This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

𝚲𝒃𝚲𝒄(𝟐𝟓𝟗𝟓,𝟐𝟔𝟐𝟓)𝝂¯\bm{\Lambda_{b}\to\Lambda_{c}^{*}(2595,2625)\ell^{-}\bar{\nu}} form factors from lattice QCD

Stefan Meinel Department of Physics, University of Arizona, Tucson, AZ 85721, USA    Gumaro Rendon Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA
(April 15, 2021)
Abstract

We present the first lattice-QCD determination of the form factors describing the semileptonic decays ΛbΛc(2595)ν¯\Lambda_{b}\to\Lambda_{c}^{*}(2595)\ell^{-}\bar{\nu} and ΛbΛc(2625)ν¯\Lambda_{b}\to\Lambda_{c}^{*}(2625)\ell^{-}\bar{\nu}, where the Λc(2595)\Lambda_{c}^{*}(2595) and Λc(2625)\Lambda_{c}^{*}(2625) are the lightest charm baryons with JP=12J^{P}=\frac{1}{2}^{-} and JP=32J^{P}=\frac{3}{2}^{-}, respectively. These decay modes provide new opportunities to test lepton flavor universality and also play an important role in global analyses of the strong interactions in bcb\to c semileptonic decays. We determine the full set of vector, axial vector, and tensor form factors for both decays, but only in a small kinematic region near the zero-recoil point. The lattice calculation uses three different ensembles of gauge-field configurations with 2+12+1 flavors of domain-wall fermions, and we perform extrapolations of the form factors to the continuum limit and physical pion mass. We present Standard-Model predictions for the differential decay rates and angular observables. In the kinematic region considered, the differential decay rate for the 12\frac{1}{2}^{-} final state is found to be approximately 2.5 times larger than the rate for the 32\frac{3}{2}^{-} final state. We also test the compatibility of our form-factor results with zero-recoil sum rules.

I Introduction

Semileptonic bcν¯b\to c\ell^{-}\bar{\nu} decays are used to determine the CKM matrix element VcbV_{cb} and to search for deviations from lepton flavor universality Gambino:2020jvv ; Bifani:2018zmi ; Bernlochner:2021vlv . They also provide an important testing ground for heavy-quark effective theory Neubert:1993mb . In recent years, the operation of the Large Hadron Collider has provided new opportunities for measurements involving bb baryons. The simplest baryonic bcν¯b\to c\ell^{-}\bar{\nu} process is ΛbΛcν¯\Lambda_{b}\to\Lambda_{c}\ell^{-}\bar{\nu}, in which both the initial and final hadrons are the ground states with JP=12+J^{P}=\frac{1}{2}^{+}. This mode has been used in combination with Λbpν¯\Lambda_{b}\to p\ell^{-}\bar{\nu} to determine |Vub/Vcb||V_{ub}/V_{cb}| Detmold:2015aaa ; Aaij:2015bfa and offers the prospect of measuring the τ\tau-versus-μ\mu ratio R(Λc)R(\Lambda_{c}) and related observables Bifani:2018zmi ; Bernlochner:2021vlv . The baryonic decays can provide complementary information on physics beyond the Standard Model when compared with mesonic decays Dutta:2015ueb ; Li:2016pdv ; Albrecht:2017odf ; Datta:2017aue ; Alioli:2017ces ; Ray:2018hrx ; Boer:2019zmp ; Penalva:2019rgt ; Ferrillo:2019owd ; Mu:2019bin ; Hu:2020axt . The ΛbΛc\Lambda_{b}\to\Lambda_{c} form factors have been computed using lattice QCD Bowler:1997ej ; Gottlieb:2003yb ; Detmold:2015aaa ; Datta:2017aue , and the lattice results predict a shape for the ΛbΛcμν¯\Lambda_{b}\to\Lambda_{c}\mu^{-}\bar{\nu} differential decay rate in the Standard Model that is consistent with the LHCb measurement Aaij:2017svr . Heavy-quark symmetry provides strong constraints on ΛbΛcμν¯\Lambda_{b}\to\Lambda_{c}\mu^{-}\bar{\nu}, in which the light hadronic degrees of freedom have total angular momentum zero. In the heavy-quark-effective-theory (HQET) description of this decay, no subleading order-ΛQCD/mc,b\Lambda_{\rm QCD}/m_{c,b} Isgur-Wise functions occur and only two sub-subleading Isgur-Wise functions enter at order ΛQCD2/mc2\Lambda_{\rm QCD}^{2}/m_{c}^{2}; the available lattice and LHCb results are well described by a fit of this order Bernlochner:2018kxh ; Bernlochner:2018bfn .

In addition to ΛbΛcμν¯\Lambda_{b}\to\Lambda_{c}\mu^{-}\bar{\nu}, the LHCb detector has also collected (and will continue to collect) large numbers of ΛbΛc(2595)μν¯\Lambda_{b}\to\Lambda_{c}^{*}(2595)\mu^{-}\bar{\nu} and ΛbΛc(2625)μν¯\Lambda_{b}\to\Lambda_{c}^{*}(2625)\mu^{-}\bar{\nu} samples Aaij:2017svr ; the relative branching fractions of these modes have been measured by the CDF Collaboration to be (ΛbΛc(2595)μν¯)/(ΛbΛcμν¯)=0.126±0.0330.038+0.047\mathcal{B}(\Lambda_{b}\to\Lambda_{c}^{*}(2595)\mu^{-}\bar{\nu})/\mathcal{B}(\Lambda_{b}\to\Lambda_{c}\mu^{-}\bar{\nu})=0.126\pm 0.033^{+0.047}_{-0.038} and (ΛbΛc(2625)μν¯)/(ΛbΛcμν¯)=0.210±0.0420.050+0.071\mathcal{B}(\Lambda_{b}\to\Lambda_{c}^{*}(2625)\mu^{-}\bar{\nu})/\mathcal{B}(\Lambda_{b}\to\Lambda_{c}\mu^{-}\bar{\nu})=0.210\pm 0.042^{+0.071}_{-0.050} Aaltonen:2008eu . The Λc(2595)\Lambda_{c}^{*}(2595) and Λc(2625)\Lambda_{c}^{*}(2625) are the lightest charm baryons with JP=12J^{P}=\frac{1}{2}^{-} and JP=32J^{P}=\frac{3}{2}^{-}, respectively, and are very narrow resonances decaying to Λcππ\Lambda_{c}\pi\pi Zyla:2020zbs . It has been projected that R(Λc)=(ΛbΛcτν¯)/(ΛbΛcμν¯)R(\Lambda_{c}^{*})=\mathcal{B}(\Lambda_{b}\to\Lambda_{c}^{*}\tau^{-}\bar{\nu})/\mathcal{B}(\Lambda_{b}\to\Lambda_{c}^{*}\mu^{-}\bar{\nu}) can be measured using LHCb data with approximately 17 percent uncertainty at the end of LHC Run 3, and as low as 5 percent uncertainty at the end of Run 6 Bernlochner:2021vlv . To predict R(Λc)R(\Lambda_{c}^{*}) in the Standard Model and beyond, the ΛbΛc\Lambda_{b}\to\Lambda_{c}^{*} form factors are needed. A calculation of these form factors may also improve the control of the backgrounds in a measurement of R(Λc)R(\Lambda_{c}). Another potential impact will be on zero-recoil sum rules Mannel:2015osa ; Boer:2018vpx and on global analyses of bcν¯b\to c\ell^{-}\bar{\nu} form factors using dispersion relations Cohen:2019zev . The authors of Ref. Cohen:2019zev wrote “Given the large fractional saturation of the unitarity bounds by ΛbΛc\Lambda_{b}\to\Lambda_{c}, the inclusion of ΛbΛc\Lambda_{b}\to\Lambda_{c}^{*} could be particularly fruitful once such data is available.” Finally, we note that there is significant interest in the structure and strong decays of the Λc(2595)\Lambda_{c}^{*}(2595) and Λc(2625)\Lambda_{c}^{*}(2625), in part due to the closeness of the Σc()π\Sigma_{c}^{(*)}\pi thresholds Blechman:2003mq ; Guo:2016wpy ; Arifi:2018yhr ; Nieves:2019kdh ; Nieves:2019nol .

In the limit of heavy charm quarks, the light degrees of freedom in Λc(2595)\Lambda_{c}^{*}(2595) and Λc(2625)\Lambda_{c}^{*}(2625) have total angular momentum 1 and these two baryons become degenerate. Note that there is no heavy-quark spin-symmetry relation between the Λc\Lambda_{c}^{*} and the Λc\Lambda_{c} due to the different quantum numbers of the light degrees of freedom. This difference also means that the normalization of the leading Isgur-Wise function for ΛbΛc\Lambda_{b}\to\Lambda_{c}^{*} remains unconstrained in the heavy-quark limit, and the matrix elements vanish at zero recoil Roberts:1992xm ; Leibovich:1997az . The HQET relations for the ΛbΛc(2595)\Lambda_{b}\to\Lambda_{c}^{*}(2595) and ΛbΛc(2625)\Lambda_{b}\to\Lambda_{c}^{*}(2625) vector and axial vector form factors including the subleading order-ΛQCD/mc,b\Lambda_{\rm QCD}/m_{c,b} contributions were derived in Refs. Roberts:1992xm , Leibovich:1997az , and Boer:2018vpx ; the authors of the latter reference specifically studied the possibility of using HQET fits to LHCb data for the muonic decay ΛbΛcμν¯\Lambda_{b}\to\Lambda_{c}^{*}\mu^{-}\bar{\nu} to make Standard-Model predictions for R(Λc)R(\Lambda_{c}^{*}). It is still an open question how well HQET at this order can describe these transitions.

Quark-model studies of the ΛbΛc(2595)\Lambda_{b}\to\Lambda_{c}^{*}(2595) and ΛbΛc(2625)\Lambda_{b}\to\Lambda_{c}^{*}(2625) form factors can be found in Refs. Pervin:2005ve ; Gutsche:2017wag ; Gutsche:2018nks ; Becirevic:2020nmb . In the following, we present the first lattice-QCD determination of these form factors. Our calculation follows that of the ΛbΛ(1520)\Lambda_{b}\to\Lambda^{*}(1520) form factors in Ref. Meinel:2020owd and uses the same ensembles of gauge-field configurations. We observe that the Λc(2595)\Lambda_{c}^{*}(2595) and Λc(2625)\Lambda_{c}^{*}(2625) energy levels for our simulation parameters are below all potential strong-decay thresholds, although they come quite close at the lowest pion mass. As in Ref. Meinel:2020owd , we work in the rest frame of the final-state baryon to avoid mixing between J=32J=\frac{3}{2} and J=12J=\frac{1}{2} and between negative and positive parity. This again limits the kinematic coverage to the region near qmax2q^{2}_{\rm max}.

Our definitions of the form factors are given in Sec. II. Following a brief summary of the lattice parameters in Sec. III, we discuss the baryon interpolating fields, two-point functions, and the results for the masses in Sec. IV. The extraction of the form factors from three-point functions is described in Sec. V, and their extrapolation to the physical pion mass and continuum limit is discussed in Sec. VI. We test the compatibility with zero-recoil sum rules in Sec. VII and present the Standard-Model predictions for ΛbΛc(2595)ν¯\Lambda_{b}\to\Lambda_{c}^{*}(2595)\ell^{-}\bar{\nu} and ΛbΛc(2625)ν¯\Lambda_{b}\to\Lambda_{c}^{*}(2625)\ell^{-}\bar{\nu} in Sec. VIII. Our conclusions are given in Sec. IX, and Appendix A contains relations to other form factor definitions used in the literature.

II Definitions of the form factors

In the following, we denote the Λc(2595)\Lambda_{c}^{*}(2595) and Λc(2625)\Lambda_{c}^{*}(2625) as Λc,1/2\Lambda_{c,1/2}^{*} and Λc,3/2\Lambda_{c,3/2}^{*}, respectively. The masses and total decay widths determined by experiments are mΛc,1/2=2592.25(28)MeVm_{\Lambda_{c,1/2}^{*}}=2592.25(28)\>{\rm MeV}, mΛc,3/2=2628.11(19)MeVm_{\Lambda_{c,3/2}^{*}}=2628.11(19)\>{\rm MeV}, ΓΛc,1/2=2.6(0.6)MeV\Gamma_{\Lambda_{c,1/2}^{*}}=2.6(0.6)\>{\rm MeV}, ΓΛc,3/2<0.97MeV\Gamma_{\Lambda_{c,3/2}^{*}}<0.97\>{\rm MeV} (CL=90%{\rm CL}=90\%) Zyla:2020zbs . We neglect the decay widths throughout this work. In our lattice calculations at heavier-than-physical pion masses, the strong decays are in fact kinematically forbidden, except perhaps at the lightest pion mass; the hadron masses we find on the lattice are given in Sec. IV.

We normalize the baryon states as

Λb(𝐤,r)|Λb(𝐩,s)\displaystyle\langle\Lambda_{b}(\mathbf{k},r)|\Lambda_{b}(\mathbf{p},s)\rangle =\displaystyle= δrs2EΛb(2π)3δ3(𝐤𝐩),\displaystyle\delta_{rs}2E_{\Lambda_{b}}(2\pi)^{3}\delta^{3}(\mathbf{k}-\mathbf{p}), (1)
Λc,1/2(𝐤,r)|Λc,1/2(𝐩,s)\displaystyle\langle\Lambda_{c,1/2}^{*}(\mathbf{k}^{\prime},r^{\prime})|\Lambda_{c,1/2}^{*}(\mathbf{p}^{\prime},s^{\prime})\rangle =\displaystyle= δrs2EΛc,1/2(2π)3δ3(𝐤𝐩),\displaystyle\delta_{r^{\prime}s^{\prime}}2E_{\Lambda_{c,1/2}^{*}}(2\pi)^{3}\delta^{3}(\mathbf{k}^{\prime}-\mathbf{p}^{\prime}), (2)
Λc,3/2(𝐤,r)|Λc,3/2(𝐩,s)\displaystyle\langle\Lambda_{c,3/2}^{*}(\mathbf{k}^{\prime},r^{\prime})|\Lambda_{c,3/2}^{*}(\mathbf{p}^{\prime},s^{\prime})\rangle =\displaystyle= δrs2EΛc,3/2(2π)3δ3(𝐤𝐩),\displaystyle\delta_{r^{\prime}s^{\prime}}2E_{\Lambda_{c,3/2}^{*}}(2\pi)^{3}\delta^{3}(\mathbf{k}^{\prime}-\mathbf{p}^{\prime}), (3)

and work with Dirac and Rarita-Schwinger spinors satisfying

su(mΛb,𝐩,s)u¯(mΛb,𝐩,s)\displaystyle\sum_{s}u(m_{\Lambda_{b}},\mathbf{p},s)\bar{u}(m_{\Lambda_{b}},\mathbf{p},s) =\displaystyle= mΛb+,\displaystyle m_{\Lambda_{b}}+\not{p}, (4)
su(mΛc,1/2,𝐩,s)u¯(mΛc,1/2,𝐩,s)\displaystyle\sum_{s^{\prime}}u(m_{\Lambda_{c,1/2}^{*}},\mathbf{p}^{\prime},s^{\prime})\bar{u}(m_{\Lambda_{c,1/2}^{*}},\mathbf{p}^{\prime},s^{\prime}) =\displaystyle= mΛc,1/2+,\displaystyle m_{\Lambda_{c,1/2}^{*}}+\not{p}^{\prime}, (5)
suμ(mΛc,3/2,𝐩,s)u¯ν(mΛc,3/2,𝐩,s)\displaystyle\sum_{s^{\prime}}u_{\mu}(m_{\Lambda_{c,3/2}^{*}},\mathbf{p}^{\prime},s^{\prime})\bar{u}_{\nu}(m_{\Lambda_{c,3/2}^{*}},\mathbf{p}^{\prime},s^{\prime}) =\displaystyle= (mΛc,3/2+)(gμν13γμγν23mΛc,3/22pμpν13mΛc,3/2(γμpνγνpμ)).\displaystyle-(m_{\Lambda_{c,3/2}^{*}}+\not{p}^{\prime})\left(g_{\mu\nu}-\frac{1}{3}\gamma_{\mu}\gamma_{\nu}-\frac{2}{3m_{\Lambda_{c,3/2}^{*}}^{2}}p^{\prime}_{\mu}p^{\prime}_{\nu}-\frac{1}{3m_{\Lambda_{c,3/2}^{*}}}(\gamma_{\mu}p^{\prime}_{\nu}-\gamma_{\nu}p^{\prime}_{\mu})\right).

In the equations throughout this paper, Minkowski-space gamma matrices and the metric (gμν)=diag(1,1,1,1)(g_{\mu\nu})={\rm diag}(1,-1,-1,-1) are used, except where indicated otherwise. We introduce the notation

Λc,1/2(𝐩,s)|c¯Γb|Λb(𝐩,s)\displaystyle\langle\Lambda_{c,1/2}^{*}(\mathbf{p^{\prime}},s^{\prime})|\,\bar{c}\Gamma b\,|\Lambda_{b}(\mathbf{p},s)\rangle =\displaystyle= u¯(mΛc,1/2,𝐩,s)γ5𝒢(12)[Γ]u(mΛb,𝐩,s),\displaystyle\bar{u}(m_{\Lambda_{c,1/2}^{*}},\mathbf{p^{\prime}},s^{\prime})\>\gamma_{5}\>\mathscr{G}^{(\frac{1}{2}^{-})}[\Gamma]\>u(m_{\Lambda_{b}},\mathbf{p},s), (7)
Λc,3/2(𝐩,s)|c¯Γb|Λb(𝐩,s)\displaystyle\langle\Lambda_{c,3/2}^{*}(\mathbf{p^{\prime}},s^{\prime})|\,\bar{c}\Gamma b\,|\Lambda_{b}(\mathbf{p},s)\rangle =\displaystyle= u¯λ(mΛc,3/2,𝐩,s)𝒢λ(32)[Γ]u(mΛb,𝐩,s)\displaystyle\bar{u}_{\lambda}(m_{\Lambda_{c,3/2}^{*}},\mathbf{p^{\prime}},s^{\prime})\>\mathscr{G}^{\lambda(\frac{3}{2}^{-})}[\Gamma]\>u(m_{\Lambda_{b}},\mathbf{p},s) (8)

and

s±=(mΛb±mΛc)2q2,s_{\pm}=(m_{\Lambda_{b}}\pm m_{\Lambda_{c}^{*}})^{2}-q^{2}, (9)

where q=ppq=p-p^{\prime}. We use a helicity basis for all form factors. For the JP=12J^{P}=\frac{1}{2}^{-} final state, our definition follows the one introduced previously for JP=12+J^{P}=\frac{1}{2}^{+} final states Feldmann:2011xf except for the changes resulting from the opposite parity [note the γ5\gamma_{5} in Eq. (7)]:

𝒢(12)[γμ]\displaystyle\mathscr{G}^{(\frac{1}{2}^{-})}[\gamma^{\mu}] =\displaystyle= f0(12)(mΛb+mΛc,1/2)qμq2\displaystyle f_{0}^{(\frac{1}{2}^{-})}\>(m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}})\frac{q^{\mu}}{q^{2}} (10)
+f+(12)mΛbmΛc,1/2s(pμ+pμ(mΛb2mΛc,1/22)qμq2)\displaystyle+f_{+}^{(\frac{1}{2}^{-})}\frac{m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}}}{s_{-}}\left(p^{\mu}+p^{\prime\mu}-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c,1/2}^{*}}^{2})\frac{q^{\mu}}{q^{2}}\right)
+f(12)(γμ+2mΛc,1/2spμ2mΛbspμ),\displaystyle+f_{\perp}^{(\frac{1}{2}^{-})}\left(\gamma^{\mu}+\frac{2m_{\Lambda_{c,1/2}^{*}}}{s_{-}}p^{\mu}-\frac{2\,m_{\Lambda_{b}}}{s_{-}}p^{\prime\mu}\right),
𝒢(12)[γμγ5]\displaystyle\mathscr{G}^{(\frac{1}{2}^{-})}[\gamma^{\mu}\gamma_{5}] =\displaystyle= g0(12)γ5(mΛbmΛc,1/2)qμq2\displaystyle-g_{0}^{(\frac{1}{2}^{-})}\gamma_{5}\>(m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}})\frac{q^{\mu}}{q^{2}} (11)
g+(12)γ5mΛb+mΛc,1/2s+(pμ+pμ(mΛb2mΛc,1/22)qμq2)\displaystyle-g_{+}^{(\frac{1}{2}^{-})}\gamma_{5}\frac{m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}}}{s_{+}}\left(p^{\mu}+p^{\prime\mu}-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c,1/2}^{*}}^{2})\frac{q^{\mu}}{q^{2}}\right)
g(12)γ5(γμ2mΛc,1/2s+pμ2mΛbs+pμ),\displaystyle-g_{\perp}^{(\frac{1}{2}^{-})}\gamma_{5}\left(\gamma^{\mu}-\frac{2m_{\Lambda_{c,1/2}^{*}}}{s_{+}}p^{\mu}-\frac{2\,m_{\Lambda_{b}}}{s_{+}}p^{\prime\mu}\right),
𝒢(12)[iσμνqν]\displaystyle\mathscr{G}^{(\frac{1}{2}^{-})}[i\sigma^{\mu\nu}q_{\nu}] =\displaystyle= h+(12)q2s(pμ+pμ(mΛb2mΛc,1/22)qμq2)\displaystyle-h_{+}^{(\frac{1}{2}^{-})}\,\frac{q^{2}}{s_{-}}\left(p^{\mu}+p^{\prime\mu}-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c,1/2}^{*}}^{2})\frac{q^{\mu}}{q^{2}}\right) (12)
h(12)(mΛbmΛc,1/2)(γμ+2mΛc,1/2spμ2mΛbspμ),\displaystyle-h_{\perp}^{(\frac{1}{2}^{-})}\,(m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}})\left(\gamma^{\mu}+\frac{2\,m_{\Lambda_{c,1/2}^{*}}}{s_{-}}\,p^{\mu}-\frac{2\,m_{\Lambda_{b}}}{s_{-}}\,p^{\prime\mu}\right),
𝒢(12)[iσμνγ5qν]\displaystyle\mathscr{G}^{(\frac{1}{2}^{-})}[i\sigma^{\mu\nu}\gamma_{5}q_{\nu}] =\displaystyle= h~+(12)γ5q2s+(pμ+pμ(mΛb2mΛc,1/22)qμq2)\displaystyle-\widetilde{h}_{+}^{(\frac{1}{2}^{-})}\gamma_{5}\frac{q^{2}}{s_{+}}\left(p^{\mu}+p^{\prime\mu}-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c,1/2}^{*}}^{2})\frac{q^{\mu}}{q^{2}}\right) (13)
h~(12)γ5(mΛb+mΛc,1/2)(γμ2mΛc,1/2s+pμ2mΛbs+pμ).\displaystyle-\widetilde{h}_{\perp}^{(\frac{1}{2}^{-})}\gamma_{5}\,(m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}})\left(\gamma^{\mu}-\frac{2m_{\Lambda_{c,1/2}^{*}}}{s_{+}}\,p^{\mu}-\frac{2m_{\Lambda_{b}}}{s_{+}}\,p^{\prime\mu}\right).

For the JP=32J^{P}=\frac{3}{2}^{-} final state, we use the definition introduced by us in Ref. Meinel:2020owd , which reads

𝒢λ(32)[γμ]\displaystyle\mathscr{G}^{\lambda(\frac{3}{2}^{-})}[\gamma^{\mu}] =\displaystyle= f0(32)mΛc,3/2s+(mΛbmΛc,3/2)pλqμq2\displaystyle f_{0}^{(\frac{3}{2}^{-})}\frac{m_{\Lambda_{c,3/2}^{*}}}{s_{+}}\,\frac{(m_{\Lambda_{b}}-m_{\Lambda_{c,3/2}^{*}})\,p^{\lambda}q^{\mu}}{q^{2}} (14)
+f+(32)mΛc,3/2s(mΛb+mΛc,3/2)pλ(q2(pμ+pμ)(mΛb2mΛc,3/22)qμ)q2s+\displaystyle+f_{+}^{(\frac{3}{2}^{-})}\frac{m_{\Lambda_{c,3/2}^{*}}}{s_{-}}\,\frac{(m_{\Lambda_{b}}+m_{\Lambda_{c,3/2}^{*}})\,p^{\lambda}(q^{2}(p^{\mu}+p^{\prime\mu})-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c,3/2}^{*}}^{2})q^{\mu})}{q^{2}\,s_{+}}
+f(32)mΛc,3/2s(pλγμ2pλ(mΛbpμ+mΛc,3/2pμ)s+)\displaystyle+f_{\perp}^{(\frac{3}{2}^{-})}\frac{m_{\Lambda_{c,3/2}^{*}}}{s_{-}}\left(p^{\lambda}\gamma^{\mu}-\frac{2\,p^{\lambda}(m_{\Lambda_{b}}p^{\prime\mu}+m_{\Lambda_{c,3/2}^{*}}p^{\mu})}{s_{+}}\right)
+f(32)mΛc,3/2s(pλγμ2pλpμmΛc,3/2+2pλ(mΛbpμ+mΛc,3/2pμ)s++sgλμmΛc,3/2),\displaystyle+f_{\perp^{\prime}}^{(\frac{3}{2}^{-})}\frac{m_{\Lambda_{c,3/2}^{*}}}{s_{-}}\left(p^{\lambda}\gamma^{\mu}-\frac{2\,p^{\lambda}p^{\prime\mu}}{m_{\Lambda_{c,3/2}^{*}}}+\frac{2\,p^{\lambda}(m_{\Lambda_{b}}p^{\prime\mu}+m_{\Lambda_{c,3/2}^{*}}p^{\mu})}{s_{+}}+\frac{s_{-}\,g^{\lambda\mu}}{m_{\Lambda_{c,3/2}^{*}}}\right),
𝒢λ(32)[γμγ5]\displaystyle\mathscr{G}^{\lambda(\frac{3}{2}^{-})}[\gamma^{\mu}\gamma_{5}] =\displaystyle= g0(32)γ5mΛc,3/2s(mΛb+mΛc,3/2)pλqμq2\displaystyle-g_{0}^{(\frac{3}{2}^{-})}\gamma_{5}\,\frac{m_{\Lambda_{c,3/2}^{*}}}{s_{-}}\frac{(m_{\Lambda_{b}}+m_{\Lambda_{c,3/2}^{*}})\,p^{\lambda}q^{\mu}}{q^{2}} (15)
g+(32)γ5mΛc,3/2s+(mΛbmΛc,3/2)pλ(q2(pμ+pμ)(mΛb2mΛc,3/22)qμ)q2s\displaystyle-g_{+}^{(\frac{3}{2}^{-})}\gamma_{5}\,\frac{m_{\Lambda_{c,3/2}^{*}}}{s_{+}}\frac{(m_{\Lambda_{b}}-m_{\Lambda_{c,3/2}^{*}})\,p^{\lambda}(q^{2}(p^{\mu}+p^{\prime\mu})-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c,3/2}^{*}}^{2})q^{\mu})}{q^{2}\,s_{-}}
g(32)γ5mΛc,3/2s+(pλγμ2pλ(mΛbpμmΛc,3/2pμ)s)\displaystyle-g_{\perp}^{(\frac{3}{2}^{-})}\gamma_{5}\frac{m_{\Lambda_{c,3/2}^{*}}}{s_{+}}\left(p^{\lambda}\gamma^{\mu}-\frac{2\,p^{\lambda}(m_{\Lambda_{b}}p^{\prime\mu}-m_{\Lambda_{c,3/2}^{*}}p^{\mu})}{s_{-}}\right)
g(32)γ5mΛc,3/2s+(pλγμ+2pλpμmΛc,3/2+2pλ(mΛbpμmΛc,3/2pμ)ss+gλμmΛc,3/2),\displaystyle-g_{\perp^{\prime}}^{(\frac{3}{2}^{-})}\gamma_{5}\frac{m_{\Lambda_{c,3/2}^{*}}}{s_{+}}\left(p^{\lambda}\gamma^{\mu}+\frac{2\,p^{\lambda}p^{\prime\mu}}{m_{\Lambda_{c,3/2}^{*}}}+\frac{2\,p^{\lambda}(m_{\Lambda_{b}}p^{\prime\mu}-m_{\Lambda_{c,3/2}^{*}}p^{\mu})}{s_{-}}-\frac{s_{+}\,g^{\lambda\mu}}{m_{\Lambda_{c,3/2}^{*}}}\right),
𝒢λ(32)[iσμνqν]\displaystyle\mathscr{G}^{\lambda(\frac{3}{2}^{-})}[i\sigma^{\mu\nu}q_{\nu}] =\displaystyle= h+(32)mΛc,3/2spλ(q2(pμ+pμ)(mΛb2mΛc,3/22)qμ)s+\displaystyle-h_{+}^{(\frac{3}{2}^{-})}\frac{m_{\Lambda_{c,3/2}^{*}}}{s_{-}}\,\frac{p^{\lambda}(q^{2}(p^{\mu}+p^{\prime\mu})-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c,3/2}^{*}}^{2})q^{\mu})}{s_{+}}
h(32)mΛc,3/2s(mΛb+mΛc,3/2)(pλγμ2pλ(mΛbpμ+mΛc,3/2pμ)s+)\displaystyle-h_{\perp}^{(\frac{3}{2}^{-})}\frac{m_{\Lambda_{c,3/2}^{*}}}{s_{-}}(m_{\Lambda_{b}}+m_{\Lambda_{c,3/2}^{*}})\left(p^{\lambda}\gamma^{\mu}-\frac{2\,p^{\lambda}(m_{\Lambda_{b}}p^{\prime\mu}+m_{\Lambda_{c,3/2}^{*}}p^{\mu})}{s_{+}}\right)
h(32)mΛc,3/2s(mΛb+mΛc,3/2)(pλγμ2pλpμmΛc,3/2+2pλ(mΛbpμ+mΛc,3/2pμ)s++sgλμmΛc,3/2),\displaystyle-h_{\perp^{\prime}}^{(\frac{3}{2}^{-})}\frac{m_{\Lambda_{c,3/2}^{*}}}{s_{-}}(m_{\Lambda_{b}}+m_{\Lambda_{c,3/2}^{*}})\left(p^{\lambda}\gamma^{\mu}-\frac{2\,p^{\lambda}p^{\prime\mu}}{m_{\Lambda_{c,3/2}^{*}}}+\frac{2\,p^{\lambda}(m_{\Lambda_{b}}p^{\prime\mu}+m_{\Lambda_{c,3/2}^{*}}p^{\mu})}{s_{+}}+\frac{s_{-}\,g^{\lambda\mu}}{m_{\Lambda_{c,3/2}^{*}}}\right),
𝒢λ(32)[iσμνqνγ5]\displaystyle\mathscr{G}^{\lambda(\frac{3}{2}^{-})}[i\sigma^{\mu\nu}q_{\nu}\gamma_{5}] =\displaystyle= h~+(32)γ5mΛc,3/2s+pλ(q2(pμ+pμ)(mΛb2mΛc,3/22)qμ)s\displaystyle-\widetilde{h}_{+}^{(\frac{3}{2}^{-})}\gamma_{5}\frac{m_{\Lambda_{c,3/2}^{*}}}{s_{+}}\,\frac{p^{\lambda}(q^{2}(p^{\mu}+p^{\prime\mu})-(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c,3/2}^{*}}^{2})q^{\mu})}{s_{-}}
h~(32)γ5mΛc,3/2s+(mΛbmΛc,3/2)(pλγμ2pλ(mΛbpμmΛc,3/2pμ)s)\displaystyle-\widetilde{h}_{\perp}^{(\frac{3}{2}^{-})}\gamma_{5}\frac{m_{\Lambda_{c,3/2}^{*}}}{s_{+}}(m_{\Lambda_{b}}-m_{\Lambda_{c,3/2}^{*}})\left(p^{\lambda}\gamma^{\mu}-\frac{2\,p^{\lambda}(m_{\Lambda_{b}}p^{\prime\mu}-m_{\Lambda_{c,3/2}^{*}}p^{\mu})}{s_{-}}\right)
h~(32)γ5mΛc,3/2s+(mΛbmΛc,3/2)(pλγμ+2pλpμmΛc,3/2+2pλ(mΛbpμmΛc,3/2pμ)ss+gλμmΛc,3/2).\displaystyle-\widetilde{h}_{\perp^{\prime}}^{(\frac{3}{2}^{-})}\gamma_{5}\frac{m_{\Lambda_{c,3/2}^{*}}}{s_{+}}(m_{\Lambda_{b}}-m_{\Lambda_{c,3/2}^{*}})\left(p^{\lambda}\gamma^{\mu}+\frac{2\,p^{\lambda}p^{\prime\mu}}{m_{\Lambda_{c,3/2}^{*}}}+\frac{2\,p^{\lambda}(m_{\Lambda_{b}}p^{\prime\mu}-m_{\Lambda_{c,3/2}^{*}}p^{\mu})}{s_{-}}-\frac{s_{+}\,g^{\lambda\mu}}{m_{\Lambda_{c,3/2}^{*}}}\right).

Only the vector and axial-vector form factors are needed to describe ΛbΛcν¯\Lambda_{b}\to\Lambda_{c}^{*}\ell^{-}\bar{\nu} decays in the Standard Model, but we also compute the tensor form factors. Above, σμν=i2(γμγνγνγμ)\sigma^{\mu\nu}=\frac{i}{2}(\gamma^{\mu}\gamma^{\nu}-\gamma^{\nu}\gamma^{\mu}). Note that the overall sign of the form factors for each decay mode depends on the phase conventions of the states. This means that also the relative overall sign between the two different final states is left undetermined. Relations between our form-factor definitions and alternative definitions used in the literature are given in Appendix A.

III Lattice actions and parameters

The lattice actions and parameters used in this work are the same as in our calculation of ΛbΛ(1520)\Lambda_{b}\to\Lambda^{*}(1520) form factors Meinel:2020owd , except that here the valence strange quark is replaced by a valence charm quark. For the latter, we employ the same form of action and analogous tuning conditions as for the bottom quark Aoki:2012xaa , i.e., an anisotropic clover action with bare parameters amQ(c)am_{Q}^{(c)}, ν(c)\nu^{(c)}, cE,B(c)c_{E,B}^{(c)} tuned to obtain the correct DsD_{s} meson kinetic mass, rest mass, and hyperfine splitting (our notation for the bare parameters follows Ref. Brown:2014ena , while Ref. Aoki:2012xaa uses m0=mQm_{0}=m_{Q}, ζ=ν\zeta=\nu, cP=cE=cBc_{P}=c_{E}=c_{B}). The values of these parameters are given in Table 1. The gauge-field ensembles with 2+12+1 flavors of domain-wall fermions were generated by the RBC and UKQCD Collaborations Aoki:2010dy ; Blum:2014tka . For the up and down valence quarks, we reuse the domain-wall propagators computed for Ref. Meinel:2020owd . Our computation utilizes all-mode averaging Blum:2012uh ; Shintani:2014vja , in which unbiased estimates with small statistical uncertainties are obtained at reduced cost by combining “exact” and “sloppy” samples.

Label Ns3×NtN_{s}^{3}\times N_{t} β\beta aa [fm] amu,dam_{u,d} amsam_{s} amQ(b)am_{Q}^{(b)} ν(b)\nu^{(b)} cE,B(b)c_{E,B}^{(b)} amQ(c)\phantom{-}am_{Q}^{(c)} ν(c)\nu^{(c)} cE,B(c)c_{E,B}^{(c)} NexN_{\rm ex} NslN_{\rm sl}
C01 243×6424^{3}\times 64 2.132.13 0.1106(3)0.1106(3) 0.010.01\phantom{0} 0.040.04 7.32587.3258 3.19183.1918 4.96254.9625 0.1541\phantom{-}0.1541 1.20041.2004 1.84071.8407 283 9056
C005 243×6424^{3}\times 64 2.132.13 0.1106(3)0.1106(3) 0.0050.005 0.040.04 7.32587.3258 3.19183.1918 4.96254.9625 0.1541\phantom{-}0.1541 1.20041.2004 1.84071.8407 311 9952
F004 323×6432^{3}\times 64 2.252.25 0.0828(3)0.0828(3) 0.0040.004 0.030.03 3.28233.2823 2.06002.0600 2.79602.7960 0.0517-0.0517 1.10211.1021 1.44831.4483 251 8032
Table 1: Parameters of the lattice actions, lattice spacings, and numbers of exact (ex) and sloppy (sl) samples computed for the correlation functions. The light-quark and gluon actions and the determination of the lattice spacings are described in Refs. Aoki:2010dy ; Blum:2014tka . The form of the heavy-quark action is given in Ref. Aoki:2012xaa , where m0=mQm_{0}=m_{Q}, ζ=ν\zeta=\nu, cP=cE=cBc_{P}=c_{E}=c_{B}.

IV Two-point functions and hadron masses

Up and down quarks Bottom quarks Charm quarks
NGaussN_{\textrm{Gauss}} σGauss/a\sigma_{\textrm{Gauss}}/a NAPEN_{\textrm{APE}} αAPE\alpha_{\textrm{APE}} NGaussN_{\textrm{Gauss}} σGauss/a\sigma_{\textrm{Gauss}}/a NStoutN_{\textrm{Stout}} ρStout\rho_{\textrm{Stout}} NGaussN_{\textrm{Gauss}} σGauss/a\sigma_{\textrm{Gauss}}/a NStoutN_{\textrm{Stout}} ρStout\rho_{\textrm{Stout}}
Coarse 30\phantom{0}30 4.3504.350 2525 2.52.5 1010 2.0002.000 1010 0.080.08 2020 3.0003.000 1010 0.080.08
Fine 60\phantom{0}60 5.7285.728 2525 2.52.5 1010 2.0002.000 1010 0.080.08 2020 3.0003.000 1010 0.080.08
Table 2: Paramters of the quark-field smearing used in the baryon interpolating fields. See Ref. Meinel:2020owd for explanations.

We now move to the discussion of the baryon interpolating fields, two-point functions, and results for the masses. For the Λb\Lambda_{b}, everything is identical to Ref. Meinel:2020owd . The Λc(2625)\Lambda_{c}^{*}(2625) has the same isospin and spin-parity quantum numbers as the Λ(1520)\Lambda^{*}(1520) (I=0I=0, JP=32J^{P}=\frac{3}{2}^{-}), but with a charm quark instead of a strange quark. We therefore use the interpolating field

(OΛc)jγ=ϵabc(Cγ5)αβ(1+γ02)γδ[c~αad~βb(~ju~)δcc~αau~βb(~jd~)δc+u~αa(~jd~)βbc~δcd~αa(~ju~)βbc~δc],(O_{\Lambda_{c}^{*}})_{j\gamma}=\epsilon^{abc}\>(C\gamma_{5})_{\alpha\beta}\Big{(}\frac{1+\gamma_{0}}{2}\Big{)}_{\gamma\delta}\left[\widetilde{c}^{a}_{\alpha}\>\widetilde{d}^{b}_{\beta}\>(\widetilde{\nabla}_{j}\widetilde{u})^{c}_{\delta}-\widetilde{c}^{a}_{\alpha}\>\widetilde{u}^{b}_{\beta}\>(\widetilde{\nabla}_{j}\widetilde{d})^{c}_{\delta}+\widetilde{u}^{a}_{\alpha}\>(\widetilde{\nabla}_{j}\widetilde{d})^{b}_{\beta}\>\widetilde{c}^{c}_{\delta}-\widetilde{d}^{a}_{\alpha}\>(\widetilde{\nabla}_{j}\widetilde{u})^{b}_{\beta}\>\widetilde{c}^{c}_{\delta}\right], (18)

which differs from Eq. (18) of Ref. Meinel:2020owd only by the replacement scs\to c. As before, this form will work only at zero momentum. The tilde indicates gauge-covariant Gaussian smearing of the quark fields with the parameters given in Table 2. The field (18) actually has nonzero overlap with both the Λc(2595)\Lambda_{c}^{*}(2595) and the Λc(2625)\Lambda_{c}^{*}(2625),

0|(OΛc)j|Λc,1/2(𝟎,s)\displaystyle\langle 0|(O_{\Lambda_{c}^{*}})_{j}|\Lambda_{c,1/2}^{*}(\mathbf{0},s^{\prime})\rangle =\displaystyle= ZΛc,1/21+γ02γjγ5u(mΛc,1/2,𝟎,s),\displaystyle Z_{\Lambda_{c,1/2}^{*}}\>\frac{1+\gamma_{0}}{2}\,\gamma_{j}\gamma_{5}\,u(m_{\Lambda_{c,1/2}^{*}},\mathbf{0},s^{\prime}), (19)
0|(OΛc)j|Λc,3/2(𝟎,s)\displaystyle\langle 0|(O_{\Lambda_{c}^{*}})_{j}|\Lambda_{c,3/2}^{*}(\mathbf{0},s^{\prime})\rangle =\displaystyle= ZΛc,3/21+γ02uj(mΛc,3/2,𝟎,s),\displaystyle Z_{\Lambda_{c,3/2}^{*}}\>\frac{1+\gamma_{0}}{2}\,u_{j}(m_{\Lambda_{c,3/2}^{*}},\mathbf{0},s^{\prime}), (20)

and we can isolate the J=12J=\frac{1}{2} and J=32J=\frac{3}{2} components111At zero momentum, the continuum JP=12J^{P}=\frac{1}{2}^{-} and JP=32J^{P}=\frac{3}{2}^{-} irreducible representations subduce identically to the G1uG_{1}^{u} and HuH^{u} irreducible representations of the double-cover of the cubic group Johnson:1982yq ; the next-higher values of JPJ^{P} that subduce to the same cubic irreps are 72\frac{7}{2}^{-} and JP=52J^{P}=\frac{5}{2}^{-}, respectively, and such states will have higher energies. It is therefore safe to refer to only the continuum quantum numbers in this case. using the projectors

P(1/2)kj\displaystyle P^{kj}_{(1/2)} =\displaystyle= 13γkγj,\displaystyle\frac{1}{3}\gamma^{k}\gamma^{j}, (21)
P(3/2)kj\displaystyle P^{kj}_{(3/2)} =\displaystyle= gkj13γkγj.\displaystyle g^{kj}-\frac{1}{3}\gamma^{k}\gamma^{j}. (22)

The zero-momentum Λc\Lambda_{c}^{*} two-point functions are defined like those for the Λ\Lambda^{*} in Ref. Meinel:2020owd , and after applying the above projectors their spectral decomposition reads

P(1/2)jlClk(2,Λc)(t)\displaystyle P^{jl}_{(1/2)}C^{(2,\Lambda_{c}^{*})}_{lk}(t) =\displaystyle= 12ZΛc,1/22(1+γ0)γjγkemΛc,1/2t\displaystyle-\frac{1}{2}Z_{\Lambda_{c,1/2}^{*}}^{2}(1+\gamma_{0})\,\gamma^{j}\gamma_{k}\,e^{-m_{\Lambda_{c,1/2}^{*}}t} (23)
+(excited-state contributions),\displaystyle+\>\>(\text{excited-state contributions}),
P(3/2)jlClk(2,Λc)(t)\displaystyle P^{jl}_{(3/2)}C^{(2,\Lambda_{c}^{*})}_{lk}(t) =\displaystyle= 12ZΛc,3/22(1+γ0)(gkj13γjγk)emΛc,3/2t\displaystyle-\frac{1}{2}Z_{\Lambda_{c,3/2}^{*}}^{2}(1+\gamma_{0})\left(g^{j}_{\>\>k}-\frac{1}{3}\gamma^{j}\gamma_{k}\right)\,e^{-m_{\Lambda_{c,3/2}^{*}}t} (24)
+(excited-state contributions).\displaystyle+\>\>(\text{excited-state contributions}).

At this point the reader may wonder why we did not analyze the Λ(1405)\Lambda^{*}(1405) with JP=12J^{P}=\frac{1}{2}^{-} in Ref. Meinel:2020owd , despite being able to project to JP=12J^{P}=\frac{1}{2}^{-} with the available data. The reason is that we do not trust the single-hadron/narrow-width approximation for the Λ(1405)\Lambda^{*}(1405), which has a larger decay width than the Λ(1520)\Lambda^{*}(1520) and likely a two-pole structure Oller:2000fj .

The masses extracted from single-exponential fits to our results for P(1/2)jlC(2,Λc)P^{jl}_{(1/2)}C^{(2,\Lambda_{c}^{*})} and P(3/2)jlC(2,Λc)P^{jl}_{(3/2)}C^{(2,\Lambda_{c}^{*})} in the plateau regions are given in Table 3, along with the masses of potential decay products. The latter are not used in our determination of the form factors but are included to assess whether the Λc\Lambda_{c}^{*} baryons are stable under the strong interactions for our quark masses. We find that both mΛc,1/2m_{\Lambda_{c,1/2}^{*}} and mΛc,3/2m_{\Lambda_{c,3/2}^{*}} are lower than all of the following: mΛc+mπ+mπm_{\Lambda_{c}}+m_{\pi}+m_{\pi}, mΣc+mπm_{\Sigma_{c}}+m_{\pi}, mD+mNm_{D}+m_{N}, although the difference mΛc,3/2mΣcmπm_{\Lambda_{c,3/2}^{*}}-m_{\Sigma_{c}}-m_{\pi} becomes consistent with zero for the F004 ensemble within the statistical uncertainties. The results are of course affected by the finite volume to some degree, but it appears likely that both the Λc,1/2\Lambda_{c,1/2}^{*} and the Λc,3/2\Lambda_{c,3/2}^{*} are stable hadrons at least on the C01 and C005 ensembles, where the energies are well below all thresholds.

We also performed simple chiral-continuum extrapolations of mΛc,1/2m_{\Lambda_{c,1/2}^{*}} and mΛc,3/2m_{\Lambda_{c,3/2}^{*}} of the form

mΛc,J=mΛc,J(phys)[1+cJmπ2mπ,phys2(4πfπ)2+dJa2Λ2]m_{\Lambda_{c,J}^{*}}=m_{\Lambda_{c,J}^{*}}^{(\rm phys)}\left[1+c_{J}\>\frac{m_{\pi}^{2}-m_{\pi,\rm phys}^{2}}{(4\pi f_{\pi})^{2}}+d_{J}\>a^{2}\Lambda^{2}\right] (25)

with fit parameters mΛc,J(phys)m_{\Lambda_{c,J}^{*}}^{(\rm phys)}, cJc_{J}, dJd_{J}, and constants fπ=132MeVf_{\pi}=132\,\text{MeV}, Λ=300MeV\Lambda=300\,\text{MeV}. These fits yield mΛc,1/2(phys)=2693(43)m_{\Lambda_{c,1/2}^{*}}^{(\rm phys)}=2693(43) MeV, mΛc,3/2(phys)=2742(43)m_{\Lambda_{c,3/2}^{*}}^{(\rm phys)}=2742(43) MeV. To estimate systematic uncertainties associated with the choice of fit model, we additionally performed higher-order fits of the form

mΛc,J=mΛc,J,HO(phys)[1+cJ,HOmπ2mπ,phys2(4πfπ)2+hJ,HOmπ3mπ,phys3(4πfπ)3+dJ,HOa2Λ2+gJ,HOa3Λ3],m_{\Lambda_{c,J}^{*}}=m_{\Lambda_{c,J}^{*},{\rm HO}}^{(\rm phys)}\left[1+c_{J,{\rm HO}}\>\frac{m_{\pi}^{2}-m_{\pi,\rm phys}^{2}}{(4\pi f_{\pi})^{2}}+h_{J,{\rm HO}}\>\frac{m_{\pi}^{3}-m_{\pi,\rm phys}^{3}}{(4\pi f_{\pi})^{3}}+d_{J,{\rm HO}}\>a^{2}\Lambda^{2}+g_{J,{\rm HO}}\>a^{3}\Lambda^{3}\right], (26)

with Gaussian priors hJ,HO=0±10h_{J,{\rm HO}}=0\pm 10 and gJ,HO=0±10g_{J,{\rm HO}}=0\pm 10, and computed the systematic uncertainties using

σm,syst=max(|mHOm|,|σm,HO2σm2|),\sigma_{m,{\rm syst}}={\rm max}\left(|m_{\rm HO}-m|,\>\sqrt{|\sigma_{m,{\rm HO}}^{2}-\sigma_{m}^{2}|}\right), (27)

where mm, σm\sigma_{m} denote the central value and uncertainty obtained using the parameter values and covariance matrix of the nominal fit and mHOm_{\rm HO}, σm,HO2\sigma_{m,{\rm HO}}^{2} denote the central value and uncertainty obtained using the parameter values and covariance matrix of the higher-order fit. In this way we finally obtain

mΛc,1/2(phys)\displaystyle m_{\Lambda_{c,1/2}^{*}}^{(\rm phys)} =\displaystyle= (2693±43stat±95syst)MeV,\displaystyle(2693\pm 43_{\,\rm stat}\pm 95_{\,\rm syst})\>{\rm MeV}, (28)
mΛc,3/2(phys)\displaystyle m_{\Lambda_{c,3/2}^{*}}^{(\rm phys)} =\displaystyle= (2742±43stat±96syst)MeV,\displaystyle(2742\pm 43_{\,\rm stat}\pm 96_{\,\rm syst})\>{\rm MeV}, (29)

which are consistent with the experimental values of mΛc,1/2=2592.25(28)MeVm_{\Lambda_{c,1/2}^{*}}=2592.25(28)\>{\rm MeV}, mΛc,3/2=2628.11(19)MeVm_{\Lambda_{c,3/2}^{*}}=2628.11(19)\>{\rm MeV} Zyla:2020zbs . Plots of the extrapolations are shown in Fig. 1. Note that we do not use the chiral-continuum extrapolations of the baryon masses in our determination of the form factors; we use the lattice baryon masses when computing the form factors on each ensemble, and then extrapolate only the form factors themselves. The mass extrapolations merely provide a test of our methodology. Finally, in Table 3 we also list the hyperfine splittings mΛc,3/2mΛc,1/2m_{\Lambda_{c,3/2}^{*}}-m_{\Lambda_{c,1/2}^{*}} computed on each ensemble. Their relative uncertainties are too large to obtain a useful chiral-continuum extrapolation, but the results are consistent within <2σ<2\sigma with the experimental value of 35.86(34)35.86(34) MeV on each ensemble.

Label mπm_{\pi} mDm_{D} mNm_{N} mΛcm_{\Lambda_{c}} mΣc(est)m_{\Sigma_{c}}^{(\rm est)} mΛc,1/2m_{\Lambda_{c,1/2}^{*}} mΛc,3/2m_{\Lambda_{c,3/2}^{*}} mΛc,3/2mΛc,1/2m_{\Lambda_{c,3/2}^{*}}-m_{\Lambda_{c,1/2}^{*}} mΛbm_{\Lambda_{b}}
C01 0.4312(13)0.4312(13) 1.9119(54)1.9119(54) 1.2647(51)1.2647(51) 2.4652(82)2.4652(82) 2.617(10)2.617(10) 2.882(12)2.882(12) 2.909(12)2.909(12) 0.0265(85)0.0265(85) 5.793(17)5.793(17)
C005 0.3400(11)0.3400(11) 1.8942(54)1.8942(54) 1.1649(58)1.1649(58) 2.4038(75)2.4038(75) 2.565(12)2.565(12) 2.819(13)2.819(13) 2.839(13)2.839(13) 0.0185(97)0.0185(97) 5.726(17)5.726(17)
F004 0.3030(12)0.3030(12) 1.8880(70)1.8880(70) 1.1197(59)1.1197(59) 2.367(12)2.367(12)\phantom{0} 2.550(19)2.550(19) 2.781(18)2.781(18) 2.815(18)2.815(18) 0.033(17)0.033(17)\phantom{0} 5.722(23)5.722(23)
Table 3: Hadron masses in GeV. We did not compute Σc\Sigma_{c} two-point functions in this work and the Σc\Sigma_{c} masses were estimated by adding the ΣcΛc\Sigma_{c}-\Lambda_{c} mass differences computed in Ref. Brown:2014ena on the same ensembles with a slightly different tuning of the charm-quark action to the Λc\Lambda_{c} masses computed here.
Refer to caption
Refer to caption
Figure 1: Chiral and continuum extrapolations of our results for the Λc,1/2\Lambda_{c,1/2}^{*} and Λc,3/2\Lambda_{c,3/2}^{*} masses. The inner error bands are statistical only and the outer bands include estimates of the systematic uncertainties associated with these extrapolations. The experimental values from Ref. Zyla:2020zbs are also shown.

V Three-point functions and form factors

As in Ref. Meinel:2020owd , we compute forward and backward three-point functions

Cjγδ(3,fw)(𝐩,Γ,t,t)\displaystyle C^{(3,{\rm fw})}_{j\,\gamma\,\delta}(\mathbf{p},\Gamma,t,t^{\prime}) =\displaystyle= 𝐲,𝐳ei𝐩(𝐲𝐳)(OΛc)jγ(x0,𝐱)JΓ(x0t+t,𝐲)(OΛb¯)δ(x0t,𝐳),\displaystyle\sum_{\mathbf{y},\mathbf{z}}e^{-i\mathbf{p}\cdot(\mathbf{y}-\mathbf{z})}\left\langle(O_{\Lambda_{c}^{*}})_{j\gamma}(x_{0},\mathbf{x})\>\>J_{\Gamma}(x_{0}-t+t^{\prime},\mathbf{y})\>\>(\overline{O_{\Lambda_{b}}})_{\delta}(x_{0}-t,\mathbf{z})\right\rangle, (30)
Cjδγ(3,bw)(𝐩,Γ,t,tt)\displaystyle C^{(3,\mathrm{bw})}_{j\,\delta\,\gamma}(\mathbf{p},\Gamma,t,t-t^{\prime}) =\displaystyle= 𝐲,𝐳ei𝐩(𝐳𝐲)(OΛb)δ(x0+t,𝐳)JΓ(x0+t,𝐲)(OΛc¯)jγ(x0,𝐱),\displaystyle\sum_{\mathbf{y},\mathbf{z}}e^{-i\mathbf{p}\cdot(\mathbf{z}-\mathbf{y})}\Big{\langle}(O_{\Lambda_{b}})_{\delta}(x_{0}+t,\mathbf{z})\>\>J_{\Gamma}^{\dagger}(x_{0}+t^{\prime},\mathbf{y})\>\>(\overline{O_{\Lambda_{c}^{*}}})_{j\gamma}(x_{0},\mathbf{x})\Big{\rangle}, (31)

where 𝐩\mathbf{p} is the Λb\Lambda_{b} momentum, Γ\Gamma is the Dirac matrix in the bcb\to c weak current, tt is the source-sink separation, and tt^{\prime} is the current-insertion time. With both the bb and cc quarks implemented using anisotropic clover actions, the current now includes 𝒪(a)\mathcal{O}(a)-improvement terms for both quarks:

JΓ=ρΓZV(cc)ZV(bb)[c¯Γb+ad1(b)c¯Γ𝜸Ebad1(c)c¯𝜸EΓb].J_{\Gamma}=\rho_{\Gamma}\sqrt{Z_{V}^{(cc)}Z_{V}^{(bb)}}\left[\bar{c}\>\Gamma\>b+a\,d_{1}^{(b)}\,\bar{c}\>\Gamma\>{\bm{\gamma}}_{\rm E}\cdot\overrightarrow{{\bm{\nabla}}}b-a\,d_{1}^{(c)}\,\bar{c}\,\overleftarrow{{\bm{\nabla}}}\cdot{\bm{\gamma}}_{\rm E}\>\Gamma\>b\right]. (32)

Here, 𝜸E=(γEj)=(iγj){\bm{\gamma}}_{\rm E}=(\gamma_{\rm E}^{j})=(-i\gamma^{j}) are the Euclidean spatial gamma matrices, and \overrightarrow{{\bm{\nabla}}} are the gauge-covariant symmetric lattice derivatives. The overall matching factors in the current are written as ρΓZV(cc)ZV(bb)\rho_{\Gamma}\sqrt{Z_{V}^{(cc)}Z_{V}^{(bb)}} Hashimoto:1999yp ; ElKhadra:2001rv , where ZV(QQ)Z_{V}^{(QQ)} are the matching factors for the flavor-conserving temporal vector currents Q¯γ0Q\bar{Q}\gamma^{0}Q. We determined the values of ZV(QQ)Z_{V}^{(QQ)} nonperturbatively using the charge-conservation condition for three-point functions with DsD_{s} and BsB_{s} meson interpolating fields; the results are given in Table 4. With this choice, the residual matching factors ρΓ\rho_{\Gamma} are equal to 1 at tree level and can be computed in perturbation theory without introducing large uncertainties. For the vector and axial-vector currents, we use the one-loop results given in Table III of Ref. Detmold:2015aaa . Here we use more accurately tuned parameters in the bb- and cc-quark actions, but we expect the resulting change in the matching factors to be negligible. For the tensor currents, one-loop results are not presently available so we set ρσμν=1\rho_{\sigma_{\mu\nu}}=1 and estimate the resulting systematic uncertainty at μ=mb\mu=m_{b} to be 4.04% as in Ref. Datta:2017aue . The values of the 𝒪(a)\mathcal{O}(a)-improvement coefficients for all currents are also computed at tree level and are given in Table 4.

ZV(bb)Z_{V}^{(bb)} ZV(cc)Z_{V}^{(cc)} d1(b)d_{1}^{(b)} d1(c)d_{1}^{(c)}
Coarse lattice (C01, C005) 9.0631(84)9.0631(84) 1.35761(16)1.35761(16)\phantom{0} 0.07280.0728 0.04120.0412
Fine lattice (F004) 4.7449(21)4.7449(21) 1.160978(74)1.160978(74) 0.06960.0696 0.03010.0301
Table 4: The values of the nonperturbative matching factors ZV(bb)Z_{V}^{(bb)} and ZV(cc)Z_{V}^{(cc)}, determined using charge-conservation from ratios of zero-momentum BsB_{s} and DsD_{s} two-point and three-point functions, as well as the values of the 𝒪(a)\mathcal{O}(a)-improvement coefficients, computed at tree level in mean-field-improved perturbation theory.

We generated data for the same two choices of Λb\Lambda_{b} momenta as in Ref. Meinel:2020owd , 𝐩=(0,0,2)2πL\mathbf{p}=(0,0,2)\frac{2\pi}{L} and 𝐩=(0,0,3)2πL\mathbf{p}=(0,0,3)\frac{2\pi}{L}, and for slightly larger source-sink separations: t/a=614t/a=6...14 at the coarse lattice spacing and t/a=816t/a=8...16 at the fine lattice spacing. Here we project the Λc\Lambda_{c}^{*} field in the three-point functions to both J=12J=\frac{1}{2} and J=32J=\frac{3}{2}, and the spectral decompositions read

P(1/2)jlCl(3,fw)(𝐩,Γ,t,t)\displaystyle P_{(1/2)}^{jl}\>C^{(3,{\rm fw})}_{l}(\mathbf{p},\Gamma,t,t^{\prime}) =\displaystyle= 1v0ZΛc,1/21+γ02γj𝒢(12)[Γ]1+2(ZΛb(1)+ZΛb(2)γ0)emΛc,1/2(tt)eEΛbt\displaystyle\frac{1}{v^{0}}Z_{\Lambda_{c,1/2}^{*}}\frac{1+\gamma_{0}}{2}\gamma^{j}\>\mathscr{G}^{(\frac{1}{2}^{-})}[\Gamma]\>\frac{1+\not{v}}{2}(Z_{\Lambda_{b}}^{(1)}+Z_{\Lambda_{b}}^{(2)}\gamma^{0})\>e^{-m_{\Lambda_{c,1/2}^{*}}(t-t^{\prime})}e^{-E_{\Lambda_{b}}t^{\prime}} (33)
+(excited-state contributions),\displaystyle+\>\>(\text{excited-state contributions}),
P(3/2)jlCl(3,fw)(𝐩,Γ,t,t)\displaystyle P_{(3/2)}^{jl}\>C^{(3,{\rm fw})}_{l}(\mathbf{p},\Gamma,t,t^{\prime}) =\displaystyle= 1v0ZΛc,3/21+γ02(gλj13γjγλ13γjg0λ)𝒢λ(32)[Γ]1+2(ZΛb(1)+ZΛb(2)γ0)\displaystyle-\frac{1}{v^{0}}Z_{\Lambda_{c,3/2}^{*}}\frac{1+\gamma_{0}}{2}\left(g^{j}_{\>\>\lambda}-\frac{1}{3}\gamma^{j}\gamma_{\lambda}-\frac{1}{3}\gamma^{j}g_{0\lambda}\right)\>\mathscr{G}^{\lambda(\frac{3}{2}^{-})}[\Gamma]\>\frac{1+\not{v}}{2}(Z_{\Lambda_{b}}^{(1)}+Z_{\Lambda_{b}}^{(2)}\gamma^{0}) (34)
×emΛc,3/2(tt)eEΛbt\displaystyle\times\>e^{-m_{\Lambda_{c,3/2}^{*}}(t-t^{\prime})}e^{-E_{\Lambda_{b}}t^{\prime}}
+(excited-state contributions),\displaystyle+\>\>(\text{excited-state contributions}),

where vμ=pμ/mΛbv^{\mu}=p^{\mu}/m_{\Lambda_{b}}, and 𝒢(12)[Γ]\mathscr{G}^{(\frac{1}{2}^{-})}[\Gamma], 𝒢λ(32)[Γ]\mathscr{G}^{\lambda(\frac{3}{2}^{-})}[\Gamma] contain the form factors as explained in Sec. II.

In the following, we introduce a label X{V,A,TV,TA}X\in\{V,A,TV,TA\} denoting the type of weak current, such that the matrix Γ\Gamma in Eq. (32) is equal to

ΓXμ={γμforX=V,γμγ5forX=A,iσμνqνforX=TV,iσμνqνγ5forX=TA.\Gamma_{X}^{\mu}=\left\{\begin{array}[]{ll}\gamma^{\mu}&{\rm for}\>\>X=V,\\ \gamma^{\mu}\gamma_{5}&{\rm for}\>\>X=A,\\ i\sigma^{\mu\nu}q_{\nu}&{\rm for}\>\>X=TV,\\ i\sigma^{\mu\nu}q_{\nu}\gamma_{5}&{\rm for}\>\>X=TA.\end{array}\right. (35)

We also introduce a label λ{0,+,,}\lambda\in\{0,+,\perp,\perp^{\prime}\} for the different helicities. As in Ref. Meinel:2020owd , we compute the quantities

Fλ(JP)X(𝐩,t)=Sλ(JP)X(𝐩,t,t/2)Sλref(JP)Xref(𝐩,t,t/2)Rλref(JP)Xref(𝐩),\displaystyle F^{(J^{P})X}_{\lambda}(\mathbf{p},t)=\frac{S^{(J^{P})X}_{\lambda}(\mathbf{p},t,t/2)}{S^{(J^{P})X_{\rm ref}}_{\lambda_{\rm ref}}(\mathbf{p},t,t/2)}\sqrt{R_{\lambda_{\rm ref}}^{(J^{P})X_{\rm ref}}(\mathbf{p})}, (36)

where JP{12,32}J^{P}\in\{\frac{1}{2}^{-},\frac{3}{2}^{-}\} are the quantum numbers of the Λc\Lambda_{c}^{*}. Here, Rλref(JP)Xref(𝐩)R_{\lambda_{\rm ref}}^{(J^{P})X_{\rm ref}}(\mathbf{p}) denotes a constant fit at large tt to a ratio Rλref(JP)Xref(𝐩,t)R_{\lambda_{\rm ref}}^{(J^{P})X_{\rm ref}}(\mathbf{p},t) of three-point and two-point functions that is constructed such that at large tt it becomes equal to the square of the form factor associated with current XrefX_{\rm ref} and helicity λref\lambda_{\rm ref}. The quantities Sλ(JP)X(𝐩,t,t/2)S^{(J^{P})X}_{\lambda}(\mathbf{p},t,t/2) are linear projections of the three-point functions proportional to the form factor with current XX and helicity λ\lambda. In this way, the relative signs of the form factors are preserved, and Fλ(JP)X(𝐩,t)F^{(J^{P})X}_{\lambda}(\mathbf{p},t) becomes equal to the form factor of interest at large tt, which is then extracted from a constant fit. The choice of reference form factor (Xref,λref)(X_{\rm ref},\lambda_{\rm ref}) is arbitrary in principle, and we select it based on the signal-to-noise ratio and quality of the ground-state plateau.

The equations for JP=32J^{P}=\frac{3}{2}^{-} were given in Ref. Meinel:2020owd and we do not repeat them here. For JP=12J^{P}=\frac{1}{2}^{-}, the construction of Rλ(12)X(𝐩,t)R_{\lambda}^{(\frac{1}{2}^{-})X}(\mathbf{p},t) is similar to that used previously for JP=12+J^{P}=\frac{1}{2}^{+} in Refs. Detmold:2015aaa ; Detmold:2016pkz . We define

0(12)X(𝐩,t,t)\displaystyle\mathscr{R}_{0}^{(\frac{1}{2}^{-})X}(\mathbf{p},t,t^{\prime}) =\displaystyle= qμqνTr[γlP(1/2)liCi(3,fw)(𝐩,ΓXμ,t,t)(1+)Cn(3,bw)(𝐩,ΓXν,t,tt)P(1/2)nmγm]Tr[P(1/2)jkCkj(2,Λc)(t)]Tr[(1+)C(2,Λb)(𝐩,t)],\displaystyle\frac{q_{\mu}\>q_{\nu}\>\mathrm{Tr}\Big{[}\gamma_{l}\,P_{(1/2)}^{li}\>C^{(3,{\rm fw})}_{i}(\mathbf{p},\>\Gamma_{X}^{\mu},t,t^{\prime})\>(1+\not{v})\>C^{(3,{\rm bw})}_{n}(\mathbf{p},\>\Gamma_{X}^{\nu},t,t-t^{\prime})P_{(1/2)}^{nm}\,\gamma_{m}\Big{]}}{\mathrm{Tr}\Big{[}P^{jk}_{(1/2)}C^{(2,\Lambda_{c}^{*})}_{kj}(t)\Big{]}\mathrm{Tr}\Big{[}(1+\not{v})\>C^{(2,\>\Lambda_{b})}(\mathbf{p},t)\Big{]}}, (37)
+(12)X(𝐩,t,t)\displaystyle\mathscr{R}_{+}^{(\frac{1}{2}^{-})X}(\mathbf{p},t,t^{\prime}) =\displaystyle= rμ[(1,𝟎)]rν[(1,𝟎)]\displaystyle r_{\mu}[(1,\mathbf{0})]\>r_{\nu}[(1,\mathbf{0})] (38)
×Tr[γlP(1/2)liCi(3,fw)(𝐩,ΓXμ,t,t)(1+)Cn(3,bw)(𝐩,ΓXν,t,tt)P(1/2)nmγm]Tr[P(1/2)jkCkj(2,Λc)(t)]Tr[(1+)C(2,Λb)(𝐩,t)],\displaystyle\times\frac{\mathrm{Tr}\Big{[}\gamma_{l}\,P_{(1/2)}^{li}\>C^{(3,{\rm fw})}_{i}(\mathbf{p},\>\Gamma_{X}^{\mu},t,t^{\prime})\>(1+\not{v})\>C^{(3,{\rm bw})}_{n}(\mathbf{p},\>\Gamma_{X}^{\nu},t,t-t^{\prime})P_{(1/2)}^{nm}\,\gamma_{m}\Big{]}}{\mathrm{Tr}\Big{[}P^{jk}_{(1/2)}C^{(2,\Lambda_{c}^{*})}_{kj}(t)\Big{]}\mathrm{Tr}\Big{[}(1+\not{v})\>C^{(2,\>\Lambda_{b})}(\mathbf{p},t)\Big{]}},
(12)X(𝐩,t,t)\displaystyle\mathscr{R}_{\perp}^{(\frac{1}{2}^{-})X}(\mathbf{p},t,t^{\prime}) =\displaystyle= rμ[(0,𝐞j×𝐩)]rν[(0,𝐞k×𝐩)]\displaystyle r_{\mu}[(0,\mathbf{e}_{j}\times\mathbf{p})]\>r_{\nu}[(0,\mathbf{e}_{k}\times\mathbf{p})] (39)
×Tr[γlP(1/2)liCi(3,fw)(𝐩,ΓXμ,t,t)γ5γj(1+)Cn(3,bw)(𝐩,ΓXν,t,tt)P(1/2)nmγmγ5γk]Tr[P(1/2)jkCkj(2,Λc)(t)]Tr[(1+)C(2,Λb)(𝐩,t)],\displaystyle\times\frac{\mathrm{Tr}\Big{[}\gamma_{l}\,P_{(1/2)}^{li}\>C^{(3,{\rm fw})}_{i}(\mathbf{p},\>\Gamma_{X}^{\mu},t,t^{\prime})\gamma_{5}\gamma^{j}\>(1+\not{v})\>C^{(3,{\rm bw})}_{n}(\mathbf{p},\>\Gamma_{X}^{\nu},t,t-t^{\prime})P_{(1/2)}^{nm}\,\gamma_{m}\gamma_{5}\gamma^{k}\Big{]}}{\mathrm{Tr}\Big{[}P^{jk}_{(1/2)}C^{(2,\Lambda_{c}^{*})}_{kj}(t)\Big{]}\mathrm{Tr}\Big{[}(1+\not{v})\>C^{(2,\>\Lambda_{b})}(\mathbf{p},t)\Big{]}},

where

r[n]=n(qn)q2qr[n]=n-\frac{(q\cdot n)}{q^{2}}q (40)

for any four-vector nn, and 𝐞j\mathbf{e}_{j} denotes the three-dimensional unit vector in direction jj. Above, repeated Greek indices are summed over from 0 to 3, while Latin indices are summed only over the spatial directions. The ratios λ(12)X(𝐩,t,t)\mathscr{R}_{\lambda}^{(\frac{1}{2}^{-})X}(\mathbf{p},t,t^{\prime}) are equal to kinematic factors depending on the baryon energies times the squares of individual helicity form factors, up to excited-state contamination that decays exponentially for tt and ttt-t^{\prime} both large. We then set t=t/2t^{\prime}=t/2 [or average over (t+a)/2(t+a)/2 and (ta)/2(t-a)/2 in the case of odd t/at/a] and divide out the kinematic factors to obtain

R0(12)V(𝐩,t)\displaystyle{R_{0}^{(\frac{1}{2}^{-})V}(\mathbf{p},t)} =\displaystyle= 4EΛb3(mΛb+mΛc,1/2)2(EΛbmΛb)0(12)V(𝐩,t,t/2)\displaystyle\frac{4\,E_{\Lambda_{b}}}{3(m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}})^{2}(E_{\Lambda_{b}}-m_{\Lambda_{b}})}\>\mathscr{R}_{0}^{(\frac{1}{2}^{-})V}(\mathbf{p},t,t/2)\>\> (41)
=\displaystyle= [f0(12)]2+(excited-state contributions),\displaystyle\>\>[f_{0}^{(\frac{1}{2}^{-})}]^{2}\>+\>(\text{excited-state contributions}),\hskip 8.61108pt
R+(12)V(𝐩,t)\displaystyle{R_{+}^{(\frac{1}{2}^{-})V}(\mathbf{p},t)} =\displaystyle= 4EΛbq43(EΛb+mΛb)2(EΛbmΛb)(mΛbmΛc,1/2)2+(12)V(𝐩,t,t/2)\displaystyle\frac{4\,E_{\Lambda_{b}}\,q^{4}}{3(E_{\Lambda_{b}}+m_{\Lambda_{b}})^{2}(E_{\Lambda_{b}}-m_{\Lambda_{b}})(m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}})^{2}}\>\mathscr{R}_{+}^{(\frac{1}{2}^{-})V}(\mathbf{p},t,t/2)\>\> (42)
=\displaystyle= [f+(12)]2+(excited-state contributions),\displaystyle\>\>[f_{+}^{(\frac{1}{2}^{-})}]^{2}\>+\>(\text{excited-state contributions}),\hskip 8.61108pt
R(12)V(𝐩,t)\displaystyle{R_{\perp}^{(\frac{1}{2}^{-})V}(\mathbf{p},t)} =\displaystyle= EΛb3(EΛb+mΛb)2(EΛbmΛb)(12)V(𝐩,t,t/2)\displaystyle\frac{E_{\Lambda_{b}}}{3(E_{\Lambda_{b}}+m_{\Lambda_{b}})^{2}(E_{\Lambda_{b}}-m_{\Lambda_{b}})}\>\mathscr{R}_{\perp}^{(\frac{1}{2}^{-})V}(\mathbf{p},t,t/2)\>\> (43)
=\displaystyle= [f(12)]2+(excited-state contributions),\displaystyle\>\>[f_{\perp}^{(\frac{1}{2}^{-})}]^{2}\>+\>(\text{excited-state contributions}),
R0(12)A(𝐩,t)\displaystyle{R_{0}^{(\frac{1}{2}^{-})A}(\mathbf{p},t)} =\displaystyle= 4EΛb3(mΛbmΛc,1/2)2(EΛb+mΛb)0(12)A(𝐩,t,t/2)\displaystyle\frac{4\,E_{\Lambda_{b}}}{3(m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}})^{2}(E_{\Lambda_{b}}+m_{\Lambda_{b}})}\>\mathscr{R}_{0}^{(\frac{1}{2}^{-})A}(\mathbf{p},t,t/2)\>\> (44)
=\displaystyle= [g0(12)]2+(excited-state contributions),\displaystyle\>\>[g_{0}^{(\frac{1}{2}^{-})}]^{2}\>+\>(\text{excited-state contributions}),\hskip 8.61108pt
R+(12)A(𝐩,t)\displaystyle{R_{+}^{(\frac{1}{2}^{-})A}(\mathbf{p},t)} =\displaystyle= 4EΛbq43(EΛbmΛb)2(EΛb+mΛb)(mΛb+mΛc,1/2)2+(12)A(𝐩,t,t/2)\displaystyle\frac{4\,E_{\Lambda_{b}}\,q^{4}}{3(E_{\Lambda_{b}}-m_{\Lambda_{b}})^{2}(E_{\Lambda_{b}}+m_{\Lambda_{b}})(m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}})^{2}}\>\mathscr{R}_{+}^{(\frac{1}{2}^{-})A}(\mathbf{p},t,t/2)\>\> (45)
=\displaystyle= [g+(12)]2+(excited-state contributions),\displaystyle\>\>[g_{+}^{(\frac{1}{2}^{-})}]^{2}\>+\>(\text{excited-state contributions}),\hskip 8.61108pt
R(12)A(𝐩,t)\displaystyle{R_{\perp}^{(\frac{1}{2}^{-})A}(\mathbf{p},t)} =\displaystyle= EΛb3(EΛbmΛb)2(EΛb+mΛb)(12)A(𝐩,t,t/2)\displaystyle-\frac{E_{\Lambda_{b}}}{3(E_{\Lambda_{b}}-m_{\Lambda_{b}})^{2}(E_{\Lambda_{b}}+m_{\Lambda_{b}})}\>\mathscr{R}_{\perp}^{(\frac{1}{2}^{-})A}(\mathbf{p},t,t/2)\>\> (46)
=\displaystyle= [g(12)]2+(excited-state contributions),\displaystyle\>\>[g_{\perp}^{(\frac{1}{2}^{-})}]^{2}\>+\>(\text{excited-state contributions}),
R+(12)TV(𝐩,t)\displaystyle{R_{+}^{(\frac{1}{2}^{-})TV}(\mathbf{p},t)} =\displaystyle= 4EΛb3(EΛb+mΛb)2(EΛbmΛb)+(12)TV(𝐩,t,t/2)\displaystyle\frac{4\,E_{\Lambda_{b}}}{3(E_{\Lambda_{b}}+m_{\Lambda_{b}})^{2}(E_{\Lambda_{b}}-m_{\Lambda_{b}})}\>\mathscr{R}_{+}^{(\frac{1}{2}^{-})TV}(\mathbf{p},t,t/2)\>\> (47)
=\displaystyle= [h+(12)]2+(excited-state contributions),\displaystyle\>\>[h_{+}^{(\frac{1}{2}^{-})}]^{2}\>+\>(\text{excited-state contributions}),\hskip 8.61108pt
R(12)TV(𝐩,t)\displaystyle{R_{\perp}^{(\frac{1}{2}^{-})TV}(\mathbf{p},t)} =\displaystyle= EΛb3(EΛb+mΛb)2(EΛbmΛb)(mΛbmΛc,1/2)2(12)TV(𝐩,t,t/2)\displaystyle\frac{E_{\Lambda_{b}}}{3(E_{\Lambda_{b}}+m_{\Lambda_{b}})^{2}(E_{\Lambda_{b}}-m_{\Lambda_{b}})(m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}})^{2}}\>\mathscr{R}_{\perp}^{(\frac{1}{2}^{-})TV}(\mathbf{p},t,t/2)\>\> (48)
=\displaystyle= [h(12)]2+(excited-state contributions),\displaystyle\>\>[h_{\perp}^{(\frac{1}{2}^{-})}]^{2}\>+\>(\text{excited-state contributions}),
R+(12)TA(𝐩,t)\displaystyle{R_{+}^{(\frac{1}{2}^{-})TA}(\mathbf{p},t)} =\displaystyle= 4EΛb3(EΛbmΛb)2(EΛb+mΛb)+(12)TA(𝐩,t,t/2)\displaystyle\frac{4\,E_{\Lambda_{b}}}{3(E_{\Lambda_{b}}-m_{\Lambda_{b}})^{2}(E_{\Lambda_{b}}+m_{\Lambda_{b}})}\>\mathscr{R}_{+}^{(\frac{1}{2}^{-})TA}(\mathbf{p},t,t/2)\>\> (49)
=\displaystyle= [h~+(12)]2+(excited-state contributions),\displaystyle\>\>[\widetilde{h}_{+}^{(\frac{1}{2}^{-})}]^{2}\>+\>(\text{excited-state contributions}),\hskip 8.61108pt
R(12)TA(𝐩,t)\displaystyle{R_{\perp}^{(\frac{1}{2}^{-})TA}(\mathbf{p},t)} =\displaystyle= EΛb3(EΛbmΛb)2(EΛb+mΛb)(mΛb+mΛc,1/2)2(12)TA(𝐩,t,t/2)\displaystyle-\frac{E_{\Lambda_{b}}}{3(E_{\Lambda_{b}}-m_{\Lambda_{b}})^{2}(E_{\Lambda_{b}}+m_{\Lambda_{b}})(m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}})^{2}}\>\mathscr{R}_{\perp}^{(\frac{1}{2}^{-})TA}(\mathbf{p},t,t/2)\>\> (50)
=\displaystyle= [h~(12)]2+(excited-state contributions).\displaystyle\>\>[\widetilde{h}_{\perp}^{(\frac{1}{2}^{-})}]^{2}\>+\>(\text{excited-state contributions}).

The linear projections of the three-point functions are constructed using

𝒮λ(12)V,TV(𝐩,t,t)\displaystyle{\mathscr{S}_{\lambda}^{(\frac{1}{2}^{-})V,TV}(\mathbf{p},t,t^{\prime})} =Tr[Mμj(λ)P(1/2)jlCl(3,fw)(𝐩,ΓV,TVμ,t,t)(1+)2],\displaystyle=\mathrm{Tr}\Big{[}M^{(\lambda)}_{\mu j}P_{(1/2)}^{jl}\>C^{(3,{\rm fw})}_{l}(\mathbf{p},\Gamma_{V,TV}^{\mu},t,t^{\prime})\>\>\frac{(1+\not{v})}{2}\Big{]}, (51)
𝒮λ(12)A,TA(𝐩,t,t)\displaystyle{\mathscr{S}_{\lambda}^{(\frac{1}{2}^{-})A,TA}(\mathbf{p},t,t^{\prime})} =Tr[γ5Mμj(λ)P(1/2)jlCl(3,fw)(𝐩,ΓA,TAμ,t,t)(1+)2],\displaystyle=\mathrm{Tr}\Big{[}\gamma_{5}M^{(\lambda)}_{\mu j}P_{(1/2)}^{jl}\>C^{(3,{\rm fw})}_{l}(\mathbf{p},\Gamma_{A,TA}^{\mu},t,t^{\prime})\>\>\frac{(1+\not{v})}{2}\Big{]}, (52)

where

Mμj(0)\displaystyle M^{(0)}_{\mu j} =ϵμ(0)ϵj(0),\displaystyle=\epsilon_{\mu}^{(0)}\epsilon_{j}^{(0)}, (53)
Mμj(+)\displaystyle M^{(+)}_{\mu j} =ϵμ(+)ϵj(0),\displaystyle=\epsilon_{\mu}^{(+)}\epsilon_{j}^{(0)}, (54)
Mμj()\displaystyle M^{(\perp)}_{\mu j} =i=13ϵμ(,i)ϵj(,i),\displaystyle=\sum^{3}_{i=1}\epsilon_{\mu}^{(\perp,i)}\epsilon_{j}^{(\perp,i)}, (55)

with the polarization vectors

ϵ(0)=(q0,𝐪),ϵ(+)=(|𝐪|,(q0/|𝐪|)𝐪),ϵ(,j)=( 0,𝐞j×𝐪).\epsilon^{(0)}=(\,q^{0},\>\mathbf{q}\,),\hskip 12.91663pt\epsilon^{(+)}=(\,|\mathbf{q}|,\>(q^{0}/|\mathbf{q}|)\mathbf{q}\,),\hskip 12.91663pt\epsilon^{(\perp,\,j)}=(\,0,\>\mathbf{e}_{j}\times\mathbf{q}\,). (56)

To improve the signals, we use the average of the forward three-point function and the Dirac adjoint of the backward three-point function instead of just C(3,fw)C^{(3,{\rm fw})}. We then divide out appropriate kinematic factors to obtain

S0(12)V(𝐩,t,t)\displaystyle{S_{0}^{(\frac{1}{2}^{-})V}(\mathbf{p},t,t^{\prime})} =EΛbmΛb(EΛbmΛb)(EΛb+mΛb)(mΛb+mΛc,1/2)𝒮0(12)V(𝐩,t,t)\displaystyle=-\frac{E_{\Lambda_{b}}m_{\Lambda_{b}}}{(E_{\Lambda_{b}}-m_{\Lambda_{b}})(E_{\Lambda_{b}}+m_{\Lambda_{b}})(m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}})}\>{\mathscr{S}_{0}^{(\frac{1}{2}^{-})V}(\mathbf{p},t,t^{\prime})} (57)
=f0(12)ZΛc,1/2(ZΛb(1)mΛb+ZΛb(2)EΛb)emΛc,1/2(tt)eEΛbt\displaystyle=f_{0}^{(\frac{1}{2}^{-})}\>Z_{\Lambda_{c,1/2}^{*}}(Z^{(1)}_{\Lambda_{b}}m_{\Lambda_{b}}+Z^{(2)}_{\Lambda_{b}}E_{\Lambda_{b}})e^{-m_{\Lambda_{c,1/2}^{*}}(t-t^{\prime})}e^{-E_{\Lambda_{b}}t^{\prime}} (58)
+(excited-state contributions),\displaystyle\hskip 12.91663pt+\text{(excited-state contributions)}, (59)
S+(12)V(𝐩,t,t)\displaystyle{S_{+}^{(\frac{1}{2}^{-})V}(\mathbf{p},t,t^{\prime})} =EΛbmΛb(EΛbmΛb)1/2(EΛb+mΛb)3/2(mΛbmΛc,1/2)𝒮+(12)V(𝐩,t,t)\displaystyle=-\frac{E_{\Lambda_{b}}m_{\Lambda_{b}}}{(E_{\Lambda_{b}}-m_{\Lambda_{b}})^{1/2}(E_{\Lambda_{b}}+m_{\Lambda_{b}})^{3/2}(m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}})}\>{\mathscr{S}_{+}^{(\frac{1}{2}^{-})V}(\mathbf{p},t,t^{\prime})} (60)
=f+(12)ZΛc,1/2(ZΛb(1)mΛb+ZΛb(2)EΛb)emΛc,1/2(tt)eEΛbt\displaystyle=f_{+}^{(\frac{1}{2}^{-})}\>Z_{\Lambda_{c,1/2}^{*}}(Z^{(1)}_{\Lambda_{b}}m_{\Lambda_{b}}+Z^{(2)}_{\Lambda_{b}}E_{\Lambda_{b}})e^{-m_{\Lambda_{c,1/2}^{*}}(t-t^{\prime})}e^{-E_{\Lambda_{b}}t^{\prime}} (61)
+(excited-state contributions),\displaystyle\hskip 12.91663pt+\text{(excited-state contributions)}, (62)
S(12)V(𝐩,t,t)\displaystyle{S_{\perp}^{(\frac{1}{2}^{-})V}(\mathbf{p},t,t^{\prime})} =EΛbmΛb2(EΛbmΛb)(EΛb+mΛb)2𝒮(12)V(𝐩,t,t)\displaystyle=-\frac{E_{\Lambda_{b}}m_{\Lambda_{b}}}{2(E_{\Lambda_{b}}-m_{\Lambda_{b}})(E_{\Lambda_{b}}+m_{\Lambda_{b}})^{2}}\>{\mathscr{S}_{\perp}^{(\frac{1}{2}^{-})V}(\mathbf{p},t,t^{\prime})} (63)
=f(12)ZΛc,1/2(ZΛb(1)mΛb+ZΛb(2)EΛb)emΛc,1/2(tt)eEΛbt\displaystyle=f_{\perp}^{(\frac{1}{2}^{-})}\>Z_{\Lambda_{c,1/2}^{*}}(Z^{(1)}_{\Lambda_{b}}m_{\Lambda_{b}}+Z^{(2)}_{\Lambda_{b}}E_{\Lambda_{b}})e^{-m_{\Lambda_{c,1/2}^{*}}(t-t^{\prime})}e^{-E_{\Lambda_{b}}t^{\prime}} (64)
+(excited-state contributions),\displaystyle\hskip 12.91663pt+\text{(excited-state contributions)}, (65)
S0(12)A(𝐩,t,t)\displaystyle{S_{0}^{(\frac{1}{2}^{-})A}(\mathbf{p},t,t^{\prime})} =EΛbmΛb(EΛbmΛb)(EΛb+mΛb)(mΛbmΛc,1/2)𝒮0(12)A(𝐩,t,t)\displaystyle=-\frac{E_{\Lambda_{b}}m_{\Lambda_{b}}}{(E_{\Lambda_{b}}-m_{\Lambda_{b}})(E_{\Lambda_{b}}+m_{\Lambda_{b}})(m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}})}\>{\mathscr{S}_{0}^{(\frac{1}{2}^{-})A}(\mathbf{p},t,t^{\prime})} (66)
=g0(12)ZΛc,1/2(ZΛb(1)mΛb+ZΛb(2)EΛb)emΛc,1/2(tt)eEΛbt\displaystyle=g_{0}^{(\frac{1}{2}^{-})}\>Z_{\Lambda_{c,1/2}^{*}}(Z^{(1)}_{\Lambda_{b}}m_{\Lambda_{b}}+Z^{(2)}_{\Lambda_{b}}E_{\Lambda_{b}})e^{-m_{\Lambda_{c,1/2}^{*}}(t-t^{\prime})}e^{-E_{\Lambda_{b}}t^{\prime}} (67)
+(excited-state contributions),\displaystyle\hskip 12.91663pt+\text{(excited-state contributions)}, (68)
S+(12)A(𝐩,t,t)\displaystyle{S_{+}^{(\frac{1}{2}^{-})A}(\mathbf{p},t,t^{\prime})} =EΛbmΛb(EΛbmΛb)3/2(EΛb+mΛb)1/2(mΛb+mΛc,1/2)𝒮+(12)A(𝐩,t,t)\displaystyle=-\frac{E_{\Lambda_{b}}m_{\Lambda_{b}}}{(E_{\Lambda_{b}}-m_{\Lambda_{b}})^{3/2}(E_{\Lambda_{b}}+m_{\Lambda_{b}})^{1/2}(m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}})}\>{\mathscr{S}_{+}^{(\frac{1}{2}^{-})A}(\mathbf{p},t,t^{\prime})} (69)
=g+(12)ZΛc,1/2(ZΛb(1)mΛb+ZΛb(2)EΛb)emΛc,1/2(tt)eEΛbt\displaystyle=g_{+}^{(\frac{1}{2}^{-})}\>Z_{\Lambda_{c,1/2}^{*}}(Z^{(1)}_{\Lambda_{b}}m_{\Lambda_{b}}+Z^{(2)}_{\Lambda_{b}}E_{\Lambda_{b}})e^{-m_{\Lambda_{c,1/2}^{*}}(t-t^{\prime})}e^{-E_{\Lambda_{b}}t^{\prime}} (70)
+(excited-state contributions),\displaystyle\hskip 12.91663pt+\text{(excited-state contributions)}, (71)
S(12)A(𝐩,t,t)\displaystyle{S_{\perp}^{(\frac{1}{2}^{-})A}(\mathbf{p},t,t^{\prime})} =EΛbmΛb2(EΛbmΛb)2(EΛb+mΛb)𝒮(12)A(𝐩,t,t)\displaystyle=\frac{E_{\Lambda_{b}}m_{\Lambda_{b}}}{2(E_{\Lambda_{b}}-m_{\Lambda_{b}})^{2}(E_{\Lambda_{b}}+m_{\Lambda_{b}})}\>{\mathscr{S}_{\perp}^{(\frac{1}{2}^{-})A}(\mathbf{p},t,t^{\prime})} (72)
=g(12)ZΛc,1/2(ZΛb(1)mΛb+ZΛb(2)EΛb)emΛc,1/2(tt)eEΛbt\displaystyle=g_{\perp}^{(\frac{1}{2}^{-})}\>Z_{\Lambda_{c,1/2}^{*}}(Z^{(1)}_{\Lambda_{b}}m_{\Lambda_{b}}+Z^{(2)}_{\Lambda_{b}}E_{\Lambda_{b}})e^{-m_{\Lambda_{c,1/2}^{*}}(t-t^{\prime})}e^{-E_{\Lambda_{b}}t^{\prime}} (73)
+(excited-state contributions),\displaystyle\hskip 12.91663pt+\text{(excited-state contributions)}, (74)
S+(12)TV(𝐩,t,t)\displaystyle{S^{(\frac{1}{2}^{-})TV}_{+}(\mathbf{p},t,t^{\prime})} =EΛbmΛb(EΛbmΛb)1/2(EΛb+mΛb)3/2q2𝒮+(12)TV(𝐩,t,t)\displaystyle=\frac{E_{\Lambda_{b}}m_{\Lambda_{b}}}{(E_{\Lambda_{b}}-m_{\Lambda_{b}})^{1/2}(E_{\Lambda_{b}}+m_{\Lambda_{b}})^{3/2}q^{2}}\>{\mathscr{S}_{+}^{(\frac{1}{2}^{-})TV}(\mathbf{p},t,t^{\prime})} (75)
=h+(12)ZΛc,1/2(ZΛb(1)mΛb+ZΛb(2)EΛb)emΛc,1/2(tt)eEΛbt\displaystyle=h_{+}^{(\frac{1}{2}^{-})}\>Z_{\Lambda_{c,1/2}^{*}}(Z^{(1)}_{\Lambda_{b}}m_{\Lambda_{b}}+Z^{(2)}_{\Lambda_{b}}E_{\Lambda_{b}})e^{-m_{\Lambda_{c,1/2}^{*}}(t-t^{\prime})}e^{-E_{\Lambda_{b}}t^{\prime}} (76)
+(excited-state contributions),\displaystyle\hskip 12.91663pt+\text{(excited-state contributions)}, (77)
S(12)TV(𝐩,t,t)\displaystyle{S^{(\frac{1}{2}^{-})TV}_{\perp}(\mathbf{p},t,t^{\prime})} =EΛbmΛb2(EΛbmΛb)(EΛb+mΛb)2(mΛbmΛc,1/2)𝒮(12)TV(𝐩,t,t)\displaystyle=\frac{E_{\Lambda_{b}}m_{\Lambda_{b}}}{2(E_{\Lambda_{b}}-m_{\Lambda_{b}})(E_{\Lambda_{b}}+m_{\Lambda_{b}})^{2}(m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}})}\>{\mathscr{S}^{(\frac{1}{2}^{-})TV}_{\perp}(\mathbf{p},t,t^{\prime})} (78)
=h(12)ZΛc,1/2(ZΛb(1)mΛb+ZΛb(2)EΛb)emΛc,1/2(tt)eEΛbt\displaystyle=h_{\perp}^{(\frac{1}{2}^{-})}\>Z_{\Lambda_{c,1/2}^{*}}(Z^{(1)}_{\Lambda_{b}}m_{\Lambda_{b}}+Z^{(2)}_{\Lambda_{b}}E_{\Lambda_{b}})e^{-m_{\Lambda_{c,1/2}^{*}}(t-t^{\prime})}e^{-E_{\Lambda_{b}}t^{\prime}} (79)
+(excited-state contributions),\displaystyle\hskip 12.91663pt+\text{(excited-state contributions)}, (80)
S+(12)TA(𝐩,t,t)\displaystyle{S^{(\frac{1}{2}^{-})TA}_{+}(\mathbf{p},t,t^{\prime})} =EΛbmΛb(EΛb+mΛb)1/2(EΛbmΛb)3/2q2𝒮+(12)TA(𝐩,t,t)\displaystyle=-\frac{E_{\Lambda_{b}}m_{\Lambda_{b}}}{(E_{\Lambda_{b}}+m_{\Lambda_{b}})^{1/2}(E_{\Lambda_{b}}-m_{\Lambda_{b}})^{3/2}q^{2}}\>{\mathscr{S}_{+}^{(\frac{1}{2}^{-})TA}(\mathbf{p},t,t^{\prime})} (81)
=h~+(12)ZΛc,1/2(ZΛb(1)mΛb+ZΛb(2)EΛb)emΛc,1/2(tt)eEΛbt\displaystyle=\widetilde{h}_{+}^{(\frac{1}{2}^{-})}\>Z_{\Lambda_{c,1/2}^{*}}(Z^{(1)}_{\Lambda_{b}}m_{\Lambda_{b}}+Z^{(2)}_{\Lambda_{b}}E_{\Lambda_{b}})e^{-m_{\Lambda_{c,1/2}^{*}}(t-t^{\prime})}e^{-E_{\Lambda_{b}}t^{\prime}} (82)
+(excited-state contributions),\displaystyle\hskip 12.91663pt+\text{(excited-state contributions)}, (83)
S(12)TA(𝐩,t,t)\displaystyle{S^{(\frac{1}{2}^{-})TA}_{\perp}(\mathbf{p},t,t^{\prime})} =EΛbmΛb2(EΛb+mΛb)(EΛbmΛb)2(mΛb+mΛc,1/2)𝒮(12)TA(𝐩,t,t)\displaystyle=\frac{E_{\Lambda_{b}}m_{\Lambda_{b}}}{2(E_{\Lambda_{b}}+m_{\Lambda_{b}})(E_{\Lambda_{b}}-m_{\Lambda_{b}})^{2}(m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}})}\>{\mathscr{S}^{(\frac{1}{2}^{-})TA}_{\perp}(\mathbf{p},t,t^{\prime})} (84)
=h~(12)ZΛc,1/2(ZΛb(1)mΛb+ZΛb(2)EΛb)emΛc,1/2(tt)eEΛbt\displaystyle=\widetilde{h}_{\perp}^{(\frac{1}{2}^{-})}\>Z_{\Lambda_{c,1/2}^{*}}(Z^{(1)}_{\Lambda_{b}}m_{\Lambda_{b}}+Z^{(2)}_{\Lambda_{b}}E_{\Lambda_{b}})e^{-m_{\Lambda_{c,1/2}^{*}}(t-t^{\prime})}e^{-E_{\Lambda_{b}}t^{\prime}} (85)
+(excited-state contributions),\displaystyle\hskip 12.91663pt+\text{(excited-state contributions)}, (86)

such that the unwanted factors of ZΛc,1/2(ZΛb(1)mΛb+ZΛb(2)EΛb)emΛc,1/2(tt)eEΛbtZ_{\Lambda_{c,1/2}^{*}}(Z^{(1)}_{\Lambda_{b}}m_{\Lambda_{b}}+Z^{(2)}_{\Lambda_{b}}E_{\Lambda_{b}})e^{-m_{\Lambda_{c,1/2}^{*}}(t-t^{\prime})}e^{-E_{\Lambda_{b}}t^{\prime}} cancel in Eq. (36) at large tt.

For JP=12J^{P}=\frac{1}{2}^{-}, we use Xref=VX_{\rm ref}=V, λref=+\lambda_{\rm ref}=+. Sample results for Fλ(12)X(𝐩,t)F^{(\frac{1}{2}^{-})X}_{\lambda}(\mathbf{p},t) and our constant fits thereof are shown in Fig. LABEL:fig:ratios12. For JP=32J^{P}=\frac{3}{2}^{-}, we use Xref=VX_{\rm ref}=V, λref=\lambda_{\rm ref}=\perp^{\prime} as in Ref. Meinel:2020owd . Sample results for Fλ(32)X(𝐩,t)F^{(\frac{3}{2}^{-})X}_{\lambda}(\mathbf{p},t) and our constant fits thereof are shown in Fig. LABEL:fig:ratios32. The values of the form factors obtained from the constant fits are listed in Tables 5 and 6. The fits were done individually for each form factor and take into account the correlations between the data at different tt. The values of χ2/d.o.f.\chi^{2}/{\rm d.o.f.} range between approximately 0.5 and 1.0, where typically d.o.f.=4{\rm d.o.f.}=4. The correlations between the results for different form factors and different momenta on a given ensemble were evaluated using bootstrap resampling.

Form factor |𝐩|/(2π/L)|\mathbf{p}|/(2\pi/L) C01 C005 F004
f0(12)f_{0}^{(\frac{1}{2}^{-})} 2 0.592(43)\phantom{-}0.592(43) 0.550(54)\phantom{-}0.550(54) 0.510(38)\phantom{-}0.510(38)
3 0.536(31)\phantom{-}0.536(31) 0.496(38)\phantom{-}0.496(38) 0.483(29)\phantom{-}0.483(29)
f+(12)f_{+}^{(\frac{1}{2}^{-})} 2 0.1843(51)\phantom{-}0.1843(51) 0.1743(59)\phantom{-}0.1743(59) 0.1804(47)\phantom{-}0.1804(47)
3 0.2005(68)\phantom{-}0.2005(68) 0.1887(80)\phantom{-}0.1887(80) 0.1990(65)\phantom{-}0.1990(65)
f(12)f_{\perp}^{(\frac{1}{2}^{-})} 2 0.1728(39)\phantom{-}0.1728(39) 0.1692(47)\phantom{-}0.1692(47) 0.1748(37)\phantom{-}0.1748(37)
3 0.1781(49)\phantom{-}0.1781(49) 0.1735(58)\phantom{-}0.1735(58) 0.1837(48)\phantom{-}0.1837(48)
g0(12)g_{0}^{(\frac{1}{2}^{-})} 2 0.2414(55)\phantom{-}0.2414(55) 0.2324(67)\phantom{-}0.2324(67) 0.2366(53)\phantom{-}0.2366(53)
3 0.2521(73)\phantom{-}0.2521(73) 0.2433(88)\phantom{-}0.2433(88) 0.2511(71)\phantom{-}0.2511(71)
g+(12)g_{+}^{(\frac{1}{2}^{-})} 2 0.624(38)\phantom{-}0.624(38) 0.601(49)\phantom{-}0.601(49) 0.549(36)\phantom{-}0.549(36)
3 0.571(29)\phantom{-}0.571(29) 0.542(35)\phantom{-}0.542(35) 0.522(28)\phantom{-}0.522(28)
g(12)g_{\perp}^{(\frac{1}{2}^{-})} 2 1.35(11)\phantom{-}1.35(11) 1.27(14)\phantom{-}1.27(14) 1.14(10)\phantom{-}1.14(10)
3 1.205(80)\phantom{-}1.205(80) 1.12(10)\phantom{-}1.12(10) 1.063(72)\phantom{-}1.063(72)
h+(12)h_{+}^{(\frac{1}{2}^{-})} 2 0.1935(42)\phantom{-}0.1935(42) 0.1896(52)\phantom{-}0.1896(52) 0.1956(40)\phantom{-}0.1956(40)
3 0.1957(52)\phantom{-}0.1957(52) 0.1908(63)\phantom{-}0.1908(63) 0.2028(51)\phantom{-}0.2028(51)
h(12)h_{\perp}^{(\frac{1}{2}^{-})} 2 0.2065(50)\phantom{-}0.2065(50) 0.1955(59)\phantom{-}0.1955(59) 0.2013(47)\phantom{-}0.2013(47)
3 0.2203(67)\phantom{-}0.2203(67) 0.2081(79)\phantom{-}0.2081(79) 0.2172(64)\phantom{-}0.2172(64)
h~+(12)\widetilde{h}_{+}^{(\frac{1}{2}^{-})} 2 1.32(11)\phantom{-}1.32(11) 1.24(14)\phantom{-}1.24(14) 1.08(10)\phantom{-}1.08(10)
3 1.182(82)\phantom{-}1.182(82) 1.09(10)\phantom{-}1.09(10) 1.011(74)\phantom{-}1.011(74)
h~(12)\widetilde{h}_{\perp}^{(\frac{1}{2}^{-})} 2 0.576(39)\phantom{-}0.576(39) 0.555(49)\phantom{-}0.555(49) 0.513(36)\phantom{-}0.513(36)
3 0.528(29)\phantom{-}0.528(29) 0.503(35)\phantom{-}0.503(35) 0.486(27)\phantom{-}0.486(27)
Table 5: Values of the ΛbΛc,1/2\Lambda_{b}\to\Lambda_{c,1/2}^{*} form factors for each ensemble and for the two different Λb\Lambda_{b} momenta.
Form factor |𝐩|/(2π/L)|\mathbf{p}|/(2\pi/L) C01 C005 F004
f0(32)f_{0}^{(\frac{3}{2}^{-})} 2 5.24(40)\phantom{-}5.24(40) 4.68(47)\phantom{-}4.68(47) 4.28(35)\phantom{-}4.28(35)
3 4.70(34)\phantom{-}4.70(34) 4.05(35)\phantom{-}4.05(35) 3.91(28)\phantom{-}3.91(28)
f+(32)f_{+}^{(\frac{3}{2}^{-})} 2 0.0784(45)\phantom{-}0.0784(45) 0.0670(50)\phantom{-}0.0670(50) 0.0711(40)\phantom{-}0.0711(40)
3 0.1074(72)\phantom{-}0.1074(72) 0.0904(76)\phantom{-}0.0904(76) 0.0949(60)\phantom{-}0.0949(60)
f(32)f_{\perp}^{(\frac{3}{2}^{-})} 2 0.0127(79)-0.0127(79) 0.0295(90)-0.0295(90) 0.0280(72)-0.0280(72)
3 0.046(10)\phantom{-}0.046(10) 0.020(11)\phantom{-}0.020(11) 0.0205(88)\phantom{-}0.0205(88)
f(32)f_{\perp^{\prime}}^{(\frac{3}{2}^{-})} 2 0.0708(24)\phantom{-}0.0708(24) 0.0693(28)\phantom{-}0.0693(28) 0.0682(20)\phantom{-}0.0682(20)
3 0.0658(32)\phantom{-}0.0658(32) 0.0634(37)\phantom{-}0.0634(37) 0.0639(27)\phantom{-}0.0639(27)
g0(32)g_{0}^{(\frac{3}{2}^{-})} 2 0.0305(41)\phantom{-}0.0305(41) 0.0194(48)\phantom{-}0.0194(48) 0.0216(38)\phantom{-}0.0216(38)
3 0.0605(60)\phantom{-}0.0605(60) 0.0451(65)\phantom{-}0.0451(65) 0.0454(52)\phantom{-}0.0454(52)
g+(32)g_{+}^{(\frac{3}{2}^{-})} 2 4.41(36)\phantom{-}4.41(36) 3.86(42)\phantom{-}3.86(42) 3.50(32)\phantom{-}3.50(32)
3 3.94(30)\phantom{-}3.94(30) 3.33(32)\phantom{-}3.33(32) 3.16(25)\phantom{-}3.16(25)
g(32)g_{\perp}^{(\frac{3}{2}^{-})} 2 4.34(36)\phantom{-}4.34(36) 3.86(42)\phantom{-}3.86(42) 3.50(31)\phantom{-}3.50(31)
3 3.90(29)\phantom{-}3.90(29) 3.36(31)\phantom{-}3.36(31) 3.19(24)\phantom{-}3.19(24)
g(32)g_{\perp^{\prime}}^{(\frac{3}{2}^{-})} 2 0.037(29)-0.037(29) 0.048(31)-0.048(31) 0.055(24)-0.055(24)
3 0.029(21)-0.029(21) 0.044(23)-0.044(23) 0.041(17)-0.041(17)
h+(32)h_{+}^{(\frac{3}{2}^{-})} 2 0.0609(81)-0.0609(81) 0.0733(93)-0.0733(93) 0.0776(74)-0.0776(74)
3 0.004(10)-0.004(10) 0.024(11)-0.024(11) 0.0296(87)-0.0296(87)
h(32)h_{\perp}^{(\frac{3}{2}^{-})} 2 0.0490(40)\phantom{-}0.0490(40) 0.0379(46)\phantom{-}0.0379(46) 0.0419(36)\phantom{-}0.0419(36)
3 0.0784(62)\phantom{-}0.0784(62) 0.0621(66)\phantom{-}0.0621(66) 0.0652(52)\phantom{-}0.0652(52)
h(32)h_{\perp^{\prime}}^{(\frac{3}{2}^{-})} 2 0.01943(68)-0.01943(68) 0.01839(75)-0.01839(75) 0.01954(59)-0.01954(59)
3 0.0188(10)-0.0188(10) 0.0172(10)-0.0172(10) 0.01925(87)-0.01925(87)
h~+(32)\widetilde{h}_{+}^{(\frac{3}{2}^{-})} 2 4.43(36)\phantom{-}4.43(36) 3.97(42)\phantom{-}3.97(42) 3.60(32)\phantom{-}3.60(32)
3 3.98(30)\phantom{-}3.98(30) 3.45(31)\phantom{-}3.45(31) 3.27(25)\phantom{-}3.27(25)
h~(32)\widetilde{h}_{\perp}^{(\frac{3}{2}^{-})} 2 4.64(37)\phantom{-}4.64(37) 4.06(43)\phantom{-}4.06(43) 3.75(32)\phantom{-}3.75(32)
3 4.16(31)\phantom{-}4.16(31) 3.52(32)\phantom{-}3.52(32) 3.40(25)\phantom{-}3.40(25)
h~(32)\widetilde{h}_{\perp^{\prime}}^{(\frac{3}{2}^{-})} 2 0.249(30)\phantom{-}0.249(30) 0.223(31)\phantom{-}0.223(31) 0.219(24)\phantom{-}0.219(24)
3 0.237(25)\phantom{-}0.237(25) 0.198(24)\phantom{-}0.198(24) 0.218(20)\phantom{-}0.218(20)
Table 6: Values of the ΛbΛc,3/2\Lambda_{b}\to\Lambda_{c,3/2}^{*} form factors for each ensemble and for the two different Λb\Lambda_{b} momenta.

VI Chiral and continuum extrapolations of the form factors

As in Ref. Meinel:2020owd , we extrapolate the lattice results for the form factors to the continuum limit and the physical pion mass using the model

f(q2)=Ff[1+Cfmπ2mπ,phys2(4πfπ)2+Dfa2Λ2]+Af[1+C~fmπ2mπ,phys2(4πfπ)2+D~fa2Λ2](w1)f(q^{2})=F^{f}\left[1+C^{f}\frac{m_{\pi}^{2}-m_{\pi,\rm phys}^{2}}{(4\pi f_{\pi})^{2}}+D^{f}a^{2}\Lambda^{2}\right]+A^{f}\left[1+\widetilde{C}^{f}\frac{m_{\pi}^{2}-m_{\pi,\rm phys}^{2}}{(4\pi f_{\pi})^{2}}+\widetilde{D}^{f}a^{2}\Lambda^{2}\right](w-1) (87)

with fit parameters FfF^{f}, AfA^{f}, CfC^{f}, DfD^{f}, C~f\widetilde{C}^{f}, D~f\widetilde{D}^{f} for each form factor ff, and using the kinematic variable

w(q2)=vv=mΛb2+mΛc2q22mΛbmΛc,w(q^{2})=v\cdot v^{\prime}=\frac{m_{\Lambda_{b}}^{2}+m_{\Lambda_{c}^{*}}^{2}-q^{2}}{2m_{\Lambda_{b}}m_{\Lambda_{c}^{*}}}, (88)

where mΛc=mΛc,1/2m_{\Lambda_{c}^{*}}=m_{\Lambda_{c,1/2}^{*}} or mΛc=mΛc,3/2m_{\Lambda_{c}^{*}}=m_{\Lambda_{c,3/2}^{*}} depending on the final state considered. In the physical limit mπ=mπ,physm_{\pi}=m_{\pi,\rm phys}, a=0a=0, the functions reduce to

f(q2)=Ff+Af(w1).f(q^{2})=F^{f}+A^{f}(w-1). (89)

This parametrization corresponds to a Taylor expansion of the shape of the form factors around the endpoint w=1w=1, i.e. an expansion in powers of (w1)(w-1); because we have lattice results for only two different kinematic points near w=1.01w=1.01 and w=1.03w=1.03, we work only to first order, and we expect the parametrization to become unreliable for large (w1)(w-1). Our results for FfF^{f} and AfA^{f} from fits using Eq. (87) are given in the first two columns of Table 7, and the values and full covariance matrices (evaluated using bootstrap) are also provided as supplemental files. As can be seen in Figs. 4, 5, 6, and 7, the lattice data are well described by the model. The fits of the individual form factors have χ2/d.o.f.\chi^{2}/{\rm d.o.f.} in the range from approximately 0.5 to 1.5, where we count FfF^{f}, AfA^{f}, CfC^{f}, and DfD^{f} as parameters that are primarily constrained by the data, such that d.o.f.=64=2{\rm d.o.f.}=6-4=2.

Again following Ref. Meinel:2020owd , to estimate systematic uncertainties associated with the chiral and continuum extrapolations, we also performed “higher-order” fits including additional terms describing the dependence on the lattice spacing and pion mass,

fHO(q2)\displaystyle f_{\rm HO}(q^{2}) =\displaystyle= FHOf[1+CHOfmπ2mπ,phys2(4πfπ)2+HHOfmπ3mπ,phys3(4πfπ)3+DHOfa2Λ2+EHOfaΛ+GHOfa3Λ3]\displaystyle F_{\rm HO}^{f}\left[1+C_{\rm HO}^{f}\frac{m_{\pi}^{2}-m_{\pi,\rm phys}^{2}}{(4\pi f_{\pi})^{2}}+H_{\rm HO}^{f}\frac{m_{\pi}^{3}-m_{\pi,\rm phys}^{3}}{(4\pi f_{\pi})^{3}}+D_{\rm HO}^{f}a^{2}\Lambda^{2}+E_{\rm HO}^{f}a\Lambda+G_{\rm HO}^{f}a^{3}\Lambda^{3}\right] (90)
+AHOf[1+C~HOfmπ2mπ,phys2(4πfπ)2+H~HOfmπ3mπ,phys3(4πfπ)3+D~HOfa2Λ2+E~HOfaΛ+G~HOfa3Λ3](w1).\displaystyle+A_{\rm HO}^{f}\left[1+\widetilde{C}_{\rm HO}^{f}\frac{m_{\pi}^{2}-m_{\pi,\rm phys}^{2}}{(4\pi f_{\pi})^{2}}+\widetilde{H}_{\rm HO}^{f}\frac{m_{\pi}^{3}-m_{\pi,\rm phys}^{3}}{(4\pi f_{\pi})^{3}}+\widetilde{D}_{\rm HO}^{f}a^{2}\Lambda^{2}+\widetilde{E}_{\rm HO}^{f}a\Lambda+\widetilde{G}_{\rm HO}^{f}a^{3}\Lambda^{3}\right](w-1).\hskip 25.83325pt

No priors were used for the parameters FfF^{f}, AfA^{f}, FHOfF_{\rm HO}^{f}, AHOfA_{\rm HO}^{f}. The Gaussian priors for the parameters describing the lattice-spacing and pion-mass dependence were chosen as in Ref. Meinel:2020owd except for EHOfE_{\rm HO}^{f} and E~HOf\widetilde{E}_{\rm HO}^{f}. These coefficients describe the effects of the incomplete 𝒪(a)\mathcal{O}(a) improvement of the weak currents in Eq. (32), and here we take the prior widths for EHOfE_{\rm HO}^{f} and E~HOf\widetilde{E}_{\rm HO}^{f} to be two times larger than in Ref. Meinel:2020owd , based on the observation in Ref. Detmold:2015aaa that these effects may be larger for a heavy-to-heavy current than for a heavy-to-light current. These widths allow for missing 𝒪(a)\mathcal{O}(a) corrections as large as 10% at the coarse lattice spacing, motivated by the large bb-quark momenta used here. In the higher-order fits, we also multiplied the data for each form factor with Gaussian random distributions of central value 1 and appropriate widths to incorporate estimates of systematic uncertainties associated with the residual matching factors ρΓ\rho_{\Gamma} (2% for the vector and axial vector currents, 4.04% for the tensor currents Datta:2017aue ) and systematic uncertainties associated with neglecting the down-up quark-mass difference and QED corrections [𝒪((mdmu)/Λ)0.8%\mathcal{O}((m_{d}-m_{u})/\Lambda)\approx 0.8\% and 𝒪(αe.m.)0.7%\mathcal{O}(\alpha_{\rm e.m.})\approx 0.7\%]. Furthermore, to include the scale-setting uncertainty, we also promoted the lattice spacings to fit parameters with Gaussian priors according to the values and uncertainties shown in Table 1. All of our lattice calculations were performed with mπL>4m_{\pi}L>4, and we therefore expect finite-volume effects to be negligible at least for the heavier pion masses where the Λc(2595)\Lambda_{c}^{*}(2595) and Λc(2625)\Lambda_{c}^{*}(2625) are well below strong-decay thresholds. However, we are unable to provide a quantitative estimate of finite-volume effects in the extrapolated form factors.

In the physical limit, the higher-order fits reduce to the same form as in Eq. (89) but with parameters FHOfF^{f}_{\rm HO} and AHOfA^{f}_{\rm HO}. Our results for these parameters are given in the last two columns in Table 7 and also in supplemental files. For any observable OO, we evaluate the form-factor systematic uncertainty using

σO,syst=max(|OHOO|,|σO,HO2σO2|),\sigma_{O,{\rm syst}}={\rm max}\left(|O_{\rm HO}-O|,\>\sqrt{|\sigma_{O,{\rm HO}}^{2}-\sigma_{O}^{2}|}\right), (91)

where OO, σO\sigma_{O} denote the central value and uncertainty calculated using {Ff,Af}\{F^{f},A^{f}\} and their covariance matrix, and OHOO_{\rm HO}, σO,HO2\sigma_{O,{\rm HO}}^{2} denote the central value and uncertainty calculated using {FHOf,AHOf}\{F^{f}_{\rm HO},A^{f}_{\rm HO}\} and their covariance matrix. We find that the (vector and axial-vector) form-factor systematic uncertainties result in an approximately 12 to 13 percent systematic uncertainty in the ΛbΛc(2595)μν¯\Lambda_{b}\to\Lambda_{c}^{*}(2595)\mu^{-}\bar{\nu} differential decay rate in the kinematic range shown in Sec. VIII, and 14 to 18 percent for ΛbΛc(2625)μν¯\Lambda_{b}\to\Lambda_{c}^{*}(2625)\mu^{-}\bar{\nu}. Because the decay rates depend quadratically on the form factors, this corresponds to “average” systematic uncertainties of around 6% in the ΛbΛc(2595)\Lambda_{b}\to\Lambda_{c}^{*}(2595) vector and axial-vector form factors and around 8% for ΛbΛc(2625)\Lambda_{b}\to\Lambda_{c}^{*}(2625).

ff           FfF^{f}         AfA^{f}         FHOfF^{f}_{\rm HO}         AHOfA^{f}_{\rm HO}
f0(12)f_{0}^{(\frac{1}{2}^{-})} 0.545(64)\phantom{-}0.545(64) 2.21(66)-2.21(66) 0.546(75)\phantom{-}0.546(75) 2.20(69)-2.20(69)
f+(12)f_{+}^{(\frac{1}{2}^{-})} 0.1628(90)\phantom{-}0.1628(90) 1.16(31)\phantom{-}1.16(31) 0.164(14)\phantom{-}0.164(14) 1.17(33)\phantom{-}1.17(33)
f(12)f_{\perp}^{(\frac{1}{2}^{-})} 0.1690(79)\phantom{-}0.1690(79) 0.57(25)\phantom{-}0.57(25) 0.169(13)\phantom{-}0.169(13) 0.58(26)\phantom{-}0.58(26)
g0(12)g_{0}^{(\frac{1}{2}^{-})} 0.221(11)\phantom{-}0.221(11) 0.94(33)\phantom{-}0.94(33) 0.221(17)\phantom{-}0.221(17) 0.95(35)\phantom{-}0.95(35)
g+(12)g_{+}^{(\frac{1}{2}^{-})} 0.582(64)\phantom{-}0.582(64) 2.24(65)-2.24(65) 0.584(76)\phantom{-}0.584(76) 2.23(68)-2.23(68)
g(12)g_{\perp}^{(\frac{1}{2}^{-})} 1.22(16)\phantom{-}1.22(16) 6.1(1.9)-6.1(1.9) 1.22(18)\phantom{-}1.22(18) 6.1(2.0)-6.1(2.0)
h+(12)h_{+}^{(\frac{1}{2}^{-})} 0.1908(89)\phantom{-}0.1908(89) 0.47(30)\phantom{-}0.47(30) 0.191(14)\phantom{-}0.191(14) 0.49(32)\phantom{-}0.49(32)
h(12)h_{\perp}^{(\frac{1}{2}^{-})} 0.1860(93)\phantom{-}0.1860(93) 0.98(28)\phantom{-}0.98(28) 0.187(15)\phantom{-}0.187(15) 0.98(30)\phantom{-}0.98(30)
h~+(12)\widetilde{h}_{+}^{(\frac{1}{2}^{-})} 1.15(16)\phantom{-}1.15(16) 5.8(1.8)-5.8(1.8) 1.15(18)\phantom{-}1.15(18) 5.7(1.9)-5.7(1.9)
h~(12)\widetilde{h}_{\perp}^{(\frac{1}{2}^{-})} 0.543(62)\phantom{-}0.543(62) 2.12(67)-2.12(67) 0.544(75)\phantom{-}0.544(75) 2.11(71)-2.11(71)
f0(32)f_{0}^{(\frac{3}{2}^{-})} 4.29(67)\phantom{-}4.29(67) 27.3(8.7)-27.3(8.7) 4.31(75)\phantom{-}4.31(75) 27.0(8.8)-27.0(8.8)
f+(32)f_{+}^{(\frac{3}{2}^{-})} 0.0498(70)\phantom{-}0.0498(70) 1.28(27)\phantom{-}1.28(27) 0.0504(83)\phantom{-}0.0504(83) 1.29(29)\phantom{-}1.29(29)
f(32)f_{\perp}^{(\frac{3}{2}^{-})} 0.073(14)-0.073(14) 2.52(35)\phantom{-}2.52(35) 0.073(14)-0.073(14) 2.54(39)\phantom{-}2.54(39)
f(32)f_{\perp^{\prime}}^{(\frac{3}{2}^{-})} 0.0687(40)\phantom{-}0.0687(40) 0.280(89)-0.280(89) 0.0687(59)\phantom{-}0.0687(59) 0.279(89)-0.279(89)
g0(32)g_{0}^{(\frac{3}{2}^{-})} 0.0027(35)\phantom{-}0.0027(35) 1.23(21)\phantom{-}1.23(21) 0.0027(36)\phantom{-}0.0027(36) 1.23(23)\phantom{-}1.23(23)
g+(32)g_{+}^{(\frac{3}{2}^{-})} 3.46(58)\phantom{-}3.46(58) 24.7(8.1)-24.7(8.1) 3.47(64)\phantom{-}3.47(64) 24.5(8.1)-24.5(8.1)
g(32)g_{\perp}^{(\frac{3}{2}^{-})} 3.47(57)\phantom{-}3.47(57) 22.6(7.8)-22.6(7.8) 3.49(63)\phantom{-}3.49(63) 22.4(7.9)-22.4(7.9)
g(32)g_{\perp^{\prime}}^{(\frac{3}{2}^{-})} 0.062(38)-0.062(38) 0.62(57)\phantom{-}0.62(57) 0.062(37)-0.062(37) 0.62(57)\phantom{-}0.62(57)
h+(32)h_{+}^{(\frac{3}{2}^{-})} 0.124(16)-0.124(16) 2.51(32)\phantom{-}2.51(32) 0.124(18)-0.124(18) 2.52(37)\phantom{-}2.52(37)
h(32)h_{\perp}^{(\frac{3}{2}^{-})} 0.0208(53)\phantom{-}0.0208(53) 1.22(23)\phantom{-}1.22(23) 0.0210(60)\phantom{-}0.0210(60) 1.22(25)\phantom{-}1.22(25)
h(32)h_{\perp^{\prime}}^{(\frac{3}{2}^{-})} 0.0201(12)-0.0201(12) 0.040(21)\phantom{-}0.040(21) 0.0201(19)-0.0201(19) 0.039(21)\phantom{-}0.039(21)
h~+(32)\widetilde{h}_{+}^{(\frac{3}{2}^{-})} 3.58(59)\phantom{-}3.58(59) 23.7(8.1)-23.7(8.1) 3.59(66)\phantom{-}3.59(66) 23.5(8.1)-23.5(8.1)
h~(32)\widetilde{h}_{\perp}^{(\frac{3}{2}^{-})} 3.72(61)\phantom{-}3.72(61) 25.1(8.2)-25.1(8.2) 3.74(69)\phantom{-}3.74(69) 24.8(8.3)-24.8(8.3)
h~(32)\widetilde{h}_{\perp^{\prime}}^{(\frac{3}{2}^{-})} 0.232(49)\phantom{-}0.232(49) 0.60(52)-0.60(52) 0.235(56)\phantom{-}0.235(56) 0.60(56)-0.60(56)
Table 7: The parameters describing the ΛbΛc(2595)\Lambda_{b}\to\Lambda_{c}^{*}(2595) and ΛbΛc(2625)\Lambda_{b}\to\Lambda_{c}^{*}(2625) form factors at the physical pion mass and in the continuum limit. The nominal parameters FfF^{f} and AfA^{f} are used to evaluate the central values and statistical uncertainties, while the “higher-order” parameters FHOfF^{f}_{\rm HO} and AHOfA^{f}_{\rm HO} are used in combination with the nominal parameters to evaluate systematic uncertainties as explained in the main text. Files containing the parameter values and the covariance matrices are provided as supplemental material.

Refer to caption

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 4: Chiral and continuum extrapolations of the ΛbΛc(2595)\Lambda_{b}\to\Lambda_{c}^{*}(2595) vector and axial vector form factors. The solid magenta curves show the form factors in the physical limit a=0a=0, mπ=135MeVm_{\pi}=135\>{\rm MeV}, with inner light magenta bands indicating the statistical uncertainties and outer dark magenta bands indicating the total uncertainties. The dashed-dotted, dashed, and dotted curves show the fit functions evaluated at the lattice spacings and pion masses of the individual data sets C01, C005, and F004, respectively, with uncertainty bands omitted for clarity.

Refer to caption

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 5: Like Fig. 4, but for the ΛbΛc(2595)\Lambda_{b}\to\Lambda_{c}^{*}(2595) tensor form factors.

Refer to caption

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 6: Like Fig. 4, but for the ΛbΛc(2625)\Lambda_{b}\to\Lambda_{c}^{*}(2625) vector and axial vector form factors.

Refer to caption

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 7: Like Fig. 4, but for the ΛbΛc(2625)\Lambda_{b}\to\Lambda_{c}^{*}(2625) tensor form factors.

VII Comparison with zero-recoil sum rules

At zero recoil (w=1w=1), approximate sum-rule bounds on the size of heavy-to-heavy form factors can be derived using the operator product expansion and heavy-quark effective theory Shifman:1994jh ; Bigi:1994ga ; Gambino:2010bp ; Gambino:2012rd ; Mannel:2015osa ; Boer:2018vpx . In Ref. Mannel:2015osa , it was found that the lattice results for the ΛbΛc\Lambda_{b}\to\Lambda_{c} form factors with the JP=12+J^{P}=\frac{1}{2}^{+} final state (which constitute the “elastic” contribution to the sum rule) almost completely saturate the bounds derived through order 1/m31/m^{3}, apparently leaving very little room for “inelastic” contributions from other final states such as the Λc\Lambda_{c}^{*}’s considered here. However, in the case of BB-meson decays, the size of 1/m41/m^{4} and 1/m51/m^{5} corrections has been found to be approximately 33% of the size of the 1/m21/m^{2} and 1/m31/m^{3} terms Gambino:2012rd ; Boer:2018vpx . Allowing for effects of this size also for Λb\Lambda_{b} decays, the authors of Ref. Boer:2018vpx then obtained estimates of the size of the inelastic contributions, which are expected to be dominated by ΛbΛc(2595)\Lambda_{b}\to\Lambda_{c}^{*}(2595) and ΛbΛc(2625)\Lambda_{b}\to\Lambda_{c}^{*}(2625).

When expressed in terms of our form-factor definitions using the relations given in Appendix A.3, Eqs. (46), (48), (50), and (52) of Ref. Boer:2018vpx become

Finel,1/2\displaystyle F_{\rm inel,1/2} =\displaystyle= |f+(12)|w=12+2|f(12)|w=12,\displaystyle\big{|}f_{+}^{(\frac{1}{2}^{-})}\big{|}^{2}_{w=1}+2\big{|}f_{\perp}^{(\frac{1}{2}^{-})}\big{|}^{2}_{w=1}, (92)
Finel,3/2\displaystyle F_{\rm inel,3/2} =\displaystyle= 16[(mΛb+mΛc,3/2)2(mΛbmΛc,3/2)2|f+(32)|2+2|f(32)|2+6|f(32)|2]w=1,\displaystyle\frac{1}{6}\left[\frac{(m_{\Lambda_{b}}+m_{\Lambda_{c,3/2}^{*}})^{2}}{(m_{\Lambda_{b}}-m_{\Lambda_{c,3/2}^{*}})^{2}}\,\big{|}f_{+}^{(\frac{3}{2}^{-})}\big{|}^{2}+2\big{|}f_{\perp}^{(\frac{3}{2}^{-})}\big{|}^{2}+6\big{|}f_{\perp^{\prime}}^{(\frac{3}{2}^{-})}\big{|}^{2}\right]_{w=1}, (93)
Ginel,1/2\displaystyle G_{\rm inel,1/2} =\displaystyle= 13|g0(12)|w=12,\displaystyle\frac{1}{3}\,\big{|}g_{0}^{(\frac{1}{2}^{-})}\big{|}^{2}_{w=1}, (94)
Ginel,3/2\displaystyle G_{\rm inel,3/2} =\displaystyle= 118(mΛb+mΛc,3/2)2(mΛbmΛc,3/2)2|g0(32)|w=12.\displaystyle\frac{1}{18}\,\frac{(m_{\Lambda_{b}}+m_{\Lambda_{c,3/2}^{*}})^{2}}{(m_{\Lambda_{b}}-m_{\Lambda_{c,3/2}^{*}})^{2}}\,\big{|}g_{0}^{(\frac{3}{2}^{-})}\big{|}^{2}_{w=1}. (95)

The zero-recoil sum-rule estimate obtained in Ref. Boer:2018vpx is

Finel,1/2+Finel,3/2\displaystyle F_{\rm inel,1/2}+F_{\rm inel,3/2} \displaystyle\approx 0.0110.055+0.061,\displaystyle 0.011^{+0.061}_{-0.055}, (96)
Ginel,1/2+Ginel,3/2\displaystyle G_{\rm inel,1/2}+G_{\rm inel,3/2} \displaystyle\approx 0.0400.052+0.049.\displaystyle 0.040^{+0.049}_{-0.052}. (97)

Using our lattice-QCD results for the form factors, we find

Finel,1/2+Finel,3/2\displaystyle F_{\rm inel,1/2}+F_{\rm inel,3/2} =\displaystyle= 0.093±0.009stat±0.012syst,\displaystyle 0.093\pm 0.009_{\rm stat}\pm 0.012_{\rm syst}, (98)
Ginel,1/2+Ginel,3/2\displaystyle G_{\rm inel,1/2}+G_{\rm inel,3/2} =\displaystyle= 0.0162±0.0016stat±0.0020syst.\displaystyle 0.0162\pm 0.0016_{\rm stat}\pm 0.0020_{\rm syst}. (99)

Thus, our result for the axial current falls within the range given in Ref. Boer:2018vpx , while our result for the vector current is slightly above the upper limit.

VIII 𝚲𝒃𝚲𝒄𝝂¯\bm{\Lambda_{b}\to\Lambda_{c}^{*}\ell^{-}\bar{\nu}} observables

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 8: ΛbΛc(2595)ν¯\Lambda_{b}\to\Lambda_{c}^{*}(2595)\ell^{-}\bar{\nu} (left) and ΛbΛc(2625)ν¯\Lambda_{b}\to\Lambda_{c}^{*}(2625)\ell^{-}\bar{\nu} (right) observables in the high-q2q^{2} region calculated in the Standard Model using our form-factor results. From top to bottom: the differential decay rate divided by |Vcb|2|V_{cb}|^{2}, the forward-backward asymmetry, and the flat term. In each case, we show results for =μ\ell=\mu and =τ\ell=\tau (the results for =e\ell=e would look the same as for =μ\ell=\mu in this kinematic region). The bands indicate the total (statistical ++ systematic) uncertainties.
Refer to caption
Figure 9: Comparison of the ΛbΛcμν¯\Lambda_{b}\to\Lambda_{c}\,\mu^{-}\bar{\nu}, ΛbΛc(2595)μν¯\Lambda_{b}\to\Lambda_{c}^{*}(2595)\mu^{-}\bar{\nu}, and ΛbΛc(2625)μν¯\Lambda_{b}\to\Lambda_{c}^{*}(2625)\mu^{-}\bar{\nu} differential decay rates just below qmax2q^{2}_{\rm max}, calculated in the Standard Model using the form factors from lattice QCD.

The two-fold differential decay rates of ΛbΛc(2595)ν¯\Lambda_{b}\to\Lambda_{c}^{*}(2595)\ell^{-}\bar{\nu} and ΛbΛc(2625)ν¯\Lambda_{b}\to\Lambda_{c}^{*}(2625)\ell^{-}\bar{\nu} in the Standard Model can be written as

d2Γ(J)dq2dcosθ=A(J)+B(J)cosθ+C(J)cos2θ,\frac{\mathrm{d}^{2}\Gamma^{(J)}}{\mathrm{d}q^{2}\>\mathrm{d}\cos\theta_{\ell}}=A^{(J)}+B^{(J)}\cos\theta_{\ell}+C^{(J)}\cos^{2}\theta_{\ell}, (100)

where θ\theta_{\ell} is the helicity angle of the charged lepton and A(J)A^{(J)}, B(J)B^{(J)}, C(J)C^{(J)} are functions of q2q^{2} only Boer:2018vpx . The J=12,32J=\frac{1}{2},\frac{3}{2} superscript is used to distinguish the Λc(2595)\Lambda_{c}^{*}(2595) and Λc(2625)\Lambda_{c}^{*}(2625) final states. The equations for A(J)A^{(J)}, B(J)B^{(J)}, and C(J)C^{(J)} in terms of the form factors are given in Ref. Boer:2018vpx (where A(J)=Γ0()a(J)A^{(J)}=\Gamma_{0}^{(\ell)}a_{\ell}^{(J)} etc.) and can be converted to our conventions using the relations in Appendix A.3. The integral over cosθ\cos\theta_{\ell} yields the q2q^{2}-differential decay rate

dΓ(J)dq2=2A(J)+23C(J),\frac{\mathrm{d}\Gamma^{(J)}}{\mathrm{d}q^{2}}=2A^{(J)}+\frac{2}{3}C^{(J)}, (101)

and we also consider two angular observables Boer:2018vpx : the forward-backward asymmetry

AFB(J)=B(J)dΓ(J)/dq2A_{FB}^{(J)}=\frac{B^{(J)}}{\mathrm{d}\Gamma^{(J)}/\mathrm{d}q^{2}} (102)

and the “flat term”

FH(J)=2(A(J)+C(J))dΓ(J)/dq2.F_{H}^{(J)}=\frac{2(A^{(J)}+C^{(J)})}{\mathrm{d}\Gamma^{(J)}/\mathrm{d}q^{2}}. (103)

The Standard-Model predictions for dΓ(J)/dq2/|Vcb|2\mathrm{d}\Gamma^{(J)}/\mathrm{d}q^{2}/|V_{cb}|^{2} and for the angular observables using our form-factor results are shown in Fig. 8. Note that at leading order in heavy-quark effective theory, the differential decay rate for the J=12J=\frac{1}{2} final state would be a factor 2 smaller than the differential rate for J=32J=\frac{3}{2}, and the lepton-side angular observables considered here would be equal for both final states Leibovich:1997az ; Boer:2018vpx . In contrast, we find the J=12J=\frac{1}{2} rate to be approximately 2.5 times larger than the J=32J=\frac{3}{2} rate, and we find the forward-backward asymmetries to have opposite signs at high q2q^{2}. Leading-order HQET is of course expected to be inadequate for these decays, in which the light degrees of freedom in the final state have a different angular momentum than in the initial state. The forms of the subleading corrections are known Leibovich:1997az ; Boer:2018vpx , but we have not been able to obtain an acceptable HQET fit to the full set of form factors even when including these corrections, suggesting that sub-subleading terms may also be significant.

In Fig. 9 we additionally compare the ΛbΛc(2595)μν¯\Lambda_{b}\to\Lambda_{c}^{*}(2595)\mu^{-}\bar{\nu}, and ΛbΛc(2625)μν¯\Lambda_{b}\to\Lambda_{c}^{*}(2625)\mu^{-}\bar{\nu} differential decay rates with that of ΛbΛcμν¯\Lambda_{b}\to\Lambda_{c}\,\mu^{-}\bar{\nu}, using the form factors from Ref. Detmold:2015aaa for the latter. For example, at q2=qmax21GeV2q^{2}=q^{2}_{\rm max}-1\>{\rm GeV}^{2}, the ΛbΛc(2595)μν¯\Lambda_{b}\to\Lambda_{c}^{*}(2595)\mu^{-}\bar{\nu} differential decay rate is approximately 13 times smaller than the ΛbΛcμν¯\Lambda_{b}\to\Lambda_{c}\,\mu^{-}\bar{\nu} differential decay rate. Finally, recall that the CDF Collaboration has measured the total (i.e., integrated over all q2q^{2}) decay rates, and found the ΛbΛc(2625)μν¯\Lambda_{b}\to\Lambda_{c}^{*}(2625)\mu^{-}\bar{\nu} total rate to be approximately 1.7 times larger than the ΛbΛc(2595)μν¯\Lambda_{b}\to\Lambda_{c}^{*}(2595)\mu^{-}\bar{\nu} total rate Aaltonen:2008eu . Since our results for the differential decay rates at high q2q^{2} show the opposite behavior, the differential rates must cross at some value of q2q^{2} lower than considered here.

IX Conclusions

The decays ΛbΛc(2595)ν¯\Lambda_{b}\to\Lambda_{c}^{*}(2595)\ell^{-}\bar{\nu} and ΛbΛc(2625)ν¯\Lambda_{b}\to\Lambda_{c}^{*}(2625)\ell^{-}\bar{\nu} are interesting processes that deserve to be studied in detail, both experimentally and theoretically, to obtain a more complete picture of bcν¯b\to c\ell^{-}\bar{\nu} semileptonic decays. This work contributes to this goal by providing the first lattice-QCD determination of the complete set of form factors, albeit only in the vicinity of qmax2q^{2}_{\rm max}. The calculation was made possible by the technology developed initially for ΛbΛ(1520)\Lambda_{b}\to\Lambda^{*}(1520) Meinel:2020owd : working in the rest frame of the Λc\Lambda_{c}^{*} to avoid mixing with unwanted quantum numbers, and using an interpolating field with gauge-covariant spatial derivatives to obtain a good overlap with the Λc\Lambda_{c}^{*}.

In nature, the Λc(2595)\Lambda_{c}^{*}(2595) and Λc(2625)\Lambda_{c}^{*}(2625) are narrow resonances decaying through the strong interaction to Λcππ\Lambda_{c}\pi\pi, with widths of 2.6(0.6)MeV2.6(0.6)\>{\rm MeV} and <0.97MeV<\!\!0.97\>{\rm MeV}, respectively Zyla:2020zbs . These values justify the use of the narrow-width approximation. In our lattice calculation with three different pion masses in the range from approximately 300 to 430 MeV, we find that the Λc\Lambda_{c}^{*} masses are below all possible strong-decay thresholds, including Σcπ\Sigma_{c}\pi, except perhaps at the lowest pion mass. Simple chiral-continuum extrapolations of our lattice results for mΛc(2595)m_{\Lambda_{c}^{*}(2595)} and mΛc(2625)m_{\Lambda_{c}^{*}(2625)} yield values in agreement with experiment once systematic uncertainties are taken into account. The hyperfine splittings mΛc(2625)mΛc(2595)m_{\Lambda_{c}^{*}(2625)}-m_{\Lambda_{c}^{*}(2595)} are also found to be consistent with experiment.

We use helicity-based definitions of the ΛbΛc(2595)\Lambda_{b}\to\Lambda_{c}^{*}(2595) and ΛbΛc(2625)\Lambda_{b}\to\Lambda_{c}^{*}(2625) form factors. On each ensemble we performed calculations for two different Λb\Lambda_{b} momenta corresponding to w1.01w\approx 1.01 and w1.03w\approx 1.03, where w=vvw=v\cdot v^{\prime}. The final results for the form factors, obtained from extrapolations to the continuum limit and physical pion mass, are parametrized as linear functions of ww. These parametrizations are expected to be accurate only near the kinematic region where we have lattice data. Our results for the form factors at w=1w=1 are compatible (albeit only marginally in the case of the vector form factors) with the zero-recoil sum-rules given in Ref. Boer:2018vpx . It will also be interesting to see the impact on unitarity bounds in global analyses of bcν¯b\to c\ell^{-}\bar{\nu} form factors Cohen:2019zev .

Using our form-factor results, we evaluated the ΛbΛc(2595)ν¯\Lambda_{b}\to\Lambda_{c}^{*}(2595)\ell^{-}\bar{\nu} and ΛbΛc(2625)ν¯\Lambda_{b}\to\Lambda_{c}^{*}(2625)\ell^{-}\bar{\nu} differential decay rates, forward-backward asymmetry, and flat term in the Standard Model. We find the ΛbΛc(2595)ν¯\Lambda_{b}\to\Lambda_{c}^{*}(2595)\ell^{-}\bar{\nu} differential rates to be approximately 2.5 times higher than the ΛbΛc(2625)ν¯\Lambda_{b}\to\Lambda_{c}^{*}(2625)\ell^{-}\bar{\nu} differential rates (in the kinematic region considered; the CDF measurement of the total rates Aaltonen:2008eu suggests that the ordering of the differential rates will switch at lower q2q^{2}), which is opposite to the behavior predicted by leading-order HQET but consistent with the expectation that subleading contributions in HQET are important for these types of decays. While not discussed in detail in this paper, we also attempted HQET fits at order 1/m1/m Leibovich:1997az ; Boer:2018vpx to our form factor results, but we did not obtain an acceptable description. We expect that 1/m21/m^{2} corrections, which have not yet been studied for these processes, are also large. This will make it more challenging to combine experimental data for the shapes of the muonic decay rates in the entire kinematic range with the lattice results for the form factors near qmax2q^{2}_{\rm max} to obtain Standard-Model predictions for R(Λc)=(ΛbΛcτν¯)/(ΛbΛcμν¯)R(\Lambda_{c}^{*})=\mathcal{B}(\Lambda_{b}\to\Lambda_{c}^{*}\tau^{-}\bar{\nu})/\mathcal{B}(\Lambda_{b}\to\Lambda_{c}^{*}\mu^{-}\bar{\nu}). Lattice calculations at lower q2q^{2}, while still working in the Λc\Lambda_{c}^{*} rest frame, could be performed using finer lattices or using a moving-NRQCD action Horgan:2009ti for the bb quark. Alternatively, one could use nonzero Λc\Lambda_{c}^{*} momenta and explicitly deal with the mixing of quantum numbers by extracting multiple states using larger operator bases; see for example Refs. Menadue:2013kfi ; Silvi:2021uya .

Acknowledgments

We thank Marzia Bordone and Danny van Dyk for discussions, and the RBC and UKQCD Collaborations for making their gauge field ensembles available. SM is supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC0009913. GR is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-SC0012704 (BNL). The computations for this work were carried out on facilities at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH1123, and on facilities of the Extreme Science and Engineering Discovery Environment (XSEDE) XSEDE , which is supported by National Science Foundation grant number ACI-1548562. We acknowledge the use of Chroma Edwards:2004sx ; Chroma , QPhiX JOO2015139 ; QPhiX , QLUA QLUA , MDWF MDWF , and related USQCD software USQCD .

Appendix A Relations between different form factor definitions

In this appendix, we provide expressions for the ΛbΛc,1/2\Lambda_{b}\to\Lambda_{c,1/2}^{*} and ΛbΛc,3/2\Lambda_{b}\to\Lambda_{c,3/2}^{*} form factors in other definitions used in the literature (for the vector and axial-vector currents only) in terms of our form factors. Note that the overall sign of the form factors for each decay mode depends on the phase conventions of the states. Thus, in the following relations, only the relative signs among the form factors for a specific final state are well-determined. To make this explicit, we introduce factors of σ(JP)\sigma^{(J^{P})} below, which can take on the values ±1\pm 1.

A.1 Definition used by Leibovich and Stewart as well as Pervin, Roberts, and Capstick

We find that the ΛbΛc,1/2\Lambda_{b}\to\Lambda_{c,1/2}^{*} form factor definitions in Ref. Leibovich:1997az are related to ours as

dV1\displaystyle d_{V_{1}} =\displaystyle= σLS(12)f(12),\displaystyle\sigma^{(\frac{1}{2}^{-})}_{\rm LS}f_{\perp}^{(\frac{1}{2}^{-})}, (104)
dV2\displaystyle d_{V_{2}} =\displaystyle= σLS(12)mΛb[mΛb+mΛc,1/2q2f0(12)+mΛbmΛc,1/2s(1mΛb2mΛc,1/22q2)f+(12)+2mΛc,1/2sf(12)],\displaystyle-\sigma^{(\frac{1}{2}^{-})}_{\rm LS}m_{\Lambda_{b}}\left[\frac{m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}}}{q^{2}}f_{0}^{(\frac{1}{2}^{-})}+\frac{m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}}}{s_{-}}\left(1-\frac{m_{\Lambda_{b}}^{2}-m_{\Lambda_{c,1/2}^{*}}^{2}}{q^{2}}\right)f_{+}^{(\frac{1}{2}^{-})}+\frac{2m_{\Lambda_{c,1/2}^{*}}}{s_{-}}f_{\perp}^{(\frac{1}{2}^{-})}\right], (105)
dV3\displaystyle d_{V_{3}} =\displaystyle= σLS(12)mΛc,1/2[mΛb+mΛc,1/2q2f0(12)+mΛbmΛc,1/2s(1+mΛb2mΛc,1/22q2)f+(12)2mΛbsf(12)],\displaystyle-\sigma^{(\frac{1}{2}^{-})}_{\rm LS}m_{\Lambda_{c,1/2}^{*}}\left[-\frac{m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}}}{q^{2}}f_{0}^{(\frac{1}{2}^{-})}+\frac{m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}}}{s_{-}}\left(1+\frac{m_{\Lambda_{b}}^{2}-m_{\Lambda_{c,1/2}^{*}}^{2}}{q^{2}}\right)f_{+}^{(\frac{1}{2}^{-})}-\frac{2m_{\Lambda_{b}}}{s_{-}}f_{\perp}^{(\frac{1}{2}^{-})}\right],\hskip 12.91663pt (106)
dA1\displaystyle d_{A_{1}} =\displaystyle= σLS(12)g(12),\displaystyle\sigma^{(\frac{1}{2}^{-})}_{\rm LS}g_{\perp}^{(\frac{1}{2}^{-})}, (107)
dA2\displaystyle d_{A_{2}} =\displaystyle= σLS(12)mΛb[mΛbmΛc,1/2q2g0(12)mΛb+mΛc,1/2s+(1mΛb2mΛc,1/22q2)g+(12)+2mΛc,1/2s+g(12)],\displaystyle-\sigma^{(\frac{1}{2}^{-})}_{\rm LS}m_{\Lambda_{b}}\left[-\frac{m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}}}{q^{2}}g_{0}^{(\frac{1}{2}^{-})}-\frac{m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}}}{s_{+}}\left(1-\frac{m_{\Lambda_{b}}^{2}-m_{\Lambda_{c,1/2}^{*}}^{2}}{q^{2}}\right)g_{+}^{(\frac{1}{2}^{-})}+\frac{2m_{\Lambda_{c,1/2}^{*}}}{s_{+}}g_{\perp}^{(\frac{1}{2}^{-})}\right], (108)
dA3\displaystyle d_{A_{3}} =\displaystyle= σLS(12)mΛc,1/2[mΛbmΛc,1/2q2g0(12)mΛb+mΛc,1/2s+(1+mΛb2mΛc,1/22q2)g+(12)+2mΛbs+g(12)].\displaystyle-\sigma^{(\frac{1}{2}^{-})}_{\rm LS}m_{\Lambda_{c,1/2}^{*}}\left[\frac{m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}}}{q^{2}}g_{0}^{(\frac{1}{2}^{-})}-\frac{m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}}}{s_{+}}\left(1+\frac{m_{\Lambda_{b}}^{2}-m_{\Lambda_{c,1/2}^{*}}^{2}}{q^{2}}\right)g_{+}^{(\frac{1}{2}^{-})}+\frac{2m_{\Lambda_{b}}}{s_{+}}g_{\perp}^{(\frac{1}{2}^{-})}\right].\hskip 12.91663pt (109)

For ΛbΛc,3/2\Lambda_{b}\to\Lambda_{c,3/2}^{*}, we find

lV1\displaystyle l_{V_{1}} =\displaystyle= σLS(32)mΛbmΛc,3/2s[f(32)+f(32)],\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm LS}\frac{m_{\Lambda_{b}}m_{\Lambda_{c,3/2}^{*}}}{s_{-}}\bigg{[}f_{\perp}^{(\frac{3}{2}^{-})}+f_{\perp^{\prime}}^{(\frac{3}{2}^{-})}\bigg{]}, (110)
lV2\displaystyle l_{V_{2}} =\displaystyle= σLS(32)mΛb2mΛc,3/2q2s+s[(mΛbmΛc,3/2)sf0(32)2mΛc,3/2q2(f(32)f(32))\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm LS}\frac{m_{\Lambda_{b}}^{2}m_{\Lambda_{c,3/2}^{*}}}{q^{2}s_{+}s_{-}}\bigg{[}(m_{\Lambda_{b}}-m_{\Lambda_{c,3/2}^{*}})s_{-}f_{0}^{(\frac{3}{2}^{-})}-2m_{\Lambda_{c,3/2}^{*}}q^{2}(f_{\perp}^{(\frac{3}{2}^{-})}-f_{\perp^{\prime}}^{(\frac{3}{2}^{-})}) (111)
(mΛb+mΛc,3/2)(mΛb2mΛc,3/22q2)f+(32)],\displaystyle\hskip 81.8053pt-\,(m_{\Lambda_{b}}+m_{\Lambda_{c,3/2}^{*}})\left(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c,3/2}^{*}}^{2}-q^{2}\right)f_{+}^{(\frac{3}{2}^{-})}\bigg{]},
lV3\displaystyle l_{V_{3}} =\displaystyle= σLS(32)mΛbmΛc,3/2q2s+s[mΛc,3/2(mΛbmΛc,3/2)sf0(32)2mΛbmΛc,3/2q2f(32)+2q2(mΛbmΛc,3/2s+)f(32)\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm LS}\frac{m_{\Lambda_{b}}m_{\Lambda_{c,3/2}^{*}}}{q^{2}s_{+}s_{-}}\bigg{[}-m_{\Lambda_{c,3/2}^{*}}(m_{\Lambda_{b}}-m_{\Lambda_{c,3/2}^{*}})s_{-}f_{0}^{(\frac{3}{2}^{-})}-2m_{\Lambda_{b}}m_{\Lambda_{c,3/2}^{*}}q^{2}f_{\perp}^{(\frac{3}{2}^{-})}+2q^{2}(m_{\Lambda_{b}}m_{\Lambda_{c,3/2}^{*}}-s_{+})f_{\perp^{\prime}}^{(\frac{3}{2}^{-})} (112)
+mΛc,3/2(mΛb+mΛc,3/2)(mΛb2mΛc,3/22+q2)f+(32)],\displaystyle\hskip 81.8053pt+\,m_{\Lambda_{c,3/2}^{*}}(m_{\Lambda_{b}}+m_{\Lambda_{c,3/2}^{*}})\left(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c,3/2}^{*}}^{2}+q^{2}\right)f_{+}^{(\frac{3}{2}^{-})}\bigg{]},
lV4\displaystyle l_{V_{4}} =\displaystyle= σLS(32)f(32),\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm LS}f_{\perp^{\prime}}^{(\frac{3}{2}^{-})}, (113)
lA1\displaystyle l_{A_{1}} =\displaystyle= σLS(32)mΛbmΛc,3/2s+[g(32)+g(32)],\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm LS}\frac{m_{\Lambda_{b}}m_{\Lambda_{c,3/2}^{*}}}{s_{+}}\bigg{[}g_{\perp}^{(\frac{3}{2}^{-})}+g_{\perp^{\prime}}^{(\frac{3}{2}^{-})}\bigg{]}, (114)
lA2\displaystyle l_{A_{2}} =\displaystyle= σLS(32)mΛb2mΛc,3/2q2s+s[(mΛb+mΛc,3/2)s+g0(32)2mΛc,3/2q2(g(32)g(32))\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm LS}\frac{m_{\Lambda_{b}}^{2}m_{\Lambda_{c,3/2}^{*}}}{q^{2}s_{+}s_{-}}\bigg{[}-(m_{\Lambda_{b}}+m_{\Lambda_{c,3/2}^{*}})s_{+}g_{0}^{(\frac{3}{2}^{-})}-2m_{\Lambda_{c,3/2}^{*}}q^{2}(g_{\perp}^{(\frac{3}{2}^{-})}-g_{\perp^{\prime}}^{(\frac{3}{2}^{-})}) (115)
+(mΛbmΛc,3/2)(mΛb2mΛc,3/22q2)g+(32)],\displaystyle\hskip 81.8053pt+\,(m_{\Lambda_{b}}-m_{\Lambda_{c,3/2}^{*}})\left(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c,3/2}^{*}}^{2}-q^{2}\right)g_{+}^{(\frac{3}{2}^{-})}\bigg{]},
lA3\displaystyle l_{A_{3}} =\displaystyle= σLS(32)mΛbmΛc,3/2q2s+s[mΛc,3/2(mΛb+mΛc,3/2)s+g0(32)+2mΛbmΛc,3/2q2g(32)2q2(mΛbmΛc,3/2+s)g(32)\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm LS}\frac{m_{\Lambda_{b}}m_{\Lambda_{c,3/2}^{*}}}{q^{2}s_{+}s_{-}}\bigg{[}m_{\Lambda_{c,3/2}^{*}}(m_{\Lambda_{b}}+m_{\Lambda_{c,3/2}^{*}})s_{+}g_{0}^{(\frac{3}{2}^{-})}+2m_{\Lambda_{b}}m_{\Lambda_{c,3/2}^{*}}q^{2}g_{\perp}^{(\frac{3}{2}^{-})}-2q^{2}(m_{\Lambda_{b}}m_{\Lambda_{c,3/2}^{*}}+s_{-})g_{\perp^{\prime}}^{(\frac{3}{2}^{-})} (116)
mΛc,3/2(mΛbmΛc,3/2)(mΛb2mΛc,3/22+q2)g+(32)],\displaystyle\hskip 81.8053pt-\,m_{\Lambda_{c,3/2}^{*}}(m_{\Lambda_{b}}-m_{\Lambda_{c,3/2}^{*}})\left(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c,3/2}^{*}}^{2}+q^{2}\right)g_{+}^{(\frac{3}{2}^{-})}\bigg{]},
lA4\displaystyle l_{A_{4}} =\displaystyle= σLS(32)g(32).\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm LS}g_{\perp^{\prime}}^{(\frac{3}{2}^{-})}. (117)

Pervin, Roberts, and Capstick Pervin:2005ve use the same definitions as Leibovich and Stewart, with the name replacements dViFid_{V_{i}}\to F_{i}, dAiGid_{A_{i}}\to G_{i} for the 12\frac{1}{2}^{-} final state and lViFil_{V_{i}}\to F_{i}, lAiGil_{A_{i}}\to G_{i} for the 32\frac{3}{2}^{-} final state.

A.2 Definition used by Gutsche et al.

We find that the form factor definitions used in Refs. Gutsche:2017wag ; Gutsche:2018nks are related to ours as follows:

F1V(12)\displaystyle F_{1}^{V(\frac{1}{2}^{-})} =\displaystyle= σG(12)(mΛbmΛc,1/2)2(f(12)f+(12))sf(12),\displaystyle\sigma^{(\frac{1}{2}^{-})}_{\rm G}\frac{(m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}})^{2}(f_{\perp}^{(\frac{1}{2}^{-})}-f_{+}^{(\frac{1}{2}^{-})})}{s_{-}}-f_{\perp}^{(\frac{1}{2}^{-})}, (118)
F2V(12)\displaystyle F_{2}^{V(\frac{1}{2}^{-})} =\displaystyle= σG(12)mΛb(mΛbmΛc,1/2)(f(12)f+(12))s,\displaystyle\sigma^{(\frac{1}{2}^{-})}_{\rm G}\frac{m_{\Lambda_{b}}(m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}})(f_{\perp}^{(\frac{1}{2}^{-})}-f_{+}^{(\frac{1}{2}^{-})})}{s_{-}}, (119)
F3V(12)\displaystyle F_{3}^{V(\frac{1}{2}^{-})} =\displaystyle= σG(12)mΛb(mΛb+mΛc,1/2)(sf0(12)+q2f(12)(mΛbmΛc,1/2)2f+(12))q2s,\displaystyle\sigma^{(\frac{1}{2}^{-})}_{\rm G}\frac{m_{\Lambda_{b}}(m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}})\left(s_{-}f_{0}^{(\frac{1}{2}^{-})}+q^{2}f_{\perp}^{(\frac{1}{2}^{-})}-(m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}})^{2}f_{+}^{(\frac{1}{2}^{-})}\right)}{q^{2}s_{-}}, (120)
F1A(12)\displaystyle F_{1}^{A(\frac{1}{2}^{-})} =\displaystyle= σG(12)(mΛb+mΛc,1/2)2(g(12)g+(12))s+g(12),\displaystyle\sigma^{(\frac{1}{2}^{-})}_{\rm G}\frac{(m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}})^{2}(g_{\perp}^{(\frac{1}{2}^{-})}-g_{+}^{(\frac{1}{2}^{-})})}{s_{+}}-g_{\perp}^{(\frac{1}{2}^{-})}, (121)
F2A(12)\displaystyle F_{2}^{A(\frac{1}{2}^{-})} =\displaystyle= σG(12)mΛb(mΛb+mΛc,1/2)(g(12)g+(12))s+,\displaystyle-\sigma^{(\frac{1}{2}^{-})}_{\rm G}\frac{m_{\Lambda_{b}}(m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}})(g_{\perp}^{(\frac{1}{2}^{-})}-g_{+}^{(\frac{1}{2}^{-})})}{s_{+}}, (122)
F3A(12)\displaystyle F_{3}^{A(\frac{1}{2}^{-})} =\displaystyle= σG(12)mΛb(mΛbmΛc,1/2)(s+g0(12)q2g(12)+(mΛb+mΛc,1/2)2g+(12))q2s+,\displaystyle\sigma^{(\frac{1}{2}^{-})}_{\rm G}\frac{m_{\Lambda_{b}}(m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}})\left(-s_{+}g_{0}^{(\frac{1}{2}^{-})}-q^{2}g_{\perp}^{(\frac{1}{2}^{-})}+(m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}})^{2}g_{+}^{(\frac{1}{2}^{-})}\right)}{q^{2}s_{+}}, (123)
F1V(32)\displaystyle F_{1}^{V(\frac{3}{2}^{-})} =\displaystyle= σG(32)f(32),\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm G}f_{\perp^{\prime}}^{(\frac{3}{2}^{-})}, (124)
F2V(32)\displaystyle F_{2}^{V(\frac{3}{2}^{-})} =\displaystyle= σG(32)mΛbmΛc,3/2s[f(32)+f(32)],\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm G}\frac{m_{\Lambda_{b}}m_{\Lambda_{c,3/2}^{*}}}{s_{-}}\Big{[}f_{\perp}^{(\frac{3}{2}^{-})}+f_{\perp^{\prime}}^{(\frac{3}{2}^{-})}\Big{]}, (125)
F3V(32)\displaystyle F_{3}^{V(\frac{3}{2}^{-})} =\displaystyle= σG(32)2mΛb2ss+[mΛc,3/2(mΛb+mΛc,3/2)f(32)+mΛc,3/2(mΛb+mΛc,3/2)(f(32)+f+(32))s+f(32)],\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm G}\frac{2\,m_{\Lambda_{b}}^{2}}{s_{-}s_{+}}\Big{[}-m_{\Lambda_{c,3/2}^{*}}(m_{\Lambda_{b}}+m_{\Lambda_{c,3/2}^{*}})f_{\perp}^{(\frac{3}{2}^{-})}+m_{\Lambda_{c,3/2}^{*}}(m_{\Lambda_{b}}+m_{\Lambda_{c,3/2}^{*}})(f_{\perp^{\prime}}^{(\frac{3}{2}^{-})}+f_{+}^{(\frac{3}{2}^{-})})-s_{+}f_{\perp^{\prime}}^{(\frac{3}{2}^{-})}\Big{]},
F4V(32)\displaystyle F_{4}^{V(\frac{3}{2}^{-})} =\displaystyle= σG(32)mΛb2mΛc,3/2q2s+s[(mΛbmΛc,3/2)sf0(32)2mΛc,3/2q2(f(32)f(32)),\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm G}\frac{m_{\Lambda_{b}}^{2}m_{\Lambda_{c,3/2}^{*}}}{q^{2}s_{+}s_{-}}\Big{[}(m_{\Lambda_{b}}-m_{\Lambda_{c,3/2}^{*}})s_{-}f_{0}^{(\frac{3}{2}^{-})}-2m_{\Lambda_{c,3/2}^{*}}q^{2}(f_{\perp}^{(\frac{3}{2}^{-})}-f_{\perp^{\prime}}^{(\frac{3}{2}^{-})}), (127)
(mΛb+mΛc,3/2)(mΛb2mΛc,3/22q2)f+(32)],\displaystyle\hskip 79.65253pt-\,(m_{\Lambda_{b}}+m_{\Lambda_{c,3/2}^{*}})\left(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c,3/2}^{*}}^{2}-q^{2}\right)f_{+}^{(\frac{3}{2}^{-})}\Big{]},
F1A(32)\displaystyle F_{1}^{A(\frac{3}{2}^{-})} =\displaystyle= σG(32)g(32)\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm G}g_{\perp^{\prime}}^{(\frac{3}{2}^{-})} (128)
F2A(32)\displaystyle F_{2}^{A(\frac{3}{2}^{-})} =\displaystyle= σG(32)mΛbmΛc,3/2s+[g(32)+g(32)],\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm G}\frac{m_{\Lambda_{b}}m_{\Lambda_{c,3/2}^{*}}}{s_{+}}\Big{[}g_{\perp}^{(\frac{3}{2}^{-})}+g_{\perp^{\prime}}^{(\frac{3}{2}^{-})}\Big{]}, (129)
F3A(32)\displaystyle F_{3}^{A(\frac{3}{2}^{-})} =\displaystyle= σG(32)2mΛb2ss+[mΛc,3/2(mΛbmΛc,3/2)(g(32)g(32)g+(32))sg(32)],\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm G}\frac{2\,m_{\Lambda_{b}}^{2}}{s_{-}s_{+}}\Big{[}m_{\Lambda_{c,3/2}^{*}}(m_{\Lambda_{b}}-m_{\Lambda_{c,3/2}^{*}})(g_{\perp}^{(\frac{3}{2}^{-})}-g_{\perp^{\prime}}^{(\frac{3}{2}^{-})}-g_{+}^{(\frac{3}{2}^{-})})-s_{-}g_{\perp^{\prime}}^{(\frac{3}{2}^{-})}\Big{]}, (130)
F4A(32)\displaystyle F_{4}^{A(\frac{3}{2}^{-})} =\displaystyle= σG(32)mΛb2mΛc,3/2q2s+s[(mΛb+mΛc,3/2)s+g0(32)2mΛc,3/2q2(g(32)g(32)),\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm G}\frac{m_{\Lambda_{b}}^{2}m_{\Lambda_{c,3/2}^{*}}}{q^{2}s_{+}s_{-}}\Big{[}-(m_{\Lambda_{b}}+m_{\Lambda_{c,3/2}^{*}})s_{+}g_{0}^{(\frac{3}{2}^{-})}-2m_{\Lambda_{c,3/2}^{*}}q^{2}(g_{\perp}^{(\frac{3}{2}^{-})}-g_{\perp^{\prime}}^{(\frac{3}{2}^{-})}), (131)
+(mΛbmΛc,3/2)(mΛb2mΛc,3/22q2)g+(32)].\displaystyle\hskip 83.95807pt+\,(m_{\Lambda_{b}}-m_{\Lambda_{c,3/2}^{*}})\left(m_{\Lambda_{b}}^{2}-m_{\Lambda_{c,3/2}^{*}}^{2}-q^{2}\right)g_{+}^{(\frac{3}{2}^{-})}\Big{]}.

A.3 Definition used by Böer et al.

Reference Boer:2018vpx also uses a helicity-based definition, which we find to be related to ours as

f1/2,t\displaystyle f_{1/2,t} =\displaystyle= σB(12)123smΛbmΛc,1/2mΛb+mΛc,1/2mΛbmΛc,1/2f0(12),\displaystyle\sigma^{(\frac{1}{2}^{-})}_{\rm B}\frac{1}{2}\sqrt{\frac{3s_{-}}{m_{\Lambda_{b}}m_{\Lambda_{c,1/2}^{*}}}}\frac{m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}}}{m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}}}\,f_{0}^{(\frac{1}{2}^{-})}, (132)
f1/2,0\displaystyle f_{1/2,0} =\displaystyle= σB(12)123s+mΛbmΛc,1/2mΛbmΛc,1/2mΛb+mΛc,1/2f+(12),\displaystyle\sigma^{(\frac{1}{2}^{-})}_{\rm B}\frac{1}{2}\sqrt{\frac{3s_{+}}{m_{\Lambda_{b}}m_{\Lambda_{c,1/2}^{*}}}}\frac{m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}}}{m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}}}\,f_{+}^{(\frac{1}{2}^{-})}, (133)
f1/2,\displaystyle f_{1/2,\perp} =\displaystyle= σB(12)123s+mΛbmΛc,1/2f(12),\displaystyle\sigma^{(\frac{1}{2}^{-})}_{\rm B}\frac{1}{2}\sqrt{\frac{3s_{+}}{m_{\Lambda_{b}}m_{\Lambda_{c,1/2}^{*}}}}\,f_{\perp}^{(\frac{1}{2}^{-})}, (134)
g1/2,t\displaystyle g_{1/2,t} =\displaystyle= σB(12)123s+mΛbmΛc,1/2mΛbmΛc,1/2mΛb+mΛc,1/2g0(12),\displaystyle\sigma^{(\frac{1}{2}^{-})}_{\rm B}\frac{1}{2}\sqrt{\frac{3s_{+}}{m_{\Lambda_{b}}m_{\Lambda_{c,1/2}^{*}}}}\frac{m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}}}{m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}}}\,g_{0}^{(\frac{1}{2}^{-})}, (135)
g1/2,0\displaystyle g_{1/2,0} =\displaystyle= σB(12)123smΛbmΛc,1/2mΛb+mΛc,1/2mΛbmΛc,1/2g+(12),\displaystyle\sigma^{(\frac{1}{2}^{-})}_{\rm B}\frac{1}{2}\sqrt{\frac{3s_{-}}{m_{\Lambda_{b}}m_{\Lambda_{c,1/2}^{*}}}}\frac{m_{\Lambda_{b}}+m_{\Lambda_{c,1/2}^{*}}}{m_{\Lambda_{b}}-m_{\Lambda_{c,1/2}^{*}}}\,g_{+}^{(\frac{1}{2}^{-})}, (136)
g1/2,\displaystyle g_{1/2,\perp} =\displaystyle= σB(12)123smΛbmΛc,1/2g(12),\displaystyle\sigma^{(\frac{1}{2}^{-})}_{\rm B}\frac{1}{2}\sqrt{\frac{3s_{-}}{m_{\Lambda_{b}}m_{\Lambda_{c,1/2}^{*}}}}\,g_{\perp}^{(\frac{1}{2}^{-})}, (137)
F(1/2,t)\displaystyle F_{(1/2,t)} =\displaystyle= σB(32)14smΛbmΛc,3/2f0(32),\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm B}\frac{1}{4}\sqrt{\frac{s_{-}}{m_{\Lambda_{b}}m_{\Lambda_{c,3/2}^{*}}}}f_{0}^{(\frac{3}{2}^{-})}, (138)
F(1/2,0)\displaystyle F_{(1/2,0)} =\displaystyle= σB(32)14s+mΛbmΛc,3/2f+(32),\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm B}\frac{1}{4}\sqrt{\frac{s_{+}}{m_{\Lambda_{b}}m_{\Lambda_{c,3/2}^{*}}}}f_{+}^{(\frac{3}{2}^{-})}, (139)
F(1/2,)\displaystyle F_{(1/2,\perp)} =\displaystyle= σB(32)14s+mΛbmΛc,3/2f(32),\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm B}\frac{1}{4}\sqrt{\frac{s_{+}}{m_{\Lambda_{b}}m_{\Lambda_{c,3/2}^{*}}}}f_{\perp}^{(\frac{3}{2}^{-})}, (140)
F(3/2,)\displaystyle F_{(3/2,\perp)} =\displaystyle= σB(32)14s+mΛbmΛc,3/2f(32),\displaystyle-\sigma^{(\frac{3}{2}^{-})}_{\rm B}\frac{1}{4}\sqrt{\frac{s_{+}}{m_{\Lambda_{b}}m_{\Lambda_{c,3/2}^{*}}}}f_{\perp^{\prime}}^{(\frac{3}{2}^{-})}, (141)
G(1/2,t)\displaystyle G_{(1/2,t)} =\displaystyle= σB(32)14s+mΛbmΛc,3/2g0(32),\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm B}\frac{1}{4}\sqrt{\frac{s_{+}}{m_{\Lambda_{b}}m_{\Lambda_{c,3/2}^{*}}}}g_{0}^{(\frac{3}{2}^{-})}, (142)
G(1/2,0)\displaystyle G_{(1/2,0)} =\displaystyle= σB(32)14smΛbmΛc,3/2g+(32),\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm B}\frac{1}{4}\sqrt{\frac{s_{-}}{m_{\Lambda_{b}}m_{\Lambda_{c,3/2}^{*}}}}g_{+}^{(\frac{3}{2}^{-})}, (143)
G(1/2,)\displaystyle G_{(1/2,\perp)} =\displaystyle= σB(32)14smΛbmΛc,3/2g(32),\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm B}\frac{1}{4}\sqrt{\frac{s_{-}}{m_{\Lambda_{b}}m_{\Lambda_{c,3/2}^{*}}}}g_{\perp}^{(\frac{3}{2}^{-})}, (144)
G(3/2,)\displaystyle G_{(3/2,\perp)} =\displaystyle= σB(32)14smΛbmΛc,3/2g(32).\displaystyle\sigma^{(\frac{3}{2}^{-})}_{\rm B}\frac{1}{4}\sqrt{\frac{s_{-}}{m_{\Lambda_{b}}m_{\Lambda_{c,3/2}^{*}}}}g_{\perp^{\prime}}^{(\frac{3}{2}^{-})}. (145)

We also independently derived the Eqs. (B6) of Ref. Boer:2018vpx (arXiv version 2) which give the relations of the ΛbΛc,3/2\Lambda_{b}\to\Lambda_{c,3/2}^{*} form factors as defined in Ref. Boer:2018vpx to the definition used by Leibovich and Stewart Leibovich:1997az . We agree with seven of the eight equations but find the opposite relative sign for G1/2,0G_{1/2,0}.

References