This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.


Bogdanov-Takens bifurcation of codimension 33 in the Gierer-Meinhardt model

Ranchao Wu111Corresponding author. E-mail address: [email protected] (R. C. Wu) and Lingling Yang
Center for Pure Mathematics and School of Mathematical Sciences,

Anhui University, Hefei 230601, China

Abstract. Bifurcation of the local Gierer-Meinhardt model is analyzed in this paper. It is found that the degenerate Bogdanov-Takens bifurcation of codimension 3 happens in the model, except that teh saddle-node bifurcation and the Hopf bifurcation. That was not reported in the existing results about this model. The existence of equilibria, their stability, the bifurcation and the induced complicated and interesting dynamics are explored in detail, by using the stability analysis, the normal form method and bifurcation theory. Numerical results are also presented to validate theoretical results.

Key words: Gierer-Meinhardt model, Saddle-node, Hopf, Bogdanov-Takens bifurcation

1 Introduction

Early in [1], Turing discovered the common properties of the breakdown of spatial-temporal symmetry and the self-organization, selection, and stability of new spatial-temporal structures in systems, and proposed the idea of patterns as the results of diffusion driven instability. Since then more and more interests are focused on the Turing patterns and various models are put forward to describe the diffusion driven instability. One of the important models is the Gierer-Meinhardt model [2], which was proposed by Gierer and Meinhardt in 1972, and takes the following form

{at=ρ0ρ+cρarhsua+Da2ax2,ht=cρaThuvh+Dh2hx2.\begin{cases}\frac{\partial a}{\partial t}=\rho_{0}\rho+c\rho\frac{a^{r}}{h^{s}}-ua+D_{a}\frac{\partial^{2}a}{\partial x^{2}},\\ \frac{\partial h}{\partial t}=c^{\prime}\rho^{\prime}\frac{a^{T}}{h^{u}}-vh+D_{h}\frac{\partial^{2}h}{\partial x^{2}}.\end{cases}

where a(x,t)a(x,t) and h(x,t)h(x,t) respectively represent the concentration of activators and inhibitors at spatial position xx and time t>0t>0. ρ0ρ\rho_{0}\rho and ρ\rho^{\prime} are the source concentration of a(x,t)a(x,t) and h(x,t)h(x,t), respectively. The first-order kinetics of activator and inhibitor are represented by uau_{a} and vhv_{h}, respectively. DaD_{a} and DhD_{h} represent the diffusion coefficients of activators and inhibitors, respectively. Generally, it is necessary to assume sTu+1>r1>0\frac{sT}{u+1}>r-1>0, that is, r2(r)r\geq 2(r\in\mathbb{Z}).

In view of Turing’s idea about pattern formation, to explore the patterns in such model, it is very necessary to carry out the stability and instability analysis. Instability will be accompanied by bifurcation in the model. Then spatiotemporal patterns will follow from the different bifurcation. Until not, various results about bifurcation and the resulting complex dynamics in the Gierer-Meinhardt model have been obtained. When r=2,s=1,T=2r=2,s=1,T=2, and u=0u=0, Song et al. [3] studied the Gierer-Meinhardt model with saturation terms and obtained the pattern formation in the certain parameter space. The Hopf bifurcation, the effect of diffusion on the stability and the subsequent Turing pattern were presented in [4]. For the delayed a delayed reaction-diffusion Gierer-Meinhardt system, the bifurcation analysis was also carried out in [5]. With the different sources for activators and inhibitors, Hopf bifurcation was treated in [6]. For the codimension-2 bifurcation, in [7] the Turing-Hopf bifurcation was considered, without the saturation term. The Turing-Turing bifurcation was given in [8], the coexistence of multi-stable patterns with different spatial responses and the superposition for patterns were demonstrated.

Recently, some results are obtained about the localized patterns in the Gray-Scott system and the bifurcation of the general Gierer-Meinhardt model in [9]. The local one-dimensional Gierer-Meinhardt model was given by

{ut=a+u2vu,vt=b+u2dv.\begin{cases}\frac{\partial u}{\partial t}=a+\frac{u^{2}}{v}-u,\\ \frac{\partial v}{\partial t}=b+u^{2}-dv.\end{cases} (1)

where aa, bb and dd are all positive constants. However, when a=0a=0, the system still has more complex dynamics and could be further explored. In this work, it is found that the model could admit the saddle-node, the Hopf and the degenerate Bogdanov-Takes bifurcations of codimension-3, which is not absent in the system in [9]. Note that highly degenerate bifurcations are more difficult to deal with and the resulting dynamical behaviors are richer and more interesting, so they are attracting increasing interests from mathematics and applied sciences. For example, degenerate bifurcations and the induced complicated dynamics were presented in[10, 11, 12], such as the nilpotent cusp singularity of order 3 and the degenerate Hopf bifurcation of codimension 3. In [13], Huang et al. discovered that there existed a degenerate Bogdanov-Takens singularity (focus case) of codimension 3 in the predator-prey model. In [14], the Bogdanov-Takens of codimension 3 and the Hopf bifurcation of codimension 2 were also found to happen.

In this paper, we will elaborate on these aspects for system (1) with a=0a=0. The existence and their stability of equilibrium points are introduced in Section 2. Bifurcations, such as, the saddle-node bifurcation, the Hopf bifurcation and the Bogdanov-Takes bifurcation of codimension-3 are presented in Section 4. Finally, a brief summary is made in Section 5.

2 Existence and stability of equilibria

Now consider the system in the following form

{dudt=c(βu2vu),dvdt=b+u2dv.\begin{cases}\frac{du}{dt}=c\left(\frac{\beta u^{2}}{v}-u\right),\\ \frac{dv}{dt}=b+u^{2}-dv.\end{cases} (2)

Let f(u,v)=c(βu2vu)f(u,v)=c\left(\frac{\beta u^{2}}{v}-u\right), g(u,v)=b+u2dvg(u,v)=b+u^{2}-dv. Upon solving f(u,v)=0f(u,v)=0, we obtain the solutions u=0u=0 or v=uβv=u\beta.

It is not difficult to get the boundary equilibrium (0,bd)(0,\frac{b}{d}) of system (2). Next, to find the existence of positive equilibria of system, substitute v=uβv=u\beta into g(u,v)=0g(u,v)=0, then we have

h(u)u2dβu+b=0.h(u)\triangleq u^{2}-d\beta u+b=0.

The discriminant of h(u)h(u) is

Δ=d2β24b.\Delta=d^{2}\beta^{2}-4b.

It follows that

(i) if d2β2<4bd^{2}\beta^{2}<4b, then h(u)>0h(u)>0 for u>0u>0;

(ii) if d2β2=4bd^{2}\beta^{2}=4b, then h(u)h(u) has a real root u1=dβ2u_{1}=\frac{d\beta}{2};

(iii) if d2β2>4bd^{2}\beta^{2}>4b, then h(u)h(u) has two distinct positive real roots,

u2=dβ+Δ2,u3=dβΔ2.\displaystyle u_{2}=\frac{d\beta+\sqrt{\Delta}}{2},\qquad u_{3}=\frac{d\beta-\sqrt{\Delta}}{2}.

So we have the following result.

Theorem 1.

System (2) has only one boundary equilibrium E0(0,v0)=(0,bd)E_{0}\left(0,v_{0}\right)=\left(0,\frac{b}{d}\right), and

(i) if d2β2<4bd^{2}\beta^{2}<4b, then there is no positive equilibria;

(ii) If d2β2=4bd^{2}\beta^{2}=4b, then there is a positive equilibrium E1(u1,v1)=(dβ2,dβ22)E_{1}\left(u_{1},v_{1}\right)=\left(\frac{d\beta}{2},\frac{d\beta^{2}}{2}\right);

(iii) If d2β2>4bd^{2}\beta^{2}>4b,then there are two positive equilibrium E2(u2,v2)=(dβ+Δ2,dβ2+βΔ2)E_{2}\left(u_{2},v_{2}\right)=\left(\frac{d\beta+\sqrt{\Delta}}{2},\frac{d\beta^{2}+\beta\sqrt{\Delta}}{2}\right) and E3(u3,v3)=(dβΔ2,dβ2βΔ2)E_{3}\left(u_{3},v_{3}\right)=\left(\frac{d\beta-\sqrt{\Delta}}{2},\frac{d\beta^{2}-\beta\sqrt{\Delta}}{2}\right).

Next the stability of the equilibria system (2) will be examined. First consider the boundary equilibrium E0(0,v0)E_{0}\left(0,v_{0}\right). The Jacobian matrix of system  (2) at equilibirum E0E_{0} is

JE0=(100d),\ J_{E_{0}}=\begin{pmatrix}-1&0\\ 0&-d\end{pmatrix},

which has the eigenvalues λ1=1<0\lambda_{1}=-1<0 and λ2=d<0\lambda_{2}=-d<0. Therefore, the equilibrium E0E_{0} of system  (2) is a stable node.

As for the stability of the equilibrium E1E_{1}, we have

Theorem 2.

(a) If d=cd=c, then E1E_{1} is a cusp of codimension three;

(b) If d>cd>c, then E1E_{1} is a saddle-node with an unstable parabolic sector;

(b) If d<cd<c, then E1E_{1} is a saddle-node with a stable parabolic sector.

Proof.

The Jacobian matrix of system (2) at equilibrium E1E_{1} is

JE1=(ccβdβd).J_{E_{1}}=\begin{pmatrix}c&-\frac{c}{\beta}\\ d\beta&-d\end{pmatrix}.

It follows that

trJE1=cd,detJE1=0.trJ_{E_{1}}=c-d,\;\;detJ_{E_{1}}=0.

Now translate E1(u1,v1)=(dβ2,dβ22)E_{1}(u_{1},v_{1})=(\frac{d\beta}{2},\frac{d\beta^{2}}{2}) into the origin by the translation (u,v)=(U+u1,V+v1)(u,v)=(U+u_{1},V+v_{1}), then system (2) is changed into

{U˙=a10U+a01V+a20U2+a11UV+a02V2+a21U2V+a12UV2+a03V3+a22U2V2+a13UV3+a04V4+M(U,V),V˙=b10U+b01V+b20U2+N(U,V),\begin{cases}\dot{U}=a_{10}U+a_{01}V+a_{20}U^{2}+a_{11}UV+a_{02}V^{2}+a_{21}U^{2}V\\ \qquad+a_{12}UV^{2}+a_{03}V^{3}+a_{22}U^{2}V^{2}+a_{13}UV^{3}+a_{04}V^{4}+M\left(U,V\right),\\ \dot{V}=b_{10}U+b_{01}V+b_{20}U^{2}+N\left(U,V\right),\end{cases} (3)

where

a10\displaystyle a_{10} =c,\displaystyle=c, a01\displaystyle a_{01} =cβ,\displaystyle=-\frac{c}{\beta}, a20\displaystyle a_{20} =2cdβ,\displaystyle=\frac{2c}{d\beta}, a11\displaystyle a_{11} =4cdβ2,\displaystyle=-\frac{4c}{d\beta^{2}}, a02\displaystyle a_{02} =2cdβ3,\displaystyle=\frac{2c}{d\beta^{3}},
a21\displaystyle a_{21} =4cd2β3,\displaystyle=-\frac{4c}{d^{2}\beta^{3}}, a12\displaystyle a_{12} =8cd2β4,\displaystyle=\frac{8c}{d^{2}\beta^{4}}, a03\displaystyle a_{03} =4cd2β5,\displaystyle=-\frac{4c}{d^{2}\beta^{5}}, a22\displaystyle a_{22} =8cd3β5,\displaystyle=\frac{8c}{d^{3}\beta^{5}}, a13\displaystyle a_{13} =16cd3β6,\displaystyle=-\frac{16c}{d^{3}\beta^{6}},
a04\displaystyle a_{04} =8cd3β7,\displaystyle=\frac{8c}{d^{3}\beta{7}}, b10\displaystyle b_{10} =dβ,\displaystyle=d\beta, b01\displaystyle b_{01} =d,\displaystyle=-d, b20\displaystyle b_{20} =1,\displaystyle=1,

and M(U,V)M(U,V), N(U,V)N(U,V) are terms of at least order five in UU and VV.

First, assume d=cd=c. Then both eigenvalues of JE1J_{E_{1}} are zero. Applying the transformation (U,V)=(x,β(xyc))(U,V)=(x,\beta(x-\frac{y}{c})), we rewrite system (3) as

{x˙=y+2y2c2β4xy2c3β2+4y3c4β2+8x2y2c4β316xy3c5β3+8y4c6β3+M2(x,y),y˙=cβx2+2y2cβ4xy2c2β2+4y3c3β2+8x2y2c3β216xy3c4β3+8y4c5β3+N2(x,y),\begin{cases}\dot{x}=y+\frac{2y^{2}}{c^{2}\beta}-\frac{4xy^{2}}{c^{3}\beta^{2}}+\frac{4y^{3}}{c^{4}\beta^{2}}+\frac{8x^{2}y^{2}}{c^{4}\beta^{3}}-\frac{16xy^{3}}{c^{5}\beta^{3}}+\frac{8y^{4}}{c^{6}\beta^{3}}+M_{2}\left(x,y\right),\\ \dot{y}=-\frac{c}{\beta}x^{2}+\frac{2y^{2}}{c\beta}-\frac{4xy^{2}}{c^{2}\beta^{2}}+\frac{4y^{3}}{c^{3}\beta^{2}}+\frac{8x^{2}y^{2}}{c^{3}\beta^{2}}-\frac{16xy^{3}}{c^{4}\beta^{3}}+\frac{8y^{4}}{c^{5}\beta^{3}}+N_{2}\left(x,y\right),\end{cases} (4)

and M2(x,y)M_{2}(x,y), N2(x,y)N_{2}(x,y) are terms of at least order five in xx and yy. Further, let (x,y)=(x1,y1+x12+2cβx1y12c2βy12)(x,y)=(x_{1},y_{1}+x_{1}^{2}+\frac{2}{c\beta}x_{1}y_{1}-\frac{2}{c^{2}\beta}y_{1}^{2}), then (4) is transformed into the following form

{x˙1=y1+x12+c11x1y1+c21x12y1+c12x1y12+c03y13+c40x14+c22x12y12+c13x1y13+c04y14+M3(x1,y1),y˙1=d20x12+d11x1y1+d30x13+d21x12y1+d12x1y12+d03y13+d40x14+d31x13y1+d22x12y12+d13x1y13+d04y14+N3(x1,y1),\begin{cases}\dot{x}_{1}=y_{1}+x_{1}^{2}+c_{11}x_{1}y_{1}+c_{21}x_{1}^{2}y_{1}+c_{12}x_{1}y_{1}^{2}+c_{03}y_{1}^{3}\\ \qquad+c_{40}x_{1}^{4}+c_{22}x_{1}^{2}y_{1}^{2}+c_{13}x_{1}y_{1}^{3}+c_{04}y_{1}^{4}+M_{3}(x_{1},y_{1}),\\ \dot{y}_{1}=d_{20}x_{1}^{2}+d_{11}x_{1}y_{1}+d_{30}x_{1}^{3}+d_{21}x_{1}^{2}y_{1}+d_{12}x_{1}y_{1}^{2}+d_{03}y_{1}^{3}\\ \qquad+d_{40}x_{1}^{4}+d_{31}x_{1}^{3}y_{1}+d_{22}x_{1}^{2}y_{1}^{2}+d_{13}x_{1}y_{1}^{3}+d_{04}y_{1}^{4}+N_{3}(x_{1},y_{1}),\end{cases} (5)

where

c11\displaystyle c_{11} =2cβ,c21=4c2β,c12=4c3β2,c03=4c4β2,c40=2c2β,c22=4c4β2,\displaystyle=\frac{2}{c\beta},\quad c_{21}=\frac{4}{c^{2}\beta},\quad c_{12}=\frac{4}{c^{3}\beta^{2}},\quad c_{03}=-\frac{4}{c^{4}\beta^{2}},\quad c_{40}=\frac{2}{c^{2}\beta},\quad c_{22}=\frac{4}{c^{4}\beta^{2}},
c13\displaystyle c_{13} =8c5β3,c04=8c6β3,d20=cβ,d11=2,d30=2+2β2,\displaystyle=\frac{8}{c^{5}\beta^{3}},\quad c_{04}=-\frac{8}{c^{6}\beta^{3}},\quad d_{20}=-\frac{c}{\beta},\quad d_{11}=-2,\quad d_{30}=-2+\frac{2}{\beta^{2}},
d21\displaystyle d_{21} =4cβ2+2cβ,d12=8c2β,d03=4c3β2,d40=6cβ4cβ3,\displaystyle=-\frac{4}{c\beta^{2}}+\frac{2}{c\beta},\quad d_{12}=-\frac{8}{c^{2}\beta},\qquad d_{03}=-\frac{4}{c^{3}\beta^{2}},\quad d_{40}=-\frac{6}{c\beta}-\frac{4}{c\beta^{3}},
d31\displaystyle d_{31} =4c2β2+16c2β316c2β,d22=12c3β216c3β3,d13=8c4β324c4β2,d04=16c5β3,\displaystyle=\frac{4}{c^{2}\beta^{2}}+\frac{16}{c^{2}\beta^{3}}-\frac{16}{c^{2}\beta},\quad d_{22}=\frac{12}{c^{3}\beta^{2}}-\frac{16}{c^{3}\beta^{3}},\quad d_{13}=\frac{8}{c^{4}\beta^{3}}-\frac{24}{c^{4}\beta^{2}},\quad d_{04}=-\frac{16}{c^{5}\beta^{3}},

and M3(x1,y1)M_{3}(x_{1},y_{1}), N3(x1,y1)N_{3}(x_{1},y_{1}) are terms of at least order five in x1x_{1} and y1y_{1}.

Let (x2,y2)=(x1,y1+x12+2cβx1y1+M4(x2,y2))(x_{2},y_{2})=(x_{1},y_{1}+x_{1}^{2}+\frac{2}{c\beta}x_{1}y_{1}+M_{4}(x_{2},y_{2})), then (5) takes the following form

{x˙2=y2,y˙2=e20x22+e02y22+e21x22y2+e12x2y22+e03y23+e40x24+e31x23y2+e22x22y22+e13x2y23+e04y24+N4(x2,y2),\begin{cases}\dot{x}_{2}=y_{2},\\ \dot{y}_{2}=e_{20}x_{2}^{2}+e_{02}y_{2}^{2}+e_{21}x_{2}^{2}y_{2}+e_{12}x_{2}y_{2}^{2}+e_{03}y_{2}^{3}\\ \qquad+e_{40}x_{2}^{4}+e_{31}x_{2}^{3}y_{2}+e_{22}x_{2}^{2}y_{2}^{2}+e_{13}x_{2}y_{2}^{3}+e_{04}y_{2}^{4}+N_{4}(x_{2},y_{2}),\end{cases} (6)

where

e20\displaystyle e_{20} =cβ,e02=2cβ,e21=4cβ2,e12=4c2β28c2β,\displaystyle=-\frac{c}{\beta},\quad e_{02}=\frac{2}{c\beta},\quad e_{21}=-\frac{4}{c\beta^{2}},\quad e_{12}=-\frac{4}{c^{2}\beta^{2}}-\frac{8}{c^{2}\beta},
e03\displaystyle e_{03} =4c3β2,e40=4cβ3,e31=8c2β2+16c3β3+16c2β3,e22=8c3β3+40c3β216c4β4,\displaystyle=-\frac{4}{c^{3}\beta^{2}},\quad e_{40}=\frac{4}{c\beta^{3}},\quad e_{31}=\frac{8}{c^{2}\beta^{2}}+\frac{16}{c^{3}\beta^{3}}+\frac{16}{c^{2}\beta^{3}},\quad e_{22}=-\frac{8}{c^{3}\beta^{3}}+\frac{40}{c^{3}\beta^{2}}-\frac{16}{c^{4}\beta^{4}},
e13\displaystyle e_{13} =24c4β2+24c4β3,e04=16c5β3,\displaystyle=-\frac{24}{c^{4}\beta^{2}}+\frac{24}{c^{4}\beta^{3}},\quad e_{04}=-\frac{16}{c^{5}\beta^{3}},

and M4(x2,y2)M_{4}(x_{2},y_{2}), N4(x2,y2)N_{4}(x_{2},y_{2}) are terms of at least order five in x2x_{2} and y2y_{2}.

To eliminate the y2y_{2}- term in (6), change system (6) with the following transformation [14]

{x3=x2e022x22e213e20x2y2e12e0226x23e03e20e02e212e20x22y29e023e2027e12e02e20+18e20e2232e212216e20x247e022e2112e02e03e204e12e21+3e13e2018e20x23y2+e03e21e04e202e20x22y22,y3=y2e02x2y2e213e20y22e213x23e12e0222x22y22e02e21+3e03e203e20x2y223e02e20e21+3e03e202+2e21e306e20x249e023e2027e02e12e20+18e20e2214e21254e20x23y24e202e219e02e03e202e12e21+3e13e206e20x22y222e03e21+3e04e203e20x2y23,\begin{cases}x_{3}=x_{2}-\frac{e_{02}}{2}x_{2}^{2}-\frac{e_{21}}{3e_{20}}x_{2}y_{2}-\frac{e_{12}-e_{02}^{2}}{6}x_{2}^{3}-\frac{e_{03}e_{20}-e_{02}e_{21}}{2e_{20}}x_{2}^{2}y_{2}\\ \qquad-\frac{9e_{02}^{3}e_{20}-27e_{12}e_{02}e_{20}+18e_{20}e_{22}-32e_{21}^{2}}{216e_{20}}x_{2}^{4}-\frac{7e_{02}^{2}e_{21}-12e_{02}e_{03}e_{20}-4e_{12}e_{21}+3e_{13}e_{20}}{18e_{20}}x_{2}^{3}y_{2}\\ \qquad+\frac{e_{03}e_{21}-e_{04}e_{20}}{2e_{20}}x_{2}^{2}y_{2}^{2},\\ y_{3}=y_{2}-e_{02}x_{2}y_{2}-\frac{e_{21}}{3e_{20}}y_{2}^{2}-\frac{e_{21}}{3}x_{2}^{3}-\frac{e_{12}-e_{02}^{2}}{2}x_{2}^{2}y_{2}-\frac{-2e_{02}e_{21}+3e_{03}e_{20}}{3e_{20}}x_{2}y_{2}^{2}\\ \qquad-\frac{-3e_{02}e_{20}e_{21}+3e_{03}e_{20}^{2}+2e_{21}e_{30}}{6e_{20}}x_{2}^{4}-\frac{9e_{02}^{3}e_{20}-27e_{02}e_{12}e_{20}+18e_{20}e_{22}-14e_{21}^{2}}{54e_{20}}x_{2}^{3}y_{2}\\ \qquad-\frac{4e_{20}^{2}e_{21}-9e_{02}e_{03}e_{20}-2e_{12}e_{21}+3e_{13}e_{20}}{6e_{20}}x_{2}^{2}y_{2}^{2}-\frac{-2e_{03}e_{21}+3e_{04}e_{20}}{3e_{20}}x_{2}y_{2}^{3},\end{cases}

then we get

{x˙3=y3,y˙3=f20x32+f40x34+f31x33y3+N5(x3,y3),\begin{cases}\dot{x}_{3}=y_{3},\\ \dot{y}_{3}=f_{20}x_{3}^{2}+f_{40}x_{3}^{4}+f_{31}x_{3}^{3}y_{3}+N_{5}(x_{3},y_{3}),\end{cases} (7)

where

f20=cβ,f40=113cβ343cβ2,f31=4c2β3+16c3β3+8c2β2,\displaystyle f_{20}=-\frac{c}{\beta},\;\;f_{40}=\frac{11}{3c\beta^{3}}-\frac{4}{3c\beta^{2}},\;\;f_{31}=-\frac{4}{c^{2}\beta^{3}}+\frac{16}{c^{3}\beta^{3}}+\frac{8}{c^{2}\beta^{2}},

and M5(x3,y3)M_{5}(x_{3},y_{3}), N5(x3,y3)N_{5}(x_{3},y_{3}) are terms of at least order five in x3x_{3} and y3y_{3}.

Since f20=cβ0f_{20}=\frac{c}{\beta}\neq 0, by the change of variables (x4,y4)=(x3,1f20y3),τ=f20t\left(x_{4},y_{4}\right)=\left(-x_{3},-\frac{1}{\sqrt{-f_{20}}}y_{3}\right),\tau=\sqrt{-f_{20}}t, we could turn system (7) into

{dx4dτ=y4,dy4dτ=x42+(43c2β113c2β2)x43f31f20x43y4+N6(x4,y4),\begin{cases}\frac{\mathrm{d}x_{4}}{\mathrm{d}\tau}=y_{4},\\ \frac{\mathrm{d}y_{4}}{\mathrm{d}\tau}=x_{4}^{2}+\left(\frac{4}{3c^{2}\beta}-\frac{11}{3c^{2}\beta^{2}}\right)x_{4}^{3}-\frac{f_{31}}{\sqrt{-f_{20}}}x_{4}^{3}y_{4}+N_{6}(x_{4},y_{4}),\end{cases} (8)

where N6(x4,y4)N_{6}(x_{4},y_{4}) are terms of at least order five in x4x_{4} and y4y_{4}.

From the proposition 5.35.3 in [15], we know that system (6) is equivalent to the system

{dx4dτ=y4,dy4dτ=x42+Ex43y4+N6(x4,y4),\begin{cases}\frac{\mathrm{d}x_{4}}{\mathrm{d}\tau}=y_{4},\\ \frac{\mathrm{d}y_{4}}{\mathrm{d}\tau}=x_{4}^{2}+Ex_{4}^{3}y_{4}+N_{6}(x_{4},y_{4}),\end{cases}

where E=f31f20=4c2β316c3β38c2β2f200E=-\frac{f_{31}}{\sqrt{-f_{20}}}=\frac{\frac{4}{c^{2}\beta^{3}}-\frac{16}{c^{3}\beta^{3}}-\frac{8}{c^{2}\beta^{2}}}{\sqrt{-f_{20}}}\neq 0. Therefore, E1E_{1} is a cusp of codimension three. This proves (a)(a).

Next, assume dcd\neq c. The eigenvalues of JE1J_{E_{1}} are λ3=0\lambda_{3}=0 and λ4=cd\lambda_{4}=c-d. Applying the transformation

U=uβ+vβd,V=u+v,τ=(dc)t,U=\frac{u}{\beta}+\frac{v}{\beta d},V=u+v,\tau=\left(d-c\right)t,

then system (3) becomes

{dudτ=3β2(dc)2u24d+2β2(dc)2duv+14dβ2d2(dc)2v2+M7(u,v),dvdτ=v2+d(dc)2β2u26β2(dc)2uv+25dβ2d2(dc)2v2+N7(u,v),\begin{cases}\frac{\mathrm{d}u}{\mathrm{d}\tau}=-\frac{3}{\beta^{2}\left(d-c\right)^{2}}u^{2}-\frac{4d+2}{\beta^{2}\left(d-c\right)^{2}d}uv+\frac{1-4d}{\beta^{2}d^{2}\left(d-c\right)^{2}}v^{2}+M_{7}(u,v),\\ \frac{\mathrm{d}v}{\mathrm{d}\tau}=v-\frac{2+d}{\left(d-c\right)^{2}\beta^{2}}u^{2}-\frac{6}{\beta^{2}\left(d-c\right)^{2}}uv+\frac{2-5d}{\beta^{2}d^{2}\left(d-c\right)^{2}}v^{2}+N_{7}(u,v),\end{cases}

and M7(u,v),N7(u,v)M_{7}(u,v),N_{7}(u,v) are terms of at least order three in uu and vv. The coefficient of u2u^{2} is 3β2(dc)2<0-\frac{3}{\beta^{2}\left(d-c\right)^{2}}<0. From Theorem 7.1 in [16], the origin is a saddle-node. Considering the time vatiable τ\tau, if dc<0d-c<0, then E1E_{1} is a saddle-node with a stable parabolic sector; if dc>0d-c>0, then E1E_{1} is a saddle-node with an unstable parabolic sector. ∎

If Δ>0\Delta>0, then h(u)h(u) has two equilibria. Finally, we discuss the stability of the positive equilibria E2E_{2} and E3E_{3}.

Theorem 3.

If Δ>0\Delta>0, then the positive equilibrium E3E_{3} of system (2) is always a saddle point and the positive equilibrium E2E_{2} is

(a) a source if d<cd<c;

(b) a center or a fine focus if d=cd=c;

(c) a sink if d>cd>c.

Proof.

The Jacobian matrix of system (2) at equilibrium E2E_{2} and E3E_{3} are

JE2=(ccβdβ+Δd),JE3=(ccβdβΔd).J_{E_{2}}=\begin{pmatrix}c&-\frac{c}{\beta}\\ d\beta+\sqrt{\Delta}&-d\end{pmatrix},\qquad\ J_{E_{3}}=\begin{pmatrix}c&-\frac{c}{\beta}\\ d\beta-\sqrt{\Delta}&-d\end{pmatrix}.

Then we could have

detJE2=cd2β24bβ>0detJ_{E_{2}}=\frac{c\sqrt{d^{2}\beta^{2}-4b}}{\beta}>0

and

detJE3=cd2β24bβ<0.detJ_{E_{3}}=-\frac{c\sqrt{d^{2}\beta^{2}-4b}}{\beta}<0.

So E3E_{3} is always a saddle point. The positive equilibrium E2E_{2} is determined by the sign of the trace trJE2trJ_{E_{2}}. Specifically, when trJE2>0trJ_{E_{2}}>0, i.e., d<cd<c, E2E_{2} is a source; When trJE2<0trJ_{E_{2}}<0, i.e., d>cd>c, E2E_{2} is a sink. when trJE2=0trJ_{E_{2}}=0,i.e., d=cd=c, it is a center or a fine focus. ∎

3 Bifurcation

3.1 Saddle-node bifurcation

From Theorem 1 we note that the equilibrium points of system (2) vary as the parameter bb changes. When b>d2β24b>\frac{d^{2}\beta^{2}}{4}, there is no positive equilibrium point. When b=d2β24b=\frac{d^{2}\beta^{2}}{4}, there is a positive equilibrium. When b<d2β24b<\frac{d^{2}\beta^{2}}{4}, there are two positive equilibria. This indicates the saddle-node bifurcation may occur around E1E_{1}.

Theorem 4.

When b=bSNb=b_{SN}, the system (2) undergoes the saddle-node bifurcation around E1E_{1}, with the threshold value bSN=d2β24b_{SN}=\frac{d^{2}\beta^{2}}{4}.

Proof.

According to the Sotomayor’s theorem [17], we need to verify the transversality condition for the occurrence of saddle-node bifurcation at bbSNb\equiv b_{SN}. The Jacobian matrix of system (2) at equilibrium E1E_{1} is

JE1=(ccβdβd).J_{E_{1}}=\begin{pmatrix}c&-\frac{c}{\beta}\\ d\beta&-d\end{pmatrix}.

Because of det(JE1)=λ5λ6=0det(J_{E_{1}})=\lambda_{5}\lambda_{6}=0, JE1J_{E_{1}} has a zero eigenvalue λ5\lambda_{5}. Let VV and WW represent the eigenvectors of JE1J_{E_{1}} and JE1TJ_{E_{1}}^{T} with respect to the eigenvalue λ5\lambda_{5}, respectively.

Simple calculation gives

V=(V1V2)=(1β)V=\binom{V_{1}}{V_{2}}=\binom{1}{\beta}

and

W=(W1W2)=(1cdβ).W=\binom{W_{1}}{W_{2}}=\binom{1}{-\frac{c}{d\beta}}.

Further, we can obtain

Fb(E1,bSN)=(01),F_{b}(E_{1},b_{SN})=\binom{0}{1},
D2F(E1,bSN)(V,V)=(2fu2V12+22fuvV1V2+2fv2V222gu2V12+22guvV1V2+2gv2V22)(E1,bSN)=(02).D^{2}F(E_{1},b_{SN})(V,V)=\begin{pmatrix}\frac{\partial^{2}f}{\partial u^{2}}V_{1}^{2}+2\frac{\partial^{2}f}{\partial u\partial v}V_{1}V_{2}+\frac{\partial^{2}f}{\partial v^{2}}V_{2}^{2}\\ \frac{\partial^{2}g}{\partial u^{2}}V_{1}^{2}+2\frac{\partial^{2}g}{\partial u\partial v}V_{1}V_{2}+\frac{\partial^{2}g}{\partial v^{2}}V_{2}^{2}\end{pmatrix}_{(E_{1},b_{SN})}=\binom{0}{2}.

Obviously, when bbSNb\equiv b_{SN}, VV and WW satisfy the transversality conditions

WTFb(E1,bSN)=cdβ0W^{T}F_{b}(E_{1},b_{SN})=-\frac{c}{d\beta}\neq 0

and

WT[D2F(E1,bSN)(V,V)]=2cdβ0.W^{T}\left[D^{2}F(E_{1},b_{SN})(V,V)\right]=-\frac{2c}{d\beta}\neq 0.

Therefore, when the parameter bb goes from one side of bSNb_{SN} to the other, the system (2) experiences the saddle-node bifurcation at the equilibrium point E1E_{1}. ∎

3.2 Hopf bifurcation

From Theorem 3, it is found that the stability of the positive equilibrium of E2E_{2} changes as the sign of tr(E2)tr(E_{2}) varies, that will probably lead to the Hopf bifurcation around E2E_{2}.

According to the Hopf bifurcation theorem, we need to verify the transversal condition. Based on the fact that dtr(JE2)dd|d=c=10\frac{\mathrm{d}tr\left(J_{E_{2}}\right)}{\mathrm{d}d}\bigg{|}_{d=c}=-1\neq 0, system (2) undergoes the Hopf-bifurcation around E2E_{2}. Furthermore, we need to give the first Lyapunov coefficient and determine the stability of the limit cycle around E2E_{2}.

Now translate E2(u2,v2)E_{2}(u_{2},v_{2}) to (0,0)(0,0) by (u^,v^)=(uu2,vv2)(\hat{u},\hat{v})=(u-u_{2},v-v_{2}) and get the following form

{u^˙=cu^cβv^+cu2u^22cβu2u^v^+cβ2u2v^2+M^(u^,v^),v^˙=2u2u^v^+u^2+N^(u^,v^),\begin{cases}\dot{\hat{u}}=c\hat{u}-\frac{c}{\beta}\hat{v}+\frac{c}{u_{2}}\hat{u}^{2}-\frac{2c}{\beta u_{2}}\hat{u}\hat{v}+\frac{c}{\beta^{2}u_{2}}\hat{v}^{2}+\hat{M}(\hat{u},\hat{v}),\\ \dot{\hat{v}}=2u_{2}\hat{u}-\hat{v}+\hat{u}^{2}+\hat{N}(\hat{u},\hat{v}),\end{cases} (9)

where M^(u^,v^)\hat{M}(\hat{u},\hat{v}) and N^(u^,v^)\hat{N}(\hat{u},\hat{v}) are terms of at least order three in u^\hat{u} and v^\hat{v}.

From another transformation x^=u^,y^=u^,y^=1D(cu^cβv^)\hat{x}=-\hat{u},\hat{y}=-\hat{u},\hat{y}=\frac{1}{\sqrt{D}}(c\hat{u}-\frac{c}{\beta}\hat{v}) and dτ=Ddt\mathrm{d}\tau=\sqrt{D}\mathrm{d}t, where D=(dβ)24bβD=\frac{\sqrt{(d\beta)^{2}-4b}}{\beta}, system (9) becomes

{x^˙=y^˙+f(x^,y^),y^˙=x^˙+g(x^,y^),\begin{cases}\dot{\hat{x}}=-\dot{\hat{y}}+f(\hat{x},\hat{y}),\\ \dot{\hat{y}}=\dot{\hat{x}}+g(\hat{x},\hat{y}),\end{cases}

where

f(x^,y^)=Du2y^2+M1^(u^,v^),g(x^,y^)=1Dβx^2+y^2u2+N1^(u^,v^),\displaystyle f(\hat{x},\hat{y})=-\frac{\sqrt{D}}{u_{2}}\hat{y}^{2}+\hat{M_{1}}(\hat{u},\hat{v}),\quad g(\hat{x},\hat{y})=-\frac{1}{D\beta}\hat{x}^{2}+\frac{\hat{y}^{2}}{u_{2}}+\hat{N_{1}}(\hat{u},\hat{v}),

where M1^(u^,v^)\hat{M_{1}}(\hat{u},\hat{v}) and N1^(u^,v^)\hat{N_{1}}(\hat{u},\hat{v}) are also terms of at least order three in u^\hat{u} and v^\hat{v}.

Using the formal series method described in [16], we can calculate that the first-order Lyapunov number is

σ=D4u22<0.\sigma=\frac{\sqrt{D}}{4u_{2}^{2}}<0.

Then the following theorem is available.

Theorem 5.

When Δ>0\Delta>0 and d=cd=c, the system (2) at the equilibrium experiences the supercritical Hopf bifurcation with a stable limit cycle around E2E_{2}.

3.3 Bogdanov-Takens bifurcation

When u=vβu=\frac{v}{\beta} and d=cd=c, it follows from Theorem 2(a) that the unique positive equilibrium E1E_{1} of system (2) is a cusp of codimension three. The Bogdanov-Takens bifurcation may occur arround E1E_{1}. Now we select β\beta, bb and dd as bifurcation parameters, and the Bogdanov-Takens bifurcation may occur under parameter perturbation.

Theorem 6.

When u=vβu=\frac{v}{\beta} and d=cd=c, the parameter (β,b,d)(\beta,b,d) varies within the small neighborhood of (βBT,bBT,dBT)(\beta_{BT},b_{BT},d_{BT}), where βBT,bBT,\beta_{BT},b_{BT}, and dBTd_{BT} are the Bogdanov-Takens bifurcation threshold values. Then system (2) undergoes the Bogdanov-Taken bifurcation of codimension 3 in the small neighborhood of E1E_{1}.

Proof.

When u=vβu=\frac{v}{\beta} and d=cd=c, it follows theorem 2(a) that E1E_{1} is a cusp of codimension three of system (2). Perturb the parameters β\beta, bb and dd at βBT\beta_{BT}, bBTb_{BT} and dBTd_{BT} and denote (β,b,d)=(βBT+ϵ1,bBT+ϵ2,dBT+ϵ3)(\beta,b,d)=(\beta_{BT}+\epsilon_{1},b_{BT}+\epsilon_{2},d_{BT}+\epsilon_{3}), where ϵ=(ϵ1,ϵ2,ϵ3)\epsilon=(\epsilon_{1},\epsilon_{2},\epsilon_{3}) is a vector of parameters in the small neighborhood of (0,0,0)(0,0,0). Then, the system (2) becomes

{dudt=c((β+ϵ1)u2vu),dvdt=b+ϵ2+u2(d+ϵ3)v.\begin{cases}\frac{\mathrm{d}u}{\mathrm{d}t}=c(\frac{(\beta+\epsilon_{1})u^{2}}{v}-u),\\ \frac{\mathrm{d}v}{\mathrm{d}t}=b+\epsilon_{2}+u^{2}-(d+\epsilon_{3})v.\end{cases} (10)

Then we translate E1(u1,v1)=(cβ2,cβ22)E_{1}(u_{1},v_{1})=(\frac{c\beta}{2},\frac{c\beta^{2}}{2}) into the origin by (x,y)=(uu1,vv1)(x,y)=(u-u_{1},v-v_{1}). The system (10) is changed into

{x˙=a¯00+a¯10x+a¯01y+a¯20x2+a¯11xy+a¯02y2+a¯21x2y+a¯12xy2+a¯03y3+a¯22x2y2+a¯13xy3+a¯04y4+O(|x,y|4),y˙=b¯00+b¯10x+b¯01y+b¯20x2+O(|x,y|5),\begin{cases}\dot{x}=\bar{a}_{00}+\bar{a}_{10}x+\bar{a}_{01}y+\bar{a}_{20}x^{2}+\bar{a}_{11}xy+\bar{a}_{02}y^{2}+\bar{a}_{21}x^{2}y+\bar{a}_{12}xy^{2}\\ \qquad+\bar{a}_{03}y^{3}+\bar{a}_{22}x^{2}y^{2}+\bar{a}_{13}xy^{3}+\bar{a}_{04}y^{4}+O(|x,y|^{4}),\\ \dot{y}=\bar{b}_{00}+\bar{b}_{10}x+\bar{b}_{01}y+\bar{b}_{20}x^{2}+O(|x,y|^{5}),\end{cases} (11)

where

a¯00\displaystyle\bar{a}_{00} =c2ϵ12,a¯10=c(2(β+ϵ1)β1),a¯01=c(β+ϵ1)β2,a¯20=2(β+ϵ1)β2,\displaystyle=\frac{c^{2}\epsilon_{1}}{2},\quad\bar{a}_{10}=c(\frac{2(\beta+\epsilon_{1})}{\beta}-1),\quad\bar{a}_{01}=-\frac{c(\beta+\epsilon_{1})}{\beta^{2}},\quad\bar{a}_{20}=\frac{2(\beta+\epsilon_{1})}{\beta^{2}},
a¯11\displaystyle\bar{a}_{11} =4(β+ϵ1)β3,a¯02=2(β+ϵ1)β4,a¯21=4(β+ϵ1)cβ4,a¯12=8(β+ϵ1)cβ5,\displaystyle=-\frac{4(\beta+\epsilon_{1})}{\beta^{3}},\quad\bar{a}_{02}=\frac{2(\beta+\epsilon_{1})}{\beta^{4}},\quad\bar{a}_{21}=-\frac{4(\beta+\epsilon_{1})}{c\beta^{4}},\quad\bar{a}_{12}=\frac{8(\beta+\epsilon_{1})}{c\beta^{5}},
a¯03\displaystyle\bar{a}_{03} =4(β+ϵ1)cβ6,a¯22=8(β+ϵ1)c2β6,a¯13=16(β+ϵ1)c2β7,a¯04=8(β+ϵ1)c2β8,\displaystyle=-\frac{4(\beta+\epsilon_{1})}{c\beta^{6}},\quad\bar{a}_{22}=\frac{8(\beta+\epsilon_{1})}{c^{2}\beta^{6}},\quad\bar{a}_{13}=-\frac{16(\beta+\epsilon_{1})}{c^{2}\beta^{7}},\quad\bar{a}_{04}=\frac{8(\beta+\epsilon_{1})}{c^{2}\beta^{8}},
b¯00\displaystyle\bar{b}_{00} =b+ϵ214c2β2cβ2ϵ32,b¯10=cβ,b¯01=dϵ3,b¯20=1.\displaystyle=b+\epsilon_{2}-\frac{1}{4}c^{2}\beta^{2}-\frac{c\beta^{2}\epsilon_{3}}{2},\quad\bar{b}_{10}=c\beta,\quad\bar{b}_{01}=-d-\epsilon_{3},\qquad\bar{b}_{20}=1.

Then we rewrite system (11) with the transformation (x,y)=(x12cβ2x1y1,y1)(x,y)=(x_{1}-\frac{2}{c\beta^{2}}x_{1}y_{1},y_{1}) to

{x˙1=c¯00+c¯10x1+c¯01y1+c¯20x12+c¯11x1y1+O(|x,y|4),y˙1=d¯00+d¯10x1+d¯01y1+d¯20x12+d¯11x1y1+O(|x,y|4),\begin{cases}\dot{x}_{1}=\bar{c}_{00}+\bar{c}_{10}x_{1}+\bar{c}_{01}y_{1}+\bar{c}_{20}x_{1}^{2}+\bar{c}_{11}x_{1}y_{1}+O(|x,y|^{4}),\\ \dot{y}_{1}=\bar{d}_{00}+\bar{d}_{10}x_{1}+\bar{d}_{01}y_{1}+\bar{d}_{20}x_{1}^{2}+\bar{d}_{11}x_{1}y_{1}+O(|x,y|^{4}),\end{cases}

where

c¯00\displaystyle\bar{c}_{00} =c2ϵ12c¯10=2cβ2b¯00+c(2(β+ϵ1)β1),c¯01=cβ,\displaystyle=\frac{c^{2}\epsilon_{1}}{2}\quad\bar{c}_{10}=\frac{2}{c\beta^{2}}\bar{b}_{00}+c(\frac{2(\beta+\epsilon_{1})}{\beta}-1),\quad\bar{c}_{01}=-\frac{c}{\beta},
c¯20\displaystyle\bar{c}_{20} =4β+2ϵ1β2,c¯11=2(c+ϵ3)cβ24(β+ϵ1)β3,d¯00=b¯00,\displaystyle=\frac{4}{\beta}+\frac{2\epsilon_{1}}{\beta^{2}},\quad\bar{c}_{11}=-\frac{2(c+\epsilon_{3})}{c\beta^{2}}-\frac{4(\beta+\epsilon_{1})}{\beta^{3}},\quad\bar{d}_{00}=\bar{b}_{00},
d¯10\displaystyle\bar{d}_{10} =cβ,d¯01=cϵ3,d¯20=1,d¯11=2β.\displaystyle=c\beta,\quad\bar{d}_{01}=-c-\epsilon_{3},\qquad\bar{d}_{20}=1,\quad\bar{d}_{11}=-\frac{2}{\beta}.

Further, we execute the transformation (x2,y2)=(x1,x˙1)(x_{2},y_{2})=(x_{1},\dot{x}_{1}) and get

{x˙2=y2,y˙2=e¯00+e¯10x2+e¯01y2+e¯20x22+e¯11x2y2+e¯02y22+e¯30x23+e¯21x22y2+e¯12x2y22+e¯03y23+e¯40x24+e¯31x23y2+e¯22x22y22+e¯13x2y23+e¯04y24+O(|x,y|4),\begin{cases}\dot{x}_{2}=y_{2},\\ \dot{y}_{2}=\bar{e}_{00}+\bar{e}_{10}x_{2}+\bar{e}_{01}y_{2}+\bar{e}_{20}x_{2}^{2}+\bar{e}_{11}x_{2}y_{2}+\bar{e}_{02}y_{2}^{2}+\bar{e}_{30}x_{2}^{3}+\bar{e}_{21}x_{2}^{2}y_{2}+\bar{e}_{12}x_{2}y_{2}^{2}\\ \qquad+\bar{e}_{03}y_{2}^{3}+\bar{e}_{40}x_{2}^{4}+\bar{e}_{31}x_{2}^{3}y_{2}+\bar{e}_{22}x_{2}^{2}y_{2}^{2}+\bar{e}_{13}x_{2}y_{2}^{3}+\bar{e}_{04}y_{2}^{4}+O(|x,y|^{4}),\end{cases} (12)

where

e¯00\displaystyle\bar{e}_{00} =c¯01d¯00c¯00d¯01,e¯10=c¯11d¯00+c¯01d¯10c¯00d¯11c¯10d¯01,e¯01=c¯10+d¯01c¯00c¯11c¯01,\displaystyle=\bar{c}_{01}\bar{d}_{00}-\bar{c}_{00}\bar{d}_{01},\quad\bar{e}_{10}=\bar{c}_{11}\bar{d}_{00}+\bar{c}_{01}\bar{d}_{10}-\bar{c}_{00}\bar{d}_{11}-\bar{c}_{10}\bar{d}_{01},\quad\bar{e}_{01}=\bar{c}_{10}+\bar{d}_{01}-\frac{\bar{c}_{00}\bar{c}_{11}}{\bar{c}_{01}},
e¯20\displaystyle\bar{e}_{20} =c¯11d¯10+c¯01d¯20c¯10d¯11c¯02d¯01,e¯11=2c¯20c¯10c¯11c¯01+c¯00c¯112c¯012+d¯11,e¯02=c¯11c¯01,\displaystyle=\bar{c}_{11}\bar{d}_{10}+\bar{c}_{01}\bar{d}_{20}-\bar{c}_{10}\bar{d}_{11}-\bar{c}_{02}\bar{d}_{01},\qquad\bar{e}_{11}=2\bar{c}_{20}-\frac{\bar{c}_{10}\bar{c}_{11}}{\bar{c}_{01}}+\frac{\bar{c}_{00}\bar{c}_{11}^{2}}{\bar{c}_{01}^{2}}+\bar{d}_{11},\quad\bar{e}_{02}=\frac{\bar{c}_{11}}{\bar{c}_{01}},
e¯30\displaystyle\bar{e}_{30} =c¯11d¯20c¯02d¯11,e¯21=c¯11c¯02c¯01+c¯112c¯10c¯012c¯00c¯113c¯013,e¯12=c¯112c¯012,e¯03=0,\displaystyle=\bar{c}_{11}\bar{d}_{20}-\bar{c}_{02}\bar{d}_{11},\quad\bar{e}_{21}=-\frac{\bar{c}_{11}\bar{c}_{02}}{\bar{c}_{01}}+\frac{\bar{c}_{11}^{2}\bar{c}_{10}}{\bar{c}_{01}^{2}}-\frac{\bar{c}_{00}\bar{c}_{11}^{3}}{\bar{c}_{01}^{3}},\quad\bar{e}_{12}=-\frac{\bar{c}_{11}^{2}}{\bar{c}_{01}^{2}},\quad\bar{e}_{03}=0,
e¯40\displaystyle\bar{e}_{40} =c¯00c¯114d¯01c¯014,e¯31=c¯112c¯02c¯012c¯10c¯113c¯013+c¯00c¯114c¯014,e¯22=c¯113c¯013,e¯13=0,e¯04=0.\displaystyle=\frac{\bar{c}_{00}\bar{c}_{11}^{4}\bar{d}_{01}}{\bar{c}_{01}^{4}},\quad\bar{e}_{31}=\frac{\bar{c}_{11}^{2}\bar{c}_{02}}{\bar{c}_{01}^{2}}-\frac{\bar{c}_{10}\bar{c}_{11}^{3}}{\bar{c}_{01}^{3}}+\frac{\bar{c}_{00}\bar{c}_{11}^{4}}{\bar{c}_{01}^{4}},\quad\bar{e}_{22}=\frac{\bar{c}_{11}^{3}}{\bar{c}_{01}^{3}},\quad\bar{e}_{13}=0,\quad\bar{e}_{04}=0.

To verify that the Bogdanov-Takens bifurcation occurs at equilibrium point E1E_{1}, we need to get the universal unfolding of system (9). So we need to eliminate y22y_{2}^{2}, x3x^{3}, x2yx^{2}y, xy2xy^{2}, y3y^{3}, and x4x^{4} terms. Next, we transform system (12) by the procedure similar to that in [18].

(A) In order to eliminate the y22y_{2}^{2} term, take the transformation (x2,y2)=(u1+c022u12,v1+c02u1v1)(x_{2},y_{2})=(u_{1}+\frac{c_{02}}{2}u_{1}^{2},v_{1}+c_{02}u_{1}v_{1}), then system (12) takes the following form

{du1dt=v1,dv1dt=f¯00+f¯10u1+f¯01v1+f¯20u12+f¯11u1v1+f¯30u13+f¯21u12v1+f¯12u1v12+f¯40u14+f¯31u13v1+f¯22u12v12+O(|u1,v1|5),\begin{cases}\frac{\mathrm{d}u_{1}}{\mathrm{d}t}=v_{1},\\ \frac{\mathrm{d}v_{1}}{\mathrm{d}t}=\bar{f}_{00}+\bar{f}_{10}u_{1}+\bar{f}_{01}v_{1}+\bar{f}_{20}u_{1}^{2}+\bar{f}_{11}u_{1}v_{1}+\bar{f}_{30}u_{1}^{3}+\bar{f}_{21}u_{1}^{2}v_{1}+\bar{f}_{12}u_{1}v_{1}^{2}\\ \qquad+\bar{f}_{40}u_{1}^{4}+\bar{f}_{31}u_{1}^{3}v_{1}+\bar{f}_{22}u_{1}^{2}v_{1}^{2}+O(|u_{1},v_{1}|^{5}),\end{cases} (13)

where

f¯00\displaystyle\bar{f}_{00} =e¯00,f¯10=e¯10e¯00e¯02,f¯01=e¯01,f¯20=e¯20e¯10e¯022+e¯00e¯022,\displaystyle=\bar{e}_{00},\quad\bar{f}_{10}=\bar{e}_{10}-\bar{e}_{00}\bar{e}_{02},\quad\bar{f}_{01}=\bar{e}_{01},\quad\bar{f}_{20}=\bar{e}_{20}-\frac{\bar{e}_{10}\bar{e}_{02}}{2}+\bar{e}_{00}\bar{e}_{02}^{2},
f¯11\displaystyle\bar{f}_{11} =e¯11,f¯30=e¯30+e¯10e¯0222e¯00e¯023,f¯21=e¯21+e¯11e¯022,\displaystyle=\bar{e}_{11},\quad\bar{f}_{30}=\bar{e}_{30}+\frac{\bar{e}_{10}\bar{e}_{02}^{2}}{2}-\bar{e}_{00}\bar{e}_{02}^{3},\quad\bar{f}_{21}=\bar{e}_{21}+\frac{\bar{e}_{11}\bar{e}_{02}}{2},
f¯40\displaystyle\bar{f}_{40} =e¯20e¯0224e¯10e¯0232+e¯00e¯024+e¯02e¯302,f¯31=e¯31+e¯02e¯21,f¯22=e¯22+3e¯02e¯122e¯023.\displaystyle=\frac{\bar{e}_{20}\bar{e}_{02}^{2}}{4}-\frac{\bar{e}_{10}\bar{e}_{02}^{3}}{2}+\bar{e}_{00}\bar{e}_{02}^{4}+\frac{\bar{e}_{02}\bar{e}_{30}}{2},\quad\bar{f}_{31}=\bar{e}_{31}+\bar{e}_{02}\bar{e}_{21},\quad\bar{f}_{22}=\bar{e}_{22}+\frac{3\bar{e}_{02}\bar{e}_{12}}{2}-\bar{e}_{02}^{3}.

(B) In order to eliminate the u1v12u_{1}v_{1}^{2} term, take the transformation (u1,v1)=(u2+f¯122u23,v2+d126u22v2)(u_{1},v_{1})=(u_{2}+\frac{\bar{f}_{12}}{2}u_{2}^{3},v_{2}+\frac{d_{12}}{6}u_{2}^{2}v_{2}), then (13) is reduced to

{du2dt=v2,dv2dt=g¯00+g¯10u2+g¯01v2+g¯20u22+g¯11u2v2+g¯30u23+g¯21u22v2+g¯40u24+g¯31u23v2+g¯22u22v22+O(|u2,v2|5),\begin{cases}\frac{\mathrm{d}u_{2}}{\mathrm{d}t}=v_{2},\\ \frac{\mathrm{d}v_{2}}{\mathrm{d}t}=\bar{g}_{00}+\bar{g}_{10}u_{2}+\bar{g}_{01}v_{2}+\bar{g}_{20}u_{2}^{2}+\bar{g}_{11}u_{2}v_{2}+\bar{g}_{30}u_{2}^{3}+\bar{g}_{21}u_{2}^{2}v_{2}\\ \qquad+\bar{g}_{40}u_{2}^{4}+\bar{g}_{31}u_{2}^{3}v_{2}+\bar{g}_{22}u_{2}^{2}v_{2}^{2}+O(|u_{2},v_{2}|^{5}),\end{cases} (14)

where

g¯00\displaystyle\bar{g}_{00} =f¯00,g¯10=f¯10,g¯01=f¯01,g¯20=f¯20f¯00f¯122+f¯10f¯126,\displaystyle=\bar{f}_{00},\quad\bar{g}_{10}=\bar{f}_{10},\quad\bar{g}_{01}=\bar{f}_{01},\quad\bar{g}_{20}=\bar{f}_{20}-\frac{\bar{f}_{00}\bar{f}_{12}}{2}+\frac{\bar{f}_{10}\bar{f}_{12}}{6},
g¯11\displaystyle\bar{g}_{11} =f¯11,g¯30=f¯30f¯10f¯122+f¯20f¯123,g¯21=f¯21+f¯11f¯126,\displaystyle=\bar{f}_{11},\quad\bar{g}_{30}=\bar{f}_{30}-\frac{\bar{f}_{10}\bar{f}_{12}}{2}+\frac{\bar{f}_{20}\bar{f}_{12}}{3},\quad\bar{g}_{21}=\bar{f}_{21}+\frac{\bar{f}_{11}\bar{f}_{12}}{6},
g¯40\displaystyle\bar{g}_{40} =f¯40d¯20d¯126+f¯00f¯1224,g¯31=f¯31+f¯11f¯126,g¯22=f¯22.\displaystyle=\bar{f}_{40}-\frac{\bar{d}_{20}\bar{d}_{12}}{6}+\frac{\bar{f}_{00}\bar{f}_{12}^{2}}{4},\quad\bar{g}_{31}=\bar{f}_{31}+\frac{\bar{f}_{11}\bar{f}_{12}}{6},\quad\bar{g}_{22}=\bar{f}_{22}.

(C) Notice that g¯20=2bcβ39c2β+O(ϵ)0\bar{g}_{20}=-\frac{2b}{c\beta^{3}}-\frac{9c}{2\beta}+O(\epsilon)\neq 0. To removing the u23u_{2}^{3} and u24u_{2}^{4} terms, we transform system (14) with (u2,v2)=(u3g¯304g¯20u32+15g¯30216g¯20g¯4080g¯202u33,v3)(u_{2},v_{2})=(u_{3}-\frac{\bar{g}_{30}}{4\bar{g}_{20}}u_{3}^{2}+\frac{15\bar{g}_{30}^{2}-16\bar{g}_{20}\bar{g}_{40}}{80\bar{g}_{20}^{2}}u_{3}^{3},v_{3}) and scaling transformation dτ=(1+g¯302g¯20u3+48g¯20g¯4025g¯30280g¯20u32+48g¯20g¯30g¯4035g¯30380g¯203u33)dt\mathrm{d}\tau=(1+\frac{\bar{g}_{30}}{2\bar{g}_{20}}u_{3}+\frac{48\bar{g}_{20}\bar{g}_{40}-25\bar{g}_{30}^{2}}{80\bar{g}_{20}}u_{3}^{2}+\frac{48\bar{g}_{20}\bar{g}_{30}\bar{g}_{40}-35\bar{g}_{30}^{3}}{80\bar{g}_{20}^{3}}u_{3}^{3})\mathrm{d}t to obtain the following system

{du3dτ=v3,dv3dτ=i¯00+i¯10u3+i¯01v3+i¯20u32+i¯11u3v2+i¯21u32v3+i¯12u3v32+i¯40u34+i¯31u33v3+i¯22u32v32+R(u3,v3,ϵ),\begin{cases}\frac{\mathrm{d}u_{3}}{\mathrm{d}\tau}=v_{3},\\ \frac{\mathrm{d}v_{3}}{\mathrm{d}\tau}=\bar{i}_{00}+\bar{i}_{10}u_{3}+\bar{i}_{01}v_{3}+\bar{i}_{20}u_{3}^{2}+\bar{i}_{11}u_{3}v_{2}+\bar{i}_{21}u_{3}^{2}v_{3}+\bar{i}_{12}u_{3}v_{3}^{2}\\ \qquad+\bar{i}_{40}u_{3}^{4}+\bar{i}_{31}u_{3}^{3}v_{3}+\bar{i}_{22}u_{3}^{2}v_{3}^{2}+R(u_{3},v_{3},\epsilon),\end{cases} (15)

where

i¯00\displaystyle\bar{i}_{00} =g¯00,i¯10=g¯10g¯00g¯302g¯20,i¯01=g¯01,\displaystyle=\bar{g}_{00},\quad\bar{i}_{10}=\bar{g}_{10}-\frac{\bar{g}_{00}\bar{g}_{30}}{2\bar{g}_{20}},\quad\bar{i}_{01}=\bar{g}_{01},
i¯20\displaystyle\bar{i}_{20} =g¯20+45g¯00g¯30260g¯10g¯20g¯3048g¯00g¯20g¯4080g¯202,\displaystyle=\bar{g}_{20}+\frac{45\bar{g}_{00}\bar{g}_{30}^{2}-60\bar{g}_{10}\bar{g}_{20}\bar{g}_{30}-48\bar{g}_{00}\bar{g}_{20}\bar{g}_{40}}{80\bar{g}_{20}^{2}},
i¯11\displaystyle\bar{i}_{11} =g¯11g¯01g¯302g¯20,i¯30=g¯10(35g¯30232g¯20g¯40)4g¯202,\displaystyle=\bar{g}_{11}-\frac{\bar{g}_{01}\bar{g}_{30}}{2\bar{g}_{20}},\quad\bar{i}_{30}=\frac{\bar{g}_{10}(35\bar{g}_{30}^{2}-32\bar{g}_{20}\bar{g}_{40})}{4\bar{g}_{20}^{2}},
i¯21\displaystyle\bar{i}_{21} =g¯2160g¯11g¯20g¯3045g¯01g¯302+48g¯01g¯20g¯4080g¯202,\displaystyle=\bar{g}_{21}-\frac{60\bar{g}_{11}\bar{g}_{20}\bar{g}_{30}-45\bar{g}_{01}\bar{g}_{30}^{2}+48\bar{g}_{01}\bar{g}_{20}\bar{g}_{40}}{80\bar{g}_{20}^{2}},
i¯40\displaystyle\bar{i}_{40} =g10g30g404g20215g10g30364g203,i¯31=g¯31+7g¯11g¯3028g¯2025g¯30g¯21+4g¯11g¯405g¯20,\displaystyle=\frac{g10g30g40}{4g20^{2}}-\frac{15g10g30^{3}}{64g20^{3}},\quad\bar{i}_{31}=\bar{g}_{31}+\frac{7\bar{g}_{11}\bar{g}_{30}^{2}}{8\bar{g}_{20}^{2}}-\frac{5\bar{g}_{30}\bar{g}_{21}+4\bar{g}_{11}\bar{g}_{40}}{5\bar{g}_{20}},
R(u3,v3,ϵ)\displaystyle R(u_{3},v_{3},\epsilon) =v32O(|u3,v3|2)+O(|u3,v3|5)+O(ϵ)(O(v32)+O(|u3,v3|3))+O(ϵ2)O(|u3,v3|).\displaystyle=v_{3}^{2}O(|u_{3},v_{3}|^{2})+O(|u_{3},v_{3}|^{5})+O(\epsilon)(O(v_{3}^{2})+O(|u_{3},v_{3}|^{3}))+O(\epsilon^{2})O(|u_{3},v_{3}|).

(D) Since

i¯20\displaystyle\bar{i}_{20} =\displaystyle= 9c2β2bcβ3+2527200c3β4(c3β4cbβ)2+62104320b2cβ7(c3β4cbβ)2\displaystyle-\frac{9c}{2\beta}-\frac{2b}{c\beta^{3}}+\frac{2527200c^{3}}{\beta^{4}(\frac{c^{3}\beta}{4}-\frac{cb}{\beta})^{2}}+\frac{62104320b^{2}}{c\beta^{7}(\frac{c^{3}\beta}{4}-\frac{cb}{\beta})^{2}}
23034240cbβ5(c3β4cbβ)2416102406b3c3β9(c3β4cbβ)2+O(ϵ)0,\displaystyle-\frac{23034240cb}{\beta^{5}(\frac{c^{3}\beta}{4}-\frac{cb}{\beta})^{2}}-\frac{416102406b^{3}}{c^{3}\beta^{9}(\frac{c^{3}\beta}{4}-\frac{cb}{\beta})^{2}}+O(\epsilon)\neq 0,

by the transformation

(u3,v3)=(u4,v4+i¯213i¯20v42+i¯21236i¯202v43),dt=(1+i¯213i¯20v4+i¯21236i¯202v42)dτ,(u_{3},v_{3})=(u_{4},v_{4}+\frac{\bar{i}_{21}}{3\bar{i}_{20}}v_{4}^{2}+\frac{\bar{i}_{21}^{2}}{36\bar{i}_{20}^{2}}v_{4}^{3}),\mathrm{d}t=(1+\frac{\bar{i}_{21}}{3\bar{i}_{20}}v_{4}+\frac{\bar{i}_{21}^{2}}{36\bar{i}_{20}^{2}}v_{4}^{2})\mathrm{d}\tau,

we can obtain the following form

{du4dτ=v4,dv4dτ=j¯00+j¯10u4+j¯01v4+j¯20u42+j¯11u4v4+j¯31u43v4+R(u4,v4,ϵ),\begin{cases}\frac{\mathrm{d}u_{4}}{\mathrm{d}\tau}=v_{4},\\ \frac{\mathrm{d}v_{4}}{\mathrm{d}\tau}=\bar{j}_{00}+\bar{j}_{10}u_{4}+\bar{j}_{01}v_{4}+\bar{j}_{20}u_{4}^{2}+\bar{j}_{11}u_{4}v_{4}+\bar{j}_{31}u_{4}^{3}v_{4}+R(u_{4},v_{4},\epsilon),\end{cases} (16)

where

j¯00\displaystyle\bar{j}_{00} =i¯00,j¯10=i¯10,j¯01=i¯01i¯00i¯21i¯20,\displaystyle=\bar{i}_{00},\quad\bar{j}_{10}=\bar{i}_{10},\quad\bar{j}_{01}=\bar{i}_{01}-\frac{\bar{i}_{00}\bar{i}_{21}}{\bar{i}_{20}},
j¯20\displaystyle\bar{j}_{20} =i¯20,j¯11=i¯11i¯10i¯21i¯20,j¯31=i¯31i¯21i¯30i¯20.\displaystyle=\bar{i}_{20},\quad\bar{j}_{11}=\bar{i}_{11}-\frac{\bar{i}_{10}\bar{i}_{21}}{\bar{i}_{20}},\quad\bar{j}_{31}=\bar{i}_{31}-\frac{\bar{i}_{21}\bar{i}_{30}}{\bar{i}_{20}}.

Additionally, R(u4,v4,ϵ)R(u_{4},v_{4},\epsilon) has the same properties as R(u3,v3,ϵ)R(u_{3},v_{3},\epsilon).

(E) We have j¯20\bar{j}_{20} and j¯31\bar{j}_{31} with the help of MAPLE

j¯20=2bcβ39c2β+2527200c2β3(βc34cbβ)2+62104320b2cβ7(βc34cbβ)223034240cbβ5(βc34cbβ)241610240b3c3β9(βc34cbβ)2+O(ϵ)0,j¯31=151200b3β11c6(2bβ3c+9βc2)2+128520b2β9c4(2bβ3c+9βc2)2+71136b25β8c5(2bβ3c+9c2β)(57816b35β10c5(2bβ3c+9βc2)2109278b25β8c3(2bβ3c+9βc2)2+36bβ4c3+44361b5β6c(2bβ3c+9βc2)24131c4β4(2bβ3c+9βc2)2+27β2c)(218976b3β10c4(2bβ3c+9βc2)2273048b2β8c2(2bβ3c+9βc2)2+93456bβ6(2bβ3c+9βc2)29720c2β4(2bβ3c+9βc2)2)(32508b35β9c3(βc34bcβ)2+48519b25β7c(βc34bcβ)2+32508b5β8(βc34bcβ)335991bc5β5(βc34bcβ)2+3159c38β3(βc34bcβ)22bβ3c9c2β)72bβ5c436288bβ7c2(2bβ3c+9βc2)213464b5β6c3(2bβ3c+9c2β)+3402β5(2bβ3c+9βc2)2432β4c(2bβ3c+9c2β)+18β3c2+O(ϵ)0.\begin{split}\bar{j}_{20}&=-\frac{2b}{c\beta^{3}}-\frac{9c}{2\beta}+\frac{2527200c^{2}}{\beta^{3}(\frac{\beta c^{3}}{4}-\frac{cb}{\beta})^{2}}+\frac{62104320b^{2}}{c\beta^{7}(\frac{\beta c^{3}}{4}-\frac{cb}{\beta})^{2}}-\frac{23034240cb}{\beta^{5}(\frac{\beta c^{3}}{4}-\frac{cb}{\beta})^{2}}-\frac{41610240b^{3}}{c^{3}\beta^{9}(\frac{\beta c^{3}}{4}-\frac{cb}{\beta})^{2}}+O(\epsilon)\\ &\neq 0,\\ \bar{j}_{31}&=-\frac{151200b^{3}}{{\beta}^{11}c^{6}\left(\frac{2b{\beta}^{3}}{c}+\frac{9{\beta}c}{2}\right)^{2}}+\frac{128520b^{2}}{{\beta}^{9}c^{4}\left(\frac{2b{\beta}^{3}}{c}+\frac{9{\beta}c}{2}\right)^{2}}+\frac{71136b^{2}}{5{\beta}^{8}c^{5}\left(\frac{2b}{{\beta}^{3}c}+\frac{9c}{2{\beta}}\right)}-(\frac{57816b^{3}}{5{\beta}^{10}c^{5}\left(\frac{2b{\beta}^{3}}{c}+\frac{9{\beta}c}{2}\right)^{2}}\\ &-\frac{109278b^{2}}{5{\beta}^{8}c^{3}\left(\frac{2b{\beta}^{3}}{c}+\frac{9{\beta}c}{2}\right)^{2}}+\frac{36b}{{\beta}^{4}c^{3}}+\frac{44361b}{5{\beta}^{6}c\left(\frac{2b{\beta}^{3}}{c}+\frac{9{\beta}c}{2}\right)^{2}}-\frac{4131c}{4{\beta}^{4}\left(\frac{2b{\beta}^{3}}{c}+\frac{9{\beta}c}{2}\right)^{2}}+\frac{27}{{\beta}^{2}c})\\ &\left(\frac{218976b^{3}}{{\beta}^{10}c^{4}\left(\frac{2b{\beta}^{3}}{c}+\frac{9{\beta}c}{2}\right)^{2}}-\frac{273048b^{2}}{{\beta}^{8}c^{2}\left(\frac{2b{\beta}^{3}}{c}+\frac{9{\beta}c}{2}\right)^{2}}+\frac{93456b}{{\beta}^{6}\left(\frac{2b{\beta}^{3}}{c}+\frac{9{\beta}c}{2}\right)^{2}}-\frac{9720c^{2}}{{\beta}^{4}\left(\frac{2b{\beta}^{3}}{c}+\frac{9{\beta}c}{2}\right)^{2}}\right)\\ &(-\frac{32508b^{3}}{5{\beta}^{9}c^{3}\left(\frac{{\beta}c^{3}}{4}-\frac{bc}{{\beta}}\right)^{2}}+\frac{48519b^{2}}{5{\beta}^{7}c\left(\frac{{\beta}c^{3}}{4}-\frac{bc}{{\beta}}\right)^{2}}+\frac{32508b}{5{\beta}^{8}\left(\frac{{\beta}c^{3}}{4}-\frac{bc}{{\beta}}\right)^{3}}-\frac{35991bc}{5{\beta}^{5}\left(\frac{{\beta}c^{3}}{4}-\frac{bc}{{\beta}}\right)^{2}}\\ &+\frac{3159c^{3}}{8{\beta}^{3}\left(\frac{{\beta}c^{3}}{4}-\frac{bc}{{\beta}}\right)^{2}}-\frac{2b}{{\beta}^{3}c}-\frac{9c}{2{\beta}})-\frac{72b}{{\beta}^{5}c^{4}}-\frac{36288b}{{\beta}^{7}c^{2}\left(\frac{2b{\beta}^{3}}{c}+\frac{9{\beta}c}{2}\right)^{2}}-\frac{13464b}{5{\beta}^{6}c^{3}\left(\frac{2b}{{\beta}^{3}c}+\frac{9c}{2{\beta}}\right)}\\ &+\frac{3402}{{\beta}^{5}\left(\frac{2b{\beta}^{3}}{c}+\frac{9{\beta}c}{2}\right)^{2}}-\frac{432}{{\beta}^{4}c\left(\frac{2b}{{\beta}^{3}c}+\frac{9c}{2{\beta}}\right)}+\frac{18}{{\beta}^{3}c^{2}}+O(\epsilon)\neq 0.\end{split}

Now, we want to turn j¯20\bar{j}_{20} and j¯31\bar{j}_{31} into 11 and notice that the signs of the coefficients of u52u_{5}^{2} and u53v5u_{5}^{3}v_{5} change as the signs of j¯20\bar{j}_{20} and j¯31\bar{j}_{31}. The details are as follows.

(i) If j¯20>0,j¯31>0\bar{j}_{20}>0,\bar{j}_{31}>0, then system (16) becomes the following form with the transformation (u4,v4)=(j¯2015j¯3125u5,j¯2045j¯3135v5)(u_{4},v_{4})=(\bar{j}_{20}^{\frac{1}{5}}\bar{j}_{31}^{-\frac{2}{5}}u_{5},\bar{j}_{20}^{\frac{4}{5}}\bar{j}_{31}^{-\frac{3}{5}}v_{5}) and τ=j¯2035j¯3115t\tau=\bar{j}_{20}^{-\frac{3}{5}}\bar{j}_{31}^{\frac{1}{5}}t.

{u5˙=v5,v5˙=k¯00+k¯10u5+k¯01v5+u52+k¯11u5v5+u53v5+R(u5,v5,ϵ),\begin{cases}\dot{u_{5}}=v_{5},\\ \dot{v_{5}}=\bar{k}_{00}+\bar{k}_{10}u_{5}+\bar{k}_{01}v_{5}+u_{5}^{2}+\bar{k}_{11}u_{5}v_{5}+u_{5}^{3}v_{5}+R(u_{5},v_{5},\epsilon),\end{cases}

where

k¯00=j¯00j2075j¯3145,¯k¯10=j¯10j¯2065j¯3125,k¯01=j¯01j¯2035j¯3115,k¯11=j¯11j¯2025j¯3115.\displaystyle\bar{k}_{00}=\bar{j}_{00}{j}_{20}^{-\frac{7}{5}}\bar{j}_{31}^{\frac{4}{5}}\bar{,}\quad\bar{k}_{10}=\bar{j}_{10}\bar{j}_{20}^{-\frac{6}{5}}\bar{j}_{31}^{\frac{2}{5}},\quad\bar{k}_{01}=\bar{j}_{01}\bar{j}_{20}^{-\frac{3}{5}}\bar{j}_{31}^{\frac{1}{5}},\quad\bar{k}_{11}=\bar{j}_{11}\bar{j}_{20}^{-\frac{2}{5}}\bar{j}_{31}^{-\frac{1}{5}}.

Additionally, R(u5,v5,ϵ)R(u_{5},v_{5},\epsilon) has the same properties as R(u3,v3,ϵ)R(u_{3},v_{3},\epsilon).

(ii) If j¯20<0,j¯31>0\bar{j}_{20}<0,\bar{j}_{31}>0 or j¯20>0,j¯31<0\bar{j}_{20}>0,\bar{j}_{31}<0, then system (16) becomes the following form with the transformation (u4,v4)=(j¯2015j¯3125u5,j¯2045j¯3135v5)(u_{4},v_{4})=(\bar{j}_{20}^{\frac{1}{5}}\bar{j}_{31}^{-\frac{2}{5}}u_{5},-\bar{j}_{20}^{\frac{4}{5}}\bar{j}_{31}^{-\frac{3}{5}}v_{5}) and τ=j¯2035j¯3115t\tau=-\bar{j}_{20}^{-\frac{3}{5}}\bar{j}_{31}^{\frac{1}{5}}t.

{u5˙=v5,v5˙=k¯00+k¯10u5+k¯01v5+u52+k¯11u5v5u53v5+R(u5,v5,ϵ),\begin{cases}\dot{u_{5}}=v_{5},\\ \dot{v_{5}}=\bar{k}_{00}+\bar{k}_{10}u_{5}+\bar{k}_{01}v_{5}+u_{5}^{2}+\bar{k}_{11}u_{5}v_{5}-u_{5}^{3}v_{5}+R(u_{5},v_{5},\epsilon),\end{cases}

where

k¯00=j¯00j2075j¯3145,¯k¯10=j¯10j¯2065j¯3125,k¯01=j¯01j¯2035j¯3115,k¯11=j¯11j¯2025j¯3115.\displaystyle\bar{k}_{00}=\bar{j}_{00}{j}_{20}^{-\frac{7}{5}}\bar{j}_{31}^{\frac{4}{5}}\bar{,}\quad\bar{k}_{10}=\bar{j}_{10}\bar{j}_{20}^{-\frac{6}{5}}\bar{j}_{31}^{\frac{2}{5}},\quad\bar{k}_{01}=-\bar{j}_{01}\bar{j}_{20}^{-\frac{3}{5}}\bar{j}_{31}^{\frac{1}{5}},\quad\bar{k}_{11}=-\bar{j}_{11}\bar{j}_{20}^{-\frac{2}{5}}\bar{j}_{31}^{-\frac{1}{5}}.

(iii) If j¯20<0,j¯31<0\bar{j}_{20}<0,\bar{j}_{31}<0, then system (16) becomes the following form with the transformation (u4,v4)=(j¯2015j¯3125u5,j¯2045j¯3135v5)(u_{4},v_{4})=(-\bar{j}_{20}^{\frac{1}{5}}\bar{j}_{31}^{-\frac{2}{5}}u_{5},-\bar{j}_{20}^{\frac{4}{5}}\bar{j}_{31}^{-\frac{3}{5}}v_{5}) and τ=j¯2035j¯3115t\tau=\bar{j}_{20}^{-\frac{3}{5}}\bar{j}_{31}^{\frac{1}{5}}t.

{u5˙=v5,v5˙=k¯00+k¯10u5+k¯01v5u52+k¯11u5v5u53v5+R(u5,v5,ϵ),\begin{cases}\dot{u_{5}}=v_{5},\\ \dot{v_{5}}=\bar{k}_{00}+\bar{k}_{10}u_{5}+\bar{k}_{01}v_{5}-u_{5}^{2}+\bar{k}_{11}u_{5}v_{5}-u_{5}^{3}v_{5}+R(u_{5},v_{5},\epsilon),\end{cases}

where

k¯00=j¯00j2075j¯3145,¯k¯10=j¯10j¯2065j¯3125,k¯01=j¯01j¯2035j¯3115,k¯11=j¯11j¯2025j¯3115.\displaystyle\bar{k}_{00}=-\bar{j}_{00}{j}_{20}^{-\frac{7}{5}}\bar{j}_{31}^{\frac{4}{5}}\bar{,}\quad\bar{k}_{10}=\bar{j}_{10}\bar{j}_{20}^{-\frac{6}{5}}\bar{j}_{31}^{\frac{2}{5}},\quad\bar{k}_{01}=\bar{j}_{01}\bar{j}_{20}^{-\frac{3}{5}}\bar{j}_{31}^{\frac{1}{5}},\quad\bar{k}_{11}=-\bar{j}_{11}\bar{j}_{20}^{-\frac{2}{5}}\bar{j}_{31}^{-\frac{1}{5}}.

(F) Finally, we get the universal unfolding with the transformation (u6,v6)=(u5k¯102,v5)(u_{6},v_{6})=(u_{5}-\frac{\bar{k}_{10}}{2},v_{5})

{u6˙=v6,v6˙=l¯1+l¯2v6+l¯3u6v6+l¯4u62+l¯5u63v6+R(u6,v6,ϵ),\begin{cases}\dot{u_{6}}=v_{6},\\ \dot{v_{6}}=\bar{l}_{1}+\bar{l}_{2}v_{6}+\bar{l}_{3}u_{6}v_{6}+\bar{l}_{4}u_{6}^{2}+\bar{l}_{5}u_{6}^{3}v_{6}+R(u_{6},v_{6},\epsilon),\end{cases} (17)

where R(u6,v6,ϵ)R(u_{6},v_{6},\epsilon) has the same properties as R(u3,v3,ϵ)R(u_{3},v_{3},\epsilon). There are three results corresponding to the three situations in (E).

(i) If j¯20>0,j¯31>0\bar{j}_{20}>0,\bar{j}_{31}>0, then the cofficients of system (17) are

l¯1\displaystyle\bar{l}_{1} =k¯0014k¯102,\displaystyle=\bar{k}_{00}-\frac{1}{4}\bar{k}_{10}^{2}, l¯2\displaystyle\bar{l}_{2} =k¯0118k¯10312k¯10k¯11,\displaystyle=\bar{k}_{01}-\frac{1}{8}\bar{k}_{10}^{3}-\frac{1}{2}\bar{k}_{10}\bar{k}_{11}, l¯3\displaystyle\bar{l}_{3} =k¯11+34k¯102,\displaystyle=\bar{k}_{11}+\frac{3}{4}\bar{k}_{10}^{2}, l¯4\displaystyle\bar{l}_{4} =1,\displaystyle=1, l¯5=1.\displaystyle\bar{l}_{5}=1.

(ii) If j¯20<0,j¯31>0\bar{j}_{20}<0,\bar{j}_{31}>0 or j¯20>0,j¯31<0\bar{j}_{20}>0,\bar{j}_{31}<0, then the cofficients of system (17) are

l¯1\displaystyle\bar{l}_{1} =k¯0014k¯102,\displaystyle=\bar{k}_{00}-\frac{1}{4}\bar{k}_{10}^{2}, l¯2\displaystyle\bar{l}_{2} =k¯01+18k¯10312k¯10k¯11,\displaystyle=\bar{k}_{01}+\frac{1}{8}\bar{k}_{10}^{3}-\frac{1}{2}\bar{k}_{10}\bar{k}_{11}, l¯3\displaystyle\bar{l}_{3} =k¯1134k¯102,\displaystyle=\bar{k}_{11}-\frac{3}{4}\bar{k}_{10}^{2}, l¯4\displaystyle\bar{l}_{4} =1,\displaystyle=1, l¯5\displaystyle\bar{l}_{5} =1.\displaystyle=-1.

(iii) If j¯20<0,j¯31<0\bar{j}_{20}<0,\bar{j}_{31}<0, then the cofficients of system (17) are

l¯1\displaystyle\bar{l}_{1} =k¯00+14k¯102,\displaystyle=\bar{k}_{00}+\frac{1}{4}\bar{k}_{10}^{2}, l¯2\displaystyle\bar{l}_{2} =k¯0118k¯103+12k¯10k¯11,\displaystyle=\bar{k}_{01}-\frac{1}{8}\bar{k}_{10}^{3}+\frac{1}{2}\bar{k}_{10}\bar{k}_{11}, l¯3\displaystyle\bar{l}_{3} =k¯1134k¯102,\displaystyle=\bar{k}_{11}-\frac{3}{4}\bar{k}_{10}^{2}, l¯4\displaystyle\bar{l}_{4} =1,\displaystyle=-1, l¯5\displaystyle\bar{l}_{5} =1.\displaystyle=-1.

Then with the help of the MATLAB, we can obtain

|(l¯1,l¯2,l¯3)(ϵ1,ϵ2,ϵ3)|ϵ1=ϵ2=ϵ3=00\left|\frac{\partial(\bar{l}_{1},\bar{l}_{2},\bar{l}_{3})}{\partial(\epsilon_{1},\epsilon_{2},\epsilon_{3})}\right|_{\epsilon_{1}=\epsilon_{2}=\epsilon_{3}=0}\neq 0

for all three possible situations in (F). Therefore, according to the theory in [19, 20], system (2) undergoes the Bogdanov-Takens bifurcation of codimension 33 in a small neighborhood of E1E_{1}. ∎

The bifurcation diagram for system (17) can be described as follows. If l1<0l_{1}<0, there are no equilibria; if l1=0l_{1}=0, then there is a saddle-node bifurcation plane in a small neighborhood of the origin (0,0)(0,0); if l1>0l_{1}>0, then the system has two equilibria, a saddle and an anti-saddle. The remaining surfaces of the bifurcation diagram in 3\mathbb{R}^{3} have a conical structure, emanating from (l1,l2,l3)=(0,0,0)(l_{1},l_{2},l_{3})=(0,0,0), which can be demonstrated by drawing its intersection with the half sphere

S={(l1,l2,l3)|l12+l22+l32=ρ2,l10,ρ>0sufficiently small}.S=\left\{(l_{1},l_{2},l_{3})|l_{1}^{2}+l_{2}^{2}+l_{3}^{2}=\rho^{2},l_{1}\geq 0,\rho>0\ \text{sufficiently small}\right\}.

Now we project the traces onto the l2l3l_{2}l_{3}-plane for clear visualization.

Refer to caption
Figure 1: Bifurcation diagram of system (17) on SS.

Here we summarize the bifurcation in system (17) based on the above discussion. Figure 1 contains the Hopf bifurcation curve, the homoclinic bifurcation curve and the saddle-node bifurcation curve, which are represented by H,CH,C, and S\partial S, respectively, where S\partial S is the boundary of SS. The curves HH and CC have the first order contact with the boundary of SS at the points b1b_{1} and b2b_{2}. The curve LL is tangent to the curve CC at point c2c_{2} and tangent to the curve HH at point h2h_{2}, which is the saddle-node bifurcation curve of double limit cycles. The system (17) is a cusp singularity unfolding of codimension 2 around b1b_{1} and b2b_{2}.

Along the HH, when crossing the arc b1h2b_{1}h_{2} of HH from right to left, the curve HH is a subercritical Hopf bifurcation with an unstable cycle curve of codimension one. And the curve HH is a supercritical Hopf bifurcation with a stable cycle curve of codimension one when crossing the arc h2b2h_{2}b_{2} of HH from left to right. The Hopf bifurcation of codimension 2 occurs at point h2h_{2}.

A homoclinic bifurcation of codimension 1 occurs along the curve CC. When crossing the arc b1c2b_{1}c_{2} of CC from left to right, the two parts of the saddle point coincide and an unstable limit cycle appears. And the two parts of the saddle point coincide and a stable limit cycle appears when crossing the arc c2b2c_{2}b_{2} of CC from right to left. A homoclinic bifurcation of codimension 2 occurs at point c2c_{2}.

Then we give some numerical simulations about the system. In Figure 2, note that E0E_{0} is a stable node when c=0.1,β=0.12,b=0.08,d=0.08c=0.1,\beta=0.12,b=0.08,d=0.08. In Figure 3, there is a boundary equilibrium point E0E_{0} and a positive equilibrium point E1E_{1}. As d=0.4d=0.4, E1E_{1} is a cusp when c=0.4,β=0.5477,b=0.012c=0.4,\beta=0.5477,b=0.012; E1E_{1} is a saddle-node with the stable parabolic sector when c=0.3,β=0.5,b=0.01c=0.3,\beta=0.5,b=0.01; E1E_{1} is a saddle-node with the unstable parabolic sector when c=0.45,β=0.5,b=0.01c=0.45,\beta=0.5,b=0.01. There is a positive equilibrium E2E_{2} in Figure 4. Choose β=0.6,b=0.0125\beta=0.6,b=0.0125, E2E_{2} is a center when c=0.4,d=0.4c=0.4,d=0.4; E2E_{2} is a source when c=0.45,d=0.38c=0.45,d=0.38; E2E_{2} is a sink when c=0.3,d=0.5c=0.3,d=0.5. E3E_{3} is a saddle point when c=0.3,β=0.5,b=0.0075,d=0.4c=0.3,\beta=0.5,b=0.0075,d=0.4, which is shown in Figure 5.

Refer to caption
Figure 2: E0E_{0} is a stable node when c=0.1,β=0.12,b=0.08,d=0.08c=0.1,\beta=0.12,b=0.08,d=0.08.
Refer to caption
Refer to caption
Refer to caption
Figure 3: The stability of E1E_{1} (a) E1E_{1} is a cusp when c=0.4,β=0.5477,b=0.012,d=0.4c=0.4,\beta=0.5477,b=0.012,d=0.4 (b) E1E_{1} is a saddle-node with stable parabolic sector when c=0.3,β=0.5,b=0.01,d=0.4c=0.3,\beta=0.5,b=0.01,d=0.4. (c) E1E_{1} is a saddle-node with unstable parabolic sector when c=0.45,β=0.5,b=0.01,d=0.4c=0.45,\beta=0.5,b=0.01,d=0.4.
Refer to caption
Refer to caption
Refer to caption
Figure 4: The stability of the E2E_{2} (a) E2E_{2} is a center when c=0.4,β=0.6,b=0.0125,d=0.4.c=0.4,\beta=0.6,b=0.0125,d=0.4. (b) E2E_{2} is a source when c=0.45,β=0.6,b=0.0125,d=0.38c=0.45,\beta=0.6,b=0.0125,d=0.38. (b) E2E_{2} is a sink when c=0.3,β=0.6,b=0.0125,d=0.5c=0.3,\beta=0.6,b=0.0125,d=0.5.
Refer to caption
Figure 5: E3E_{3} is a saddle point when c=0.3,β=0.5,b=0.0075,d=0.4c=0.3,\beta=0.5,b=0.0075,d=0.4.

4 Conclusion

Bifurcation analysis of the Gierer-Meinhardt model is carried out. Besides the saddle-node bifurcation and the Hopf bifurcation, it is found that the degenerate Bogdanov-Takens bifurcation of codimension-3 appears in the model. That was not reported in the previous results. By a series of transformation and based on the bifurcation theory, including the Sotomayor’s theorem and the normal form method, the detailed bifurcation results are presented and more interesting dynamics are revealed. Theoretical findings are verified in numerical simulation. More further dynamics could be explored for the model.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 11971032, 62073114).

Conflict of Interest

The authors declare that there are no conflicts of interest.

Data availability statement

All data generated or analysed during this study are included in this published article or available upon request.

References

  • [1] A.M. Turing, The Chemical basis of morphogenesis, Phil. Trans. Royal Soc. Lond. B 237(641) (1952) 1934-1990.
  • [2] Gierer A, Meinhardt H, A theory of biological pattern formation, Kybernetik 12 (1972) 30-39.
  • [3] Y. Song, R. Yang, G. Sun, Pattern dynamics in a Gierer-Meinhardt model with a saturating term, Appl. Math. Model. 46 (2017) 476-491.
  • [4] R. Wu, Y. Zhou, Y. Shao, L. Chen, Bifurcation and Turing patterns of reaction-diffusion activator-inhibitor model, Physica A 482 (2017) 597-610.
  • [5] R. Yang, X. Yu, Turing-Hopf Bifurcation in Diffusive Gierer-Meinhardt Model, Int. J. Bifurc. Chaos 32(04) (2022) 2250046.
  • [6] R. Asheghi, Hopf Bifurcation Analysis in a Gierer-Meinhardt Activator-Inhibitor Model, Int. J. Bifurc. Chaos 32(09) (2022) 2250132.
  • [7] R. Yang, Y. Song, Spatial resonance and Turing-Hopf bifurcations in the Gierer-Meinhardt model, Nonlinear Anal: Real World Appl. 31 (2016) 356-387.
  • [8] S. Zhao, H. Wang, Turing-Turing bifurcation and multi-stable patterns in a Gierer-Meinhardt system, Appl. Math. Model. 112 (2022) 632-648.
  • [9] F. Saadi, A. Champneys, Unified framework for localized patterns in reaction-diffusion systems, the Gray-Scott and Gierer-Meinhardt cases, Phil. Trans. R. Soc. A 379(2213) (2021) 20200277.
  • [10] R.M. Etoua, C. Rousseau, Bifurcation analysis of a generalized Gause model with prey harvesting and a generalized Holling response function of type III, J. Differ. Equ. 249(9) (2010) 2316-2356.
  • [11] Z. Shang, Y. Qiao, Multiple bifurcations in a predator-prey system of modified Holling and Leslie type with double Allee effect and nonlinear harvesting, Math. Comput. Simulat. 205 (2023) 745-764.
  • [12] A. Arsie, C. Kottegoda, C. Shan, A predator-prey system with generalized Holling type IV functional response and Allee effects in prey, J. Differ. Equ. 309 (2022) 704-740.
  • [13] J. Huang, X. Xia, X. Zhang, S. Ruan, Bifurcation of codimension 3 in a predator-prey system of Leslie type with simplified Holling type IV functional response, Int. J. Bifurc. Chaos 26(02) (2016) 1650034.
  • [14] J. Su, M. Lu, J. Huang, Bifurcations in a Dynamical Model of the Innate Immune System Response to Initial Pulmonary Infection, Qual. Theor. Dyn. Syst. 21(2) (2022) 41.
  • [15] Y. Lamontagne, C. Coutu, C. Rousseau, Bifurcation analysis of a predator-prey system with generalised Holling type III functional response, J. Dyn. Differ. Equ. 20(3) (2008) 535-571.
  • [16] Z. Zhang, T. Ding, W. Huang, Z. Dong, Qualitative Theory of Differential Equations, Amer. Math. Soc., Providence, 2006.
  • [17] L. Perko, Differential Equations and Dynamical Systems, 3rd ed., Springer, New York, 2001.
  • [18] C. Li, J. Li, Z. Ma, Codimension 3 B-T bifurcations in an epidemic model with a nonlinear incidence, Discrete Contin. Dyn. Syst. Ser. B 20(4) (2015) 1107-1116.
  • [19] S. Wiggins, M. Golubitsky, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York (2003).
  • [20] F. Dumortier, R. Roussarie, J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3, Ergod. Theor. Dyn. Syst. 7(3) (1987) 375-413.