This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Bogoliubov Transformations Beyond Shale–Stinespring: Generic vvv^{*}v for bosons

Sascha Lill111Università degli Studi di Milano, Dipartimento di Matematica, Via Cesare Saldini 50, 20133 Milano, Italy 222E-Mail: sascha.lill@unimi.it
Abstract

We construct an extension of Fock space and prove that it allows for implementing bosonic Bogoliubov transformations in a certain extended sense. While an implementation in the regular sense on Fock space is only possible if a certain operator vvv^{*}v is trace class (this is the well–known Shale–Stinespring condition), the extended implementation works without any restrictions on this operator. This generalizes a recent result of extended implementability, which required vvv^{*}v to have discrete spectrum.

1 Introduction

Bogoliubov transformations are a versatile tool for elucidating the physical properties of many–body and quantum field theory (QFT) models in mathematical physics. Applications include the simplification of Hamiltonians in interacting bosonic or fermionic NN–body systems [1, 2, 3, 4, 5], QFT toy models [6, 7, 8] and relativistic quantum dynamics [9, 10].
In simple words, a Bogoliubov transformation 𝒱\mathcal{V} is a linear replacement of creation– and annihilation operators ab,aba^{\dagger}\mapsto b^{\dagger},a\mapsto b such that b,bb,b^{\dagger} satisfy the same commutation relations as a,aa,a^{\dagger}. There are cases where 𝒱\mathcal{V} allows for finding a unitary operator on Fock space 𝕌𝒱:\mathbb{U}_{\mathcal{V}}:\mathscr{F}\to\mathscr{F} such that 𝕌𝒱a𝕌𝒱1=b\mathbb{U}_{\mathcal{V}}a^{\dagger}\mathbb{U}_{\mathcal{V}}^{-1}=b^{\dagger} and 𝕌𝒱a𝕌𝒱1=b\mathbb{U}_{\mathcal{V}}a\mathbb{U}_{\mathcal{V}}^{-1}=b. In this case, 𝕌𝒱\mathbb{U}_{\mathcal{V}} is called an implementer of 𝒱\mathcal{V} and 𝒱\mathcal{V} is called implementable. The case of implementability is interesting for the following reason: Suppose, we are given a Hamiltonian HH, which is an inconvenient sum of products of a,aa,a^{\dagger}, but there exists a Bogoliubov transformation 𝒱\mathcal{V} and a constant cc\in\mathbb{C}, such that (H+c)(H+c) takes a much more convenient form in the b,bb,b^{\dagger}–operators. This situation arises frequently for quadratic Hamiltonians, see Remark 5. Then, 𝒱1\mathcal{V}^{-1}, which is implemented by 𝕌𝒱1=𝕌𝒱\mathbb{U}_{\mathcal{V}}^{-1}=\mathbb{U}_{\mathcal{V}}^{*}, replaces b,bb,b^{\dagger} by a,aa,a^{\dagger}. So, under the replacement, (H+c)(H+c) becomes

H~:=𝕌𝒱1(H+c)𝕌𝒱,\widetilde{H}:=\mathbb{U}_{\mathcal{V}}^{-1}(H+c)\mathbb{U}_{\mathcal{V}}, (1)

which has a convenient form in the a,aa,a^{\dagger}–operators. This convenient form allows for a simple description of the dynamics generated by H~\widetilde{H}, which is by (1) unitarily equivalent to the dynamics generated by HH.

The important question when 𝒱\mathcal{V} is implementable has long been settled by Shale and Stinespring [11, 12]: This is the case if and only if for some operator vv (16), characterizing 𝒱\mathcal{V}, we have

tr(vv)<.\mathrm{tr}(v^{*}v)<\infty.

This so–called Shale–Stinespring condition is rather restrictive. Therefore, the author recently [13] proposed the construction of an implementer in an extended sense, 𝕌𝒱\mathbb{U}_{\mathcal{V}}, which also achieves the replacement aba^{\sharp}\mapsto b^{\sharp} induced by 𝒱\mathcal{V}, but can be constructed for a much greater class of Bogoliubov transformations. In [13], two Fock space extensions ^,¯\widehat{\mathscr{H}},\overline{\mathscr{F}} were constructed, each together with an operator 𝕌𝒱:𝒟^\mathbb{U}_{\mathcal{V}}:\mathcal{D}_{\mathscr{F}}\to\widehat{\mathscr{H}} or 𝕌𝒱:𝒟¯\mathbb{U}_{\mathcal{V}}:\mathcal{D}_{\mathscr{F}}\to\overline{\mathscr{F}}, with 𝒟\mathcal{D}_{\mathscr{F}}\subset\mathscr{F} being a dense subspace, such that (1) holds as a strong operator identity on 𝒟\mathcal{D}_{\mathscr{F}}. Here, ^\widehat{\mathscr{H}} is an infinite tensor product space of the form introduced by von Neumann [14] and ¯\overline{\mathscr{F}} is an “extended state space” as recently introduced in [15]. The main result in [13] was that 𝒱\mathcal{V} can be implemented in the extended sense, whenever

vv has discrete spectrum.v^{*}v\text{ has {discrete spectrum}}.

In this general case, cc becomes an “infinite renormalization constant”, which was rigorously interpreted in [13] as an element of some vector space Ren1\mathrm{Ren}_{1}.
The purpose of this article is to propose a new Fock space extension ¯\overline{\mathcal{E}_{\mathscr{F}}}, related to ¯\overline{\mathscr{F}}, which allows for an extended implementer 𝕌𝒱:𝒟¯\mathbb{U}_{\mathcal{V}}:\mathcal{D}_{\mathscr{F}}\to\overline{\mathcal{E}_{\mathscr{F}}}

in the bosonic case for arbitrary vv,\text{in the {bosonic} case for {arbitrary} }v^{*}v,

as long as vv is defined on a suitable domain. We establish the notation in Section 2, construct ¯\overline{\mathcal{E}_{\mathscr{F}}} in Section 3, state our main result, Theorem 4.1, in Section 4 and prove it in Section 5.
An analogous result can be expected to hold for fermions, as long as 1 is not an eigenvalue of infinite multiplicity of vvv^{*}v, i.e., 𝒱\mathcal{V} only performs a particle–hole transformation on finitely many modes. The main technical complication in the fermionic case comes from the fact that the operator 𝒪\mathcal{O} (47) is unbounded, whereas it is bounded in the bosonic case.
An extended implementer 𝕌𝒱\mathbb{U}_{\mathcal{V}} is particularly useful in cases where HH is an algebraic expression that does not define an operator on a dense subspace of \mathscr{F}, while H~=𝕌𝒱1(H+c)𝕌𝒱\widetilde{H}=\mathbb{U}_{\mathcal{V}}^{-1}(H+c)\mathbb{U}_{\mathcal{V}} maps 𝒟\mathcal{D}_{\mathscr{F}} into itself and allows for a self–adjoint extension. In that case, we can mathematically make sense of (H+c)(H+c) as an operator mapping 𝕌𝒱(𝒟)\mathbb{U}_{\mathcal{V}}(\mathcal{D}_{\mathscr{F}}) into itself (see Figure 1) and use the dynamics generated by H~\widetilde{H} on \mathscr{F} for a physical interpretation.
The construction of ¯\overline{\mathcal{E}_{\mathscr{F}}} is significantly shorter than that of ¯\overline{\mathscr{F}} in [13]. We intend a future use of ¯\overline{\mathcal{E}_{\mathscr{F}}} as a bookkeeping tool for more general operator transformations that go beyond Bogoliubov transformations.

𝒟\mathscr{F}\supset\mathcal{D}_{\mathscr{F}}¯𝕌𝒱(𝒟)\overline{\mathcal{E}_{\mathscr{F}}}\supset\mathbb{U}_{\mathcal{V}}(\mathcal{D}_{\mathscr{F}})𝕌𝒱\mathbb{U}_{\mathcal{V}}H~\widetilde{H}𝒟\mathcal{D}_{\mathscr{F}}\subset\mathscr{F}𝕌𝒱(𝒟)¯\mathbb{U}_{\mathcal{V}}(\mathcal{D}_{\mathscr{F}})\subset\overline{\mathcal{E}_{\mathscr{F}}}𝕌𝒱1\mathbb{U}_{\mathcal{V}}^{-1}(H+c)(H+c)
𝒟\mathcal{D}_{\mathscr{F}}Fock space \mathscr{F}𝕌𝒱(𝒟)\mathbb{U}_{\mathcal{V}}(\mathcal{D}_{\mathscr{F}})𝒟\mathcal{D}_{\mathscr{F}}𝕌𝒱1\mathbb{U}_{\mathcal{V}}^{-1}𝕌𝒱\mathbb{U}_{\mathcal{V}}(H+c)(H+c)¯\overline{\mathcal{E}_{\mathscr{F}}}
Figure 1: Left: H~\widetilde{H} is defined in (1) such that the diagram commutes.
Right: Sketch of an extended implementation using the Fock space extension ¯\overline{\mathcal{E}_{\mathscr{F}}}.

2 Notation

The notation is adapted from [13] in great parts. We consider a system with an indeterminate number of particles NN, whose one–particle sector is given by the sequence space 2\ell^{2}.333Note that any separable Hilbert space can be identified with 2\ell^{2} by fixing an orthonormal basis, so the description with 2\ell^{2} is quite general. The configuration of the system is given by a vector of mode numbers (j1,,jN)(j_{1},\ldots,j_{N}), which is an element of configuration space444The symbol \sqcup denotes the disjoint union of two sets. This notation is chosen to emphasize that, e.g., 2N\mathbb{N}\sqcup\mathbb{N}^{2}\sqcup\ldots\sqcup\mathbb{N}^{N} is not just N\mathbb{N}^{N}.

𝒬:=N0𝒬(N):=N0N.\mathcal{Q}:=\bigsqcup_{N\in\mathbb{N}_{0}}\mathcal{Q}^{(N)}:=\bigsqcup_{N\in\mathbb{N}_{0}}\mathbb{N}^{N}. (2)

Here, 𝒬(N)=N\mathcal{Q}^{(N)}=\mathbb{N}^{N} is also called the NN–particle sector of configuration space. The state of the system is described by a normed vector in the (mode–) Fock space

:=L2(𝒬).\mathscr{F}:=L^{2}(\mathcal{Q}). (3)

We impose bosonic symmetry using the symmetrization operator S+:S_{+}:\mathscr{F}\to\mathscr{F} with

(S+Ψ)(j1,,jN):=1N!σSNΨ(jσ(1),,jσ(N)),(S_{+}\Psi)(j_{1},\ldots,j_{N}):=\frac{1}{N!}\sum_{\sigma\in S_{N}}\Psi(j_{\sigma(1)},\ldots,j_{\sigma(N)}), (4)

where SNS_{N} is the permutation group. The bosonic Fock space is then given by

+:=S+().\mathscr{F}_{+}:=S_{+}(\mathscr{F}). (5)

Equivalently, using the symmetric tensor product

ϕSϕ:=S+(ϕϕ),\phi\otimes_{S}\phi:=S_{+}(\phi\otimes\phi), (6)

we can write

+=N0(2)SN.\mathscr{F}_{+}=\bigoplus_{N\in\mathbb{N}_{0}}(\ell^{2})^{\otimes_{S}N}. (7)

Denote by (𝒆j)j(\boldsymbol{e}_{j})_{j\in\mathbb{N}} the canonical basis of 2\ell^{2} and by aj,aja^{\dagger}_{j},a_{j} the creation and annihilation operators corresponding to 𝒆j\boldsymbol{e}_{j}, which are a priori just symbolic expressions. Products of these expressions or countable sums thereof are not necessarily defined as Fock space operators. Instead, we interpret them as elements of the –algebra 𝒜¯\overline{\mathcal{A}}, defined as follows: Denote by

Π𝒆:={P𝒆=aj11ajmm|m0,j,{,}}\Pi_{\boldsymbol{e}}:=\big{\{}P_{\boldsymbol{e}}=a_{j_{1}}^{\sharp_{1}}\ldots a_{j_{m}}^{\sharp_{m}}\;\big{|}\;m\in\mathbb{N}_{0},j_{\ell}\in\mathbb{N},\sharp_{\ell}\in\{\cdot,\dagger\}\big{\}} (8)

the set of all finite operator products with respect to the basis (𝒆j)j(\boldsymbol{e}_{j})_{j\in\mathbb{N}}. Then, 𝒜¯\overline{\mathcal{A}} is defined as the set of all countable sums

𝒜¯:={H=P𝒆Π𝒆Hj1,1,,jm,mP𝒆|Hj1,1,,jm,m},\overline{\mathcal{A}}:=\left\{H=\sum_{P_{\boldsymbol{e}}\in\Pi_{\boldsymbol{e}}}H_{j_{1},\sharp_{1},\ldots,j_{m},\sharp_{m}}P_{\boldsymbol{e}}\;\middle|\;H_{j_{1},\sharp_{1},\ldots,j_{m},\sharp_{m}}\in\mathbb{C}\right\}, (9)

with mm depending on P𝒆P_{\boldsymbol{e}}. Let us denote the space of all complex–valued sequences by

={}.\mathcal{E}=\{\mathbb{N}\to\mathbb{C}\}. (10)

For ϕ\boldsymbol{\phi}\in\mathcal{E}, we then introduce the creation/annihilation operators

a(ϕ):=jϕjaj,a(ϕ):=jϕj¯aj,a(ϕ),a(ϕ)𝒜¯,a^{\dagger}(\boldsymbol{\phi}):=\sum_{j\in\mathbb{N}}\phi_{j}a^{\dagger}_{j},\qquad a(\boldsymbol{\phi}):=\sum_{j\in\mathbb{N}}\overline{\phi_{j}}a_{j},\qquad a^{\dagger}(\boldsymbol{\phi}),a(\boldsymbol{\phi})\in\overline{\mathcal{A}}, (11)

where the overline denotes complex conjugation. Alternatively, complex conjugation is described by the complex conjugation operator

J:,(Jϕ)j=ϕj¯,J:\mathcal{E}\to\mathcal{E},\qquad(J\boldsymbol{\phi})_{j}=\overline{\phi_{j}}, (12)

with J2=1J^{2}=1 and whose adjoint satisfies (J)2=1(J^{*})^{2}=1. We will interchangeably use the notations ϕj,(ϕ)j\phi_{j},(\boldsymbol{\phi})_{j} and (ϕ)(j)(\boldsymbol{\phi})(j) for elements of a series ϕ\boldsymbol{\phi}\in\mathcal{E}. Further, for ϕ,𝝍2\boldsymbol{\phi},\boldsymbol{\psi}\in\ell^{2} we impose the canonical commutation relations (CCR) on 𝒜¯\overline{\mathcal{A}}

[a(ϕ),a(𝝍)]=[a(ϕ),a(𝝍)]=0,[a(ϕ),a(𝝍)]=ϕ,𝝍.[a(\boldsymbol{\phi}),a(\boldsymbol{\psi})]=[a^{\dagger}(\boldsymbol{\phi}),a^{\dagger}(\boldsymbol{\psi})]=0,\qquad[a(\boldsymbol{\phi}),a^{\dagger}(\boldsymbol{\psi})]=\langle\boldsymbol{\phi},\boldsymbol{\psi}\rangle. (13)

In case ϕ,𝝍2\boldsymbol{\phi},\boldsymbol{\psi}\in\ell^{2}, we may also densely define a(ϕ)a^{\sharp}(\boldsymbol{\phi}) as Fock space operators

(a(ϕ)Ψ)(j1,,jN)\displaystyle(a^{\dagger}(\boldsymbol{\phi})\Psi)(j_{1},\ldots,j_{N}) =1N=1NϕjΨ(j1,,j1,j+1,,jN)\displaystyle=\frac{1}{\sqrt{N}}\sum_{\ell=1}^{N}\phi_{j_{\ell}}\Psi(j_{1},\ldots,j_{\ell-1},j_{\ell+1},\ldots,j_{N}) (14)
(a(ϕ)Ψ)(j1,,jN)\displaystyle(a(\boldsymbol{\phi})\Psi)(j_{1},\ldots,j_{N}) =(N+1)jϕj¯Ψ(j1,,jN,j),\displaystyle=\sqrt{(N+1)}\sum_{j\in\mathbb{N}}\overline{\phi_{j}}\Psi(j_{1},\ldots,j_{N},j),

which preserve symmetry and satisfy (13) as a strong operator identity on a dense domain in Fock space.
Creation and annihilation operators a(ϕ)a^{\sharp}(\boldsymbol{\phi}) are particularly easy to handle, if the sum over jj is finite, or equivalently, if the form factor is an element of the following space:

𝒟:={ϕ2ϕj=0for all but finitely manyj}.\mathcal{D}:=\{\boldsymbol{\phi}\in\ell^{2}\;\mid\;\phi_{j}=0\;\text{for all but finitely many}\;j\in\mathbb{N}\}. (15)

Note that 𝒟2\mathcal{D}\subset\ell^{2}\subset\mathcal{E} and =𝒟\mathcal{E}=\mathcal{D}^{\prime}, i.e., \mathcal{E} is the dual space of 𝒟\mathcal{D} with respect to a suitable seminorm–induced topology, see [16, Chap. 1, Example 1.6].
By an algebraic Bogoliubov transformation, we mean a map 𝒱𝒜:𝒜¯𝒜¯\mathcal{V}_{\mathcal{A}}:\overline{\mathcal{A}}\to\overline{\mathcal{A}}, that sends

a(ϕ)\displaystyle a^{\dagger}(\boldsymbol{\phi}) b(ϕ):=a(uϕ)+a(vϕ¯),\displaystyle\mapsto b^{\dagger}(\boldsymbol{\phi}):=a^{\dagger}(u\boldsymbol{\phi})+a(v\overline{\boldsymbol{\phi}}),\qquad (16)
a(ϕ)\displaystyle a(\boldsymbol{\phi}) b(ϕ):=a(vϕ¯)+a(uϕ)\displaystyle\mapsto b(\boldsymbol{\phi}):=a^{\dagger}(v\overline{\boldsymbol{\phi}})+a(u\boldsymbol{\phi})

for all ϕ𝒟\boldsymbol{\phi}\in\mathcal{D}, where u,v:𝒟2u,v:\mathcal{D}\to\ell^{2} satisfy the bosonic Bogoliubov relations as a weak operator identity:

uuvTv¯\displaystyle u^{*}u-v^{T}\overline{v} =1\displaystyle=1\qquad uvvTu¯=0\displaystyle u^{*}v-v^{T}\overline{u}=0 (17)
uuvv\displaystyle uu^{*}-vv^{*} =1\displaystyle=1\qquad uvTvuT=0.\displaystyle uv^{T}-vu^{T}=0.

Here, uu^{*} is the adjoint of uu and the conjugate and transposed operators are given by u¯=JuJ\overline{u}=JuJ and uT=JuJu^{T}=Ju^{*}J (and the same for vv). Writing u,vu,v as matrices of infinite size, u=(ujk)j,k,v=(vjk)j,ku=(u_{jk})_{j,k\in\mathbb{N}},v=(v_{jk})_{j,k\in\mathbb{N}}, we equivalently have (uT)jk=(u)kj(u^{T})_{jk}=(u)_{kj}, (u)jk=(u)kj¯(u^{*})_{jk}=\overline{(u)_{kj}} and (u¯)jk=(u)jk¯(\overline{u})_{jk}=\overline{(u)_{jk}}. Further, we may keep track of 𝒱𝒜\mathcal{V}_{\mathcal{A}} by a block matrix 𝒱=(uvv¯u¯)\mathcal{V}=\big{(}\begin{smallmatrix}u&v\\ \overline{v}&\overline{u}\end{smallmatrix}\big{)}. In [13, Lemma 4.1] it was proven that (17) holds, whenever 𝒱\mathcal{V} and 𝒱\mathcal{V}^{*} both preserve the CCR, that is, (13) also holds for aa^{\sharp} replaced by bb^{\sharp}.

3 Construction of the Fock space extension

We will establish implementability on a Fock space extension ¯\overline{\mathcal{E}_{\mathscr{F}}}\supset\mathscr{F} here, which is related, but not equal to the extensions ¯,¯ex\overline{\mathscr{F}},\overline{\mathscr{F}}_{{\rm ex}} in [13] and [15]. Just as in [13], we define the generalized NN–particle space and the generalized Fock space as

(N):={Ψ(N):N},:={Ψ:𝒬}.\mathcal{E}^{(N)}:=\big{\{}\Psi^{(N)}:\mathbb{N}^{N}\to\mathbb{C}\big{\}},\qquad\mathcal{E}_{\mathscr{F}}:=\big{\{}\Psi:\mathcal{Q}\to\mathbb{C}\big{\}}\supset\mathscr{F}. (18)

The definition of ¯\overline{\mathcal{E}_{\mathscr{F}}} is motivated by formal and possibly divergent sums that appear when formally applying one or several operators a(ϕ),ϕa(\boldsymbol{\phi}),\boldsymbol{\phi}\in\mathcal{E} as in (14) to functions in \mathcal{E}_{\mathscr{F}}. In its most general form, such a formal sum on the (N)(N)–sector reads

Ψ(N)(j1,,jN)=jN+1,,jN+LΨ(L)(N+L)(j1,,jN+L),\Psi^{(N)}(j_{1},\ldots,j_{N})=\sum_{j_{N+1},\ldots,j_{N+L}\in\mathbb{N}}\Psi_{(L)}^{(N+L)}(j_{1},\ldots,j_{N+L}), (19)

where N,L0N,L\in\mathbb{N}_{0}. There are two ways to read (19): First, Ψ(N)(j1,,jN)\Psi^{(N)}(j_{1},\ldots,j_{N}) can be viewed as a generalized function value, which is given by a formal sum at fixed (j1,,jN)(j_{1},\ldots,j_{N}). Second, (19) can be seen as a definition for a generalized function on N\mathbb{N}^{N} that is obtained by taking the “raw functions” Ψ(L)(N+L)\Psi_{(L)}^{(N+L)} and formally “integrating out” the last LL variables.

Mathematically, the sector Ψ(N)\Psi^{(N)} is specified by a pair (Ψ(L)(N+L),L)\big{(}\Psi_{(L)}^{(N+L)},L\big{)}. In order to allow for countable linear combinations and products of such expressions, we introduce the algebra of functions

,0¯:={0×0|(N,L)Ψ(L)(N+L)(N+L)}.\overline{\mathcal{E}_{\mathscr{F},0}}:=\Big{\{}\mathbb{N}_{0}\times\mathbb{N}_{0}\to\mathcal{E}_{\mathscr{F}}\;\Big{|}\;(N,L)\mapsto\Psi_{(L)}^{(N+L)}\in\mathcal{E}^{(N+L)}\Big{\}}. (20)

Here, ,0¯\overline{\mathcal{E}_{\mathscr{F},0}} is to be understood as a \mathbb{C}–vector space with linear combinations defined argument–wise, i.e.,

(cΨ+Ψ)(L)(N+L)=c(Ψ)(L)(N+L)+(Ψ)(L)(N+L),c.(c\Psi+\Psi^{\prime})_{(L)}^{(N+L)}=c(\Psi)_{(L)}^{(N+L)}+(\Psi^{\prime})_{(L)}^{(N+L)},\quad c\in\mathbb{C}. (21)

The algebra multiplication is given by

(ΨΨ)(L)(N+L)=N1+N2=NL1+L2=L(Ψ)(L1)(N1+L1)(Ψ)(L2)(N2+L2),(\Psi\otimes\Psi^{\prime})_{(L)}^{(N+L)}=\sum_{\begin{subarray}{c}N_{1}+N_{2}=N\\ L_{1}+L_{2}=L\end{subarray}}(\Psi)_{(L_{1})}^{(N_{1}+L_{1})}\otimes(\Psi^{\prime})_{(L_{2})}^{(N_{2}+L_{2})}, (22)

with \otimes denoting the topological tensor product in \mathcal{E}_{\mathscr{F}}. We now introduce the sum notation, where we write each function in ,0¯\overline{\mathcal{E}_{\mathscr{F},0}} as a formal countable sum

Ψ(N)(j1,,jN)=L0jN+1,,jN+LΨ(L)(N+L)(j1,,jN+L).\Psi^{(N)}(j_{1},\ldots,j_{N})=\sum_{L\in\mathbb{N}_{0}}\;\sum_{j_{N+1},\ldots,j_{N+L}\in\mathbb{N}}\Psi_{(L)}^{(N+L)}(j_{1},\ldots,j_{N+L}). (23)

This notation is consistent with the notation in (19), and (22) coincides with the formal multiplication of two sums of the kind (23). However, permuting sum indices or executing convergent sums in (23) intuitively leaves the sum invariant, but results in a different associated element in ,0¯\overline{\mathcal{E}_{\mathscr{F},0}}. Therefore, we mod out a (two–sided) ideal555By an ideal of an algebra, we mean that \mathcal{I} shall be closed (in an algebraic sense) under the (commutative) algebra multiplication \otimes and linearity. So for Ψ1,Ψ2,Ψ,0¯\Psi_{1},\Psi_{2}\in\mathcal{I},\Psi\in\overline{\mathcal{E}_{\mathscr{F},0}} and cc\in\mathbb{C}, we have (ΨΨ1)(\Psi\otimes\Psi_{1})\in\mathcal{I} and cΨ1+Ψ2c\Psi_{1}+\Psi_{2}\in\mathcal{I}. Intuitively, the elements in \mathcal{I} are the ones equivalent to 0. ,0¯\mathcal{I}\subset\overline{\mathcal{E}_{\mathscr{F},0}}, which is generated by requiring that:

  1. (A)

    ΨΨ\Psi-\Psi^{\prime}\in\mathcal{I}, whenever each (Ψ)(L)(N+L)(\Psi^{\prime})_{(L)}^{(N+L)} can be obtained by permuting the last LL indices of (Ψ)(L)(N+L)(\Psi)_{(L)}^{(N+L)}. So we may swap indices that are integrated out.

  2. (B)

    ΨΨ\Psi-\Psi^{\prime}\in\mathcal{I}, whenever we may choose for each pair (N,L)(N,L) some integer 0ΔLN,LL0\leq\Delta L_{N,L}\leq L, such that

    (Ψ)(L)(N+L)(j1,,jN+L)=L:L+ΔLN,L=LjN+L+1,,jN+L(Ψ)(L)(N+L)(j1,,jN+L)(\Psi^{\prime})_{(L^{\prime})}^{(N+L^{\prime})}(j_{1},\ldots,j_{N+L^{\prime}})=\sum_{L:L^{\prime}+\Delta L_{N,L}=L}\;\sum_{j_{N+L^{\prime}+1},\ldots,j_{N+L}}(\Psi)_{(L)}^{(N+L)}(j_{1},\ldots,j_{N+L}) (24)

    is an absolutely convergent sum for all N,L0N,L^{\prime}\in\mathbb{N}_{0} and all (j1,,jN+L)L(j_{1},\ldots,j_{N+L^{\prime}})\in\mathbb{N}^{L^{\prime}}. In other words, we may execute absolutely convergent sums, where ΔLN,L\Delta L_{N,L} is the number of sums executed in (Ψ)(L)(N+L)(\Psi)_{(L)}^{(N+L)}.

The extended state space is then defined as the quotient algebra

¯:=,0¯/.\overline{\mathcal{E}_{\mathscr{F}}}:=\overline{\mathcal{E}_{\mathscr{F},0}}/_{\mathcal{I}}. (25)

Its elements (which are cosets of \mathcal{I}) can thus be treated as if they were formal sums (23) and we adopt the sum notation also for elements of ¯\overline{\mathcal{E}_{\mathscr{F}}}.

Remarks.

  1. 1.

    ¯\overline{\mathcal{E}_{\mathscr{F}}} extends \mathscr{F}: In sum notation (23), each Ψ\Psi\in\mathcal{E}_{\mathscr{F}}\supset\mathscr{F} corresponds to exactly one element of ,0¯\overline{\mathcal{E}_{\mathscr{F},0}}, viz. the one sending (N,0)Ψ(N)(N,0)\mapsto\Psi^{(N)} and (N,L)0(N,L)\mapsto 0 for L1L\geq 1.
    Further, if Ψ\Psi\in\mathcal{E}_{\mathscr{F}} with Ψ0\Psi\neq 0, then the associated element in ,0¯\overline{\mathcal{E}_{\mathscr{F},0}} is not in \mathcal{I}. This is because (23) renders a complex number at each fixed (j1,,jN)(j_{1},\ldots,j_{N}), which is nonzero for at least one (j1,,jN)(j_{1},\ldots,j_{N}) and cannot be changed by executing/un–executing convergent sums or permuting sum indices. So each Ψ\Psi\in\mathcal{E}_{\mathscr{F}} can be identified with a distinct coset of \mathcal{I}, i.e., with an element of ¯\overline{\mathcal{E}_{\mathscr{F}}}. So we may embed \mathcal{E}_{\mathscr{F}}\supset\mathscr{F} into ¯\overline{\mathcal{E}_{\mathscr{F}}} and thus, ¯\overline{\mathcal{E}_{\mathscr{F}}} is a true Fock space extension.

  2. 2.

    Tensor products on ¯\overline{\mathcal{E}_{\mathscr{F}}}: The \otimes–product on ,0¯\overline{\mathcal{E}_{\mathscr{F},0}} (22) induces an \otimes–product on the quotient algebra ¯\overline{\mathcal{E}_{\mathscr{F}}}. With the tensor product \otimes, one can also view ,0¯\overline{\mathcal{E}_{\mathscr{F},0}} as a “double–graded algebra” with degrees N,L0N,L\in\mathbb{N}_{0}, just as \mathcal{E}_{\mathscr{F}} together with the tensor product \otimes becomes a graded algebra (with degree NN). Also, ¯\overline{\mathcal{E}_{\mathscr{F}}} is a graded algebra with degree NN, but not “double–graded”, since LL is not unique.

  3. 3.

    Comparison with [13]: The construction of ¯\overline{\mathcal{E}_{\mathscr{F}}} deviates from the construction of the Fock space extensions ¯,¯ex\overline{\mathscr{F}},\overline{\mathscr{F}}_{{\rm ex}} in [13]. In particular, the latter construction renders some additional vector spaces Ren1,Ren,eRen\mathrm{Ren}_{1},\mathrm{Ren},\mathrm{eRen} as a byproduct. Let us quickly comment on how to find certain elements of these spaces in ¯\overline{\mathcal{E}_{\mathscr{F}}}:

    Elements 𝔯Ren1\mathfrak{r}\in\mathrm{Ren}_{1} are a rigorous implementation of formal sums

    Ψ𝔯:=jϕj\Psi_{\mathfrak{r}}:=\sum_{j\in\mathbb{N}}\phi_{j} (26)

    for some fixed ϕ\boldsymbol{\phi}\in\mathcal{E}. Mathematically, 𝔯=[ϕ]\mathfrak{r}=[\boldsymbol{\phi}]\subset\mathcal{E} is an equivalence class with

    ϕ[ϕ]j(ϕjϕj)=0,\boldsymbol{\phi}^{\prime}\in[\boldsymbol{\phi}]\quad\Leftrightarrow\quad\sum_{j}(\phi_{j}-\phi^{\prime}_{j})=0, (27)

    where the sum is required to be absolutely convergent. It is easy to see that (26) is a sum notation of the coset666Here, [Ψ][\Psi] denotes the coset of \mathcal{I} in ¯\overline{\mathcal{E}_{\mathscr{F}}}, which contains Ψ,0¯\Psi\in\overline{\mathcal{E}_{\mathscr{F},0}}, and δ\delta is the Kronecker delta. Ψ𝔯=[(N,L)δN,0δL,1ϕ]¯\Psi_{\mathfrak{r}}=[(N,L)\mapsto\delta_{N,0}\delta_{L,1}\boldsymbol{\phi}]\in\overline{\mathcal{E}_{\mathscr{F}}}, so the pair (0,1)(0,1) is mapped to (Ψ𝔯)(1)(1)(j)=ϕj(\Psi_{\mathfrak{r}})^{(1)}_{(1)}(j)=\phi_{j} and all other (N,L)(N,L) are mapped to 0. Further, for Ψ𝔯:=jϕj¯\Psi^{\prime}_{\mathfrak{r}}:=\sum_{j\in\mathbb{N}}\phi^{\prime}_{j}\in\overline{\mathcal{E}_{\mathscr{F}}}, we have Ψ𝔯=Ψ𝔯\Psi^{\prime}_{\mathfrak{r}}=\Psi_{\mathfrak{r}} if and only if (27) holds, since

    jϕj=jϕj+j(ϕjϕj),\sum_{j\in\mathbb{N}}\phi_{j}=\sum_{j\in\mathbb{N}}\phi^{\prime}_{j}+\sum_{j\in\mathbb{N}}(\phi_{j}-\phi^{\prime}_{j}), (28)

    by definition of addition in ,0¯\overline{\mathcal{E}_{\mathscr{F},0}}.

    Elements Ren\mathfrak{R}\in\mathrm{Ren} are now linear combinations of products of the form 𝔯1𝔯P\mathfrak{r}_{1}\ldots\mathfrak{r}_{P}. These products rigorously implement formal sums

    Ψ:=j1jP(ϕ1)j1(ϕP)jP,\Psi_{\mathfrak{R}}:=\sum_{j_{1}\ldots j_{P}}(\boldsymbol{\phi}_{1})_{j_{1}}\ldots(\boldsymbol{\phi}_{P})_{j_{P}}, (29)

    with ϕp\boldsymbol{\phi}_{p}\in\mathcal{E} being a representative function of 𝔯p\mathfrak{r}_{p}. It is easy to see that Ψ¯\Psi_{\mathfrak{R}}\in\overline{\mathcal{E}_{\mathscr{F}}} in the sum notation.

    Finally, elements e𝔯eRene^{\mathfrak{r}}\in\mathrm{eRen} can be seen as a rigorous implementation of

    eΨ𝔯=N=0Ψ𝔯NN!=N=0j1,,jN1N!ϕj1ϕjN.e^{\Psi_{\mathfrak{r}}}=\sum_{N=0}^{\infty}\frac{\Psi_{\mathfrak{r}}^{N}}{N!}=\sum_{N=0}^{\infty}\sum_{j_{1},\ldots,j_{N}}\frac{1}{N!}\phi_{j_{1}}\cdot\ldots\cdot\phi_{j_{N}}. (30)

    Obviously, eΨ𝔯¯e^{\Psi_{\mathfrak{r}}}\in\overline{\mathcal{E}_{\mathscr{F}}}. However, generic elements of 𝔠eRen\mathfrak{c}\in\mathrm{eRen} are quotients of the form 𝔠=a1a2\mathfrak{c}=\frac{a_{1}}{a_{2}} with aja_{j} being a linear combination of terms e𝔯e^{\mathfrak{r}} with 𝔯Ren1\mathfrak{r}\in\mathrm{Ren}_{1}. Such a quotient can generally not be written as a sum of the form (19). So we cannot readily find eRen\mathrm{eRen} in ¯\overline{\mathcal{E}_{\mathscr{F}}} and thus also not the eRen\mathrm{eRen}–vector spaces ¯\overline{\mathscr{F}} and ¯ex\overline{\mathscr{F}}_{{\rm ex}}.

4 Main Result

Consider any Bogoliubov transformation 𝒱=(uvv¯u¯)\mathcal{V}=\left(\begin{smallmatrix}u&v\\ \overline{v}&\overline{u}\end{smallmatrix}\right) with u,v:𝒟2u,v:\mathcal{D}\to\ell^{2} (recall: 𝒟\mathcal{D} in (15) is the set of all sequences with finite support), as well as the dense domain

𝒟:=span{a(ϕ1)a(ϕN)Ω,N0,ϕ𝒟},\mathcal{D}_{\mathscr{F}}:=\mathrm{span}\big{\{}a^{\dagger}(\boldsymbol{\phi}_{1})\ldots a^{\dagger}(\boldsymbol{\phi}_{N})\Omega,\;N\in\mathbb{N}_{0},\;\boldsymbol{\phi}_{\ell}\in\mathcal{D}\big{\}}, (31)

where Ω\Omega\in\mathscr{F}, defined by Ω(0)=1\Omega^{(0)}=1 and Ω(N)=0\Omega^{(N)}=0 for N1N\geq 1, is the vacuum vector. In analogy to [13, Def. 5.1], we define extended implementability as follows.

Definition 4.1.

A linear injective operator 𝕌𝒱:𝒟¯\mathbb{U}_{\mathcal{V}}:\mathcal{D}_{\mathscr{F}}\to\overline{\mathcal{E}_{\mathscr{F}}} implements a Bogoliubov transformation 𝒱\mathcal{V} in the extended sense if and only if

𝕌𝒱a(ϕ)𝕌𝒱1Ψ=b(ϕ)Ψ,𝕌𝒱a(ϕ)𝕌𝒱1Ψ=b(ϕ)Ψϕ𝒟,Ψ𝕌𝒱(𝒟).\mathbb{U}_{\mathcal{V}}a^{\dagger}(\boldsymbol{\phi})\mathbb{U}_{\mathcal{V}}^{-1}\Psi=b^{\dagger}(\boldsymbol{\phi})\Psi,\qquad\mathbb{U}_{\mathcal{V}}a(\boldsymbol{\phi})\mathbb{U}_{\mathcal{V}}^{-1}\Psi=b(\boldsymbol{\phi})\Psi\qquad\forall\;\boldsymbol{\phi}\in\mathcal{D},\;\Psi\in\mathbb{U}_{\mathcal{V}}(\mathcal{D}_{\mathscr{F}}). (32)

In that case, 𝕌𝒱\mathbb{U}_{\mathcal{V}} is called an extended implementer of 𝒱\mathcal{V} and 𝒱\mathcal{V} is called implementable in the extended sense.

Our main result is the following.

Theorem 4.1 (Bosonic Extended Implementation Works).

Any bosonic Bogoliubov transformation 𝒱=(uvv¯u¯)\mathcal{V}=\left(\begin{smallmatrix}u&v\\ \overline{v}&\overline{u}\end{smallmatrix}\right) with v,u:𝒟2v,u:\mathcal{D}\to\ell^{2} is implementable in the extended sense.

Remarks.

  1. 4.

    Regular implementability: Definition 32 generalizes the (regular) notion of implementability of 𝒱\mathcal{V} on Fock space. In the regular sense, 𝒱\mathcal{V} is implementable if and only if there exists some unitary 𝕌𝒱:\mathbb{U}_{\mathcal{V}}:\mathscr{F}\to\mathscr{F} satisfying (32). By taking limits in 2\ell^{2}, the case ϕ𝒟\boldsymbol{\phi}\in\mathcal{D} can then be generalized to ϕ2\boldsymbol{\phi}\in\ell^{2}.
    While regular implementability only holds for tr(vv)=tr(vTv¯)<\mathrm{tr}(v^{*}v)=\mathrm{tr}(v^{T}\overline{v})<\infty [11, 12], extended implementability can be achieved for any vvv^{*}v, as long as vv is defined on 𝒟\mathcal{D}.

  2. 5.

    Diagonalization: Extended implementers can be used to diagonalize quadratic Hamiltonians in some extended sense, as described in [13, Sect. 6]: Consider a diagonalizable quadratic Hamiltonian H𝒜¯H\in\overline{\mathcal{A}}, that is,

    H=12j,k(2hjkajakkjkajak+kjk¯ajak).H=\frac{1}{2}\sum_{j,k\in\mathbb{N}}(2h_{jk}a^{\dagger}_{j}a_{k}\mp k_{jk}a^{\dagger}_{j}a^{\dagger}_{k}+\overline{k_{jk}}a_{j}a_{k}). (33)

    In certain cases [17, 18], there is an algebraic Bogoliubov transformation 𝒱𝒜\mathcal{V}_{\mathcal{A}} and a normal ordering constant cc, such that (H+c)(H+c) becomes diagonal in the b,bb,b^{\dagger}–operators, so H~=𝒱𝒜1(H+c)\widetilde{H}=\mathcal{V}_{\mathcal{A}}^{-1}(H+c) is block–diagonal in the a,aa,a^{\dagger}–operators:

    (H+c)=j,kEjkbjbkH~=j,kEjkajak=dΓ(E)(H+c)=\sum_{j,k\in\mathbb{N}}E_{jk}b^{\dagger}_{j}b_{k}\qquad\Rightarrow\qquad\widetilde{H}=\sum_{j,k\in\mathbb{N}}E_{jk}a^{\dagger}_{j}a_{k}=d\Gamma(E) (34)

    and such that EE is self–adjoint on some domain dom(E)2{\rm dom}(E)\subseteq\ell^{2}. In that case, dΓ(E)d\Gamma(E) is also self–adjoint. Further, if EE maps 𝒟𝒟\mathcal{D}\to\mathcal{D}, then

    H~=𝕌𝒱1(H+c)𝕌𝒱\widetilde{H}=\mathbb{U}_{\mathcal{V}}^{-1}(H+c)\mathbb{U}_{\mathcal{V}} (35)

    holds as a strong operator identity 𝒟𝒟\mathcal{D}_{\mathscr{F}}\to\mathcal{D}_{\mathscr{F}}. So HH is diagonalized in the extended sense by 𝕌𝒱\mathbb{U}_{\mathcal{V}}. Here cc is a possibly divergent sum of the form (26), so we can interpret c¯c\in\overline{\mathcal{E}_{\mathscr{F}}}, and a multiplication by cc maps ¯¯\overline{\mathcal{E}_{\mathscr{F}}}\to\overline{\mathcal{E}_{\mathscr{F}}}.

5 Proof of the Main Result

5.1 General Construction of the Extended Implementer

We now construct the extended implementer 𝕌𝒱:𝒟¯\mathbb{U}_{\mathcal{V}}:\mathcal{D}_{\mathscr{F}}\to\overline{\mathcal{E}_{\mathscr{F}}} for a given Bogoliubov transformation 𝒱\mathcal{V}. The construction employs creation and annihilation operators a(ϕ)a^{\sharp}(\boldsymbol{\phi}), which we first need to extend to ¯\overline{\mathcal{E}_{\mathscr{F}}} in such a way that they satisfy the CCR. Consider an element [Ψ]¯[\Psi]\in\overline{\mathcal{E}_{\mathscr{F}}} characterized by a coset element (“representative”) Ψ,0¯,Ψ:(N,L)Ψ(L)(N+L)(N+L)\Psi\in\overline{\mathcal{E}_{\mathscr{F},0}},\Psi:(N,L)\mapsto\Psi_{(L)}^{(N+L)}\in\mathcal{E}^{(N+L)}. In analogy to (14), we then set

(a(ϕ)Ψ)(L)(N+L)(q,q)\displaystyle(a^{\dagger}(\boldsymbol{\phi})\Psi)_{(L)}^{(N+L)}(q,q^{\prime}) :=k=1N1NϕjkΨ(L)(N+L1)(qjk,q)\displaystyle:=\sum_{k=1}^{N}\frac{1}{\sqrt{N}}\phi_{j_{k}}\Psi_{(L)}^{(N+L-1)}(q\setminus j_{k},q^{\prime}) (36)
(a(ϕ)Ψ)(L+1)(N+L+1)(q,j,q′′)\displaystyle(a(\boldsymbol{\phi})\Psi)_{(L+1)}^{(N+L+1)}(q,j,q^{\prime\prime}) :=N+1ϕj¯Ψ(L)(N+1+L)(q,j,q′′),(a(ϕ)Ψ)(0)(N):=0,\displaystyle:=\sqrt{N+1}\;\overline{\phi_{j}}\Psi_{(L)}^{(N+1+L)}(q,j,q^{\prime\prime}),\qquad(a(\boldsymbol{\phi})\Psi)_{(0)}^{(N)}:=0,

with q=(j1,,jN),q=(jN+1,,jN+L),j=jN+1q=(j_{1},\ldots,j_{N}),q^{\prime}=(j_{N+1},\ldots,j_{N+L}),j=j_{N+1} and q′′=(jN+2,,jN+L+1)q^{\prime\prime}=(j_{N+2},\ldots,j_{N+L+1}).

Lemma 5.1 (Operator Extensions).

For ϕ\boldsymbol{\phi}\in\mathcal{E}, the representative–wise definition (36) renders well–defined linear operators

a(ϕ):¯¯,a(ϕ):¯¯.a^{\dagger}(\boldsymbol{\phi}):\overline{\mathcal{E}_{\mathscr{F}}}\to\overline{\mathcal{E}_{\mathscr{F}}},\qquad a(\boldsymbol{\phi}):\overline{\mathcal{E}_{\mathscr{F}}}\to\overline{\mathcal{E}_{\mathscr{F}}}. (37)
Proof.

Consider the two expressions in (36). It is clear that the functions (N,L)(a(ϕ)Ψ)(L)(N+L)(N,L)\mapsto(a^{\sharp}(\boldsymbol{\phi})\Psi)_{(L)}^{(N+L)} are elements of ,0¯\overline{\mathcal{E}_{\mathscr{F},0}}. So it remains to show that for ΨI\Psi_{I}\in\mathcal{I}, we also have a(ϕ)ΨIa^{\sharp}(\boldsymbol{\phi})\Psi_{I}\in\mathcal{I}.
First, suppose that ΨI=ΨΨ\Psi_{I}=\Psi-\Psi^{\prime} where (Ψ)(L)(N+L1)(qjk,q)(\Psi^{\prime})_{(L)}^{(N+L-1)}(q\setminus j_{k},q^{\prime}) is obtained from Ψ(L)(N+L1)(qjk,q)\Psi_{(L)}^{(N+L-1)}(q\setminus j_{k},q^{\prime}) by a permutation of the last LL indices (i.e., those in qq^{\prime}). This situation corresponds to case (A) above (25). Then the same index permutation in qq^{\prime} transforms (a(ϕ)Ψ)(L)(N+L)(q,q)(a^{\dagger}(\boldsymbol{\phi})\Psi)_{(L)}^{(N+L)}(q,q^{\prime}) into (a(ϕ)Ψ)(L)(N+L)(q,q)(a^{\dagger}(\boldsymbol{\phi})\Psi^{\prime})_{(L)}^{(N+L)}(q,q^{\prime}). Thus, a(ϕ)ΨIa^{\dagger}(\boldsymbol{\phi})\Psi_{I}\in\mathcal{I}. A similar argument shows that a(ϕ)ΨIa(\boldsymbol{\phi})\Psi_{I}\in\mathcal{I} when (Ψ)(L)(N+1+L)(q,j,q′′)(\Psi^{\prime})_{(L)}^{(N+1+L)}(q,j,q^{\prime\prime}) is obtained from Ψ(L)(N+1+L)(q,j,q′′)\Psi_{(L)}^{(N+1+L)}(q,j,q^{\prime\prime}) by permuting the last LL indices (i.e., those in q′′q^{\prime\prime}).
Concerning case (B), suppose there was a choice of 0ΔLN,LL0\leq\Delta L_{N,L}\leq L for each N,L0N,L\in\mathbb{N}_{0}, such that (24) was true. Then,

(a(ϕ)Ψ)(L)(N+L)(q,jN+1,,jN+L)\displaystyle(a^{\dagger}(\boldsymbol{\phi})\Psi^{\prime})_{(L^{\prime})}^{(N+L^{\prime})}(q,j_{N+1},\ldots,j_{N+L^{\prime}}) (38)
=(36)\displaystyle\overset{\eqref{eq:aadaggerESS}}{=} k=1N1Nϕjk(Ψ)(L)(N+L1)(qjk,jN+1,,jN+L)\displaystyle\sum_{k=1}^{N}\frac{1}{\sqrt{N}}\phi_{j_{k}}\;(\Psi^{\prime})_{(L^{\prime})}^{(N+L^{\prime}-1)}(q\setminus j_{k},j_{N+1},\ldots,j_{N+L^{\prime}})
=(24)\displaystyle\overset{\eqref{eq:PsiPsiprime2}}{=} k=1N1NϕjkL:L+ΔLN,L=LjN+L+1,,jN+LΨ(L)(N+L1)(qjk,jN+1,,jN+L)\displaystyle\sum_{k=1}^{N}\frac{1}{\sqrt{N}}\phi_{j_{k}}\sum_{L:L^{\prime}+\Delta L_{N,L}=L}\;\sum_{j_{N+L^{\prime}+1},\ldots,j_{N+L}}\Psi_{(L)}^{(N+L-1)}(q\setminus j_{k},j_{N+1},\ldots,j_{N+L})
=(36)\displaystyle\overset{\eqref{eq:aadaggerESS}}{=} L:L+ΔLN,L=LjN+L+1,,jN+L(a(ϕ)Ψ)(L)(N+L)(j1,,jN+L),\displaystyle\sum_{L:L^{\prime}+\Delta L_{N,L}=L}\;\sum_{j_{N+L^{\prime}+1},\ldots,j_{N+L}}(a^{\dagger}(\boldsymbol{\phi})\Psi)_{(L)}^{(N+L)}(j_{1},\ldots,j_{N+L})\in\mathbb{C},

so a(ϕ)ΨIa^{\dagger}(\boldsymbol{\phi})\Psi_{I}\in\mathcal{I}. A similar calculation with integrating out up to LL indices of q′′q^{\prime\prime} shows that a(ϕ)ΨIa(\boldsymbol{\phi})\Psi_{I}\in\mathcal{I}.
Now, since \mathcal{I} is generated by elements of type (A) and (B), we conclude that ΨI\Psi_{I}\in\mathcal{I} always implies a(ϕ)ΨIa^{\dagger}(\boldsymbol{\phi})\Psi_{I}\in\mathcal{I} and a(ϕ)ΨIa(\boldsymbol{\phi})\Psi_{I}\in\mathcal{I}, so the definitions of a(ϕ)a^{\dagger}(\boldsymbol{\phi}) and a(ϕ)a(\boldsymbol{\phi}) do not depend on the choice of the coset representative Ψ\Psi.

Lemma 5.2 (Extended CCR).

a(ϕ),a(ϕ)a^{\dagger}(\boldsymbol{\phi}),a(\boldsymbol{\phi}), as defined in Lemma 37, satisfy the extended CCR:

[a(ϕ),a(𝝍)]=[a(ϕ),a(𝝍)]=0,[a(ϕ),a(𝝍)]=ϕ,𝝍=jϕj¯ψj¯[a(\boldsymbol{\phi}),a(\boldsymbol{\psi})]=[a^{\dagger}(\boldsymbol{\phi}),a^{\dagger}(\boldsymbol{\psi})]=0,\qquad[a(\boldsymbol{\phi}),a^{\dagger}(\boldsymbol{\psi})]=\langle\boldsymbol{\phi},\boldsymbol{\psi}\rangle=\sum_{j}\overline{\phi_{j}}\psi_{j}\in\overline{\mathcal{E}_{\mathscr{F}}} (39)

as a strong operator identity on ¯\overline{\mathcal{E}_{\mathscr{F}}} for ϕ,𝛙\boldsymbol{\phi},\boldsymbol{\psi}\in\mathcal{E}.

Proof.

This follows by a direct calculation using basis coefficients, as in the case ϕ,𝝍2\boldsymbol{\phi},\boldsymbol{\psi}\in\ell^{2}.

Lemma 5.3 (Bogoliubov Transformations Conserve Extended CCR).

Consider a Bogoliubov transformation 𝒱\mathcal{V} satisfying the Bogoliubov relations (17). Then the Bogoliubov–transformed operators bb^{\sharp} in (16) still satisfy the extended CCR

[b(ϕ),b(𝝍)]=[b(ϕ),b(𝝍)]=0,[b(ϕ),b(𝝍)]=ϕ,𝝍[b(\boldsymbol{\phi}),b(\boldsymbol{\psi})]=[b^{\dagger}(\boldsymbol{\phi}),b^{\dagger}(\boldsymbol{\psi})]=0,\qquad[b(\boldsymbol{\phi}),b^{\dagger}(\boldsymbol{\psi})]=\langle\boldsymbol{\phi},\boldsymbol{\psi}\rangle (40)

as a strong operator identity on ¯\overline{\mathcal{E}_{\mathscr{F}}} for ϕ,𝛙𝒟\boldsymbol{\phi},\boldsymbol{\psi}\in\mathcal{D}.

Proof.

Lemma 5.2 ensures that the CCR hold for a(ϕ):¯¯a^{\sharp}(\boldsymbol{\phi}):\overline{\mathcal{E}_{\mathscr{F}}}\to\overline{\mathcal{E}_{\mathscr{F}}}. Lemma 37 renders well–definedness of b(ϕ):¯¯b^{\sharp}(\boldsymbol{\phi}):\overline{\mathcal{E}_{\mathscr{F}}}\to\overline{\mathcal{E}_{\mathscr{F}}} for ϕ𝒟\boldsymbol{\phi}\in\mathcal{D}. The recovery of the CCR for bb^{\sharp} using the Bogoliubov relations (17) works as in the case of a,ba^{\sharp},b^{\sharp} being Fock space operators. For instance, we have777It is easy to verify that the first two expressions are well–defined operators ¯¯\overline{\mathcal{E}_{\mathscr{F}}}\to\overline{\mathcal{E}_{\mathscr{F}}}. The other expressions are elements of ¯\overline{\mathcal{E}_{\mathscr{F}}}, which can be interpreted as multiplication operators ¯¯\overline{\mathcal{E}_{\mathscr{F}}}\to\overline{\mathcal{E}_{\mathscr{F}}}, since the \otimes–product of two ¯\overline{\mathcal{E}_{\mathscr{F}}}–elements is again in ¯\overline{\mathcal{E}_{\mathscr{F}}}, see Remark 2.

[b(ϕ),b(𝝍)]=[a(uϕ)+a(vϕ¯),a(u𝝍)+a(v𝝍¯)]=Lemma 5.2uϕ,u𝝍vJ𝝍,vJϕ\displaystyle{[b(\boldsymbol{\phi}),b^{\dagger}(\boldsymbol{\psi})]}=[a(u\boldsymbol{\phi})+a^{\dagger}(v\overline{\boldsymbol{\phi}}),a^{\dagger}(u\boldsymbol{\psi})+a(v\overline{\boldsymbol{\psi}})]\overset{\text{Lemma \ref{lem:extendedCCR}}}{=}\langle u\boldsymbol{\phi},u\boldsymbol{\psi}\rangle-\langle vJ\boldsymbol{\psi},vJ\boldsymbol{\phi}\rangle (41)
=\displaystyle={} ϕ,uu𝝍JJvvJ𝝍,Jϕ=ϕ,uu𝝍ϕ,vTv¯𝝍=(17)ϕ,𝝍.\displaystyle\langle\boldsymbol{\phi},u^{*}u\boldsymbol{\psi}\rangle-\langle JJv^{*}vJ\boldsymbol{\psi},J\boldsymbol{\phi}\rangle=\langle\boldsymbol{\phi},u^{*}u\boldsymbol{\psi}\rangle-\langle\boldsymbol{\phi},v^{T}\overline{v}\boldsymbol{\psi}\rangle\overset{\eqref{eq:Bogoliuborelations}}{=}\langle\boldsymbol{\phi},\boldsymbol{\psi}\rangle.

The other two identities in (40) are obtained analogously.

As in the case tr(vv)<\mathrm{tr}(v^{*}v)<\infty  [19], the definition of our extended implementer is based on a vector Ω𝒱¯\Omega_{\mathcal{V}}\in\overline{\mathcal{E}_{\mathscr{F}}}, called Bogoliubov vacuum. We first give a definition of 𝕌𝒱\mathbb{U}_{\mathcal{V}} for a given Ω𝒱\Omega_{\mathcal{V}} and then construct Ω𝒱\Omega_{\mathcal{V}} further below. Recall the definition of 𝒟\mathcal{D}_{\mathscr{F}} (31).

Definition 5.1.

Given a Bogoliubov–transformed vacuum state Ω𝒱¯\Omega_{\mathcal{V}}\in\overline{\mathcal{E}_{\mathscr{F}}}, we define the linear extended Bogoliubov implementer 𝕌𝒱:𝒟¯\mathbb{U}_{\mathcal{V}}:\mathcal{D}_{\mathscr{F}}\to\overline{\mathcal{E}_{\mathscr{F}}} by

𝕌𝒱a(ϕ1)a(ϕn)Ω:=b(ϕ1)b(ϕn)Ω𝒱,\mathbb{U}_{\mathcal{V}}a^{\dagger}(\boldsymbol{\phi}_{1})\ldots a^{\dagger}(\boldsymbol{\phi}_{n})\Omega:=b^{\dagger}(\boldsymbol{\phi}_{1})\ldots b^{\dagger}(\boldsymbol{\phi}_{n})\Omega_{\mathcal{V}}, (42)

with ϕ𝒟\boldsymbol{\phi}_{\ell}\in\mathcal{D} and b(ϕj)=(a(uϕj)+a(vϕj¯))b^{\dagger}(\boldsymbol{\phi}_{j})=(a^{\dagger}(u\boldsymbol{\phi}_{j})+a(v\overline{\boldsymbol{\phi}_{j}})).

It follows from Lemma 37 that the right–hand side of (42) is an element of ¯\overline{\mathcal{E}_{\mathscr{F}}}, so 𝕌𝒱\mathbb{U}_{\mathcal{V}} is well–defined.

5.2 Construction of the Bogoliubov vacuum

The only remaining step for finishing the construction of 𝕌𝒱\mathbb{U}_{\mathcal{V}} is to provide a reasonable Bogoliubov vacuum Ω𝒱¯\Omega_{\mathcal{V}}\in\overline{\mathcal{E}_{\mathscr{F}}}, which we do in Definition 50. By “reasonable”, we mean that Ω𝒱\Omega_{\mathcal{V}} is annihilated by all bb–operators, which we prove in Lemma 51. This property will play an important role in the proof of our main theorem.

Let us quickly explain the heuristics for the choice of Ω𝒱\Omega_{\mathcal{V}}. In case tr(vv)<\mathrm{tr}(v^{*}v)<\infty, the Bogoliubov vacuum is well–known [19, (61)]: Up to normalization, it consists of an exponential over two–particle wave functions of the kind

K(2)=jνj2μj𝒈j𝒈j,K^{(2)}=-\sum_{j\in\mathbb{N}}\frac{\nu_{j}}{2\mu_{j}}\boldsymbol{g}_{j}\otimes\boldsymbol{g}_{j}, (43)

where jj indexes a simultaneous eigenbasis (𝒇j)j(\boldsymbol{f}_{j})_{j\in\mathbb{N}} of both888We have vTv¯uvJ=uuuvJuvJ=uvvvJ=uvJvTv¯v^{T}\overline{v}u^{*}vJ=u^{*}uu^{*}vJ-u^{*}vJ=u^{*}vv^{*}vJ=u^{*}vJv^{T}\overline{v}, so [vTv¯,uvJ]=0[v^{T}\overline{v},u^{*}vJ]=0. Further, for tr(vv)<\mathrm{tr}(v^{*}v)<\infty, both operators are Hilbert–Schmidt, which allows for a simultaneous eigenbasis. vTv¯v^{T}\overline{v} and uvJu^{*}vJ with eigenvalues λj\lambda_{j} (with respect to vTv¯v^{T}\overline{v}), and where νj=λj\nu_{j}=\sqrt{\lambda_{j}} and μj=1+λj\mu_{j}=\sqrt{1+\lambda_{j}}. The orthonormal basis (𝒈j)j(\boldsymbol{g}_{j})_{j\in\mathbb{N}} is then given by 𝒈j=λj1/2vJ𝒇j\boldsymbol{g}_{j}=\lambda_{j}^{-1/2}vJ\boldsymbol{f}_{j}. Using that uvJu^{*}vJ is a spectral multiplication by νjμj=λj(1+λj)\nu_{j}\mu_{j}=\sqrt{\lambda_{j}(1+\lambda_{j})}, it is now an easy task to verify that

uϕ,𝒈j=ϕ,uvJλj1/2𝒇j=μjϕ,𝒇j2a(uϕ)2K(2)=vJϕϕ𝒟.\langle u\boldsymbol{\phi},\boldsymbol{g}_{j}\rangle=\langle\boldsymbol{\phi},u^{*}vJ\lambda_{j}^{-1/2}\boldsymbol{f}_{j}\rangle=\mu_{j}\langle\boldsymbol{\phi},\boldsymbol{f}_{j}\rangle\quad\Rightarrow\quad 2\frac{a(u\boldsymbol{\phi})}{\sqrt{2}}K^{(2)}=-vJ\boldsymbol{\phi}\qquad\forall\boldsymbol{\phi}\in\mathcal{D}. (44)

So when comparing with (14), we see that K(2)K^{(2)} is the integral kernel of an operator which turns 2Juϕ2Ju\boldsymbol{\phi} into vJϕ-vJ\boldsymbol{\phi}.

When generalizing to the case with arbitrary spectrum σ:=σ(vv)=σ(vTv¯)\sigma:=\sigma(v^{*}v)=\sigma(v^{T}\overline{v}), an eigenbasis (𝒈j)j(\boldsymbol{g}_{j})_{j\in\mathbb{N}} of vTv¯v^{T}\overline{v} will generally no longer exist. However, we still have a projection–valued measure (PVM) PvTv¯P_{v^{T}\overline{v}} with

vTv¯=σλ𝑑PvTv¯(λ).v^{T}\overline{v}=\int_{\sigma}\lambda\;dP_{v^{T}\overline{v}}(\lambda). (45)

And we are still able to define an operator 𝒪\mathcal{O}, which turns 2Juϕ2Ju\boldsymbol{\phi} into vJϕ-vJ\boldsymbol{\phi} and has an integral kernel K𝒪(2)K_{\mathcal{O}}\in\mathcal{E}^{(2)}: Consider the polar decompositions with respect to PvTv¯P_{v^{T}\overline{v}},

vJ=Avλ,Ju=Au1+λ,vJ=A_{v}\sqrt{\lambda},\qquad Ju=A_{u}\sqrt{1+\lambda}, (46)

following from vTv¯=JvvJ=uuv^{T}\overline{v}=Jv^{*}vJ=u^{*}u, where functions of λ\lambda are to be understood as spectral multiplications and Av,Au:22A_{v},A_{u}:\ell^{2}\to\ell^{2} are anti–unitary operators. Then, 𝒪:22\mathcal{O}:\ell^{2}\to\ell^{2} is defined as

𝒪=Avλ4(1+λ)Au,\mathcal{O}=-A_{v}\sqrt{\frac{\lambda}{4(1+\lambda)}}A_{u}^{*}, (47)

which is clearly bounded by 1/21/2.

Lemma 5.4 (Bosonic Pairs).

For any ϕ2\boldsymbol{\phi}\in\ell^{2}, we have

2𝒪Juϕ=vJϕand𝒪ϕ<12ϕ.2\mathcal{O}Ju\boldsymbol{\phi}=-vJ\boldsymbol{\phi}\qquad\text{and}\qquad\|\mathcal{O}\boldsymbol{\phi}\|<\frac{1}{2}\|\boldsymbol{\phi}\|. (48)

Further, 𝒪\mathcal{O} allows for an integral kernel K𝒪(2)K_{\mathcal{O}}\in\mathcal{E}^{(2)}, so

(𝒪ϕ)j=jK𝒪(j,j)ϕj.(\mathcal{O}\boldsymbol{\phi})_{j}=\sum_{j^{\prime}}K_{\mathcal{O}}(j,j^{\prime})\phi_{j^{\prime}}. (49)
Proof.

The equality in (48) is verified by plugging in the polar decompositions (46) and (47). 𝒪ϕ<12ϕ\|\mathcal{O}\boldsymbol{\phi}\|<\frac{1}{2}\|\boldsymbol{\phi}\| is a direct consequence of λ4(1+λ)<12\sqrt{\frac{\lambda}{4(1+\lambda)}}<\frac{1}{2}. Restricting 𝒪\mathcal{O} to 𝒟2\mathcal{D}\subset\ell^{2}, we get the operator 𝒪|𝒟:𝒟2\mathcal{O}|_{\mathcal{D}}:\mathcal{D}\to\ell^{2}\subset\mathcal{E}. By the Schwartz kernel theorem, every operator 𝒟\mathcal{D}\to\mathcal{E} has an integral kernel, which implies the existence of K𝒪K_{\mathcal{O}}. ∎

Definition 5.2 (Bosonic Bogoliubov Vacuum).

We define Ω𝒱¯\Omega_{\mathcal{V}}\in\overline{\mathcal{E}_{\mathscr{F}}} by

(Ω𝒱)(0)(2m):=(2m)!m!(K𝒪)Sm,(Ω𝒱)(0)(2m+1)=0(\Omega_{\mathcal{V}})_{(0)}^{(2m)}:=\frac{\sqrt{(2m)!}}{m!}(K_{\mathcal{O}})^{\otimes_{S}m},\qquad(\Omega_{\mathcal{V}})_{(0)}^{(2m+1)}=0 (50)

for m0m\in\mathbb{N}_{0} and (Ω𝒱)(L)(N+L)=0(\Omega_{\mathcal{V}})_{(L)}^{(N+L)}=0 for L1L\geq 1.

In what follows, only the sector L=0L=0 will be relevant, so we will drop the index (L)(L). Further, Ω𝒱\Omega_{\mathcal{V}}\in\mathcal{E}_{\mathscr{F}} under the embedding ¯\mathcal{E}_{\mathscr{F}}\to\overline{\mathcal{E}_{\mathscr{F}}} described in Remark 1.

Lemma 5.5 (bb Annihilates Bosonic Ω𝒱\Omega_{\mathcal{V}}).

For ϕ𝒟\boldsymbol{\phi}\in\mathcal{D}, we have

b(ϕ)Ω𝒱=0.b(\boldsymbol{\phi})\Omega_{\mathcal{V}}=0. (51)
Proof.

Recall (16) and the definition of the antilinear conjugation operator JJ, which imply

b(ϕ)Ω𝒱=a(uϕ)Ω𝒱+a(vJϕ)Ω𝒱.b(\boldsymbol{\phi})\Omega_{\mathcal{V}}=a(u\boldsymbol{\phi})\Omega_{\mathcal{V}}+a^{\dagger}(vJ\boldsymbol{\phi})\Omega_{\mathcal{V}}. (52)

The creation term has only contributions of odd sector numbers (N)=(2m+1)(N)=(2m+1) that evaluate to

(a(vJϕ)Ω𝒱)(2m+1)=2m+1(vJϕ)S(Ω𝒱(2m))=(2m+1)!m!(vJϕ)S(K𝒪)Sm.(a^{\dagger}(vJ\boldsymbol{\phi})\Omega_{\mathcal{V}})^{(2m+1)}=\sqrt{2m+1}(vJ\boldsymbol{\phi})\otimes_{S}(\Omega_{\mathcal{V}}^{(2m)})=\frac{\sqrt{(2m+1)!}}{m!}(vJ\boldsymbol{\phi})\otimes_{S}(K_{\mathcal{O}})^{\otimes_{S}m}. (53)

The annihilation term also has only contributions of odd (N)(N), which can be evaluated in mode–configuration space. In the following, let σ\sigma and σ~\tilde{\sigma} be permutations of {1,,2m+2}\{1,\ldots,2m+2\} and {1,,2m+1}\{1,\ldots,2m+1\}, let j=jσ(2m+2)j=j_{\sigma(2m+2)}, and denote by σ,σ~\sum_{\sigma},\sum_{\tilde{\sigma}} the sums over all (2m+2)!(2m+2)! or (2m+1)!(2m+1)! permutations. Then,

(a(uϕ)Ω𝒱)(2m+1)(j1,,j2m+1)\displaystyle(a(u\boldsymbol{\phi})\Omega_{\mathcal{V}})^{(2m+1)}(j_{1},\ldots,j_{2m+1}) (54)
=\displaystyle= 2m+2j(uϕ¯)jΩ𝒱(2m+2)(j1,,j2m+1,j)\displaystyle\sqrt{2m+2}\sum_{j}(\overline{u\boldsymbol{\phi}})_{j}\Omega_{\mathcal{V}}^{(2m+2)}(j_{1},\ldots,j_{2m+1},j)
=\displaystyle= 2m+2(2m+2)!(2m+2)!(m+1)!σj(uϕ¯)jk=1m+1K𝒪(jσ(2k1),jσ(2k))\displaystyle\frac{\sqrt{2m+2}}{(2m+2)!}\frac{\sqrt{(2m+2)!}}{(m+1)!}\sum_{\sigma}\sum_{j}(\overline{u\boldsymbol{\phi}})_{j}\prod_{k=1}^{m+1}K_{\mathcal{O}}(j_{\sigma(2k-1)},j_{\sigma(2k)})
=\displaystyle= (2m+1)!(m+1)!1(2m+1)!((m+1)σ~j(uϕ¯)jK𝒪(j,jσ~(2m+1))k=1mK𝒪(jσ~(2k1),jσ~(2k))\displaystyle\frac{\sqrt{(2m+1)!}}{(m+1)!}\frac{1}{(2m+1)!}\left((m+1)\sum_{\tilde{\sigma}}\sum_{j}(\overline{u\boldsymbol{\phi}})_{j}K_{\mathcal{O}}(j,j_{\tilde{\sigma}(2m+1)})\prod_{k=1}^{m}K_{\mathcal{O}}(j_{\tilde{\sigma}(2k-1)},j_{\tilde{\sigma}(2k)})\right.
+(m+1)σ~j(uϕ¯)jK𝒪(jσ~(2m+1),j)k=1mK𝒪(jσ~(2k1),jσ~(2k)))\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\left.+(m+1)\sum_{\tilde{\sigma}}\sum_{j}(\overline{u\boldsymbol{\phi}})_{j}K_{\mathcal{O}}(j_{\tilde{\sigma}(2m+1)},j)\prod_{k=1}^{m}K_{\mathcal{O}}(j_{\tilde{\sigma}(2k-1)},j_{\tilde{\sigma}(2k)})\right)
(a(uϕ)Ω𝒱)(2m+1)=(2m+1)!m!(j(Juϕ)j(K𝒪(j,)+K𝒪(,j)))SK𝒪Sm.\displaystyle\Rightarrow\quad(a(u\boldsymbol{\phi})\Omega_{\mathcal{V}})^{(2m+1)}=\frac{\sqrt{(2m+1)!}}{m!}\left(\sum_{j}(Ju\boldsymbol{\phi})_{j}(K_{\mathcal{O}}(j,\cdot)+K_{\mathcal{O}}(\cdot,j))\right)\otimes_{S}K_{\mathcal{O}}^{\otimes_{S}m}.

In order to evaluate the term in brackets, we use that K𝒪K_{\mathcal{O}} is the integral kernel of 𝒪\mathcal{O}, so

j(Juϕ)jK𝒪(,j)=𝒪Juϕ=(48)12vJϕ.\sum_{j}(Ju\boldsymbol{\phi})_{j}K_{\mathcal{O}}(\cdot,j)=\mathcal{O}Ju\boldsymbol{\phi}\overset{\eqref{eq:cO}}{=}-\frac{1}{2}vJ\boldsymbol{\phi}. (55)

For evaluating the other term, we use that the integral kernel of 𝒪:22\mathcal{O}^{*}:\ell^{2}\to\ell^{2} is K𝒪(j,j)=K𝒪(j,j)¯K_{\mathcal{O}^{*}}(j,j^{\prime})=\overline{K_{\mathcal{O}}(j^{\prime},j)}, so

j(Juϕ)jK𝒪(j,)=jK𝒪(,j)¯(Juϕ)j=J𝒪JJuϕ=J𝒪uϕ.\sum_{j}(Ju\boldsymbol{\phi})_{j}K_{\mathcal{O}}(j,\cdot)=\sum_{j}\overline{K_{\mathcal{O}^{*}}(\cdot,j)}(Ju\boldsymbol{\phi})_{j}=J\mathcal{O}^{*}JJu\boldsymbol{\phi}=J\mathcal{O}^{*}u\boldsymbol{\phi}. (56)

The Bogoliubov relations (17) and polar decompositions (46) now imply

(uv)=JuvJ\displaystyle(u^{*}v)^{*}=Ju^{*}vJ JλAvJAu1+λ=J1+λAuJAvλ\displaystyle\Leftrightarrow\quad J^{*}\sqrt{\lambda}A_{v}^{*}JA_{u}\sqrt{1+\lambda}=J\sqrt{1+\lambda}A_{u}^{*}J^{*}A_{v}\sqrt{\lambda} (57)
JAu11+λJJλAv=Avλ1+λAuJ=𝒪J,\displaystyle\Leftrightarrow\quad J^{*}A_{u}\sqrt{\frac{1}{1+\lambda}}JJ^{*}\sqrt{\lambda}A_{v}^{*}=A_{v}\sqrt{\frac{\lambda}{1+\lambda}}A_{u}^{*}J=-\mathcal{O}J,

with 11+λ\sqrt{\frac{1}{1+\lambda}} being a densely defined spectral multiplication operator. Now, if BB is some densely defined operator on 2\ell^{2} and BB^{*} is its adjoint, then for J𝝍dom(B)J\boldsymbol{\psi}\in{\rm dom}(B) and Jϕdom(B)J^{*}\boldsymbol{\phi}\in{\rm dom}(B^{*}), we have

ϕ,JBJ𝝍=\displaystyle\langle\boldsymbol{\phi},JBJ\boldsymbol{\psi}\rangle={} JJBJϕ,J𝝍=𝝍,JBJϕ=JBJ𝝍,JJϕ=ϕ,JBJ𝝍\displaystyle\langle JJB^{*}J^{*}\boldsymbol{\phi},J\boldsymbol{\psi}\rangle=\langle\boldsymbol{\psi},JB^{*}J^{*}\boldsymbol{\phi}\rangle=\langle JBJ^{*}\boldsymbol{\psi},JJ\boldsymbol{\phi}\rangle=\langle\boldsymbol{\phi},J^{*}BJ^{*}\boldsymbol{\psi}\rangle (58)
JBJ=\displaystyle\quad\Rightarrow\quad J^{*}BJ^{*}={} JBJ.\displaystyle JBJ.

So

JAu11+λJJλAv=JAu11+λJJλAv=JAuλ1+λAv=J𝒪\displaystyle J^{*}A_{u}\sqrt{\frac{1}{1+\lambda}}JJ^{*}\sqrt{\lambda}A_{v}^{*}=JA_{u}\sqrt{\frac{1}{1+\lambda}}JJ\sqrt{\lambda}A_{v}^{*}=JA_{u}\sqrt{\frac{\lambda}{1+\lambda}}A_{v}^{*}=-J\mathcal{O}^{*} (59)
(57)J𝒪=𝒪Jj(Juϕ)jK𝒪(j,)=12vJϕ.\displaystyle\overset{\eqref{eq:cOJ}}{\Rightarrow}\quad J\mathcal{O}^{*}=\mathcal{O}J\quad\Rightarrow\quad\sum_{j}(Ju\boldsymbol{\phi})_{j}K_{\mathcal{O}}(j,\cdot)=-\frac{1}{2}vJ\boldsymbol{\phi}.

Plugging (55) and (59) into (54), we obtain

(a(uϕ)Ω𝒱)(2m+1)=(2m+1)!m!(vJϕ)SK𝒪Sm,(a(u\boldsymbol{\phi})\Omega_{\mathcal{V}})^{(2m+1)}=-\frac{\sqrt{(2m+1)!}}{m!}(vJ\boldsymbol{\phi})\otimes_{S}K_{\mathcal{O}}^{\otimes_{S}m}, (60)

which exactly cancels (53) and establishes the lemma. ∎

5.3 Conditions for Extended Implementability

Before proceeding to the final proof of Theorem 4.1, we first set up some simple conditions for when 𝕌𝒱\mathbb{U}_{\mathcal{V}} is an extended implementer. These conditions are analogous to the ones given in [13, Lemma 5.2].

Lemma 5.6 (Conditions for an Extended Implementer).

Let Ω𝒱¯\Omega_{\mathcal{V}}\in\overline{\mathcal{E}_{\mathscr{F}}} such that bjΩ𝒱=0jb_{j}\Omega_{\mathcal{V}}=0\;\forall j\in\mathbb{N}. Further, let 𝕌𝒱\mathbb{U}_{\mathcal{V}} as in Definition 5.1 be injective (so 𝕌𝒱1\mathbb{U}_{\mathcal{V}}^{-1} exists). Then, 𝕌𝒱\mathbb{U}_{\mathcal{V}} implements 𝒱\mathcal{V} in the extended sense.

Proof.

In order to establish the extended implementation (32), it suffices to show

𝕌𝒱aj𝕌𝒱1Ψ=bjΨ,\mathbb{U}_{\mathcal{V}}a^{\sharp}_{j}\mathbb{U}_{\mathcal{V}}^{-1}\Psi=b^{\sharp}_{j}\Psi, (61)

for a{a,a}a^{\sharp}\in\{a^{\dagger},a\} and

Ψ=𝕌𝒱aj1ajNΩ=(42)bj1bjNΩ𝒱,\Psi=\mathbb{U}_{\mathcal{V}}a^{\dagger}_{j_{1}}\ldots a^{\dagger}_{j_{N}}\Omega\overset{\eqref{eq:transformbogoliubovstate}}{=}b_{j_{1}}^{\dagger}\ldots b_{j_{N}}^{\dagger}\Omega_{\mathcal{V}}, (62)

where N0N\in\mathbb{N}_{0} and j,j1,,jNj,j_{1},\ldots,j_{N}\in\mathbb{N} are arbitrary. In case aj=aja^{\sharp}_{j}=a^{\dagger}_{j}, we directly compute

𝕌𝒱aj𝕌𝒱1Ψ=𝕌𝒱ajaj1ajNΩ=(42)bjbj1bjNΩ𝒱=bjΨ.\mathbb{U}_{\mathcal{V}}a^{\dagger}_{j}\mathbb{U}_{\mathcal{V}}^{-1}\Psi=\mathbb{U}_{\mathcal{V}}a^{\dagger}_{j}a^{\dagger}_{j_{1}}\ldots a^{\dagger}_{j_{N}}\Omega\overset{\eqref{eq:transformbogoliubovstate}}{=}b^{\dagger}_{j}b^{\dagger}_{j_{1}}\ldots b^{\dagger}_{j_{N}}\Omega_{\mathcal{V}}=b^{\dagger}_{j}\Psi. (63)

In case aj=aja^{\sharp}_{j}=a_{j}, we obtain

𝕌𝒱aj𝕌𝒱1Ψ=\displaystyle\mathbb{U}_{\mathcal{V}}a_{j}\mathbb{U}_{\mathcal{V}}^{-1}\Psi= 𝕌𝒱ajaj1ajNΩ\displaystyle\mathbb{U}_{\mathcal{V}}a_{j}a^{\dagger}_{j_{1}}\ldots a^{\dagger}_{j_{N}}\Omega (64)
=\displaystyle= 𝕌𝒱k=1Naj1ajk1[aj,ajk]ajk+1ajNΩ+𝕌𝒱aj1ajNajΩ=0\displaystyle\mathbb{U}_{\mathcal{V}}\sum_{k=1}^{N}a^{\dagger}_{j_{1}}\ldots a^{\dagger}_{j_{k-1}}[a_{j},a^{\dagger}_{j_{k}}]a^{\dagger}_{j_{k+1}}\ldots a^{\dagger}_{j_{N}}\Omega+\mathbb{U}_{\mathcal{V}}a^{\dagger}_{j_{1}}\ldots a^{\dagger}_{j_{N}}\underbrace{a_{j}\Omega}_{=0}
=\displaystyle= k=1Nδjjk𝕌𝒱aj1ajk1ajk+1ajNΩ\displaystyle\sum_{k=1}^{N}\delta_{jj_{k}}\mathbb{U}_{\mathcal{V}}a^{\dagger}_{j_{1}}\ldots a^{\dagger}_{j_{k-1}}a^{\dagger}_{j_{k+1}}\ldots a^{\dagger}_{j_{N}}\Omega
=(42)\displaystyle\overset{\eqref{eq:transformbogoliubovstate}}{=} k=1Nδjjkbj1bjk1bjk+1bjNΩ𝒱.\displaystyle\sum_{k=1}^{N}\delta_{jj_{k}}b^{\dagger}_{j_{1}}\ldots b^{\dagger}_{j_{k-1}}b^{\dagger}_{j_{k+1}}\ldots b^{\dagger}_{j_{N}}\Omega_{\mathcal{V}}.

On the other hand, conservation of the CCR implies that [bj,bj]=δjj[b_{j},b_{j^{\prime}}^{\dagger}]=\delta_{jj^{\prime}}, so

bjΨ=(42)\displaystyle b_{j}\Psi\overset{\eqref{eq:transformbogoliubovstate}}{=} bjbj1bjNΩ𝒱\displaystyle b_{j}b^{\dagger}_{j_{1}}\ldots b^{\dagger}_{j_{N}}\Omega_{\mathcal{V}} (65)
=\displaystyle= k=1Nbj1bjk1[bj,bjk]bjk+1bjNΩ𝒱+bj1bjNbjΩ𝒱=0\displaystyle\sum_{k=1}^{N}b^{\dagger}_{j_{1}}\ldots b^{\dagger}_{j_{k-1}}[b_{j},b^{\dagger}_{j_{k}}]b^{\dagger}_{j_{k+1}}\ldots b^{\dagger}_{j_{N}}\Omega_{\mathcal{V}}+b^{\dagger}_{j_{1}}\ldots b^{\dagger}_{j_{N}}\underbrace{b_{j}\Omega_{\mathcal{V}}}_{=0}
=\displaystyle= k=1Nδjjkbj1bjk1bjk+1bjNΩ𝒱.\displaystyle\sum_{k=1}^{N}\delta_{jj_{k}}b^{\dagger}_{j_{1}}\ldots b^{\dagger}_{j_{k-1}}b^{\dagger}_{j_{k+1}}\ldots b^{\dagger}_{j_{N}}\Omega_{\mathcal{V}}.

Expressions (64) and (65) agree, which renders the desired equality.

5.4 Proof of Theorem 4.1

Proof of Theorem 4.1.

We have to show that 𝒱\mathcal{V} has an implementer 𝕌𝒱\mathbb{U}_{\mathcal{V}}, i.e., (32) holds. The operator 𝕌𝒱\mathbb{U}_{\mathcal{V}} and the vector Ω𝒱\Omega_{\mathcal{V}} are given in Definitions 5.1 and 50, respectively. By Lemma 5.6, 𝕌𝒱\mathbb{U}_{\mathcal{V}} implements 𝒱\mathcal{V} if bjΩ𝒱=0jb_{j}\Omega_{\mathcal{V}}=0\;\forall j\in\mathbb{N} and 𝕌𝒱\mathbb{U}_{\mathcal{V}} is injective. The property bjΩ𝒱=0b_{j}\Omega_{\mathcal{V}}=0 readily follows from Lemma 51. So it remains to establish injectivity of 𝕌𝒱:𝒟¯\mathbb{U}_{\mathcal{V}}:\mathcal{D}_{\mathscr{F}}\to\overline{\mathcal{E}_{\mathscr{F}}} in order to finish the proof.

Since 𝒟\mathcal{D}_{\mathscr{F}} is spanned by vectors of the type aj1ajNΩa_{j_{1}}^{\dagger}\ldots a_{j_{N}}^{\dagger}\Omega, it suffices to show that the set

:={bj1bjNΩ𝒱|N0,jk}¯\mathcal{B}:=\big{\{}b_{j_{1}}^{\dagger}\ldots b_{j_{N}}^{\dagger}\Omega_{\mathcal{V}}\;\big{|}\;N\in\mathbb{N}_{0},j_{k}\in\mathbb{N}\big{\}}\subset\overline{\mathcal{E}_{\mathscr{F}}} (66)

is linearly independent. To do so, we investigate the set \mathcal{B} step by step.
Let us start by evaluating

bjΩ𝒱=(a(u𝒆j)+a(vJ𝒆j))Ω𝒱.b_{j}^{\dagger}\Omega_{\mathcal{V}}=(a^{\dagger}(u\boldsymbol{e}_{j})+a(vJ\boldsymbol{e}_{j}))\Omega_{\mathcal{V}}. (67)

For even sectors, we have (bjΩ𝒱)(2m)=0(b_{j}^{\dagger}\Omega_{\mathcal{V}})^{(2m)}=0. For evaluating the odd sectors, we use that for ϕ2\boldsymbol{\phi}\in\ell^{2}, the same arguments as in (54) through (60) yield (a(ϕ)Ω𝒱)(2m+1)=(2m+1)!m!(2𝒪Jϕ)SK𝒪Sm(a(\boldsymbol{\phi})\Omega_{\mathcal{V}})^{(2m+1)}=\frac{\sqrt{(2m+1)!}}{m!}(2\mathcal{O}J\boldsymbol{\phi})\otimes_{S}K_{\mathcal{O}}^{\otimes_{S}m}. Thus, together with the definition of Ω𝒱\Omega_{\mathcal{V}} (50), we get

(bjΩ𝒱)(2m+1)=(2m+1)!m!(u𝒆j+2𝒪JvJ𝒆j)=:𝝍jSK𝒪Sm=(a(𝝍j)Ω𝒱)(2m+1).(b_{j}^{\dagger}\Omega_{\mathcal{V}})^{(2m+1)}=\frac{\sqrt{(2m+1)!}}{m!}\underbrace{(u\boldsymbol{e}_{j}+2\mathcal{O}JvJ\boldsymbol{e}_{j})}_{=:\boldsymbol{\psi}_{j}}\otimes_{S}K_{\mathcal{O}}^{\otimes_{S}m}=(a^{\dagger}(\boldsymbol{\psi}_{j})\Omega_{\mathcal{V}})^{(2m+1)}. (68)

Now, vJ=2𝒪JuvJ=-2\mathcal{O}Ju implies

𝝍j=u𝒆j+2𝒪JvJ𝒆j=(14𝒪J𝒪J)u𝒆j.\boldsymbol{\psi}_{j}=u\boldsymbol{e}_{j}+2\mathcal{O}JvJ\boldsymbol{e}_{j}=(1-4\mathcal{O}J\mathcal{O}J)u\boldsymbol{e}_{j}. (69)

By Lemma 49, we have 𝒪ϕ<12ϕ\|\mathcal{O}\boldsymbol{\phi}\|<\frac{1}{2}\|\boldsymbol{\phi}\|, so 4𝒪J𝒪Jϕ<ϕ\|4\mathcal{O}J\mathcal{O}J\boldsymbol{\phi}\|<\|\boldsymbol{\phi}\|. Thus, the operator (14𝒪J𝒪J)(1-4\mathcal{O}J\mathcal{O}J) is injective, as is uu (since uu1u^{*}u\geq 1), and linear independence of (𝒆j)j(\boldsymbol{e}_{j})_{j\in\mathbb{N}} implies linear independence of (𝝍j)j(\boldsymbol{\psi}_{j})_{j\in\mathbb{N}}.
Now, let us turn to the evaluation of a general bj1bjNΩ𝒱b_{j_{1}}^{\dagger}\ldots b_{j_{N}}^{\dagger}\Omega_{\mathcal{V}}. For N=2N=2,

bj1bj2Ω𝒱=(68)bj1a(𝝍j2)Ω𝒱=\displaystyle b_{j_{1}}^{\dagger}b_{j_{2}}^{\dagger}\Omega_{\mathcal{V}}\overset{\eqref{eq:bdaggerOmegacV}}{=}b_{j_{1}}^{\dagger}a^{\dagger}(\boldsymbol{\psi}_{j_{2}})\Omega_{\mathcal{V}}={} a(𝝍j2)bj1Ω𝒱+[a(u𝒆j1)+a(vJ𝒆j1),a(𝝍j2)]Ω𝒱\displaystyle a^{\dagger}(\boldsymbol{\psi}_{j_{2}})b_{j_{1}}^{\dagger}\Omega_{\mathcal{V}}+[a^{\dagger}(u\boldsymbol{e}_{j_{1}})+a(vJ\boldsymbol{e}_{j_{1}}),a^{\dagger}(\boldsymbol{\psi}_{j_{2}})]\Omega_{\mathcal{V}} (70)
=\displaystyle={} a(𝝍j1)a(𝝍j2)Ω𝒱+vJ𝒆j1,𝝍j2Ω𝒱.\displaystyle a^{\dagger}(\boldsymbol{\psi}_{j_{1}})a^{\dagger}(\boldsymbol{\psi}_{j_{2}})\Omega_{\mathcal{V}}+\langle vJ\boldsymbol{e}_{j_{1}},\boldsymbol{\psi}_{j_{2}}\rangle\Omega_{\mathcal{V}}.

By a similar expansion in terms of commutators, one easily sees that

bj1bjNΩ𝒱=a(𝝍j1)a(𝝍jN)Ω𝒱+l.o.t.,b_{j_{1}}^{\dagger}\ldots b_{j_{N}}^{\dagger}\Omega_{\mathcal{V}}=a^{\dagger}(\boldsymbol{\psi}_{j_{1}})\ldots a^{\dagger}(\boldsymbol{\psi}_{j_{N}})\Omega_{\mathcal{V}}+\mathrm{l.o.t.}, (71)

where l.o.t\mathrm{l.o.t} (“lower–order terms”) is a sum of expressions a(𝝍j1)a(𝝍jN)Ω𝒱a^{\dagger}(\boldsymbol{\psi}_{j_{1}^{\prime}})\ldots a^{\dagger}(\boldsymbol{\psi}_{j^{\prime}_{N^{\prime}}})\Omega_{\mathcal{V}} with N<NN<N^{\prime} and {j1,,jN}{j1,,jN}\{j^{\prime}_{1},\ldots,j^{\prime}_{N^{\prime}}\}\subset\{j_{1},\ldots,j_{N}\}.

Now, linear independence of \mathcal{B} will follow if we can prove linear independence of the set of “leading–order terms”

𝒜:={a(𝝍j1)a(𝝍jN)Ω𝒱|N0,jk}.\mathscr{A}:=\big{\{}a^{\dagger}(\boldsymbol{\psi}_{j_{1}})\ldots a^{\dagger}(\boldsymbol{\psi}_{j_{N}})\Omega_{\mathcal{V}}\;\big{|}\;N\in\mathbb{N}_{0},j_{k}\in\mathbb{N}\big{\}}\subset\mathcal{E}_{\mathscr{F}}. (72)

To see this implication of linear independence, suppose, \mathcal{B} would be linearly dependent, so there was a linear combination

B=k=1Kλkbjk,1bjk,NkΩ𝒱=0,B=\sum_{k=1}^{K}\lambda_{k}b_{j_{k,1}}^{\dagger}\ldots b_{j_{k,N_{k}}}^{\dagger}\Omega_{\mathcal{V}}=0, (73)

with λk0\lambda_{k}\neq 0. By N¯=maxkNk\overline{N}=\max_{k}N_{k} we denote the highest number of consecutively applied creation operators. Then, BB amounts to a finite linear combination of elements of the kind a(𝝍j1)a(𝝍jN)Ω𝒱𝒜a^{\dagger}(\boldsymbol{\psi}_{j_{1}})\ldots a^{\dagger}(\boldsymbol{\psi}_{j_{N}})\Omega_{\mathcal{V}}\in\mathscr{A}, where the contribution of terms with N=N¯N=\overline{N} is

k:Nk=N¯λka(𝝍jk,1)a(𝝍jk,Nk)Ω𝒱,\sum_{k:N_{k}=\overline{N}}\lambda_{k}a^{\dagger}(\boldsymbol{\psi}_{j_{k,1}})\ldots a^{\dagger}(\boldsymbol{\psi}_{j_{k,N_{k}}})\Omega_{\mathcal{V}}, (74)

with the sum being nonempty. As B=0B=0, linear independence of 𝒜\mathscr{A} would now imply that λk=0\lambda_{k}=0 whenever Nk=N¯N_{k}=\overline{N}, which contradicts our premise λk0\lambda_{k}\neq 0. So linear independence of 𝒜\mathscr{A} implies linear independence of \mathcal{B}.

Finally, we establish linear independence of 𝒜\mathscr{A} by a contradiction. Suppose there was a linear combination

0=k=1Kλka(𝝍jk,1)a(𝝍jk,Nk)Ω𝒱,0=\sum_{k=1}^{K}\lambda_{k}a^{\dagger}(\boldsymbol{\psi}_{j_{k,1}})\ldots a^{\dagger}(\boldsymbol{\psi}_{j_{k,N_{k}}})\Omega_{\mathcal{V}}, (75)

with λk0\lambda_{k}\neq 0 and N¯=minkNk\underline{N}=\min_{k}N_{k} being the least number of consecutively applied creation operators. Then,

(a(𝝍j1)a(𝝍jN)Ω𝒱)(n)=0for n<N,(a^{\dagger}(\boldsymbol{\psi}_{j_{1}})\ldots a^{\dagger}(\boldsymbol{\psi}_{j_{N}})\Omega_{\mathcal{V}})^{(n)}=0\qquad\text{for }n<N, (76)

i.e., the NN lowest sectors are unoccupied. Thus, the (N¯)(\underline{N})–sector of our linear combination amounts to

0=k:Nk=N¯λk(a(𝝍jk,1)a(𝝍jk,N¯)Ω𝒱)(N¯)=N¯!k:Nk=N¯λk𝝍jk,1SS𝝍jk,N¯.0=\sum_{k:N_{k}=\underline{N}}\lambda_{k}(a^{\dagger}(\boldsymbol{\psi}_{j_{k,1}})\ldots a^{\dagger}(\boldsymbol{\psi}_{j_{k,\underline{N}}})\Omega_{\mathcal{V}})^{(\underline{N})}=\sqrt{\underline{N}!}\sum_{k:N_{k}=\underline{N}}\lambda_{k}\boldsymbol{\psi}_{j_{k,1}}\otimes_{S}\ldots\otimes_{S}\boldsymbol{\psi}_{j_{k,\underline{N}}}. (77)

Since {𝝍jj}\{\boldsymbol{\psi}_{j}\;\mid\;j\in\mathbb{N}\} is linearly independent in 2\ell^{2}, also the set

{𝝍jk,1SS𝝍jk,N¯|jk,}(2)N¯\big{\{}\boldsymbol{\psi}_{j_{k,1}}\otimes_{S}\ldots\otimes_{S}\boldsymbol{\psi}_{j_{k,\underline{N}}}\;\big{|}\;j_{k,\ell}\in\mathbb{N}\big{\}}\subset(\ell^{2})^{\otimes\underline{N}} (78)

is linearly independent, which implies λk=0\lambda_{k}=0 for all kk with Nk=N¯N_{k}=\underline{N}, establishes the desired contradiction and finishes the proof.


Acknowledgments. This paper originated from discussions with Andreas Deuchert at the INdAM Quantum Meetings 2022, which were supported by the Istituto Nazionale di Alta Matematica ”F. Severi”. The author was further financially supported by the Basque Government through the BERC 2018-2021 program, by the Ministry of Science, Innovation and Universities: BCAM Severo Ochoa accreditation SEV-2017-0718, as well as by the European Research Council (ERC) through the Starting Grant FermiMath, Grant Agreement No. 101040991.

References

  • [1] R. Haag: The Mathematical Structure of the Bardeen-Cooper-Schrieffer Model Nuovo Cimento 25.2: 287–299 (1962)
  • [2] V. Bach, E.H. Lieb, J.P. Solovej: Generalized Hartree-Fock Theory and the Hubbard Model J. Stat. Phys. 76: 3–89 (1994) https://arxiv.org/abs/cond-mat/9312044
  • [3] N. Benedikter, P.T. Nam, M. Porta, B. Schlein, R. Seiringer: Optimal Upper Bound for the Correlation Energy of a Fermi Gas in the Mean–Field Regime Commun. Math. Phys. 374: 2097–-2150 (2020) https://arxiv.org/abs/1809.01902v3
  • [4] M. Falconi, E.L. Giacomelli, C. Hainzl, M. Porta: The Dilute Fermi Gas via Bogoliubov Theory Ann. Henri Poincaré 22: 2283–2353 (2021) https://arxiv.org/abs/2006.00491v1
  • [5] A. Adhikari, C. Brennecke, B. Schlein: Bose-Einstein Condensation Beyond the Gross-Pitaevskii Regime Ann. Henri Poincaré 22: 1163–1233 (2021) https://arxiv.org/abs/2002.03406v4
  • [6] F.A. Berezin: The Method of Second Quantization Academic Press (1992)
  • [7] P. Marecki: Quantum Electrodynamics on Background External Fields PhD Thesis, University of Hamburg (2003) https://arxiv.org/pdf/hep-th/0312304.pdf
  • [8] J. Derezińki: Bosonic quadratic Hamiltonians J. Math. Phys. 58: 121101 (2017) https://arxiv.org/abs/1608.03289v2
  • [9] C.G. Torre, M. Varadarajan: Functional Evolution of Free Quantum Fields Classical and Quantum Gravity 16: 2651–2668 (1999) https://arxiv.org/abs/hep-th/9811222
  • [10] S. Hollands, R.M. Wald: Local Wick Polynomials and Time Ordered Products of Quantum Fields in Curved Spacetime Commun. Math. Phys. 223: 289–326 (2001) https://arxiv.org/abs/gr-qc/0103074v2
  • [11] D. Shale: Linear Symmetries of Free Boson Fields Trans. Amer. Math. Soc. 103: 149–167 (1962)
  • [12] D. Shale, W.F. Stinespring: Spinor Representations of Infinite Orthogonal Groups J. Appl. Math. Mech. 14.2: 315–322 (1965)
  • [13] S. Lill: Implementing Bogoliubov Transformations Beyond the Shale–Stinespring Condition Preprint (2022) https://arxiv.org/abs/2204.13407
  • [14] J.v. Neumann: On infinite tensor products Comp. Math. 6: 1–77 (1939)
  • [15] S. Lill: Extended State Space for describing renormalized Fock spaces in QFT Preprint (2020) https://arxiv.org/abs/2012.12608
  • [16] Yu.M. Berezansky, Y.G. Kondratiev: Spectral Methods in Infinite-Dimensional Analysis Springer (1995)
  • [17] H. Araki: On the Diagonalization of a Bilinear Hamiltonian by a Bogoliubov Transformation Publ. Res. Inst. Math. Sci. 4.2: 387–412 (1968)
  • [18] P.T. Nam, M. Napiórkowsi, J.P. Solovej: Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations J. Funct. Anal. 270.11: 4340–4368 (2016) https://arxiv.org/abs/1508.07321v2
  • [19] J.P. Solovej: Many Body Quantum Mechanics lecture notes http://web.math.ku.dk/~solovej/MANYBODY/mbnotes-ptn-5-3-14.pdf (2014), visited on Jul 1, 2021