\Delta^{\prime}\cdot y}^{\tau}\cap C. By the definition we find yn∈Cβˆ©Ξ”β€²β‹…yy_{n}\in C\cap\Delta^{\prime}\cdot y such that ynβ†’Ο„zy_{n}\to_{\tau}z. By LemmaΒ A.3 we have that φ​(yn)→φ​(z)\varphi(y_{n})\to\varphi(z) because z∈Cz\in C. Note that φ​(yn)βˆˆΞ”β‹…Ο†β€‹(y)\varphi(y_{n})\in\Delta\cdot\varphi(y). This gives that φ​(z)∈[φ​(y)]EGX\varphi(z)\in[\varphi(y)]_{E^{X}_{G}}. Since Ο†\varphi is a reduction we have (y,z)∈EHY(y,z)\in E^{Y}_{H}. We see that Ο„\tau and CC satisfies the assumption of LemmaΒ A.1 and therefore Ο„\tau is HH-bounded. ∎

Corollary 3.4.

Let XX be a Polish GG-space such that EGXE^{X}_{G} is essentially countable. Then there is a finer GG-Polish topology Ο„\tau on XX that is GG-bounded.

Recall that 𝔼0β„•{\mathbbm{E}}_{0}^{{\mathbbm{N}}} is the countable product of 𝔼0{\mathbbm{E}}_{0}. Since the latter is induced by the canonical continuous action 2<β„•β†·2β„•2^{<{\mathbbm{N}}}\curvearrowright 2^{{\mathbbm{N}}}, it is not hard to see that the former is induced by the canonical continuous action of (2<β„•)β„•β†·2β„•Γ—β„•(2^{<{\mathbbm{N}}})^{{\mathbbm{N}}}\curvearrowright 2^{{\mathbbm{N}}\times{\mathbbm{N}}}.

Theorem 3.5.

There is no finer bounded (2<β„•)β„•\left(2^{<{\mathbbm{N}}}\right)^{{\mathbbm{N}}}-Polish topology on 2β„•Γ—β„•2^{{\mathbbm{N}}\times{\mathbbm{N}}}.

Proof.

First we introduce an auxiliary notation. Set

Gk={α∈(2<β„•)β„•:βˆ€l<k​α​(l)=12<β„•}G_{k}=\left\{\alpha\in(2^{<{\mathbbm{N}}})^{{\mathbbm{N}}}:\forall l<k\ \alpha(l)=1_{2^{<{\mathbbm{N}}}}\right\}

for every kβˆˆβ„•k\in{\mathbbm{N}}. Then it is easy to see that (Hk)kβˆˆβ„•(H_{k})_{k\in{\mathbbm{N}}} is an open basis of 1(2<β„•)β„•1_{(2^{<{\mathbbm{N}}})^{{\mathbbm{N}}}} made of clopen subgroups.

Suppose that Ο„\tau is a finer bounded (2<β„•)β„•(2^{<{\mathbbm{N}}})^{{\mathbbm{N}}}-Polish topology on 2β„•Γ—β„•2^{{\mathbbm{N}}\times{\mathbbm{N}}}. Define

Dk={x∈2β„•Γ—β„•:Gkβ‹…xΒ―Ο„βŠ†[x]𝔼0β„•}.D_{k}=\left\{x\in 2^{{\mathbbm{N}}\times{\mathbbm{N}}}:\overline{G_{k}\cdot x}^{\tau}\subseteq[x]_{{\mathbbm{E}}_{0}^{{\mathbbm{N}}}}\right\}.

Note that (Dk)kβˆˆβ„•(D_{k})_{k\in{\mathbbm{N}}} is an increasing sequence and we have 2β„•Γ—β„•=⋃kβˆˆβ„•Dk2^{{\mathbbm{N}}\times{\mathbbm{N}}}=\bigcup_{k\in{\mathbbm{N}}}D_{k}.

Claim 3.6.

The set DkD_{k} is co-analytic for every kβˆˆβ„•k\in{\mathbbm{N}}.

Proof.

Fix an open basis (Ur)rβˆˆβ„•(U_{r})_{r\in{\mathbbm{N}}} of Ο„\tau. Then we have

x∈Dkβ‡”βˆ€Ξ±βˆˆGkβ€‹βˆ€y∈2ℕ×ℕ​((βˆƒrβˆˆβ„•β€‹y∈Urβˆ§Ξ±β‹…xβˆ‰Ur)∨(x,y)βˆˆπ”Ό0β„•).x\in D_{k}\ \Leftrightarrow\ \forall\alpha\in G_{k}\ \forall y\in 2^{{\mathbbm{N}}\times{\mathbbm{N}}}\left(\left(\exists r\in{\mathbbm{N}}\ y\in U_{r}\wedge\alpha\cdot x\not\in U_{r}\right)\vee(x,y)\in{\mathbbm{E}}_{0}^{{\mathbbm{N}}}\right).

The formula on the right-hand side is co-analytic because 𝔼0β„•{\mathbbm{E}}_{0}^{{\mathbbm{N}}} is a Borel relation. ∎

Using ClaimΒ 3.6 and [Kec95, PropositionΒ 8.26] we find kβˆˆβ„•k\in{\mathbbm{N}} and a basic open set OβŠ†2β„•Γ—β„•O\subseteq 2^{{\mathbbm{N}}\times{\mathbbm{N}}}, in the (canonical) product topology, such that DkD_{k} is comeager in OO. Note that since DkD_{k}’s are increasing we may assume that the first-coordinates of the indices that define OO are strictly less than kk.

It follows from [Kec95, TheoremΒ 8.38] that there is a Borel set Cβ€²βŠ†2β„•Γ—β„•C^{\prime}\subseteq 2^{{\mathbbm{N}}\times{\mathbbm{N}}} that is comeager in the product topology such that the product topology and Ο„\tau coincide on Cβ€²C^{\prime}. Define

C={x∈Cβ€²:βˆ€βˆ—Ξ±βˆˆ(2<β„•)ℕ​α⋅x∈Cβ€²}.C=\{x\in C^{\prime}:\forall^{*}\alpha\in(2^{<{\mathbbm{N}}})^{{\mathbbm{N}}}\ \alpha\cdot x\in C^{\prime}\}.

Then CC is a Borel set by [Kec95, TheoremΒ 16.1] and a routine use of [Kec95, TheoremΒ 8.41] shows that CC is comeager in the product topology. Then clearly CβŠ†Cβ€²C\subseteq C^{\prime} and therefore we have

C∩C∩Gkβ‹…xΒ―=C∩C∩Gkβ‹…xΒ―Ο„.C\cap\overline{C\cap G_{k}\cdot x}=C\cap\overline{C\cap G_{k}\cdot x}^{\tau}.

In fact, we have

C∩Gkβ‹…xΒ―=C∩Gkβ‹…xΒ―Ο„C\cap\overline{G_{k}\cdot x}=C\cap\overline{G_{k}\cdot x}^{\tau}

for every x∈Cx\in C because G​(x,C)G(x,C) is comeager, thus dense in GkG_{k} (see (I) in the proof of LemmaΒ A.1).

Consider the canonical identification between 2β„•Γ—β„•2^{{\mathbbm{N}}\times{\mathbbm{N}}} and 2kΓ—β„•Γ—2β„•Γ—β„•2^{k\times{\mathbbm{N}}}\times 2^{{\mathbbm{N}}\times{\mathbbm{N}}}. Another use of [Kec95, TheoremΒ 8.41] gives y∈2kΓ—β„•y\in 2^{k\times{\mathbbm{N}}} such that

Yk={y+∈2β„•Γ—β„•:(y,y+)∈O∩C∩Dk}Y_{k}=\{y^{+}\in 2^{{\mathbbm{N}}\times{\mathbbm{N}}}:(y,y^{+})\in O\cap C\cap D_{k}\}

is comeager in 2β„•Γ—β„•2^{{\mathbbm{N}}\times{\mathbbm{N}}} with respect to the product topology. Pick y0+∈Yky^{+}_{0}\in Y_{k} and note that the set

{y+∈2β„•Γ—β„•:((y,y0+),(y,y+))βˆˆπ”Ό0β„•}\{y^{+}\in 2^{{\mathbbm{N}}\times{\mathbbm{N}}}:((y,y^{+}_{0}),(y,y^{+}))\in{\mathbbm{E}}_{0}^{{\mathbbm{N}}}\}

is meager. Therefore there is y1+∈Yky^{+}_{1}\in Y_{k} such that ((y,y0+),(y,y1+))βˆ‰π”Ό0β„•((y,y^{+}_{0}),(y,y^{+}_{1}))\not\in{\mathbbm{E}}_{0}^{{\mathbbm{N}}}. However, we have

(y,y1+)∈C∩Gkβ‹…(y,y0+)Β―=C∩Gkβ‹…(y,y0+)Β―Ο„(y,y^{+}_{1})\in C\cap\overline{G_{k}\cdot(y,y^{+}_{0})}=C\cap\overline{G_{k}\cdot(y,y^{+}_{0})}^{\tau}

and that is a contradiction. ∎

Corollary 3.7.

Let XX be a Polish GG-space such that EGXE^{X}_{G} is Borel. Suppose that XX admits a bounded GG-Polish topology Ο„\tau. Then 𝔼0β„•β‰°BEGX{\mathbbm{E}}_{0}^{{\mathbbm{N}}}\not\leq_{B}E^{X}_{G}.

Proof.

If 𝔼0ℕ≀BEGX{\mathbbm{E}}_{0}^{{\mathbbm{N}}}\leq_{B}E^{X}_{G}, then 2β„•Γ—β„•2^{{\mathbbm{N}}\times{\mathbbm{N}}} admits a finer bounded (2<β„•)β„•(2^{<{\mathbbm{N}}})^{{\mathbbm{N}}}-Polish topology by TheoremΒ 3.3. That contradicts TheoremΒ 3.5. ∎

Hjorth and Kechris have shown that if GG is a non-archimedean333A topological group is non-archimedean if it admits a base at the identity made of clopen subgroups. tsi Polish group, XX is a Polish GG-space such that EGXE^{X}_{G} is a Borel equivalence relation, then either EGXE^{X}_{G} is essentially countable or 𝔼0ℕ≀BEGX{\mathbbm{E}}_{0}^{{\mathbbm{N}}}\leq_{B}E^{X}_{G} , seeΒ [HK01, TheoremΒ 8.1]. This gives immediately.

Corollary 3.8.

Let GG be a tsi non-archimedean Polish group and XX be a Polish GG-space such that EGXE^{X}_{G} is Borel. Then the following are equivalent:

  • β€’

    EGXE^{X}_{G} is essentially countable,

  • β€’

    there is a finer bounded GG-Polish topology on XX,

  • β€’

    𝔼0β„•β‰°BEGX{\mathbbm{E}}_{0}^{{\mathbbm{N}}}\not\leq_{B}E^{X}_{G}.

4 Property (IC)

We define a combinatorial property that characterizes classification by countable structures for equivalence relations induced by actions of tsi Polish groups, this is proved later in SectionΒ 5. Similar property was considered, e.g., in [Kan08, ChapterΒ 15.2] under the name β€œGrainy sets”. This property, as well as classification by countable structures, does not depend on the underlying Polish topology on the space XX, i.e., it depends only on the Borel Οƒ\sigma-algebra. We note that every action of non-archimedean Polish group trivially satisfies this property.

Recall that the dihypergraphs β„‹k,m\mathcal{H}_{k,m} are defined in DefinitionΒ 2.4.

Definition 4.1 (Property (IC)).

Let XX be a Polish GG-space and BβŠ†XB\subseteq X be a GG-invariant Borel set. We say that BB satisfies Property (IC) if there is a sequence of Borel sets (Ak,l)k,lβˆˆβ„•(A_{k,l})_{k,l\in{\mathbbm{N}}} such that

  • β€’

    for every k,lβˆˆβ„•k,l\in{\mathbbm{N}} there is m​(k,l)βˆˆβ„•m(k,l)\in{\mathbbm{N}} such that Ak,lA_{k,l} is β„‹k,m​(k,l)\mathcal{H}_{k,m(k,l)}-independent,

  • β€’

    B=⋃lβˆˆβ„•Ak,lB=\bigcup_{l\in{\mathbbm{N}}}A_{k,l} for every kβˆˆβ„•k\in{\mathbbm{N}}.

We say that the Polish GG-space XX or the equivalence relation EGXE^{X}_{G} satisfy Property (IC) if XX satisfies property (IC).

We start by showing that Property (IC) is orthogonal to turbulence for actions of any Polish group.

Theorem 4.2.

Let XX be a Polish GG-space that satisfies Property (IC). Then the action is not turbulent.

Proof.

Suppose that the action is turbulent. Let DβŠ†XD\subseteq X be a Borel comeager set such that Ak,l∩DA_{k,l}\cap D is relatively open in DD for every k,lβˆˆβ„•k,l\in{\mathbbm{N}}. This can be done using [Kec95, PropositionΒ 8.26]. It follows from [Kec95, TheoremΒ 16.1] and [Kec95, TheoremΒ 8.41] that

Dβ€²={x∈D:βˆ€βˆ—g∈G​gβ‹…x∈D}D^{\prime}=\{x\in D:\forall^{*}g\in G\ g\cdot x\in D\}

is a Borel comeager subset of XX.

Pick x∈Dβ€²x\in D^{\prime}. Note that G​(x,Dβ€²)G(x,D^{\prime}) is comeager in GG. We show that Gβ‹…x=[x]EGXG\cdot x=[x]_{E^{X}_{G}} is nonmeager. Suppose that Gβ‹…xG\cdot x is meager. Then there are closed nowhere dense sets (Fr)rβˆˆβ„•(F_{r})_{r\in{\mathbbm{N}}} such that Gβ‹…xβŠ†β‹ƒrβˆˆβ„•FrG\cdot x\subseteq\bigcup_{r\in{\mathbbm{N}}}F_{r}. Note that G​(x,Fr)G(x,F_{r}) is closed for every rβˆˆβ„•r\in{\mathbbm{N}} and G=⋃rβˆˆβ„•G​(x,Fr)G=\bigcup_{r\in{\mathbbm{N}}}G(x,F_{r}). By [Kec95, PropositionΒ 8.26] there is an index rβˆˆβ„•r\in{\mathbbm{N}} such that G​(x,Fr)G(x,F_{r}) contains an open set. This implies that there is g∈Gg\in G and kβˆˆβ„•k\in{\mathbbm{N}} such that Ξ”kβ‹…gβŠ†G​(x,Fr)\Delta_{k}\cdot g\subseteq G(x,F_{r}) and y=gβ‹…x∈Dβ€²y=g\cdot x\in D^{\prime}. Let lβˆˆβ„•l\in{\mathbbm{N}} such that y∈Ak,ly\in A_{k,l}. Note that

Ξ”kβ‹…yΒ―=Ξ”kβ‹…gβ‹…xΒ―βŠ†Fr\overline{\Delta_{k}\cdot y}=\overline{\Delta_{k}\cdot g\cdot x}\subseteq F_{r}

because FrF_{r} is closed.

Use the definition of DD to find an open set UU such that U∩Dβ€²=Ak,l∩Dβ€²U\cap D^{\prime}=A_{k,l}\cap D^{\prime}. Consider the local orbit π’ͺ​(y,U,Ξ”m​(k,l))\mathcal{O}(y,U,\Delta_{m(k,l)}) and pick z∈π’ͺ​(y,U,Ξ”m​(k,l))z\in\mathcal{O}(y,U,\Delta_{m(k,l)}). By the definition, there is w∈U<β„•w\in U^{<{\mathbbm{N}}} such that w0=yw_{0}=y, w|w|βˆ’1=zw_{|w|-1}=z and (wi,wi+1)∈RΞ”m​(k,l)X(w_{i},w_{i+1})\in R^{X}_{\Delta_{m(k,l)}} for every i<|z|βˆ’1i<|z|-1. Let PβŠ†XP\subseteq X be an open neighborhood of zz. Note that G​(y,U)G(y,U), G​(y,P)G(y,P) are open and G​(y,Dβ€²)G(y,D^{\prime}) is comeager, in particular, dense in G​(y,U)G(y,U). Therefore we can find a sequence wβ€²βˆˆU<β„•w^{\prime}\in U^{<{\mathbbm{N}}} such that |w|=|wβ€²||w|=|w^{\prime}|, w0β€²=yw^{\prime}_{0}=y, wiβ€²βˆˆU∩Dβ€²w^{\prime}_{i}\in U\cap D^{\prime} for every i<|wβ€²|i<|w^{\prime}|, (wiβ€²,wi+1β€²)∈RΞ”m​(k,l)X(w^{\prime}_{i},w^{\prime}_{i+1})\in R^{X}_{\Delta_{m(k,l)}} for every i<|wβ€²|βˆ’1i<|w^{\prime}|-1 and w|wβ€²|βˆ’1β€²βˆˆPw^{\prime}_{|w^{\prime}|-1}\in P. Note that we have

wiβ€²βˆˆU∩Dβ€²=Ak,l∩Dβ€²βŠ†Ak,lw^{\prime}_{i}\in U\cap D^{\prime}=A_{k,l}\cap D^{\prime}\subseteq A_{k,l}

for every i<|wβ€²|i<|w^{\prime}|. The set Ak,lA_{k,l} is β„‹k,m​(k,l)\mathcal{H}_{k,m(k,l)}-independent and therefore (y,w|wβ€²|βˆ’1β€²)∈RΞ”kX(y,w^{\prime}_{|w^{\prime}|-1})\in R^{X}_{\Delta_{k}}. This implies that Ξ”kβ‹…y∩Pβ‰ βˆ…\Delta_{k}\cdot y\cap P\not=\emptyset and consequently that

π’ͺ​(y,U,Ξ”m​(k,l))βŠ†Ξ”kβ‹…yΒ―.\mathcal{O}(y,U,\Delta_{m(k,l)})\subseteq\overline{\Delta_{k}\cdot y}.

Therefore FrF_{r} contains an open set by the assumption that the action is turbulent, i.e., π’ͺ​(y,U,Ξ”m​(k,l))\mathcal{O}(y,U,\Delta_{m(k,l)}) is somewhere dense. This shows that [x]EGX[x]_{E^{X}_{G}} is nonmeager and that contradicts the definition of turbulence. ∎

We conclude this section by stating that Property (IC) is a stronger condition than classification by countable structures for tsi Polish groups.

Theorem 4.3.

Let GG be a tsi Polish group and XX be a Polish GG-space such that EGXE^{X}_{G} is Borel. Suppose that EGXE^{X}_{G} satisfies Property (IC). Then EGXE^{X}_{G} is classifiable by countable structures.

Proof.

An elementary proof of this statement follows from [Gre19, DefinitionΒ 3.3.6,Β PropositionΒ 3.3.7,Β TheoremΒ 3.3.8].

Alternative approach that does not need the assumption that EGXE^{X}_{G} is Borel is to appeal to [Kec02, Theorem 13.18] and Theorem 4.2. ∎

5 Proof of TheoremΒ 1.2

We show that Property (IC) together with the existence of bounded GG-Polish topology implies that the equivalence relation is essentially countable. Note that it follows from CorollaryΒ 3.4 that if a Borel equivalence relation induced by an action of Polish group is essentially countable, then it admits a bounded GG-Polish topology. The following is a formal formulation of TheoremΒ 1.2 for tsi Polish groups.

Theorem 5.1.

Let GG be a tsi Polish group XX be a Polish GG-space such that EGXE^{X}_{G} is Borel. Then the following are equivalent:

  • (A)

    EGXE^{X}_{G} satisfies Property (IC) and there is a finer bounded GG-Polish topology on XX,

  • (B)

    EGXE^{X}_{G} is essentially countable.

Moreover, (A) implies (B) for any Polish group GG.

The strategy for showing (A) implies (B) is as follows. By the assumptions we fix a bounded GG-Polish topology Ο„\tau and a sequence (Ak,l)k,lβˆˆβ„•(A_{k,l})_{k,l\in{\mathbbm{N}}} of Borel β„‹k,(m​(k,l))\mathcal{H}_{k,(m(k,l))}-independent sets. We define an equivalence relation Fk,lF_{k,l} on Ak,lA_{k,l} as

(x,y)∈Fk,lβ‡”βˆƒz∈π’₯(Ξ”m​(k,l))∩(Ak,l)<β„•z0=x,z|z|βˆ’1=y(x,y)\in F_{k,l}\ \Leftrightarrow\ \exists z\in\mathcal{J}(\Delta_{m(k,l)})\cap(A_{k,l})^{<{\mathbbm{N}}}\ z_{0}=x,\ z_{|z|-1}=y

for every x,y∈Ak,lx,y\in A_{k,l} and k,lβˆˆβ„•k,l\in{\mathbbm{N}}. Note that if x∈Ak,lx\in A_{k,l}, then [x]Fk,lβŠ†Ξ”kβ‹…x[x]_{F_{k,l}}\subseteq\Delta_{k}\cdot x.

Since Ο„\tau is GG-bounded we find for each x∈Xx\in X natural numbers k,lβˆˆβ„•k,l\in{\mathbbm{N}} such that [x]Fk,lΒ―Ο„βŠ†[x]EGX\overline{[x]_{F_{k,l}}}^{\tau}\subseteq[x]_{E^{X}_{G}}. By [Kec95, TheoremΒ 12.13] there is a Borel selector SS that picks from every nonempty Ο„\tau-closed set one of its elements. We define

x↦[x]Fk,l¯τ↦S​([x]Fk,lΒ―Ο„)∈[x]EGX.x\mapsto\overline{[x]_{F_{k,l}}}^{\tau}\mapsto S\left(\overline{[x]_{F_{k,l}}}^{\tau}\right)\in[x]_{E^{X}_{G}}.

The idea is to show that this is a Borel map with range that is a countable complete section. This can be done once we pass from XX to a suitable Borel GG-lg comeager set CC. Formal proof follows.

Proof of TheoremΒ 5.1 and TheoremΒ 1.2.

We start with (B) β‡’\Rightarrow (A). We mentioned above that by CorollaryΒ 3.4 we have that (B) implies the existence of a bounded GG-Polish topology for every Polish group GG. To show that (B) implies Property (IC), we need to assume that GG is tsi. In that case, we either use TheoremΒ 6.1, or exploit the fact that essential countability is equivalent to Οƒ\sigma-lacunarity [Gre20] together with LemmaΒ A.6.

Next, we formalize the ideas for (A) β‡’\Rightarrow (B) that are sketched before the proof. We fix a bounded GG-Polish topology Ο„\tau and a sequence (Ak,l)lβˆˆβ„•(A_{k,l})_{l\in{\mathbbm{N}}} of β„‹k,m​(k,l)\mathcal{H}_{k,m(k,l)}-independent Borel sets. We may assume that (Ak,l)lβˆˆβ„•(A_{k,l})_{l\in{\mathbbm{N}}} are pairwise disjoint for every kβˆˆβ„•k\in{\mathbbm{N}}. We denote as x​(k)x(k) the unique lβˆˆβ„•l\in{\mathbbm{N}} such that x∈Ak,lx\in A_{k,l}, i.e., x∈Ak,x​(k)x\in A_{k,x(k)} for every kβˆˆβ„•k\in{\mathbbm{N}}. Let SS be a Borel selector that assigns to a non-empty Ο„\tau-closed subset KβŠ†XK\subseteq X its element, i.e., a Borel map K↦S​(K)∈KK\mapsto S(K)\in K from the standard Borel space of Ο„\tau-closed non-empty subsets to XX, seeΒ [Kec95, TheoremΒ 12.13]. The proof consists of five steps.

(I). Fix kβˆˆβ„•k\in{\mathbbm{N}} and use LemmaΒ A.5 for the sequence (Ak,l)lβˆˆβ„•(A_{k,l})_{l\in{\mathbbm{N}}} to get a Borel GG-lg comeager set CkC_{k}. Define C=β‹‚kβˆˆβ„•CkC=\bigcap_{k\in{\mathbbm{N}}}C_{k}. Then we have that CC is a Borel GG-lg comeager set and for every kβˆˆβ„•k\in{\mathbbm{N}} and x∈C∩Ak,x​(k)x\in C\cap A_{k,x(k)} there is an open neighborhood Ξ”\Delta of 1G1_{G} such that

Cβˆ©Ξ”β‹…xβŠ†Ckβˆ©Ξ”β‹…xβŠ†Ak,x​(k)C\cap\Delta\cdot x\subseteq C_{k}\cap\Delta\cdot x\subseteq A_{k,x(k)}

by LemmaΒ A.5.

(II). Let k,lβˆˆβ„•k,l\in{\mathbbm{N}}. Define the equivalence relation Fk,lF_{k,l} on C∩Ak,lC\cap A_{k,l} as

(x,y)∈Fk,lβ‡”βˆƒz∈π’₯(Ξ”m​(k,l))∩(C∩Ak,l)<β„•z0=x,z|z|βˆ’1=y(x,y)\in F_{k,l}\ \Leftrightarrow\ \exists z\in\mathcal{J}(\Delta_{m(k,l)})\cap(C\cap A_{k,l})^{<{\mathbbm{N}}}\ z_{0}=x,\ z_{|z|-1}=y

for every x,y∈C∩Ak,lx,y\in C\cap A_{k,l}. We show that Fk,lF_{k,l} is Borel and that every EGXE^{X}_{G}-class contains at most countably many Fk,lF_{k,l}-classes.

Let x∈Xx\in X and y∈[x]EGX∩C∩Ak,ly\in[x]_{E^{X}_{G}}\cap C\cap A_{k,l}. Then G​(x,[y]Fk,l)G(x,[y]_{F_{k,l}}) is relatively open in G​(x,C)G(x,C) by the properties of CC from (I). This shows that each EGXE^{X}_{G}-class contains at most countably many Fk,lF_{k,l}-classes because G​(x,C)G(x,C) is a separable space.

Set R0R^{0} for the restriction of the relation RΞ”k,lXR^{X}_{\Delta_{k,l}} to C∩Ak,lC\cap A_{k,l}. It follows from [BK96, TheoremΒ 7.1.2] and the assumption that EGXE^{X}_{G} is Borel that Rk,lR_{k,l} is Borel. Inductively on iβˆˆβ„•i\in{\mathbbm{N}} define relations RiR^{i} on C∩Ak,lC\cap A_{k,l} as

(x,y)∈Ri+1β‡”βˆƒβˆ—g∈G​(x,gβ‹…x)∈Ri∧(gβ‹…x,y)∈RΞ”m​(k,l)X.(x,y)\in R^{i+1}\ \Leftrightarrow\ \exists^{*}g\in G\ (x,g\cdot x)\in R^{i}\ \wedge\ (g\cdot x,y)\in R^{X}_{\Delta_{m(k,l)}}.

It follows inductively from [Kec95, TheoremΒ 16.1] that R=⋃iβˆˆβ„•RiR=\bigcup_{i\in{\mathbbm{N}}}R^{i} is a Borel subset of C∩Ak,lΓ—C∩Ak,lC\cap A_{k,l}\times C\cap A_{k,l}.

We show that Fk,l=RF_{k,l}=R. It is easy to see that RβŠ†Fk,lR\subseteq F_{k,l}.

Claim 5.2.

Suppose that (x,y)∈Ri(x,y)\in R^{i}. Then there is an open neighborhood Ξ”\Delta of 1G1_{G} (that depends on x,yx,y and ii) such that (x,hβ‹…y)∈Ri(x,h\cdot y)\in R^{i} for every hβˆˆΞ”h\in\Delta such that hβ‹…y∈Ch\cdot y\in C.

Proof.

Let i=0i=0 and pick (x,y)∈R0(x,y)\in R^{0}. There is gβˆˆΞ”m​(k,l)g\in\Delta_{m(k,l)} such that y=gβ‹…xy=g\cdot x. Use (I) to find Ξ”\Delta such that Ξ”β‹…gβŠ†Ξ”m​(k,l)\Delta\cdot g\subseteq\Delta_{m(k,l)} and Cβˆ©Ξ”β‹…yβŠ†Ak,lC\cap\Delta\cdot y\subseteq A_{k,l}. Then for every hβˆˆΞ”h\in\Delta such that hβ‹…y∈Ch\cdot y\in C we have hβ‹…y∈Ak,lh\cdot y\in A_{k,l} and since hβ‹…gβˆˆΞ”m​(k,l)h\cdot g\in\Delta_{m(k,l)} we conclude that (x,hβ‹…y)∈R0(x,h\cdot y)\in R^{0}.

Let (x,y)∈Ri+1(x,y)\in R^{i+1} and z∈Ak,lz\in A_{k,l} be such that (x,z)∈Ri(x,z)\in R^{i} and yβˆˆΞ”m​(k,l)β‹…zy\in\Delta_{m(k,l)}\cdot z. By the inductive hypothesis there is Ξ”β€²\Delta^{\prime} an open neighborhood of 1G1_{G} such that (x,hβ‹…z)∈Ri(x,h\cdot z)\in R^{i} whenever hβ‹…z∈Ch\cdot z\in C. Write y=g0β‹…zy=g_{0}\cdot z where g0βˆˆΞ”m​(k,l)g_{0}\in\Delta_{m(k,l)}. Using (I) we find an open neighborhood Ξ”\Delta of 1G1_{G} such that Ξ”β‹…g0βŠ†Ξ”m​(k,l)\Delta\cdot g_{0}\subseteq\Delta_{m(k,l)} and Cβˆ©Ξ”β‹…yβŠ†Ak,lC\cap\Delta\cdot y\subseteq A_{k,l}. We claim that Ξ”\Delta works as required. Let hβˆˆΞ”h\in\Delta such that hβ‹…y∈Ch\cdot y\in C. Note that

Ph={aβˆˆΞ”β€²:hβ‹…g0β‹…aβˆ’1βˆˆΞ”m​(k,l)}P_{h}=\{a\in\Delta^{\prime}:h\cdot g_{0}\cdot a^{-1}\in\Delta_{m(k,l)}\}

is an open neighborhood of 1G1_{G}. Let a∈Pha\in P_{h} be such that aβ‹…z∈Ca\cdot z\in C, note that there are nonmeager many such a∈Pha\in P_{h} because G​(z,C)G(z,C) is comeager in PP. Then we have (x,aβ‹…z)∈Ri(x,a\cdot z)\in R^{i} and

hβ‹…y=hβ‹…g0β‹…z=hβ‹…g0β‹…aβˆ’1β‹…(aβ‹…z)βˆˆΞ”m​(k,l)β‹…(aβ‹…z).h\cdot y=h\cdot g_{0}\cdot z=h\cdot g_{0}\cdot a^{-1}\cdot(a\cdot z)\in\Delta_{m(k,l)}\cdot(a\cdot z).

This shows that (x,hβ‹…y)∈Ri+1(x,h\cdot y)\in R^{i+1} and the claim follows. ∎

Suppose that Fk,lβˆ–Rβ‰ βˆ…F_{k,l}\setminus R\not=\emptyset and pick (x,y)∈Fk,lβˆ–R(x,y)\in F_{k,l}\setminus R such that the witness z∈(C∩Ak,l)<β„•z\in(C\cap A_{k,l})^{<{\mathbbm{N}}} from the definition of Fk,lF_{k,l} has minimal length. It follows that |z|>2|z|>2 and (x,z|z|βˆ’2)∈Ri(x,z_{|z|-2})\in R^{i} for some iβˆˆβ„•i\in{\mathbbm{N}}. Use ClaimΒ 5.2 to find an open neighborhood Ξ”\Delta of 1G1_{G} that satisfies (x,hβ‹…z|z|βˆ’2)∈Ri(x,h\cdot z_{|z|-2})\in R^{i} for every hβˆˆΞ”h\in\Delta such that hβ‹…z|z|βˆ’2∈Ch\cdot z_{|z|-2}\in C. Let aβˆˆΞ”m​(k,l)a\in\Delta_{m(k,l)} be such that y=aβ‹…z|z|βˆ’2y=a\cdot z_{|z|-2}. The set

P={hβˆˆΞ”:aβ‹…hβˆ’1βˆˆΞ”m​(k,l)}P=\{h\in\Delta:a\cdot h^{-1}\in\Delta_{m(k,l)}\}

is an open neighborhood of 1G1_{G}. Then we have

y=aβ‹…z|z|βˆ’2=aβ‹…hβˆ’1β‹…(hβ‹…z|z|βˆ’2)βˆˆΞ”m​(k,l)β‹…(hβ‹…z|z|βˆ’2)y=a\cdot z_{|z|-2}=a\cdot h^{-1}\cdot(h\cdot z_{|z|-2})\in\Delta_{m(k,l)}\cdot(h\cdot z_{|z|-2})

for every h∈Ph\in P. Note that G​(z|z|βˆ’2,C)G(z_{|z|-2},C) is comeager in PP and that shows that (x,y)∈Ri+1(x,y)\in R^{i+1}, a contradiction.

(III). Fix kβˆˆβ„•k\in{\mathbbm{N}} and define

Kk​(x)=[x]Fk,x​(k)Β―Ο„K_{k}(x)=\overline{[x]_{F_{k,x(k)}}}^{\tau}

for every x∈Cx\in C. Let UβŠ†XU\subseteq X be a Ο„\tau-open set. Then we have

U∩Kk​(x)β‰ βˆ…β‡”βˆƒg∈G​gβ‹…x∈[x]Fk,x​(k)∩Uβ‡”βˆƒβˆ—g∈G​gβ‹…x∈[x]Fk,x​(k)∩UU\cap K_{k}(x)\not=\emptyset\ \Leftrightarrow\ \exists g\in G\ g\cdot x\in[x]_{F_{k,x(k)}}\cap U\ \Leftrightarrow\ \exists^{*}g\in G\ g\cdot x\in[x]_{F_{k,x(k)}}\cap U

where the last equivalence follows from properties of CC from (I). Combination of (II) and [Kec95, TheoremΒ 16.1] implies that KkK_{k} is a Borel map, seeΒ [Kec95, SectionΒ 12].

(IV). Put Sk=S∘Kk:Xβ†’XS_{k}=S\circ K_{k}:X\to X. Then SkS_{k} is a Borel map for every kβˆˆβ„•k\in{\mathbbm{N}} by (III). Define

Dk={(x,Sk​(x)):x∈C}∩EGXβŠ†XΓ—X.D_{k}=\{(x,S_{k}(x)):x\in C\}\cap E^{X}_{G}\subseteq X\times X.

It is easy to see that DkD_{k} is a Borel set. We show that p2​(Dk)p_{2}(D_{k}), the projection to the second coordinate, is a Borel countable section of EGXE^{X}_{G}.

First observe that for x∈Cx\in C we have (x,Sk​(x))∈Dk(x,S_{k}(x))\in D_{k} if and only if (y,Sk​(y))∈Dk(y,S_{k}(y))\in D_{k} for every y∈[x]Fk,x​(k)y\in[x]_{F_{k,x(k)}} and S​(x)=S​(y)∈[x]EGXS(x)=S(y)\in[x]_{E^{X}_{G}}. It follows from (II) that there are at most countable many Fk,lF_{k,l}-classes within each EGXE^{X}_{G}-class and therefore p2​(Dk)p_{2}(D_{k}) is a countable section of EGXE^{X}_{G}. To see that p2​(Dk)p_{2}(D_{k}) is Borel note that by the properties of CC from (I) and the definition of SkS_{k} and DkD_{k} we have

z∈p2​(Dk)β‡”βˆƒg∈G​gβ‹…z∈p1​(Dk)β‡”βˆƒβˆ—g∈G​gβ‹…z∈p1​(Dk)z\in p_{2}(D_{k})\ \Leftrightarrow\ \exists g\in G\ g\cdot z\in p_{1}(D_{k})\ \Leftrightarrow\ \exists^{*}g\in G\ g\cdot z\in p_{1}(D_{k})

where p1​(Dk)p_{1}(D_{k}) is the projection to the first coordinate. Since p1​(Dk)p_{1}(D_{k}) is Borel we have that p2​(Dk)p_{2}(D_{k}) is Borel by [Kec95, TheoremΒ 16.1].

(V). Finally, we need to show that ⋃kβˆˆβ„•p2​(Dk)\bigcup_{k\in{\mathbbm{N}}}p_{2}(D_{k}) is a complete section. Let x∈Cx\in C. It follows from the definition of Property (IC) and Ο„\tau that there is kβˆˆβ„•k\in{\mathbbm{N}} such that

[x]Fk,x​(k)Β―Ο„βŠ†Ξ”kβ‹…xΒ―Ο„βŠ†[x]EGX.\overline{[x]_{F_{k,x(k)}}}^{\tau}\subseteq\overline{\Delta_{k}\cdot x}^{\tau}\subseteq[x]_{E^{X}_{G}}.

Then we have Sk​(x)∈[x]EGXS_{k}(x)\in[x]_{E^{X}_{G}} and consequently (x,Sk​(x))∈Dk(x,S_{k}(x))\in D_{k}. This shows that p2​(Dk)∩[x]EGXβ‰ βˆ…p_{2}(D_{k})\cap[x]_{E^{X}_{G}}\not=\emptyset. ∎

6 Proof of TheoremΒ 1.3

In this section we show that classification by countable structures is equivalent to Property (IC) for Borel equivalence relations induced by actions of tsi Polish groups. In the proof we use the dihypergraph variant of 𝔾0{\mathbbm{G}}_{0}-dichotomy TheoremΒ 2.8. Namely, we show that (1.) implies Property (IC), and that the continuous map from (2.) can be refined to a reduction from an equivalence relation from 𝔅\mathfrak{B}, see SectionΒ 2.7. The technical results that we need are collected in AppendixΒ A and AppendixΒ B. The following statement is a formal reformulation of TheoremΒ 1.3.

Theorem 6.1.

Let GG be a tsi Polish group and XX be a Polish GG-space such that EGXE^{X}_{G} is Borel. Then the following are equivalent:

  1. 1.

    EGXE^{X}_{G} satisfies Property (IC),

  2. 2.

    EGXE^{X}_{G} is classifiable by countable strutures.

Moreover, the conditions are not satisfied if and only if there is Eβˆˆπ”…E\in\mathfrak{B} such that E≀BEGXE\leq_{B}E^{X}_{G}.

Proof of TheoremΒ 1.3 and of TheoremΒ 6.1.

It follows from TheoremΒ 4.3 that (1) implies (2). Moreover, by TheoremΒ 2.13 we have that the latter condition implies the former in the additional part of the statement. Altogether, it is enough to show that if EGXE^{X}_{G} does not satisfy Property (IC), then there is Eβˆˆπ”…E\in\mathfrak{B} such that E≀BEGXE\leq_{B}E^{X}_{G}.

Fix kβˆˆβ„•k\in{\mathbbm{N}} and consider the dihypergraphs (β„‹k,m)mβˆˆβ„•(\mathcal{H}_{k,m})_{m\in{\mathbbm{N}}}. Note that β„‹k,m+1βŠ†β„‹k,m\mathcal{H}_{k,m+1}\subseteq\mathcal{H}_{k,m} for every mβˆˆβ„•m\in{\mathbbm{N}}. Then exactly one alternative in TheoremΒ 2.8 holds. Suppose that the first one is satisfied for every kβˆˆβ„•k\in{\mathbbm{N}}. Then it follows directly from the definition that EGXE^{X}_{G} satisfies Property (IC). Since we assume that this is not the case, there must be kβˆˆβ„•k\in{\mathbbm{N}}, a finitely uniformly branching tree Tβ€²T^{\prime}, a dense sequence (smβ€²)mβˆˆβ„•βŠ†Tβ€²(s^{\prime}_{m})_{m\in{\mathbbm{N}}}\subseteq T^{\prime} such that |smβ€²|=m|s^{\prime}_{m}|=m and a continuous homomorphism Ο†:[Tβ€²]β†’X\varphi:[T^{\prime}]\to X from (𝔾smβ€²Tβ€²)mβˆˆβ„•({\mathbbm{G}}^{T^{\prime}}_{s^{\prime}_{m}})_{m\in{\mathbbm{N}}} to (β„‹k,m)mβˆˆβ„•(\mathcal{H}_{k,m})_{m\in{\mathbbm{N}}}.

Next, we refine Ο†\varphi to find Eβˆˆπ”…E\in\mathfrak{B}. The following is the main technical result, the proof can be found in AppendixΒ B, see also SectionΒ 2.6 for corresponding definitions. We note that it uses crucially that GG is tsi.

Lemma 6.2.

There is a finitely uniformly branching tree TT, a dense sequence (sm)mβˆˆβ„•βŠ†T(s_{m})_{m\in{\mathbbm{N}}}\subseteq T such that |sm|=m|s_{m}|=m for every mβˆˆβ„•m\in{\mathbbm{N}} and a continuous homomorphism Ο•:[T]β†’X\phi:[T]\to X from (𝔾smT)mβˆˆβ„•({\mathbbm{G}}^{T}_{s_{m}})_{m\in{\mathbbm{N}}} to (β„‹k,m)mβˆˆβ„•(\mathcal{H}_{k,m})_{m\in{\mathbbm{N}}} such that 𝐝ϕ{\bf d}_{\phi}, defined as in PropositionΒ 2.10, is a uniform Borel pseudometric. Moreover, Ο•=Ο†βˆ˜ΞΆ\phi=\varphi\circ\zeta where ΞΆ:[T]β†’[Tβ€²]\zeta:[T]\to[T^{\prime}] is a continuous map.

The rest of the proof consists of four steps.

(I). Let mβˆˆβ„•m\in{\mathbbm{N}}, s,t∈Ts,t\in T such that m=|s|=|t|m=|s|=|t|, i,j<lmTi,j<l^{T}_{m} and x,y∈[TsβŒ’β€‹(i)]=[TsβŒ’β€‹(j)]x,y\in[T_{s^{\frown}(i)}]=[T_{s^{\frown}(j)}]. Then

|𝐝ϕ(s⌒(i)⌒x,s⌒(j)⌒x)βˆ’πΟ•(t⌒(i)⌒y,t⌒(j)⌒y|<12mβˆ’1.|{\bf d}_{\phi}(s^{\frown}(i)^{\frown}x,s^{\frown}(j)^{\frown}x)-{\bf d}_{\phi}(t^{\frown}(i)^{\frown}y,t^{\frown}(j)^{\frown}y|<\frac{1}{2^{m-1}}. (*)

We use that 𝐝ϕ{\bf d}_{\phi} is uniform. Namely, we have

|𝐝ϕ(s⌒((i)⌒y),s⌒((j)⌒y))βˆ’πΟ•(t⌒((i)⌒y),t⌒((j)⌒y)|<12m|{\bf d}_{\phi}(s^{\frown}((i)^{\frown}y),s^{\frown}((j)^{\frown}y))-{\bf d}_{\phi}(t^{\frown}((i)^{\frown}y),t^{\frown}((j)^{\frown}y)|<\frac{1}{2^{m}}
|𝐝ϕ((s⌒(i))⌒x,(s⌒(j))⌒x)βˆ’πΟ•((s⌒(i))⌒y,(s⌒(j))⌒y|<12m+1|{\bf d}_{\phi}((s^{\frown}(i))^{\frown}x,(s^{\frown}(j))^{\frown}x)-{\bf d}_{\phi}((s^{\frown}(i))^{\frown}y,(s^{\frown}(j))^{\frown}y|<\frac{1}{2^{m+1}}

and that gives the estimate by the triangle inequality.

In particular, we have

𝔼0TβŠ†F𝐝ϕ=(Ο•βˆ’1Γ—Ο•βˆ’1)​(EGX){\mathbbm{E}}^{T}_{0}\subseteq F_{{\bf d}_{\phi}}=(\phi^{-1}\times\phi^{-1})(E^{X}_{G})

because Ο•\phi is a homomorphism from (𝔾smT)mβˆˆβ„•({\mathbbm{G}}^{T}_{s_{m}})_{m\in{\mathbbm{N}}} to (β„‹k,m)mβˆˆβ„•(\mathcal{H}_{k,m})_{m\in{\mathbbm{N}}} and |sm|=m|s_{m}|=m for every mβˆˆβ„•m\in{\mathbbm{N}}.

(II). The Borel equivalence relation F𝐝ϕF_{{\bf d}_{\phi}} is meager in [T]Γ—[T][T]\times[T]. Otherwise there is α∈[T]\alpha\in[T] such that [Ξ±]𝐝[\alpha]_{\bf d} is comeager in [T][T] by 𝔼0TβŠ†F𝐝ϕ\mathbb{E}^{T}_{0}\subseteq F_{{\bf d}_{\phi}} and [Kec95, TheoremΒ 8.41]. It follows from (3) in the definition of Borel pseudometric that there are Borel sets (Ul)lβˆˆβ„•(U_{l})_{l\in{\mathbbm{N}}} such that ⋃lβˆˆβ„•Ul=[Ξ±]F𝐝\bigcup_{l\in{\mathbbm{N}}}U_{l}=[\alpha]_{F_{\bf d}} and

𝐝ϕ​(Ξ±,Ξ²)<12k{\bf d}_{\phi}(\alpha,\beta)<\frac{1}{2^{k}}

for every lβˆˆβ„•l\in{\mathbbm{N}} and Ξ±,β∈Ul\alpha,\beta\in U_{l}. Using [Kec95, PropositionΒ 8.41] and the density of (sm)mβˆˆβ„•(s_{m})_{m\in{\mathbbm{N}}} we find m,lβˆˆβ„•m,l\in{\mathbbm{N}} such that UlU_{l} is comeager in smβŒ’β€‹[Tsm]{s_{m}}^{\frown}[T_{s_{m}}]. This gives x∈[TsmβŒ’β€‹(0)]=[TsmβŒ’β€‹(lmTβˆ’1)]x\in[T_{{s_{m}}^{\frown}(0)}]=[T_{{s_{m}}^{\frown}(l^{T}_{m}-1)}] such that

smβŒ’β€‹(0)βŒ’β€‹x,smβŒ’β€‹(lmTβˆ’1)βŒ’β€‹x∈Ul.{s_{m}}^{\frown}(0)^{\frown}x,{s_{m}}^{\frown}(l^{T}_{m}-1)^{\frown}x\in U_{l}.

Since Ο•\phi is a homomorphism from 𝔾smT\mathbb{G}^{T}_{s_{m}} to β„‹k,m\mathcal{H}_{k,m}, we have (ϕ​(smβŒ’β€‹(i)βŒ’β€‹x))i<lmTβˆˆβ„‹k,m(\phi({s_{m}}^{\frown}(i)^{\frown}x))_{i<l^{T}_{m}}\in\mathcal{H}_{k,m}. Consequently,

(Ο•(sm⌒(0)⌒x),Ο•(sm⌒(lmTβˆ’1)⌒x)βˆ‰RΞ”kX,(\phi({s_{m}}^{\frown}(0)^{\frown}x),\phi({s_{m}}^{\frown}(l^{T}_{m}-1)^{\frown}x)\not\in R^{X}_{\Delta_{k}},

i.e.,

𝐝ϕ​(smβŒ’β€‹(0)βŒ’β€‹x,smβŒ’β€‹(lmTβˆ’1)βŒ’β€‹x)>12k.{\bf d}_{\phi}({s_{m}}^{\frown}(0)^{\frown}x,{s_{m}}^{\frown}(l^{T}_{m}-1)^{\frown}x)>\frac{1}{2^{k}}.

This contradicts the choice of x∈[TsmβŒ’β€‹(0)]x\in[T_{{s_{m}}^{\frown}(0)}] and we conclude that F𝐝ϕF_{{\bf d}_{\phi}} is a meager equivalence relation.

(III). Write 𝟎∈[T]{\bf 0}\in[T] for the sequence (0,0,0,…)(0,0,0,\dots). Let mβˆˆβ„•m\in{\mathbbm{N}}. Since ((smβŒ’β€‹(i)βŒ’β€‹πŸŽ)i<lmT,𝐝ϕ)(({s_{m}}^{\frown}(i)^{\frown}{\bf 0})_{i<l^{T}_{m}},{\bf d}_{\phi}) is a finite pseudometric space we find a metric space (Zm,𝔑m)(Z_{m},\mathfrak{d}_{m}) where Zm={0,1,…,lmTβˆ’1}Z_{m}=\{0,1,\dots,l^{T}_{m}-1\} and

|𝐝ϕ​(smβŒ’β€‹(i)βŒ’β€‹πŸŽ,smβŒ’β€‹(j)βŒ’β€‹πŸŽ)βˆ’π”‘m​(i,j)|<12mβˆ’1|{\bf d}_{\phi}({s_{m}}^{\frown}(i)^{\frown}{\bf 0},{s_{m}}^{\frown}(j)^{\frown}{\bf 0})-\mathfrak{d}_{m}(i,j)|<\frac{1}{2^{m-1}}

for every i,j<lmTi,j<l^{T}_{m}. We have

12kβˆ’12mβˆ’1≀𝔑m​(0,lmTβˆ’1)≀r​(Zm,𝔑m)\frac{1}{2^{k}}-\frac{1}{2^{m-1}}\leq\mathfrak{d}_{m}(0,l^{T}_{m}-1)\leq r(Z_{m},\mathfrak{d}_{m})

and j​(Zm,𝔑m)<12mβˆ’2j(Z_{m},\mathfrak{d}_{m})<\frac{1}{2^{m-2}} because Ο•\phi is a homomorphism from 𝔾sm{\mathbbm{G}}_{s_{m}} to β„‹k,m\mathcal{H}_{k,m}.

This implies immediately that 𝒡=((Zm,𝔑m))mβˆˆβ„•\mathcal{Z}=((Z_{m},\mathfrak{d}_{m}))_{m\in{\mathbbm{N}}} is a non-trivial sequence of finite metric spaces. Consider the bijective homeomorphism

Ξ·:∏mβˆˆβ„•Zmβ†’[T]\eta:\prod_{m\in{\mathbbm{N}}}Z_{m}\to[T]

that is defined as

η​(x)​(m)=i⇔x​(m)=i.\eta(x)(m)=i\ \Leftrightarrow\ x(m)=i.

If Eπ’΅βŠ†E=(Ξ·βˆ’1Γ—Ξ·βˆ’1)​(F𝐝ϕ)E_{\mathcal{Z}}\subseteq E=(\eta^{-1}\times\eta^{-1})(F_{{\bf d}_{\phi}}), then we are done because Eβˆˆπ”…E\in\mathfrak{B} by (II) and Ο•βˆ˜Ξ·\phi\circ\eta is a reduction from EE to EGXE^{X}_{G}.

(IV). Suppose that Eπ’΅βŠˆE=(Ξ·βˆ’1Γ—Ξ·βˆ’1)​(F𝐝ϕ)E_{\mathcal{Z}}\not\subseteq E=(\eta^{-1}\times\eta^{-1})(F_{{\bf d}_{\phi}}) in (III). By the definition, we find x,y∈∏mβˆˆβ„•Zmx,y\in\prod_{m\in\mathbb{N}}Z_{m} such that

𝔑m​(x​(m),y​(m))β†’0\mathfrak{d}_{m}(x(m),y(m))\to 0

and (η​(x),η​(y))βˆ‰F𝐝ϕ(\eta(x),\eta(y))\not\in F_{{\bf d}_{\phi}}. Set Ξ±=η​(x)\alpha=\eta(x) and Ξ²=η​(y)\beta=\eta(y).

We have |{mβˆˆβ„•:α​(m)≠β​(m)}|=β„΅0|\{m\in{\mathbbm{N}}:\alpha(m)\not=\beta(m)\}|=\aleph_{0} because 𝔼0TβŠ†F𝐝ϕ{\mathbbm{E}}^{T}_{0}\subseteq F_{{\bf d}_{\phi}}. Let (ml)lβˆˆβ„•(m_{l})_{l\in{\mathbbm{N}}} be an increasing enumeration of {mβˆˆβ„•:α​(m)≠β​(m)}\{m\in{\mathbbm{N}}:\alpha(m)\not=\beta(m)\} and set 𝟎l=α​(ml){\bf 0}_{l}=\alpha(m_{l}), 𝟏l=β​(ml){\bf 1}_{l}=\beta(m_{l}) for every lβˆˆβ„•l\in{\mathbbm{N}}. There is a sequence (tl)lβˆˆβ„•βŠ†β„•<β„•(t_{l})_{l\in{\mathbbm{N}}}\subseteq{\mathbbm{N}}^{<{\mathbbm{N}}} such that

Ξ±=t0βŒ’β€‹πŸŽ0βŒ’β€‹t1βŒ’β€‹πŸŽ1βŒ’β€‹β€¦&Ξ²=t0βŒ’β€‹πŸ0βŒ’β€‹t1βŒ’β€‹πŸ1βŒ’β€‹β€¦\alpha={t_{0}}^{\frown}{{\bf 0}_{0}}^{\frown}{t_{1}}^{\frown}{{\bf 0}_{1}}^{\frown}\dots\ \&\ \beta={t_{0}}^{\frown}{{\bf 1}_{0}}^{\frown}{t_{1}}^{\frown}{{\bf 1}_{1}}^{\frown}\dots

Define Ξ“:2<β„•β†’T\Gamma:2^{<{\mathbbm{N}}}\to T as

Γ​(s)=t0βŒ’β€‹π¬β€‹(𝟎)βŒ’β€‹t1βŒ’β€‹π¬β€‹(𝟏)βŒ’β€‹β€¦β€‹π¬βŒ’β€‹(|𝐬|βˆ’πŸ)βŒ’β€‹t|s|∈T\Gamma(s)={t_{0}}^{\frown}{{\bf s(0)}}^{\frown}{t_{1}}^{\frown}{{\bf s(1)}}^{\frown}\dots{}^{\frown}{{\bf s(|s|-1)}}^{\frown}t_{|s|}\in T

for every s∈2<β„•s\in 2^{<{\mathbbm{N}}}, where 𝐬​(𝐣)=𝟎j{\bf s(j)}={\bf 0}_{j} if s​(j)=0s(j)=0 and 𝐬​(𝐣)=𝟏j{\bf s(j)}={\bf 1}_{j} if s​(j)=1s(j)=1. Write Ξ“~:2β„•β†’[T]\widetilde{\Gamma}:2^{\mathbbm{N}}\to[T] for the extension of Ξ“\Gamma to 2β„•2^{{\mathbbm{N}}}. It is easy to see that Ξ“~\widetilde{\Gamma} is a well defined continuous map.

Set 𝐝=πΟ•βˆ˜Ξ“~{\bf d}={\bf d}_{\phi\circ\widetilde{\Gamma}} and E:=FπΟ•βˆ˜Ξ“~E:=F_{{\bf d}_{\phi\circ\widetilde{\Gamma}}}. It is easy to see that 𝐝{\bf d} is a uniform Borel pseudometric, this follows from the definition of Ξ“\Gamma. Moreover, (Ξ“~βˆ’1​(Ξ±),Ξ“~βˆ’1​(Ξ²))βˆ‰F𝐝(\widetilde{\Gamma}^{-1}(\alpha),\widetilde{\Gamma}^{-1}(\beta))\not\in F_{\bf d}. Consequently by TheoremΒ 2.11, we have that EE is meager in 2β„•Γ—2β„•2^{{\mathbbm{N}}}\times 2^{{\mathbbm{N}}}.

To finish the proof we define a tall lsc submeasure Θ\Theta such that EΞ˜βŠ†EE_{\Theta}\subseteq E. Indeed, then we have Eβˆˆπ”…E\in\mathfrak{B} and, clearly, Ο•βˆ˜Ξ“~\phi\circ\widetilde{\Gamma} is a reduction from EE to EGXE^{X}_{G}.

Recall that 𝒫​(β„•)\mathcal{P}({\mathbbm{N}}) is the power set of β„•{\mathbbm{N}}. Let Mβˆˆπ’«β€‹(β„•)M\in\mathcal{P}({\mathbbm{N}}) be finite. Define

Ξ˜β€‹(M)=sup{𝐝​(a,b):a,b∈2ℕ​{β„“βˆˆβ„•:a​(β„“)β‰ b​(β„“)}βŠ†M}=sup{𝐝ϕ​(Ξ“~​(a),Ξ“~​(b)):a,b∈2ℕ​{mβˆˆβ„•:Ξ“~​(a)​(m)β‰ Ξ“~​(b)​(m)}βŠ†(mβ„“)β„“βˆˆM}.\begin{split}\Theta(M)=&\ \sup\left\{{\bf d}(a,b):a,b\in 2^{{\mathbbm{N}}}\ \{\ell\in{\mathbbm{N}}:a(\ell)\not=b(\ell)\}\subseteq M\ \right\}\\ =&\ \sup\left\{{\bf d}_{\phi}(\widetilde{\Gamma}(a),\widetilde{\Gamma}(b)):a,b\in 2^{{\mathbbm{N}}}\ \{m\in\mathbb{N}:\widetilde{\Gamma}(a)(m)\not=\widetilde{\Gamma}(b)(m)\}\subseteq(m_{\ell})_{\ell\in M}\ \right\}.\end{split}

Let Mβˆˆπ’«β€‹(β„•)M\in\mathcal{P}(\mathbb{N}) be infinite. Then we define Ξ˜β€‹(M)=limlβ†’βˆžΞ˜β€‹(M∩l)\Theta(M)=\lim_{l\to\infty}\Theta(M\cap l).

(a). We show that Θ\Theta is a tall lsc submeasure.

  • β€’

    It is easy to see that Θ\Theta is monotone, Ξ˜β€‹(βˆ…)=0\Theta(\emptyset)=0 and Ξ˜β€‹(M)=limβ„“β†’βˆžΞ˜β€‹(Mβˆ©β„“)\Theta(M)=\lim_{\ell\to\infty}\Theta(M\cap\ell) for every Mβˆˆπ’«β€‹(β„•)M\in\mathcal{P}({\mathbbm{N}}).

  • β€’

    Let M,Nβˆˆπ’«β€‹(β„•)M,N\in\mathcal{P}({\mathbbm{N}}) be finite and a,b∈2β„•a,b\in 2^{{\mathbbm{N}}} such that {β„“βˆˆβ„•:a​(β„“)​b̸​(β„“)}βŠ†MβˆͺN\{\ell\in{\mathbbm{N}}:a(\ell)\not b(\ell)\}\subseteq M\cup N. Set c∈2β„•c\in 2^{{\mathbbm{N}}} to be equal to bb on MM and to to aa on Nβˆ–MN\setminus M. Then we have

    𝐝​(a,b)≀𝐝​(a,c)+𝐝​(c,b)β‰€Ξ˜β€‹(M)+Ξ˜β€‹(N),\begin{split}{\bf d}(a,b)\leq{\bf d}(a,c)+{\bf d}(c,b)\leq\Theta(M)+\Theta(N),\end{split}

    becuase 𝐝{\bf d} is a pseudometric. Since this holds for every such a,b∈2β„•a,b\in 2^{{\mathbbm{N}}}, we conclude that Ξ˜β€‹(MβˆͺN)β‰€Ξ˜β€‹(M)+Ξ˜β€‹(N)\Theta(M\cup N)\leq\Theta(M)+\Theta(N). For infinite M,NM,N the conclusion holds by taking the limit in the definition.

  • β€’

    Let β„“βˆˆβ„•\ell\in{\mathbbm{N}} and a,b∈2β„•a,b\in 2^{{\mathbbm{N}}} be such that a​(β„“β€²)β‰ b​(β„“β€²)a(\ell^{\prime})\not=b(\ell^{\prime}) only when β„“=β„“β€²\ell=\ell^{\prime}. Observe that this implies that Ξ“~​(a)\widetilde{\Gamma}(a) and Ξ“~​(b)\widetilde{\Gamma}(b) differ only at mβ„“m_{\ell}. We have

    𝐝​(a,b)=𝐝ϕ​(Ξ“~​(a),Ξ“~​(b))≀𝐝ϕ​(smβ„“βŒ’β€‹Ξ±β€‹(mβ„“)βŒ’β€‹πŸŽ,smβ„“βŒ’β€‹Ξ²β€‹(mβ„“)βŒ’β€‹πŸŽ)+12mβ„“βˆ’1≀𝔑mℓ​(α​(mβ„“),β​(mβ„“))+12mβ„“βˆ’2\begin{split}{\bf d}(a,b)=&\ {\bf d}_{\phi}(\widetilde{\Gamma}(a),\widetilde{\Gamma}(b))\\ \leq&\ {\bf d}_{\phi}({s_{m_{\ell}}}^{\frown}{\alpha(m_{\ell})}^{\frown}{\bf 0},{s_{m_{\ell}}}^{\frown}{\beta(m_{\ell})}^{\frown}{\bf 0})+\frac{1}{2^{m_{\ell}-1}}\\ \leq&\ \mathfrak{d}_{m_{\ell}}(\alpha(m_{\ell}),\beta(m_{\ell}))+\frac{1}{2^{m_{\ell}-2}}\end{split}

    by (* β€£ 6) and the definition of 𝔑mβ„“\mathfrak{d}_{m_{\ell}} in (III). This shows that Ξ˜β€‹({β„“})<+∞\Theta(\{\ell\})<+\infty and limβ„“β†’βˆžΞ˜β€‹({β„“})=0\lim_{\ell\to\infty}\Theta(\{\ell\})=0 by the choice of Ξ±\alpha and Ξ²\beta. This shows that Θ\Theta is a tall lsc submeasure.

(b) Let a,b∈2β„•a,b\in 2^{{\mathbbm{N}}} be such that (a,b)∈EΘ(a,b)\in E_{\Theta}. We show that (a,b)∈E(a,b)\in E. Set X={jβˆˆβ„•:a​(j)β‰ b​(j)}X=\{j\in{\mathbbm{N}}:a(j)\not=b(j)\}. Then we have that limβ„“β†’βˆžΞ˜β€‹(Xβˆ–β„“)=0\lim_{\ell\to\infty}\Theta(X\setminus\ell)=0 by the definition of EΘE_{\Theta}. For every β„“βˆˆβ„•\ell\in{\mathbbm{N}}, define aℓ​(j)=b​(j)a_{\ell}(j)=b(j) for every j<β„“j<\ell and aℓ​(j)=a​(j)a_{\ell}(j)=a(j) for every jβ‰₯β„“j\geq\ell. We have (aβ„“,a)βˆˆπ”Ό0(a_{\ell},a)\in{\mathbbm{E}}_{0} for every β„“βˆˆβ„•\ell\in{\mathbbm{N}} and aβ„“β†’ba_{\ell}\to b.

We have that Ξ“~​(aβ„“)β†’Ξ“~​(b)\widetilde{\Gamma}(a_{\ell})\to\widetilde{\Gamma}(b) by continuity of Ξ“~\widetilde{\Gamma} and it is easy to see that

(Ξ“~​(aβ„“),Ξ“~​(a))βˆˆπ”Ό0TβŠ†F𝐝ϕ.\left(\widetilde{\Gamma}(a_{\ell}),\widetilde{\Gamma}(a)\right)\in{\mathbbm{E}}^{T}_{0}\subseteq F_{{\bf d}_{\phi}}.

Let ℓ≀r≀sβˆˆβ„•\ell\leq r\leq s\in{\mathbbm{N}}. We have that {jβˆˆβ„•:ar​(j)β‰ as​(j)}=X∩{r,…,sβˆ’1}βŠ†Xβˆ–β„“\{j\in{\mathbbm{N}}:a_{r}(j)\not=a_{s}(j)\}=X\cap\{r,\dots,s-1\}\subseteq X\setminus\ell. Consequently, by the definition of Θ\Theta and our assumption, we have

𝐝ϕ​(Ξ“~​(ar),Ξ“~​(as))β‰€Ξ˜β€‹(X∩{r,…,sβˆ’1})β‰€Ξ˜β€‹(Xβˆ–β„“)β†’0.{\bf d}_{\phi}\left(\widetilde{\Gamma}(a_{r}),\widetilde{\Gamma}(a_{s})\right)\leq\Theta(X\cap\{r,\dots,s-1\})\leq\Theta(X\setminus\ell)\to 0.

In particular, (Ξ“~​(aβ„“))β„“βˆˆβ„•(\widetilde{\Gamma}(a_{\ell}))_{\ell\in{\mathbbm{N}}} is a 𝐝ϕ{\bf d}_{\phi}-Cauchy sequence. By the definition of Borel pseudometric we have 𝐝ϕ​(Ξ“~​(aβ„“),Ξ“~​(b))β†’0{\bf d}_{\phi}(\widetilde{\Gamma}(a_{\ell}),\widetilde{\Gamma}(b))\to 0. In particular, (Ξ“~​(a),Ξ“~​(b))∈F𝐝ϕ(\widetilde{\Gamma}(a),\widetilde{\Gamma}(b))\in F_{\bf d_{\phi}} and, consequently, (a,b)∈E(a,b)\in E. ∎

7 Proof of TheoremΒ 1.4

In this section we combine the characterization of classification by countable structures from previous section together with a result of Miller [Mila] to show that if a Borel equivalence relation EGXE^{X}_{G} induced by an action of tsi Polish group GG admits classification by countable structures, then it is essentially countable if and only if 𝔼0β„•β‰°BEGX{\mathbbm{E}}_{0}^{{\mathbbm{N}}}\not\leq_{B}E^{X}_{G}. In another words, under the assumption of classification by countable structures we have that 𝔼0β„•{\mathbbm{E}}_{0}^{{\mathbbm{N}}} is the canonical obstruction for EC. We note that in the previous results [HK01, Mila] the corresponding statement is proved for tsi non-archimedean Polish groups.

The strategy of the proof combines two variants of the 𝔾0{\mathbbm{G}}_{0}-dichotomy. First one is hidden in the implication that classification by countable structures implies Property (IC) and the second one is the characterization of Οƒ\sigma-lacunarity given by Miller [Mila]. The technical results that are used in the proof are collected in AppendixΒ B. The following statement is a formal reformulation of TheoremΒ 1.4

Theorem 7.1.

Let GG be a tsi Polish group, XX be a Polish GG-space and EGXE^{X}_{G} be a Borel equivalence relation that is classifiable by countable structures. Then the following are equivalent:

  1. 1.

    EGXE^{X}_{G} is essentially countable,

  2. 2.

    there is a finer GG-Polish topology on XX that is GG-bounded,

  3. 3.

    𝔼0β„•β‰°BEGX{\mathbbm{E}}_{0}^{{\mathbbm{N}}}\not\leq_{B}E^{X}_{G}.

Proof of TheoremΒ 1.4 and TheoremΒ 7.1.

(1) β‡’\Rightarrow (2) is CorollaryΒ 3.4 and (2) β‡’\Rightarrow (3) is CorollaryΒ 3.7. It remains to show that (3) β‡’\Rightarrow (1).

Recall from SectionΒ 2.5 that knβˆˆβ„•k_{n}\in{\mathbbm{N}} is such that k0=0k_{0}=0, kn+1≀max⁑{km:m≀n}+1k_{n+1}\leq\max\{k_{m}:m\leq n\}+1 for every nβˆˆβ„•n\in{\mathbbm{N}} and for every kβˆˆβ„•k\in{\mathbbm{N}} there are infinitely many nβˆˆβ„•n\in{\mathbbm{N}} such that kn=kk_{n}=k.

It will be convenient for us to fix another open base (Vk)kβˆˆβ„•(V_{k})_{k\in{\mathbbm{N}}} at 1G1_{G}. During the construction we pass two times to a subsequence of (Vk)kβˆˆβ„•(V_{k})_{k\in{\mathbbm{N}}} but we keep the notation (Vk)kβˆˆβ„•(V_{k})_{k\in{\mathbbm{N}}}. In the beginning we set Vk=Ξ”kV_{k}=\Delta_{k} but one should keep in mind that (Vk)kβˆˆβ„•(V_{k})_{k\in{\mathbbm{N}}} changes during the refinements. Similar warning applies to the following definition of Miller [Mila]. Define Gi,j=RViXβˆ–RVjXG_{i,j}=R^{X}_{V_{i}}\setminus R^{X}_{V_{j}} for every i,jβˆˆβ„•i,j\in{\mathbbm{N}}. Suppose that EGXE^{X}_{G} does not satisfy (1), i.e., it is not essentially countable. Then it follows from [Mila, TheoremΒ 1.1,Β PropositionΒ 2.3] that there is a function f:β„•β†’β„•f:{\mathbbm{N}}\to{\mathbbm{N}} and a continuous homomorphism Ο†0:2β„•β†’X\varphi_{0}:2^{\mathbbm{N}}\to X from (𝔾0,k)kβˆˆβ„•({\mathbbm{G}}_{0,k})_{k\in{\mathbbm{N}}} to (Gk,f​(k))kβˆˆβ„•(G_{k,f(k)})_{k\in{\mathbbm{N}}}. In this step TheoremΒ 2.6 is used.

The proof of the following result can be found in AppendixΒ B. We note that LemmaΒ 7.2 uses crucially that GG is tsi Polish group while LemmaΒ 7.3 holds for every Polish group.

Lemma 7.2 (First refinement).

Let Ο†0:2β„•β†’X\varphi_{0}:2^{\mathbbm{N}}\to X be a continuous homomorphism from (𝔾0,k)kβˆˆβ„•({\mathbbm{G}}_{0,k})_{k\in{\mathbbm{N}}} to (Gk,f​(k))kβˆˆβ„•(G_{k,f(k)})_{k\in{\mathbbm{N}}}. Then, after possibly passing to a subsequence of (Vk)kβˆˆβ„•(V_{k})_{k\in{\mathbbm{N}}}, there is a continuous homomorphism Ο†1:2β„•β†’X\varphi_{1}:2^{\mathbbm{N}}\to X from (𝔾s)s∈2<β„•({\mathbbm{G}}_{s})_{s\in 2^{<{\mathbbm{N}}}} to (Gk|s|,k|s|+1)s∈2<β„•(G_{k_{|s|},k_{|s|}+1})_{s\in 2^{<{\mathbbm{N}}}}.

By TheoremΒ 1.3 we have that EGXE^{X}_{G} satisfies Property (IC). That is there is a sequence of Borel sets (Ak,l)k,lβˆˆβ„•(A_{k,l})_{k,l\in{\mathbbm{N}}} such that ⋃lβˆˆβ„•Ak,l=X\bigcup_{l\in{\mathbbm{N}}}A_{k,l}=X for every kβˆˆβ„•k\in{\mathbbm{N}} and Ak,lA_{k,l} is β„‹k,m​(k,l)\mathcal{H}_{k,m(k,l)}-independent for some m​(k,l)βˆˆβ„•m(k,l)\in{\mathbbm{N}}. We stress that the dihypergraphs are defined using the sequence (Ξ”k)kβˆˆβ„•(\Delta_{k})_{k\in{\mathbbm{N}}}. We put n0​(k)n_{0}(k) to be the minimal nβˆˆβ„•n\in{\mathbbm{N}} such that kn=kk_{n}=k. The proof of the following result can be found in AppendixΒ B.

Lemma 7.3 (Second refinement).

Let Ο†1:2β„•β†’X\varphi_{1}:2^{\mathbbm{N}}\to X be a continuous homomorphism from (𝔾s)s∈2<β„•({\mathbbm{G}}_{s})_{s\in 2^{<{\mathbbm{N}}}} to (Gk|s|,k|s|+1)s∈2<β„•(G_{k_{|s|},k_{|s|}+1})_{s\in 2^{<{\mathbbm{N}}}}. Then, after possibly passing to a subsequence of (Vk)kβˆˆβ„•(V_{k})_{k\in{\mathbbm{N}}}, there is a continuous homomorphism Ο†:2β„•β†’X\varphi:2^{\mathbbm{N}}\to X from (𝔾s)s∈2<β„•({\mathbbm{G}}_{s})_{s\in 2^{<{\mathbbm{N}}}} to (Gk|s|,k|s|+1)s∈2<β„•(G_{k_{|s|},k_{|s|}+1})_{s\in 2^{<{\mathbbm{N}}}} and for every kβˆˆβ„•k\in{\mathbbm{N}} there is m​(k)βˆˆβ„•m(k)\in{\mathbbm{N}} such that VkβŠ†Ξ”m​(k)V_{k}\subseteq\Delta_{m(k)} and the set

φ​({sβŒ’β€‹c∈2β„•:c∈2β„•})\varphi\left(\{s^{\frown}c\in 2^{{\mathbbm{N}}}:c\in 2^{{\mathbbm{N}}}\}\right)

is β„‹k,m​(k)\mathcal{H}_{k,m(k)}-independent for every s∈2<β„•s\in 2^{<{\mathbbm{N}}} such that |s|=n0​(k)|s|=n_{0}(k).

The rest of the proof closely follows the proof of [Mila, TheoremΒ 4.1]. Suppose that we have Ο†\varphi as in LemmaΒ 7.3. In particular it satisfies [Mila, LemmaΒ 4.2]. Set β„“n=|{m<n:km=kn}|\ell_{n}=|\{m<n:k_{m}=k_{n}\}| for all nβˆˆβ„•n\in{\mathbbm{N}} and define ψ:2β„•Γ—β„•β†’2β„•\psi:2^{{\mathbbm{N}}\times{\mathbbm{N}}}\to 2^{{\mathbbm{N}}} as Οˆβ€‹(c)​(n)=c​(kn,β„“n)\psi(c)(n)=c(k_{n},\ell_{n}) for all c∈2β„•Γ—β„•c\in 2^{{\mathbbm{N}}\times{\mathbbm{N}}} and nβˆˆβ„•n\in{\mathbbm{N}}, see the definition after [Mila, LemmaΒ 4.2].

Claim.

The continuous map Ο†βˆ˜Οˆ:2β„•Γ—β„•β†’X\varphi\circ\psi:2^{{\mathbbm{N}}\times{\mathbbm{N}}}\to X is a homomorphism from 𝔼0β„•{\mathbbm{E}}_{0}^{{\mathbbm{N}}} to EGXE^{X}_{G}.

Proof.

Let c,d∈2β„•Γ—β„•c,d\in 2^{{\mathbbm{N}}\times{\mathbbm{N}}} and suppose that there is kβˆˆβ„•k\in{\mathbbm{N}} such that

{(i,β„“)βˆˆβ„•Γ—β„•:c​(i,β„“)β‰ d​(i,β„“)}βŠ†{k}Γ—β„•\left\{(i,\ell)\in{\mathbbm{N}}\times{\mathbbm{N}}:c(i,\ell)\not=d(i,\ell)\right\}\subseteq\{k\}\times{\mathbbm{N}}

and the set on the left-hand side is finite. It is easy to see that (Ο†βˆ˜Οˆβ€‹(c),Ο†βˆ˜Οˆβ€‹(d))∈EGX(\varphi\circ\psi(c),\varphi\circ\psi(d))\in E^{X}_{G}. We show that, in fact, (Ο†βˆ˜Οˆβ€‹(c),Ο†βˆ˜Οˆβ€‹(d))∈RΞ”kX(\varphi\circ\psi(c),\varphi\circ\psi(d))\in R^{X}_{\Delta_{k}}.

Set x=Οˆβ€‹(c)x=\psi(c) and y=Οˆβ€‹(d)y=\psi(d). Write (n1,…,np)βŠ†β„•(n_{1},\dots,n_{p})\subseteq{\mathbbm{N}} for the increasing enumeration of the indices where xx and yy differ. From the assumption we have n0​(k)≀n1n_{0}(k)\leq n_{1} and kni=kk_{n_{i}}=k for every 1≀i≀p1\leq i\leq p. Let x1:=xx_{1}:=x and xi+1x_{i+1} differ from xix_{i} only in the ni+1n_{i+1}-th position for every 1≀i<p1\leq i<p. Clearly, y=xpy=x_{p}. By LemmaΒ 7.2 and LemmaΒ 7.3, we have that (φ​(xi),φ​(xi+1))∈RVkXβŠ†RΔ​(m​(k))X(\varphi(x_{i}),\varphi(x_{i+1}))\in R^{X}_{V_{k}}\subseteq R^{X}_{\Delta(m(k))} and (φ​(x1),…,φ​(xp))βˆ‰β„‹k,m​(k)(\varphi(x_{1}),\dots,\varphi(x_{p}))\not\in\mathcal{H}_{k,m(k)}. Consequently, we have

(Ο†βˆ˜Οˆβ€‹(c),Ο†βˆ˜Οˆβ€‹(d))=(φ​(x),φ​(y))=RΞ”kX(\varphi\circ\psi(c),\varphi\circ\psi(d))=(\varphi(x),\varphi(y))=R^{X}_{\Delta_{k}}

as promised.

Let c,d∈2β„•Γ—β„•c,d\in 2^{{\mathbbm{N}}\times{\mathbbm{N}}} be such that (c,d)βˆˆπ”Ό0β„•(c,d)\in{\mathbbm{E}}_{0}^{{\mathbbm{N}}}. Define c0=cc_{0}=c and ck+1c_{k+1} to be equal to ckc_{k} except for the vertical section {k}Γ—β„•\{k\}\times{\mathbbm{N}}, where it is equal to dd. Set xk=Ο†βˆ˜Οˆβ€‹(ck)x_{k}=\varphi\circ\psi(c_{k}), x=x0x=x_{0} and Ο†βˆ˜Οˆβ€‹(d)=y\varphi\circ\psi(d)=y It is easy to see that ckβ†’dc_{k}\to d in 2β„•Γ—β„•2^{{\mathbbm{N}}\times{{\mathbbm{N}}}}, and by the continuity of Ο†βˆ˜Οˆ\varphi\circ\psi we have xkβ†’yx_{k}\to y in XX. Moreover, ck,ck+1c_{k},c_{k+1} satisfy the assumption above and we conclude that

(xk,xk+1)=RΞ”kX.(x_{k},x_{k+1})=R^{X}_{\Delta_{k}}.

Pick gkβˆˆΞ”kg_{k}\in\Delta_{k} that satisfies gkβ‹…xk=xk+1g_{k}\cdot x_{k}=x_{k+1}. Then we have

gkβ‹…gkβˆ’1β‹…β‹―β‹…g0β‹…x=xk+1β†’yg_{k}\cdot g_{k-1}\cdot\dots\cdot g_{0}\cdot x=x_{k+1}\to y

in XX. By the definition of Ξ”k\Delta_{k}, we have that

gkβ‹…gkβˆ’1β‹…β‹―β‹…g0β†’hg_{k}\cdot g_{k-1}\cdot\dots\cdot g_{0}\to h

for some h∈Gh\in G. The continuity of the action guarantees that hβ‹…x=yh\cdot x=y, that is, (x,y)∈EGX(x,y)\in E^{X}_{G}, and the proof is finished. ∎

In order to use [Mila, LemmaΒ 3.6] we need to verify the assumptions. Recall that for FβŠ†β„•Γ—β„•F\subseteq{\mathbbm{N}}\times{\mathbbm{N}} and iβˆˆβ„•i\in{\mathbbm{N}} we define

𝔻i,F={(c,d)∈2β„•Γ—β„•Γ—2β„•Γ—β„•:{(i,n):c​(i,n)β‰ d​(i,n)}=F∩(iΓ—β„•)}{\mathbbm{D}}_{i,F}=\left\{(c,d)\in 2^{{\mathbbm{N}}\times{\mathbbm{N}}}\times 2^{{\mathbbm{N}}\times{\mathbbm{N}}}:\{(i,n):c(i,n)\not=d(i,n)\}=F\cap(i\times{\mathbbm{N}})\right\}
Claim.

For every iβˆˆβ„•i\in{\mathbbm{N}} and finite set FβŠ†iΓ—β„•F\subseteq i\times{\mathbbm{N}}, the equivalence relation

((Ο†βˆ˜Οˆ)βˆ’1Γ—(Ο†βˆ˜Οˆ)βˆ’1)​(EGX)((\varphi\circ\psi)^{-1}\times(\varphi\circ\psi)^{-1})(E^{X}_{G})

is meager in 𝔻i,F{\mathbbm{D}}_{i,F}.

Proof.

The proof of [Mila, LemmaΒ 4.5] uses only the fact that the Ο†\varphi is a homomorphism from(𝔾0,k)kβˆˆβ„•({\mathbbm{G}}_{0,k})_{k\in{\mathbbm{N}}} to (Gk,f​(k))kβˆˆβ„•(G_{k,f(k)})_{k\in{\mathbbm{N}}}. Therefore it can be applied in our situation as well. ∎

The proof is now finished as follows. By [Mila, LemmaΒ 3.6] we find a continuous homomorphism Ο•:2β„•Γ—β„•β†’2β„•Γ—β„•\phi:2^{{\mathbbm{N}}\times{\mathbbm{N}}}\to 2^{{\mathbbm{N}}\times{\mathbbm{N}}} from (𝔼0β„•,βˆΌπ”Ό0β„•)({\mathbbm{E}}_{0}^{{\mathbbm{N}}},\sim{\mathbbm{E}}_{0}^{{\mathbbm{N}}}) to (𝔼0β„•,∼((Ο†βˆ˜Οˆ)βˆ’1Γ—(Ο†βˆ˜Οˆ)βˆ’1)(EGX))({\mathbbm{E}}_{0}^{{\mathbbm{N}}},\sim((\varphi\circ\psi)^{-1}\times(\varphi\circ\psi)^{-1})(E^{X}_{G})), where ∼A\sim A denotes the complement of AA. The function Ο†βˆ˜Οˆβˆ˜Ο•\varphi\circ\psi\circ\phi is the desired reduction from 𝔼0β„•{\mathbbm{E}}_{0}^{{\mathbbm{N}}} to EGXE^{X}_{G}. ∎

8 Remarks

There are two main open questions connected to TheoremΒ 1.3 and TheoremΒ 1.4.

Question 8.1.

Consider the class of Borel equivalence relations induced by actions of tsi Polish groups.

  1. 1.

    Let β„­\mathfrak{C} be the collection of meager equivalence relations EΘE_{\Theta} and E𝒡E_{\mathcal{Z}} where Θ\Theta runs over all tall lsc submeasures and 𝒡\mathcal{Z} over non-trivial sequences of finite metric spaces. Is it enough to take β„­\mathfrak{C}, instead of 𝔅\mathfrak{B}, as the base of non-classification by countable structures?

  2. 2.

    Is the existence of a bounded GG-Polish topology equivalent to non-reducibility of 𝔼0β„•{\mathbbm{E}}_{0}^{{\mathbbm{N}}}?

We conclude our investigation with several remarks. We mentioned in the introduction that our starting point was Hjorth’s dichotomy [Hjo00a]. From our results, as stated, it does not directly follow that we can recover this dichotomy. However, there are two easy modifications that gives this result. First, TheoremΒ 1.3 can be stated relative to an analytic set AβŠ†XA\subseteq X, seeΒ [Gre19, TheoremΒ 3.3.5]. Second, if we formulate Hjorth’s dichotomy in the form where the Banach space β„“1\ell_{1} is replaced by the summable ideal [Kan08, ChapterΒ 15], then it is not difficult to verify that one is always in (IV) in the proof of TheoremΒ 6.1, the lsc submeasure constructed there corresponds to the summable ideal and the map can be refined to a reduction, see [Gre19, Proof of TheoremΒ 3.1.3].

As a last thing we mention that it is possible to prove that if f:Yβ†’Xf:Y\to X is a Borel reduction from EE to EGXE^{X}_{G}, where GG is tsi Polish group, and EE admits classification by countable structures, then there is a Borel GG-nvariant set BB that contains f​(Y)f(Y) such that EGXβ†ΎBΓ—BE^{X}_{G}\upharpoonright B\times B admits classification by countable structures. This implies a slight strengthening of TheoremΒ 7.1.

Theorem 8.2.

Let GG be a tsi Polish group and XX be a Polish GG-space such that EGXE^{X}_{G} is Borel. Then the following are equivalent:

  1. 1.

    EGXβ†ΎBΓ—BE^{X}_{G}\upharpoonright B\times B is essentially countable for every Borel set BβŠ†XB\subseteq X that is GG-invariant and EGXβ†ΎBΓ—BE^{X}_{G}\upharpoonright B\times B is classifiable by countable structures,

  2. 2.

    𝔼0β„•β‰°BEGX{\mathbbm{E}}_{0}^{{\mathbbm{N}}}\not\leq_{B}E^{X}_{G}.

References

  • [All20] S.Β Allison. Non-archimedean tsi polish groups and their potential Borel complexity spectrum. arXiv:2010.05085, 2020.
  • [AP20] S.Β Allison and A.Β Panagiotopoulos. Dynamical obstructions to classification by (co)homology and other tsi-group invariants. arXiv:2004.07409, 2020.
  • [BK96] H.Β Becker and A.Β S. Kechris. The descriptive set theory of Polish group actions, volume 232 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1996.
  • [DG17] Longyun Ding and SuΒ Gao. Non-archimedean abelian polish groups and their actions. Advances in Mathematics, 307:312–343, 2017.
  • [Far01a] I.Β Farah. Basis problem for turbulent actions. i. tsirelson submeasures. Ann. Pure Appl. Logic, 108(1–3):189–203, 2001.
  • [Far01b] I.Β Farah. Basis problem for turbulent actions. ii. c0c_{0}-equalities. Proc. London Math. Soc., 82(1):1–30, 2001.
  • [Gao09] SuΒ Gao. Invariant descriptive set theory, volume 293 of Pure and Applied Mathematics (Boca Raton). CRC Press, Boca Raton, FL, 2009.
  • [Gre19] J.Β GrebΓ­k. Definable graphs. PhD thesis, https://dspace.cuni.cz/handle/20.500.11956/123575, 2019.
  • [Gre20] J.Β GrebΓ­k. Οƒ\sigma-lacunary actions of Polish groups. Proc. Amer. Math. Soc., 148:3583–3589, 2020.
  • [Hjo00a] G.Β Hjorth. Actions by the classical banach spaces. J. Symbolic Logic, 65(1):392–420, 2000.
  • [Hjo00b] G.Β Hjorth. Classification and orbit equivalence relations, volumeΒ 75 of Math. Surveys Monogr. American Mathematical Society, Providence, RI, 2000.
  • [HK01] Greg Hjorth and AlexanderΒ S. Kechris. Recent developments in the theory of Borel reducibility. Fund. Math., 170(1–2):21–52, 2001.
  • [Kan08] V.Β Kanovei. Borel equivalence relations. Structure and classification, volumeΒ 44 of University Lecture Series. American Mathematical Society, Providence, RI, 2008.
  • [Kec92] A.Β S. Kechris. Countable sections for locally compact group actions. Ergodic Theory and Dynamical Systems, 12(2):283–295, 1992.
  • [Kec95] AlexanderΒ S. Kechris. Classical descriptive set theory, volume 156 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
  • [Kec02] A.Β S. Kechris. Actions of Polish groups and classification problems, volume 262 of Analysis and logic (Mons, 1997), 115–-187, London Math. Soc. Lecture Note Ser.,. Cambridge University Press, Cambridge, 2002.
  • [Kec21] A.Β S. Kechris. The theory of countable Borel equivalence relations. http://www.math.caltech.edu/Β kechris/papers/lectures%20on%20CBER05book.pdf, 2021.
  • [KST99] A.Β S. Kechris, S.Β Solecki, and S.Β Todorcevic. Borel chromatic numbers. Adv. Math., 141(1):1–44, 1999.
  • [Mila] B.Β D. Miller. A generalization of the 𝔾0{\mathbbm{G}}_{0} dichotomy and a strengthening of the 𝔼3{\mathbbm{E}}_{3} dichotomy. To appear in the Journal of Mathematical Logic.
  • [Milb] B.Β D. Miller. An introduction to classicaldescriptive set theory. https://homepage.univie.ac.at/benjamin.miller/lecturenotes/descriptivesettheory.pdf.
  • [Mil12] B.Β D. Miller. The graph-theoretic approach to descriptive set theory. Bull. Symbolic Logic, 18(4):554–575, 2012.

Appendix A Technical results

Lemma A.1.

Let XX be a Polish GG-space and CβŠ†XC\subseteq X be a GG-lg comeager set such that for every x∈Cx\in C there is an open neighborhood Ξ”\Delta of 1G1_{G} such that Cβˆ©Ξ”β‹…x¯∩CβŠ†[x]EGX\overline{C\cap\Delta\cdot x}\cap C\subseteq[x]_{E^{X}_{G}}. Then the Polish topology on XX is GG-bounded.

Proof.

The proof consists of three steps.

(I). Let x∈Cx\in C and Ξ”\Delta be any neighborhood of 1G1_{G}. We show that

Cβˆ©Ξ”β‹…xΒ―=Ξ”β‹…xΒ―.\overline{C\cap\Delta\cdot x}=\overline{\Delta\cdot x}.

Let yβˆˆΞ”β‹…xΒ―y\in\overline{\Delta\cdot x}. Then there are (gn)nβˆˆβ„•βŠ†Ξ”(g_{n})_{n\in{\mathbbm{N}}}\subseteq\Delta such that gnβ‹…xβ†’yg_{n}\cdot x\to y. Fix a decreasing sequence (Un)nβˆˆβ„•(U_{n})_{n\in{\mathbbm{N}}} of open subsets of XX such that {y}=β‹‚nβˆˆβ„•Un\{y\}=\bigcap_{n\in{\mathbbm{N}}}U_{n}. We may assume (after passing to a subsequence) that gnβ‹…x∈Ung_{n}\cdot x\in U_{n} for every nβˆˆβ„•n\in{\mathbbm{N}}. Note that G​(x,Un)G(x,U_{n}) is an open subset of GG because the action is continuous. Moreover, we have that the open set Ξ”βˆ©G​(x,Un)\Delta\cap G(x,U_{n}) is non-empty, since it contains gng_{n}. Now the assumption that CC is GG-lg comeager guarantees that G​(x,C)βˆ©Ξ”βˆ©G​(x,Un)β‰ βˆ…G(x,C)\cap\Delta\cap G(x,U_{n})\not=\emptyset. Pick gnβ€²βˆˆG​(x,C)βˆ©Ξ”βˆ©G​(x,Un)g^{\prime}_{n}\in G(x,C)\cap\Delta\cap G(x,U_{n}). Then we have gnβ€²βˆˆΞ”g^{\prime}_{n}\in\Delta and gnβ€²β‹…x∈C∩Ung^{\prime}_{n}\cdot x\in C\cap U_{n}. This shows that gnβ€²β‹…xβ†’yg^{\prime}_{n}\cdot x\to y and consequently that y∈Cβˆ©Ξ”β‹…xΒ―y\in\overline{C\cap\Delta\cdot x}.

(II). Let x∈Cx\in C and Ξ”β€²βŠ†Ξ”\Delta^{\prime}\subseteq\Delta be open neighborhoods of 1G1_{G} such that Cβˆ©Ξ”β‹…x¯∩CβŠ†[x]EGX\overline{C\cap\Delta\cdot x}\cap C\subseteq[x]_{E^{X}_{G}} and Ξ”β€²β‹…Ξ”β€²βŠ†Ξ”\Delta^{\prime}\cdot\Delta^{\prime}\subseteq\Delta. We show that

Cβˆ©Ξ”β€²β‹…xΒ―βŠ†[x]EGX.\overline{C\cap\Delta^{\prime}\cdot x}\subseteq[x]_{E^{X}_{G}}.

Let (gn)nβˆˆβ„•βŠ†Ξ”β€²(g_{n})_{n\in{\mathbbm{N}}}\subseteq\Delta^{\prime} be such that gnβ‹…x∈Cg_{n}\cdot x\in C and gnβ‹…xβ†’yg_{n}\cdot x\to y. Note that yy need not be an element of CC, but since CC is GG-lg comeager set we have G​(y,Ξ”β€²)G(y,\Delta^{\prime}) is comeager in Ξ”β€²\Delta^{\prime}. Pick g∈G​(y,Ξ”β€²)g\in G(y,\Delta^{\prime}). Then we have y0=gβ‹…y∈Cy_{0}=g\cdot y\in C. It is clearly enough to show that y0∈[x]EGXy_{0}\in[x]_{E^{X}_{G}}. We have gβ‹…gnβ‹…xβ†’gβ‹…y=y0g\cdot g_{n}\cdot x\to g\cdot y=y_{0} because gg acts by homeomorphism on XX, and gβ‹…gnβˆˆΞ”β€²β‹…Ξ”β€²βŠ†Ξ”g\cdot g_{n}\in\Delta^{\prime}\cdot\Delta^{\prime}\subseteq\Delta for every nβˆˆβ„•n\in{\mathbbm{N}}. This shows that y0βˆˆΞ”β‹…x¯∩Cy_{0}\in\overline{\Delta\cdot x}\cap C. By step (I) and the assumption we have

y0βˆˆΞ”β‹…x¯∩C=C∩Vβ‹…x¯∩CβŠ†[x]EGXy_{0}\in\overline{\Delta\cdot x}\cap C=\overline{C\cap V\cdot x}\cap C\subseteq[x]_{E^{X}_{G}}

and the claim follows.

(III). Let x∈Xx\in X. There is x0∈Cx_{0}\in C and g∈Gg\in G such that gβ‹…x0=xg\cdot x_{0}=x because CC is GG-lg comeager. By (I), (II) and the assumption on CC there is an open neighborhood Ξ”0\Delta_{0} of 1G1_{G} such that Ξ”0β‹…x0Β―βŠ†[x0]EGX\overline{\Delta_{0}\cdot x_{0}}\subseteq[x_{0}]_{E^{X}_{G}}. Let Ξ”\Delta be an open neighborhood of 1G1_{G} such that gβˆ’1​Δ​gβŠ†Ξ”0g^{-1}\Delta g\subseteq\Delta_{0}. Let (gn)nβˆˆβ„•βŠ†Ξ”(g_{n})_{n\in{\mathbbm{N}}}\subseteq\Delta be such that gnβ‹…xβ†’y∈Xg_{n}\cdot x\to y\in X. Since gβˆ’1g^{-1} acts on XX by homeomorphism we have that

(gβˆ’1β‹…gnβ‹…g)β‹…x0=gβˆ’1β‹…(gnβ‹…x)β†’gβˆ’1β‹…y.\left(g^{-1}\cdot g_{n}\cdot g\right)\cdot x_{0}=g^{-1}\cdot(g_{n}\cdot x)\to g^{-1}\cdot y.

This implies that gβˆ’1β‹…y∈[x0]EGXg^{-1}\cdot y\in[x_{0}]_{E^{X}_{G}} and consequently that y∈[x]EGXy\in[x]_{E^{X}_{G}}. ∎

Lemma A.2.

Let YY be a Polish HH-space and XX be a Polish GG-space such that EGXE^{X}_{G} is Borel. Suppose that Ο†:Yβ†’X\varphi:Y\to X is a Borel homomorphism from EHYE^{Y}_{H} to EGXE^{X}_{G}, i.e., (y0,y1)∈EHYβ‡’(φ​(y0),φ​(y1))∈EGX(y_{0},y_{1})\in E^{Y}_{H}\ \Rightarrow\ (\varphi(y_{0}),\varphi(y_{1}))\in E^{X}_{G}. Then there is a Borel HH-lg comeager set CβŠ†YC\subseteq Y such that

  • β€’

    for every y∈Cy\in C and every Ξ”βŠ†G\Delta\subseteq G, open neighborhood of 1G1_{G}, there is Ξ”β€²βŠ†H\Delta^{\prime}\subseteq H, an open neighborhood of 1H1_{H}, such that

    φ​(hβ‹…y)βˆˆΞ”β‹…Ο†β€‹(y)\varphi(h\cdot y)\in\Delta\cdot\varphi(y)

    whenever hβˆˆΞ”β€²h\in\Delta^{\prime} and hβ‹…y∈Ch\cdot y\in C.

Proof.

Fix an open neighborhood Ξ”βŠ†G\Delta\subseteq G of 1G1_{G}. Recall that the assumption that that EGXE^{X}_{G} is Borel together with [BK96, TheoremΒ 7.1.2] gives that RΞ”XR^{X}_{\Delta} is a Borel relation. Put

Sβ€²=(Ο†βˆ’1Γ—Ο†βˆ’1)​(RVX)βŠ†YΓ—YS^{\prime}=\left(\varphi^{-1}\times\varphi^{-1}\right)\left(R^{X}_{V}\right)\subseteq Y\times Y

and

S={(y,h)∈YΓ—H:(y,hβ‹…y)∈Sβ€²}.S=\left\{(y,h)\in Y\times H:(y,h\cdot y)\in S^{\prime}\right\}.

It follows that Sβ€²S^{\prime} and SS are Borel sets.

Let (Ξ”kβ€²)kβˆˆβ„•(\Delta^{\prime}_{k})_{k\in{\mathbbm{N}}} be an open neighborhood basis at 1H1_{H}. Define

Ck,Ξ”={y∈Y:βˆ€βˆ—hβˆˆΞ”k′​(y,h)∈S}.C_{k,\Delta}=\left\{y\in Y:\forall^{*}h\in\Delta^{\prime}_{k}\ (y,h)\in S\right\}.

It follows from [Kec95, TheoremΒ 16.1] that CΞ”=⋃kCk,Ξ”C_{\Delta}=\bigcup_{k}C_{k,\Delta} is a Borel subset of YY.

We show that CΞ”C_{\Delta} is an HH-lg comeager set. To this end pick y∈Yy\in Y and suppose that H​(y,CΞ”)H(y,C_{\Delta}) is not comeager in HH. By [Kec95, PropositionΒ 8.26] there is an open set UβŠ†HU\subseteq H such that H​(y,CΞ”)H(y,C_{\Delta}) is meager in UU. Let x=φ​(y)x=\varphi(y) and pick a sequence (gm)mβˆˆβ„•(g_{m})_{m\in{\mathbbm{N}}} such that ⋃mβˆˆβ„•Ξ”~β‹…gm=G\bigcup_{m\in{\mathbbm{N}}}\tilde{\Delta}\cdot g_{m}=G where Ξ”~β‹…(Ξ”~)βˆ’1βŠ†Ξ”\tilde{\Delta}\cdot(\tilde{\Delta})^{-1}\subseteq\Delta. We have ⋃mβˆˆβ„•Ξ”~β‹…gmβ‹…x=[x]EGX\bigcup_{m\in{\mathbbm{N}}}\tilde{\Delta}\cdot g_{m}\cdot x=[x]_{E^{X}_{G}} and

[y]EHYβŠ†β‹ƒmβˆˆβ„•Ο†βˆ’1​(Ξ”~β‹…gmβ‹…x)[y]_{E^{Y}_{H}}\subseteq\bigcup_{m\in{\mathbbm{N}}}\varphi^{-1}(\tilde{\Delta}\cdot g_{m}\cdot x)

because Ο†\varphi is a homomorphism from EHYE^{Y}_{H} to EGXE^{X}_{G}. It follows again from [Kec95, PropositionΒ 8.26] that there is mβˆˆβ„•m\in{\mathbbm{N}} and an open set Uβ€²βŠ†UU^{\prime}\subseteq U such that H​(y,Ο†βˆ’1​(Ξ”~β‹…gmβ‹…x))H(y,\varphi^{-1}(\tilde{\Delta}\cdot g_{m}\cdot x)) is comeager in Uβ€²U^{\prime}. Let h∈Hh\in H and kβˆˆβ„•k\in{\mathbbm{N}} be such that h∈Uβ€²βˆ©Ο†βˆ’1​(Ξ”~β‹…gmβ‹…x)βˆ–H​(y,CΞ”)h\in U^{\prime}\cap\varphi^{-1}(\tilde{\Delta}\cdot g_{m}\cdot x)\setminus H(y,C_{\Delta}) and Ξ”kβ€²β‹…hβŠ†Uβ€²\Delta^{\prime}_{k}\cdot h\subseteq U^{\prime}. We show that z=hβ‹…y∈Ck,Ξ”z=h\cdot y\in C_{k,\Delta} and that contradicts the choice of hh. First note that A={aβˆˆΞ”kβ€²:aβ‹…zβˆˆΟ†βˆ’1​(Ξ”~β‹…gmβ‹…x)}A=\{a\in\Delta^{\prime}_{k}:a\cdot z\in\varphi^{-1}(\tilde{\Delta}\cdot g_{m}\cdot x)\} is comeager in Ξ”kβ€²\Delta^{\prime}_{k}. This is because

Aβ‹…h=Ξ”kβ€²β‹…h∩H​(y,Ο†βˆ’1​(Ξ”~β‹…gmβ‹…x))A\cdot h=\Delta^{\prime}_{k}\cdot h\cap H(y,\varphi^{-1}(\tilde{\Delta}\cdot g_{m}\cdot x))

and the latter is comaeger in Ξ”kβ€²β‹…h\Delta^{\prime}_{k}\cdot h since Ξ”kβ€²β‹…h\Delta^{\prime}_{k}\cdot h is an open subset of Uβ€²U^{\prime}. Pick a∈Aa\in A. We have φ​(z),φ​(aβ‹…z)βˆˆΞ”~β‹…gmβ‹…x\varphi(z),\varphi(a\cdot z)\in\tilde{\Delta}\cdot g_{m}\cdot x by the definition of AA and hh. Therefore there are r,sβˆˆΞ”~r,s\in\tilde{\Delta} such that

sβ‹…rβˆ’1⋅φ​(z)=sβ‹…gmβ‹…(rβ‹…gm)βˆ’1​φ​(z)=sβ‹…gmβ‹…x=φ​(aβ‹…z)s\cdot r^{-1}\cdot\varphi(z)=s\cdot g_{m}\cdot(r\cdot g_{m})^{-1}\varphi(z)=s\cdot g_{m}\cdot x=\varphi(a\cdot z)

This shows that (φ​(z),φ​(aβ‹…z))∈RΞ”X(\varphi(z),\varphi(a\cdot z))\in R^{X}_{\Delta} and consequently (z,a)∈S(z,a)\in S. Altogether, we have that CΞ”C_{\Delta} is a Borel HH-lg comeager set.

Let (Ξ”i)iβˆˆβ„•(\Delta_{i})_{i\in{\mathbbm{N}}} be an open basis at 1G1_{G} and put

C=β‹‚iβˆˆβ„•CΞ”i.C=\bigcap_{i\in{\mathbbm{N}}}C_{\Delta_{i}}.

It follows from the previous paragraph that CC is a Borel HH-lg comeager set. Let y∈Cy\in C and Ξ”βŠ†G\Delta\subseteq G be an open neighborhood of 1G1_{G}. Take iβˆˆβ„•i\in{\mathbbm{N}} such that (Ξ”i)βˆ’1β‹…Ξ”iβŠ†Ξ”(\Delta_{i})^{-1}\cdot\Delta_{i}\subseteq\Delta and kβˆˆβ„•k\in{\mathbbm{N}} such that y∈Ck,Ξ”iy\in C_{k,\Delta_{i}}. Pick hβˆˆΞ”kβ€²h\in\Delta^{\prime}_{k} such that hβ‹…y∈Ch\cdot y\in C and lβˆˆβ„•l\in{\mathbbm{N}} such that hβ‹…y∈Cl,Ξ”ih\cdot y\in C_{l,\Delta_{i}}. We show that φ​(hβ‹…y)βˆˆΞ”β‹…Ο†β€‹(y)\varphi(h\cdot y)\in\Delta\cdot\varphi(y).

Write A={sβˆˆΞ”kβ€²:φ​(sβ‹…y)βˆˆΞ”i⋅φ​(y)}A=\{s\in\Delta^{\prime}_{k}:\varphi(s\cdot y)\in\Delta_{i}\cdot\varphi(y)\} and B={rβˆˆΞ”lβ€²:φ​(rβ‹…hβ‹…y)βˆˆΞ”i⋅φ​(hβ‹…y)}B=\{r\in\Delta^{\prime}_{l}:\varphi(r\cdot h\cdot y)\in\Delta_{i}\cdot\varphi(h\cdot y)\}. By the definition we have y∈Ck,Ξ”iy\in C_{k,\Delta_{i}} and hβ‹…y∈Cl,Ξ”ih\cdot y\in C_{l,\Delta_{i}}, and consequently AA is comeager in Ξ”kβ€²\Delta^{\prime}_{k} and BB is comeager in Ξ”lβ€²\Delta^{\prime}_{l}. This implies that A,Bβ‹…hA,B\cdot h are both comeager in Ξ”kβ€²βˆ©Ξ”lβ€²β‹…h\Delta^{\prime}_{k}\cap\Delta^{\prime}_{l}\cdot h since hβˆˆΞ”kβ€²h\in\Delta^{\prime}_{k} and Ξ”kβ€²,Ξ”lβ€²\Delta^{\prime}_{k},\Delta^{\prime}_{l} are open sets. Let a∈A∩Bβ‹…ha\in A\cap B\cdot h. Then we have φ​(aβ‹…y)βˆˆΞ”i⋅φ​(y)\varphi(a\cdot y)\in\Delta_{i}\cdot\varphi(y) and φ​(aβ‹…y)=φ​((aβ‹…hβˆ’1)β‹…hβ‹…y)βˆˆΞ”i⋅φ​(hβ‹…y)\varphi(a\cdot y)=\varphi((a\cdot h^{-1})\cdot h\cdot y)\in\Delta_{i}\cdot\varphi(h\cdot y). Consequently, Ξ”i⋅φ​(hβ‹…y)βˆ©Ξ”i⋅φ​(y)β‰ βˆ…\Delta_{i}\cdot\varphi(h\cdot y)\cap\Delta_{i}\cdot\varphi(y)\not=\emptyset. But that implies

φ​(hβ‹…y)∈(Ξ”i)βˆ’1β‹…Ξ”i⋅φ​(y)βŠ†Ξ”β‹…Ο†β€‹(y)\varphi(h\cdot y)\in(\Delta_{i})^{-1}\cdot\Delta_{i}\cdot\varphi(y)\subseteq\Delta\cdot\varphi(y)

and the proof is finished. ∎

Lemma A.3.

Let YY be a Polish HH-space and XX be a Polish space. Suppose that Ο†:Yβ†’X\varphi:Y\to X is a Borel map. Then there is a HH-lg comeager set CβŠ†YC\subseteq Y and a finer HH-Polish topology Ο„\tau on YY such that

  • β€’

    Ο†β†ΎC\varphi\upharpoonright C is Ο„\tau-continuous.

Proof.

Let UβŠ†XU\subseteq X be an open set. We find a finer HH-Polish topology Ο„U\tau_{U} and a Borel HH-lg comeager set CUC_{U} such that Ο†βˆ’1​(U)\varphi^{-1}(U) is relatively open in CUC_{U}, i.e., Ο†βˆ’1​(U)∩CU=OU∩CU\varphi^{-1}(U)\cap C_{U}=O_{U}\cap C_{U} for some OUβˆˆΟ„UO_{U}\in\tau_{U}. Once we have this we finish the proof as follows. Fix some open basis (Ur)rβˆˆβ„•(U_{r})_{r\in{\mathbbm{N}}} of XX. Define C=β‹‚rβˆˆβ„•CUrC=\bigcap_{r\in{\mathbbm{N}}}C_{U_{r}} and Ο„\tau to be the topology generated by ⋃rβˆˆβ„•Ο„Ur\bigcup_{r\in{\mathbbm{N}}}\tau_{U_{r}}. It is easy to see that CC is a Borel HH-lg comeager set and using [Gao09, LemmaΒ 4.3.2] we have that Ο„\tau is a finer HH-Polish topology on YY. Moreover, for every rβˆˆβ„•r\in{\mathbbm{N}} we have OUrβˆˆΟ„UrβŠ†Ο„O_{U_{r}}\in\tau_{U_{r}}\subseteq\tau and

Ο†βˆ’1​(Ur)∩C=Ο†βˆ’1​(Ur)∩C∩CUr=OUr∩C∩CUr=OUr∩C,\varphi^{-1}(U_{r})\cap C=\varphi^{-1}(U_{r})\cap C\cap C_{U_{r}}=O_{U_{r}}\cap C\cap C_{U_{r}}=O_{U_{r}}\cap C,

thus showing that Ο†β†ΎC\varphi\upharpoonright C is Ο„\tau-continuous.

Let (Ξ”k)kβˆˆβ„•(\Delta_{k})_{k\in{\mathbbm{N}}} be an open neighborhood basis at 1H1_{H}. Define

  • β€’

    AU={yβˆˆΟ†βˆ’1​(U):βˆƒkβˆˆβ„•β€‹βˆ€βˆ—hβˆˆΞ”k​hβ‹…yβˆˆΟ†βˆ’1​(U)},A_{U}=\{y\in\varphi^{-1}(U):\exists k\in{\mathbbm{N}}\ \forall^{*}h\in\Delta_{k}\ h\cdot y\in\varphi^{-1}(U)\},

  • β€’

    BU={y∈Yβˆ–Ο†βˆ’1​(U):βˆƒkβˆˆβ„•β€‹βˆ€βˆ—hβˆˆΞ”k​hβ‹…y∈Yβˆ–Ο†βˆ’1​(U)},B_{U}=\{y\in Y\setminus\varphi^{-1}(U):\exists k\in{\mathbbm{N}}\ \forall^{*}h\in\Delta_{k}\ h\cdot y\in Y\setminus\varphi^{-1}(U)\},

  • β€’

    A~U={y∈Y:βˆƒkβˆˆβ„•β€‹βˆ€βˆ—hβˆˆΞ”k​hβ‹…yβˆˆΟ†βˆ’1​(U)},\widetilde{A}_{U}=\{y\in Y:\exists k\in{\mathbbm{N}}\ \forall^{*}h\in\Delta_{k}\ h\cdot y\in\varphi^{-1}(U)\},

  • β€’

    B~U={y∈Y:βˆƒkβˆˆβ„•β€‹βˆ€βˆ—hβˆˆΞ”k​hβ‹…y∈Yβˆ–Ο†βˆ’1​(U)}.\widetilde{B}_{U}=\{y\in Y:\exists k\in{\mathbbm{N}}\ \forall^{*}h\in\Delta_{k}\ h\cdot y\in Y\setminus\varphi^{-1}(U)\}.

It follows from [Kec95, TheoremΒ 16.1] that all the sets are Borel. Moreover, we have AUβŠ†A~UA_{U}\subseteq\widetilde{A}_{U}, BUβŠ†B~UB_{U}\subseteq\widetilde{B}_{U}, AUβŠ†Ο†βˆ’1​(U)A_{U}\subseteq\varphi^{-1}(U) and AU∩B~U=βˆ…=BU∩A~UA_{U}\cap\widetilde{B}_{U}=\emptyset=B_{U}\cap\widetilde{A}_{U}. The equalities follow from the fact that if, for example, y∈AU∩B~Uy\in A_{U}\cap\widetilde{B}_{U}, then there is kβˆˆβ„•k\in{\mathbbm{N}} such that H​(y,Ο†βˆ’1​(U))H(y,\varphi^{-1}(U)) and H​(y,Yβˆ–Ο†βˆ’1​(U))H(y,Y\setminus\varphi^{-1}(U)) are both comeager in Ξ”k\Delta_{k}. This gives hβˆˆΞ”kh\in\Delta_{k} such that hβ‹…yβˆˆΟ†βˆ’1​(U)∩(Yβˆ–Ο†βˆ’1​(U))h\cdot y\in\varphi^{-1}(U)\cap(Y\setminus\varphi^{-1}(U)) and that is a contradiction.

Put CU=AUβˆͺBUC_{U}=A_{U}\cup B_{U}. We show that CUC_{U} is a Borel HH-lg comeager set and that there is a finer HH-Polish topology Ο„U\tau_{U} such that A~U,B~UβˆˆΟ„U\widetilde{A}_{U},\widetilde{B}_{U}\in\tau_{U}. First we demonstrate how this finishes the proof. Put OU=A~UO_{U}=\widetilde{A}_{U}. Then we have

OU∩CU=AUβŠ†Ο†βˆ’1​(U)∩CU=Ο†βˆ’1​(U)∩(AUβˆͺBU)=AU=OU∩CUO_{U}\cap C_{U}=A_{U}\subseteq\varphi^{-1}(U)\cap C_{U}=\varphi^{-1}(U)\cap(A_{U}\cup B_{U})=A_{U}=O_{U}\cap C_{U}

by the previous paragraph and the fact that BUβˆ©Ο†βˆ’1​(U)=βˆ…B_{U}\cap\varphi^{-1}(U)=\emptyset. Hence, Ο†βˆ’1​(U)\varphi^{-1}(U) is relatively Ο„U\tau_{U}-open in CUC_{U}.

First we show that CUC_{U} is an HH-lg comeager set. Let y∈Yy\in Y and suppose that H​(y,CU)H(y,C_{U}) is not comeager in HH. By [Kec95, PropositionΒ 8.26] there is an open set WβŠ†HW\subseteq H such that H​(y,CU)H(y,C_{U}) is meager in WW. Note that WβŠ†H​(y,Ο†βˆ’1​(U))βˆͺH​(y,Yβˆ–Ο†βˆ’1​(U))W\subseteq H(y,\varphi^{-1}(U))\cup H(y,Y\setminus\varphi^{-1}(U)). Therefore there is an open set Wβ€²βŠ†WW^{\prime}\subseteq W such that one of H​(y,Ο†βˆ’1​(U)),H​(y,Yβˆ–Ο†βˆ’1​(U))H(y,\varphi^{-1}(U)),H(y,Y\setminus\varphi^{-1}(U)) is comeager in Wβ€²W^{\prime}. Suppose, for example, that H​(y,Yβˆ–Ο†βˆ’1​(U))H(y,Y\setminus\varphi^{-1}(U)) is comeager in Wβ€²W^{\prime} (the other case is similar). Since Wβ€²W^{\prime} is open we find

a∈H​(y,Yβˆ–Ο†βˆ’1​(U))∩Wβ€²βˆ–H​(y,CU)a\in H(y,Y\setminus\varphi^{-1}(U))\cap W^{\prime}\setminus H(y,C_{U})

and kβˆˆβ„•k\in{\mathbbm{N}} such that Ξ”kβ‹…aβŠ†Wβ€²\Delta_{k}\cdot a\subseteq W^{\prime}. The set P={hβˆˆΞ”k:hβ‹…aβ‹…y∈Yβˆ–Ο†βˆ’1​(U)}P=\{h\in\Delta_{k}:h\cdot a\cdot y\in Y\setminus\varphi^{-1}(U)\} is comeager in Ξ”k\Delta_{k}. This is because

Pβ‹…a=Ξ”kβ‹…a∩H​(y,Yβˆ–Ο†βˆ’1​(U))P\cdot a=\Delta_{k}\cdot a\cap H(y,Y\setminus\varphi^{-1}(U))

and the latter set is comeager in Ξ”kβ‹…a\Delta_{k}\cdot a because Ξ”kβ‹…aβŠ†Wβ€²\Delta_{k}\cdot a\subseteq W^{\prime}. Note that hβ‹…aβ‹…y∈Yβˆ–Ο†βˆ’1​(U)h\cdot a\cdot y\in Y\setminus\varphi^{-1}(U) whenever h∈Ph\in P and aβ‹…y∈Yβˆ–Ο†βˆ’1​(U)a\cdot y\in Y\setminus\varphi^{-1}(U) by the choice of aa. We conclude that aβ‹…y∈BUa\cdot y\in B_{U} and that is a contradiction with aβˆ‰H​(y,CU)a\not\in H(y,C_{U}).

Next we show that there is a finer HH-Polish topology Ο„U\tau_{U} such that A~U,B~UβˆˆΟ„U\widetilde{A}_{U},\widetilde{B}_{U}\in\tau_{U}.

Claim A.4.

Let RβŠ†YR\subseteq Y be a Borel set. Then there is a finer HH-Polish topology Οƒ\sigma such that

R~={y∈Y:βˆƒkβˆˆβ„•β€‹βˆ€βˆ—hβˆˆΞ”k​hβ‹…y∈R}βˆˆΟƒ.\tilde{R}=\{y\in Y:\exists k\in{\mathbbm{N}}\ \forall^{*}h\in\Delta_{k}\ h\cdot y\in R\}\in\sigma.
Proof.

Recall [Gao09, TheoremΒ 4.3.3]

  • (I)

    If ZβŠ†YZ\subseteq Y is a Borel set and WβŠ†GW\subseteq G is open, then there is a finer HH-Polish topology Οƒβ€²\sigma^{\prime} such that

    {y∈Y:βˆƒβˆ—h∈W​hβ‹…y∈Z}βˆˆΟƒβ€².\{y\in Y:\exists^{*}h\in W\ h\cdot y\in Z\}\in\sigma^{\prime}.

Define

Rk={y∈Y:βˆ€βˆ—hβˆˆΞ”k​hβ‹…y∈R}R_{k}=\{y\in Y:\forall^{*}h\in\Delta_{k}\ h\cdot y\in R\}

for kβˆˆβ„•k\in{\mathbbm{N}}. Then RkR_{k} is a Borel set by [Kec95, TheoremΒ 16.1] and R~=⋃kβˆˆβ„•Rk\tilde{R}=\bigcup_{k\in{\mathbbm{N}}}R_{k}. Apply (I) above for RkR_{k} and Ξ”k+1\Delta_{k+1} to find a finer HH-Polish topology Οƒk\sigma_{k} such that

Sk={y∈Y:βˆƒβˆ—hβˆˆΞ”k+1​hβ‹…y∈Rk}βˆˆΟƒk.S_{k}=\{y\in Y:\exists^{*}h\in\Delta_{k+1}\ h\cdot y\in R_{k}\}\in\sigma_{k}.

Set Οƒ\sigma to be the topology generated by ⋃kβˆˆβ„•Οƒk\bigcup_{k\in{\mathbbm{N}}}\sigma_{k}. Then Οƒ\sigma is a finer HH-Polish topology by [Gao09, LemmaΒ 4.3.2] and S=⋃kβˆˆβ„•SkβˆˆΟƒS=\bigcup_{k\in{\mathbbm{N}}}S_{k}\in\sigma. To finish the proof we show that S=R~S=\tilde{R}.

Let y∈Sky\in S_{k}. By the definition we have that there is hβˆˆΞ”k+1h\in\Delta_{k+1} such that hβ‹…y=z∈Rkh\cdot y=z\in R_{k} and consequently that H​(z,R)H(z,R) is comeager in Ξ”k\Delta_{k}. Since Ξ”k+1β‹…(Ξ”k+1)βˆ’1βŠ†Ξ”k\Delta_{k+1}\cdot(\Delta_{k+1})^{-1}\subseteq\Delta_{k} we have that Ξ”k+1β‹…hβˆ’1βŠ†Ξ”k\Delta_{k+1}\cdot h^{-1}\subseteq\Delta_{k}. This gives that

Ξ”k+1β‹…hβˆ’1∩H​(y,R)β‹…hβˆ’1=Ξ”k+1β‹…hβˆ’1∩H​(z,R)\Delta_{k+1}\cdot h^{-1}\cap H(y,R)\cdot h^{-1}=\Delta_{k+1}\cdot h^{-1}\cap H(z,R)

is comeager in Ξ”k+1β‹…hβˆ’1\Delta_{k+1}\cdot h^{-1} and therefore H​(y,R)H(y,R) is comeager in Ξ”k+1\Delta_{k+1}. Now it is easy to see that y∈Rk+1βŠ†R~y\in R_{k+1}\subseteq\tilde{R}.

Suppose now that y∈Rky\in R_{k}. Then we have y∈Rk+1y\in R_{k+1} and H​(y,R)H(y,R) is comeager in Ξ”k\Delta_{k}. Pick hβˆˆΞ”k+1h\in\Delta_{k+1}. Then the set

Ξ”k+1β‹…h∩H​(hβ‹…y,R)β‹…h=Ξ”k+1β‹…h∩H​(y,R)\Delta_{k+1}\cdot h\cap H(h\cdot y,R)\cdot h=\Delta_{k+1}\cdot h\cap H(y,R)

is comeager in Ξ”k+1β‹…h\Delta_{k+1}\cdot h because Ξ”k+1β‹…hβŠ†Ξ”k\Delta_{k+1}\cdot h\subseteq\Delta_{k} and consequently H​(hβ‹…y,R)H(h\cdot y,R) is comeager in Ξ”k+1\Delta_{k+1}. This shows that hβ‹…y∈Rk+1h\cdot y\in R_{k+1} for every hβˆˆΞ”k+1h\in\Delta_{k+1}. Consequently, y∈Sk+1βŠ†Sy\in S_{k+1}\subseteq S and that finishes the proof. ∎

Note that we can apply ClaimΒ A.4 to both sets A~U\widetilde{A}_{U} and B~U\widetilde{B}_{U} to get finer HH-Polish topologies Οƒ0\sigma_{0} and Οƒ1\sigma_{1} such that A~UβˆˆΟƒ0\widetilde{A}_{U}\in\sigma_{0} and B~UβˆˆΟƒ1\widetilde{B}_{U}\in\sigma_{1}. Then by [Gao09, LemmaΒ 4.3.2] we have that the topology Ο„U\tau_{U} that is generated by Οƒ0βˆͺΟƒ1\sigma_{0}\cup\sigma_{1} is a finer HH-Polish topology that contains A~U\widetilde{A}_{U}, B~U\widetilde{B}_{U} and the proof is finished. ∎

Lemma A.5.

Let XX be a Polish GG-space and (Ak)kβˆˆβ„•(A_{k})_{k\in{\mathbbm{N}}} be a sequence of pairwise disjoint Borel subsets of XX such that ⋃kβˆˆβ„•Ak=X\bigcup_{k\in{\mathbbm{N}}}A_{k}=X Then there is a Borel GG-lg comeager set CβŠ†XC\subseteq X such that for every kβˆˆβ„•k\in{\mathbbm{N}} and x∈C∩Akx\in C\cap A_{k} there is an open neighborhood Ξ”\Delta of 1G1_{G} such that

Cβˆ©Ξ”β‹…xβŠ†Ak.C\cap\Delta\cdot x\subseteq A_{k}.
Proof.

Define a Borel map Ο†:Xβ†’2β„•\varphi:X\to 2^{\mathbbm{N}} where φ​(x)​(k)=1\varphi(x)(k)=1 if and only if x∈Akx\in A_{k}. Then LemmaΒ A.3 gives a Borel GG-lg comeager set CβŠ†XC\subseteq X and a finer GG-Polish topology Ο„\tau on XX such that Ο†β†ΎC\varphi\upharpoonright C is Ο„\tau-continuous.

Let kβˆˆβ„•k\in{\mathbbm{N}} and x∈C∩Akx\in C\cap A_{k}. Since the map Ο†β†ΎC\varphi\upharpoonright C is Ο„\tau-continuous there must be Ο„\tau-open set UU such that C∩Ak=U∩CC\cap A_{k}=U\cap C. Note that Ο„\tau is a GG-Polish topology and therefore we find Ξ”\Delta open neighborhood of 1G1_{G} such that Ξ”β‹…xβŠ†U\Delta\cdot x\subseteq U. Altogether we have Cβˆ©Ξ”β‹…xβŠ†C∩U=C∩AkβŠ†AkC\cap\Delta\cdot x\subseteq C\cap U=C\cap A_{k}\subseteq A_{k} and the proof is finished. ∎

Lemma A.6.

Let GG be a tsi Polish group, XX be a Polish GG-space and AA be a β„‹k+2,m\mathcal{H}_{k+2,m}-independent analytic subset of XX for some k,mβˆˆβ„•k,m\in{\mathbbm{N}}. Then there is a Borel GG-invariant set BβŠ†XB\subseteq X such that AβŠ†BA\subseteq B and a sequence (Bβ„“)β„“βˆˆβ„•(B_{\ell})_{\ell\in{\mathbbm{N}}} of β„‹k,m+2\mathcal{H}_{k,m+2}-independent Borel subsets of XX such that β‹ƒβ„“βˆˆβ„•Bβ„“=B\bigcup_{\ell\in{\mathbbm{N}}}B_{\ell}=B.

Proof.

We may assume that k+2≀mk+2\leq m. Define

Aβ€²={x∈X:βˆƒgβˆˆΞ”m+2​gβ‹…x∈A}.A^{\prime}=\left\{x\in X:\exists g\in\Delta_{m+2}\ g\cdot x\in A\right\}.

Then it is easy to see that Aβ€²A^{\prime} is an analytic subset of XX. Let x∈π’₯​(Ξ”m+2)∩(Aβ€²)<β„•x\in\mathcal{J}(\Delta_{m+2})\cap(A^{\prime})^{<{\mathbbm{N}}}. Pick any y∈A<β„•y\in A^{<{\mathbbm{N}}} such that |x|=|y||x|=|y| and xiβˆˆΞ”m+2β‹…yix_{i}\in\Delta_{m+2}\cdot y_{i} for every i<|x|i<|x|. Then we have

yi+1βˆˆΞ”m+2βˆ’1β‹…xi+1βŠ†Ξ”m+2βˆ’1β‹…Ξ”m+2β‹…xiβŠ†Ξ”m+2βˆ’1β‹…Ξ”m+2β‹…Ξ”m+2β‹…yiβŠ†Ξ”mβ‹…yiy_{i+1}\in\Delta^{-1}_{m+2}\cdot x_{i+1}\subseteq\Delta^{-1}_{m+2}\cdot\Delta_{m+2}\cdot x_{i}\subseteq\Delta^{-1}_{m+2}\cdot\Delta_{m+2}\cdot\Delta_{m+2}\cdot y_{i}\subseteq\Delta_{m}\cdot y_{i}

for every i<|y|βˆ’1i<|y|-1. The set AA is β„‹k+2,m\mathcal{H}_{k+2,m}-independent and that gives y|y|βˆ’1βˆˆΞ”k+2β‹…y0y_{|y|-1}\in\Delta_{k+2}\cdot y_{0}. We have

x|x|βˆ’1βˆˆΞ”m+2β‹…y|y|βˆ’1βŠ†Ξ”m+2β‹…Ξ”k+2β‹…y0βŠ†Ξ”m+2β‹…Ξ”k+2β‹…Ξ”m+2βˆ’1β‹…x0βŠ†Ξ”k+1β‹…x0x_{|x|-1}\in\Delta_{m+2}\cdot y_{|y|-1}\subseteq\Delta_{m+2}\cdot\Delta_{k+2}\cdot y_{0}\subseteq\Delta_{m+2}\cdot\Delta_{k+2}\cdot\Delta^{-1}_{m+2}\cdot x_{0}\subseteq\Delta_{k+1}\cdot x_{0}

and that shows that Aβ€²A^{\prime} is β„‹k+1,m+2\mathcal{H}_{k+1,m+2}-independent.

By [Kec95, TheoremΒ 28.5] there is a Borel set Dβ€²βŠ†XD^{\prime}\subseteq X that is β„‹k+1,m+2\mathcal{H}_{k+1,m+2}-independent and Aβ€²βŠ†Dβ€²A^{\prime}\subseteq D^{\prime}. Define

D={x∈X:βˆƒrβˆˆβ„•β€‹βˆ€βˆ—gβˆˆΞ”r​gβ‹…x∈Dβ€²}.D=\left\{x\in X:\exists r\in{\mathbbm{N}}\ \forall^{*}g\in\Delta_{r}\ g\cdot x\in D^{\prime}\right\}.

It follows from [Kec95, TheoremΒ 16.1] that DD is a Borel set. The definition of Aβ€²A^{\prime} together with Aβ€²βŠ†Dβ€²A^{\prime}\subseteq D^{\prime} implies that AβŠ†DA\subseteq D. Similar argument as in previous paragraph shows that DD is β„‹k,m+2\mathcal{H}_{k,m+2}-independent. Moreover it is easy to see that if G​(x,Dβ€²)G(x,D^{\prime}) is comeager in Ξ”r\Delta_{r}, then y∈Dy\in D for every yβˆˆΞ”r+1β‹…xy\in\Delta_{r+1}\cdot x. This shows that G​(x,D)G(x,D) is open in GG for every x∈Xx\in X.

Let (gn)nβˆˆβ„•(g_{n})_{n\in{\mathbbm{N}}} be a dense subset of GG such that g0=1Gg_{0}=1_{G}. Define Bn=gnβ‹…DB_{n}=g_{n}\cdot D and B=⋃nβˆˆβ„•BnB=\bigcup_{n\in{\mathbbm{N}}}B_{n}. Then BB is a GG-invariant Borel set because G​(x,D)G(x,D) is nonempty open set whenever x∈Dx\in D. Moreover, AβŠ†D=B0βŠ†BA\subseteq D=B_{0}\subseteq B.

It remains to show that BnB_{n} is β„‹k,m+2\mathcal{H}_{k,m+2}-invariant for every nβˆˆβ„•n\in{\mathbbm{N}}. Let g∈Gg\in G, Ξ”\Delta be a conjugacy invariant open neighborhood of 1G1_{G} and x,y∈Xx,y\in X. Then yβˆˆΞ”β‹…xy\in\Delta\cdot x if and only if gβ‹…yβˆˆΞ”β‹…(gβ‹…x)g\cdot y\in\Delta\cdot(g\cdot x). This shows that

gnβ‹…(π’₯​(Ξ”m+2)∩D<β„•)=π’₯​(Ξ”m+2)∩Bn<β„•g_{n}\cdot(\mathcal{J}(\Delta_{m+2})\cap D^{<{\mathbbm{N}}})=\mathcal{J}(\Delta_{m+2})\cap B^{<{\mathbbm{N}}}_{n}

where the action is extended coordinate-wise. Consequently, BnB_{n} is β„‹k,m+2\mathcal{H}_{k,m+2}-independent for every nβˆˆβ„•n\in{\mathbbm{N}}. This finishes the proof. ∎

Appendix B Refinements

In this section we prove LemmaΒ 6.2, LemmaΒ 7.2 and LemmaΒ 7.3. Our aim is to develop a technical machinery for finding subtrees of a given finitely uniformly branching tree that satisfy several constraints. The techniques involve diagonalizing a sequence of trees and iterative application of Baire category argument. First we define all the relevant notation and then prove two auxiliary lemmata. These are then used in the proof of our main technical results.

Let TT be a finitely uniformly branching tree. Let (A,Ξ±)∈[β„•]β„•Γ—[T](A,\alpha)\in[{\mathbbm{N}}]^{{\mathbbm{N}}}\times[T], where [β„•]β„•[{\mathbbm{N}}]^{\mathbbm{N}} denotes the set of all infinite subsets of β„•{\mathbbm{N}}. We define T(A,Ξ±)βŠ†TT_{(A,\alpha)}\subseteq T as

s∈T(A,Ξ±)β‡”βˆ€nβˆ‰A​s​(n)=α​(n)s\in T_{(A,\alpha)}\ \Leftrightarrow\ \forall n\not\in A\ s(n)=\alpha(n)

and denote as [T(A,Ξ±)][T_{(A,\alpha)}] the branches of T(A,Ξ±)T_{(A,\alpha)}. Note that [T(A,Ξ±)][T_{(A,\alpha)}] is closed in [T][T].

Write (nl)lβˆˆβ„•=A(n_{l})_{l\in{\mathbbm{N}}}=A for the increasing enumeration of AA. Then there is a unique finitely uniformly branching tree S=S(A,Ξ±)S=S_{(A,\alpha)} and a unique map e(A,Ξ±):Sβ†’T(A,Ξ±)e_{(A,\alpha)}:S\to T_{(A,\alpha)} that satisfy

  • β€’

    β„“lS=β„“nlT\ell^{S}_{l}=\ell^{T}_{n_{l}} for every lβˆˆβ„•l\in{\mathbbm{N}},

  • β€’

    |e(A,Ξ±)​(s)|=n|s||e_{(A,\alpha)}(s)|=n_{|s|}

  • β€’

    e(A,Ξ±)​(s)​(nl)=s​(l)e_{(A,\alpha)}(s)(n_{l})=s(l) for every l<|s|l<|s|,

  • β€’

    e(A,Ξ±)​(s)​(j)=α​(j)e_{(A,\alpha)}(s)(j)=\alpha(j) for every j<n|s|j<n_{|s|} such that jβˆ‰Aj\not\in A.

It is easy to verify that e(A,Ξ±)e_{(A,\alpha)} extends to a unique continuous homeomorphism

e~(A,Ξ±):[S]β†’[T(A,Ξ±)]\widetilde{e}_{(A,\alpha)}:[S]\to[T_{(A,\alpha)}]

that is a reduction from 𝔾sS{\mathbbm{G}}^{S}_{s} to 𝔾e(A,Ξ±)​(s)T{\mathbbm{G}}^{T}_{e_{(A,\alpha)}(s)} for every s∈Ss\in S. This is because for every lβˆˆβ„•l\in{\mathbbm{N}} and t,tβ€²βˆˆSt,t^{\prime}\in S we have t​(l)=t′​(l)t(l)=t^{\prime}(l) if and only if e(A,Ξ±)​(t)​(j)=e(A,Ξ±)​(tβ€²)​(j)e_{(A,\alpha)}(t)(j)=e_{(A,\alpha)}(t^{\prime})(j) for every nl≀j<nl+1n_{l}\leq j<n_{l+1}.

Lemma B.1.

Let (Tr)rβˆˆβ„•(T_{r})_{r\in{\mathbbm{N}}} be a sequence of finitely uniformly branching trees, (Ar,Ξ±r)∈[β„•]β„•Γ—[Tr](A_{r},\alpha_{r})\in[{\mathbbm{N}}]^{\mathbbm{N}}\times[T_{r}] be such that Ar∩(r+1)=r+1A_{r}\cap(r+1)=r+1 for every rβˆˆβ„•r\in{\mathbbm{N}} and S(Ar,Ξ±r)=Tr+1S_{(A_{r},\alpha_{r})}=T_{r+1} for every rβˆˆβ„•r\in{\mathbbm{N}}. Then there is a finitely uniformly branching tree SS and a sequence of continuous maps (ψ~r,∞:[S]β†’[Tr])rβˆˆβ„•(\widetilde{\psi}_{r,\infty}:[S]\to[T_{r}])_{r\in{\mathbbm{N}}} such that

  1. 1.

    β„“rS=β„“rTrβ€²\ell^{S}_{r}=\ell^{T_{r^{\prime}}}_{r} for every r≀rβ€²βˆˆβ„•r\leq r^{\prime}\in{\mathbbm{N}}, in particular, Sβˆ©β„•r+1=Trβˆ©β„•r+1S\cap{\mathbbm{N}}^{r+1}=T_{r}\cap{\mathbbm{N}}^{r+1} holds for every rβˆˆβ„•r\in{\mathbbm{N}},

  2. 2.

    for every s∈Sβˆ©β„•r+1s\in S\cap{\mathbbm{N}}^{r+1} and x∈[Ss]x\in[S_{s}] there is y∈[(Tr)s]y\in[(T_{r})_{s}] such that ψ~r,βˆžβ€‹(tβŒ’β€‹x)=tβŒ’β€‹y\widetilde{\psi}_{r,\infty}(t^{\frown}x)=t^{\frown}y whenever t∈Sβˆ©β„•r+1t\in S\cap{\mathbbm{N}}^{r+1} for every rβˆˆβ„•r\in{\mathbbm{N}},

  3. 3.

    ψ~r,∞=e~(Ar,Ξ±r)∘ψ~r+1,∞\widetilde{\psi}_{r,\infty}=\widetilde{e}_{(A_{r},\alpha_{r})}\circ\widetilde{\psi}_{r+1,\infty} for every rβˆˆβ„•r\in{\mathbbm{N}},

  4. 4.

    ψ~r,∞\widetilde{\psi}_{r,\infty} is a reduction from 𝔾sS{\mathbbm{G}}^{S}_{s} to 𝔾sTr{\mathbbm{G}}^{T_{r}}_{s} for every s∈Sβˆ©β„•rs\in S\cap{\mathbbm{N}}^{r}.

Proof.

Observe that if r≀rβ€²βˆˆβ„•r\leq r^{\prime}\in{\mathbbm{N}}, then β„“rTrβ€²=β„“rTr\ell^{T_{r^{\prime}}}_{r}=\ell^{T_{r}}_{r}. Define β„“rS:=lrTr\ell^{S}_{r}:=l^{T_{r}}_{r} and note that this defines a finitely unifmormly branching tree SS that satisfies (1).

For s∈Sβˆ©β„•rs\in S\cap\mathbb{N}^{r} and r≀rβ€²βˆˆβ„•r\leq r^{\prime}\in{\mathbbm{N}} we define ψrβ€²,βˆžβ€‹(s)=s\psi_{r^{\prime},\infty}(s)=s. For 0≀rβ€²<r0\leq r^{\prime}<r we set inductively ψrβ€²,βˆžβ€‹(s)=e(Ar,Ξ±r)∘ψrβ€²+1,∞\psi_{r^{\prime},\infty}(s)=e_{(A_{r},\alpha_{r})}\circ\psi_{r^{\prime}+1,\infty}. It is easy to see that ψr,∞=e(Ar,Ξ±r)∘ψr+1,∞\psi_{r,\infty}=e_{(A_{r},\alpha_{r})}\circ\psi_{r+1,\infty} for every rβˆˆβ„•r\in{\mathbbm{N}} and if sβŠ‘t∈Ss\sqsubseteq t\in S, then ψr,βˆžβ€‹(s)βŠ‘Οˆr,βˆžβ€‹(t)\psi_{r,\infty}(s)\sqsubseteq\psi_{r,\infty}(t) for every rβˆˆβ„•r\in{\mathbbm{N}}.

Define

ψ~r,βˆžβ€‹(x)=⋃lβˆˆβ„•Οˆr,βˆžβ€‹(xβ†Ύl)\widetilde{\psi}_{r,\infty}(x)=\bigcup_{l\in{\mathbbm{N}}}\psi_{r,\infty}(x\upharpoonright l)

for every x∈[S]x\in[S] and rβˆˆβ„•r\in{\mathbbm{N}}. Note that ψ~r,βˆžβ€‹(x)\widetilde{\psi}_{r,\infty}(x) is well defined element of [Tr][T_{r}]. Moreover, we have

ψ~r,βˆžβ€‹(x)=⋃lβˆˆβ„•Οˆr,βˆžβ€‹(xβ†Ύl)=⋃lβˆˆβ„•e(Ar,Ξ±r)∘ψr+1,βˆžβ€‹(xβ†Ύl)=e~(Ar,Ξ±r)​(⋃lβˆˆβ„•Οˆr+1,βˆžβ€‹(xβ†Ύl))=(e~(Ar,Ξ±r)∘ψ~r+1,∞)​(x)\begin{split}\widetilde{\psi}_{r,\infty}(x)=&\bigcup_{l\in{\mathbbm{N}}}\psi_{r,\infty}(x\upharpoonright l)=\bigcup_{l\in{\mathbbm{N}}}e_{(A_{r},\alpha_{r})}\circ\psi_{r+1,\infty}(x\upharpoonright l)\\ =&\widetilde{e}_{(A_{r},\alpha_{r})}\left(\bigcup_{l\in{\mathbbm{N}}}\psi_{r+1,\infty}(x\upharpoonright l)\right)=(\widetilde{e}_{(A_{r},\alpha_{r})}\circ\widetilde{\psi}_{r+1,\infty})(x)\end{split}

for every x∈[S]x\in[S] and rβˆˆβ„•r\in{\mathbbm{N}}. This shows (3).

Note that (1) and (2) imply (4) and therefore it remains to show (2). Let s∈Sβˆ©β„•r+1s\in S\cap{\mathbbm{N}}^{r+1} and x∈[Ss]x\in[S_{s}]. Put y∈[(Tr)s]y\in[(T_{r})_{s}] such that

ψ~r,βˆžβ€‹(sβŒ’β€‹x)=sβŒ’β€‹y.\widetilde{\psi}_{r,\infty}(s^{\frown}x)=s^{\frown}y.

Let t∈Sβˆ©β„•r+1t\in S\cap{\mathbbm{N}}^{r+1} and r+1<lβˆˆβ„•r+1<l\in{\mathbbm{N}}. It is clearly enough to show that ψr,βˆžβ€‹(sβŒ’β€‹xβ†Ύl)​(j)=ψr,βˆžβ€‹(tβŒ’β€‹xβ†Ύl)​(j)\psi_{r,\infty}(s^{\frown}x\upharpoonright l)(j)=\psi_{r,\infty}(t^{\frown}x\upharpoonright l)(j) for every r+1≀j<lr+1\leq j<l.

We show inductively that ψrβ€²,βˆžβ€‹(sβŒ’β€‹xβ†Ύl)​(j)=ψrβ€²,βˆžβ€‹(tβŒ’β€‹xβ†Ύl)​(j)\psi_{r^{\prime},\infty}(s^{\frown}x\upharpoonright l)(j)=\psi_{r^{\prime},\infty}(t^{\frown}x\upharpoonright l)(j) for every r+1≀j<lr+1\leq j<l, where r≀r′≀lr\leq r^{\prime}\leq l. By the definition we have

ψl,βˆžβ€‹(sβŒ’β€‹xβ†Ύl)​(j)=(sβŒ’β€‹xβ†Ύl)​(j)=(tβŒ’β€‹xβ†Ύl)​(j)=ψl,βˆžβ€‹(tβŒ’β€‹xβ†Ύl)​(j)\psi_{l,\infty}(s^{\frown}x\upharpoonright l)(j)=(s^{\frown}x\upharpoonright l)(j)=(t^{\frown}x\upharpoonright l)(j)=\psi_{l,\infty}(t^{\frown}x\upharpoonright l)(j)

for every r+1≀j<lr+1\leq j<l. Suppose that the claim holds for rβ€²+1r^{\prime}+1 where r≀rβ€²<lr\leq r^{\prime}<l. Fix an enumeration (mp)pβˆˆβ„•(m_{p})_{p\in{\mathbbm{N}}} of Arβ€²A_{r^{\prime}}. Then for every r+1≀j<lr+1\leq j<l there is pβˆˆβ„•p\in{\mathbbm{N}} such that r≀p<lr\leq p<l and mp≀j<mp+1m_{p}\leq j<m_{p+1}. This is because Arβ€²βˆ©r+1=r+1A_{r^{\prime}}\cap r+1=r+1. If mp=jm_{p}=j, then mpβ‰ rβ‰ pm_{p}\not=r\not=p and we have

ψrβ€²,βˆžβ€‹(sβŒ’β€‹xβ†Ύl)​(j)=((e(Arβ€²,Ξ±rβ€²)∘ψrβ€²+1,∞)​(sβŒ’β€‹xβ†Ύl))​(mp)=ψrβ€²+1,βˆžβ€‹(sβŒ’β€‹xβ†Ύl)​(p)=ψrβ€²+1,βˆžβ€‹(tβŒ’β€‹xβ†Ύl)​(p)=(e(Arβ€²,Ξ±rβ€²)∘ψrβ€²+1,βˆžβ€‹(tβŒ’β€‹xβ†Ύl))​(mp)=ψrβ€²,βˆžβ€‹(tβŒ’β€‹xβ†Ύl)​(j)\begin{split}\psi_{r^{\prime},\infty}(s^{\frown}x\upharpoonright l)(j)=&\left((e_{(A_{r^{\prime}},\alpha_{r^{\prime}})}\circ\psi_{r^{\prime}+1,\infty})(s^{\frown}x\upharpoonright l)\right)(m_{p})=\psi_{r^{\prime}+1,\infty}(s^{\frown}x\upharpoonright l)(p)\\ =&\psi_{r^{\prime}+1,\infty}(t^{\frown}x\upharpoonright l)(p)=\left(e_{(A_{r^{\prime}},\alpha_{r^{\prime}})}\circ\psi_{r^{\prime}+1,\infty}(t^{\frown}x\upharpoonright l)\right)(m_{p})\\ =&\psi_{r^{\prime},\infty}(t^{\frown}x\upharpoonright l)(j)\end{split}

by the inductive assumption. If mp<jm_{p}<j, then

ψrβ€²,βˆžβ€‹(sβŒ’β€‹xβ†Ύl)​(j)=((e(Arβ€²,Ξ±rβ€²)∘ψrβ€²+1,∞)​(sβŒ’β€‹xβ†Ύl))​(j)=Ξ±r′​(j)=((e(Arβ€²,Ξ±rβ€²)∘ψrβ€²+1,∞)​(tβŒ’β€‹xβ†Ύl))​(j)=ψrβ€²,βˆžβ€‹(tβŒ’β€‹xβ†Ύl)​(j)\begin{split}\psi_{r^{\prime},\infty}(s^{\frown}x\upharpoonright l)(j)=&\left((e_{(A_{r^{\prime}},\alpha_{r^{\prime}})}\circ\psi_{r^{\prime}+1,\infty})(s^{\frown}x\upharpoonright l)\right)(j)=\alpha_{r^{\prime}}(j)\\ =&\left((e_{(A_{r^{\prime}},\alpha_{r^{\prime}})}\circ\psi_{r^{\prime}+1,\infty})(t^{\frown}x\upharpoonright l)\right)(j)=\psi_{r^{\prime},\infty}(t^{\frown}x\upharpoonright l)(j)\end{split}

and the proof is finished. ∎

Lemma B.2.

Let TT be a finitely uniformly branching tree, (π’œk)kβˆˆβ„•βŠ†[β„•]β„•(\mathcal{A}_{k})_{k\in{\mathbbm{N}}}\subseteq[{\mathbbm{N}}]^{\mathbbm{N}} be such that π’œkβˆ©π’œl=βˆ…\mathcal{A}_{k}\cap\mathcal{A}_{l}=\emptyset for every kβ‰ lk\not=l, 𝐦,π€βˆˆβ„•{\bf m},{\bf k}\in{\mathbbm{N}}, 𝐩∈Tβˆ©β„•π¦{\bf p}\in T\cap{\mathbbm{N}}^{\bf m}, (Xr)rβˆˆβ„•(X_{r})_{r\in{\mathbbm{N}}} be a sequence of subsets of [T][T] with the Baire property such that ⋃rβˆˆβ„•Xr=[T]\bigcup_{r\in{\mathbbm{N}}}X_{r}=[T] and (sn)nβˆˆβ„•βŠ†T(s_{n})_{n\in{\mathbbm{N}}}\subseteq T be such that {sn:nβˆˆπ’œk}\{s_{n}:n\in\mathcal{A}_{k}\} is dense in TT for every kβˆˆβ„•k\in{\mathbbm{N}}. Then there is (A,Ξ±)∈[β„•]β„•Γ—[T](A,\alpha)\in[{\mathbbm{N}}]^{\mathbbm{N}}\times[T] such that, if we put S=S(A,Ξ±)S=S_{(A,\alpha)}, we have

  1. 1.

    A∩𝐦=𝐦A\cap{\bf m}={\bf m},

  2. 2.

    for every s∈Sβˆ©β„•π¦s\in S\cap{\mathbbm{N}}^{\bf m} there is rβˆˆβ„•r\in{\mathbbm{N}} such that sβŒ’β€‹[Ss]βŠ†(e~(A,Ξ±))βˆ’1​(Xr)s^{\frown}[S_{s}]\subseteq(\widetilde{e}_{(A,\alpha)})^{-1}(X_{r}),

  3. 3.

    {v∈S:βˆƒnβˆˆπ’œk​e(A,Ξ±)​(v)=sn}\{v\in S:\exists n\in\mathcal{A}_{k}\ e_{(A,\alpha)}(v)=s_{n}\} is dense in SS for every kβˆˆβ„•k\in{\mathbbm{N}},

  4. 4.

    there is nβˆˆπ’œπ€n\in\mathcal{A}_{\bf k} such that π©βŠ‘e(A,Ξ±)​(𝐩)=sn{\bf p}\sqsubseteq e_{(A,\alpha)}({\bf p})=s_{n}.

Proof.

Let (pl)lβˆˆβ„•(p_{l})_{l\in{\mathbbm{N}}} be an enumeration of TT such that {lβˆˆπ’œk:s=pl}\{l\in\mathcal{A}_{k}:s=p_{l}\} is infinite for every kβˆˆβ„•k\in{\mathbbm{N}} and s∈Ts\in T. The construction proceeds by induction on lβˆˆβ„•l\in{\mathbbm{N}}. Namely, in every step we construct tlβˆˆβ„•<β„•t_{l}\in{\mathbbm{N}}^{<{\mathbbm{N}}}, nlβˆˆβ„•n_{l}\in{\mathbbm{N}}, Ξ±l∈T\alpha_{l}\in T and SlβŠ†TS_{l}\subseteq T such that nl=|Ξ±l|n_{l}=|\alpha_{l}|,

Ξ±l=𝐩⌒t0⌒(0)⌒t1⌒(0)βŒ’β€¦(0)⌒⌒tl\alpha_{l}={\bf p}^{\frown}{t_{0}}^{\frown}(0)^{\frown}{t_{1}}^{\frown}(0)^{\frown}\dots{}^{\frown}(0)^{\frown}t_{l}

and

Sl={s∈Tβˆ©β„•nl+1:βˆ€π¦β‰€j<nl(βˆ€l′≀ljβ‰ nlβ€²β†’s(j)=Ξ±l(j)}.S_{l}=\{s\in T\cap{\mathbbm{N}}^{n_{l}+1}:\forall{\bf m}\leq j<n_{l}\ (\forall l^{\prime}\leq l\ j\not=n_{l^{\prime}}\to s(j)=\alpha_{l}(j)\}.

In the end we put Ξ±=⋃lβˆˆβ„•Ξ±l\alpha=\bigcup_{l\in{\mathbbm{N}}}\alpha_{l} and A=𝐦βˆͺ{nl}lβˆˆβ„•A={\bf m}\cup\{n_{l}\}_{l\in{\mathbbm{N}}}.

(I) l=0l=0. Let (ui)i<N0(u_{i})_{i<N_{0}} be an enumeration of Tβˆ©β„•π¦T\cap{\mathbbm{N}}^{\bf m}. Define inductively viβˆˆβ„•<β„•v_{i}\in{\mathbbm{N}}^{<{\mathbbm{N}}} such that

  • β€’

    uiβŒ’β€‹vi∈T{u_{i}}^{\frown}v_{i}\in T for every i<N0i<N_{0},

  • β€’

    viβŠ‘vi+1v_{i}\sqsubseteq v_{i+1} for every i<N0βˆ’1i<N_{0}-1,

  • β€’

    for every i<N0i<N_{0} there is r​(i)βˆˆβ„•r(i)\in{\mathbbm{N}} such that Xr​(i)X_{r(i)} is comeager in uiβŒ’β€‹viβŒ’β€‹[TuiβŒ’β€‹vi]{u_{i}}^{\frown}{v_{i}}^{\frown}[T_{{u_{i}}^{\frown}v_{i}}].

This can be achieved by [Kec95, PropositionΒ 8.26]. Write v=vN0βˆ’1v=v_{N_{0}-1} and use the density of {sn:nβˆˆπ’œπ€}\{s_{n}:n\in\mathcal{A}_{\bf k}\} to find nβˆˆβ„•n\in{\mathbbm{N}} such that π©βŒ’β€‹vβŠ‘sn{\bf p}^{\frown}v\sqsubseteq s_{n}. Let t0βˆˆβ„•<β„•t_{0}\in{\mathbbm{N}}^{<{\mathbbm{N}}} be such that Ξ±0=π©βŒ’β€‹t0=sn\alpha_{0}={\bf p}^{\frown}t_{0}=s_{n} and n0=|π©βŒ’β€‹t0|n_{0}=|{\bf p}^{\frown}t_{0}|.

Define

X=⋃i<N0uiβŒ’β€‹t0βŒ’β€‹[TuiβŒ’β€‹t0]∩Xr​(i).X=\bigcup_{i<N_{0}}{u_{i}}^{\frown}{t_{0}}^{\frown}[T_{{u_{i}}^{\frown}t_{0}}]\cap X_{r(i)}.

Note that XX is comeager in uiβŒ’β€‹t0βŒ’β€‹[TuiβŒ’β€‹t0]{u_{i}}^{\frown}{t_{0}}^{\frown}[T_{{u_{i}}^{\frown}t_{0}}] for every i<N0i<N_{0}. Fix {π’ͺl}lβˆˆβ„•\{\mathcal{O}_{l}\}_{l\in{\mathbbm{N}}} a decreasing collection of open subsets of [T][T] such that π’ͺ0=[T]\mathcal{O}_{0}=[T], β‹‚lβˆˆβ„•π’ͺlβŠ†X\bigcap_{l\in{\mathbbm{N}}}\mathcal{O}_{l}\subseteq X and π’ͺl\mathcal{O}_{l} is dense in uiβŒ’β€‹t0βŒ’β€‹[TuiβŒ’β€‹t0]{u_{i}}^{\frown}{t_{0}}^{\frown}[T_{{u_{i}}^{\frown}t_{0}}] for every i<N0i<N_{0}.

(II) l↦l+1l\mapsto l+1. Suppose that we have (nm)m≀l(n_{m})_{m\leq l}, (Ξ±m)m≀l(\alpha_{m})_{m\leq l}, (Sm)m≀l(S_{m})_{m\leq l} and (tm)m≀l(t_{m})_{m\leq l} that satisfies

  • (a)

    |Ξ±m|=nm|\alpha_{m}|=n_{m} and Ξ±m=𝐩⌒t0⌒(0)βŒ’β€¦(0)⌒⌒tm\alpha_{m}={\bf p}^{\frown}{t_{0}}^{\frown}(0)^{\frown}\dots{}^{\frown}(0)^{\frown}{t_{m}} for every m≀lm\leq l,

  • (b)

    uβŒ’β€‹[Tu]βŠ†π’ͺlu^{\frown}[T_{u}]\subseteq\mathcal{O}_{l} for every u∈Slu\in S_{l},

  • (c)

    if m<lm<l, mβˆˆπ’œkm\in\mathcal{A}_{k} and pmβŠ‘up_{m}\sqsubseteq u for some u∈Smu\in S_{m}, then there is nβˆˆπ’œkn\in\mathcal{A}_{k} such that pmβŠ‘sn∈Tβˆ©β„•nm+1p_{m}\sqsubseteq s_{n}\in T\cap{\mathbbm{N}}^{n_{m+1}} and sn​(j)=Ξ±m​(j)s_{n}(j)=\alpha_{m}(j) for every jβˆ‰π¦βˆͺ{nm}m<lj\not\in{\bf m}\cup\{n_{m}\}_{m<l} such that j<nm+1j<n_{m+1}.

Note that if l=0l=0, then (a)–(c) are satisfied. Next we show how to find tl+1βˆˆβ„•<β„•t_{l+1}\in{\mathbbm{N}}^{<{\mathbbm{N}}}, Ξ±l+1\alpha_{l+1}, Sl+1S_{l+1} and nl+1βˆˆβ„•n_{l+1}\in{\mathbbm{N}} such that (a)–(c) holds.

Let (ui)i<Nl(u_{i})_{i<N_{l}} be an enumeration of SlS_{l}. Construct inductively (vi)i<Nl(v_{i})_{i<N_{l}} such that

  • β€’

    viβŠ‘vi+1v_{i}\sqsubseteq v_{i+1} for every i<Nlβˆ’1i<N_{l}-1,

  • β€’

    uiβŒ’β€‹viβŒ’β€‹[TuiβŒ’β€‹vi]βŠ†π’ͺl+1{u_{i}}^{\frown}{v_{i}}^{\frown}[T_{{u_{i}}^{\frown}{v_{i}}}]\subseteq\mathcal{O}_{l+1} for every i<Nli<N_{l}.

This can be done because for every i<Nli<N_{l} there is u∈Tβˆ©β„•π¦u\in T\cap{\mathbbm{N}}^{\bf m} such that uβŒ’β€‹t0βŠ‘uiu^{\frown}{t_{0}}\sqsubseteq u_{i} and π’ͺl\mathcal{O}_{l} is dense in uβŒ’β€‹t0βŒ’β€‹[TuβŒ’β€‹t0]u^{\frown}{t_{0}}^{\frown}[T_{u^{\frown}{t_{0}}}]. Put v=vNlβˆ’1v=v_{N_{l}-1}. If plp_{l} satisfies the assumption of (c), that is plβŠ‘u∈Slp_{l}\sqsubseteq u\in S_{l} for some u∈Slu\in S_{l}, and lβˆˆπ’œkl\in\mathcal{A}_{k}, then pick i<Nli<N_{l} such that plβŠ‘uip_{l}\sqsubseteq u_{i}. Otherwise pick any i<Nli<N_{l}. It follows from the density of {sn:nβˆˆπ’œk}\{s_{n}:n\in\mathcal{A}_{k}\} that there is nβˆˆβ„•n\in{\mathbbm{N}} such that uiβŒ’β€‹vβŠ‘sn{u_{i}}^{\frown}v\sqsubseteq s_{n}. Define tl+1βˆˆβ„•<β„•t_{l+1}\in{\mathbbm{N}}^{<{\mathbbm{N}}} such that uiβŒ’β€‹tl+1=sn{u_{i}}^{\frown}t_{l+1}=s_{n}, Ξ±l+1=Ξ±lβŒ’β€‹(0)βŒ’β€‹tl+1\alpha_{l+1}={\alpha_{l}}^{\frown}(0)^{\frown}t_{l+1}, nl+1=|uiβŒ’β€‹tl+1|n_{l+1}=|{u_{i}}^{\frown}t_{l+1}| and Sl+1={uβŒ’β€‹tl+1βŒ’β€‹(j):u∈Sl,j<β„“nl+1T}S_{l+1}=\{u^{\frown}t_{l+1}^{\frown}(j):u\in S_{l},\ j<\ell^{T}_{n_{l+1}}\}.

It is easy to see that (a) and (c) hold. Property (b) follows from uiβŒ’β€‹viβŠ‘uiβŒ’β€‹tl+1{u_{i}}^{\frown}v_{i}\sqsubseteq{u_{i}}^{\frown}t_{l+1} for every i<Nli<N_{l}.

(III). Let A=𝐦βˆͺ{nl}lβˆˆβ„•A={\bf m}\cup\{n_{l}\}_{l\in{\mathbbm{N}}} and Ξ±=⋃lβˆˆβ„•Ξ±l\alpha=\bigcup_{l\in{\mathbbm{N}}}\alpha_{l}. Set S=S(A,Ξ±)S=S_{(A,\alpha)}. We show that properties (1)–(4) are satisfied.

(1) Is trivial.

(2) Let s∈Sβˆ©β„•π¦s\in S\cap{\mathbbm{N}}^{\bf m}. Note that e(A,Ξ±)​(s)=sβŒ’β€‹t0e_{(A,\alpha)}(s)=s^{\frown}t_{0} by the definition of e(A,Ξ±)e_{(A,\alpha)}. Consequently,

e~(A,Ξ±)​(sβŒ’β€‹[Ss])βŠ†sβŒ’β€‹t0βŒ’β€‹[TsβŒ’β€‹t0].\widetilde{e}_{(A,\alpha)}(s^{\frown}[S_{s}])\subseteq s^{\frown}{t_{0}}^{\frown}[T_{s^{\frown}t_{0}}].

By (I), there is rβˆˆβ„•r\in{\mathbbm{N}} such that

X∩sβŒ’β€‹t0βŒ’β€‹[TsβŒ’β€‹t0]βŠ†XrX\cap s^{\frown}{t_{0}}^{\frown}[T_{s^{\frown}t_{0}}]\subseteq X_{r}

and XX is comeager in sβŒ’β€‹t0βŒ’β€‹[TsβŒ’β€‹t0]s^{\frown}{t_{0}}^{\frown}[T_{s^{\frown}t_{0}}]. Let c∈[Ts]c\in[T_{s}] and lβˆˆβ„•l\in{\mathbbm{N}}. Define

u=s⌒t0⌒(c(0))⌒t1βŒ’β€¦(c(lβˆ’1))⌒⌒tl⌒c(l).u=s^{\frown}{t_{0}}^{\frown}(c(0))^{\frown}{t_{1}}^{\frown}\dots{}^{\frown}(c(l-1))^{\frown}{t_{l}}^{\frown}c(l).

Then it is easy to see that u∈Slu\in S_{l} and, using (b) from the inductive construction, we get

e~(A,Ξ±)​(sβŒ’β€‹c)∈uβŒ’β€‹[Tu]βŠ†π’ͺl.\widetilde{e}_{(A,\alpha)}(s^{\frown}c)\in u^{\frown}[T_{u}]\subseteq\mathcal{O}_{l}.

Therefore

e~(A,Ξ±)​(sβŒ’β€‹c)∈sβŒ’β€‹t0βŒ’β€‹[TsβŒ’β€‹t0]βˆ©β‹‚lβˆˆβ„•π’ͺlβŠ†Xr\widetilde{e}_{(A,\alpha)}(s^{\frown}c)\in s^{\frown}{t_{0}}^{\frown}[T_{s^{\frown}{t_{0}}}]\cap\bigcap_{l\in{\mathbbm{N}}}\mathcal{O}_{l}\subseteq X_{r}

and that shows (2).

(3) Let kβˆˆβ„•k\in{\mathbbm{N}} and sβŒ’β€‹u∈Ss^{\frown}u\in S where |s|=𝐦|s|={\bf m}. By the properties of the enumeration, there are infinitely many lβˆˆπ’œkl\in\mathcal{A}_{k} such that pl=e(A,Ξ±)​(sβŒ’β€‹u)p_{l}=e_{(A,\alpha)}(s^{\frown}u). Pick one such that |pl|≀nl|p_{l}|\leq n_{l}. Then during the construction in (II) we take i<Nli<N_{l} such that plβŠ‘uip_{l}\sqsubseteq u_{i} and nβˆˆβ„•n\in{\mathbbm{N}} such that uiβŠ‘snu_{i}\sqsubseteq s_{n} and nβˆˆπ’œkn\in\mathcal{A}_{k} to define tl+1t_{l+1} such that uiβŒ’β€‹tl+1=sn{u_{i}}^{\frown}t_{l+1}=s_{n}. Let

v=s⌒(sn(n0))⌒(sn(n1))βŒ’β€¦(sn(nl))⌒∈S.v=s^{\frown}(s_{n}(n_{0}))^{\frown}(s_{n}(n_{1}))^{\frown}\dots{}^{\frown}(s_{n}(n_{l}))\in S.

Then it follows from the definition that e(A,Ξ±)​(v)=sne_{(A,\alpha)}(v)=s_{n} and the fact that e(A,Ξ±)​(sβŒ’β€‹u)=plβŠ‘uiβŠ‘sn=e(A,Ξ±)​(v)e_{(A,\alpha)}(s^{\frown}u)=p_{l}\sqsubseteq u_{i}\sqsubseteq s_{n}=e_{(A,\alpha)}(v) gives sβŒ’β€‹uβŠ‘vs^{\frown}u\sqsubseteq v.

(4) Note that e(A,Ξ±)​(𝐩)=π©βŒ’β€‹t0=sne_{(A,\alpha)}({\bf p})={\bf p}^{\frown}t_{0}=s_{n} where nβˆˆβ„•n\in{\mathbbm{N}} is such that nβˆˆπ’œπ€n\in\mathcal{A}_{\bf k} by the definition in (I). This finishes the proof. ∎

Proof of LemmaΒ 6.2.

Let (ga)aβˆˆβ„•(g_{a})_{a\in{\mathbbm{N}}} be a dense subset of GG. The construction proceeds by induction on rβˆˆβ„•r\in{\mathbbm{N}}. Let (pr)rβˆˆβ„•(p_{r})_{r\in{\mathbbm{N}}} be an enumeration of β„•<β„•{\mathbbm{N}}^{<{\mathbbm{N}}} such that |{rβˆˆβ„•:pr=s}|=β„΅0|\{r\in{\mathbbm{N}}:p_{r}=s\}|=\aleph_{0} for every sβˆˆβ„•<β„•s\in{\mathbbm{N}}^{<{\mathbbm{N}}}. We construct a sequence of finitely uniformly branching trees (Tr)rβˆˆβ„•(T_{r})_{r\in{\mathbbm{N}}} together with (Ar,Ξ±r)∈[β„•]β„•Γ—[Tr](A_{r},\alpha_{r})\in[{\mathbbm{N}}]^{\mathbbm{N}}\times[T_{r}] such that S(Ar,Ξ±r)=Tr+1S_{(A_{r},\alpha_{r})}=T_{r+1} for every rβˆˆβ„•r\in{\mathbbm{N}}, (π’œr)rβˆˆβ„•βŠ†[β„•]β„•(\mathcal{A}^{r})_{r\in{\mathbbm{N}}}\subseteq[{\mathbbm{N}}]^{\mathbbm{N}}, (snr)nβˆˆπ’œrβŠ†Tr(s^{r}_{n})_{n\in\mathcal{A}^{r}}\subseteq T_{r} for every rβˆˆβ„•r\in{\mathbbm{N}} and (Ο†r:[Tr]β†’X)rβˆˆβ„•(\varphi_{r}:[T_{r}]\to X)_{r\in{\mathbbm{N}}} such that the following holds

  1. 1.

    Ar∩(r+1)=r+1A_{r}\cap(r+1)=r+1 for every rβˆˆβ„•r\in{\mathbbm{N}},

  2. 2.

    Ο†r=Ο†βˆ˜e~(A0,Ξ±0)βˆ˜β€¦β€‹e~(Arβˆ’1,Ξ±rβˆ’1)\varphi_{r}=\varphi\circ\widetilde{e}_{(A_{0},\alpha_{0})}\circ\dots\widetilde{e}_{(A_{r-1},\alpha_{r-1})} is a homomorphism from 𝔼0Tr\mathbb{E}^{T_{r}}_{0} to EGXE^{X}_{G} for every rβˆˆβ„•r\in{\mathbbm{N}},

  3. 3.

    {0,…,r}βˆˆπ’œr\{0,\dots,r\}\in\mathcal{A}^{r} for every rβˆˆβ„•r\in{\mathbbm{N}},

  4. 4.

    (snr)nβˆˆπ’œr(s^{r}_{n})_{n\in\mathcal{A}^{r}} is a dense subset of TrT_{r} such that |snr|=n|s^{r}_{n}|=n and Ο†r\varphi_{r} is a homomorphism from 𝔾snrTr{\mathbbm{G}}^{T_{r}}_{s^{r}_{n}} to β„‹k,n\mathcal{H}_{k,n} for every r,nβˆˆβ„•r,n\in{\mathbbm{N}},

  5. 5.

    if pr∈Trβˆ©β„•<rp_{r}\in T_{r}\cap{\mathbbm{N}}^{<r}, then prβŠ‘sr+1r+1p_{r}\sqsubseteq s^{r+1}_{r+1} (note that pr∈Tr+1p_{r}\in T_{r+1} by (1)),

  6. 6.

    for every s∈Trβˆ©β„•rs\in T_{r}\cap{\mathbbm{N}}^{r} there is gs,r∈Gg^{s,r}\in G such that for every c∈sβŒ’β€‹[(Tr)s]c\in s^{\frown}[(T_{r})_{s}] there is gcs,r∈Gg^{s,r}_{c}\in G such that we have

    |d​(gs,r,1G)βˆ’πΟ†r​(srrβŒ’β€‹c,sβŒ’β€‹c)|<12r+2,gcs,rβ‹…Ο†r​(srrβŒ’β€‹c)=Ο†r​(sβŒ’β€‹c),d​(gs,r,gcs,r)<12r+2\begin{split}|d(g^{s,r},1_{G})-{\bf d}_{\varphi_{r}}({s^{r}_{r}}^{\frown}c,s^{\frown}c)|<&\ \frac{1}{2^{r+2}},\\ g^{s,r}_{c}\cdot\varphi_{r}({s^{r}_{r}}^{\frown}c)=&\ \varphi_{r}(s^{\frown}c),\\ d(g^{s,r},g^{s,r}_{c})<&\ \frac{1}{2^{r+2}}\end{split}

    for every rβˆˆβ„•r\in{\mathbbm{N}}, where 𝐝φr{\bf d}_{\varphi_{r}} is defined as in PropositionΒ 2.10.

𝐫=𝟎\bf r=0 We put T0=Tβ€²T_{0}=T^{\prime}, π’œ0=β„•\mathcal{A}^{0}={\mathbbm{N}}, sm0=smβ€²s^{0}_{m}=s^{\prime}_{m} for every mβˆˆβ„•m\in{\mathbbm{N}} and Ο†0=Ο†β€²\varphi_{0}=\varphi^{\prime}. Conditions (1) and (5) are empty, (2)–(4) are satisfied by assumption and for (6) it is enough to take gβˆ…,0=gcβˆ…,0=1Gg^{\emptyset,0}=g^{\emptyset,0}_{c}=1_{G} for every c∈[Tβˆ…]c\in[T_{\emptyset}].

𝐫↦𝐫+𝟏\bf r\mapsto r+1 In the inductive step we construct (Ar,Ξ±r)(A_{r},\alpha_{r}), π’œr+1\mathcal{A}^{r+1}, (snr+1)nβˆˆβ„•(s^{r+1}_{n})_{n\in\mathbb{N}} and Ο†r+1\varphi_{r+1} such that (1)–(6) holds. We use a version of LemmaΒ B.2, where instead of a sequence (π’œl)lβˆˆβ„•(\mathcal{A}_{l})_{l\in{\mathbbm{N}}} we take single π’œ\mathcal{A}, e.g., to apply LemmaΒ B.2 we may consider any partition of π’œ\mathcal{A} to disjoint sets and pick π€βˆˆβ„•{\bf k}\in{\mathbbm{N}} arbitrarily.

Set T=TrT=T_{r}, π’œ=π’œr\mathcal{A}=\mathcal{A}^{r}, 𝐦=r+1{\bf m}=r+1, (snr)nβˆˆπ’œ(s^{r}_{n})_{n\in\mathcal{A}}, prβŠ‘π©βˆˆTrβˆ©β„•π¦p_{r}\sqsubseteq{\bf p}\in T_{r}\cap{\mathbbm{N}}^{\bf m} if pr∈Trβˆ©β„•<𝐦p_{r}\in T_{r}\cap{\mathbbm{N}}^{<{\bf m}} otherwise we put 𝐩=(0,…,0)βˆˆβ„•π¦{\bf p}=(0,\dots,0)\in{\mathbbm{N}}^{\bf m} and (Xq)qβˆˆβ„•Nr(X_{q})_{q\in{\mathbbm{N}}^{N_{r}}}, where Nr={s∈Tr:|s|=r+1}N_{r}=\{s\in T_{r}:|s|=r+1\} and

  • β€’

    if s∈Nrs\in N_{r} and s≠𝐩s\not={\bf p}, then sβŒ’β€‹x∈Xqs^{\frown}x\in X_{q} for every qβˆˆβ„•Nrq\in{\mathbbm{N}}^{N_{r}} and x∈[(Tr)s]x\in[(T_{r})_{s}],

  • β€’

    if x∈[(Tr)𝐩]x\in[(T_{r})_{\bf p}], then π©βŒ’β€‹x∈Xq{\bf p}^{\frown}x\in X_{q} if and only if

    βˆ€s∈Nr​(βˆƒgxs∈G​d​(gxs,gq​(s))<12r+2∧gxsβ‹…Ο†r​(π©βŒ’β€‹x)=Ο†r​(sβŒ’β€‹x))∧\forall s\in N_{r}\ \left(\exists g^{s}_{x}\in G\ d(g^{s}_{x},g_{q(s)})<\frac{1}{2^{r+2}}\ \wedge\ g^{s}_{x}\cdot\varphi_{r}({\bf p}^{\frown}x)=\varphi_{r}(s^{\frown}x)\right)\ \wedge
    ∧|d​(gq​(s),1G)βˆ’πΟ†r​(sβŒ’β€‹x,π©βŒ’β€‹x)|<12r+2.\wedge\ |d(g_{q(s)},1_{G})-{\bf d}_{\varphi_{r}}(s^{\frown}x,{\bf p}^{\frown}x)|<\frac{1}{2^{r+2}}.

It is easy to see that the first line in the second item defines an analytic set and it follows from PropositionΒ 2.10 that the second line defines Borel set. Altogether, XqX_{q} is an analytic subset of [Tr][T_{r}], i.e., it has the Baire property by [Kec95, TheoremΒ 21.6], for every qβˆˆβ„•Nrq\in{\mathbbm{N}}^{N_{r}} and [Tr]=⋃qβˆˆβ„•NrXq[T_{r}]=\bigcup_{q\in\mathbb{N}^{N_{r}}}X_{q}.

LemmaΒ B.2 produces (Ar,Ξ±r)∈[β„•]β„•Γ—[Tr](A_{r},\alpha_{r})\in[{\mathbbm{N}}]^{\mathbbm{N}}\times[T_{r}]. Define Tr+1=S(Ar,Ξ±r)T_{r+1}=S_{(A_{r},\alpha_{r})}, Ο†r+1=Ο†r∘e~(Ar,Ξ±r)\varphi_{r+1}=\varphi_{r}\circ\widetilde{e}_{(A_{r},\alpha_{r})},

π’œr+1={|v|∈Tr+1:βˆƒnβˆˆπ’œrsnr=e(Ar,Ξ±r)(v)}\mathcal{A}^{r+1}=\{|v|\in T_{r+1}:\exists n\in\mathcal{A}^{r}\ s^{r}_{n}=e_{(A_{r},\alpha_{r})}(v)\}

and (snr+1)nβˆˆπ’œr+1(s^{r+1}_{n})_{n\in\mathcal{A}^{r+1}} be an enumeration of e(Ar,Ξ±r)βˆ’1​((snr)nβˆˆπ’œr)e_{(A_{r},\alpha_{r})}^{-1}((s^{r}_{n})_{n\in\mathcal{A}^{r}}) that satisfies |snr+1|=n|s^{r+1}_{n}|=n for every nβˆˆβ„•n\in{\mathbbm{N}}.

It is easy to see that (1) and (2) hold. Note that 𝐩=sr+1r+1∈Tr+1{\bf p}=s^{r+1}_{r+1}\in T_{r+1} because by LemmaΒ B.2Β (4) we have π©βŠ‘e(Ar,Ξ±r)​(𝐩)=snr{\bf p}\sqsubseteq e_{(A_{r},\alpha_{r})}({\bf p})=s^{r}_{n} for some nβˆˆπ’œrn\in\mathcal{A}^{r}. This shows (3) and (5) follows from prβŠ‘π©p_{r}\sqsubseteq{\bf p}. First part of item (4) follows from LemmaΒ B.2Β (3). Second part follows from the inductive hypothesis and definition of (snr+1)nβˆˆπ’œr+1(s^{r+1}_{n})_{n\in\mathcal{A}^{r+1}}. Namely, for every nβˆˆπ’œr+1n\in\mathcal{A}^{r+1} there is nβ€²βˆˆπ’œrn^{\prime}\in\mathcal{A}^{r} such that e(Ar,Ξ±r)​(snr+1)=snβ€²re_{(A_{r},\alpha_{r})}(s^{r+1}_{n})=s^{r}_{n^{\prime}}. Note that n≀nβ€²n\leq n^{\prime}. Then we have that Ο†r\varphi_{r} is a homomorphism from 𝔾snβ€²rTr{\mathbbm{G}}^{T_{r}}_{s^{r}_{n^{\prime}}} to β„‹k,nβ€²\mathcal{H}_{{k},n^{\prime}} and e~(Ar,Ξ±r)\widetilde{e}_{(A_{r},\alpha_{r})} is a reduction from 𝔾snr+1Tr+1{\mathbbm{G}}^{T_{r+1}}_{s^{r+1}_{n}} to 𝔾snβ€²rTr{\mathbbm{G}}^{T_{r}}_{s^{r}_{n^{\prime}}}. This shows that Ο†r+1\varphi_{r+1} is a homomorphism from 𝔾snr+1Tr+1{\mathbbm{G}}^{T_{r+1}}_{s^{r+1}_{n}} to β„‹k,nβ€²βŠ†β„‹k,n\mathcal{H}_{{k},n^{\prime}}\subseteq\mathcal{H}_{{k},n} because n≀nβ€²n\leq n^{\prime}.

It remains to show (6). Recall that 𝐩=sr+1r+1{\bf p}=s^{r+1}_{r+1}. It follows from LemmaΒ B.2Β (2) that there is qβˆˆβ„•Nrq\in\mathbb{N}^{N_{r}} such that π©βŒ’β€‹[(Tr+1)𝐩]βŠ†e~(Ar,Ξ±r)βˆ’1​(Xq){\bf p}^{\frown}[(T_{r+1})_{\bf p}]\subseteq\widetilde{e}^{-1}_{(A_{r},\alpha_{r})}(X_{q}). Let s∈Tr+1s\in T_{r+1} and define gs,r+1=gq​(s)∈Gg^{s,r+1}=g_{q(s)}\in G. Take any c∈[(Tr+1)s]c\in[(T_{r+1})_{s}]. By the definition of e~(Ar,Ξ±r)\widetilde{e}_{(A_{r},\alpha_{r})} we find d∈[(Tr)s]=[(Tr)𝐩]d\in[(T_{r})_{s}]=[(T_{r})_{\bf p}] such that

e~(Ar,Ξ±r)​(sβŒ’β€‹c)=sβŒ’β€‹d&e~(Ar,Ξ±r)​(π©βŒ’β€‹c)=π©βŒ’β€‹d.\widetilde{e}_{(A_{r},\alpha_{r})}(s^{\frown}c)=s^{\frown}d\ \&\ \widetilde{e}_{(A_{r},\alpha_{r})}({\bf p}^{\frown}c)={\bf p}^{\frown}d.

Since π©βŒ’β€‹d∈Xq{\bf p}^{\frown}d\in X_{q} we find gds∈Gg^{s}_{d}\in G such that, if we set gcs,r+1=gdsg^{s,r+1}_{c}=g^{s}_{d}, we have

d​(gcs,r+1,gs,r+1)=d​(gds,gq​(s))<12r+2|d​(gs,r+1,1G)βˆ’πΟ†r+1​(sβŒ’β€‹c,π©βŒ’β€‹c)|=|d​(gq​(s),1G)βˆ’πΟ†r​(sβŒ’β€‹d,π©βŒ’β€‹d)|<12r+2gcs,r+1β‹…Ο†r+1​(π©βŒ’β€‹c)=gdsβ‹…Ο†r​(π©βŒ’β€‹d)=Ο†r∘e~(Ar,Ξ±r)​(sβŒ’β€‹c)=Ο†r+1​(sβŒ’β€‹c)\begin{split}d(g^{s,r+1}_{c},g^{s,r+1})=d(g^{s}_{d},g_{q(s)})<&\ \frac{1}{2^{r+2}}\\ |d(g^{s,r+1},1_{G})-{\bf d}_{\varphi_{r+1}}(s^{\frown}c,{\bf p}^{\frown}c)|=&\ |d(g_{q(s)},1_{G})-{\bf d}_{\varphi_{r}}(s^{\frown}d,{\bf p}^{\frown}d)|<\frac{1}{2^{r+2}}\\ g^{s,r+1}_{c}\cdot\varphi_{r+1}({\bf p}^{\frown}c)=&\ g^{s}_{d}\cdot\varphi_{r}({\bf p}^{\frown}d)=\varphi_{r}\circ\widetilde{e}_{(A_{r},\alpha_{r})}(s^{\frown}c)=\varphi_{r+1}(s^{\frown}c)\end{split}

by the definition of XqX_{q}. That shows (6) an the proof is finished.

Constructing Ο•{\bf\phi}. LemmaΒ B.1 gives a finitely uniformly branching tree TT and a sequence of continuous maps (ψ~r,∞:[T]β†’[Tr])rβˆˆβ„•\left(\widetilde{\psi}_{r,\infty}:[T]\to[T_{r}]\right)_{r\in{\mathbbm{N}}}. Define Ο•=Ο†r∘ψ~r,∞\phi=\varphi_{r}\circ\widetilde{\psi}_{r,\infty} for some, or equivalently (by LemmaΒ B.2Β (3)) any, rβˆˆβ„•r\in{\mathbbm{N}}. Note that Ο•\phi is a continuous map and Ο•=Ο†βˆ˜ΞΆ\phi=\varphi\circ\zeta where ΞΆ=ψ~0,∞\zeta=\widetilde{\psi}_{0,\infty}.

Define (sr)rβˆˆβ„•=(srr)rβˆˆβ„•(s_{r})_{r\in{\mathbbm{N}}}=(s^{r}_{r})_{r\in{\mathbbm{N}}}. It follows from (1) and LemmaΒ B.1Β (1) that srr=sr∈Ts^{r}_{r}=s_{r}\in T for every rβˆˆβ„•r\in{\mathbbm{N}} and |sr|=r|s_{r}|=r. By (4) and LemmaΒ B.1Β (4) we have that Ο†\varphi is a homomorphism from 𝔾srT{\mathbbm{G}}^{T}_{s_{r}} to β„‹k,r\mathcal{H}_{{k},r} for every rβˆˆβ„•r\in{\mathbbm{N}}. Let s∈Ts\in T. Then there is rβ‰₯|s|r\geq|s| such that pr=sp_{r}=s. It follows by (5) that s=prβŠ‘sr+1=sr+1r+1s=p_{r}\sqsubseteq s_{r+1}=s^{r+1}_{r+1} and, consequently, (sr)rβˆˆβ„•(s_{r})_{r\in{\mathbbm{N}}} is dense in TT.

It remains to show that 𝐝φ{\bf d}_{\varphi} is uniform. Let s,t∈Tβˆ©β„•rs,t\in T\cap{\mathbbm{N}}^{r} and x,y∈[Ts]x,y\in[T_{s}]. It follows from LemmaΒ B.1Β (2) that there are c,d∈[(Tr)s]c,d\in[(T_{r})_{s}] such that

ψ~r,βˆžβ€‹(uβŒ’β€‹x)=uβŒ’β€‹c&ψ~r,βˆžβ€‹(uβŒ’β€‹y)=uβŒ’β€‹d\widetilde{\psi}_{r,\infty}(u^{\frown}x)=u^{\frown}c\ \&\ \widetilde{\psi}_{r,\infty}(u^{\frown}y)=u^{\frown}d

for every u∈Tβˆ©β„•ru\in T\cap{\mathbbm{N}}^{r}.

Let gs,r,gcs,r,gds,r∈Gg^{s,r},g^{s,r}_{c},g^{s,r}_{d}\in G be as in (6). We have

|𝐝φ​(srβŒ’β€‹x,sβŒ’β€‹x)βˆ’πΟ†β€‹(srβŒ’β€‹y,sβŒ’β€‹y)|=|𝐝φr​(srrβŒ’β€‹c,sβŒ’β€‹c)βˆ’πΟ†r​(srrβŒ’β€‹d,sβŒ’β€‹d)|≀|𝐝φr​(srrβŒ’β€‹c,sβŒ’β€‹c)βˆ’d​(gs,r,1G)|+|d​(gs,r,1G)βˆ’πΟ†r​(srrβŒ’β€‹d,sβŒ’β€‹d)|≀12r+1.\begin{split}|{\bf d}_{\varphi}({s_{r}}^{\frown}x,s^{\frown}x)-{\bf d}_{\varphi}({s_{r}}^{\frown}y,s^{\frown}y)|=&\ |{\bf d}_{\varphi_{r}}({s^{r}_{r}}^{\frown}c,s^{\frown}c)-{\bf d}_{\varphi_{r}}({s^{r}_{r}}^{\frown}d,s^{\frown}d)|\\ \leq&\ |{\bf d}_{\varphi_{r}}({s^{r}_{r}}^{\frown}c,s^{\frown}c)-d(g^{s,r},1_{G})|+|d(g^{s,r},1_{G})-{\bf d}_{\varphi_{r}}({s^{r}_{r}}^{\frown}d,s^{\frown}d)|\\ \leq&\ \frac{1}{2^{r+1}}.\end{split}

Consequently, after doing the same argument for tt, we obtain

|𝐝φ​(tβŒ’β€‹x,sβŒ’β€‹x)βˆ’πΟ†β€‹(tβŒ’β€‹y,sβŒ’β€‹y)|≀12r.|{\bf d}_{\varphi}(t^{\frown}x,s^{\frown}x)-{\bf d}_{\varphi}(t^{\frown}y,s^{\frown}y)|\leq\frac{1}{2^{r}}.

Pick any g,h∈Gg,h\in G such that g⋅φ​(sβŒ’β€‹x)=φ​(sβŒ’β€‹y)g\cdot\varphi(s^{\frown}x)=\varphi(s^{\frown}y) and h⋅φ​(srβŒ’β€‹x)=φ​(srβŒ’β€‹y)h\cdot\varphi({s_{r}}^{\frown}x)=\varphi({s_{r}}^{\frown}y) if they exist. Then we have

(gds,r)βˆ’1β‹…gβ‹…gcs,r⋅φ​(srβŒ’β€‹x)=(gds,r)βˆ’1β‹…gβ‹…gcs,rβ‹…Ο†r​(srβŒ’β€‹c)=Ο†r​(srβŒ’β€‹d)=φ​(srβŒ’β€‹y)gds,rβ‹…hβ‹…(gcs,r)βˆ’1⋅φ​(sβŒ’β€‹x)=gds,rβ‹…hβ‹…(gcs,r)βˆ’1β‹…Ο†r​(sβŒ’β€‹c)=Ο†r​(sβŒ’β€‹d)=φ​(sβŒ’β€‹y)\begin{split}(g^{s,r}_{d})^{-1}\cdot g\cdot g^{s,r}_{c}\cdot\varphi({s_{r}}^{\frown}x)=&\ (g^{s,r}_{d})^{-1}\cdot g\cdot g^{s,r}_{c}\cdot\varphi_{r}({s_{r}}^{\frown}c)=\varphi_{r}({s_{r}}^{\frown}d)=\varphi({s_{r}}^{\frown}y)\\ g^{s,r}_{d}\cdot h\cdot(g^{s,r}_{c})^{-1}\cdot\varphi(s^{\frown}x)=&\ g^{s,r}_{d}\cdot h\cdot(g^{s,r}_{c})^{-1}\cdot\varphi_{r}(s^{\frown}c)=\varphi_{r}(s^{\frown}d)=\varphi(s^{\frown}y)\end{split} (**)

by (6). The invariance of dd gives

d​((gds,r)βˆ’1β‹…gβ‹…gcs,r,1G)=d​(g,gds,rβ‹…(gcs,r)βˆ’1)≀d​(g,1G)+d​(gds,r,gcs,r)≀d​(g,1G)+12r+1d((g^{s,r}_{d})^{-1}\cdot g\cdot g^{s,r}_{c},1_{G})=d(g,g^{s,r}_{d}\cdot(g^{s,r}_{c})^{-1})\leq d(g,1_{G})+d(g^{s,r}_{d},g^{s,r}_{c})\leq d(g,1_{G})+\frac{1}{2^{r+1}}

where the last inequality follows from

d​(gds,r,gcs,r)≀d​(gds,r,gs,r)+d​(gs,r,gcs,r).d(g^{s,r}_{d},g^{s,r}_{c})\leq d(g^{s,r}_{d},g^{s,r})+d(g^{s,r},g^{s,r}_{c}).

Similarly

d​(gds,rβ‹…hβ‹…(gcs,r)βˆ’1,1G)≀d​(h,1G)+12r+1.d(g^{s,r}_{d}\cdot h\cdot(g^{s,r}_{c})^{-1},1_{G})\leq d(h,1_{G})+\frac{1}{2^{r+1}}.

This implies

|𝐝φ​(sβŒ’β€‹x,sβŒ’β€‹y)βˆ’πΟ†β€‹(srβŒ’β€‹x,srβŒ’β€‹y)|≀12r+1.|{\bf d}_{\varphi}(s^{\frown}x,s^{\frown}y)-{\bf d}_{\varphi}({s_{r}}^{\frown}x,{s_{r}}^{\frown}y)|\leq\frac{1}{2^{r+1}}.

Similar argument for tt implies that

|𝐝φ​(sβŒ’β€‹x,sβŒ’β€‹y)βˆ’πΟ†β€‹(tβŒ’β€‹x,tβŒ’β€‹y)|≀12r.|{\bf d}_{\varphi}(s^{\frown}x,s^{\frown}y)-{\bf d}_{\varphi}(t^{\frown}x,t^{\frown}y)|\leq\frac{1}{2^{r}}.

In the case when such g,h∈Gg,h\in G do not exist, then, by (** β€£ B), we have

𝐝φ​(sβŒ’β€‹x,sβŒ’β€‹y)=𝐝φ​(tβŒ’β€‹x,tβŒ’β€‹y)=+∞{\bf d}_{\varphi}(s^{\frown}x,s^{\frown}y)={\bf d}_{\varphi}(t^{\frown}x,t^{\frown}y)=+\infty

and trivially

|𝐝φ​(sβŒ’β€‹x,sβŒ’β€‹y)βˆ’πΟ†β€‹(tβŒ’β€‹x,tβŒ’β€‹y)|≀12r.|{\bf d}_{\varphi}(s^{\frown}x,s^{\frown}y)-{\bf d}_{\varphi}(t^{\frown}x,t^{\frown}y)|\leq\frac{1}{2^{r}}.

This finishes the proof. ∎

Proof of LemmaΒ 7.2.

Recall that knβˆˆβ„•k_{n}\in{\mathbbm{N}} is such that k0=0k_{0}=0, kn+1≀max⁑{km:m≀n}+1k_{n+1}\leq\max\{k_{m}:m\leq n\}+1 for every nβˆˆβ„•n\in\mathbb{N} and for every kβˆˆβ„•k\in{\mathbbm{N}} there are infinitely many nβˆˆβ„•n\in{\mathbbm{N}} such that kn=kk_{n}=k. Also, we defined Vk=Ξ”kV_{k}=\Delta_{k} for every kβˆˆβ„•k\in{\mathbbm{N}} and the definitions of (Ri,j)i,jβˆˆβ„•(R_{i,j})_{i,j\in{\mathbbm{N}}} are made with respect to (Vk)kβˆˆβ„•(V_{k})_{k\in{\mathbbm{N}}}. Set Wk=Vf​(k)+2W_{k}=V_{f(k)+2} for every kβˆˆβ„•k\in{\mathbbm{N}}. Then it is easy to see that we have Wkβ‹…WkβŠ†Vf​(k)+1βŠ†VkW_{k}\cdot W_{k}\subseteq V_{f(k)+1}\subseteq V_{k} for every kβˆˆβ„•k\in{\mathbbm{N}}. Define R~k,f​(k)\widetilde{R}_{k,f(k)} as

(x,y)∈R~k,f​(k)⇔y∈(Vkβ‹…Vk)β‹…x∧yβˆ‰Vf​(k)+1β‹…x(x,y)\in\widetilde{R}_{k,f(k)}\ \Leftrightarrow\ y\in(V_{k}\cdot V_{k})\cdot x\ \wedge\ y\not\not\in V_{f(k)+1}\cdot x

for every x,y∈Xx,y\in X. Note that we have Rk,f​(k)βŠ†R~k,f​(k)βŠ†Rkβˆ’1,f​(k)+1R_{k,f(k)}\subseteq\widetilde{R}_{k,f(k)}\subseteq R_{k-1,f(k)+1} for every k>0k>0.

The proof consists of two steps. In the first step (A) we find a continuous homomorphism Ο†:2β„•β†’X\varphi:2^{\mathbbm{N}}\to X from (𝔾s)s∈2<β„•({\mathbbm{G}}_{s})_{s\in 2^{<{\mathbbm{N}}}} to (R~k|s|,f​(k|s|))s∈2<β„•(\widetilde{R}_{k_{|s|},f(k_{|s|})})_{s\in 2^{<{\mathbbm{N}}}}. In the second step (B) we find a subsequence of (Vk)kβˆˆβ„•(V_{k})_{k\in{\mathbbm{N}}} and (A,Ξ±)∈[β„•]β„•Γ—2β„•(A,\alpha)\in[{\mathbbm{N}}]^{\mathbbm{N}}\times 2^{\mathbbm{N}} such that Ο†βˆ˜e~(A,Ξ±)\varphi\circ\widetilde{e}_{(A,\alpha)} is a homomorphism from (𝔾s)s∈2<β„•({\mathbbm{G}}_{s})_{s\in 2^{<{\mathbbm{N}}}} to (Rk|s|,k|s|+1)s∈2<β„•(R_{k_{|s|},k_{|s|}+1})_{s\in 2^{<{\mathbbm{N}}}}.

(A). The construction proceeds by induction on rβˆˆβ„•r\in{\mathbbm{N}}. We construct ((Ar,Ξ±r))rβˆˆβ„•βŠ†[β„•]β„•Γ—2β„•((A_{r},\alpha_{r}))_{r\in{\mathbbm{N}}}\subseteq[{\mathbbm{N}}]^{{\mathbbm{N}}}\times 2^{\mathbbm{N}} together with (π’œkr)r,kβˆˆβ„•βŠ†[β„•]β„•(\mathcal{A}^{r}_{k})_{r,k\in{\mathbbm{N}}}\subseteq[{\mathbbm{N}}]^{{\mathbbm{N}}}, (Ο†r:2β„•β†’X)rβˆˆβ„•(\varphi_{r}:2^{\mathbbm{N}}\to X)_{r\in{\mathbbm{N}}} and (snr)r,nβˆˆβ„•βŠ†2<β„•(s^{r}_{n})_{r,n\in{\mathbbm{N}}}\subseteq 2^{<{\mathbbm{N}}} such that the following holds

  1. 1.

    Ar∩(r+1)=r+1A_{r}\cap(r+1)=r+1 for every rβˆˆβ„•r\in{\mathbbm{N}},

  2. 2.

    (π’œkr)kβˆˆβ„•(\mathcal{A}^{r}_{k})_{k\in{\mathbbm{N}}} is a partition of β„•{\mathbbm{N}} for every rβˆˆβ„•r\in{\mathbbm{N}},

  3. 3.

    Ο†r=Ο•0∘e~(A0,Ξ±0)βˆ˜β€¦β€‹e~(Arβˆ’1,Ξ±rβˆ’1)\varphi_{r}=\phi_{0}\circ\widetilde{e}_{(A_{0},\alpha_{0})}\circ\dots\widetilde{e}_{(A_{r-1},\alpha_{r-1})} for every rβˆˆβ„•r\in{\mathbbm{N}},

  4. 4.

    {snr:nβˆˆπ’œkr}\{s^{r}_{n}:n\in\mathcal{A}^{r}_{k}\} is dense in 2<β„•2^{<{\mathbbm{N}}} for every r,kβˆˆβ„•r,k\in{\mathbbm{N}},

  5. 5.

    Ο†r\varphi_{r} is a homomorphism from 𝔾snr{\mathbbm{G}}_{s^{r}_{n}} to Rk,f​(k)R_{k,f(k)} whenever nβˆˆπ’œkrn\in\mathcal{A}^{r}_{k} for every r,kβˆˆβ„•r,k\in{\mathbbm{N}},

  6. 6.

    Ο†r\varphi_{r} is a homomorphism from 𝔾s{\mathbbm{G}}_{s} to R~k|s|,f​(k|s|)\widetilde{R}_{k_{|s|},f(k_{|s|})} for every s∈2rs\in 2^{r} and rβˆˆβ„•r\in{\mathbbm{N}}.

Having this we use LemmaΒ B.1 and define Ο†:2β„•β†’X\varphi:2^{\mathbbm{N}}\to X as Ο†=Ο†r∘ψ~r,∞\varphi=\varphi_{r}\circ\widetilde{\psi}_{r,\infty} for some, or equivalently any, by LemmaΒ B.1Β (2), rβˆˆβ„•r\in{\mathbbm{N}}. Let s∈2<β„•s\in 2^{<{\mathbbm{N}}}. By LemmaΒ B.1Β (3) we have that ψ~|s|,∞\widetilde{\psi}_{|s|,\infty} is a reduction from 𝔾s{\mathbbm{G}}_{s} to 𝔾s{\mathbbm{G}}_{s}. Property (6) then implies that Ο†=Ο†|s|∘ψ~|s|,∞\varphi=\varphi_{|s|}\circ\widetilde{\psi}_{|s|,\infty} is a homomorphism from 𝔾s{\mathbbm{G}}_{s} to R~k|s|,f​(k|s|)\widetilde{R}_{k_{|s|},f(k_{|s|})}.

Let rβˆˆβ„•r\in{\mathbbm{N}} and suppose that we have (π’œkr)kβˆˆβ„•(\mathcal{A}^{r}_{k})_{k\in{\mathbbm{N}}}, Ο†r\varphi_{r} and (snr)nβˆˆβ„•(s^{r}_{n})_{n\in{\mathbbm{N}}} that satisfy (2)–(6). We show how to construct (Ar,Ξ±r)(A_{r},\alpha_{r}), (π’œkr+1)kβˆˆβ„•(\mathcal{A}^{r+1}_{k})_{k\in\mathbb{N}}, Ο†r+1\varphi_{r+1} and (snr+1)nβˆˆβ„•(s^{r+1}_{n})_{n\in{\mathbbm{N}}} that satisfy (1)–(6). In the case r=0r=0 we put π’œk0={nβˆˆβ„•:kn=k}\mathcal{A}^{0}_{k}=\{n\in\mathbb{N}:k_{n}=k\} and sn0=sns^{0}_{n}=s_{n} for every nβˆˆβ„•n\in{\mathbbm{N}}. Then properties (2)–(5) follow directly from definitions, while (6) is easy to see once we realize that Ο†0=Ο•0\varphi_{0}=\phi_{0} is a homomorphism from π”Ύβˆ…{\mathbbm{G}}_{\emptyset} to Rk0,f​(k0)R_{k_{0},f(k_{0})} and Rk0,f​(k0)βŠ†R~k0,f​(k0)R_{k_{0},f(k_{0})}\subseteq\widetilde{R}_{k_{0},f(k_{0})}.

Let (gm)mβˆˆβ„•(g_{m})_{m\in{\mathbbm{N}}} be a dense subset of GG. To build (Ar,Ξ±r)(A_{r},\alpha_{r}) we use LemmaΒ B.2 with (π’œkr)kβˆˆβ„•(\mathcal{A}^{r}_{k})_{k\in{\mathbbm{N}}}, (snr)nβˆˆβ„•(s^{r}_{n})_{n\in{\mathbbm{N}}}, 𝐀=kr+1{\bf k}=k_{r+1}, 𝐦=r+1{\bf m}=r+1, 𝐩=(0,…,0)∈2𝐦{\bf p}=(0,\dots,0)\in 2^{\bf m} and (Xq)qβˆˆβ„•2𝐦(X_{q})_{q\in{\mathbbm{N}}^{2^{\bf m}}}, where

Xq={π©βŒ’β€‹c∈2β„•:βˆ€u∈2𝐦​φr​(uβŒ’β€‹c)∈Wkr+1β‹…gq​(u)β‹…Ο†r​(π©βŒ’β€‹c)}βˆͺ⋃𝐩≠u∈2𝐦uβŒ’β€‹2β„•.X_{q}=\{{\bf p}^{\frown}c\in 2^{{\mathbbm{N}}}:\forall u\in 2^{\bf m}\ \varphi_{r}(u^{\frown}c)\in W_{k_{r+1}}\cdot g_{q(u)}\cdot\varphi_{r}({\bf p}^{\frown}c)\}\cup\bigcup_{{\bf p}\not=u\in 2^{\bf m}}u^{\frown}2^{\mathbbm{N}}.

It follows from the density of (gm)mβˆˆβ„•(g_{m})_{m\in{\mathbbm{N}}} that ⋃qβˆˆβ„•2𝐦Xq=2β„•\bigcup_{q\in{\mathbbm{N}}^{2^{\bf m}}}X_{q}=2^{\mathbbm{N}}. Moreover, by the definition, we have that XqX_{q} is an analytic subset of 2β„•2^{\mathbbm{N}} for every qβˆˆβ„•2𝐦q\in\mathbb{N}^{2^{\bf m}}, thus it has the Baire property byΒ [Kec95, TheoremΒ 21.6]. Now, LemmaΒ B.2 gives (Ar,Ξ±r)(A_{r},\alpha_{r}) that satisfies LemmaΒ B.2Β (1)–(4). Next we verify properties (1)–(6).

It is easy to see that Properties (1) and (3) hold when we put Ο†r+1=Ο†r∘e~(Ar,Ξ±r)\varphi_{r+1}=\varphi_{r}\circ\widetilde{e}_{(A_{r},\alpha_{r})}. Let (snr+1)nβˆˆβ„•(s^{r+1}_{n})_{n\in{\mathbbm{N}}} be an enumeration of the set

{v∈2<β„•:βˆƒmβˆˆβ„•β€‹e(Ar,Ξ±r)​(v)=smr}\{v\in 2^{<{\mathbbm{N}}}:\exists m\in{\mathbbm{N}}\ e_{(A_{r},\alpha_{r})}(v)=s^{r}_{m}\}

and π’œkr+1={nβˆˆβ„•:βˆƒmβˆˆπ’œkr​e(Ar,Ξ±r)​(snr+1)=smr}\mathcal{A}^{r+1}_{k}=\{n\in{\mathbbm{N}}:\exists m\in\mathcal{A}^{r}_{k}\ e_{(A_{r},\alpha_{r})}(s^{r+1}_{n})=s^{r}_{m}\} for every kβˆˆβ„•k\in{\mathbbm{N}}. Then it follows from LemmaΒ B.2Β (3) that Properties (2) and (4) hold. Let snr+1s^{r+1}_{n} and mβˆˆβ„•m\in{\mathbbm{N}} be such that e(Ar,Ξ±r)​(snr+1)=smre_{(A_{r},\alpha_{r})}(s^{r+1}_{n})=s^{r}_{m}. Then we have that e~(Ar,Ξ±r)\widetilde{e}_{(A_{r},\alpha_{r})} is a reduction from 𝔾snr+1{\mathbbm{G}}_{s^{r+1}_{n}} to 𝔾smr{\mathbbm{G}}_{s^{r}_{m}}. By (5) of the inductive assumption we have that Ο†r\varphi_{r} is a homomorphism from 𝔾smr{\mathbbm{G}}_{s^{r}_{m}} to Rk,f​(k)R_{k,f(k)} where mβˆˆπ’œkrm\in\mathcal{A}^{r}_{k}. Then we have that Ο†r+1=Ο†r∘e~(Ar,Ξ±r)\varphi_{r+1}=\varphi_{r}\circ\widetilde{e}_{(A_{r},\alpha_{r})} is a homomorphism from 𝔾snr+1{\mathbbm{G}}_{s^{r+1}_{n}} to Rk,f​(k)R_{k,f(k)}. By the definition we have nβˆˆπ’œkr+1n\in\mathcal{A}^{r+1}_{k} and that shows (5).

It remains to show (6). By LemmaΒ B.2Β (2) there is qβˆˆβ„•2𝐦q\in{\mathbbm{N}}^{2^{\bf m}} such that π©βŒ’β€‹2β„•βŠ†(e~(Ar,Ξ±r))βˆ’1​(Xq){\bf p}^{\frown}2^{\mathbbm{N}}\subseteq(\widetilde{e}_{(A_{r},\alpha_{r})})^{-1}(X_{q}). By LemmaΒ B.2Β (4) and the definition of e(Ar,Ξ±r)e_{(A_{r},\alpha_{r})} we have that π©βŠ‘e(Ar,Ξ±r)​(𝐩)=snr{\bf p}\sqsubseteq e_{(A_{r},\alpha_{r})}({\bf p})=s^{r}_{n} where nβˆˆπ’œπ€=π’œkr+1n\in\mathcal{A}_{{\bf k}}=\mathcal{A}_{k_{r+1}}. We have that Ο†r+1\varphi_{r+1} is a homomorphism from 𝔾𝐩{\mathbbm{G}}_{\bf p} to Rkr+1,f​(kr+1)R_{k_{r+1},f(k_{r+1})} because e~(Ar,Ξ±r)\widetilde{e}_{(A_{r},\alpha_{r})} is a reduction from 𝔾𝐩{\mathbbm{G}}_{\bf p} to 𝔾snr{\mathbbm{G}}_{s^{r}_{n}} and Ο†r\varphi_{r} is a homomorphism from 𝔾snr{\mathbbm{G}}_{s^{r}_{n}} to Rkr+1,f​(kr+1)R_{k_{r+1},f(k_{r+1})} by (5). Let cβˆˆβ„•c\in{\mathbbm{N}}, then we have e~(Ar,Ξ±r)​(π©βŒ’β€‹c)βˆˆπ©βŒ’β€‹2β„•βˆ©Xq\widetilde{e}_{(A_{r},\alpha_{r})}({\bf p}^{\frown}c)\in{\bf p}^{\frown}2^{\mathbbm{N}}\cap X_{q} and it follows from the definition of e~(Ar,Ξ±r)\widetilde{e}_{(A_{r},\alpha_{r})} that there is d∈2β„•d\in 2^{\mathbbm{N}} such that

e~(Ar,Ξ±r)​(uβŒ’β€‹c)=e(Ar,Ξ±r)​(uβ†Ύr)βŒ’β€‹(u​(r))βŒ’β€‹d=uβŒ’β€‹d\widetilde{e}_{(A_{r},\alpha_{r})}(u^{\frown}c)=e_{(A_{r},\alpha_{r})}(u\upharpoonright r)^{\frown}(u(r))^{\frown}d=u^{\frown}d

holds for every u∈2𝐦u\in 2^{\bf m}. This implies that

Ο†r+1​(uβŒ’β€‹c)=Ο†r∘e~(Ar,Ξ±r)​(uβŒ’β€‹c)=Ο†r​(uβŒ’β€‹d),\varphi_{r+1}(u^{\frown}c)=\varphi_{r}\circ\widetilde{e}_{(A_{r},\alpha_{r})}(u^{\frown}c)=\varphi_{r}(u^{\frown}d),

and, by the definition of XqX_{q}, we have

Ο†r+1​(uβŒ’β€‹c)=Ο†r​(uβŒ’β€‹d)∈Wkr+1β‹…gq​(u)β‹…Ο†r​(π©βŒ’β€‹d)∈Wkr+1β‹…gq​(u)β‹…(Ο†r∘e~(Ar,Ξ±r))​(π©βŒ’β€‹c)∈Wkr+1β‹…gq​(u)β‹…Ο†r+1​(π©βŒ’β€‹c)\begin{split}\varphi_{r+1}(u^{\frown}c)=\varphi_{r}(u^{\frown}d)\in&\ W_{k_{r+1}}\cdot g_{q(u)}\cdot\varphi_{r}({\bf p}^{\frown}d)\\ \in&\ W_{k_{r+1}}\cdot g_{q(u)}\cdot(\varphi_{r}\circ\widetilde{e}_{(A_{r},\alpha_{r})})({\bf p}^{\frown}c)\\ \in&\ W_{k_{r+1}}\cdot g_{q(u)}\cdot\varphi_{r+1}({\bf p}^{\frown}c)\end{split}

for every u∈2𝐦u\in 2^{\bf m}.

Recall that 2𝐦=2r+12^{\bf m}=2^{r+1}. Let u∈2r+1u\in 2^{r+1} and c∈2β„•c\in 2^{{\mathbbm{N}}}. Pick h0∈Vkr+1h_{0}\in V_{k_{r+1}}, g0∈Gg_{0}\in G and a,b∈Wkr+1a,b\in W_{k_{r+1}} such that

  • β€’

    Ο†r+1​(π©βŒ’β€‹(1)βŒ’β€‹c)=h0β‹…Ο†r+1​(π©βŒ’β€‹(0)βŒ’β€‹c)\varphi_{r+1}({\bf p}^{\frown}(1)^{\frown}c)=h_{0}\cdot\varphi_{r+1}({\bf p}^{\frown}(0)^{\frown}c),

  • β€’

    Ο†r+1​(uβŒ’β€‹(1)βŒ’β€‹c)=g0β‹…Ο†r+1​(uβŒ’β€‹(0)βŒ’β€‹c)\varphi_{r+1}(u^{\frown}(1)^{\frown}c)=g_{0}\cdot\varphi_{r+1}(u^{\frown}(0)^{\frown}c),

  • β€’

    Ο†r+1​(uβŒ’β€‹(0)βŒ’β€‹c)=aβ‹…gq​(u)β‹…Ο†r+1​(π©βŒ’β€‹(0)βŒ’β€‹c)\varphi_{r+1}(u^{\frown}(0)^{\frown}c)=a\cdot g_{q(u)}\cdot\varphi_{r+1}({\bf p}^{\frown}(0)^{\frown}c),

  • β€’

    Ο†r+1​(uβŒ’β€‹(1)βŒ’β€‹c)=bβ‹…gq​(u)β‹…Ο†r+1​(π©βŒ’β€‹(1)βŒ’β€‹c)\varphi_{r+1}(u^{\frown}(1)^{\frown}c)=b\cdot g_{q(u)}\cdot\varphi_{r+1}({\bf p}^{\frown}(1)^{\frown}c).

An easy calculation shows that

Ο†r+1​(π©βŒ’β€‹(1)βŒ’β€‹c)=(gq​(u)βˆ’1β‹…bβˆ’1β‹…g0β‹…aβ‹…gq​(u))β‹…Ο†r+1​(π©βŒ’β€‹(0)βŒ’β€‹c)Ο†r+1​(uβŒ’β€‹(1)βŒ’β€‹c)=(bβ‹…gquβ‹…h0β‹…gq​(u)βˆ’1β‹…aβˆ’1)β‹…Ο†r+1​(uβŒ’β€‹(0)βŒ’β€‹c).\begin{split}\varphi_{r+1}({\bf p}^{\frown}(1)^{\frown}c)=&\ \left(g^{-1}_{q(u)}\cdot b^{-1}\cdot g_{0}\cdot a\cdot g_{q(u)}\right)\cdot\varphi_{r+1}({\bf p}^{\frown}(0)^{\frown}c)\\ \varphi_{r+1}(u^{\frown}(1)^{\frown}c)=&\ \left(b\cdot g_{q_{u}}\cdot h_{0}\cdot g^{-1}_{q(u)}\cdot a^{-1}\right)\cdot\varphi_{r+1}(u^{\frown}(0)^{\frown}c).\end{split}

Recall that Vkr+1V_{k_{r+1}}, Vf​(kr+1)V_{f(k_{r+1})} and Wkr+1W_{k_{r+1}} are conjugacy invariant and symmetric. Then we have

(bβ‹…gquβ‹…h0β‹…gq​(u)βˆ’1β‹…aβˆ’1)∈bβ‹…Vkr+1β‹…aβˆ’1=bβ‹…aβˆ’1β‹…Vkr+1βŠ†Vkr+1β‹…Vkr+1.\left(b\cdot g_{q_{u}}\cdot h_{0}\cdot g^{-1}_{q(u)}\cdot a^{-1}\right)\in b\cdot V_{k_{r+1}}\cdot a^{-1}=b\cdot a^{-1}\cdot V_{k_{r+1}}\subseteq V_{k_{r+1}}\cdot V_{k_{r+1}}.

Assume that g0∈Vf​(kr+1)+1g_{0}\in V_{f(k_{r+1})+1} then

(gq​(u)βˆ’1β‹…bβˆ’1β‹…g0β‹…aβ‹…gq​(u))∈gq​(u)βˆ’1β‹…Wkr+1β‹…Vf​(kr+1)+1β‹…Wkr+1β‹…gq​(u)∈Vf​(kr+1)+2β‹…Vf​(kr+1)+1β‹…Vf​(kr+1)+2∈Vf​(kr+1).\begin{split}\left(g^{-1}_{q(u)}\cdot b^{-1}\cdot g_{0}\cdot a\cdot g_{q(u)}\right)\in&\ g^{-1}_{q(u)}\cdot W_{k_{r+1}}\cdot V_{f(k_{r+1})+1}\cdot W_{k_{r+1}}\cdot g_{q(u)}\\ \in&\ V_{f(k_{r+1})+2}\cdot V_{f(k_{r+1})+1}\cdot V_{f(k_{r+1})+2}\\ \in&\ V_{f(k_{r+1})}.\end{split}

The assumption that (Ο†r+1​(π©βŒ’β€‹(0)βŒ’β€‹c),Ο†r+1​(π©βŒ’β€‹(1)βŒ’β€‹c))∈Rkr+1,f​(kr+1)(\varphi_{r+1}({\bf p}^{\frown}(0)^{\frown}c),\varphi_{r+1}({\bf p}^{\frown}(1)^{\frown}c))\in R_{k_{r+1},f(k_{r+1})} implies that

(Ο†r+1​(uβŒ’β€‹(0)βŒ’β€‹c),Ο†r+1​(uβŒ’β€‹(1)βŒ’β€‹c))∈R~kr+1,f​(kr+1),(\varphi_{r+1}(u^{\frown}(0)^{\frown}c),\varphi_{r+1}(u^{\frown}(1)^{\frown}c))\in\widetilde{R}_{k_{r+1},f(k_{r+1})},

hence we have (6).

(B). In the first step (A) we found a continuous homomorphism Ο†:2β„•β†’X\varphi:2^{{\mathbbm{N}}}\to X from (𝔾s)s∈2<β„•({\mathbbm{G}}_{s})_{s\in 2^{<{\mathbbm{N}}}} to (R~k|s|,f​(k|s|))s∈2<β„•(\widetilde{R}_{k_{|s|},f(k_{|s|})})_{s\in 2^{<{\mathbbm{N}}}}. Put k0=0k^{0}=0 and define inductively ki+1=f​(ki+1)+1k^{i+1}=f(k^{i}+1)+1 for every iβˆˆβ„•i\in{\mathbbm{N}}. Let

A={nβˆˆβ„•:βˆƒiβˆˆβ„•β€‹kn=ki+1}A=\{n\in{\mathbbm{N}}:\exists i\in{\mathbbm{N}}\ k_{n}=k^{i}+1\}

and Ξ±=(0,0,,…)∈2β„•\alpha=(0,0,,\dots)\in 2^{{\mathbbm{N}}}. Put Ο•1=Ο†βˆ˜e~(A,Ξ±):2β„•β†’X\phi_{1}=\varphi\circ\widetilde{e}_{(A,\alpha)}:2^{\mathbbm{N}}\to X and define i|s|βˆˆβ„•i_{|s|}\in{\mathbbm{N}} such that k|e(A,Ξ±)​(s)|=ki|s|+1k_{|e_{(A,\alpha)}(s)|}=k^{i_{|s|}}+1. This is well defined since |e(A,Ξ±)​(s)|∈A|e_{(A,\alpha)}(s)|\in A for every s∈2<β„•s\in 2^{<{\mathbbm{N}}}.

We show that Ο•1\phi_{1} is a homomorphism from (𝔾s)s∈2<β„•({\mathbbm{G}}_{s})_{s\in 2^{<{\mathbbm{N}}}} to (Rki|s|,ki|s|+1)s∈2<β„•(R_{k^{i_{|s|}},k^{i_{|s|}+1}})_{s\in 2^{<{\mathbbm{N}}}}. We have that e~(A,Ξ±)\widetilde{e}_{(A,\alpha)} is a reduction from 𝔾s{\mathbbm{G}}_{s} to 𝔾e(A,Ξ±)​(s){\mathbbm{G}}_{e_{(A,\alpha)}(s)} for every s∈2<β„•s\in 2^{<{\mathbbm{N}}}. Fix s∈2<β„•s\in 2^{<{\mathbbm{N}}} and let n=|e(A,Ξ±)​(s)|n=|e_{(A,\alpha)}(s)|. Then Ο•1\phi_{1} is a homomorphism from 𝔾s{\mathbbm{G}}_{s} to R~kn,f​(kn)\widetilde{R}_{k_{n},f(k_{n})}. We have

R~kn,f​(kn)βŠ†Rki|s|,ki|s|+1\widetilde{R}_{k_{n},f(k_{n})}\subseteq R_{k^{i_{|s|}},k^{i_{|s|}+1}}

because Vknβ‹…VknβŠ†Vknβˆ’1=VkiV_{k_{n}}\cdot V_{k_{n}}\subseteq V_{k_{n}-1}=V_{k^{i}} and Vf​(kn)+1=Vf​(ki+1)+1=Vki+1V_{f(k_{n})+1}=V_{f(k^{i}+1)+1}=V_{k^{i+1}}. Therefore, after passing to the subsequence (Vki)iβˆˆβ„•(V_{k^{i}})_{i\in{\mathbbm{N}}} we have that Ο•1\phi_{1} is a homomorphism from (𝔾s)s∈2<β„•({\mathbbm{G}}_{s})_{s\in 2^{<{\mathbbm{N}}}} to (Rki|s|,ki|s|+1)s∈2<β„•(R_{k^{i_{|s|}},k^{i_{|s|}+1}})_{s\in 2^{<{\mathbbm{N}}}} and that finishes the proof. ∎

Proof of LemmaΒ 7.3.

Recall that n0​(k)n_{0}(k) is the minimal number such that kn=kk_{n}=k and (Vi)iβˆˆβ„•(V_{i})_{i\in{\mathbbm{N}}} is a decreasing sequence of open neighborhoods of 1G1_{G}. The relations (Ri,j)i,jβˆˆβ„•(R_{i,j})_{i,j\in{\mathbbm{N}}} are defined with respect to (Vk)kβˆˆβ„•(V_{k})_{k\in{\mathbbm{N}}}. Recall also that Ξ”k={g∈G:d​(g,1G)<12k}\Delta_{k}=\{g\in G:d(g,1_{G})<\frac{1}{2^{k}}\}, where dd is some fixed compatible metric on GG, and the relations (β„‹k,m)k,mβˆˆβ„•(\mathcal{H}_{k,m})_{k,m\in{\mathbbm{N}}} are defined with respect to (Ξ”k)kβˆˆβ„•(\Delta_{k})_{k\in{\mathbbm{N}}}. We assume that VkβŠ†Ξ”kV_{k}\subseteq\Delta_{k} for every kβˆˆβ„•k\in{\mathbbm{N}}. By the assumption, there is a sequence of Borel sets {Ak,l}k,lβˆˆβ„•\{A_{k,l}\}_{k,l\in{\mathbbm{N}}} such that {Ak,l}lβˆˆβ„•\{A_{k,l}\}_{l\in{\mathbbm{N}}} is a partition of XX for every fixed kβˆˆβ„•k\in{\mathbbm{N}} and Ak,lA_{k,l} is β„‹k,m​(k,l)\mathcal{H}_{k,m(k,l)}-independent for every k,lβˆˆβ„•k,l\in{\mathbbm{N}} and some m​(k,l)βˆˆβ„•m(k,l)\in{\mathbbm{N}}.

The proof consists of two steps. In the first step, (A), we find a continuous homomorphism Ο†:2β„•β†’X\varphi:2^{{\mathbbm{N}}}\to X from (𝔾s)s∈2<β„•(\mathbb{G}_{s})_{s\in 2^{<{\mathbbm{N}}}} to (Rk|s|,k|s|+1)s∈2<β„•(R_{k_{|s|},k_{|s|}+1})_{s\in 2^{<{\mathbbm{N}}}} and a sequence (m​(r))rβˆˆβ„•βŠ†β„•(m(r))_{r\in{\mathbbm{N}}}\subseteq{\mathbbm{N}} such that

φ​(sβŒ’β€‹2β„•)\varphi(s^{\frown}2^{\mathbbm{N}})

is β„‹|s|,m​(|s|)\mathcal{H}_{|s|,m(|s|)}-independent for every βˆ…β‰ s∈2<β„•\emptyset\not=s\in 2^{<{\mathbbm{N}}}. In the second step, (B), we pass to a subsequence of (Vk)kβˆˆβ„•(V_{k})_{k\in{\mathbbm{N}}} and massage Ο†\varphi so that it meets the desired requirements.

(A). The construction proceeds by induction on rβˆˆβ„•r\in{\mathbbm{N}}. We construct ((Ar,Ξ±r))rβˆˆβ„•βŠ†[β„•]β„•Γ—2β„•((A_{r},\alpha_{r}))_{r\in{\mathbbm{N}}}\subseteq[{\mathbbm{N}}]^{\mathbbm{N}}\times 2^{{\mathbbm{N}}}, (π’œkr)r,kβˆˆβ„•βŠ†[β„•]β„•(\mathcal{A}^{r}_{k})_{r,k\in{\mathbbm{N}}}\subseteq[{\mathbbm{N}}]^{\mathbbm{N}}, (Ο†r:2β„•β†’X)rβˆˆβ„•(\varphi_{r}:2^{\mathbbm{N}}\to X)_{r\in{\mathbbm{N}}}, (m​(r))rβˆˆβ„•βŠ†β„•(m(r))_{r\in{\mathbbm{N}}}\subseteq{\mathbbm{N}} and (snr)rβˆˆβ„•βŠ†2<β„•(s^{r}_{n})_{r\in{\mathbbm{N}}}\subseteq 2^{<{\mathbbm{N}}} such that the following holds

  1. 1.

    Ar∩(r+1)=r+1A_{r}\cap(r+1)=r+1 for every rβˆˆβ„•r\in{\mathbbm{N}},

  2. 2.

    (π’œkr)kβˆˆβ„•(\mathcal{A}^{r}_{k})_{k\in{\mathbbm{N}}} is a partition of β„•{\mathbbm{N}} for every kβˆˆβ„•k\in{\mathbbm{N}},

  3. 3.

    Ο†r=Ο•1∘e~(A0,Ξ±0)βˆ˜β€¦β€‹e~(Arβˆ’1,Ξ±rβˆ’1)\varphi_{r}=\phi_{1}\circ\widetilde{e}_{(A_{0},\alpha_{0})}\circ\dots\widetilde{e}_{(A_{r-1},\alpha_{r-1})} for every rβˆˆβ„•r\in{\mathbbm{N}},

  4. 4.

    {snr:nβˆˆπ’œkr}\{s^{r}_{n}:n\in\mathcal{A}^{r}_{k}\} is dense in 2<β„•2^{<{\mathbbm{N}}} for every r,kβˆˆβ„•r,k\in{\mathbbm{N}},

  5. 5.

    Ο†r\varphi_{r} is a homomorphism from 𝔾s{\mathbbm{G}}_{s} to Rk,k+1R_{k,k+1} whenever |s|βˆˆπ’œkr|s|\in\mathcal{A}^{r}_{k} for every r,kβˆˆβ„•r,k\in\mathbb{N},

  6. 6.

    Ο†r\varphi_{r} is a homomorphism from (𝔾s)s∈2r({\mathbbm{G}}_{s})_{s\in 2^{r}} to (Rk|s|,k|s|+1)s∈2r(R_{k_{|s|},k_{|s|}+1})_{s\in 2^{r}},

  7. 7.

    Ο†r+1​(sβŒ’β€‹2β„•)\varphi_{r+1}(s^{\frown}2^{\mathbbm{N}}) is β„‹r+1,m​(r+1)\mathcal{H}_{r+1,m(r+1)}-independent for every s∈2r+1s\in 2^{r+1} and for every rβˆˆβ„•r\in{\mathbbm{N}}.

Having this, we use LemmaΒ B.1 and define Ο†:2β„•β†’X\varphi:2^{\mathbbm{N}}\to X as Ο†=Ο†r∘ψ~r,∞\varphi=\varphi_{r}\circ\widetilde{\psi}_{r,\infty} for some, or equivalently, by LemmaΒ B.1Β (2) any, rβˆˆβ„•r\in{\mathbbm{N}}. By LemmaΒ B.1Β (3), we have that ψ~r,∞\widetilde{\psi}_{r,\infty} is a reduction from 𝔾s{\mathbbm{G}}_{s} to 𝔾s{\mathbbm{G}}_{s} for every s∈2rs\in 2^{r} and every rβˆˆβ„•r\in{\mathbbm{N}}. This implies that Ο†\varphi is a homomorphism from (𝔾s)s∈2<β„•({\mathbbm{G}}_{s})_{s\in 2^{<{\mathbbm{N}}}} to (Rk|s|,k|s|+1)s∈2<β„•(R_{k_{|s|},k_{|s|}+1})_{s\in 2^{<{\mathbbm{N}}}}. Let s∈2r+1s\in 2^{r+1}, then it follows from LemmaΒ B.1Β (1)andΒ (2) that

ψ~r+1,βˆžβ€‹(sβŒ’β€‹2β„•)βŠ†sβŒ’β€‹2β„•.\widetilde{\psi}_{r+1,\infty}(s^{\frown}2^{\mathbbm{N}})\subseteq s^{\frown}2^{\mathbbm{N}}.

This implies that φ​(sβŒ’β€‹2β„•)\varphi(s^{\frown}2^{{\mathbbm{N}}}) is β„‹|s|,m​(|s|)\mathcal{H}_{|s|,m(|s|)}-independent for every βˆ…β‰ s∈2<β„•\emptyset\not=s\in 2^{<{\mathbbm{N}}}.

Let rβˆˆβ„•r\in{\mathbbm{N}} and suppose that we have (π’œkr)kβˆˆβ„•(\mathcal{A}^{r}_{k})_{k\in{\mathbbm{N}}}, Ο†r\varphi_{r} and (snr)nβˆˆβ„•(s^{r}_{n})_{n\in{\mathbbm{N}}} that satisfy (2)–(5). We show how to construct (Ar,Ξ±r)(A_{r},\alpha_{r}), (π’œkr+1)kβˆˆβ„•(\mathcal{A}^{r+1}_{k})_{k\in{\mathbbm{N}}}, Ο†r+1\varphi_{r+1}, m​(r+1)βˆˆβ„•m(r+1)\in{\mathbbm{N}} and (snr+1)nβˆˆβ„•(s^{r+1}_{n})_{n\in{\mathbbm{N}}} that satisfy (1)–(7). In the case when r=0r=0 we put π’œk0={nβˆˆβ„•:kn=k}\mathcal{A}^{0}_{k}=\{n\in{\mathbbm{N}}:k_{n}=k\} for every kβˆˆβ„•k\in{\mathbbm{N}}, m​(0)=0m(0)=0, Ο†0=Ο•1\varphi_{0}=\phi_{1} and choose any (sn0)nβˆˆβ„•(s^{0}_{n})_{n\in{\mathbbm{N}}} that satisfies (4). Then it is easy to see that properties (2)–(5) are satisfied.

To build (Ar,Ξ±r)(A_{r},\alpha_{r}) we use LemmaΒ B.2 with (π’œkr)kβˆˆβ„•(\mathcal{A}^{r}_{k})_{k\in{\mathbbm{N}}}, (snr)nβˆˆβ„•(s^{r}_{n})_{n\in{\mathbbm{N}}}, 𝐀=kr+1{\bf k}=k_{r+1}, 𝐦=r+1{\bf m}=r+1, 𝐩=(0,…,0)∈2𝐦{\bf p}=(0,\dots,0)\in 2^{\bf m} and (Xl)lβˆˆβ„•(X_{l})_{l\in{\mathbbm{N}}}, where

Xl=Ο†rβˆ’1​(Ar+1,l)X_{l}=\varphi^{-1}_{r}(A_{r+1,l})

for every lβˆˆβ„•l\in{\mathbbm{N}}. Now, LemmaΒ B.2 gives (Ar,Ξ±r)(A_{r},\alpha_{r}) that satisfies LemmaΒ B.2Β (1)–(4).

It is easy to see that Properties (1) and (3) hold when we put Ο†r+1=Ο†r∘e~(Ar,Ξ±r)\varphi_{r+1}=\varphi_{r}\circ\widetilde{e}_{(A_{r},\alpha_{r})}. Let (snr+1)nβˆˆβ„•(s^{r+1}_{n})_{n\in{\mathbbm{N}}} be an enumeration of the set

{v∈2<β„•:βˆƒmβˆˆβ„•β€‹e(Ar,Ξ±r)​(v)=smr}\{v\in 2^{<{\mathbbm{N}}}:\exists m\in{\mathbbm{N}}\ e_{(A_{r},\alpha_{r})}(v)=s^{r}_{m}\}

and π’œkr+1={nβˆˆβ„•:βˆƒs∈2n​|e(Ar,Ξ±r)​(s)|βˆˆπ’œkr}\mathcal{A}^{r+1}_{k}=\{n\in{\mathbbm{N}}:\exists s\in 2^{n}\ |e_{(A_{r},\alpha_{r})}(s)|\in\mathcal{A}^{r}_{k}\} for every kβˆˆβ„•k\in{\mathbbm{N}}. It follows from LemmaΒ B.2Β (3) that Properties (2) and (4) hold. Let s∈2ns\in 2^{n} be such that nβˆˆπ’œkr+1n\in\mathcal{A}^{r+1}_{k} for some kβˆˆβ„•k\in{\mathbbm{N}}. Then by the definition we have |e(Ar,Ξ±r)​(s)|βˆˆπ’œkr|e_{(A_{r},\alpha_{r})}(s)|\in\mathcal{A}^{r}_{k} and Ο†r\varphi_{r} is a homomorphism from 𝔾e(Ar,Ξ±r)​(s){\mathbbm{G}}_{e_{(A_{r},\alpha_{r})}(s)} to Rk,k+1R_{k,k+1} by (5) of the inductive assumption. This gives that Ο†r+1\varphi_{r+1} is a homomorphism from 𝔾s{\mathbbm{G}}_{s} to Rk,k+1R_{k,k+1} because e~(Ar,Ξ±r)\widetilde{e}_{(A_{r},\alpha_{r})} is a reduction from 𝔾s{\mathbbm{G}}_{s} to 𝔾e(Ar,Ξ±r)​(s){\mathbbm{G}}_{e_{(A_{r},\alpha_{r})}(s)}. This shows (5). By LemmaΒ B.2Β (4) we have that |e(Ar,Ξ±r)​(𝐩)|βˆˆπ’œπ€r=π’œkr+1r|e_{(A_{r},\alpha_{r})}({\bf p})|\in\mathcal{A}^{r}_{\bf k}=\mathcal{A}^{r}_{k_{r+1}}. This implies that r+1βˆˆπ’œkr+1r+1r+1\in\mathcal{A}^{r+1}_{k_{r+1}} and, by (5), Ο†r+1\varphi_{r+1} is a homomorphism from 𝔾s{\mathbbm{G}}_{s} to Rkr+1,kr+1+1R_{k_{r+1},k_{r+1}+1} for every s∈2r+1s\in 2^{r+1}. This proves (6).

By LemmaΒ B.2Β (2) we have that for every s∈2r+1s\in 2^{r+1} there is l​(s)βˆˆβ„•l(s)\in{\mathbbm{N}} such that sβŒ’β€‹2β„•βŠ†(e~βˆ’β€‹1(Ar,Ξ±r))​(Xl​(s))s^{\frown}2^{\mathbbm{N}}\subseteq(\widetilde{e}^{-}1_{(A_{r},\alpha_{r})})(X_{l(s)}). Consequently,

Ο†r+1​(sβŒ’β€‹2β„•)βŠ†Ar+1,l​(s)\varphi_{r+1}(s^{\frown}2^{\mathbbm{N}})\subseteq A_{r+1,l(s)}

and there is m​(s)=m​(r+1,l​(s))βˆˆβ„•m(s)=m(r+1,l(s))\in{\mathbbm{N}} such that Ο†r+1​(sβŒ’β€‹2β„•)\varphi_{r+1}(s^{\frown}2^{\mathbbm{N}}) is β„‹r+1,m​(s)\mathcal{H}_{r+1,m(s)}-independent. Define

m​(r+1)=maxs∈2r+1⁑m​(s).m(r+1)=\max_{s\in 2^{r+1}}m(s).

Then it is easy to see that Ο†r+1​(sβŒ’β€‹2β„•)\varphi_{r+1}(s^{\frown}2^{\mathbbm{N}}) is β„‹r+1,m​(r+1)\mathcal{H}_{r+1,m(r+1)}-independent for every s∈2r+1s\in 2^{r+1} and the proof of (A) is finished.

(B). Let Ξ±=(0,0,…)∈2β„•\alpha=(0,0,\dots)\in 2^{{\mathbbm{N}}}. Inductively define an increasing sequence (ki)iβˆˆβ„•βŠ†β„•(k^{i})_{i\in{\mathbbm{N}}}\subseteq{\mathbbm{N}} such that VkiβŠ†Ξ”m​(i+1)V_{k^{i}}\subseteq\Delta_{m(i+1)} and k0β‰₯1k^{0}\geq 1. Put A={nβˆˆβ„•:βˆƒiβˆˆβ„•β€‹kn=ki}A=\{n\in{\mathbbm{N}}:\exists i\in{\mathbbm{N}}\ k_{n}=k^{i}\}, define Ο•=Ο†βˆ˜e~(A,Ξ±):2β„•β†’X\phi=\varphi\circ\widetilde{e}_{(A,\alpha)}:2^{\mathbbm{N}}\to X and i|s|βˆˆβ„•i_{|s|}\in{\mathbbm{N}} such that k|e(A,Ξ±)​(s)|=ki|s|k_{|e_{(A,\alpha)}(s)|}=k^{i_{|s|}} for every s∈2<β„•s\in 2^{<{\mathbbm{N}}}.

We have that Ο†\varphi and, consequently, Ο•\phi are homomorphisms from 𝔾e(A,Ξ±)​(s){\mathbbm{G}}_{e_{(A,\alpha)}(s)} and 𝔾s{\mathbbm{G}}_{s}, respecetively, to Rk|e(A,Ξ±)​(s)|,k|e(A,Ξ±)​(s)|+1R_{k_{|e_{(A,\alpha)}(s)|},k_{|e_{(A,\alpha)}(s)|}+1} for every s∈2<β„•s\in 2^{<{\mathbbm{N}}}. Since we have

Vki|s|+1βŠ†Vki|s|+1=Vk|e(A,Ξ±)​(s)|+1,V_{k^{i_{|s|}+1}}\subseteq V_{k^{i_{|s|}}+1}=V_{k_{|e_{(A,\alpha)}(s)|}+1},

we conclude that Ο•\phi is a homomorphism from (𝔾s)s∈2<β„•({\mathbbm{G}}_{s})_{s\in 2^{<{\mathbbm{N}}}} to (Rki|s|,ki|s|+1)s∈2<β„•(R_{k^{i_{|s|}},k^{i_{|s|}+1}})_{s\in 2^{<{\mathbbm{N}}}}.

Let n0​(i)n_{0}(i) be the minimal nβˆˆβ„•n\in{\mathbbm{N}} such that i|s|=ii_{|s|}=i for some, or equivalently any, s∈2ns\in 2^{n}. Let s∈2n0​(i)s\in 2^{n_{0}(i)}. Then there is unique v∈2i+1v\in 2^{i+1} such that vβŠ‘e(A,Ξ±)​(s)v\sqsubseteq e_{(A,\alpha)}(s). This is because k|e(A,Ξ±)​(s)|=kik_{|e_{(A,\alpha)}(s)|}=k^{i} and therefore |e(A,Ξ±)​(s)|β‰₯ki>i|e_{(A,\alpha)}(s)|\geq k^{i}>i because (ki)iβˆˆβ„•(k^{i})_{i\in{\mathbbm{N}}} is increasing and k0β‰₯1k^{0}\geq 1. Then we have

ϕ​(sβŒ’β€‹2β„•)βŠ†Ο†β€‹(vβŒ’β€‹2β„•)\phi(s^{\frown}2^{\mathbbm{N}})\subseteq\varphi(v^{\frown}2^{\mathbbm{N}})

and the latter set is β„‹i+1,m​(i+1)\mathcal{H}_{i+1,m(i+1)}-independent. This implies trivially that ϕ​(sβŒ’β€‹2β„•)\phi(s^{\frown}2^{\mathbbm{N}}) is β„‹i,m​(i+1)\mathcal{H}_{i,m(i+1)}-independent for every s∈2n0​(i)s\in 2^{n_{0}(i)}. Passing to a subsequence (Vki)iβˆˆβ„•(V_{k^{i}})_{i\in{\mathbbm{N}}} and setting m​(i):=m​(i+1)m(i):=m(i+1) then work as required. The proof is finished. ∎