This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Blowup for the defocusing septic complex-valued nonlinear wave equation in 4+1\mathbb{R}^{4+1}

Tristan Buckmaster Courant Institute of Mathematical Sciences, New York University, New York, NY 10012. [email protected]  and  Jiajie Chen Courant Institute of Mathematical Sciences, New York University, New York, NY 10012. [email protected]
Abstract.

In this paper, we prove blowup for the defocusing septic complex-valued nonlinear wave equation in 4+1\mathbb{R}^{4+1}. This work builds on the earlier results of Shao, Wei, and Zhang [56, 55], reducing the order of the nonlinearity from 2929 to 77 in 4+1\mathbb{R}^{4+1}. As in [56, 55], the proof hinges on a connection between solutions to the nonlinear wave equation and the relativistic Euler equations via a front compression blowup mechanism. More specifically, the problem is reduced to constructing smooth, radially symmetric, self-similar imploding profiles for the relativistic Euler equations.

As with implosion for the compressible Euler equations, the relativistic analogue admits a countable family of smooth imploding profiles. The result in [56] represents the construction of the first profile in this family. In this paper, we construct a sequence of solutions corresponding to the higher-order profiles in the family. This allows us to saturate the inequalities necessary to show blowup for the defocusing complex-valued nonlinear wave equation with an integer order of nonlinearity and radial symmetry via this mechanism.

1. Introduction

We investigate finite time blowup for the complex-valued defocusing nonlinear wave equation:

(1.1) ttw=Δw|w|p1w,\partial_{tt}w=\Delta w-|w|^{p-1}w,

for w(t,x):×dw(t,x):\mathbb{R}\times\mathbb{R}^{d}\to\mathbb{C}. Given smooth and well-localized initial data (w(0),tw(0))(w(0),\partial_{t}w(0)), the classical Cauchy theory states that (1.1) admits a smooth and strong local-in-time solution w(t)w(t) [61]. The parameters (d,p)(d,p), can be naturally classified in terms of the critically of the conserved energy

E(w(t))d12(|tw|2+|w|2)+1p+1|w|p+1dx,E(w(t))\triangleq\int_{\mathbb{R}^{d}}\frac{1}{2}(|\partial_{t}w|^{2}+|\nabla w|^{2})+\frac{1}{p+1}|w|^{p+1}dx,

in terms of the scaling symmetry

w(t,x)wλ(t,x)λ2p1w(λt,λx),λ>0.w(t,x)\to w_{\lambda}(t,x)\triangleq\lambda^{\frac{2}{p-1}}w(\lambda t,\lambda x),\quad\lambda>0.

Precisely, we obtain three regimes: the subcritical case, d2d\leq 2 or p<1+4d2p<1+\frac{4}{d-2} for d3d\geq 3; the critical case, p=1+4d2p=1+\frac{4}{d-2} and d3d\geq 3; and the supercritical case, p>1+4d2p>1+\frac{4}{d-2} and d3d\geq 3.

The blowup of nonlinear wave equations has been extensively studied in the focusing case (cf. [3, 46, 38, 45, 24, 25, 26, 27, 37, 40, 41, 42, 43]). For the defocusing case, the equation is globally well-posed in the subcritical and critical case [28, 29, 32, 31, 57, 58, 39, 63]. Nevertheless, the question of blowup or global well-posedness for smooth solutions to defocusing nonlinear Schrödinger or wave equation has remained a long-standing open problem [65]. Tao, in [64], showed if one considers a supercritical, high dimensional, defocusing nonlinear wave system u=(mF)(u)\Box u=(\nabla_{\mathbb{R}^{m}}F)(u), for some smooth, positive, carefully designed potential F:mF:\mathbb{R}^{m}\rightarrow\mathbb{R}, one proves blowup in finite time. Recently, in the breakthrough work of Merle, Raphael, Rodnianski and Szeftel [50], blowup for the supercritical defocusing nonlinear Schrödinger equation was proven via a novel front compression mechanism, whereby the phase of the solution blows up. The work [49] leverages a connection between the nonlinear Schrödinger equations and the compressible Euler equations with an added quantum pressure term via Madelung’s transformation. Under the appropriate scaling assumptions – which necessitates considering dimensions 5\geq 5 and high order nonlinearities – the quantum pressure term becomes lower order, which enabled the use of self-similar imploding profiles to the compressible Euler equations constructed in [51], as asymptotic self-similar profiles to the defocusing nonlinear Schrödinger equation.

Inspired by the work [50], Shao, Wei, and Zhang in [56, 55] recently exploited a similar front compression mechanism to establish blowup for the defocusing nonlinear wave equation (1.1) via a self-similar profile to the relativistic Euler equations. Specifically, they proved finite time blowup of (1.1) from smooth compactly supported initial data with dimension dd and odd nonlinearity pp satisfying d=4,p29d=4,p\geq 29 and d5,p17d\geq 5,p\geq 17. See also Theorem 1.2.

1.1. Self-similar ansatz

We consider the phase-amplitude representation w=ρeiϕw=\rho e^{i\phi} with ρ,ϕ\rho,\phi being real and rewrite (1.1) as the system of (ρ,ϕ)(\rho,\phi). To this end, we compute

ttw\displaystyle\partial_{tt}w =(ttρ+it(tϕρ)+itϕ(tρ+itϕρ))eiϕ,\displaystyle=\Big{(}\partial_{tt}\rho+i\partial_{t}(\partial_{t}\phi\rho)+i\partial_{t}\phi(\partial_{t}\rho+i\partial_{t}\phi\rho)\Big{)}e^{i\phi},
Δw\displaystyle\Delta w =(Δρ+i(ρϕ)+iρϕρ|ϕ|2)eiϕ.\displaystyle=(\Delta\rho+i\nabla\cdot(\rho\nabla\phi)+i\nabla\rho\cdot\nabla\phi-\rho|\nabla\phi|^{2})e^{i\phi}.

Substituting the above computation into (1.1), dividing by eiϕe^{i\phi} and then taking the real and imaginary part of the equation, we derive the equations for ρ\rho and ϕ\phi

(1.2a) ttρ\displaystyle\partial_{tt}\rho =ρ|tϕ|2+Δρρ|ϕ|2|ρ|p1ρ,\displaystyle=\rho|\partial_{t}\phi|^{2}+\Delta\rho-\rho|\nabla\phi|^{2}-|\rho|^{p-1}\rho,
(1.2b) ttϕρ\displaystyle\partial_{tt}\phi\cdot\rho =2tϕtρ+ρΔϕ+2ρϕ.\displaystyle=-2\partial_{t}\phi\partial_{t}\rho+\rho\Delta\phi+2\nabla\rho\cdot\nabla\phi.

We consider the general self-similar blowup ansatz

(1.3) ρ=1(Tt)aW(x(Tt)c),ϕ=1(Tt)bΦ(x(Tt)c),\rho=\frac{1}{(T-t)^{a}}W(\frac{x}{(T-t)^{c}}),\quad\phi=\frac{1}{(T-t)^{b}}\Phi(\frac{x}{(T-t)^{c}}),

for some a,b,ca,b,c to be determined.

In line with front compression, where the phase ϕ\phi blows up, we consider b>0b>0 for our self-similar ansatz (1.3). Moreover, to obtain a collapsing blowup, which is natural due to the conservation of the energy, we impose c>0c>0. We use the notation ABA\asymp B to denote that AA and BB are comparable up to a tt-independent constant. Under these assumptions, for Tt1T-t\ll 1, we get

(1.4) ttρ(Tt)a2,Δρ(Tt)a2c,ρ|tϕ|2(Tt)a22b,ρ|ϕ|2(Tt)a2b2c,|ρ|p1ρ(Tt)pa.\begin{gathered}\partial_{tt}\rho\asymp(T-t)^{-a-2},\ \Delta\rho\asymp(T-t)^{-a-2c},\\ \rho|\partial_{t}\phi|^{2}\asymp(T-t)^{-a-2-2b},\quad\rho|\nabla\phi|^{2}\asymp(T-t)^{-a-2b-2c},\quad|\rho|^{p-1}\rho\asymp(T-t)^{-pa}.\end{gathered}

Since b>0b>0, we treat ttρ,Δρ\partial_{tt}\rho,\Delta\rho in (1.2a) as lower order terms. For the ϕ\phi-equation (1.2b), it is easy to observe that the scalings of each terms are balanced. Thus, dropping ttρ,Δρ\partial_{tt}\rho,\Delta\rho in (1.2a) and then dividing ρ\rho on both sides of (1.2a), we derive the following leading order system of (1.2a)

(1.5) |tϕ|2|ϕ|2=|ρ|p1.|\partial_{t}\phi|^{2}-|\nabla\phi|^{2}=|\rho|^{p-1}.

To balance these three terms, using (1.4), we impose the following relation among a,b,ca,b,c in (1.3)

(1.6) c=1,(p1)a=2(b+1),b>0.c=1,\quad(p-1)a=2(b+1),\quad b>0.

Note that equations (1.5) and (1.2b) reduce to isentropic relativistic Euler equation. In fact, by introducing =4p1+1\ell=\frac{4}{p-1}+1, the flat Lorentz metric g=(gμν)g=(g^{\mu\nu}) and derivative μ\partial^{\mu} as

g00=1,gμν=δμν,(μ,ν)(0,0),μ=gμνν,g^{00}=-1,\quad g^{\mu\nu}=\delta_{\mu\nu},\quad\forall(\mu,\nu)\neq(0,0),\quad\partial^{\mu}=g^{\mu\nu}\partial_{\nu},

the relativistic velocity 𝐮=(u0,u1,..,ud)\mathbf{u}=(u^{0},u^{1},..,u^{d}), the energy density ϱ\varrho, the energy momentum tensor TμνT^{\mu\nu}, and the pressure PP subject to the isothermal equation of state as follows

(1.7a) ϱ=ρp+1,u0=ρp12tϕ,ui=ρp12iϕ,Tμν=(P+ϱ)uμuν+Pgμν,\varrho=\rho^{p+1},\quad u^{0}=\rho^{-\frac{p-1}{2}}\partial_{t}\phi,\quad u^{i}=\rho^{-\frac{p-1}{2}}\partial^{i}\phi,\quad T^{\mu\nu}=(P+\varrho)u^{\mu}u^{\nu}+Pg^{\mu\nu},
we derive the relativistic Euler equations
(1.7b) uμμϱ+(P+ϱ)μuμ=0,μTμν=0,P=1ϱ,u^{\mu}\partial_{\mu}\varrho+(P+\varrho)\partial_{\mu}u^{\mu}=0,\quad\partial_{\mu}T^{\mu\nu}=0,\quad P=\frac{1}{\ell}\varrho,

with normalization 𝐮g2=gμνuμuν=1\|\mathbf{u}\|_{g}^{2}=g_{\mu\nu}u^{\mu}u^{\nu}=-1. The above connection between the defocusing wave equations and the relativistic Euler equations has been used in [56].

The local existence of smooth solutions to the relativistic Euler equations was established in [48], with some global existence results in [60, 54, 14]. Meanwhile, the equations can develop a finite time singularity [35, 53, 21]. For more discussions on the mathematical aspects of relativistic fluids, see the surveys [23, 2].

1.2. Main results

By imposing the radial symmetry on ρ,ϕ\rho,\phi and plugging the self-similar ansatz (1.3) in equations (1.2b) and (1.5), we can derive the ODE (2.3) for the self-similar profiles W,ΦW,\Phi (1.3). See the derivation in Section 2.1.

To use the front compression mechanism for smooth blowup, we require (d,p)(d,p) to satisfy

(1.8) +1/2<d1,=1+4p1>1,\ell+\ell^{1/2}<d-1,\quad\ell=1+\frac{4}{p-1}>1,

which implies d4d\geq 4 and the non-linear exponent pp(d)p\geq p(d). For d=4d=4 and integer pp, this implies p7p\geq 7. See Section 2.1 for more details about these constraints. In this paper, we consider the lowest dimension d=4d=4 in this setting and the smallest integer exponent p=7p=7 in this dimension.

Our main result is stated as follows.

Theorem 1.1.

Let d=4,p=7,=4p1+1d=4,p=7,\ell=\frac{4}{p-1}+1, and nn be an odd number and large enough. There exists γn\gamma_{n} accumulating at 1/2\ell^{-1/2} with γn>1/2,bn=d1(γn+1)1>0\gamma_{n}>\ell^{-1/2},b_{n}=\frac{d-1}{\ell(\gamma_{n}+1)}-1>0 such that the ODE (2.3) admits a smooth solution V(γn)C[0,)V^{(\gamma_{n})}\in C^{\infty}[0,\infty) with V(γn)(0)=0V^{(\gamma_{n})}(0)=0,

(1.9) V(γn)(Z)(1,1),V(γn)(Z)<Z,V^{(\gamma_{n})}(Z)\in(-1,1),\quad V^{(\gamma_{n})}(Z)<Z,

for any Z>0Z>0, and V(Z)=ZV~(Z2)V(Z)=Z\tilde{V}(Z^{2}) for some function V~C[0,)\tilde{V}\in C^{\infty}[0,\infty). Moreover, the solution gives rise to a smooth radially symmetric self-similar profile (W,Φ)(W,\Phi) in (1.3) and a solution to the relativistic Euler equations (1.2b) and (1.5) on [0,T)×d[0,T)\times\mathbb{R}^{d}:

(1.10) u0(t,x)=U0(Z),ui(t,x)=U(Z)xir,ϱ(t,x)=(Tt)(d1)(+1)(γ+1)Wp+1(Z),u^{0}(t,x)=U^{0}(Z),\quad u^{i}(t,x)=U(Z)\frac{x_{i}}{r},\quad\varrho(t,x)=(T-t)^{-\frac{(d-1)(\ell+1)}{\ell(\gamma+1)}}W^{p+1}(Z),

where r=|x|,Z=rTtr=|x|,Z=\frac{r}{T-t}. The solution develops an imploding singularity at t=T,x=0t=T,x=0 and satisfies the asymptotics

(1.11) limZU0(Z)=U0,limZU(Z)=U,limZϱ(t,x)=ϱ|x|(d1)(+1)(γ+1)\lim_{Z\to\infty}U^{0}(Z)=U^{0}_{\infty},\quad\lim_{Z\to\infty}U(Z)=U_{\infty},\quad\lim_{Z\to\infty}\varrho(t,x)=\varrho_{\infty}|x|^{-\frac{(d-1)(\ell+1)}{\ell(\gamma+1)}}

for any x0x\neq 0 and some constants U00,U,ϱ>0U^{0}_{\infty}\neq 0,U_{\infty},\varrho_{\infty}>0

To further prove blowup of the nonlinear wave equation (1.1), we use [55, Theorem 1.1]:

Theorem 1.2 (Theorem 1.1 [55]).

Let d[4,),p2++1,=4p1+1d\in\mathbb{Z}\cap[4,\infty),p\in 2\mathbb{Z}_{+}+1,\ell=\frac{4}{p-1}+1 with d1>+1/2d-1>\ell+\ell^{1/2}. Suppose that there exists γ\gamma with γ>1/2\gamma>\ell^{-1/2} and (d1)>(γ+1)(d-1)>\ell(\gamma+1) 111 The parameter β,k\beta,k in [55] corresponds to β=1+b=d1(γ+1)\beta=1+b=\frac{d-1}{\ell(\gamma+1)} (1.3), (2.1) and k=d1k=d-1 in this paper. The condition β(1,k/(+1/2))\beta\in(1,k/(\ell+\ell^{1/2})) in [55, Theorem 1] is equivalent to γ>1/2\gamma>\ell^{-1/2} and d1>(γ+1)d-1>\ell(\gamma+1)(2.4). such that the ODE (2.3) with parameters (d,p,γ)(d,p,\gamma) admits a smooth solution V(Z)V(Z) defined in Z[0,)Z\in[0,\infty) satisfying V(Z)(1,1),V(0)=0V(Z)\in(-1,1),V(0)=0 and V(Z)=ZV~(Z2)V(Z)=Z\tilde{V}(Z^{2}) for some function V~C[0,)\tilde{V}\in C^{\infty}[0,\infty).

Then there exists smooth compactly supported functions w0,w1:dw_{0},w_{1}:\mathbb{R}^{d}\to\mathbb{C} such that the defocusing nonlinear wave equation (1.1) with nonlinearity pp develops a finite time singularity from the initial data w(0)=w0,tw(0)=w1w(0)=w_{0},\partial_{t}w(0)=w_{1}.

In Theorem 1.1, since γn>1/2\gamma_{n}>\ell^{-1/2} and γn\gamma_{n} converges to 1/2\ell^{-1/2} as nn\to\infty, for nn large enough, the parameters (d=4,p=7,γn)(d=4,p=7,\gamma_{n}) satisfies the inequalities in Theorem 1.2. Moreover, the smooth solution V(γn)V^{(\gamma_{n})} constructed in Theorem 1.1 satisfies the assumptions in Theorem 1.2. Thus, using Theorems 1.1 and 1.2, we establish:

Corollary 1.3.

There exists smooth compactly supported functions w0,w1:4w_{0},w_{1}:\mathbb{R}^{4}\to\mathbb{C} such that the septic defocusing nonlinear wave equation (1.1) with p=7p=7 develops a finite time singularity from the initial data w(0)=w0,tw(0)=w1w(0)=w_{0},\partial_{t}w(0)=w_{1}.

Remark 1.4.

In dimension d=4d=4 with nonlinearity p2+1p\in 2\mathbb{N}+1, the range of parameter in the supercritical case p>1+4d2p>1+\frac{4}{d-2} implies that p5p\geq 5 and p2+1p\in 2\mathbb{N}+1. Our result resolves the case p=7p=7. It is conceivable that our methods for proving Theorem 1.1 can apply to a specific pair of parameters (d,p)(d,p) with p2+1p\in 2\mathbb{N}+1, provided they satisfy (1.8). Note that the parameters (d,p)(d,p) in the supercritical case p>1+4p2p>1+\frac{4}{p-2} with d4d\geq 4 and p2+1p\in 2\mathbb{N}+1 that do not satisfy (1.8) are (d,p)=(4,5),(5,3)(d,p)=(4,5),(5,3).

Similar to the results in [55], we only construct blowup for (1.1) with a complex-valued solution. Blowup of (1.1) with real-valued solution remains open.

The main difficulty to prove Theorem 1.1 is that the ODE (2.3) of (Z,V)(Z,V) is singular near a sonic point. Additionally, the ODE degenerates near the sonic point as γ1/2\gamma\to\ell^{-1/2}. We remark that, due to the constraint (1.8), constructing the blowup solution to (1.1) with smaller pp requires considering γ\gamma close to 1/2\ell^{-1/2}. To overcome these difficulties, we renormalize the ODE (2.3) to obtain a new ODE of (Y,U)(Y,U) (2.14), which is non-degenerate near the sonic point as γ1/2\gamma\to\ell^{-1/2}. To analyze the (Y,U)(Y,U)-ODE near the sonic point, we perform power series expansion of U(Y)U(Y) and estimate the asymptotics of the power series coefficients UnU_{n} using induction. Using barrier arguments, a shooting argument, and a few monotone properties, we extend the local power series solution to a global solution of the ODE.

The proof involves light computer assistance, mainly to derive the power series coefficients UiU_{i} for i500i\leq 500 and to verify the signs of a few lower-order polynomials. These calculations can be performed on a personal laptop in a few seconds. See more details in Appendix B.

We will derive the ODE (2.3) and its renormalization (2.14) and analyze its basic properties in Section 2. We outline the proof and the organization of Sections 3-6 in Section 2.5.

1.3. Comparison with the methods in existing works

Our proof share some similarities with [6], including some barrier arguments, estimates of the power series coefficients using induction, and computer-assisted proofs. Different from [6], we need to renormalize the ODE to overcome the degeneracy as γ1/2\gamma\to\ell^{-1/2}.

In [6], the estimates of the asymptotics of power series coefficients UnU_{n} involve ad-hoc partitions of nn. We develop a systematic approach for the estimates by identifying a few leading order terms in the recursive formula of UnU_{n} and treating the remaining terms perturbatively. We check a few properties of Ui,i=1,2,..,NU_{i},i=1,2,..,N for NN suitably large with computer assistance and then perform induction for the remaining coefficients. This allows us to impose a stronger induction hypothesis, resulting in a streamlined approach to estimating the higher order coefficients, which further leads to a simplified splitting in nn. Moreover, our scheme of estimates does not utilize special forms of the ODE and are readily generalized to ODE (2.3) or (2.14) with numerator and denominator being higher order polynomials. Additional simplifications of the combinatorial estimates are made via renormalization of the power series coefficients. See Section 3.

We follow the connection between the defocusing nonlinear wave equation and the relativistic Euler equation used in [56] to derive the ODE (2.3) governing the profiles, use the same renormalization as in [56], and adopt a few basic derivations for the ODEs from [56]. However, there are a few key differences. Firstly, we apply renormalization to overcome the degeneracy of the ODE as γ1/2\gamma\to\ell^{-1/2}, whereas in [56], renormalization is used to simplify computations and obtain blowup results for a wider range of (d,p)(d,p). We can also employ other renormalization to overcome this degeneracy; see Remark 2.3. We adopt the renormalization from [56] to simplify certain presentations and derivations that are less essential. Secondly, since we consider a smaller nonlinearity (p=7p=7) than those considered in [56], we need to use much higher-order barrier functions near the sonic point than those in [56], which are based on quartic or lower-order polynomials. Thirdly, by taking γ1/2\gamma\to\ell^{-1/2}, we obtain a large parameter κ(γ)\kappa(\gamma) (2.30) and use it and light computer assistance to bypass several detailed computations in [56].

We note that in [34], Guo, Hadzic, Jang, and Schrecker employed similar arguments, such as Taylor expansions, dynamical systems analysis, and computer-assisted proofs, to construct smooth self-similar solutions for the gravitational Euler-Poisson system.

1.4. Related results

In this section, we review related results on singularity formation and computer-assisted proofs in fluid mechanics

Smooth Implosions

The construction of the self-similar imploding singularity in Theorem 1.1 is closely related to that in compressible fluids. Guderley [33] was the first to construct radial, non-smooth, imploding self-similar singularities along with converging shock waves in compressible fluids. While Guderley’s setting has been extensively studied, the existence of a finite-time smooth, radially symmetric implosion (without shock waves) was only recently established in [51, 52, 50]. Subsequently, radially symmetric implosion in 3\mathbb{R}^{3} with a larger range of adiabatic exponents was established in [6], and non-radial implosion was established in [12, 11]. While these results are inspired by Guderley’s setting, constructing CC^{\infty} self-similar implosion profiles is challenging due to the degeneracy at the sonic point, requiring sophisticated mathematical techniques [51] or computer-assisted methods [6]. The smooth imploding solutions are proved to be potentially highly unstable [52, 6, 12, 50], with numerical studies of instabilities presented in [5]. The self-similar profile in Guderley’s setting was recently constructed in [36]. By perturbing the radial implosion [51], exploiting axisymmetry, and proving the full stability of the perturbation generated by angular velocity, vorticity blowup in the compressible Euler equations was established in [16] for the case of 2\mathbb{R}^{2} and in [15] for d\mathbb{R}^{d} with d3d\geq 3.

Shock formation

The prototypical singularity for the compressible Euler equations is the development of a shock wave. Rigorous work regarding shocks traces back to the work of Lax [44]. Shock wave singularities in the multi-dimensional, irrotational, isentropic setting was first analyzed by Christodoulou in the work [21] (cf. [22]). This work was later extended to include non-trivial vorticity in the 2-dimensional setting by Luk and Speck [47]. Restricting to 2-dimensions and assuming azimuthial-symmetry, the first complete description of the formation of a shock singularity, including its self-similar structure was given in a work of the first author, Shkoller, and Vicol [8]. This latter work was extended by the authors to 3-dimensions in the absence of symmetry assumptions in [9] and to the 3-dimensional non-isentropic setting in [10]. Returning to the setting of 2-dimensions under azimuthial-symmetry, the first full description of shock development past the first singularity was proven in a work by the first author, Drivas, Shkoller, and Vicol [7]. Shock development in the absence of symmetry remains an open problem; however, recently Shkoller, and Vicol in the work [59] constructed compact in time maximal development in the 2-dimensional setting, which is a crucial step towards resolving this major open problem (partial results in direction of maximal development were earlier attained in [1]).

Computer-assisted proofs in fluids

In recent years, there have been substantial developments in computer-assisted proofs in mathematical fluid mechanics. We highlight a few advancements in incompressible fluids: singularity formation in the 3D Euler equations [18, 17] and related models [19, 20], constructing nontrivial global smooth solutions to SQG [13], and some applications to Navier-Stokes [4, 66]. See also the survey [30].

2. Autonomous ODE for the self-similar profile

In this section, we derive the ODE governing the self-similar profile (1.3) and perform renormalization to overcome some degeneracy.

2.1. ODE for the profile

We introduce =(p)\ell=\ell(p) and a free parameter γ\gamma to rewrite (a,b)(a,b) in (1.3), (1.6) as follows

(2.1) =4p1+1,b=d1(γ+1)1,a=2(d1)(p1)(γ+1).\ell=\frac{4}{p-1}+1,\quad b=\frac{d-1}{\ell(\gamma+1)}-1,\quad a=\frac{2(d-1)}{(p-1)\ell(\gamma+1)}.

where dd is the dimension. We impose radial symmetry on the solution (ρ,ϕ)(\rho,\phi). As a result, the profiles W,ΦW,\Phi in (1.6) are radially symmetric. We introduce the radial and self-similar variables

(2.2a) r=|x|,z=xTt,Z=|z|=|x|Tt.r=|x|,\quad z=\frac{x}{T-t},\quad Z=|z|=\frac{|x|}{T-t}.
From the ansatz (1.3) and (1.6), it is easy to see that ρp12tϕ(x,t),ρp12rϕ(x,t)\rho^{-\frac{p-1}{2}}\partial_{t}\phi(x,t),\rho^{-\frac{p-1}{2}}\partial_{r}\phi(x,t) only depend on ZZ. Thus, to solve (1.5), we consider
(2.2b) ρp12tϕ(x,t)=1(1V(Z)2)1/2,ρp12(rϕ)(x,t)=V(Z)(1V(Z)2)1/2.\rho^{-\frac{p-1}{2}}\partial_{t}\phi(x,t)=\frac{1}{(1-V(Z)^{2})^{1/2}},\quad\rho^{-\frac{p-1}{2}}(\partial_{r}\phi)(x,t)=\frac{V(Z)}{(1-V(Z)^{2})^{1/2}}.

The relation (2.2) and (1.2b) imply that V(Z)V(Z) solves the following ODE for Z0Z\geq 0

(2.3) dVdZ\displaystyle\frac{dV}{dZ} =ΔV(Z,V)ΔZ(Z,V),\displaystyle=\frac{\Delta_{V}(Z,V)}{\Delta_{Z}(Z,V)},
ΔV\displaystyle\Delta_{V} =(d1)(1V2)(1γ+1(1V2)ZV(1VZ)),\displaystyle=(d-1)(1-V^{2})\Big{(}\frac{1}{\gamma+1}(1-V^{2})Z-V(1-VZ)\Big{)},
ΔZ\displaystyle\Delta_{Z} =Z((1ZV)2(VZ)2).\displaystyle=Z((1-ZV)^{2}-\ell(V-Z)^{2}).

This ODE was first derived in [56]. For completeness, we derive the ODE in Appendix A.1. 222 We have substitute k=d1,m=d11+γk=d-1,m=\frac{d-1}{1+\gamma} in the ODEs derived in [56, Section 2] to reduce the number of variables. Moreover, we have used β=(d1)(+1)(γ+1)\beta=\frac{(d-1)(\ell+1)}{\ell(\gamma+1)} to remove the parameter β\beta used in [56]. Note that the meaning of β\beta is different in [56] and [55].

Constraints on the parameters

From b>0b>0 (1.6), which is related to the front compression mechanism and the relation (2.1), we first require γ\gamma to satisfy

(2.4) d1(γ+1)>1d1>(γ+1).\frac{d-1}{\ell(\gamma+1)}>1\iff d-1>\ell(\gamma+1).

To obtain a smooth ODE solution, we have an additional constraint on γ\gamma established in [56, Lemma 2.1].

Lemma 2.1 (Lemma 2.1 [56]).

If V(Z):[0,1](1,1)V(Z):[0,1]\to(-1,1) is a C1C^{1} solution to (2.3) with V(0)=0V(0)=0 and >1,γ>1,d>1\ell>1,\gamma>-1,d>1, then γ>1/2\gamma>\ell^{-1/2}.333 In [56, Lemma 2.1], the assumptions m>0,k>0m>0,k>0 are equivalent to γ>1,d>1\gamma>-1,d>1 in our notations due to the relation m=kγ+1,k=d1m=\frac{k}{\gamma+1},k=d-1. [56, Lemma 2.1] implies that k>m(1+1/2)k>m(1+\ell^{-1/2}), which is equivalent to γ>1/2\gamma>\ell^{-1/2}. Again, we do not use the parameters k,mk,m as [56] to reduce the number of variables.

Combining (2.4) and the lower bound γ>1/2\gamma>\ell^{-1/2} from the Lemma 2.1, we obtain

(2.5) +1/2<d1,<u(d):=(d3412)2.\quad\ell+\ell^{1/2}<d-1,\quad\ell<\ell_{u}(d):=(\sqrt{d-\frac{3}{4}}-\frac{1}{2})^{2}.

Since >1\ell>1, we need d4d\geq 4. Recall the power of non-linearity p=41+1,(p)=1+4p1p=\frac{4}{\ell-1}+1,\ell(p)=1+\frac{4}{p-1} (2.1). Let p(d)p(d) be the value with (p(d))=u(d)\ell(p(d))=\ell_{u}(d). For d=4,5,6d=4,5,6, the constraint (2.5) implies

p>p(d),p(4)6.737,p(5)3.7808,p(6)2.8110.p>p(d),\quad p(4)\approx 6.737,\quad p(5)\approx 3.7808,\quad p(6)\approx 2.8110.

In the remainder of the paper, we will focus on the lowest dimension d=4d=4 and the smallest integer power p=7p=7 in this dimension. Then, we have

(2.6) d=4,p=7,=53.d=4,\quad p=7,\quad\ell=\frac{5}{3}.

We still have one free parameter γ\gamma, which will be chosen so that 0<γ1/210<\gamma-\ell^{-1/2}\ll 1.

Double roots and the sonic point

Solving ΔV(P)=ΔZ(P)=0\Delta_{V}(P)=\Delta_{Z}(P)=0, we get the special points

(2.7) PO=(0,0),Ps=(Z0,V0)=((γ+1)γ+1,1γ),P2=(1,1),P3=(0,1),\begin{gathered}P_{O}=(0,0),\quad P_{s}=(Z_{0},V_{0})=\Big{(}\tfrac{(\gamma+1)\sqrt{\ell}}{\ell\gamma+1},\tfrac{1}{\gamma\sqrt{\ell}}\Big{)},\quad P_{2}=(1,1),\quad P_{3}=(0,1),\end{gathered}

where PsP_{s} is the sonic point. The letters O,sO,s are short for origin, sonic, respectively.

The smoothness of the ODE solution to (2.3) is closely related to the Jacobian of a renormalization of the ODE (2.3) by the factor ΔZ\Delta_{Z}:

(2.8) MP:=(VΔVZΔVVΔZZΔZ).M_{P}:=\begin{pmatrix}\partial_{V}\Delta_{V}&\partial_{Z}\Delta_{V}\\ \partial_{V}\Delta_{Z}&\partial_{Z}\Delta_{Z}\\ \end{pmatrix}.

A direct computation shows that the entries degenerate: |MP,ij||γ21||M_{P,ij}|\lesssim|\gamma^{2}\ell-1|, as γγ=1/2\gamma\to\gamma_{*}=\ell^{-1/2}, which complicates the analysis of the ODE near the sonic point.

Notations and parameters

Throughout the paper, we will use (Z,V)(Z,V) for the variables in the original ODE system (2.3), and (Y,U)(Y,U) for the renormalized ODE (2.14) to be introduced. We further introduce some parameters

(2.9) ε=γ21,A=d+1(d12)γ,B=2d1,\displaystyle\varepsilon=\ell\gamma^{2}-1,\quad A=d+1-(d-1-2\ell)\gamma,\quad B=2d-1-\ell,

and will use them to denote the coefficients of a polynomial in the renormalized ODE of (U,Y)(U,Y).

We fix the following constants

(2.10) δ^=0.049,δ=0.05,\hat{\delta}=0.049,\quad\delta=0.05,

and will use them to denote the size of relative error for asymptotic series around the sonic point (see Lemma 3.5 and Corollary 3.11).

We denote ABA\lesssim B if ACBA\leq CB for some absolute constant C>0C>0, and denote ABA\asymp B if ABA\lesssim B and BAB\lesssim A. We denote AmBA\lesssim_{m}B if AC(m)BA\leq C(m)B for some constant C(m)>0C(m)>0 depending on mm, and define the notations AmBA\asymp_{m}B similarly.

2.2. Renormalization

To overcome the degeneracy of the Jacobian MPM_{P} (2.8) as γγ\gamma\to\gamma_{*}, we study an ODE system equivalent to (2.3) by performing a renormalization of the system. We adopt the change of coordinate (Z,V)(Y,U)=(𝒴,𝒰)(Z,V)(Z,V)\to(Y,U)=({\mathcal{Y}},{\mathcal{U}})(Z,V) from [56] with

(2.11) 𝒴(Z,V)=(1V2)Z(γ+1)V(1VZ)Z(1V2),𝒰(Z,V)=(γ+1)2(1VZ)2(1V2)Z2.\displaystyle{\mathcal{Y}}(Z,V)=\frac{(1-V^{2})Z-(\gamma+1)V(1-VZ)}{Z(1-V^{2})},\quad{\mathcal{U}}(Z,V)=\frac{(\gamma+1)^{2}(1-VZ)^{2}}{(1-V^{2})Z^{2}}.

We will see later that the Jacobian of the new ODE system in (Y,U)(Y,U) at the sonic point (2.26) is non-degenerate as γγ\gamma\to\gamma_{*}. There are a few other change of coordinates that achieve this purpose. See Remark 2.3. The above transform (2.11) leads to lower order polynomials ΔU,ΔY\Delta_{U},\Delta_{Y} in UU, which simplifies some analysis. Note that we do not use this property in an essential way.

We can invert the transform from (Y,U)(Y,U) to (Z,V)=(𝒵,𝒱)(Y,U)(Z,V)=({\mathcal{Z}},{\mathcal{V}})(Y,U) using the following formulas

(2.12) 𝒵(Y,U)=U+(1Y)211+γU+1Y,𝒱(Y,U)=1YU+(1Y)2.{\mathcal{Z}}(Y,U)=\frac{\sqrt{U+(1-Y)^{2}}}{\frac{1}{1+\gamma}U+1-Y},\quad{\mathcal{V}}(Y,U)=\frac{1-Y}{\sqrt{U+(1-Y)^{2}}}.

The bijective properties are proved in [56, Lemma 3.8] :

Lemma 2.2.

Denote ZV={(Z,V):0<V<1,0<ZV<1},YU={(Y,U):U>0,Y<1}{\mathcal{R}}_{ZV}=\{(Z,V):0<V<1,0<ZV<1\},{\mathcal{R}}_{YU}=\{(Y,U):U>0,Y<1\}. Then (𝒴,𝒰):ZVYU({\mathcal{Y}},{\mathcal{U}}):{\mathcal{R}}_{ZV}\to{\mathcal{R}}_{YU} is a bijection.

A direct computation yields that the inversion of (𝒴,𝒰)({\mathcal{Y}},{\mathcal{U}}) is given by (𝒵,𝒱)({\mathcal{Z}},{\mathcal{V}}). Thus, for (Z,V)ZV(Z,V)\in{\mathcal{R}}_{ZV} or (Y,U)YU(Y,U)\in{\mathcal{R}}_{YU}, we have

(2.13) (𝒴,𝒰)(𝒵,𝒱)=Id,(𝒵,𝒱)(𝒴,𝒰)=Id.({\mathcal{Y}},{\mathcal{U}})\circ({\mathcal{Z}},{\mathcal{V}})=\mathrm{Id},\quad({\mathcal{Z}},{\mathcal{V}})\circ({\mathcal{Y}},{\mathcal{U}})=\mathrm{Id}.

Suppose that (Z,V(Z))(Z,V(Z)) solves (2.3). We have the following ODE for (Y,U)=(𝒴,𝒰)(Z,V(Z))(Y,U)=({\mathcal{Y}},{\mathcal{U}})(Z,V(Z)):

(2.14) dUdY\displaystyle\frac{dU}{dY} =ΔU(Y,U)ΔY(Y,U),\displaystyle=\frac{\Delta_{U}(Y,U)}{\Delta_{Y}(Y,U)},
ΔU\displaystyle\Delta_{U} =2U(U+f(Y)+(d1)Y(1Y)),\displaystyle=2U(U+f(Y)+(d-1)Y(1-Y)),
ΔY\displaystyle\Delta_{Y} =(dY1)U+(Y1)f(Y),f(Y)=εAY+BY2,\displaystyle=(dY-1)U+(Y-1)f(Y),\quad f(Y)=-\varepsilon-AY+BY^{2},

where ε,A,B\varepsilon,A,B are defined in (2.9). We refer to [56, Section 3.2] for the derivations of (2.14).

Denote by dU,dYd_{U},d_{Y} the degree of ΔU,ΔY\Delta_{U},\Delta_{Y} as a polynomial in UU, respectively. We have

(2.15a) dU=2,dY=1.d_{U}=2,\quad d_{Y}=1.
We can expand ΔU,ΔY\Delta_{U},\Delta_{Y} as polynomials in UU
(2.15b) ΔU=idUFi(Y)Ui,ΔY=idYGi(Y)Ui,\Delta_{U}=\sum_{i\leq d_{U}}F_{i}(Y)U^{i},\quad\Delta_{Y}=\sum_{i\leq d_{Y}}G_{i}(Y)U^{i},
where Fi,GiF_{i},G_{i} are polynomials in YY. We further define the maximum degree of these polynomials in YY as follows
(2.15c) dF=maxidegFi(Y),dG=maxidegGi(Y).d_{F}=\max_{i}\deg F_{i}(Y),\quad d_{G}=\max_{i}\deg G_{i}(Y).

For the above ODE system (2.14), we have

(2.15d) dF=2,dG=3.d_{F}=2,\quad d_{G}=3.

In this new coordinate system (Y,U)(Y,U), the points PO,PsP_{O},P_{s} defined in (2.7) map to

(2.16) QO=(Y=YO,U=),Qs=(Y0,U0),YO=1d,Y0=0,U0=ε.Q_{O}=(Y=Y_{O},U=\infty),\quad Q_{s}=(Y_{0},U_{0}),\quad Y_{O}=\frac{1}{d},\quad Y_{0}=0,\quad U_{0}=\varepsilon.
Remark 2.3.

One can choose other change of variables to make the matrix MPM_{P} (2.8) nonsingular and analyze the ODE in the new system. One candidate is the following simpler transform

𝒰(Z,V)=1VZ1V2,𝒴(Z,V)=VZ1V2.{\mathcal{U}}(Z,V)=\frac{1-VZ}{1-V^{2}},\quad{\mathcal{Y}}(Z,V)=\frac{V-Z}{1-V^{2}}.

In the new system, the gradient at the sonic point does not degenerate in the limit γγ\gamma\to\gamma_{*}

|U,YΔU|1,|U,YΔY|1.|\nabla_{U,Y}\Delta_{U}|\asymp 1,\quad|\nabla_{U,Y}\Delta_{Y}|\asymp 1.

The reason is that the transformation from (Z,V)(Z,V) to (Y,U)(Y,U) is singular near PsP_{s} as γγ\gamma\to\gamma_{*} with |Z,V(𝒰,𝒴)|Ps(γγ)1|\nabla_{Z,V}({\mathcal{U}},{\mathcal{Y}})|_{P_{s}}\sim(\gamma-\gamma_{*})^{-1}, which compensates the degeneracy: |ΔZ|,|Δv|γγ|\nabla\Delta_{Z}|,|\nabla\Delta_{v}|\asymp\gamma-\gamma_{*}.

2.2.1. Change of coordinates

Recall the maps 𝒵,𝒱{\mathcal{Z}},{\mathcal{V}} from (Y,U)(Y,U) to (Z,V)(Z,V) (2.11) and (𝒴,𝒰)({\mathcal{Y}},{\mathcal{U}}) from (Z,V)(Z,V) to (Y,U)(Y,U) (2.12). Denote by 1,2{\mathcal{M}}_{1},{\mathcal{M}}_{2} the Jacobians

(2.17) 1(Y,U)=(Y𝒵U𝒵Y𝒱U𝒱)(Y,U),2(Z,V)=(Z𝒴V𝒴Z𝒰V𝒰)(Z,V).{\mathcal{M}}_{1}(Y,U)=\begin{pmatrix}\partial_{Y}{\mathcal{Z}}&\partial_{U}{\mathcal{Z}}\\ \partial_{Y}{\mathcal{V}}&\partial_{U}{\mathcal{V}}\\ \end{pmatrix}(Y,U),\quad{\mathcal{M}}_{2}(Z,V)=\begin{pmatrix}\partial_{Z}{\mathcal{Y}}&\partial_{V}{\mathcal{Y}}\\ \partial_{Z}{\mathcal{U}}&\partial_{V}{\mathcal{U}}\\ \end{pmatrix}(Z,V).

For (Z,V)ZV,(Y,U)YU(Z,V)\in{\mathcal{R}}_{ZV},(Y,U)\in{\mathcal{R}}_{YU} with ZV,YU{\mathcal{R}}_{ZV},{\mathcal{R}}_{YU} defined in Lemma 2.2, the denominators in the maps (2.11), (2.12) do not vanish. Thus, the matrices 1,2{\mathcal{M}}_{1},{\mathcal{M}}_{2} are not singular. Using (2.13), we have

(2.18) 1((Y,U)2(Z,V)=Id,for(Y,U)=(𝒴,𝒰)(Z,V).{\mathcal{M}}_{1}((Y,U){\mathcal{M}}_{2}(Z,V)=\mathrm{Id},\quad\mathrm{for}\quad(Y,U)=({\mathcal{Y}},{\mathcal{U}})(Z,V).

Since MiM_{i} is not singular, we get det(i)0\det({\mathcal{M}}_{i})\neq 0.

Along the ODE solution curve (Y,U(Y))(Y,U(Y)) or (Z,V(Z))(Z,V(Z)), the ODE (2.14) and the above change of coordinates implies

ΔUΔY=dUdY=d𝒰(Z,V(Z))dZd𝒴(Z,V(Z))dZ=2,21+2,22ΔVΔZ2,11+2,12ΔVΔZ=2,21ΔZ+2,22ΔV2,11ΔZ+2,12ΔV,\frac{\Delta_{U}}{\Delta_{Y}}=\frac{dU}{dY}=\frac{\frac{d{\mathcal{U}}(Z,V(Z))}{dZ}}{\frac{d{\mathcal{Y}}(Z,V(Z))}{dZ}}=\frac{{\mathcal{M}}_{2,21}+{\mathcal{M}}_{2,22}\frac{\Delta_{V}}{\Delta_{Z}}}{{\mathcal{M}}_{2,11}+{\mathcal{M}}_{2,12}\frac{\Delta_{V}}{\Delta_{Z}}}=\frac{{\mathcal{M}}_{2,21}\Delta_{Z}+{\mathcal{M}}_{2,22}\Delta_{V}}{{\mathcal{M}}_{2,11}\Delta_{Z}+{\mathcal{M}}_{2,12}\Delta_{V}},

where QijQ_{ij} denotes the ijij-th component of a matrix QQ. Thus, there exists some continuous function m(Y,U)m(Y,U) such that

(2.19) 2(ΔZΔV)=m(Y,U)(ΔYΔU),1(ΔYΔU)=m1(ΔZΔV),m0,{\mathcal{M}}_{2}\cdot\begin{pmatrix}\Delta_{Z}\\ \Delta_{V}\\ \end{pmatrix}=m(Y,U)\begin{pmatrix}\Delta_{Y}\\ \Delta_{U}\\ \end{pmatrix},\quad{\mathcal{M}}_{1}\cdot\begin{pmatrix}\Delta_{Y}\\ \Delta_{U}\\ \end{pmatrix}=m^{-1}\begin{pmatrix}\Delta_{Z}\\ \Delta_{V}\\ \end{pmatrix},\quad m\neq 0,

for (Z,V)=(𝒵,𝒱)(Y,U)ZV\Ps(Z,V)=({\mathcal{Z}},{\mathcal{V}})(Y,U)\in{\mathcal{R}}_{ZV}\backslash P_{s} or equivalently (Y,U)YU\Qs(Y,U)\in{\mathcal{R}}_{YU}\backslash Q_{s}. For (Y,U)YU\Qs(Y,U)\in{\mathcal{R}}_{YU}\backslash Q_{s}, since det(2)0\det({\mathcal{M}}_{2})\neq 0 and (ΔZ,ΔV)(0,0)(\Delta_{Z},\Delta_{V})\neq(0,0), we obtain m(Y,U)0m(Y,U)\neq 0.

2.3. Roots of ΔZ,ΔV,ΔY,ΔU\Delta_{Z},\Delta_{V},\Delta_{Y},\Delta_{U}

We can decompose ΔV,ΔZ\Delta_{V},\Delta_{Z}, defined in (2.3) as follows

(2.20) ΔV\displaystyle\Delta_{V} =d1γ+1(1V2)(1+γV2)(ZZV(V)),ZV(V)=(1+γ)V1+γV2,\displaystyle=\frac{d-1}{\gamma+1}(1-V^{2})(1+\gamma V^{2})(Z-Z_{V}(V)),\quad Z_{V}(V)=\frac{(1+\gamma)V}{1+\gamma V^{2}},
ΔZ\displaystyle\Delta_{Z} =Z(V2)(ZZ±(V)),Z±(V)=±1/2V+1V±1/2.\displaystyle=Z(V^{2}-\ell)(Z-Z_{\pm}(V)),\quad Z_{\pm}(V)=\frac{\pm\ell^{1/2}V+1}{V\pm\ell^{1/2}}.

The derivations follow from a direct computation. See Figure 1 for an illustration of the curves ZV(V)Z_{V}(V) (red) and Z±(V)Z_{\pm}(V) (blue). For γ<1<,|V|<1\gamma<1<\ell,|V|<1, a direct computation yields

(2.21) ZV(V)=(1+γ)1+γV22γV2(1+γV2)2>0,Z±(V)=1(V±1/2)2>0,Z+(V)Z(V)=21/2(V21)V2>0.\begin{gathered}Z_{V}^{\prime}(V)=(1+\gamma)\frac{1+\gamma V^{2}-2\gamma V^{2}}{(1+\gamma V^{2})^{2}}>0,\quad Z_{\pm}^{\prime}(V)=\frac{\ell-1}{(V\pm\ell^{1/2})^{2}}>0,\\ \quad Z_{+}(V)-Z_{-}(V)=\frac{2\ell^{1/2}(V^{2}-1)}{V^{2}-\ell}>0.\end{gathered}
Refer to caption
Figure 1. Illustrations of phase portrait of the (Z,V)(Z,V)-ODE (2.3). The solution curve is in black and Z±(V),ZV(V)Z_{\pm}(V),Z_{V}(V) defined in (2.20) are roots of ΔZ,ΔV\Delta_{Z},\Delta_{V}.

Plugging the formulas of Z,VZ,V (2.12) in ΔZ\Delta_{Z} (2.3) with (Y,U)=(𝒴,𝒰)(Z,V)(Y,U)=({\mathcal{Y}},{\mathcal{U}})(Z,V), we can also rewrite ΔZ\Delta_{Z} as

(2.22) ΔZ=Z((1ZV)2(VZ)2)=ZU2(U+(1Y)2(Y+γ)2)(U+(1Y)2)(U+(1+γ)(1Y))2|(Y,U)=(𝒴,𝒰)(Z,V).\Delta_{Z}=Z((1-ZV)^{2}-\ell(V-Z)^{2})=\frac{ZU^{2}(U+(1-Y)^{2}-\ell(Y+\gamma)^{2})}{(U+(1-Y)^{2})(U+(1+\gamma)(1-Y))^{2}}\Big{|}_{(Y,U)=({\mathcal{Y}},{\mathcal{U}})(Z,V)}.

We refer to [56, Section 3.2] for the derivation of (2.22). The numerator can be written as ZU2(UUg(Y))ZU^{2}(U-U_{g}(Y)), where we define

(2.23) Ug(Y)=(Y+γ)2(1Y)2.U_{g}(Y)=\ell(Y+\gamma)^{2}-(1-Y)^{2}.

We will use the function Ug(Y)U_{g}(Y) in Section 5 to control the sign of ΔZ\Delta_{Z} on the solution curve.

We can decompose ΔU,ΔY\Delta_{U},\Delta_{Y} (2.14) as follows

(2.24a) ΔU=2U(UUΔU(Y)),ΔY=(dY1)(UUΔY(Y)),\Delta_{U}=2U(U-U_{\Delta_{U}}(Y)),\quad\Delta_{Y}=(dY-1)(U-U_{\Delta_{Y}}(Y)),
with UΔU(Y)),UΔY(Y)U_{\Delta_{U}}(Y)),U_{\Delta_{Y}}(Y) given by
(2.24b) UΔY(Y)=(Y1)f(Y)dY1,UΔU(Y)=f(Y)(d1)Y(1Y).U_{\Delta_{Y}}(Y)=-\frac{(Y-1)f(Y)}{dY-1},\quad U_{\Delta_{U}}(Y)=-f(Y)-(d-1)Y(1-Y).

See Figure 2 for an illustration of the curves UΔY(Y)U_{\Delta_{Y}}(Y) (red), UΔU(Y)U_{\Delta_{U}}(Y) (blue).

We have the following basic properties about UΔY,UΔU,UgU_{\Delta_{Y}},U_{\Delta_{U}},U_{g}.

Lemma 2.4.

Suppose that (d,,γ)(d,\ell,\gamma) satisfies 1/2<γ<1,3+2>d,<d1\ell^{-1/2}<\gamma<1,3+2\ell>d,\ell<d-1. For Y<0Y<0, we have UΔY(Y)>0,UΔU(Y)>0U_{\Delta_{Y}}^{\prime}(Y)>0,U_{\Delta_{U}}^{\prime}(Y)>0. For γ<Y<0-\gamma<Y<0, we have Ug(Y)>0U_{g}^{\prime}(Y)>0.

The above properties hold for a wider range of parameters (,d,γ)(\ell,d,\gamma), but we restrict the range to simplify the proof. The parameters in (2.6) with 1/2<γ<1\ell^{-1/2}<\gamma<1 satisfy the above assumptions.

Proof.

Using the definition of f(Y)f(Y) (2.14), we compute

UΔU(Y)\displaystyle U_{\Delta_{U}}^{\prime}(Y) =(A+2BY)(d1)+2(d1)Y=A(d1)+2(d1B)Y\displaystyle=-(-A+2BY)-(d-1)+2(d-1)Y=A-(d-1)+2(d-1-B)Y
=2(d12)γ+2(d)Y.\displaystyle=2-(d-1-2\ell)\gamma+2(\ell-d)Y.

Since 0<γ<1,<d1,3+2>d0<\gamma<1,\ell<d-1,3+2\ell>d, and d1d\geq 1, using the formula of AA (2.9), we obtain

(2.25) A2(d12)γ>min(2,2(d12))=min(2,3+2d)>0.A\geq 2-(d-1-2\ell)\gamma>\min(2,2-(d-1-2\ell))=\min(2,3+2\ell-d)>0.

For Y<0Y<0, it follows that 2(d12)γ>0,2(d)Y>02-(d-1-2\ell)\gamma>0,2(\ell-d)Y>0, and UΔU(Y)>0U_{\Delta_{U}}^{\prime}(Y)>0.

For UgU_{g}^{\prime} with Y(γ,0)Y\in(-\gamma,0), we compute

Ug(Y)\displaystyle U_{g}^{\prime}(Y) =2(Y+γ)2(Y1)=2(1)Y+2γ+2\displaystyle=2\ell(Y+\gamma)-2(Y-1)=2(\ell-1)Y+2\ell\gamma+2
>2(1)γ+2γ+2=2γ+2>0.\displaystyle>-2(\ell-1)\gamma+2\ell\gamma+2=2\gamma+2>0.

For UΔY(Y)U_{\Delta_{Y}}^{\prime}(Y), we compute

UΔY=C(Y)(dY1)2,C(Y)=((Y1)f(Y))(dY1)+d(Y1)f(Y).U_{\Delta_{Y}}^{\prime}=\frac{C(Y)}{(dY-1)^{2}},\quad C(Y)=-((Y-1)f(Y))^{\prime}(dY-1)+d(Y-1)f(Y).

Thus, we only need to show C(Y)>0C(Y)>0. Using the formula of f(Y)f(Y) (2.14), we compute

(Y1)f(Y)\displaystyle(Y-1)f(Y) =(Y1)(εAY+BY2)=BY3(A+B)Y2+(Aε)Y+ε,\displaystyle=(Y-1)(-\varepsilon-AY+BY^{2})=BY^{3}-(A+B)Y^{2}+(A-\varepsilon)Y+\varepsilon,
((Y1)f(Y))\displaystyle((Y-1)f(Y))^{\prime} =3BY22(A+B)Y+Aε.\displaystyle=3BY^{2}-2(A+B)Y+A-\varepsilon.

It follows

C(Y)\displaystyle C(Y) =(3BY22(A+B)Y+Aε)(dY1)+d(BY3(A+B)Y2+(Aε)Y+ε)\displaystyle=-(3BY^{2}-2(A+B)Y+A-\varepsilon)(dY-1)+d(BY^{3}-(A+B)Y^{2}+(A-\varepsilon)Y+\varepsilon)
=2BdY3+(Ad+B(3+d))Y22(A+B)Y+A+(d1)ε.\displaystyle=-2BdY^{3}+(Ad+B(3+d))Y^{2}-2(A+B)Y+A+(d-1)\varepsilon.

Recall A>0A>0 from (2.25). Since γ>1/2\gamma>\ell^{-1/2} and <d1\ell<d-1, we get ε>0\varepsilon>0 and B=2d1>d>0B=2d-1-\ell>d>0 (2.9). Using the estimates of the sign of each term and Y0Y\leq 0, we obtain that each monomial in C(Y)C(Y) is non-negative for Y0Y\leq 0. Since A+(d1)ε>0A+(d-1)\varepsilon>0, we prove C(Y)>0C(Y)>0. MM \square

2.4. Eigen-system near QsQ_{s}

We define

(2.26a) MQ:=(UΔUYΔUUΔYYΔY)|Q=Qs=(c1c3c2c4).M_{Q}:=\begin{pmatrix}\partial_{U}\Delta_{U}&\partial_{Y}\Delta_{U}\\ \partial_{U}\Delta_{Y}&\partial_{Y}\Delta_{Y}\\ \end{pmatrix}\Big{|}_{Q=Q_{s}}=\begin{pmatrix}c_{1}&c_{3}\\ c_{2}&c_{4}\\ \end{pmatrix}.
Using the definitions in (2.14) and a direct computation, at (Y,U)=Qs=(0,ε)(Y,U)=Q_{s}=(0,\varepsilon), we yield 444 These formulas have also been derived in [56, Sections 4.1, 4.2].
(2.26b) c1\displaystyle c_{1} =4U+2(f(Y)+kY(1Y))=2ε,\displaystyle=4U+2(f(Y)+kY(1-Y))=2\varepsilon,\ c3=2U(d12kYA+2BY)=2ε(d1A),\displaystyle c_{3}=2U(d-1-2kY-A+2BY)=2\varepsilon(d-1-A),
c2\displaystyle c_{2} =1,\displaystyle=-1,\ c4=dU+f(0)(A)=(d1)ε+A,\displaystyle c_{4}=dU+f(0)-(-A)=(d-1)\varepsilon+A,

where ε,A,B\varepsilon,A,B are defined in (2.10). The eigenvalues of MQM_{Q} are given by

(2.27a) λ2(c1+c4)λ+(c1c4c2c3)=0,\displaystyle\lambda^{2}-(c_{1}+c_{4})\lambda+(c_{1}c_{4}-c_{2}c_{3})=0,
λ±=c1+c4±(c1c4)2+4c2c32.\displaystyle\lambda_{\pm}=\frac{c_{1}+c_{4}\pm\sqrt{(c_{1}-c_{4})^{2}+4c_{2}c_{3}}}{2}.
Using the above formulas of cic_{i} and (2.6), (2.9), we compute
(2.27b) c1+c4=(d+1)ε+A>0,c1c4c2c3=2(d1)ε(ε+1)>0,c3=2ε((d12)γ2)<0,(c1+c4)24(c1c4c2c3)>0.\begin{gathered}c_{1}+c_{4}=(d+1)\varepsilon+A>0,\quad c_{1}c_{4}-c_{2}c_{3}=2(d-1)\varepsilon(\varepsilon+1)>0,\\ c_{3}=2\varepsilon((d-1-2\ell)\gamma-2)<0,\quad(c_{1}+c_{4})^{2}-4(c_{1}c_{4}-c_{2}c_{3})>0.\end{gathered}

We view all the parameters as functions in γ\gamma. From (2.27), for γ>1/2\gamma>\ell^{-1/2}, we obtain

(2.28) 0<λ<λ+.0<\lambda_{-}<\lambda_{+}.

Since ε|γ=1/2=0\varepsilon|_{\gamma=\ell^{-1/2}}=0 (2.9), using the above estimates and (2.9), we obtain

(2.29) limγ(1/2)+λ(γ)=0,limγ(1/2)+λ+(γ)=λ+(1/2)>0.\lim_{\gamma\to(\ell^{-1/2})^{+}}\lambda_{-}(\gamma)=0,\quad\lim_{\gamma\to(\ell^{-1/2})^{+}}\lambda_{+}(\gamma)=\lambda_{+}(\ell^{-1/2})>0.

We introduce the parameter

(2.30) κ(γ)=λ+λ,\kappa(\gamma)=\frac{\lambda_{+}}{\lambda_{-}},

related to the asymptotics of the power series of UU near the sonic point. Using (2.27), we obtain

(2.31) (κ(γ)+1)2κ(γ)=(λ++λ)2λ+λ=(c1+c4)2c1c4c2c3=((d+1)γ(d12))22(d1)(γ21).\frac{(\kappa(\gamma)+1)^{2}}{\kappa(\gamma)}=\frac{(\lambda_{+}+\lambda_{-})^{2}}{\lambda_{+}\lambda_{-}}=\frac{(c_{1}+c_{4})^{2}}{c_{1}c_{4}-c_{2}c_{3}}=\frac{((d+1)\ell\gamma-(d-1-2\ell))^{2}}{2(d-1)\ell(\ell\gamma^{2}-1)}.

We want to study the smooth self-similar profile with κ(γ)\kappa(\gamma) sufficiently large, which provides an important large parameter in our analysis. Since γ>1/2>1\gamma\ell>\ell^{1/2}>1, the numerator is always larger than 44. Thus, we want to choose γ>γ\gamma>\gamma_{*} with γ\gamma close to γ\gamma_{*}

(2.32) γ(γ)+,γ=1/2,\gamma\to(\gamma_{*})^{+},\quad\gamma_{*}=\ell^{-1/2},

which is consistent with the constraint in Lemma 2.1. Note that given κ\kappa, we can determine γ\gamma via (2.31). It is not difficult to see that κ(γ)\kappa(\gamma) decreases in γ\gamma for γ(1/2,1/2+c)\gamma\in(\ell^{1/2},\ell^{1/2}+c) with some absolute constant c>0c>0, κ(γ)\kappa(\gamma) is a smooth bijection, and it admits an inverse map γ=Γ(κ)\gamma=\Gamma(\kappa):

(2.33) κ(γ):IγIκ,Γ(κ):IκIγ,Γ(κ(γ))=γ,Iγ(1/2,1/2+c),Iκ(Cκ,),Cκ=κ(1/2+c).\begin{gathered}\kappa(\gamma):I_{\gamma}\to I_{\kappa},\quad\Gamma(\kappa):I_{\kappa}\to I_{\gamma},\quad\Gamma(\kappa(\gamma))=\gamma,\\ I_{\gamma}\triangleq(\ell^{1/2},\ell^{1/2}+c),\quad I_{\kappa}\triangleq(C_{\kappa},\infty),\quad C_{\kappa}=\kappa(\ell^{1/2}+c).\end{gathered}

Thus, for each integer n>Cκn>C_{\kappa}, there exists strictly decreasing γn>1/2\gamma_{n}>\ell^{1/2} such that

(2.34) κ(γn)=n>Cκ.\kappa(\gamma_{n})=n>C_{\kappa}.

In the remainder of the paper, we drop the dependence of κ\kappa on γ\gamma for simplicity. Whenever we refer to choosing κ\kappa sufficiently large, it is equivalent to taking γ\gamma sufficiently close to 1/2\ell^{-1/2}.

Next, we use the ODE (2.15b) to compute the slope of the solution (Y,U(Y))(Y,U(Y)) at the sonic point QsQ_{s}, which is given by (1,U1)(1,U_{1}) with

U1=dUdY|Y=Y0.U_{1}=\frac{dU}{dY}\Big{|}_{Y=Y_{0}}.

Denote ξ=YY0\xi=Y-Y_{0}. Applying Taylor expansion near Qs=(Y0,U0)Q_{s}=(Y_{0},U_{0}) (2.26), we get

(2.35) Δα(Y,U(Y))|Qs=ddYΔα(Y,U(Y))|Y=Y0ξ+O(ξ2)=(YΔα+UΔαU1)ξ+O(ξ2).\Delta_{\alpha}(Y,U(Y))|_{Q_{s}}=\frac{d}{dY}\Delta_{\alpha}(Y,U(Y))\Big{|}_{Y=Y_{0}}\xi+O(\xi^{2})=(\partial_{Y}\Delta_{\alpha}+\partial_{U}\Delta_{\alpha}\cdot U_{1})\xi+O(\xi^{2}).

Using the derivation for Y,UΔα\nabla_{Y,U}\Delta_{\alpha} from (2.26) and the ODE (2.15b), we yield

(2.36) U1=c1U1+c3c2U1+c4,c2U12+(c4c1)U1c3=0.U_{1}=\frac{c_{1}U_{1}+c_{3}}{c_{2}U_{1}+c_{4}},\quad c_{2}U_{1}^{2}+(c_{4}-c_{1})U_{1}-c_{3}=0.

It is not difficult to show that (2.36) implies that (1,U1)(1,U_{1}) is an eigenfunction of MQM_{Q} (2.26). Moreover, using (2.26b) and (2.27b), we get c3/c2=c3<0-c_{3}/c_{2}=c_{3}<0. Thus, the above equation has two roots U1,<0<U1,+U_{1,-}<0<U_{1,+}. The eigenfunction associated with eigenvalue λ\lambda is parallel to

𝐮λ=(c3λc1)=(λc4c2).\mathbf{u}_{\lambda}=\begin{pmatrix}c_{3}\\ \lambda-c_{1}\\ \end{pmatrix}=\begin{pmatrix}\lambda-c_{4}\\ c_{2}\\ \end{pmatrix}.

We want to construct a smooth curve that pasts through QsQ_{s} along the positive direction (1,U1,+)(1,U_{1,+}). See the black curve in Figure 2 for an illustration of the direction. Using (2.27), (2.26), (2.6), (2.9), for γ\gamma close to 1/2\ell^{-1/2}, which implies 0<λ,ε10<\lambda_{-},\varepsilon\ll 1, we get that the direction (1,U1,+)(1,U_{1,+}) corresponds to uλu_{\lambda_{-}}. We fix U1=U1,+U_{1}=U_{1,+}. Since (1,U1)(1,U_{1}) and uλu_{\lambda_{-}} are parallel, we can represent U1U_{1} and κ(γ)\kappa(\gamma) (2.31) as follows

(2.37) U1=λc4c2,λ=c2U1+c4,λ+=c1+c4λ=c2U1+c1,κ(γ)=λ+λ=c1c2U1c2U1+c4.\begin{gathered}U_{1}=\frac{\lambda_{-}-c_{4}}{c_{2}},\quad\lambda_{-}=c_{2}U_{1}+c_{4},\quad\lambda_{+}=c_{1}+c_{4}-\lambda_{-}=-c_{2}U_{1}+c_{1},\\ \kappa(\gamma)=\frac{\lambda_{+}}{\lambda_{-}}=\frac{c_{1}-c_{2}U_{1}}{c_{2}U_{1}+c_{4}}.\end{gathered}

2.5. Outline of the proof

In this section, we outline the proof of Theorem 1.1.

In Section 3, we analyze the ODE (2.14) near the sonic point Qs=(Y0,U0)Q_{s}=(Y_{0},U_{0}) (2.16) by constructing power series solution U(Y)U(Y) and estimating the asymptotics of the power series coefficients UnU_{n} using induction.

In Section 4, we use a double barrier argument, a shooting argument, to extend the local power series solution U(Y)U(Y) to Y[c,YOc]Y\in[-c,Y_{O}-c] for some small cc, which along with a gluing argument gives rise to a smooth ODE solution V(Z)V(Z) to (2.3) for Z[0,Z0+ε1]Z\in[0,Z_{0}+\varepsilon_{1}] with small ε1>0\varepsilon_{1}>0. It corresponds to a solution curve (Z,V)(Z,V) connecting PO,PsP_{O},P_{s}. See the black curve in Figure 1 or the curves above QsQ_{s} in Figure 2 for illustrations.

In Section 5, we use a barrier argument and some monotone properties to extend the local power series solution U(Y)U(Y) for Y<0Y<0. We further study a desingularized ODE (5.34) of (Yds,Uds)(Y_{\mathrm{ds}},U_{\mathrm{ds}}) and extend the solution curve (Yds,Uds)(Y_{\mathrm{ds}},U_{\mathrm{ds}}) below QsQ_{s} across Y=0Y=0. See the black curve below QsQ_{s} in Figure 2 for an illustration.

In Section 6, we glue the solutions of the (Z,V)(Z,V)-ODE (2.3), the (Y,U)(Y,U)-ODE (2.14), and the desingularized ODE (Yds,Uds)(Y_{\mathrm{ds}},U_{\mathrm{ds}}) (5.34), and use some monotonicity properties of the (Z,V)(Z,V)-ODE (2.3) to obtain a global solution to the (Z,V)(Z,V) ODE. We then proceed to prove Theorem 1.1.

3. Power series near the sonic point

In this section, we study the behavior of the ODE (2.14) near the sonic point Qs=(Y0,U0)Q_{s}=(Y_{0},U_{0}) (2.16) using power series expansion

(3.1) Y=y0+ξ,Un0unξn.Y=y_{0}+\xi,\quad U\triangleq\sum_{n\geq 0}u_{n}\xi^{n}.

Although we have Y0=0Y_{0}=0 in our case, we aim to develop a general method which does not depend on fine properties of the ODEs, e.g., specific value or degree of the polynomials.

3.1. Recursive formula

In this section, our goal is to establish Lemma 3.2 for the recursive formula of the power series coefficients UiU_{i} of the ODE solution near the sonic point Qs=(Y0,U0)Q_{s}=(Y_{0},U_{0}).

Notations

Throughout this section, we use y0,u0,u1,..y_{0},u_{0},u_{1},.. to denote variables, and Y0,U0,U1,..Y_{0},U_{0},U_{1},.. to denote the value of the power series coefficients of the solution (Y,U)(Y,U) to the ODE (2.14).

Firstly, for any two power series A,BA,B with coefficients {An}n0,{Bn}n0\{A_{n}\}_{n\geq 0},\{B_{n}\}_{n\geq 0}, i.e. C(Y)=n0Cnξn,C=A,BC(Y)=\sum_{n\geq 0}C_{n}\xi^{n},C=A,B, we get

(3.2) AB=n0(AB)nξn,(AB)n=inAiBni.AB=\sum_{n\geq 0}(AB)_{n}\xi^{n},\quad(AB)_{n}=\sum_{i\leq n}A_{i}B_{n-i}.

Given any power series UU with coefficients {ui}i0\{u_{i}\}_{i\geq 0} and Y=y0+ξY=y_{0}+\xi (3.1), since ΔY,ΔU\Delta_{Y},\Delta_{U} are polynomials of U,YU,Y, using the above convolution formula, we can obtain the power series of Δα\Delta_{\alpha}

(3.3) Δα(Y,U)\displaystyle\Delta_{\alpha}(Y,U) =n0Δα,n(y0,u0,u1,..,un)ξn,α=U,Y.\displaystyle=\sum_{n\geq 0}\Delta_{\alpha,n}(y_{0},u_{0},u_{1},..,u_{n})\xi^{n},\quad\alpha=U,Y.

Applying chain rule, one can obtain that Δα,n\Delta_{\alpha,n} only depends on y0,u0,..,uny_{0},u_{0},..,u_{n}. For example, we have the following formula for the first term Δα,1\Delta_{\alpha,1}

(3.4) Δα,1(y0,u0,u1)=ddξΔα(Y,U)|ξ=0=u1UΔα(y0,u0)+YΔα(y0,u0).\Delta_{\alpha,1}(y_{0},u_{0},u_{1})=\frac{d}{d\xi}\Delta_{\alpha}(Y,U)\Big{|}_{\xi=0}=u_{1}\cdot\partial_{U}\Delta_{\alpha}(y_{0},u_{0})+\partial_{Y}\Delta_{\alpha}(y_{0},u_{0}).

We introduce the following functions

(3.5) cα,j(y0,u0,..,uj)1j!(djdξj(UΔα)(Y,U))|ξ=0,α=U,Y.c_{\alpha,j}(y_{0},u_{0},..,u_{j})\triangleq\frac{1}{j!}\Big{(}\frac{d^{j}}{d\xi^{j}}(\partial_{U}\Delta_{\alpha})(Y,U)\Big{)}\Big{|}_{\xi=0},\quad\alpha=U,\ Y.

It is easy to see that cα,jc_{\alpha,j} only depends on y0,u0,u1,..,ujy_{0},u_{0},u_{1},..,u_{j} using the chain rule. We will use them in Lemmas 3.1, 3.2. For simplicity, we drop the dependence of cα,jc_{\alpha,j} on y0,uiy_{0},u_{i}.

We have the following formula regarding the coefficients of Δα,n,α=U,Y\Delta_{\alpha,n},\alpha=U,Y.

Lemma 3.1.

Let cα,ic_{\alpha,i} be the functions defined in (3.5). For any (i,j,n)(i,j,n) with n1,i0n\geq 1,i\geq 0, j>ij>i, and α=U,Y\alpha=U,Y, the coefficients Δα,\Delta_{\alpha,\cdot} defined via (3.3) satisfies

(3.6a) unΔα,n+i(y0,u0,..,un+i)\displaystyle\partial_{u_{n}}\Delta_{\alpha,n+i}(y_{0},u_{0},..,u_{n+i}) =cα,i,\displaystyle=c_{\alpha,i},
(3.6b) ujunΔα,n+i(y0,u0,..,un+i)\displaystyle\partial_{u_{j}}\partial_{u_{n}}\Delta_{\alpha,n+i}(y_{0},u_{0},..,u_{n+i}) =0.\displaystyle=0.
Specifically, unΔα,n+i(y0,u0,..,un+i)\partial_{u_{n}}\Delta_{\alpha,n+i}(y_{0},u_{0},..,u_{n+i}) does not depend on uju_{j} for j>ij>i. For any i<ni<n, we have
(3.6c) unΔα,i(y0,u0,..,ui)=0.\partial_{u_{n}}\Delta_{\alpha,i}(y_{0},u_{0},..,u_{i})=0.
Proof.

Recall the expansion (3.1). For i<ni<n, since Δα,i\Delta_{\alpha,i} only depends on y0,u0,..,uiy_{0},u_{0},..,u_{i}, we obtain (3.6c) trivially.

Since U=i0ujξjU=\sum_{i\geq 0}u_{j}\xi^{j}, taking un\partial_{u_{n}} on both sides of (3.3) and then using (3.6b), we yield

(UΔα)(Y,U)ξn=jnunΔα,j(y0,u0,..,un,..,uj)ξj(\partial_{U}\Delta_{\alpha})(Y,U)\cdot\xi^{n}=\sum_{j\geq n}\partial_{u_{n}}\Delta_{\alpha,j}(y_{0},u_{0},..,u_{n},..,u_{j})\xi^{j}

Matching the coefficients of ξn+i\xi^{n+i} on both sides and then evaluating at ξ=0\xi=0, we get

(3.7) cα,i=1i!(didξi(UΔα)(Y,U)|ξ=0=unΔα,n+i(y0,u0,..,un+i)c_{\alpha,i}=\frac{1}{i!}\Big{(}\frac{d^{i}}{d\xi^{i}}(\partial_{U}\Delta_{\alpha})(Y,U\Big{)}\Big{|}_{\xi=0}=\partial_{u_{n}}\Delta_{\alpha,n+i}(y_{0},u_{0},..,u_{n+i})

and prove (3.6a). It is not difficult to see that the left hand side of (3.7) only depends on UU via u0,u1,..,uiu_{0},u_{1},..,u_{i}. Therefore, if j>ij>i, we yield

ujunΔα,n+i=ujcα,i=0,\partial_{u_{j}}\partial_{u_{n}}\Delta_{\alpha,n+i}=\partial_{u_{j}}c_{\alpha,i}=0,

and prove (3.6b). MM \square

3.1.1. Derivation of the recursive formulas

Now, we derive the recursive formula for the power series coefficients Un,n0U_{n},n\geq 0 of UU (3.1) near Qs=(Y0,U0)Q_{s}=(Y_{0},U_{0}):

(3.8) U=i0Uiξi,Y=Y0+ξU=\sum_{i\geq 0}U_{i}\xi^{i},\quad Y=Y_{0}+\xi

with UU satisfying the ODE (2.3).

Firstly, recall the notations from (2.16) and (2.26). We have Qs=(U0,Y0)Q_{s}=(U_{0},Y_{0}) and

(3.9) Δα(Qs)=0,α=U,Y.\Delta_{\alpha}(Q_{s})=0,\quad\alpha=U,Y.

Thus, the leading coefficient satisfies Δα,0=0\Delta_{\alpha,0}=0 for α=U,Y\alpha=U,Y. Using the ODE (2.3) together with the expansions (3.3) and (3.8), we obtain

ΔY(Y,U(Y))dUdY=ΔU(Y,U(Y)),dUdY=i0(i+1)ξiUi+1.\Delta_{Y}(Y,U(Y))\frac{dU}{dY}=\Delta_{U}(Y,U(Y)),\quad\frac{dU}{dY}=\sum_{i\geq 0}(i+1)\xi^{i}U_{i+1}.

Matching the coefficients of ξn\xi^{n}, we get

(3.10) 1inΔY,i(ni+1)Uni+1ΔU,n=0,\sum_{1\leq i\leq n}\Delta_{Y,i}\cdot(n-i+1)U_{n-i+1}-\Delta_{U,n}=0,

where ΔY,i,ΔU,i\Delta_{Y,i},\Delta_{U,i} evaluate on y0=Y0,uj=Uj,jiy_{0}=Y_{0},u_{j}=U_{j},j\leq i.

Let us define

(3.11) n(y0,u0,..,un)=1inΔY,i(y0,u0,..,un)(ni+1)uni+1ΔU,n(y0,u0,..,un).\mathfrak{R}_{n}(y_{0},u_{0},..,u_{n})=\sum_{1\leq i\leq n}\Delta_{Y,i}(y_{0},u_{0},..,u_{n})\cdot(n-i+1)u_{n-i+1}-\Delta_{U,n}(y_{0},u_{0},..,u_{n}).

From (3.10), evaluating at (Y0,U0,..,UnY_{0},U_{0},..,U_{n}), we have

(3.12) n(Y0,U0,..,Un)=0.\mathfrak{R}_{n}(Y_{0},U_{0},..,U_{n})=0.

Next, we derive another formula of n\mathfrak{R}_{n} by determining the explicit dependence on the NN terms un,..,unN+1u_{n},..,u_{n-N+1}. Then, by evaluating n\mathfrak{R}_{n} on y0=Y0,ui=Ui,i0y_{0}=Y_{0},u_{i}=U_{i},i\geq 0, we can obtain the recursive formula of UnU_{n} in terms of UiU_{i} for i<ni<n. We will choose

(3.13) N=O(1)n,nN>n2+2.N=O(1)\ll n,\quad n-N>\frac{n}{2}+2.

When we use the recursive formula later, e.g., in Section 3.2, we choose nn1n\geq n_{1} with (n1,N)(n_{1},N) given in (3.23).

Expansion of n\mathfrak{R}_{n}

For mm with nN<mnn-N<m\leq n, taking umu_{m} derivative on (3.11) and using (3.6c), we obtain

umn\displaystyle\partial_{u_{m}}\mathfrak{R}_{n} =minumΔY,i(ni+1)uni+1+mΔY,n+1mumΔU,n,\displaystyle=\sum_{m\leq i\leq n}\partial_{u_{m}}\Delta_{Y,i}(n-i+1)u_{n-i+1}+m\Delta_{Y,n+1-m}-\partial_{u_{m}}\Delta_{U,n},

and then using (3.6a) and changing i=m+ji=m+j, we get

umn=0jnmcY,j(nmj+1)un+1mj+mΔY,n+1mcU,nm.\partial_{u_{m}}\mathfrak{R}_{n}=\sum_{0\leq j\leq n-m}c_{Y,j}(n-m-j+1)u_{n+1-m-j}+m\Delta_{Y,n+1-m}-c_{U,n-m}.

These identities hold for functions n,cα,i,Δα,i\mathfrak{R}_{n},c_{\alpha,i},\Delta_{\alpha,i} evaluated in any y0,uj,j0y_{0},u_{j},j\geq 0.

For mm with nN<mnn-N<m\leq n and N<(n2)/2N<(n-2)/2 (see the bound in NN (3.13)), we have n+1m,n+1mjN<mn+1-m,n+1-m-j\leq N<m. Thus, the right-hand side of the above formula depends only on y0,u0,u1,..,uNy_{0},u_{0},u_{1},..,u_{N} and is independent of umu_{m}, and n\mathfrak{R}_{n} depends linearly on umu_{m}.

To simplify the notations, we introduce the following functions

(3.14a) el\displaystyle e_{l} =0jlcY,j(l+1j)ul+1jcU,l,\displaystyle=\sum_{0\leq j\leq l}c_{Y,j}(l+1-j)u_{l+1-j}-c_{U,l},
where cY,j,cU,jc_{Y,j},c_{U,j} are defined in (3.5). Then we can rewrite umn\partial_{u_{m}}\mathfrak{R}_{n} as follows
(3.14b) an,m(y0,u0,..,unm,unm+1)umn=enm+mΔY,nm+1.a_{n,m}(y_{0},u_{0},..,u_{n-m},u_{n-m+1})\triangleq\partial_{u_{m}}\mathfrak{R}_{n}=e_{n-m}+m\Delta_{Y,n-m+1}.

The above discussion implies the following expansion of n\mathfrak{R}_{n} in the top NN terms

(3.15) n(y0,u0,..,un)=nN<mnan,mum+n(y0,u0,..,unN,0,..,0).\mathfrak{R}_{n}(y_{0},u_{0},..,u_{n})=\sum_{n-N<m\leq n}a_{n,m}u_{m}+\mathfrak{R}_{n}(y_{0},u_{0},..,u_{n-N},0,..,0).

Combining (3.12) and (3.11), we have the following results.

Lemma 3.2.

Given U0,Y0,U1U_{0},Y_{0},U_{1}, for 2N<n22N<n-2, the coefficients {Ui}i0\{U_{i}\}_{i\geq 0} of the power series (3.1) solving (2.3) near (U0,Y0)(U_{0},Y_{0}) satisfy

(3.16) nN<mnan,mUm\displaystyle\sum_{n-N<m\leq n}a_{n,m}U_{m} =ΔU,n(Y0,U0,..,UnN,0,..,0)\displaystyle=\Delta_{U,n}(Y_{0},U_{0},..,U_{n-N},0,..,0)
N+1in(n+1i)Un+1iΔY,i(Y0,U0,..,UnN,0..,0),\displaystyle\quad-\sum_{N+1\leq i\leq n}(n+1-i)U_{n+1-i}\Delta_{Y,i}(Y_{0},U_{0},..,U_{n-N},0..,0),

where we abuse notation by denoting an,ma_{n,m} the value of the functions an,ma_{n,m} (3.14) evaluating on y0=Y0,uj=Ujy_{0}=Y_{0},u_{j}=U_{j} for j0j\geq 0. For mm with nN<mnn-N<m\leq n, an,ma_{n,m} only depend on Y0,U0,U1,..,UNY_{0},U_{0},U_{1},..,U_{N}. Here, we use the convention

ΔY,i(Y0,U0,..,UnN,0..,0)=ΔY,i(Y0,U0,..,Ui)\Delta_{Y,i}(Y_{0},U_{0},..,U_{n-N},0..,0)=\Delta_{Y,i}(Y_{0},U_{0},..,U_{i})

if nNin-N\geq i. In particular, for N=1N=1 and n2n\geq 2, we have

(3.17) (nλλ+)Un\displaystyle(n\lambda_{-}-\lambda_{+})U_{n} =ΔU,n(Y0,U0,..,Un1,0)2in(n+1i)Un+1iΔY,i(Y0,U0,..,Un1,0),\displaystyle=\Delta_{U,n}(Y_{0},U_{0},..,U_{n-1},0)-\sum_{2\leq i\leq n}(n+1-i)U_{n+1-i}\Delta_{Y,i}(Y_{0},U_{0},..,U_{n-1},0),

where λ,λ+\lambda_{-},\lambda_{+} are defined in (2.27a) and the right hand side is independent of UnU_{n}.

Recall c1,c2c_{1},c_{2} from (2.26). With UnU_{n}, we can further update ΔU,n,ΔY,n\Delta_{U,n},\Delta_{Y,n} as follows

(3.18) ΔU,n(Y0,U0,..,Un1,Un)\displaystyle\Delta_{U,n}(Y_{0},U_{0},..,U_{n-1},U_{n}) =ΔU,n(Y0,U0,..,Un1,0)+c1Un,\displaystyle=\Delta_{U,n}(Y_{0},U_{0},..,U_{n-1},0)+c_{1}U_{n},
ΔY,n(Y0,U0,..,Un1,Un)\displaystyle\Delta_{Y,n}(Y_{0},U_{0},..,U_{n-1},U_{n}) =ΔY,n(Y0,U0,..,Un1,0)+c2Un.\displaystyle=\Delta_{Y,n}(Y_{0},U_{0},..,U_{n-1},0)+c_{2}U_{n}.
Remark 3.3 (Parameters and coefficients).

Since in the rest of the paper, we only use the values of the functions cα,i,ei,an,mc_{\alpha,i},e_{i},a_{n,m} (3.5), (3.14) evaluating on y0=Y0,uj=Ujy_{0}=Y_{0},u_{j}=U_{j} for any j0j\geq 0, we abuse notation by using cα,i,ei,an,mc_{\alpha,i},e_{i},a_{n,m} to denote the values.

Proof.

Evaluating (3.15) on y0=Y0,uj=Ujy_{0}=Y_{0},u_{j}=U_{j} for any j0j\geq 0, and applying n=0\mathfrak{R}_{n}=0 (3.10) and the definition (3.11) to n(Y0,U0,..,UnN,0,0,..,0)\mathfrak{R}_{n}(Y_{0},U_{0},..,U_{n-N},0,0,..,0), we prove the identity (3.16). From (3.3), we know that Δα,i\Delta_{\alpha,i} only depends on Y0,U0,..,UiY_{0},U_{0},..,U_{i}.

Note that the right hand side of (3.17) is the same as (3.16) with N=1N=1. Thus to prove (3.17), we only need to evaluate an,na_{n,n} on Y0,Uj,j0Y_{0},U_{j},j\geq 0. We first compute cU,0(Y0,U0),cY,0(Y0,U0)c_{U,0}(Y_{0},U_{0}),c_{Y,0}(Y_{0},U_{0}). Using the definition (3.5) and the notations (2.26), we have

(3.19) cU,0(Y0,U0)=UΔU(Y0,U0)=c1,cY,0(Y0,U0)=UΔY(Y0,U0)=c2.\begin{gathered}c_{U,0}(Y_{0},U_{0})=\partial_{U}\Delta_{U}(Y_{0},U_{0})=c_{1},\quad c_{Y,0}(Y_{0},U_{0})=\partial_{U}\Delta_{Y}(Y_{0},U_{0})=c_{2}.\end{gathered}

Using (3.14) and the formulas of cU,0,cY,0c_{U,0},c_{Y,0} (3.19), ΔY,1\Delta_{Y,1} (3.4), and then λ,λ+\lambda_{-},\lambda_{+} (2.37), we obtain

an,n\displaystyle a_{n,n} =e1,0+ne2,0=cY,0U1cU,0+nΔY,1=c2U1c1+n(U1UΔY+YΔY)\displaystyle=e_{1,0}+ne_{2,0}=c_{Y,0}U_{1}-c_{U,0}+n\Delta_{Y,1}=c_{2}U_{1}-c_{1}+n(U_{1}\partial_{U}\Delta_{Y}+\partial_{Y}\Delta_{Y})
=c2U1c1+n(c2U1+c4)=nλλ+,\displaystyle=c_{2}U_{1}-c_{1}+n(c_{2}U_{1}+c_{4})=n\lambda_{-}-\lambda_{+},

and prove (3.17). Using (3.6a) with i=0i=0, we obtain

unΔU,n(y0,u0,..,un)=cU,0=c1,unΔY,n(y0,u0,..,un)=cY,0=c2.\partial_{u_{n}}\Delta_{U,n}(y_{0},u_{0},..,u_{n})=c_{U,0}=c_{1},\quad\partial_{u_{n}}\Delta_{Y,n}(y_{0},u_{0},..,u_{n})=c_{Y,0}=c_{2}.

From (3.19), we obtain that c1,c2c_{1},c_{2} is independent of UnU_{n} (3.19). Thus, we prove (3.18). MM \square

To simplify the estimate of the power series coefficients, we consider the renormalized coefficient U^n\hat{U}_{n}

(3.20a) Un=U^nn,n=1n+1(2nn),U_{n}=\hat{U}_{n}\mathfrak{C}_{n},\quad\mathfrak{C}_{n}=\frac{1}{n+1}\binom{2n}{n},
where n\mathfrak{C}_{n} is the Catalan number and n\mathfrak{C}_{n} satisfies the following asymptotics and identity
(3.20b) n+1n=4n+2n+2,limii+1i=4,i=0nini=n+1.\frac{\mathfrak{C}_{n+1}}{\mathfrak{C}_{n}}=\frac{4n+2}{n+2},\quad\lim_{i\to\infty}\frac{\mathfrak{C}_{i+1}}{\mathfrak{C}_{i}}=4,\quad\sum_{i=0}^{n}\mathfrak{C}_{i}\mathfrak{C}_{n-i}=\mathfrak{C}_{n+1}.
for any n0n\geq 0. See [62, Section 1] for the identity. Moreover, for n4n\geq 4, we yield
(3.20c) 3nn+1<4n.3\mathfrak{C}_{n}\leq\mathfrak{C}_{n+1}<4\mathfrak{C}_{n}.

3.2. Asymptotics of the coefficients

In this Section, we develop refine estimates of Un,U^nU_{n},\hat{U}_{n}, which are crucial for the barrier argument Sections 4, 5. Although the relations (3.16) and (3.17) seem to be complicated, we will show that the top two terms an,nUna_{n,n}U_{n} and an,n1Un1a_{n,n-1}U_{n-1} are the dominated terms and determine the asymptotics of UnU_{n}. Other terms can be treated perturbatively. Using Lemma 3.1 and (3.14), one can show that

(3.21) an,n1an,n=nκκnΔY,2λ++O(|nκ|1).-\frac{a_{n,n-1}}{a_{n,n}}=\frac{n\kappa}{\kappa-n}\cdot\frac{\Delta_{Y,2}}{\lambda_{+}}+O(|n-\kappa|^{-1}).

We expect that the asymptotic growth rate of Un/Un1U_{n}/U_{n-1} is given by the above rate and will justify it in (3.22e) in Lemma 3.5 and Corollary 3.11, equation (3.61).

We have the following estimate for binomial coefficients.

Lemma 3.4.

For any n1n\geq 1 and 1jn/21\leq j\leq n/2, we have (nj)4j3j1/2\binom{n}{j}\geq\frac{4^{j}}{3j^{1/2}}.

The proof is elementary and we refer to [6, Lemma 5.5].

We have the following estimates of the asymptotics of U^n\hat{U}_{n}. 555In Lemma 3.5 and its proof, we do not assume that κ(n,n+1)\kappa\in(n,n+1).

Lemma 3.5.

Let n0n_{0} be the parameter chosen in (3.23). There exists κ0\kappa_{0} large enough such that for any κ>κ0\kappa>\kappa_{0} and κ\kappa\notin\mathbb{Z}, the following statements hold true.

For any 0jn<κ+20\leq j\leq n<\kappa+2, we get 666 In the upper bound of (3.22a), we use |U^n||\hat{U}_{n}| instead of the more symmetric form |U^0U^n||\hat{U}_{0}\hat{U}_{n}| since U^0\hat{U}_{0} can be 0. In our case, we have U^0,U00\hat{U}_{0},U_{0}\to 0 (2.16) as γ1/2\gamma\to\ell^{-1/2}.
(3.22a) |U^jU^nj|C¯1|U^n|,C¯1=12.46.|\hat{U}_{j}\hat{U}_{n-j}|\leq\bar{C}_{1}|\hat{U}_{n}|,\quad\bar{C}_{1}=12.46.

For any n0n<κn_{0}\leq n<\kappa, we have

(3.22b) Un,U^n>0.U_{n},\ \hat{U}_{n}>0.

For any n0n<κ+2n_{0}\leq n<\kappa+2, we have

(3.22c) |U^n1|<|U^n|.|\hat{U}_{n-1}|<|\hat{U}_{n}|.

Let δ^=0.049\hat{\delta}=0.049 be chosen in (2.10), and denote

(3.22d) C=limγ(1/2)+ΔY,2λ+.C_{*}=\lim_{\gamma\to(\ell^{-1/2})^{+}}\frac{\Delta_{Y,2}}{\lambda_{+}}.

For any nn with n0n<κ+2n_{0}\leq n<\kappa+2, we get

(3.22e) |U^nC4nκκnU^n1|\displaystyle\Big{|}\hat{U}_{n}-\frac{C_{*}}{4}\cdot\frac{n\kappa}{\kappa-n}\hat{U}_{n-1}\Big{|} δ^|C4nκκnU^n1|,\displaystyle\leq\hat{\delta}\Big{|}\frac{C_{*}}{4}\cdot\frac{n\kappa}{\kappa-n}\hat{U}_{n-1}\Big{|},

In (3.22a), (3.22c), (3.22e), we consider the range of nn: n<κ+2n<\kappa+2 larger than n<κn<\kappa for later estimates in Section 4. From (3.22e), for n>κn>\kappa, UnU_{n} changes sign, and (3.22b) does not hold.

Ideas and strategy

We expect that the asymptotics of U^n\hat{U}_{n} is given by (3.22e), which quantifies the growth rate (3.21) for Un/Un1U_{n}/U_{n-1}. Since |Ui||U_{i}| grows very fast in ii, we can treat the remaining terms Ui,in2U_{i},i\leq n-2 in (3.17), (3.16) perturbatively.

Recall dY,dUd_{Y},d_{U} from (2.15a). To prove the induction, we introduce a few parameters

(3.23) l0=max(dY,dU)=2,n0=20,j0=25,N=30,n1=450.l_{0}=\max(d_{Y},d_{U})=2,\quad n_{0}=20,\quad j_{0}=25,\quad N=30,\quad n_{1}=450.

We require nn0n\geq n_{0} in (3.22b)-(3.22e) with n0n_{0} not too small, since these estimates may not hold true for small nn. We list a few conditions satisfying by the parameters (3.23) in the following lemma. We verify them with computer assistance and will use them to prove Lemma 3.5. See more discussions on the computer assistance in Appendix B.

Lemma 3.6 (Computer-assisted).

Let l0,j0,n0,n1l_{0},j_{0},n_{0},n_{1} be the parameters in (3.24), CC_{*} in (3.22d), and C¯1\bar{C}_{1} in (3.22a). For γ=1/2\gamma=\ell^{-1/2} (thus κ=\kappa=\infty (2.31)), the following statements hold true.

(a) Inequality (3.22a) holds true for any 0nn10\leq n\leq n_{1}, (3.22b),(3.22c),(3.22e) hold true for any n0nn1n_{0}\leq n\leq n_{1}, and C¯1>max(1,|U^0|)\bar{C}_{1}>\max(1,|\hat{U}_{0}|).

(b) For any j,lj,l with 1jj0,0ll01\leq j\leq j_{0},0\leq l\leq l_{0}, we have

(3.24) (C4(1δ^))j1(n1+1Nj0)j12j1|U^j+l1|max(|U^l|,1).(\frac{C_{*}}{4}(1-\hat{\delta}))^{j-1}(n_{1}+1-N-j_{0})^{j-1}\geq 2^{j-1}\frac{|\hat{U}_{j+l-1}|}{\max(|\hat{U}_{l}|,1)}.

(c) The parameter M1M_{1} defined below satisfies

(3.25) M1supll0|U^n0|n0!max(|U^l|,1)(C4)ln0,(1j0+l0)l01M1(95)j03j01/2>1.M_{1}\triangleq\sup_{l\leq l_{0}}\frac{|\hat{U}_{n_{0}}|}{n_{0}!\max(|\hat{U}_{l}|,1)}(\frac{C_{*}}{4})^{l-n_{0}},\quad\Big{(}\frac{1}{j_{0}+l_{0}}\Big{)}^{l_{0}}\cdot\frac{1}{M_{1}}\cdot\frac{(\frac{9}{5})^{j_{0}}}{3j_{0}^{1/2}}>1.

Let us motivate the choice of the parameters in (3.23). First, we fix l0l_{0} as in (3.23). Next, we choose n0n_{0} large enough so that conditions (3.22e), (3.22c), and (3.22b) begin to hold. We then choose j0j_{0} large enough to verify (3.25). With (j0,l0)(j_{0},l_{0}) fixed, (3.24) holds for any n1,Nn_{1},N with n1Nn(j0,l0)n_{1}-N\geq n^{*}(j_{0},l_{0}). We choose NN large and then take n1=n1(N)n(j0,l0)+Nn_{1}=n_{1}(N)\geq n^{*}(j_{0},l_{0})+N to be sufficiently large. See the discussion below (3.47).

Using (3.17) and (2.29), we can obtain that UnU_{n} is continuous in γ\gamma as γ1/2\gamma\to\ell^{-1/2} for any nn1n\leq n_{1}. With Lemma 3.6 and continuity of UnU_{n} in γ\gamma, Lemma 3.5 holds for all nn1n\leq n_{1} and κ\kappa large enough (equivalent to γ1/2\gamma-\ell^{-1/2} small). Below, we assume that the inductive hypothesis is true for the case of n1\leq n-1 and we will prove the case of nn with n>n1>n0+2Nn>n_{1}>n_{0}+2N. In Section 3.3, we derive the consequence of the inductive hypothesis. In Section 3.4, we estimate the coefficients of the power series of ΔU,ΔY\Delta_{U},\Delta_{Y}. In Section 3.5.4, we estimate U^n\hat{U}_{n} and prove the induction.

Remark 3.7.

The proof presented below does not take advantage of the specific forms of ΔY,ΔU\Delta_{Y},\Delta_{U}, which are polynomials in UU with low degree (2)(\leq 2). We can prove it by checking the desired properties of Ui,in1U_{i},i\leq n_{1} with n1n_{1} large enough with computer assistance and then use induction to prove the properties of UiU_{i} with large enough ii.

Constants in the estimates

Recall the constants ele_{l} from (3.14). In later proof, we will use the following constants, which have size of O(1)O(1) compared to κ\kappa and nn

(3.26a) b2,l\displaystyle b_{2,l} =C¯1lmax(|U^1|,1),l0,b2,1=1,b3=maxiN,0ll0|U^iU^i+l|,\displaystyle=\bar{C}_{1}^{l}\max(|\hat{U}_{1}|,1),\ l\geq 0,\quad b_{2,-1}=1,\quad b_{3}=\max_{i\leq N,0\leq l\leq l_{0}}\Big{|}\frac{\hat{U}_{i}}{\hat{U}_{i+l}}\Big{|},
(3.26b) qn\displaystyle q_{n} =14(nN)(1δ^)C.\displaystyle=\frac{1}{4}(n-N)(1-\hat{\delta})C_{*}.

We use b2,lb_{2,l} to denote the constants in the estimates of UTR,jlU_{\mathrm{TR},j}^{l} in (3.38) for l0l\geq 0. The special value b2,1b_{2,-1} is used to denote the constant in the exceptional case. The parameter b3b_{3} is used to denote the constant in (3.44). We use qnq_{n} to denote the decay rate in the estimates of U^j,UTR,jl\hat{U}_{j},U_{\mathrm{TR,j}}^{l} in (3.40).

3.3. Consequence of the inductive hypothesis

Suppose that the inductive hypothesis holds true for the case of n1\leq n-1 and κ+2>nn1\kappa+2>n\geq n_{1}. We show that for (l,j,m)(l,j,m) with

(3.27) 0ll0<j0,1j,j+lm,n1Nmn<κ+2,0\leq l\leq l_{0}<j_{0},\quad 1\leq j,\quad j+l\leq m,\quad n_{1}-N\leq m\leq n<\kappa+2,

where l0,j0,n1l_{0},j_{0},n_{1} are chosen in (3.23), we have the inequality 777 We use max(|U^l|,1)|U^m1|\max(|\hat{U}_{l}|,1)|\hat{U}_{m-1}| instead of |U^lU^m1||\hat{U}_{l}\hat{U}_{m-1}| in the upper bound since U^l\hat{U}_{l} would be 0.

(3.28a) |U^j+l1U^mj|\displaystyle|\hat{U}_{j+l-1}\hat{U}_{m-j}| max(|U^l|,1)|U^m1|2min(j1,mjl).\displaystyle\leq\max(|\hat{U}_{l}|,1)|\hat{U}_{m-1}|2^{-\min(j-1,m-j-l)}.
The estimate is trivial if mj=m1m-j=m-1 or j+l1=m1j+l-1=m-1. Due to (3.27), it remains to consider mj,j+l1m2<κm-j,j+l-1\leq m-2<\kappa. Since (3.28a) is symmetric in j+l1j+l-1 and mjm-j, we may without loss of generality assume
(3.28b) j+l1mjm2.j+l-1\leq m-j\ \leq m-2.

Since 0ll00\leq l\leq l_{0}, n0m<κ+2n_{0}\leq m<\kappa+2, from the choices of l0,n0l_{0},n_{0} in (3.23), we get

(3.28c) j(m+1)/2<κ2.j\leq(m+1)/2<\kappa-2.

To prove (3.28), we bound |U^m1U^mj||\frac{\hat{U}_{m-1}}{\hat{U}_{m-j}}| from below and |U^j+l1|max(|U^l|,1)\frac{|\hat{U}_{j+l-1}|}{\max(|\hat{U}_{l}|,1)} from above. Since mn1N2n0+2m\geq n_{1}-N\geq 2n_{0}+2 due to (3.23) and 1j(m+1)/21\leq j\leq(m+1)/2, using (3.22e) repeatedly, we get

(3.29) |U^m1U^mj|(C(1δ^)4)j1m+1jim1|iκκi|(C(1δ^)4)j1(m1)!(mj)!m+1jim2|κκi|,\displaystyle\Big{|}\frac{\hat{U}_{m-1}}{\hat{U}_{m-j}}\Big{|}\geq(\frac{C_{*}(1-\hat{\delta})}{4})^{j-1}\prod_{m+1-j\leq i\leq m-1}\Big{|}\frac{i\kappa}{\kappa-i}\Big{|}\geq(\frac{C_{*}(1-\hat{\delta})}{4})^{j-1}\frac{(m-1)!}{(m-j)!}\prod_{m+1-j\leq i\leq m-2}\Big{|}\frac{\kappa}{\kappa-i}\Big{|},

where in the last inequality, we have used |κκ(m1)|>1|\frac{\kappa}{\kappa-(m-1)}|>1 since

|κ(m1)|<max(κ(m1),m1κ)<κ|\kappa-(m-1)|<\max(\kappa-(m-1),m-1-\kappa)<\kappa

for n1Nm<κ+2n_{1}-N\leq m<\kappa+2. Since we consider mn<κ+2m\leq n<\kappa+2, κ(m1)\kappa-(m-1) can be negative.

Recall j0,l0,n0j_{0},l_{0},n_{0} from (3.23) and M1M_{1} from (3.25):

(3.30) M1=supll0|U^n0|n0!max(|U^l|,1)(C4)ln0.M_{1}=\sup_{l\leq l_{0}}\frac{|\hat{U}_{n_{0}}|}{n_{0}!\max(|\hat{U}_{l}|,1)}(\frac{C_{*}}{4})^{l-n_{0}}.

The parameter M1M_{1} can be seen as the accumulated error between the actual ratio |U^n0|/|U^l||\hat{U}_{n_{0}}|/|\hat{U}_{l}| and the desired asymptotics in (3.22e) with κ\kappa much larger than n0,ln_{0},l. Next, we estimate |U^j+l1|max(|U^l|,1)\frac{|\hat{U}_{j+l-1}|}{\max(|\hat{U}_{l}|,1)} from above and consider jj0+1j\geq j_{0}+1 and jj0j\leq j_{0}.

Case 1: jj0+1j\geq j_{0}+1

Since j0n0l0lj_{0}\geq n_{0}\geq l_{0}\geq l due to (3.23) and (3.27), we get

|U^j+l1|max(|U^l|,1)=|U^j+l1U^n0U^n0max(|U^l|,1)|(1+δ^)j+l1n0(C4)j1n0+1ij+l1iκκin0!M1.\displaystyle\frac{|\hat{U}_{j+l-1}|}{\max(|\hat{U}_{l}|,1)}=\Big{|}\frac{\hat{U}_{j+l-1}}{\hat{U}_{n_{0}}}\cdot\frac{\hat{U}_{n_{0}}}{\max(|\hat{U}_{l}|,1)}\Big{|}\leq(1+\hat{\delta})^{j+l-1-n_{0}}(\frac{C_{*}}{4})^{j-1}\prod_{n_{0}+1\leq i\leq j+l-1}\frac{i\kappa}{\kappa-i}\cdot n_{0}!M_{1}.

Each product is non-negative since j+l1m2<κj+l-1\leq m-2<\kappa (3.28b), (3.27). Moreover, since l+2l0+2<n0+1l+2\leq l_{0}+2<n_{0}+1 (3.23) and κκi>1\frac{\kappa}{\kappa-i}>1 for i<κi<\kappa, we obtain

|U^j+l1|max(|U^l|,1)(14(1+δ^)C)j1(j+l1)!l+2ij+l1κκiM1.\frac{|\hat{U}_{j+l-1}|}{\max(|\hat{U}_{l}|,1)}\leq(\frac{1}{4}(1+\hat{\delta})C_{*})^{j-1}(j+l-1)!\prod_{l+2\leq i\leq j+l-1}\frac{\kappa}{\kappa-i}\cdot M_{1}.

Since κκi\frac{\kappa}{\kappa-i} for im2<κi\leq m-2<\kappa (3.27), (3.28b) is increasing in ii and j+l1m2j+l-1\leq m-2, we yield

(3.31) |U^j+l1|max(|U^l|,1)(14(1+δ^)C)j1(j+l1)!m+1jim2κκiM1.\frac{|\hat{U}_{j+l-1}|}{\max(|\hat{U}_{l}|,1)}\leq(\frac{1}{4}(1+\hat{\delta})C_{*})^{j-1}(j+l-1)!\prod_{m+1-j\leq i\leq m-2}\frac{\kappa}{\kappa-i}\cdot M_{1}.

Combining the estimates (3.29), (3.31), setting

I=max(|U^l|,1)|U^m1||U^j+l1U^mj|,I=\frac{\max(|\hat{U}_{l}|,1)\cdot|\hat{U}_{m-1}|}{|\hat{U}_{j+l-1}\hat{U}_{m-j}|},

we have

I1M1(m1)!(mj)!(j+l1)!(1δ^)j1(1+δ^)j1=1M1(m1j1)(1δ^)j1(1+δ^)j11(j+l1)(j+l2)j.I\geq\frac{1}{M_{1}}\frac{(m-1)!}{(m-j)!(j+l-1)!}\frac{(1-\hat{\delta})^{j-1}}{(1+\hat{\delta})^{j-1}}=\frac{1}{M_{1}}\binom{m-1}{j-1}\frac{(1-\hat{\delta})^{j-1}}{(1+\hat{\delta})^{j-1}}\cdot\frac{1}{(j+l-1)(j+l-2)\cdots j}.

We want to show that I2j1I\geq 2^{j-1}. Since ll0l\leq l_{0} (3.27) and j1j0j-1\geq j_{0} in this case, using j+l01(j0+l0)j1j0j+l_{0}-1\leq(j_{0}+l_{0})\frac{j-1}{j_{0}}, we obtain

(j+l1)(j+l2)j(j+l01)l0(j0+l0j0)l0(j1)l0.(j+l-1)(j+l-2)\cdots j\leq(j+l_{0}-1)^{l_{0}}\leq\Big{(}\frac{j_{0}+l_{0}}{j_{0}}\Big{)}^{l_{0}}(j-1)^{l_{0}}\,.

In addition, since j1m12j-1\leq\frac{m-1}{2} (3.28b), Lemma 3.4 implies

(m1j1)4j13(j1)1/2.\binom{m-1}{j-1}\geq\frac{4^{j-1}}{3{(j-1)}^{1/2}}.

Combining the above estimates, we derive

I\displaystyle I (j0j0+l0)l01(j1)l01M14j13(j1)1/2(1δ^)j1(1+δ^)j1\displaystyle\geq\Big{(}\frac{j_{0}}{j_{0}+l_{0}}\Big{)}^{l_{0}}\frac{1}{(j-1)^{l_{0}}}\cdot\frac{1}{M_{1}}\cdot\frac{4^{j-1}}{3(j-1)^{1/2}}\cdot\frac{(1-\hat{\delta})^{j-1}}{(1+\hat{\delta})^{j-1}}
=(j0j0+l0)l01M14j13(j1)1/2+l0(1δ^)j1(1+δ^)j1.\displaystyle=\Big{(}\frac{j_{0}}{j_{0}+l_{0}}\Big{)}^{l_{0}}\cdot\frac{1}{M_{1}}\cdot\frac{4^{j-1}}{3(j-1)^{1/2+l_{0}}}\cdot\frac{(1-\hat{\delta})^{j-1}}{(1+\hat{\delta})^{j-1}}.

Due to the choices of j0,l0j_{0},l_{0} in (3.23), for any j>j0j>j_{0}, we have j1j0>2l0+1j-1\geq j_{0}>2l_{0}+1. Since 2(1δ^)1+δ^>95\frac{2(1-\hat{\delta})}{1+\hat{\delta}}>\frac{9}{5} and (log95)(j1)2(log95)(l0+12)>l0+12(\log\frac{9}{5})\cdot(j-1)\geq 2(\log\frac{9}{5})(l_{0}+\frac{1}{2})>l_{0}+\frac{1}{2}, we obtain that (95)j1(j1)1/2+l0\frac{(\frac{9}{5})^{j-1}}{(j-1)^{1/2+l_{0}}} is increasing in jj. Thus, we obtain

(3.32) I2j1(j0j0+l0)l01M1(95)j03j01/2+l0=2j1(1j0+l0)l01M1(95)j03j01/2.I\geq 2^{j-1}\Big{(}\frac{j_{0}}{j_{0}+l_{0}}\Big{)}^{l_{0}}\cdot\frac{1}{M_{1}}\cdot\frac{(\frac{9}{5})^{j_{0}}}{3j_{0}^{1/2+l_{0}}}=2^{j-1}\Big{(}\frac{1}{j_{0}+l_{0}}\Big{)}^{l_{0}}\cdot\frac{1}{M_{1}}\cdot\frac{(\frac{9}{5})^{j_{0}}}{3j_{0}^{1/2}}.

Recall (l0,j0)(l_{0},j_{0}) from (3.23). We use the condition (3.25) in Lemma 3.6 to obtain I2j1I\geq 2^{j-1}.

Case 2: jj0j\leq j_{0}

Applying |κκi|>1|\frac{\kappa}{\kappa-i}|>1 for i<κ+2i<\kappa+2, jj0j\leq j_{0}, and n1Nmn_{1}-N\leq m to (3.29), we get

|U^m1U^mj|(14C(1δ^))j1(m+1j0)j1(14C(1δ^))j1(n1+1Nj0)j1.|\frac{\hat{U}_{m-1}}{\hat{U}_{m-j}}|\geq(\frac{1}{4}C_{*}(1-\hat{\delta}))^{j-1}(m+1-j_{0})^{j-1}\geq(\frac{1}{4}C_{*}(1-\hat{\delta}))^{j-1}(n_{1}+1-N-j_{0})^{j-1}.

Using the above estimate and (3.24), we obtain (3.28)

|U^m1U^mj|2j1|U^j+l1|max(|U^l|,1).\Big{|}\frac{\hat{U}_{m-1}}{\hat{U}_{m-j}}\Big{|}\geq 2^{j-1}\frac{|\hat{U}_{j+l-1}|}{\max(|\hat{U}_{l}|,1)}.

3.4. Estimate of Δα,i\Delta_{\alpha,i}

We will use (3.16) to estimate the coefficients U^n\hat{U}_{n}. Below, we estimate Δα,i(Y0,U0,..,UnN,0..,0)\Delta_{\alpha,i}(Y_{0},U_{0},..,U_{n-N},0..,0). We introduce the truncated power series of UU up to ξnN\xi^{n-N}

(3.33) UTR:=jnNUjξj.U_{\mathrm{TR}}:=\sum_{j\leq n-N}U_{j}\xi^{j}.

Since we choose NN in (3.23) and fix nn in the following estimates, to simplify the notation, we drop the dependence of UTRU_{\mathrm{TR}} on n,Nn,N. Note that the above power series involves UiU_{i} rather than U^i\hat{U}_{i}. We recall the relation between Ui,U^iU_{i},\hat{U}_{i} from (3.20).

Denote by UTR,jlU_{\mathrm{TR},j}^{l} the coefficient of ξj\xi^{j} in the power series expansion of (UTR)l(U_{\mathrm{TR}})^{l}. Next, we estimate UTR,jlU_{\mathrm{TR},j}^{l} for l=0,1,,max(dY,dU)l=0,1,...,\max(d_{Y},d_{U}) (2.15a) and jnj\leq n.

For l2l\geq 2 and jnj\leq n, we get

(3.34) UTR,jl=i1+i2++il=j,isnNUi1Ui2Uil=i1+i2++il=j,isnNU^i1U^i2U^ili1i2il.U_{\mathrm{TR},j}^{l}=\sum_{i_{1}+i_{2}+\cdots+i_{l}=j,\ i_{s}\leq n-N}U_{i_{1}}U_{i_{2}}\cdots U_{i_{l}}=\sum_{i_{1}+i_{2}+\cdots+i_{l}=j,\ i_{s}\leq n-N}\hat{U}_{i_{1}}\hat{U}_{i_{2}}\cdots\hat{U}_{i_{l}}\mathfrak{C}_{i_{1}}\mathfrak{C}_{i_{2}}\cdots\mathfrak{C}_{i_{l}}.

We use the inductive hypothesis to obtain two estimates of U^i1U^i2U^il\hat{U}_{i_{1}}\hat{U}_{i_{2}}\cdots\hat{U}_{i_{l}} with l2l\geq 2. The first estimate applies to nN<jnn-N<j\leq n and the second applies to jn1j\leq n-1.

First estimate with nN<jnn-N<j\leq n.

Without loss of generality, we assume i1i2ili_{1}\leq i_{2}\leq\cdots\leq i_{l}. Since il1,i1+i2++il=ji_{l}\geq 1,i_{1}+i_{2}+\cdots+i_{l}=j and jnj\leq n, we get i1,,il1n1i_{1},\cdots,i_{l-1}\leq n-1. Using (3.22a) repeatedly, we get

(3.35) |U^i1U^i2U^il1|C¯1l2|U^i1+i2++il1|.\displaystyle|\hat{U}_{i_{1}}\hat{U}_{i_{2}}\cdots\hat{U}_{i_{l-1}}|\leq\bar{C}_{1}^{l-2}|\hat{U}_{i_{1}+i_{2}+\cdots+i_{l-1}}|.

Due to il=maxk<liki_{l}=\max_{k<l}i_{k}, the constraint on iki_{k} (3.34), and nn1>N(1+l0)n\geq n_{1}>N(1+l_{0}) by the choices of n1,l0,Nn_{1},l_{0},N (3.23), we obtain that iki_{k} satisfies

(3.36) nNilnNlnNl0>N,i1+..+il1=jilnN.n-N\geq i_{l}\geq\frac{n-N}{l}\geq\frac{n-N}{l_{0}}>N,\quad i_{1}+..+i_{l-1}=j-i_{l}\leq n-N.

It is easy to verify that the conditions (3.27) hold for (l,j,m)(1,i1+i2++il1,j)(l,j,m)\to(1,i_{1}+i_{2}+\cdots+i_{l-1},j). Thus, using (3.28) with (l,j,m)(1,i1+i2++il1,j)(l,j,m)\to(1,i_{1}+i_{2}+\cdots+i_{l-1},j) and (3.35), we yield

|U^i1U^i2U^il1U^il|\displaystyle|\hat{U}_{i_{1}}\hat{U}_{i_{2}}\cdots\hat{U}_{i_{l-1}}\hat{U}_{i_{l}}| C¯1l2|U^i1+i2++il1U^il|\displaystyle\leq\bar{C}_{1}^{l-2}|\hat{U}_{i_{1}+i_{2}+\cdots+i_{l-1}}\hat{U}_{i_{l}}|
C¯1l2max(|U^1|,1)|U^j1|max(2(il1),2(jil1)).\displaystyle\leq\bar{C}_{1}^{l-2}\max(|\hat{U}_{1}|,1)|\hat{U}_{j-1}|\max(2^{-(i_{l}-1)},2^{-(j-i_{l}-1)}).

Since jj satisfies j1nNn1N>n0j-1\geq n-N\geq n_{1}-N>n_{0} due to (3.23), we use (3.22c) to obtain |U^j1||U^n1||\hat{U}_{j-1}|\leq|\hat{U}_{n-1}|. From (3.36), we have

il1N1N1+jn,jil1j(nN)1=N1+jn,i_{l}-1\geq N-1\geq N-1+j-n,\quad j-i_{l}-1\geq j-(n-N)-1=N-1+j-n,

Thus the above estimate imply

(3.37a) |U^i1U^i2U^il1U^il|C¯1l22(j+Nn1)max(|U^1|,1)|U^n1|=2(j+Nn1)b2,l2|U^n1|,|\hat{U}_{i_{1}}\hat{U}_{i_{2}}\cdots\hat{U}_{i_{l-1}}\hat{U}_{i_{l}}|\leq\bar{C}_{1}^{l-2}2^{-(j+N-n-1)}\max(|\hat{U}_{1}|,1)|\hat{U}_{n-1}|=2^{-(j+N-n-1)}b_{2,l-2}|\hat{U}_{n-1}|,
where b2,lb_{2,l} is defined in (3.26).
Second estimate with jn1j\leq n-1.

Using (3.22a) and i1+i2++il=jn1i_{1}+i_{2}+\cdots+i_{l}=j\leq n-1, we get another estimate

(3.37b) |U^i1U^i2U^il1U^il|C¯1l1|U^j|.|\hat{U}_{i_{1}}\hat{U}_{i_{2}}\cdots\hat{U}_{i_{l-1}}\hat{U}_{i_{l}}|\leq\bar{C}_{1}^{l-1}|\hat{U}_{j}|.

Using the identity for the Catalan number (3.20b) repeatedly, we get

(3.37c) i1+i2++il=j,isnNi1i2ila+i3++il=j+1,isnNai3ilj+l1.\sum_{i_{1}+i_{2}+\cdots+i_{l}=j,i_{s}\leq n-N}\mathfrak{C}_{i_{1}}\mathfrak{C}_{i_{2}}\cdots\mathfrak{C}_{i_{l}}\leq\sum_{a+i_{3}+\cdots+i_{l}=j+1,i_{s}\leq n-N}\mathfrak{C}_{a}\mathfrak{C}_{i_{3}}\cdots\mathfrak{C}_{i_{l}}\leq...\leq\mathfrak{C}_{j+l-1}.

Plugging the above estimates (3.37) in (3.34), for l2l\geq 2, we obtain

(3.38a) |UTR,jl|\displaystyle|U_{\mathrm{TR},j}^{l}| C¯1l1|U^j|j+l1,\displaystyle\leq\bar{C}_{1}^{l-1}|\hat{U}_{j}|\mathfrak{C}_{j+l-1}, jn1,\displaystyle j\leq n-1,
(3.38b) |UTR,jl|\displaystyle|U_{\mathrm{TR},j}^{l}| b2,l22(j+Nn1)|U^n1|j+l1,\displaystyle\leq b_{2,l-2}2^{-(j+N-n-1)}|\hat{U}_{n-1}|\mathfrak{C}_{j+l-1}, nN<jn.\displaystyle n-N<j\leq n.

For l=1l=1, we just use the definition (3.33) and (3.20) to obtain the jj-th coefficient of UTRU_{\mathrm{TR}}: UTR,jl=UTR,j=Uj𝟏jnN=jU^j𝟏jnNU_{\mathrm{TR},j}^{l}=U_{\mathrm{TR},j}=U_{j}\mathbf{1}_{j\leq n-N}=\mathfrak{C}_{j}\hat{U}_{j}\mathbf{1}_{j\leq n-N}. Since we define b2,1=1b_{2,-1}=1 (3.26a), the above estimates hold trivially for l=1l=1.

Remark 3.8.

The estimate (3.38b) applies to j=nj=n. We will only use this estimate in Section 3.5.2 to bound J2,J3J_{2},J_{3} (3.41), which involves UTR,nlU_{\mathrm{TR},n}^{l}.

For nN<jn1n-N<j\leq n-1 and any n>n1n>n_{1}, using (3.22e), we get

(3.39) |U^j|<(14(nN)(1δ^)C)(n1j)|U^n1|=qn(n1j)|U^n1|<qn1(n1j)|U^n1|,|\hat{U}_{j}|<(\frac{1}{4}(n-N)(1-\hat{\delta})C_{*})^{-(n-1-j)}|\hat{U}_{n-1}|=q_{n}^{-(n-1-j)}|\hat{U}_{n-1}|<q_{n_{1}}^{-(n-1-j)}|\hat{U}_{n-1}|,

where we have used qn>qn1q_{n}>q_{n_{1}} for n>n1n>n_{1} in the last inequality since qnq_{n} defined in (3.26) is increasing in nn. Moreover, qnq_{n} is of order nn. Combining (3.39) and (3.38a), we obtain another estimate of |UTR,jl||U_{\mathrm{TR},j}^{l}|, which along with (3.38b) imply

(3.40) |UTR,jl|<j+l1|U^n1|min(C¯1l1qn1(n1j),b2,l22(j+Nn1)),|U_{\mathrm{TR},j}^{l}|<\mathfrak{C}_{j+l-1}|\hat{U}_{n-1}|\min\Big{(}\bar{C}_{1}^{l-1}q_{n_{1}}^{-(n-1-j)},\ b_{2,l-2}2^{-(j+N-n-1)}\Big{)},

for nN<jn1n-N<j\leq n-1.

3.5. Proof of the induction

We decompose the right side (RS) of (3.16) into three parts as follows: the first term, the summation over ii with N+1in1N+1\leq i\leq n-1 and with i=ni=n

(3.41) RS\displaystyle\mathrm{RS} =J3J1J2,\displaystyle=J_{3}-J_{1}-J_{2},
J1\displaystyle J_{1} =N+1in1(n+1i)Un+1iΔY,i(Y0,U0,,UnN,0,0),\displaystyle=\sum_{N+1\leq i\leq n-1}(n+1-i)U_{n+1-i}\Delta_{Y,i}(Y_{0},U_{0},...,U_{n-N},0,0),
J2\displaystyle\quad J_{2} =U1ΔY,n(Y0,U0,,UnN,0,0),\displaystyle=U_{1}\Delta_{Y,n}(Y_{0},U_{0},...,U_{n-N},0,0),
J3\displaystyle J_{3} =ΔU,n(Y0,U0,,UnN,0,0).\displaystyle=\Delta_{U,n}(Y_{0},U_{0},...,U_{n-N},0,0).

We estimate JiJ_{i} in Sections 3.5.1, 3.5.2, and the lower order terms on the left side of (3.16) in Section 3.5.3. Our goal is to show that they are small compared to n|U^n1n1|n|\hat{U}_{n-1}\mathfrak{C}_{n-1}|, e.g.,

|Ji|n|U^n1n1|.|J_{i}|\ll n|\hat{U}_{n-1}\mathfrak{C}_{n-1}|.

We combine these estimates to prove the induction in Section 3.5.4.

3.5.1. Estimate of J1J_{1}

Recall ΔY(Y,UTR)=ldYGl(Y)(UTR)l\Delta_{Y}(Y,U_{\mathrm{TR}})=\sum_{l\leq d_{Y}}G_{l}(Y)(U_{\mathrm{TR}})^{l} from (2.15b). Expanding the coefficients of ΔY,i\Delta_{Y,i} using (3.2), we get

(3.42) |J1|\displaystyle|J_{1}| |N+1in10ldYjmin(i,degGl)(n+1i)Un+1i(Gl)jUTR,ijl|,\displaystyle\leq\Big{|}\sum_{N+1\leq i\leq n-1}\sum_{0\leq l\leq d_{Y}}\sum_{j\leq\min(i,\deg G_{l})}(n+1-i)U_{n+1-i}(G_{l})_{j}U_{\mathrm{TR},i-j}^{l}\Big{|},

where aia_{i} denotes the ii-th order coefficient of in the power series of aa. For l=0l=0, since (UTR)0=1(U_{\mathrm{TR}})^{0}=1 and N+1>dGdegGlN+1>d_{G}\geq\deg G_{l} from the definitions (3.23) of NN and (2.15c) for dGd_{G}, we get

(Gl)jUTR,ijl𝟏jdegGl,N+1i=(Gl)j𝟏i=j𝟏jdegGl,N+1i=(Gl)i𝟏N+1idegGl=0.(G_{l})_{j}U_{\mathrm{TR},i-j}^{l}\mathbf{1}_{j\leq\deg G_{l},N+1\leq i}=(G_{l})_{j}\mathbf{1}_{i=j}\mathbf{1}_{j\leq\deg G_{l},N+1\leq i}=(G_{l})_{i}\mathbf{1}_{N+1\leq i\leq\deg G_{l}}=0.

Therefore, we may restrict the summation to l1l\geq 1 in (3.42). Next, we estimate

(3.43) Ii,j,l|Un+1iUTR,ijl|=n+1i|U^n+1iUTR,ijl|I_{i,j,l}\triangleq|U_{n+1-i}U_{\mathrm{TR},i-j}^{l}|=\mathfrak{C}_{n+1-i}|\hat{U}_{n+1-i}U_{\mathrm{TR},i-j}^{l}|

and consider (i,j)(i,j) with nN<ijn1n-N<i-j\leq n-1 and ijnN,iN+1i-j\leq n-N,i\geq N+1 separately. We have iN+1i\geq N+1 due to the constraint in (3.42). Since we fix nn below, we drop the dependence on nn.

Case 1: nN<ijn1n-N<i-j\leq n-1

In this case, using (3.40), we get

Ii,j,l\displaystyle I_{i,j,l} n+1iij+l1|U^n+1iU^n1|min(C¯1l1qn1(n1(ij)),b2,l22(ij+Nn1)),\displaystyle\leq\mathfrak{C}_{n+1-i}\mathfrak{C}_{i-j+l-1}|\hat{U}_{n+1-i}\hat{U}_{n-1}|\min(\bar{C}_{1}^{l-1}q_{n_{1}}^{-(n-1-(i-j))},b_{2,l-2}2^{-(i-j+N-n-1)}),

In this case, since n+1iNn+1-i\leq N and n+1(ij)N+l0n+1-(i-j)\leq N+l_{0} (jdGl0j\leq d_{G}\leq l_{0} (3.23)), we can bound |U^n+1i/U^n+1i+j||\hat{U}_{n+1-i}/\hat{U}_{n+1-i+j}| by some constant b3b_{3} (3.26) independent of nn and obtain

Ii,j,l\displaystyle I_{i,j,l} b3|U^n+1(ij)|n+1iij+l1|U^n1|min(C¯1l1qn1(n1(ij)),b2,l22(ij+Nn1)).\displaystyle\leq b_{3}|\hat{U}_{n+1-(i-j)}|\mathfrak{C}_{n+1-i}\mathfrak{C}_{i-j+l-1}|\hat{U}_{n-1}|\min(\bar{C}_{1}^{l-1}q_{n_{1}}^{-(n-1-(i-j))},b_{2,l-2}2^{-(i-j+N-n-1)}).

Denote

m=n1(ij).m=n-1-(i-j).

From the bound of iji-j, we get 0mN20\leq m\leq N-2 and can further estimate Ii,j,lI_{i,j,l} as follows

(3.44) Ii,j,l\displaystyle I_{i,j,l} =b3|U^m+2|n+1iij+l1|U^n1|min(C¯1l1qn1m,b2,l2q(N2m))\displaystyle=b_{3}|\hat{U}_{m+2}|\mathfrak{C}_{n+1-i}\mathfrak{C}_{i-j+l-1}|\hat{U}_{n-1}|\min(\bar{C}_{1}^{l-1}q_{n_{1}}^{-m},b_{2,l-2}q^{-(N-2-m)})
b3n+1iij+l1|U^n1|max0mN2(|U^m+2|min(C¯1l1qn1m,b2,l22(N2m))).\displaystyle\leq b_{3}\mathfrak{C}_{n+1-i}\mathfrak{C}_{i-j+l-1}|\hat{U}_{n-1}|\max_{0\leq m\leq N-2}\Big{(}|\hat{U}_{m+2}|\min(\bar{C}_{1}^{l-1}q_{n_{1}}^{-m},b_{2,l-2}2^{-(N-2-m)})\Big{)}.

The bound in the maximum is very small by choosing NN relatively large and then n1n_{1} large.

Case 2: ijnN,iN+1i-j\leq n-N,i\geq N+1.

In this case, since iN+1i\geq N+1, which implies ij>Nl0>0i-j>N-l_{0}>0 (3.23), applying (3.38) to UTR,ijlU_{\mathrm{TR},i-j}^{l}, we estimate Ii,j,lI_{i,j,l} (3.43) as

(3.45a) Ii,j,l=n+1i|U^n+1iUTR,ijl|n+1iij+l1C¯1l1|U^n+1iU^ij|.I_{i,j,l}=\mathfrak{C}_{n+1-i}|\hat{U}_{n+1-i}U_{\mathrm{TR},i-j}^{l}|\leq\mathfrak{C}_{n+1-i}\mathfrak{C}_{i-j+l-1}\bar{C}_{1}^{l-1}|\hat{U}_{n+1-i}\hat{U}_{i-j}|.

If j1j\leq 1, using (3.28) with l=2jl=2-j, iN+1i\geq N+1, and ijnNi-j\leq n-N again, we obtain

(3.45b) |U^n+1iU^ij|\displaystyle|\hat{U}_{n+1-i}\hat{U}_{i-j}| |U^n1|max(|U^2j|,1)2min(n1(n+1i),n1(ij))\displaystyle\leq|\hat{U}_{n-1}|\max(|\hat{U}_{2-j}|,1)2^{-\min(n-1-(n+1-i),n-1-(i-j))}
|U^n1|max(|U^2j|,1)2(N1).\displaystyle\leq|\hat{U}_{n-1}|\max(|\hat{U}_{2-j}|,1)2^{-(N-1)}.

If 2jdegGl2\leq j\leq\deg G_{l}, using (3.28) with l=0l=0, similarly, we get

|U^n+1iU^ij|\displaystyle|\hat{U}_{n+1-i}\hat{U}_{i-j}| |U^n+1j|max(|U^0|,1)2min(ij,n+1i).\displaystyle\leq|\hat{U}_{n+1-j}|\max(|\hat{U}_{0}|,1)2^{-\min(i-j,n+1-i)}.

Since degGldG\deg G_{l}\leq d_{G} (see (2.15c)), ii satisfies ijnNi-j\leq n-N and iN+1i\geq N+1, we obtain

ijN+1dG,n+1iNj+1N+1dG,min(ij,n+1i)N+1dG.i-j\geq N+1-d_{G},\quad n+1-i\geq N-j+1\geq N+1-d_{G},\quad\min(i-j,n+1-i)\geq N+1-d_{G}.

Since nn satisfies n1n+1jn1+1l0>n0n-1\geq n+1-j\geq n_{1}+1-l_{0}>n_{0}, we use (3.22c) to obtain |U^n+1j||U^n1||\hat{U}_{n+1-j}|\leq|\hat{U}_{n-1}|. Using the above three estimates, we simplify the bound as

(3.45c) |U^n+1iU^ij||U^n1|max(|U^0|,1)2(N+1dG).|\hat{U}_{n+1-i}\hat{U}_{i-j}|\leq|\hat{U}_{n-1}|\max(|\hat{U}_{0}|,1)2^{-(N+1-d_{G})}.

Combining the estimates in (3.45), we establish

(3.46) Ii,j,l2Nmax(max(|U^0|,1)2dG1,2maxm2(max(|U^m|,1)))n+1iij+l1|U^n1|.I_{i,j,l}\leq 2^{-N}\max\Big{(}\max(|\hat{U}_{0}|,1)2^{d_{G}-1},2\max_{m\leq 2}(\max(|\hat{U}_{m}|,1))\Big{)}\mathfrak{C}_{n+1-i}\mathfrak{C}_{i-j+l-1}|\hat{U}_{n-1}|.
Summary

Summing two estimates of IijlI_{ijl} (3.44), (3.46) for two cases, we establish

(3.47) |Ii,j,l|νln+1iij+l1|U^n1|,|I_{i,j,l}|\leq\nu_{l}\mathfrak{C}_{n+1-i}\mathfrak{C}_{i-j+l-1}|\hat{U}_{n-1}|,\\

for any l1l\geq 1, where νl\nu_{l} is defined as

(3.48) νl\displaystyle\nu_{l} b3max0mN2(|U^m+2|min(C¯1l1qn1m,b2,l22(N2m)))\displaystyle\triangleq b_{3}\max_{0\leq m\leq N-2}\Big{(}|\hat{U}_{m+2}|\min(\bar{C}_{1}^{l-1}q_{n_{1}}^{-m},b_{2,l-2}2^{-(N-2-m)})\Big{)}
+2Nmax(max(|U^0|,1)2dG1,2maxm2(max(|U^m|,1))),\displaystyle\quad+2^{-N}\max\Big{(}\max(|\hat{U}_{0}|,1)2^{d_{G}-1},2\max_{m\leq 2}(\max(|\hat{U}_{m}|,1))\Big{)},

and b2,l2,qn1b_{2,l-2},q_{n_{1}} are defined in (3.26). The first term in νl\nu_{l} corresponds to the bound (3.44) for Case 1, and the second term for the bound (3.46) in Case 2.

Since qn1q_{n_{1}} defined in (3.26b) is of order n1n_{1}, by first choosing NN large so that the second part in νl\nu_{l} is small and then n1n_{1} large 888 Choosing n1n_{1} large means that we verify the estimates in Lemma 3.5 with computer assistance up to the case nn1n\leq n_{1} with large n1n_{1}. so that the first part is small, we can make νl\nu_{l} very small. Therefore, combining the above estimates, we can estimate J1J_{1} as follows

|J1|nN+1in11ldY,jdegGl|(Gl)j|νln+1iij+l1|U^n1|.|J_{1}|\leq n\sum_{N+1\leq i\leq n-1}\sum_{1\leq l\leq d_{Y},j\leq\deg G_{l}}|(G_{l})_{j}|\nu_{l}\mathfrak{C}_{n+1-i}\mathfrak{C}_{i-j+l-1}|\hat{U}_{n-1}|.

Summing over ii using (3.20b) for i\mathfrak{C}_{i}, we yield

(3.49a) |J1|1ldY,jdegGln|(Gl)j|νl|U^n1|nj+l+1n|U^n1|n+dY+11ldY,jdegGl|(Gl)j|νl|J_{1}|\leq\sum_{1\leq l\leq d_{Y},j\leq\deg G_{l}}n|(G_{l})_{j}|\nu_{l}|\hat{U}_{n-1}|\mathfrak{C}_{n-j+l+1}\leq n|\hat{U}_{n-1}|\mathfrak{C}_{n+d_{Y}+1}\sum_{1\leq l\leq d_{Y},j\leq\deg G_{l}}|(G_{l})_{j}|\nu_{l}\\
Using i+14i\mathfrak{C}_{i+1}\leq 4\mathfrak{C}_{i} (3.20c) for any i0i\geq 0, we further bound n+dY+14dY+2n1\mathfrak{C}_{n+d_{Y}+1}\leq 4^{d_{Y}+2}\mathfrak{C}_{n-1} and obtain
(3.49b) |J1|n|U^n1|n14dY+21ldY,jdegGl|(Gl)j|νln|U^n1|n1CJ1|J_{1}|\leq n|\hat{U}_{n-1}|\mathfrak{C}_{n-1}\cdot 4^{d_{Y}+2}\sum_{1\leq l\leq d_{Y},j\leq\deg G_{l}}|(G_{l})_{j}|\nu_{l}\triangleq n|\hat{U}_{n-1}|\mathfrak{C}_{n-1}\cdot C_{J_{1}}

Since νl\nu_{l} can be made sufficiently small by choosing N,n1N,n_{1} in order, CJ1C_{J_{1}} can be made very small.

3.5.2. Estimate of J2,J3J_{2},J_{3}

Recall J2,J3J_{2},J_{3} from (3.41). We first estimate J2J_{2} . Using the expansion of ΔY(Y,UTR)\Delta_{Y}(Y,U_{\mathrm{TR}}) from (2.15b), we get

(3.50) |J2|=|U1ΔY,n|=|U10ldY,jdegGl(Gl)jUTR,njl|.|J_{2}|=|U_{1}\Delta_{Y,n}|=|U_{1}\sum_{0\leq l\leq d_{Y},j\leq\deg G_{l}}(G_{l})_{j}U^{l}_{\mathrm{TR},n-j}|.

For l=0l=0, since UTR0=1U_{\mathrm{TR}}^{0}=1 and nn satisfies nn1>maxdegGin\geq n_{1}>\max\deg G_{i} (3.23) and (2.15c), we obtain

(G0)j(UTR)nj0=(G0)j𝟏j=n=(G0)n=0.(G_{0})_{j}(U_{\mathrm{TR}})^{0}_{n-j}=(G_{0})_{j}\mathbf{1}_{j=n}=(G_{0})_{n}=0.

Thus, we may restrict the summation to l1l\geq 1. Applying (3.38b) to UTR,njlU_{\mathrm{TR},n-j}^{l}, we obtain

(3.51a) |J2|\displaystyle|J_{2}| |U1U^n11ldY,jdegGl(Gl)jb2,l22(nj+Nn1)nj+l1|\displaystyle\leq\Big{|}U_{1}\hat{U}_{n-1}\sum_{1\leq l\leq d_{Y},j\leq\deg G_{l}}(G_{l})_{j}b_{2,l-2}2^{-(n-j+N-n-1)}\mathfrak{C}_{n-j+l-1}\Big{|}
|U^n1|n+dY12N|U1|1ldY,jdegGl|(Gl)j|b2,l22j+1.\displaystyle\leq|\hat{U}_{n-1}|\mathfrak{C}_{n+d_{Y}-1}2^{-N}|U_{1}|\sum_{1\leq l\leq d_{Y},j\leq\deg G_{l}}|(G_{l})_{j}|b_{2,l-2}2^{j+1}.
Since i+1/i4\mathfrak{C}_{i+1}/\mathfrak{C}_{i}\leq 4 for any i0i\geq 0 (see (3.20b)), we further bound n+dY1n14dY\mathfrak{C}_{n+d_{Y}-1}\leq\mathfrak{C}_{n-1}4^{d_{Y}} to establish
(3.51b) |J2|CJ2|U^n1n1|,CJ2=2N+2dG|U1|1ldY,jdegGl|(Gl)j|b2,l22j+1.|J_{2}|\leq C_{J_{2}}|\hat{U}_{n-1}\mathfrak{C}_{n-1}|,\quad C_{J_{2}}=2^{-N+2d_{G}}|U_{1}|\sum_{1\leq l\leq d_{Y},j\leq\deg G_{l}}|(G_{l})_{j}|b_{2,l-2}2^{j+1}.

Similarly, we estimate ΔU,n\Delta_{U,n} in (3.16) using the expansion (2.15b) as follows

(3.52a) J3\displaystyle J_{3} =|ΔU,n(U0,U1,..UnN,0,..,0)|\displaystyle=|\Delta_{U,n}(U_{0},U_{1},..U_{n-N},0,..,0)|
|U^n1|n+dY12N1ldU,jdegFl|(Fl)j|b2,l22j+1CJ3|U^n1n1|,\displaystyle\leq|\hat{U}_{n-1}|\mathfrak{C}_{n+d_{Y}-1}2^{-N}\sum_{1\leq l\leq d_{U},j\leq\deg F_{l}}|(F_{l})_{j}|b_{2,l-2}2^{j+1}\leq C_{J_{3}}|\hat{U}_{n-1}\mathfrak{C}_{n-1}|,
where CJ3C_{J_{3}} is given by
(3.52b) CJ3=2N+2dY1ldU,jdegFl|(Fl)j|b2,l22j+1.C_{J_{3}}=2^{-N+2d_{Y}}\sum_{1\leq l\leq d_{U},j\leq\deg F_{l}}|(F_{l})_{j}|b_{2,l-2}2^{j+1}.

3.5.3. Estimate the LHS of (3.16)

Below, we estimate the left side (LS) of (3.16). We decompose the left side as follows and treat the terms of Um,mn2U_{m},m\leq n-2 perturbatively

(3.53) LS=nN<mnan,mUm=an,nUn+an,n1Un1+n,n:=nN<mn2an,mUm.\mathrm{LS}=\sum_{n-N<m\leq n}a_{n,m}U_{m}=a_{n,n}U_{n}+a_{n,n-1}U_{n-1}+{\mathcal{E}}_{n},\quad{\mathcal{E}}_{n}:=\sum_{n-N<m\leq n-2}a_{n,m}U_{m}.

Using the estimate (3.39) for U^m\hat{U}_{m}, we estimate the error term n{\mathcal{E}}_{n} as follows

|n|nN<mn2|an,m|mqn1(n1m)|U^n1|.|{\mathcal{E}}_{n}|\leq\sum_{n-N<m\leq n-2}|a_{n,m}|\mathfrak{C}_{m}q_{n_{1}}^{-(n-1-m)}|\hat{U}_{n-1}|.

Below, we further estimate an,ma_{n,m} and m\mathfrak{C}_{m}. For n>n1n>n_{1}, using (3.14) we get

|an,m|=|enm+mΔY,nm+1|n(|enm|n11+|ΔY,nm+1|).|a_{n,m}|=|e_{n-m}+m\Delta_{Y,n-m+1}|\leq n(|e_{n-m}|n_{1}^{-1}+|\Delta_{Y,n-m+1}|).

Since mm satisfies n>mn>m and m>nNn1N>4m>n-N\geq n_{1}-N>4 (3.23), using (3.20), we obtain m|U^n1|<3m+1nn1|U^n1|=3m+1n|Un1|\mathfrak{C}_{m}|\hat{U}_{n-1}|<3^{m+1-n}\mathfrak{C}_{n-1}|\hat{U}_{n-1}|=3^{m+1-n}|U_{n-1}|. Combining these estimates for n,an,m{\mathcal{E}}_{n},a_{n,m} and denoting l=nml=n-m, we conclude

(3.54a) |n|\displaystyle|{\mathcal{E}}_{n}| n|Un1|2nmN2(|enm|n11+|ΔY,nm+1|)(3qn1)(nm1).\displaystyle\leq n|U_{n-1}|\sum_{2\leq n-m\leq N-2}(|e_{n-m}|n_{1}^{-1}+|\Delta_{Y,n-m+1}|)(3q_{n_{1}})^{-(n-m-1)}.
Using l=nml=n-m, we can rewrite the above summation and obtain the following estimates
(3.54b) |n|C(n1)n|Un1|,C(n1)=2lN2(|el|n11+|ΔY,l+1|)(3qn1)(l1).|{\mathcal{E}}_{n}|\leq C_{{\mathcal{E}}}(n_{1})\cdot n|U_{n-1}|,\quad C_{{\mathcal{E}}}(n_{1})=\sum_{2\leq l\leq N-2}(|e_{l}|n_{1}^{-1}+|\Delta_{Y,l+1}|)(3q_{n_{1}})^{-(l-1)}.

For fixed NN, since l11l-1\geq 1, CC_{{\mathcal{E}}} is of order n11n_{1}^{-1}.

3.5.4. Proof of the induction

Now, we are in a position to prove the induction and Lemma 3.5, which is based on the following lemma verified with computer assistance.

Lemma 3.9 (Computer-assisted).

Recall δ^=0.049\hat{\delta}=0.049 (2.10). For the parameters chosen in (3.23) and constants CJi,CC_{J_{i}},C_{{\mathcal{E}}} defined in (3.49), (3.51), (3.52), (3.54) with γ=γ=1/2\gamma=\gamma_{*}=\ell^{-1/2}, we have

(3.55a) (n11(CJ2+CJ3+|e1|+|ΔY,2|)+CJ1+C(n1))|γ=γ\displaystyle\Big{(}n_{1}^{-1}(C_{J_{2}}+C_{J_{3}}+|e_{1}|+|\Delta_{Y,2}|)+C_{J_{1}}+C_{{\mathcal{E}}}(n_{1})\Big{)}\Big{|}_{\gamma=\gamma_{*}} <δ^,\displaystyle<\hat{\delta},
(3.55b) max(|U^1|,1)\displaystyle\max(|\hat{U}_{1}|,1) <qn1,\displaystyle<q_{n_{1}},
(3.55c) 32(4n12)C+0.05λ+(γ)\displaystyle\frac{3}{2(4n_{1}-2)}\cdot C_{*}+\frac{0.05}{\lambda_{+}(\gamma_{*})} <C4δ^.\displaystyle<\frac{C_{*}}{4}\cdot\hat{\delta}.
Proof.

Estimate (3.22e). Recall an,n1=e1+(n1)ΔY,2a_{n,n-1}=e_{1}+(n-1)\Delta_{Y,2} (3.14b). Combining the estimates (3.41), (3.49), (3.51), (3.52) of JiJ_{i} for the right side of (3.16) and the estimates (3.54), (3.53) for the left side of (3.16), we can estimate the relation between U^n,U^n1\hat{U}_{n},\hat{U}_{n-1} as follows

|an,nUn+nΔY,2Un1|\displaystyle|a_{n,n}U_{n}+n\Delta_{Y,2}U_{n-1}| (|e1|+|ΔY,2|)Un1+|an,nUn+an,n1Un1|\displaystyle\leq(|e_{1}|+|\Delta_{Y,2}|)U_{n-1}+|a_{n,n}U_{n}+a_{n,n-1}U_{n-1}|
=(|e1|+|ΔY,2|)Un1+|J3J1J2n|\displaystyle=(|e_{1}|+|\Delta_{Y,2}|)U_{n-1}+|J_{3}-J_{1}-J_{2}-{\mathcal{E}}_{n}|
n|Un1|(n11(CJ2+CJ3+|e1|+|ΔY,2|)+CJ1+C(n1)).\displaystyle\leq n|U_{n-1}|\Big{(}n_{1}^{-1}(C_{J_{2}}+C_{J_{3}}+|e_{1}|+|\Delta_{Y,2}|)+C_{J_{1}}+C_{{\mathcal{E}}}(n_{1})\Big{)}.

Using continuity of the functions in γ\gamma and Lemma 3.9, for κ\kappa sufficiently large, we obtain

|an,nUn+nΔY,2Un1|<0.05n|Un1|.|a_{n,n}U_{n}+n\Delta_{Y,2}U_{n-1}|<0.05n|U_{n-1}|.

From Lemma 3.1 and (2.30), we obtain an,n=nλλ+=nκκλ+a_{n,n}=n\lambda_{-}-\lambda_{+}=\frac{n-\kappa}{\kappa}\lambda_{+}. Using (3.20) and diving the above estimate by |an,nC^nU^n1||a_{n,n}\hat{C}_{n}\hat{U}_{n-1}|, we compute

|U^nU^n1nκΔY,2(nκ)λ+n1n|<0.05n1nnκ(nκ)λ+.\Big{|}\frac{\hat{U}_{n}}{\hat{U}_{n-1}}-\frac{n\kappa\Delta_{Y,2}}{(n-\kappa)\lambda_{+}}\frac{\mathfrak{C}_{n-1}}{\mathfrak{C}_{n}}\Big{|}<0.05\frac{\mathfrak{C}_{n-1}}{\mathfrak{C}_{n}}\frac{n\kappa}{(n-\kappa)\lambda_{+}}.

Using triangle inequality, we obtain

|U^nU^n1C4nκ(nκ)|C(γ)nκ(nκ),C(γ)=n1n|ΔY,2λ+C|+|n1n14||ΔY,2λ+|+0.05λ+.\Big{|}\frac{\hat{U}_{n}}{\hat{U}_{n-1}}-\frac{C_{*}}{4}\frac{n\kappa}{(n-\kappa)}\Big{|}\leq C(\gamma)\frac{n\kappa}{(n-\kappa)},\quad C(\gamma)=\frac{\mathfrak{C}_{n-1}}{\mathfrak{C}_{n}}|\frac{\Delta_{Y,2}}{\lambda_{+}}-C_{*}|+|\frac{\mathfrak{C}_{n-1}}{\mathfrak{C}_{n}}-\frac{1}{4}||\frac{\Delta_{Y,2}}{\lambda_{+}}|+\frac{0.05}{\lambda_{+}}.

From (3.20), we have |n1n14|=|n+14n214|32(4n2)|\frac{\mathfrak{C}_{n-1}}{\mathfrak{C}_{n}}-\frac{1}{4}|=|\frac{n+1}{4n-2}-\frac{1}{4}|\leq\frac{3}{2(4n-2)}. For nn1n\geq n_{1}, using (3.55c), the limit (3.22d) and continuity of λ+(γ)\lambda_{+}(\gamma) in γ\gamma, we obtain

lim supγγC(γ)32(4n12)C+0.05λ+(γ)<C4δ^.\limsup_{\gamma\to\gamma_{*}}C(\gamma)\leq\frac{3}{2(4n_{1}-2)}\cdot C_{*}+\frac{0.05}{\lambda_{+}(\gamma_{*})}<\frac{C_{*}}{4}\hat{\delta}.

Thus, for κ\kappa sufficiently large (equivalent to γ\gamma close to γ\gamma_{*}), we establish C(γ)<C4δ^C(\gamma)<\frac{C_{*}}{4}\hat{\delta} and (3.22e).

Estimates (3.22b). The sign of U^n\hat{U}_{n} follows from U^n1>0\hat{U}_{n-1}>0 in (3.22b) and the relation (3.22e).

Estimates (3.22a) and (3.22c). Using the new asymptotics for U^n\hat{U}_{n} and qnq_{n} defined in (3.26b) and qn>qn1q_{n}>q_{n_{1}} for n>n1n>n_{1}, we obtain |U^n1|<qn1|U^n|qn11|U^n||\hat{U}_{n-1}|<q_{n}^{-1}|\hat{U}_{n}|\leq q_{n_{1}}^{-1}|\hat{U}_{n}|. Since qn1>1q_{n_{1}}>1 from (3.55), we verify |U^n1|<|U^n||\hat{U}_{n-1}|<|\hat{U}_{n}| in (3.22c). Combining this estimate, (3.28) with l=1l=1, and using qn1>max(|U^1|,1)q_{n_{1}}>\max(|\hat{U}_{1}|,1) from Lemma 3.9, we establish

|U^jU^nj|max(|U^1|,1)|U^n1|<qn1|U^n1|<|U^n|.|\hat{U}_{j}\hat{U}_{n-j}|\leq\max(|\hat{U}_{1}|,1)|\hat{U}_{n-1}|<q_{n_{1}}|\hat{U}_{n-1}|<|\hat{U}_{n}|.

for any 1jn11\leq j\leq n-1. Since C¯1max(|U^0|,1)\bar{C}_{1}\geq\max(|\hat{U}_{0}|,1) from item (a) in Lemma 3.6, we verify (3.22a).

We prove all the estimates for nn in the induction and thus establish Lemma 3.5. MM \square

3.6. Convergence of power series

In this section, we establish the following estimates of the power series coefficients U^n\hat{U}_{n} and establish the convergence of the power series.

Proposition 3.10.

Recall the definitions of γm,Cκ,Γ\gamma_{m},C_{\kappa},\Gamma from (2.33), (2.34). Let α=(4max(dU,dY))1\alpha=(4\max(d_{U},d_{Y}))^{-1} with dU,dYd_{U},d_{Y} defined in (2.15a), m>Cκm>C_{\kappa} be a positive integer, and I(γm+1,γm)I\in(\gamma_{m+1},\gamma_{m}) be a closed interval. There exists a constant DD depending on II such that the renormalized power series coefficient (3.20) with parameter γ\gamma satisfies

(3.56) |U^n(γ)|Dmax(α,n2).|\hat{U}_{n}(\gamma)|\leq D^{\max(\alpha,n-2)}.

In particular, for any κκ(I)(m,m+1)\kappa\in\kappa(I)\subset(m,m+1), the solution U(κ)(Y)=n0Un(Γ(κ))YnU^{(\kappa)}(Y)=\sum_{n\geq 0}U_{n}(\Gamma(\kappa))Y^{n} with γ=Γ(κ)\gamma=\Gamma(\kappa) defined in (2.33) and Un=nU^nU_{n}=\mathfrak{C}_{n}\hat{U}_{n} is analytic in |Y|<14D|Y|<\frac{1}{4D}. Moreover, U(κ)(Y)U^{(\kappa)}(Y) is continuous in κκ(I)(m,m+1)\kappa\in\kappa(I)\subset(m,m+1) and |Y|(8D)1|Y|\leq(8D)^{-1}.

Here, we use the notation U(κ)U^{(\kappa)} rather than U(γ)U^{(\gamma)} to indicate the dependence on the parameter γ\gamma (or equivalently κ\kappa). This convention will simplify our notations in Sections 4, 5 when referring to this local analytic solution.

Proof.

Firstly, for any γI\gamma\in I, using (3.17) and (2.30), we obtain

an,n=nλλ+=(nκ1)λ+=nκκλ+.a_{n,n}=n\lambda_{-}-\lambda_{+}=(\frac{n}{\kappa}-1)\lambda_{+}=\frac{n-\kappa}{\kappa}\lambda_{+}.

For κ=κ(γ)\kappa=\kappa(\gamma) with γI(γm+1,γm)\gamma\in I\subset(\gamma_{m+1},\gamma_{m}), from the definition of γ\gamma_{\cdot} (2.34), we obtain κJ(m,m+1)\kappa\in J\subset(m,m+1) for a close interval J=κ(I)J=\kappa(I). Thus, we obtain |nκ|cIn|n-\kappa|\geq c_{I}n with some cI>0c_{I}>0 uniformly for any n0n\geq 0 and γI\gamma\in I. From (2.28), (2.27), we obtain λ+12(λ+λ)=12(c1+c4)1\lambda_{+}\geq\frac{1}{2}(\lambda_{-}+\lambda-)=\frac{1}{2}(c_{1}+c_{4})\gtrsim 1. Combining these estimates, we obtain

(3.57) |an,n|cImax(n,1),|a_{n,n}|\geq c_{I}\max(n,1),

uniformly for γI\gamma\in I. In particular, |an,n|1|a_{n,n}|^{-1} is bounded uniformly for γI\gamma\in I.

Next, we prove (3.56) by induction. We fix an arbitrary γI\gamma\in I and drop the dependence of Ui(γ)U_{i}(\gamma) on γ\gamma to simplify the notation. For nL>2κn_{L}>2\kappa to be determined, we choose D=D(nL)D=D(n_{L}) large so that (3.56) holds for nnLn\leq n_{L}. Suppose that (3.56) holds for the case of n1\leq n-1 with nnLn\geq n_{L}. We use (3.17) to bound UnU_{n}. We follow the arguments in Sections 3.4, 3.5 with N=1N=1.

Following (3.33) with N=1N=1, we introduce the truncated power series UTR:=jn1Ujξj.U_{\mathrm{TR}}:=\sum_{j\leq n-1}U_{j}\xi^{j}. For 2lmax(dU,dY)2\leq l\leq\max(d_{U},d_{Y}) and jnj\leq n, the jthj-th power series coefficient of UTRlU_{\mathrm{TR}}^{l} is given by (3.34)

(3.58) UTR,jl=i1+i2++il=j,isj1U^i1U^i2U^ili1i2il.U_{\mathrm{TR},j}^{l}=\sum_{i_{1}+i_{2}+\cdots+i_{l}=j,\ i_{s}\leq j-1}\hat{U}_{i_{1}}\hat{U}_{i_{2}}\cdots\hat{U}_{i_{l}}\mathfrak{C}_{i_{1}}\mathfrak{C}_{i_{2}}\cdots\mathfrak{C}_{i_{l}}.

Using the inductive hypothesis (3.56), we get

(3.59) |U^i1U^i2U^il|DS,S=slmax(α,is2).|\hat{U}_{i_{1}}\hat{U}_{i_{2}}\cdots\hat{U}_{i_{l}}|\leq D^{S},\quad S=\sum_{s\leq l}\max(\alpha,i_{s}-2).

Without loss of generality, we assume i1,..,ik>2i_{1},..,i_{k}>2 and ik+1,..,il2i_{k+1},..,i_{l}\leq 2 for some kk with 0kl0\leq k\leq l. If k=0,1k=0,1 and j3j\geq 3, using the definition of α\alpha in Proposition 3.10 and i1j1n1i_{1}\leq j-1\leq n-1, we get

S=max(α,i12)+(l1)αj3+lαj2.S=\max(\alpha,i_{1}-2)+(l-1)\alpha\leq j-3+l\alpha\leq j-2.

If k2k\geq 2 and j3j\geq 3, we obtain

Ssk(is2)+(lk)αj2k+lα<j2.S\leq\sum_{s\leq k}(i_{s}-2)+(l-k)\alpha\leq j-2k+l\alpha<j-2.

If j2j\leq 2, we obtain i1,..,il1i_{1},..,i_{l}\leq 1 and

Slα1/4.S\leq l\alpha\leq 1/4.

Plugging the above estimates in (3.59), applying the identities (3.20b) repeatedly, we obtain

(3.60) |UTR,jl|Dmax(j2,1/4)i1+i2++il=j,isj1i1i2ilDmax(j2,1/4)j+l1.|U_{\mathrm{TR},j}^{l}|\leq D^{\max(j-2,1/4)}\sum_{i_{1}+i_{2}+\cdots+i_{l}=j,\ i_{s}\leq j-1}\mathfrak{C}_{i_{1}}\mathfrak{C}_{i_{2}}\cdots\mathfrak{C}_{i_{l}}\lesssim D^{\max(j-2,1/4)}\mathfrak{C}_{j+l-1}.

for l2l\geq 2 and jnj\leq n. Since UTR,j1=Uj𝟏jn1U_{\mathrm{TR},j}^{1}=U_{j}\mathbf{1}_{j\leq n-1} and UTR,j0=𝟏j=0U_{\mathrm{TR},j}^{0}=\mathbf{1}_{j=0}, (3.60) also hold for l=0,1l=0,1.

Next, we bound the right hand side of (3.17). Following Sections 3.5, we only need to bound JiJ_{i} in (3.41) with N=1N=1. For J1J_{1} (3.41), using the expansion (3.42) with N=1N=1, we get

|J1|\displaystyle|J_{1}| |2in10ldYjmin(i,degGl)(n+1i)Un+1i(Gl)jUTR,ijl|.\displaystyle\leq\Big{|}\sum_{2\leq i\leq n-1}\sum_{0\leq l\leq d_{Y}}\sum_{j\leq\min(i,\deg G_{l})}(n+1-i)U_{n+1-i}(G_{l})_{j}U_{\mathrm{TR},i-j}^{l}\Big{|}.

Applying (3.60) for UTR,ijlU_{\mathrm{TR},i-j}^{l}, inductive hypothesis (3.56) for Un+1i=n+1iU^n+1iU_{n+1-i}=\mathfrak{C}_{n+1-i}\hat{U}_{n+1-i}, we obtain

|J1|n2in10ldYjmin(i,degGl)n+1iij+l1Dmax(n+1i2,14)+max(ij2,14)|J_{1}|\lesssim n\sum_{2\leq i\leq n-1}\sum_{0\leq l\leq d_{Y}}\sum_{j\leq\min(i,\deg G_{l})}\mathfrak{C}_{n+1-i}\mathfrak{C}_{i-j+l-1}D^{\max(n+1-i-2,\frac{1}{4})+\max(i-j-2,\frac{1}{4})}

Since n+1in1,ijn1n+1-i\leq n-1,i-j\leq n-1, and nn is large, it is easy to get that the exponent is bounded by n3+14n-3+\frac{1}{4}. Using (3.20), we get

|J1|nDn3+1/4n+dY+1nDn3+1/4n.|J_{1}|\lesssim nD^{n-3+1/4}\mathfrak{C}_{n+d_{Y}+1}\lesssim nD^{n-3+1/4}\mathfrak{C}_{n}.

For J2J_{2} (3.41), using (3.50), (3.60), and (3.20c), we get

|J2|=|U10ldY,jdegGl(Gl)jUTR,njl|Dn2n+dY1Dn2n.|J_{2}|=|U_{1}\sum_{0\leq l\leq d_{Y},j\leq\deg G_{l}}(G_{l})_{j}U^{l}_{\mathrm{TR},n-j}|\lesssim D^{n-2}\mathfrak{C}_{n+d_{Y}-1}\lesssim D^{n-2}\mathfrak{C}_{n}.

For J3J_{3} (3.41), we bound it similarly

|J3|Dn2n.|J_{3}|\lesssim D^{n-2}\mathfrak{C}_{n}.

Plugging the above estimates and using (3.17) and (3.57), we obtain

|Un|=|nU^n|C(I)1n(|J1|+|J2|+|J3|)C(I)1n(nDn3+1/4n+Dn2n)|U_{n}|=|\mathfrak{C}_{n}\hat{U}_{n}|\leq C(I)\frac{1}{n}(|J_{1}|+|J_{2}|+|J_{3}|)\leq C(I)\frac{1}{n}(nD^{n-3+1/4}\mathfrak{C}_{n}+D^{n-2}\mathfrak{C}_{n})

for some constants C(I)C(I) only depending on the interval II. We choose nL,Dn_{L},D with

nL>max(2κ,2C(I)),Dα>maxinL(|Ui|),D1/4>max(4C(I),1).n_{L}>\max(2\kappa,2C(I)),\quad D^{\alpha}>\max_{i\leq n_{L}}(|U_{i}|),\quad D^{1/4}>\max(4C(I),1).

Then for any nnL,2n\geq n_{L,2}, we prove |U^n|Dn2|\hat{U}_{n}|\leq D^{n-2} and the induction argument.

From (3.20), we have n4n\mathfrak{C}_{n}\lesssim 4^{n}, which along with (3.56) implies |Un|4nDn2|U_{n}|\lesssim 4^{n}D^{n-2} for any n3n\geq 3. Thus the power series U(κ)U^{(\kappa)} converges for any YY with |Y|<(4D)1|Y|<(4D)^{-1}.

Continuity

Lastly, we prove the continuity of U(κ)U^{(\kappa)} in (κ,Y)Ω(\kappa,Y)\in\Omega, where
ΩJ×[(8D)1,(8D)1]\Omega\triangleq J\times[-(8D)^{-1},(8D)^{-1}] and J=κ(I)(m,m+1)J=\kappa(I)\subset(m,m+1). Fix an arbitrary ε>0\varepsilon^{\prime}>0. We decompose

U(κ)(Y)=im1Ui(γ)Yi+i>m1Ui(γ)YiP(Y,κ)+Q(Y,κ),γ=Γ(κ)I.U^{(\kappa)}(Y)=\sum_{i\leq m_{1}}U_{i}(\gamma)Y^{i}+\sum_{i>m_{1}}U_{i}(\gamma)Y^{i}\triangleq P(Y,\kappa)+Q(Y,\kappa),\quad\gamma=\Gamma(\kappa)\in I.

where Γ(κ)\Gamma(\kappa) is the inverse map defined in (2.33). From the above estimate of UiU_{i}, by choosing m1m_{1} large, we obtain |Q(Y,κ)|<ε/4|Q(Y,\kappa)|<\varepsilon^{\prime}/4 uniformly in (κ,Y)Ω(\kappa,Y)\in\Omega. From (3.57) and (3.17), each term Ui(γ)U_{i}(\gamma) with im1i\leq m_{1} is uniformly continuous in γI\gamma\in I. Since the map γ=Γ(κ)\gamma=\Gamma(\kappa) is uniformly continuous in κ\kappa for κJ\kappa\in J, we obtain that P(Y,κ)P(Y,\kappa) is uniformly continuous in Y,κY,\kappa. In particular, there exists small δ>0\delta>0 such that |U(κ)(Y)U(κ)(Y)|<ε|U^{(\kappa)}(Y)-U^{(\kappa^{\prime})}(Y^{\prime})|<\varepsilon^{\prime} for any |(κ,Y)(κ,Y)|<δ|(\kappa,Y)-(\kappa^{\prime},Y^{\prime})|<\delta. MM \square

3.7. Refined asymptotics

As a consequence of (3.22e) in Lemma 3.5 and (3.20), we have the following estimates of the original coefficients UnU_{n}.

Corollary 3.11.

Let C,δC_{*},\delta be the constants defined in (3.22d),(2.10). There exists n2,κ1n_{2},\kappa_{1} large enough with n2<κ1n_{2}<\kappa_{1} such that for any κ,n\kappa,n with κ>κ1\kappa>\kappa_{1} and κ+2>n>n2\kappa+2>n>n_{2}, we have

(3.61) |UnCUn1nκκn|\displaystyle\Big{|}U_{n}-C_{*}U_{n-1}\frac{n\kappa}{\kappa-n}\Big{|} δ|CUn1nκκn|,δ=0.05,\displaystyle\leq\delta\Big{|}C_{*}U_{n-1}\frac{n\kappa}{\kappa-n}\Big{|},\quad\delta=0.05,
Proof.

Using Un=U^nnU_{n}=\hat{U}_{n}\mathfrak{C}_{n} (3.20), we decompose

RnUnCUn1nκκn=nn1U^nCU^n1nκκn=n4n1R^n,R^n=U^nCU^n1nκ4(κn).R_{n}\triangleq\frac{U_{n}}{C_{*}U_{n-1}\frac{n\kappa}{\kappa-n}}=\frac{\mathfrak{C}_{n}}{\mathfrak{C}_{n-1}}\cdot\frac{\hat{U}_{n}}{C_{*}\hat{U}_{n-1}\frac{n\kappa}{\kappa-n}}=\frac{\mathfrak{C}_{n}}{4\mathfrak{C}_{n-1}}\cdot\hat{R}_{n},\quad\hat{R}_{n}=\frac{\hat{U}_{n}}{C_{*}\hat{U}_{n-1}\frac{n\kappa}{4(\kappa-n)}}.

From the asymptotics (3.20b), we obtain limin4n1=1\lim_{i\to\infty}\frac{\mathfrak{C}_{n}}{4\mathfrak{C}_{n-1}}=1. Since |R^n1|<δ^|\hat{R}_{n}-1|<\hat{\delta} from (3.22e), and δ^<δ\hat{\delta}<\delta (2.10), taking n2n_{2} sufficiently large so that n4n1\frac{\mathfrak{C}_{n}}{4\mathfrak{C}_{n-1}} is sufficiently close to 11, we prove Rn[1δ,1+δ]R_{n}\in[1-\delta,1+\delta] for any n>n2n>n_{2}. MM \square

Using Lemma 3.5 and Corollary 3.11, we have the following refined estimates of UiU_{i}, which will be crucially used to estimate barrier functions.

Lemma 3.12.

Let δ,n2\delta,n_{2} be the parameters defined in (2.10) and Corollary 3.11. There exists C¯>n2\bar{C}>n_{2} large enough, such that for any (n,κ)(n,\kappa) with n>C¯,κ(n,n+1)n>\bar{C},\kappa\in(n,n+1), the following statement holds.

For any (m,l)(m,l) with lmnl\leq m\leq n and m+lnm+l\geq n and q=2(1δ)1+δ>32q=\frac{2(1-\delta)}{1+\delta}>\frac{3}{2}, we have

(3.62) |UmUl|Cq(nm)Unmax(|Uk|,1),k=l+mn.|U_{m}U_{l}|\leq Cq^{-(n-m)}U_{n}\max(|U_{k}|,1),\quad k=l+m-n.

For any (m,l)(m,l) with 0lmn10\leq l\leq m\leq n-1, we have

(3.63a) UmCl((1+δ)Cκ)ml,l+mn1,\displaystyle U_{m}\leq C_{l}((1+\delta)C_{*}\kappa)^{m-l},\quad l+m\leq n-1,
(3.63b) UmCl(Cκ)ml4m,mn/8,\displaystyle U_{m}\leq C_{l}(C_{*}\kappa)^{m-l}4^{-m},\quad m\leq n/8,
(3.63c) UmCq((1+δ)Cκ)mqmin(n1m,m),q(14,12).\displaystyle U_{m}\leq C_{q}((1+\delta)C_{*}\kappa)^{m}q^{\min(n-1-m,m)},\quad q\in(\frac{1}{4},\frac{1}{2}).

For any mm\in\mathbb{Z} and τ\tau\in\mathbb{R} with τ(12,1102),2n1mτn+n\tau\in(\frac{1}{2},1-10^{-2}),2n-1\geq m\geq\tau n+n, then for

(3.64a) Tmi+j=m,i,jnUiUj.T_{m}\triangleq\sum_{i+j=m,i,j\leq n}U_{i}U_{j}.
we have the estimate
(3.64b) Tm+1>(τ(1δ)(1τ)Oτ,δ(n1))(Cκ)Tm.T_{m+1}>\Big{(}\frac{\tau(1-\delta)}{(1-\tau)}-O_{\tau,\delta}(n^{-1})\Big{)}(C_{*}\kappa)T_{m}\,.

We have

(3.65a) Unm/n\displaystyle U_{n}^{m/n} C2min(nm,m)Um,\displaystyle\geq C2^{\min(n-m,m)}U_{m}, mn1,\displaystyle m\leq n-1,
(3.65b) Unm/n\displaystyle U_{n}^{m/n} Cnmn2/3Um,\displaystyle\geq C_{n-m}n^{2/3}U_{m}, 2n/3mn1,\displaystyle 2n/3\leq m\leq n-1,
(3.65c) Un\displaystyle U_{n} C|κn|1((1δ)Cn)n,\displaystyle\geq C|\kappa-n|^{-1}((1-\delta)C_{*}n)^{n},

Estimate (3.62) is a refinement of (3.22a). In (3.63), we compare UmU_{m} with the reference scale (Cκ)m(C_{*}\kappa)^{m} and show that the former is much smaller if mm is away from nn or 0, and it is not much larger if mm is close to nn. Estimate (3.63c) will be useful for m[c1n,c2n]m\in[c_{1}n,c_{2}n] with c1,c2c_{1},c_{2} being some absolute constants. Such an estimate is not covered by (3.63a), (3.63b) as we cannot choose ll comparable to nn in (3.63a), (3.63b) (otherwise (3.63a), (3.63b) are trivial). In (3.64), we show that Tm/(Cκ)mT_{m}/(C_{*}\kappa)^{m} grows exponentially to estimate the power series of U2U^{2} in later proof of Proposition 5.1. We will only apply (3.64) with τ\tau away from 11. In (3.65), we show that UnU_{n} is very large relative to UmU_{m} and CnC_{*}n. In the following proof, we will treat the parameters (3.23), e.g. n2n_{2} in Corollary 3.11 and the bound of Ui,in2U_{i},i\leq n_{2} as absolute constants.

Proof.

Proof of (3.62). For nn large enough, we get mn2>n2m\geq\frac{n}{2}>n_{2}. Since κiκi1\kappa\cdot\frac{i}{\kappa-i}\asymp 1 for in2i\leq n_{2}, using (3.61), we obtain

(3.66) UnUm((1δ)Cκ)nmm<iniκi,|Ul|max(|Uk|,1)((1+δ)Cκ)lkk<jljκj.\frac{U_{n}}{U_{m}}\gtrsim((1-\delta)C_{*}\kappa)^{n-m}\prod_{m<i\leq n}\frac{i}{\kappa-i},\quad\frac{|U_{l}|}{\max(|U_{k}|,1)}\lesssim((1+\delta)C_{*}\kappa)^{l-k}\prod_{k<j\leq l}\frac{j}{\kappa-j}.

Since nm=lkn-m=l-k (3.62), using a change of variables (i,j)(m+s,k+s)(i,j)\to(m+s,k+s), and combining the above two estimates, we obtain

Unmax(|Uk|,1)|Ul|Um(1δ1+δ)nm0<snm(m+s)(κks)(κms)(k+s).\frac{U_{n}\max(|U_{k}|,1)}{|U_{l}|U_{m}}\gtrsim\Big{(}\frac{1-\delta}{1+\delta}\Big{)}^{n-m}\prod_{0<s\leq n-m}\frac{(m+s)(\kappa-k-s)}{(\kappa-m-s)(k+s)}.

We estimate the product. Since k+n=l+mk+n=l+m, klmnk\leq l\leq m\leq n, s1s\geq 1, and κ<n+1\kappa<n+1, we obtain

mk(κms)\displaystyle m-k-(\kappa-m-s) =2m+skκ2mkn=2mlm=ml0,\displaystyle=2m+s-k-\kappa\geq 2m-k-n=2m-l-m=m-l\geq 0,
κ(k+s)\displaystyle\kappa-(k+s) >n(k+nm)=mk0.\displaystyle>n-(k+n-m)=m-k\geq 0.

Thus, for 0<snm0<s\leq n-m, we estimate each term in the product as

(m+s)(κks)(κms)(k+s)=1+(mk)κ(κms)(k+s)>1+1=2.\frac{(m+s)(\kappa-k-s)}{(\kappa-m-s)(k+s)}=1+\frac{(m-k)\kappa}{(\kappa-m-s)(k+s)}>1+1=2.

Combining the above estimates, we prove (3.62).

Proof of (3.63a). The estimate is trivial for mn2m\leq n_{2}. For m>n2m>n_{2}, using (3.61) and iκiκ1\frac{i}{\kappa-i}\cdot\kappa\asymp 1 for in2i\leq n_{2}, we obtain

(3.67) Um\displaystyle U_{m} C((1+δ)Cκ)ml|Un2|m(m1)(l+1)(κm)(κm1)(κl1).\displaystyle\leq C((1+\delta)C_{*}\kappa)^{m-l}|U_{n_{2}}|\cdot\frac{m(m-1)\cdots(l+1)}{(\kappa-m)(\kappa-m-1)\cdots(\kappa-l-1)}.

Since we assume l+mn1l+m\leq n-1 and n<κn<\kappa, we get mi<κl1im-i<\kappa-l-1-i for i=0,1,..,ml1i=0,1,..,m-l-1, which along with (3.67) implies (3.63a).

Proof of (3.63b). We only need to consider lmn/8l\leq m\leq n/8. In this case, for all imi\leq m, we have iκimκm<17\frac{i}{\kappa-i}\leq\frac{m}{\kappa-m}<\frac{1}{7}. Since (1+δ)17<14(1+\delta)\frac{1}{7}<\frac{1}{4} (2.10), using the above estimate, we yield

UmCl((1+δ)Cκ)ml7mCl(Cκ)ml4m.U_{m}\leq C_{l}((1+\delta)C_{*}\kappa)^{m-l}7^{-m}\leq C_{l}(C_{*}\kappa)^{m-l}4^{-m}.

Proof of (3.63c). Choosing l=n2l=n_{2} in the above estimate (3.67) and using κ>n,n2!1\kappa>n,n_{2}!\lesssim 1, and κ/(κi)1\kappa/(\kappa-i)\asymp 1 for in2i\leq n_{2}, we further obtain

(3.68) UmC((1+δ)Cκ)m1imiκiC((1+δ)Cκ)m(n1m)1.U_{m}\leq C((1+\delta)C_{*}\kappa)^{m}\prod_{1\leq i\leq m}\frac{i}{\kappa-i}\leq C((1+\delta)C_{*}\kappa)^{m}\binom{n-1}{m}^{-1}.

Using the above estimate and Lemma 3.4, we prove (3.63c).

Proof of (3.64). If m=2n1m=2n-1, we get

T2n=Un2CnκUn1Un,T2n1=2Un1Un.T_{2n}=U_{n}^{2}\geq Cn\kappa U_{n-1}U_{n},\quad T_{2n-1}=2U_{n-1}U_{n}.

Since δ\delta is given (2.10) and τ<1102\tau<1-10^{-2}, for nn large enough, we obtain (3.64).

Next, we consider m2n2m\leq 2n-2. Denote l=mnl=m-n. From the assumption of mm above (3.64), we obtain n1lτn>n2n-1\geq l\geq\tau n>\frac{n}{2}. By requiring nqn_{q} large, since n>nqn>n_{q}, we also have l>n2l>n_{2}. Since κ<n+1\kappa<n+1, using (3.61), we get

Ul+1Ul>(1δ)(Cκ)l+1κl1τnnτn(1δ)(Cκ)=bCκ,b=τ(1δ)(1τ).\frac{U_{l+1}}{U_{l}}>(1-\delta)(C_{*}\kappa)\frac{l+1}{\kappa-l-1}\geq\frac{\tau n}{n-\tau n}(1-\delta)(C_{*}\kappa)=bC_{*}\kappa,\quad b=\frac{\tau(1-\delta)}{(1-\tau)}.

As a result, we yield

(3.69a) i+j=m+1,i,jn1UiUj>bCκi+j=m+1,i,jn1Ui1UjbCκi+j=m,i,jn2UiUj.\sum_{i+j=m+1,i,j\leq n-1}U_{i}U_{j}>bC_{*}\kappa\sum_{i+j=m+1,i,j\leq n-1}U_{i-1}U_{j}\geq bC_{*}\kappa\sum_{i+j=m,i,j\leq n-2}U_{i}U_{j}.

Since Un1n2UnU_{n-1}\lesssim n^{-2}U_{n} (3.61) for κ(n,n+1)\kappa\in(n,n+1), using the above estimate again, we get

(3.69b) 2Umn+1Un\displaystyle 2U_{m-n+1}U_{n} >2bCκUmnUn,\displaystyle>2bC_{*}\kappa U_{m-n}U_{n},
n1Tm+1\displaystyle n^{-1}T_{m+1} n1Umn+1UnκUmn+1Un1.\displaystyle\gtrsim n^{-1}U_{m-n+1}U_{n}\gtrsim\kappa U_{m-n+1}U_{n-1}.

Summing the estimates in (3.69), we prove

Tm+1+Cn1Tm+1>bCκi+j=m,i,jn2UiUj+2bCκ(UmnUn+Umn+1Un1)=bCκTm.T_{m+1}+Cn^{-1}T_{m+1}>bC_{*}\kappa\sum_{i+j=m,i,j\leq n-2}U_{i}U_{j}+2bC_{*}\kappa(U_{m-n}U_{n}+U_{m-n+1}U_{n-1})=bC_{*}\kappa T_{m}.

Dividing 1+Cn11+Cn^{-1} on both sides, we prove (3.64).

Proof of (3.65c). Next, we prove (3.65c), (3.65a), and (3.65b) in order. Recall n2n_{2} chosen in Corollary 3.11. Using (3.61) and κm<n+1m\kappa-m<n+1-m for m=1,2,..,n1m=1,2,..,n-1, we prove

Un\displaystyle U_{n} C((1δ)Cκ)nn2n2+1lnlκlC((1δ)Cκ)n1lnlκl\displaystyle\geq C((1-\delta)C_{*}\kappa)^{n-n_{2}}\prod_{n_{2}+1\leq l\leq n}\frac{l}{\kappa-l}\geq C((1-\delta)C_{*}\kappa)^{n}\prod_{1\leq l\leq n}\frac{l}{\kappa-l}
C(κn)1((1δ)Cκ)n1lnln+1l=C(κn)1((1δ)Cκ)n.\displaystyle\geq C(\kappa-n)^{-1}((1-\delta)C_{*}\kappa)^{n}\prod_{1\leq l\leq n}\frac{l}{n+1-l}=C(\kappa-n)^{-1}((1-\delta)C_{*}\kappa)^{n}.

Proof of (3.65a). If mn2m\leq n_{2}, the estimate (3.65a) follows from (3.65c). Next, we consider n2<mn1n_{2}<m\leq n-1. Using estimates similar to (3.66) and iκi>in+1i\frac{i}{\kappa-i}>\frac{i}{n+1-i} for κ(n,n+1)\kappa\in(n,n+1), we get

(3.70) UnUm\displaystyle\frac{U_{n}}{U_{m}} C((1δ)Cκ)(nm)m+1inin+1iC((1δ)Cκ)(nm)(nnm).\displaystyle\geq C((1-\delta)C_{*}\kappa)^{(n-m)}\prod_{m+1\leq i\leq n}\frac{i}{n+1-i}\geq C((1-\delta)C_{*}\kappa)^{(n-m)}\binom{n}{n-m}.

Since mn1m\leq n-1, combining (3.70) and the upper bound of UmU_{m} (3.68), we estimate

Unm/nUm=(UnUm)mn(Um)nmnC((1δ)Cκ)(nm)m/n((1+δ)Cκ)m(nm)/n(nnm)m/n(n1m)(nm)/n.\frac{U_{n}^{m/n}}{U_{m}}=(\frac{U_{n}}{U_{m}})^{\frac{m}{n}}(U_{m})^{-\frac{n-m}{n}}\geq C\frac{((1-\delta)C_{*}\kappa)^{(n-m)m/n}}{((1+\delta)C_{*}\kappa)^{m(n-m)/n}}\binom{n}{n-m}^{m/n}\binom{n-1}{m}^{(n-m)/n}.

The common factor CκC_{*}\kappa in the denominator and numerator is cancelled.

Denote λ=1δ1+δ<1\lambda=\frac{1-\delta}{1+\delta}<1. We have 4λ>24\lambda>2. We further consider mn12m\leq\frac{n-1}{2} and m>n12m>\frac{n-1}{2}. (a) For mn12m\leq\frac{n-1}{2}, which gives m<n2m<\frac{n}{2}, applying Lemma 3.4 to (n1m),(nm)=(nnm)\binom{n-1}{m},\binom{n}{m}=\binom{n}{n-m}, we get

Unm/nUmCm1/2λ(nm)mn4m2n+m(nm)nCm1/2λ(nm)mn4mCm1/2(4λ)m>C2m.\frac{U_{n}^{m/n}}{U_{m}}\geq Cm^{-1/2}\lambda^{\frac{(n-m)m}{n}}4^{\frac{m^{2}}{n}+\frac{m(n-m)}{n}}\geq Cm^{-1/2}\lambda^{\frac{(n-m)m}{n}}4^{m}\geq Cm^{-1/2}(4\lambda)^{m}>C2^{m}.

For n>m>n12n>m>\frac{n-1}{2}, which implies mn2m\geq\frac{n}{2}, using (n1m)=(n1n1m)\binom{n-1}{m}=\binom{n-1}{n-1-m} and Lemma 3.4, we get

Unm/n/UmC(nm)1/2λ(nm)mn4(nm)C(nm)1/2(4λ)nm>C2nm.U_{n}^{m/n}/U_{m}\geq C(n-m)^{-1/2}\lambda^{\frac{(n-m)m}{n}}4^{(n-m)}\geq C(n-m)^{-1/2}(4\lambda)^{n-m}>C2^{n-m}.

We prove (3.65a).

Proof of (3.65b) For (3.65b), since m2n3>n2m\geq\frac{2n}{3}>n_{2}, applying (3.70) and then using ln+1l>2\frac{l}{n+1-l}>2 for lm+11+2n3l\geq m+1\geq 1+\frac{2n}{3}, and 2(1δ)>1+δ2(1-\delta)>1+\delta (2.10), we get

UnUmC((1δ)Cκ)nmm+1lnln+1lC((1δ)Cκ)nm2nmn>C((1+δ)Cκ)nmn.\frac{U_{n}}{U_{m}}\geq C((1-\delta)C_{*}\kappa)^{n-m}\prod_{m+1\leq l\leq n}\frac{l}{n+1-l}\geq C((1-\delta)C_{*}\kappa)^{n-m}2^{n-m}n>C((1+\delta)C_{*}\kappa)^{n-m}n.

Combining the above estimates and using 1>mn231>\frac{m}{n}\geq\frac{2}{3}, we prove

Unm/nUm>(Cn((1+δ)Cκ)nmUm)mnUm>Cn2/3(((1+δ)Cκ)nm)mn((1+δ)Cκ)(1mn)m=Cn2/3.\frac{U_{n}^{m/n}}{U_{m}}>\frac{(Cn((1+\delta)C_{*}\kappa)^{n-m}U_{m})^{\frac{m}{n}}}{U_{m}}>Cn^{2/3}\frac{(((1+\delta)C_{*}\kappa)^{n-m})^{\frac{m}{n}}}{((1+\delta)C_{*}\kappa)^{(1-\frac{m}{n})m}}=Cn^{2/3}.

MM \square

4. Smooth solution connecting POP_{O} and PsP_{s}

In this section, we study the phase portrait of (Y,U)(Y,U) above the point QOQ_{O}, which corresponds to the region Z[0,Z0]Z\in[0,Z_{0}] in the original ODE (2.3). Our goal is to prove the following result.

Proposition 4.1.

There exists C>0C>0 large enough such that for any nn with n>Cn>C, there exists κn(n,n+1)\kappa_{n}\in(n,n+1) and ε1>0\varepsilon_{1}>0, such that the following statement holds true. The ODE (2.3) admits a solution V(κn)(Z)C([0,Z0+ε1])V^{(\kappa_{n})}(Z)\in C^{\infty}([0,Z_{0}+\varepsilon_{1}]) with V(κn)(0)=0,V(κn)(Z0)=V0V^{(\kappa_{n})}(0)=0,V^{(\kappa_{n})}(Z_{0})=V_{0}, and

(4.1) V(κn)(Z)<Z,V(κn)(Z)(1,1)\quad V^{(\kappa_{n})}(Z)<Z,\quad V^{(\kappa_{n})}(Z)\in(-1,1)

for any Z(0,Z0+ε1]Z\in(0,Z_{0}+\varepsilon_{1}], and V(κn)(Z)=Zg(Z2)V^{(\kappa_{n})}(Z)=Zg(Z^{2}) for some function gC[0,Z0+ε1])g\in C^{\infty}[0,Z_{0}+\varepsilon_{1}]). Moreover, it agrees with the local analytic function U(κn)(Y)U^{(\kappa_{n})}(Y) near Y=0Y=0 with (0,U(κn)(0))=Qs(0,U^{(\kappa_{n})}(0))=Q_{s} constructed in Proposition 3.10 in the following sense

(4.2) (Z,V(κn)(Z))=(𝒵,𝒱)(Y,U(κn)(Y))(Z,V^{(\kappa_{n})}(Z))=({\mathcal{Z}},{\mathcal{V}})(Y,U^{(\kappa_{n})}(Y))

for |Y|<ε1|Y|<\varepsilon_{1} with small ε1>0\varepsilon_{1}>0, where (𝒵,𝒱)({\mathcal{Z}},{\mathcal{V}}) are the maps defined in (2.12).

Throughout this section, we use nn to denote an integer rather than a dummy index and will first consider κ(n1,n)\kappa\in(n-1,n) or κ(n,n+1)\kappa\in(n,n+1). In Section 4.4, we will consider κ(n,n+1)\kappa\in(n,n+1) and prove Proposition 4.1 using a shooting argument.

Ideas and barrier argument

We first construct the far-field lower BlfB_{l}^{f} and upper barriers BufB_{u}^{f} with BufBlfB_{u}^{f}\leq B_{l}^{f} (see (4.5b) and (4.5a) for the definitions). If (Y,U(Y))(Y_{*},U(Y_{*})) is outside the region

(4.3) ΩBf={(Y,U):Buf(Y)<U<Blf(Y), 0<Y<YO},\Omega_{B}^{f}=\{(Y,U):B_{u}^{f}(Y)<U<B_{l}^{f}(Y),\ 0<Y<Y_{O}\},

the solution (Y,U(Y))(Y,U(Y)) will remain outside ΩBf\Omega_{B}^{f} for any Y(Y,YO)Y\in(Y_{*},Y_{O}) (see Section 4.1 and Proposition 4.2). We define the boundaries of ΩBf\Omega_{B}^{f}

(4.4) EB,1={(Y,Buf(Y)):Y(0,YO)},EB,2={(Y,Blf(Y)):Y(0,YO)}.E_{B,1}=\{(Y,B_{u}^{f}(Y)):Y\in(0,Y_{O})\},\quad E_{B,2}=\{(Y,B_{l}^{f}(Y)):Y\in(0,Y_{O})\}.

See Figure 2 for illustrations of Buf,Blf,ΩBfB_{u}^{f},B_{l}^{f},\Omega_{B}^{f}, and the solution curve.

We construct the local upper and lower barriers 𝐁une(Y),𝐁lne(Y)\mathbf{B}_{u}^{\mathrm{ne}}(Y),\mathbf{B}_{l}^{\mathrm{ne}}(Y) based on 𝐁[n]ne\mathbf{B}_{[{n}]}^{\mathrm{ne}} (4.14).

In Propositions 4.3, 4.4, we will show that 𝐁une(Y)\mathbf{B}_{u}^{\mathrm{ne}}(Y) is a upper barrier for U(Y)U(Y), which is valid for Y(0,tbar)Y\in(0,t_{bar}). Then, in Propositions 4.5, 4.6, we show that 𝐁une(Y)\mathbf{B}_{u}^{\mathrm{ne}}(Y) intersects BufB_{u}^{f} at some tI<tbart_{I}<t_{bar} for some κ(nε,n)\kappa\in(n-\varepsilon,n) with large nn and small ε\varepsilon. This implies that the solution exits the region ΩBf\Omega_{B}^{f} via EB,1E_{B,1} for this κ\kappa. We perform a similar argument for the lower barriers 𝐁lne,Blf\mathbf{B}_{l}^{\mathrm{ne}},B_{l}^{f} and some κ(n,n+ε)\kappa\in(n,n+\varepsilon) with large κ\kappa and small ε\varepsilon. See Sections 4.2, 4.3.

In Section 4.4, using continuity, we construct a smooth solution from QsQ_{s} to (Y,U(Y))(Y,U(Y)) with YY close to YOY_{O}, and the solution agrees with the local analytic solution (Z,V(Z))(Z,V(Z)) to (2.3) near Z=0Z=0 via the map (𝒴,𝒰)({\mathcal{Y}},{\mathcal{U}}) (2.11). Using the inverse map (𝒱,𝒵)({\mathcal{V}},{\mathcal{Z}}) (2.12) proves Proposition 4.1.

Here, u, l, ne, f are short for upper, lower, near(for local), far, respectively.

Refer to caption
Figure 2. Illustrations of phase portrait of the (Y,U)(Y,U)-ODE (2.3). The black curve represents the CC^{\infty} solution curve, (YF,UF)(Y_{F},U_{F}) (orange) defined in (4.32) is the solution curve near QO=(1/d,)Q_{O}=(1/d,\infty), BlfB_{l}^{f} (purple) and BufB_{u}^{f} (green) are barrier functions defined in (4.5b), (4.5a), UΔYU_{\Delta_{Y}} (red) and UΔUU_{\Delta_{U}} (blue) defined in (2.24) are roots of ΔY,ΔU\Delta_{Y},\Delta_{U}. The domain ΩBf\Omega_{B}^{f} is defined in (4.3) and Ωtri,i\Omega_{\mathrm{tri},i} in (5.32).

4.1. Far-field barriers

We construct the far-field upper barrier

(4.5a) Buf(Y)=U0+U1Y+2Y2,B_{u}^{f}(Y)=U_{0}+U_{1}Y+2Y^{2},
and the far-field lower barrier
(4.5b) Blf(Y)=e1Y+e2Y2U0dY1,B^{f}_{l}(Y)=\frac{e_{1}Y+e_{2}Y^{2}-U_{0}}{dY-1},
with e1,e2e_{1},e_{2} satisfying
(4.5c) ddYBlf(Y)|Y=0\displaystyle\frac{d}{dY}B_{l}^{f}(Y)|_{Y=0} =U1,\displaystyle=U_{1},
(4.5d) d2dY2((Blf)(Y)ΔY(Y,Blf(Y))ΔU(Y,Blf(Y))<0)|Y=0\displaystyle\frac{d^{2}}{dY^{2}}\Big{(}(B^{f}_{l})^{\prime}(Y)\Delta_{Y}(Y,B^{f}_{l}(Y))-\Delta_{U}(Y,B^{f}_{l}(Y))<0\Big{)}\Big{|}_{Y=0} =40.\displaystyle=-40.

For (4.5c), a direct calculation obtains the derivative and solves e1e_{1}:

dU0e1=U1,e1=dU0U1.dU_{0}-e_{1}=U_{1},\quad e_{1}=dU_{0}-U_{1}.

We impose (4.5d) to show that the quantity in the bracket in (4.5d) is negative. See (4.7d). It is easy to see that (4.5d) is linear in e2e_{2}, and we can solve e2e_{2} easily with symbolic computation.

By definition, Blf,BufB_{l}^{f},B_{u}^{f} agree with U(Y)U(Y) near Y=0Y=0 up to O(Y2)O(Y^{2}). Moreover, using (2.35), (2.36), and (2.26), near Y=0Y=0, we obtain

(Bαf)(Y)ΔY(Y,Bαf(Y))ΔU(Y,Bαf(Y))=O(Y2),α{l,u}.(B^{f}_{\alpha})^{\prime}(Y)\Delta_{Y}(Y,B^{f}_{\alpha}(Y))-\Delta_{U}(Y,B^{f}_{\alpha}(Y))=O(Y^{2}),\quad\alpha\in\{l,u\}.

Recall the roots UΔY,UΔZU_{\Delta_{Y}},U_{\Delta_{Z}} from (2.24), and UgU_{g} from (2.23). In Propositions 4.2, 4.4, we will show the following relative positions of curves near QsQ_{s}

(4.6) UΔU(Y)<Buf(Y)<U(Y)<Blf(Y)<UΔY(Y),Ug(Y)<Buf(Y),U_{\Delta_{U}}(Y)<B_{u}^{f}(Y)<U(Y)<B_{l}^{f}(Y)<U_{\Delta_{Y}}(Y),\quad U_{g}(Y)<B_{u}^{f}(Y),

for 0<Y10<Y\ll 1. See Figure 2 for illustrations of the relative positions of these curves.

We have the following results.

Proposition 4.2 (Computer-assisted).

There exists a large CC such that for any κ>C\kappa>C, the following statements hold true. The functions Blf,BufB_{l}^{f},B_{u}^{f} (4.5) satisfies Blf(0)=Buf(0)=0B_{l}^{f}(0)=B_{u}^{f}(0)=0 and

(4.7a) Y2Buf(0)<Y2U(0)<Y2Blf(0),\displaystyle\partial_{Y}^{2}B_{u}^{f}(0)<\partial_{Y}^{2}U(0)<\partial_{Y}^{2}B_{l}^{f}(0),
(4.7b) Blf(Y)<UΔY(Y),\displaystyle B_{l}^{f}(Y)<U_{\Delta_{Y}}(Y), 0<YYO,\displaystyle 0<Y\leq Y_{O},
(4.7c) UΔU(Y)<Buf(Y)<Blf(Y),\displaystyle U_{\Delta_{U}}(Y)<B_{u}^{f}(Y)<B_{l}^{f}(Y), 0<YYO,\displaystyle 0<Y\leq Y_{O},
(4.7d) (Blf)(Y)ΔY(Y,Blf(Y))ΔU(Y,Blf(Y))<0,\displaystyle(B^{f}_{l})^{\prime}(Y)\Delta_{Y}(Y,B^{f}_{l}(Y))-\Delta_{U}(Y,B^{f}_{l}(Y))<0, 0<YYO\displaystyle 0<Y\leq Y_{O}
(4.7e) (Buf)(Y)ΔY(Y,Buf(Y))ΔU(Y,Buf(Y))>0,\displaystyle(B^{f}_{u})^{\prime}(Y)\Delta_{Y}(Y,B^{f}_{u}(Y))-\Delta_{U}(Y,B^{f}_{u}(Y))>0, 0<YYO\displaystyle 0<Y\leq Y_{O}

where YO=1dY_{O}=\frac{1}{d}. Moreover, the function UgU_{g} (2.23) and UΔUU_{\Delta_{U}} (2.24) satisfies

(4.8) YU(0)>c>0,YU(0)YUΔU(0)>c>0,YU(0)YUg(0)>c>0,\partial_{Y}U(0)>c>0,\quad\partial_{Y}U(0)-\partial_{Y}U_{\Delta_{U}}(0)>c>0,\quad\partial_{Y}U(0)-\partial_{Y}U_{g}(0)>c>0,

for some constant cc independent of κ\kappa. The map 𝒵{\mathcal{Z}} (2.14) along the solution curve satisfies

(4.9) d𝒵(Y,U(Y)dY|Y=0=d𝒵(Y,U0+U1Y)dY|Y=0<0.\frac{d{\mathcal{Z}}(Y,U(Y)}{dY}\Big{|}_{Y=0}=\frac{d{\mathcal{Z}}(Y,U_{0}+U_{1}Y)}{dY}\Big{|}_{Y=0}<0.

As a result, we have ΩBfYU\Omega_{B}^{f}\subset{\mathcal{R}}_{YU} for YU{\mathcal{R}}_{YU} defined in Lemma 2.2, and

(4.10) Ug(Y)<Buf(Y),ΔZ((𝒵,𝒱)(Y,U))\displaystyle U_{g}(Y)<B_{u}^{f}(Y),\quad\Delta_{Z}(({\mathcal{Z}},{\mathcal{V}})(Y,U)) >0,\displaystyle>0, (Y,U)ΩBf,\displaystyle(Y,U)\in\Omega_{B}^{f},
(4.11) ΔY(Y,U)\displaystyle\Delta_{Y}(Y,U) >0,\displaystyle>0, (Y,U)ΩBf.\displaystyle(Y,U)\in\Omega_{B}^{f}.

and Buf,BlfB_{u}^{f},B_{l}^{f} are an upper, and lower barrier for the ODE with Y[0,YO)Y\in[0,Y_{O}), respectively.

The proof involves computer assistance, and we refer to Appendix B for further details.

Proof.

The properties Blf(0)=Buf(0)=U0=εB_{l}^{f}(0)=B_{u}^{f}(0)=U_{0}=\varepsilon follow from the definition (4.5) and (2.16).

For (4.9), since U(Y)U(Y) is smooth near Y=0Y=0 and

|U(Y)U0U1Y|CUY2,|U(Y)U1|CUY,|U(Y)-U_{0}-U_{1}Y|\lesssim C_{U}Y^{2},\quad|U^{\prime}(Y)-U_{1}|\lesssim C_{U}Y,

using chain rule, we prove the first identity in (4.9). The second term in (4.9) is a scalar and only depends on U0,U1U_{0},U_{1}. We do not expand it below as we can derive it symbolically.

The terms in inequality (4.7a), (4.8) are explicit constants.

Inequality (4.7b) or (4.7c), (4.9) compares two rational functions with explicit formulas.

The term in inequality (4.7d) or (4.7e) is a polynomial.

Methods. Recall that choosing κ\kappa sufficiently large is equivalent to choosing γ\gamma close to 1/2\ell^{-1/2} (2.31), (2.32). Each inequality in (4.7) and (4.8) can be reformulated equivalently as

(4.12) P(Y;γ)=Yig(Y;γ)>0,P(Y;\gamma)=Y^{i}g(Y;\gamma)>0,

for some i0i\geq 0, where P,gP,g are polynomials in YY and continuous in γ\gamma. We verify that

g(Y,1/2)>c>0,foranyY[0,YO],g(Y,\ell^{-1/2})>c>0,\quad\mathrm{for\ any}\quad Y\in[0,Y_{O}],

uniformly with some c>0c>0 using computer assistance. See Appendix B for more details. Then using continuity, we prove (4.7) for γ\gamma close to 1/2\ell^{-1/2}.

Consequences. Recall ΩBf\Omega_{B}^{f} from (4.3) and YU{\mathcal{R}}_{YU} from Lemma 2.2. Since U0>0U_{0}>0 (2.16) and U1=YU(0)>0U_{1}=\partial_{Y}U(0)>0 (4.8), we obtain that BufB_{u}^{f} (4.5a) is increasing for Y[0,YO)Y\in[0,Y_{O}). Therefore, for any (Y,U)ΩBf(Y,U)\in\Omega_{B}^{f} (4.3), we obtain U>Buf(Y)>Buf(0)=U0>0U>B_{u}^{f}(Y)>B_{u}^{f}(0)=U_{0}>0, and ΩBfYU\Omega_{B}^{f}\subset{\mathcal{R}}_{YU}.

Estimate (4.10) Since both UgU_{g} (2.23) and BufB_{u}^{f} (4.5a) are quadratic polynomials with Ug(0)=Buf(0)=U0=εU_{g}(0)=B_{u}^{f}(0)=U_{0}=\varepsilon, we get

Buf(Y)Ug(Y)=(U1YUg(0))Y+(2(1))Y2=(U1YUg(0))Y+(3)Y2.B_{u}^{f}(Y)-U_{g}(Y)=(U_{1}-\partial_{Y}U_{g}(0))Y+(2-(\ell-1))Y^{2}=(U_{1}-\partial_{Y}U_{g}(0))Y+(3-\ell)Y^{2}.

Since Y>0,3>0Y>0,3-\ell>0 (2.1), and U1YUg(0)>0U_{1}-\partial_{Y}U_{g}(0)>0 from (4.8), we prove Ug(Y)<Buf(Y)U_{g}(Y)<B_{u}^{f}(Y) for any Y>0Y>0 and obtain the first estimate in (4.10).

To prove ΔZ((𝒵,𝒱)(Y,U))>0\Delta_{Z}(({\mathcal{Z}},{\mathcal{V}})(Y,U))>0 (4.10), using the formula (2.22), we only need to show

(4.13) U>Ug(Y),Z=𝒵(Y,U)>0.U>U_{g}(Y),\quad Z={\mathcal{Z}}(Y,U)>0.

For any (Y,U)ΩBfYU(Y,U)\in\Omega_{B}^{f}\subset{\mathcal{R}}_{YU} with YU{\mathcal{R}}_{YU} defined in Lemma 2.2, using the first estimate in (4.10) and Lemma 2.2, we have U>Buf(Y)>Ug(Y)U>B_{u}^{f}(Y)>U_{g}(Y) and 𝒵(Y,U)>0{\mathcal{Z}}(Y,U)>0, which implies (4.13)

Estimate (4.11) For (Y,U)ΩBf(Y,U)\in\Omega_{B}^{f} , the definition of ΩBf\Omega_{B}^{f} (4.3) and (4.7b) imply

dY1<0,UUΔY(Y)<Blf(Y)UΔY(Y)<0,dY-1<0,\quad U-U_{\Delta_{Y}}(Y)<B_{l}^{f}(Y)-U_{\Delta_{Y}}(Y)<0,

for any Y(0,YO)Y\in(0,Y_{O}), where YO=1dY_{O}=\frac{1}{d}. Using the definition ΔY=(dY1)(UUΔY(Y))\Delta_{Y}=(dY-1)(U-U_{\Delta_{Y}}(Y)) (2.14), we prove ΔY>0\Delta_{Y}>0 (4.11).

Similarly, using (4.20), (4.7b), we get

ΔY(Y,Bαf(Y))=(dY1)(Bαf(Y)UΔY(Y))>0,α=l,u,\Delta_{Y}(Y,B_{\alpha}^{f}(Y))=(dY-1)(B_{\alpha}^{f}(Y)-U_{\Delta_{Y}}(Y))>0,\quad\alpha=l,u,

for any Y(0,YO),YO=1dY\in(0,Y_{O}),Y_{O}=\frac{1}{d}. The above estimate and (4.7d), (4.7e) imply that Buf,BlfB_{u}^{f},B_{l}^{f} are an upper, and lower barrier for the ODE with Y[0,YO]Y\in[0,Y_{O}], respectively. MM \square

4.2. Local barrier

For β<n\beta<-n with large |β||\beta| to be chosen, we construct the local barrier as

(4.14) 𝐁[n]ne(Y)=i=0nUiYi+βUnYn+1.\displaystyle\mathbf{B}_{[{n}]}^{\mathrm{ne}}(Y)=\sum_{i=0}^{n}U_{i}Y^{i}+\beta U_{n}Y^{n+1}.

We define

(4.15) 𝐏[n]ne=ΔY(Y,𝐁[n]ne(Y))(𝐁[n]ne)(Y)ΔU(Y,𝐁[n]ne(Y)).\mathbf{P}_{[{n}]}^{\mathrm{ne}}=\Delta_{Y}(Y,\mathbf{B}^{\mathrm{ne}}_{[n]}(Y))\Big{(}\mathbf{B}^{\mathrm{ne}}_{[n]}\Big{)}^{\prime}(Y)-\Delta_{U}(Y,\mathbf{B}^{\mathrm{ne}}_{[n]}(Y)).

We have the following results regarding the sign of 𝐏[n]ne\mathbf{P}_{[{n}]}^{\mathrm{ne}}.

Proposition 4.3.

There exist large absolute constants n3,C1n_{3},C\gg 1 such that for any n>n3n>n_{3}, and β<Cn2<0\beta<-Cn^{2}<0, the following holds true.

(a) For any κ(n1/2,n)\kappa\in(n-1/2,n) and Yμnmin((|(nκ)β|)1/(n2),|β|1)Y\leq\mu_{n}\min((|(n-\kappa)\beta|)^{1/{(n-2)}},|\beta|^{-1}), we have 𝐏[n]ne>0\mathbf{P}_{[{n}]}^{\mathrm{ne}}>0,

(b) For any κ(n,n+1/2)\kappa\in(n,n+1/2) and Yμnmin((|(nκ)β|)1/(n2),|β|1)Y\leq\mu_{n}\min((|(n-\kappa)\beta|)^{1/{(n-2)}},|\beta|^{-1}), we have 𝐏[n]ne<0\mathbf{P}_{[{n}]}^{\mathrm{ne}}<0.

Here, 0<μn<1/20<\mu_{n}<1/2 is some constant depending on nn.

Proof.

We require n3n_{3} larger than the constant CC in Lemma 3.12. Since |nκ|<1/2|n-\kappa|<1/2, we first choose μn\mu_{n} small enough so that

(4.16) Yμnmin((|(nκ)β|)1/(n2),|β|1)<1.Y\leq\mu_{n}\min((|(n-\kappa)\beta|)^{1/{(n-2)}},|\beta|^{-1})<1.

In the following estimates, we will mainly track the dependence of the constants on |κn||\kappa-n|, which plays a role as a small parameter, and n,βn,\beta, which are large.

Below, we shall simplify 𝐏[n]ne\mathbf{P}_{[{n}]}^{\mathrm{ne}} as PP, and use ama_{m} to denote the mm-th coefficient in the power series expansion of aa. We will show that

(4.17a) 𝐏[n]ne(Y)=Pn+1Yn+1+n,\mathbf{P}_{[{n}]}^{\mathrm{ne}}(Y)=P_{n+1}Y^{n+1}+{\mathcal{E}}_{n},\\
where Pn+1P_{n+1} is given by
(4.17b) Pn+1=((n+1)λλ+)(βUnUn+1),P_{n+1}=((n+1)\lambda_{-}-\lambda_{+})(\beta U_{n}-U_{n+1}),
and n{\mathcal{E}}_{n} satisfies the bound
(4.17c) |n|n|β||κn|1Yn+2+|κn|2Y2n1+|β||κn|2Y2n+|β|2|κn|2Y2n+1.|{\mathcal{E}}_{n}|\lesssim_{n}|\beta||\kappa-n|^{-1}Y^{n+2}+|\kappa-n|^{-2}Y^{2n-1}+|\beta||\kappa-n|^{-2}Y^{2n}+|\beta|^{2}|\kappa-n|^{-2}Y^{2n+1}.

From (4.14), (4.15), 𝐏[n]ne(Y)\mathbf{P}_{[{n}]}^{\mathrm{ne}}(Y) is a polynomial in YY. Since the barrier (4.14) and the power series of UU agree up to |Y|n+1|Y|^{n+1}, using Lemma 3.2, we get that the term Yi,inY^{i},i\leq n in power series expansion of 𝐏[n]ne\mathbf{P}_{[{n}]}^{\mathrm{ne}} vanishes. Moreover, using the notation n\mathfrak{R}_{n} (3.11), and the derivations (3.10), (3.15) with N=1N=1 and an+1,n+1=(n+1)λλ+a_{n+1,n+1}=(n+1)\lambda_{-}-\lambda_{+} from (3.17), we obtain the coefficient of Yn+1Y^{n+1} in PP

Pn+1\displaystyle P_{n+1} =n+1(Y0,U0,..,Un,βUn)=n+1(Y0,U0,..,Un,βUn)n+1(Y0,U0,..,Un,Un+1)\displaystyle=\mathfrak{R}_{n+1}(Y_{0},U_{0},..,U_{n},\beta U_{n})=\mathfrak{R}_{n+1}(Y_{0},U_{0},..,U_{n},\beta U_{n})-\mathfrak{R}_{n+1}(Y_{0},U_{0},..,U_{n},U_{n+1})
=an+1,n+1(βUnUn+1),\displaystyle=a_{n+1,n+1}(\beta U_{n}-U_{n+1}),

which is (4.17b).

Next, we estimate the coefficients PmP_{m} of PP with mn+2m\geq n+2. Applying Corollary 3.11 and tracking the dependence on |κn||\kappa-n|, we obtain

(4.18) |Ui|n1,forin1,|Un|n|κn|1,|Un+1|n2|Un|.|U_{i}|\lesssim_{n}1,\ \mathrm{for}\ i\leq n-1,\quad|U_{n}|\asymp_{n}|\kappa-n|^{-1},\quad|U_{n+1}|\lesssim n^{2}|U_{n}|.

Next, we estimate the coefficients ΔY,i,ΔU,i\Delta_{Y,i},\Delta_{U,i} of the power series of ΔY(Y,𝐁[n]ne),ΔU(Y,𝐁[n]ne)\Delta_{Y}(Y,\mathbf{B}_{[{n}]}^{\mathrm{ne}}),\Delta_{U}(Y,\mathbf{B}_{[{n}]}^{\mathrm{ne}}). Since ΔY(Y,U)\Delta_{Y}(Y,U) is linear in UU (2.14), using (4.18), we obtain

|(ΔY)i|n1,forin1,|(ΔY)n|n|κn|1,|(ΔY)i|n|β||κn|1,forin+1.|(\Delta_{Y})_{i}|\lesssim_{n}1,\mathrm{\ for\ }i\leq n-1,\quad|(\Delta_{Y})_{n}|\lesssim_{n}|\kappa-n|^{-1},\quad|(\Delta_{Y})_{i}|\lesssim_{n}|\beta||\kappa-n|^{-1},\mathrm{\ for\ }i\geq n+1.

Since ΔU\Delta_{U} is quadratic in UU (2.14) with the nonlinear term 2U22U^{2}, using the product formula (3.2) and the estimates (4.18), yields

|(ΔU)i|\displaystyle|(\Delta_{U})_{i}| n1,\displaystyle\lesssim_{n}1, in1,\displaystyle i\leq n-1,
|(ΔU)i|\displaystyle|(\Delta_{U})_{i}| n|κn|1,\displaystyle\lesssim_{n}|\kappa-n|^{-1}, i=n\displaystyle i=n
|(ΔU)i|\displaystyle|(\Delta_{U})_{i}| n|β||κn|1,\displaystyle\lesssim_{n}|\beta||\kappa-n|^{-1}, n+1i2n1,\displaystyle n+1\leq i\leq 2n-1,
|ΔU)i|\displaystyle|\Delta_{U})_{i}| n|β||κn|1+|κn|2,\displaystyle\lesssim_{n}|\beta||\kappa-n|^{-1}+|\kappa-n|^{-2}, i2n.\displaystyle i\geq 2n.

Recall 𝐁[n]ne\mathbf{B}_{[{n}]}^{\mathrm{ne}} from (4.14). Using

Y𝐁[n]ne=1in(iUi)Yi1+(n+1)βUnYn,\partial_{Y}\mathbf{B}_{[{n}]}^{\mathrm{ne}}=\sum_{1\leq i\leq n}(iU_{i})Y^{i-1}+(n+1)\beta U_{n}Y^{n},

the above estimates of of ΔY,i,ΔU,i\Delta_{Y,i},\Delta_{U,i}, and the product formula (3.2), for |Y|<1|Y|<1, we obtain

P=Pn+1Yn+1+On(|β||κn|1Yn+2+|κn|2Y2n1+|β||κn|2Y2n+|β|2|κn|2Y2n+1),P=P_{n+1}Y^{n+1}+O_{n}(|\beta||\kappa-n|^{-1}Y^{n+2}+|\kappa-n|^{-2}Y^{2n-1}+|\beta||\kappa-n|^{-2}Y^{2n}+|\beta|^{2}|\kappa-n|^{-2}Y^{2n+1}),

and establish (4.17c).

Next, we estimate Pn+1P_{n+1} and n{\mathcal{E}}_{n}. Using κ=λ+λ\kappa=\frac{\lambda_{+}}{\lambda_{-}} (2.30), we first rewrite Pn+1P_{n+1} as follows

Pn+1=(n+1κ1)λ+(βUnUn+1)=n+1κκλ+(βUnUn+1).P_{n+1}=(\frac{n+1}{\kappa}-1)\lambda_{+}(\beta U_{n}-U_{n+1})=\frac{n+1-\kappa}{\kappa}\lambda_{+}(\beta U_{n}-U_{n+1}).

Choosing β<0\beta<0 with n2|β|n^{2}\ll|\beta| and using (4.18), we get |Un+1|<12|βUn||U_{n+1}|<\frac{1}{2}|\beta U_{n}|. Since λ,λ+>0\lambda_{-},\lambda_{+}>0 (2.28), |λ+|1|\lambda_{+}|\asymp 1, and |κn|<12|\kappa-n|<\frac{1}{2}, we estimate

|Pn+1|n|βUnUn+1||βUn||β||κn|1,\displaystyle|P_{n+1}|\gtrsim_{n}|\beta U_{n}-U_{n+1}|\gtrsim|\beta U_{n}|\gtrsim|\beta||\kappa-n|^{-1},
sgn(Pn+1)=sgn(βUn)=sgn(Un).\displaystyle\mathrm{sgn}(P_{n+1})=\mathrm{sgn}(\beta U_{n})=-\mathrm{sgn}(U_{n}).

To ensure that the error term n{\mathcal{E}}_{n} in (4.17) is smaller than Pn+1Yn+1P_{n+1}Y^{n+1}, e.g. |n|<12|Pn+1Yn+1||{\mathcal{E}}_{n}|<\frac{1}{2}|P_{n+1}Y^{n+1}|, we require

|Y|n2nβ|κn|,|Y|βn1,|Y|^{n-2}\ll_{n}\beta|\kappa-n|,\quad|Y|\beta\ll_{n}1,

which are achieved by choosing μn\mu_{n} sufficiently small in (4.16). As a result, we get

sgn(P(Y))=sgn(Pn+1Yn+1)=sgn(Pn+1)=sgn(Un).\mathrm{sgn}(P(Y))=\mathrm{sgn}(P_{n+1}Y^{n+1})=\mathrm{sgn}(P_{n+1})=-\mathrm{sgn}(U_{n}).

Recall that we assume κ(n1/2,n)\kappa\in(n-1/2,n) or κ(n,n+1/2)\kappa\in(n,n+1/2). Since Un1>0U_{n-1}>0 from (3.22b), using the relation between Un1,UnU_{n-1},U_{n} in (3.61), we obtain

Un<0,κ(n1/2,n),Un>0,κ(n,n+1/2),U_{n}<0,\quad\kappa\in(n-1/2,n),\quad U_{n}>0,\quad\kappa\in(n,n+1/2),

which implies

P(Y)>0,κ(n1/2,n),P(Y)<0,κ(n,n+1/2).P(Y)>0,\quad\kappa\in(n-1/2,n),\quad P(Y)<0,\quad\kappa\in(n,n+1/2).

We conclude the proof. MM \square

Next, we derive the relative positions among the barriers and the solution.

Proposition 4.4.

Let UΔαU_{\Delta_{\alpha}} be the root of Δα(Y,U)=0,α=Y,U\Delta_{\alpha}(Y,U)=0,\alpha=Y,U defined in (2.24) and n3n_{3} be the parameter chosen in Proposition 4.3. For any n>n3n>n_{3} and β<Cn2\beta<-Cn^{2} with CC large, we have

(4.19a) 𝐁[n+1]ne(Y)U(Y)\displaystyle\mathbf{B}_{[{n+1}]}^{\mathrm{ne}}(Y)-U(Y) >0,foranyκ(n+1/2,n+1),\displaystyle>0,\quad\mathrm{for\ any\ }\kappa\in(n+1/2,n+1),
(4.19b) 𝐁[n]ne(Y)U(Y)\displaystyle\mathbf{B}_{[{n}]}^{\mathrm{ne}}(Y)-U(Y) <0,foranyκ(n,n+1/2),\displaystyle<0,\quad\mathrm{for\ any\ }\kappa\in(n,n+1/2),

for 0<Yκ,n,β10<Y\lesssim_{\kappa,n,\beta}1 and

(4.20) Buf(Y)\displaystyle B_{u}^{f}(Y) <U(Y)<Blf(Y),0<Yκ,n1.\displaystyle<U(Y)<B_{l}^{f}(Y),\quad 0<Y\ll_{\kappa,n}1.

For κ(n,n+1)\kappa\in(n,n+1), we will use 𝐁[n+1]ne(Y)\mathbf{B}_{[{n+1}]}^{\mathrm{ne}}(Y) as the local upper barrier for U(Y)U(Y), and 𝐁[n]ne\mathbf{B}_{[{n}]}^{\mathrm{ne}}(Y) as the local lower barrier.

Proof.

Since U(Y)U(Y) is local analytic near Y=0Y=0, using (4.14), we get

(4.21) 𝐁[n+1]ne(Y)U(Y)=(βUn+1Un+2)Yn+2+On,κ,β(Yn+3).\mathbf{B}_{[{n+1}]}^{\mathrm{ne}}(Y)-U(Y)=(\beta U_{n+1}-U_{n+2})Y^{n+2}+O_{n,\kappa,\beta}(Y^{n+3}).

For κ(n+1/2,n+1)\kappa\in(n+1/2,n+1), since Un>0U_{n}>0 from (3.22b) in Lemma 3.5, using (3.61) in Corollary 3.11 with i=n,n+1i=n,n+1, for β<Cn2\beta<-Cn^{2} with large CC, we get

sgn(Un+1)=sgn(κn1)sgn(Un)=1,Un+1<0,|Un+2|n2|Un+1|,βUn+1Un+2>0.\begin{gathered}\mathrm{sgn}(U_{n+1})=\mathrm{sgn}(\kappa-n-1)\mathrm{sgn}(U_{n})=-1,\quad U_{n+1}<0,\\ |U_{n+2}|\lesssim n^{2}|U_{n+1}|,\quad\beta U_{n+1}-U_{n+2}>0.\end{gathered}

Plugging βUn+1Un+2>0\beta U_{n+1}-U_{n+2}>0 in (4.21), we prove (4.19a).

Similarly, for κ(n,n+1/2)\kappa\in(n,n+1/2), we get

(4.22) 𝐁[n]ne(Y)U(Y)=(βUnUn+1)Yn+1+On,κ,β(Yn+2).\mathbf{B}_{[{n}]}^{\mathrm{ne}}(Y)-U(Y)=(\beta U_{n}-U_{n+1})Y^{n+1}+O_{n,\kappa,\beta}(Y^{n+2}).

Since Un>0U_{n}>0 from (3.22b) in Lemma 3.5, using (3.61), for β<Cn2\beta<-Cn^{2} with large CC, we get

|Un+1|n2|Un|,βUnUn+1<βUn/2<0.\begin{gathered}|U_{n+1}|\lesssim n^{2}|U_{n}|,\ \beta U_{n}-U_{n+1}<\beta U_{n}/2<0.\end{gathered}

Plugging βUnUn+1<0\beta U_{n}-U_{n+1}<0 in (4.22), we prove (4.19b).

For (4.20), since we construct Blf(Y),Buf(Y)B_{l}^{f}(Y),B_{u}^{f}(Y) agreeing with U(Y)U(Y) at Y=0Y=0 with error O(Y2)O(Y^{2}), using (4.7a), we prove (4.20). MM \square

4.3. Intersection between local and far-field barriers

In this section, we estimate the location where the local and far-field barriers intersect, and then show that the intersection occurs within the region where the local barriers are valid.

Proposition 4.5.

Let μi,n3\mu_{i},n_{3} be the parameters chosen in Proposition 4.3. For any n,βn,\beta with n>n4n>n_{4}, where n4>n3n_{4}>n_{3} is some large parameter, and β\beta satisfying the assumption in Proposition 4.3, there exists εn,β,μi>0\varepsilon_{n,\beta},\mu_{i}^{\prime}>0 such that the following statements hold true.

  1. (a)

    For any κ(n+1εn,β,n+1)\kappa\in(n+1-\varepsilon_{n,\beta},n+1), there exists YI>0Y_{I}>0 satisfying

    YIμn+1|κn1|1/(n1)<12μn+1|β|1,Y_{I}\leq{\mu}_{n+1}^{\prime}|\kappa-n-1|^{1/(n-1)}<\frac{1}{2}{\mu}_{n+1}|\beta|^{-1}\,,

    such that

    (4.23) Buf(Y)<𝐁[n+1]ne(Y)<Blf(Y),Y(0,YI),Buf(YI)=𝐁[n+1]ne(YI).B^{f}_{u}(Y)<\mathbf{B}^{\mathrm{ne}}_{[{n+1}]}(Y)<B^{f}_{l}(Y),\ Y\in(0,Y_{I}),\quad B^{f}_{u}(Y_{I})=\mathbf{B}^{\mathrm{ne}}_{[{n+1}]}(Y_{I}).
  2. (b)

    For any κ(n,n+εn,β)\kappa\in(n,n+\varepsilon_{n,\beta}), there exists YI>0Y_{I}>0 with

    YIμn|κn|1/(n2)<12μn|β|1,Y_{I}\leq\mu_{n}^{\prime}|\kappa-n|^{1/(n-2)}<\frac{1}{2}{\mu}_{n}|\beta|^{-1}\,,

    such that

    (4.24) Buf(Y)<𝐁[n]ne(Y)<Blf(Y),Y(0,YI),Blf(YI)=𝐁[n]ne(YI).B^{f}_{u}(Y)<\mathbf{B}^{\mathrm{ne}}_{[{n}]}(Y)<B^{f}_{l}(Y),\ Y\in(0,Y_{I}),\quad B^{f}_{l}(Y_{I})=\mathbf{B}^{\mathrm{ne}}_{[{n}]}(Y_{I}).
Proof.

By definitions of F=Blf,Buf,𝐁[n]neF=B_{l}^{f},B_{u}^{f},\mathbf{B}_{[{n}]}^{\mathrm{ne}} (4.5), (4.14), we have

F(0)=U0,F(0)=U1.F(0)=U_{0},\quad F^{\prime}(0)=U_{1}.

Hence, these functions agree at Y=0Y=0 up to O(Y2)O(Y^{2}). Moreover, from Proposition 4.4, we have

Y2Buf(0)<Y2𝐁[n+1]ne(0)=U2,U2=Y2𝐁[n]ne(0)<Y2Blf(0).\partial_{Y}^{2}B^{f}_{u}(0)<\partial_{Y}^{2}\mathbf{B}^{\mathrm{ne}}_{[{n+1}]}(0)=U_{2},\quad U_{2}=\partial_{Y}^{2}\mathbf{B}^{\mathrm{ne}}_{[{n}]}(0)<\partial_{Y}^{2}B^{f}_{l}(0).

Below, we focus on the proof of (4.23). For κ(n+12,n+1)\kappa\in(n+\frac{1}{2},n+1), from (3.61), (3.22b), we get

(4.25) Un>0,Un+1<0,|Un+1|n|κn1|1,|Un+2|n2|Un+1|.U_{n}>0,\ U_{n+1}<0,\ |U_{n+1}|\asymp_{n}|\kappa-n-1|^{-1},\ |U_{n+2}|\lesssim n^{2}|U_{n+1}|.

Using the assumptions of β<n2,μn<1\beta<-n^{2},\mu_{n}<1 in Proposition 4.3, for Y(0,12|β|μn+1)Y\in(0,\frac{1}{2|\beta|}\mu_{n+1}), we obtain

0<Y<12μn+1|β|1<12|β|1<12n2,|βY|<12,0<Y<\frac{1}{2}\mu_{n+1}|\beta|^{-1}<\frac{1}{2}|\beta|^{-1}<\frac{1}{2n^{2}},\quad|\beta Y|<\frac{1}{2},

which along with (4.25) imply

(4.26) 𝐁[n+1]ne(Y)Buf(Y)\displaystyle\mathbf{B}_{[{n+1}]}^{\mathrm{ne}}(Y)-B_{u}^{f}(Y) i=2nUiYi+Un+1Yn+1+βUn+1Yn+2Y2Buf(0)Y2+CY3\displaystyle\leq\sum_{i=2}^{n}U_{i}Y^{i}+U_{n+1}Y^{n+1}+\beta U_{n+1}Y^{n+2}-\partial_{Y}^{2}B_{u}^{f}(0)Y^{2}+CY^{3}
(U2Y2Buf(0))Y2+CnY3+Un+1Yn+1+βUn+1Yn+2\displaystyle\leq(U_{2}-\partial_{Y}^{2}B_{u}^{f}(0))Y^{2}+C_{n}Y^{3}+U_{n+1}Y^{n+1}+\beta U_{n+1}Y^{n+2}
(U2Y2Buf(0))Y2+CnY3+12Un+1Yn+1.\displaystyle\leq(U_{2}-\partial_{Y}^{2}B_{u}^{f}(0))Y^{2}+C_{n}Y^{3}+\frac{1}{2}U_{n+1}Y^{n+1}.

Since a=U2Y2Buf(0)>0a=U_{2}-\partial_{Y}^{2}B_{u}^{f}(0)>0, choosing YY_{*} with

Yn1=4a|Un+1|1,Y_{*}^{n-1}=4a|U_{n+1}|^{-1},

we obtain

𝐁[n+1]ne(Y)Buf(Y)(U2Y2Buf(0)+CnUn+11/(n1)2a)Y2=(CnUn+11/(n1)a)Y2.\mathbf{B}_{[{n+1}]}^{\mathrm{ne}}(Y_{*})-B_{u}^{f}(Y_{*})\leq(U_{2}-\partial_{Y}^{2}B_{u}^{f}(0)+C_{n}U_{n+1}^{-1/(n-1)}-2a)Y_{*}^{2}=(C_{n}U_{n+1}^{-1/(n-1)}-a)Y_{*}^{2}.

Using the estimate of Un+1U_{n+1} in (4.25) and requiring |κn1|<εn,β|\kappa-n-1|<\varepsilon_{n,\beta} small enough, we get

𝐁[n+1]ne(Y)Buf(Y)<0.\mathbf{B}_{[{n+1}]}^{\mathrm{ne}}(Y_{*})-B_{u}^{f}(Y_{*})<0.

Using this estimate, (4.19a), and continuity, we obtain that 𝐁[n+1]ne(Y)\mathbf{B}_{[{n+1}]}^{\mathrm{ne}}(Y) and Buf(Y)B_{u}^{f}(Y) intersect at some YI(0,Y)Y_{I}\in(0,Y_{*}). We assume that YIY_{I} is the intersection with the smallest value in (0,Y)(0,Y_{*}). The smallest of YIY_{I} and (4.19a) imply the first inequality in (4.23). Moreover, we have

(4.27) 0<YI<Yn|κn1|1/(n1).0<Y_{I}<Y_{*}\lesssim_{n}|\kappa-n-1|^{1/(n-1)}.

For a fixed β\beta, by choosing |κn1||\kappa-n-1| small enough, we can ensure that YI<12μnβ1Y_{I}<\frac{1}{2}\mu_{n}\beta^{-1}. Moreover, since Un+1<0U_{n+1}<0, from (4.7a), we obtain.

U2Y2Buf(0)<Y2Blf(0)Y2Buf(0).U_{2}-\partial_{Y}^{2}B_{u}^{f}(0)<\partial_{Y}^{2}B_{l}^{f}(0)-\partial_{Y}^{2}B_{u}^{f}(0).

Thus, by further requiring |κn1||\kappa-n-1| small, which leads to a smaller upper bound for YIY_{I} in (4.27), and using (4.26), we establish

𝐁[n+1]ne(Y)Buf(Y)(U2Y2Buf(0))Y2+CnY3<Blf(Y)Buf(Y),\mathbf{B}_{[{n+1}]}^{\mathrm{ne}}(Y)-B_{u}^{f}(Y)\leq(U_{2}-\partial_{Y}^{2}B_{u}^{f}(0))Y^{2}+C_{n}Y^{3}<B_{l}^{f}(Y)-B_{u}^{f}(Y),

for Y(0,YI)Y\in(0,Y_{I}). Rearranging the inequality, we prove the second inequality in (4.23) and the result (a) in Proposition 4.5.

The result (b) is proved similarly using the property that Un>0,|Un|n|κn|1U_{n}>0,|U_{n}|\asymp_{n}|\kappa-n|^{-1} in such a case. MM \square

Next, we show that the solution must exit the region ΩBf\Omega_{B}^{f} (4.3) via the boundaries EB,iE_{B,i} (4.4)

Proposition 4.6.

For any n>n4n>n_{4} with n4n_{4} chosen in Proposition 4.5, we have the following results. For i=1,2i=1,2, there exists κi(n,n+1)\kappa_{i}\in(n,n+1), such that the local smooth solution U(κi)(Y)U^{(\kappa_{i})}(Y) starting at QsQ_{s} with parameter κi\kappa_{i} first intersects ΩBf\partial\Omega_{B}^{f} at EB,iE_{B,i}.

Proof.

From Proposition 4.4 and the property that 𝐁[n]ne,U,𝐁[n+1]ne\mathbf{B}_{[{n}]}^{\mathrm{ne}},U,\mathbf{B}_{[{n+1}]}^{\mathrm{ne}} (4.14) agree at Y=0Y=0 up to error O(Yn)O(Y^{n}), we know that

U(Y),𝐁[n]ne(Y),𝐁[n+1]ne(Y)U(Y),\ \mathbf{B}_{[{n}]}^{\mathrm{ne}}(Y),\ \mathbf{B}_{[{n+1}]}^{\mathrm{ne}}(Y)

remain in ΩBf\Omega_{B}^{f} (4.3) for 0<Y<δ0<Y<\delta^{\prime} with small δ\delta^{\prime}.

We focus on the proof of the case with i=1i=1. We fix n>n4n>n_{4} and choose β<0\beta<0 with

(4.28) 2μn+1<μn+1|β|1/(n1),|β|>Cn2,2\mu_{n+1}^{\prime}<\mu_{n+1}|\beta|^{1/(n-1)},\quad|\beta|>Cn^{2},

where C,μC,\mu_{\cdot} are the parameters chosen in Proposition 4.3, and μ\mu^{\prime}_{\cdot} in Proposition 4.4, respectively. From Proposition 4.4 and the above discussion, we have

(4.29) Buf(Y)<U(Y)<𝐁[n+1]ne(Y)B_{u}^{f}(Y)<U(Y)<\mathbf{B}_{[{n+1}]}^{\mathrm{ne}}(Y)

for Y(0,δ)Y\in(0,\delta^{\prime}) with δ=δ(n,β,κ)\delta^{\prime}=\delta^{\prime}(n,\beta,\kappa) sufficiently small. Since ΔY>0\Delta_{Y}>0 in ΩBf\Omega_{B}^{f} from Proposition 4.4, and 𝐏[n+1]ne(Y)>0\mathbf{P}_{[{n+1}]}^{\mathrm{ne}}(Y)>0 for κ(n+1/2,n+1)\kappa\in(n+1/2,n+1) and Y(0,Ybar]Y\in(0,Y_{\mathrm{bar}}] with

Ybarμn+1min(||β|(κn1)|1/(n1),|β|1),Y_{\mathrm{bar}}\triangleq\mu_{n+1}\min(||\beta|(\kappa-n-1)|^{1/{(n-1)}},|\beta|^{-1}),

using a barrier argument, we obtain that

(4.30) U(Y)<𝐁[n+1]ne(Y),Y(0,Ybar).U(Y)<\mathbf{B}_{[{n+1}]}^{\mathrm{ne}}(Y),\quad Y\in(0,Y_{\mathrm{bar}}).

Next, we choose κ\kappa in the range of (n+1εβ,n,n+1)(n+1-\varepsilon_{\beta,n},n+1) defined in Proposition 4.5. From the choice of β\beta (4.28) and the inequality of YIY_{I} in Proposition 4.5, we get

YImin(μn+1|κn1|1/(n1),12μn+1|β|1)<12Ybar.Y_{I}\leq\min({\mu}_{n+1}^{\prime}|\kappa-n-1|^{1/(n-1)},\frac{1}{2}\mu_{n+1}|\beta|^{-1})<\frac{1}{2}Y_{\mathrm{bar}}.

Due to (4.29) and the fact that 𝐁[n+1]ne(Y)\mathbf{B}_{[{n+1}]}^{\mathrm{ne}}(Y) intersects Buf(Y)B_{u}^{f}(Y) for YY within the validity of barrier (4.30), the solution U(Y)U(Y) must intersect Buf(Y)B_{u}^{f}(Y) at some 0<Y<YI0<Y<Y_{I}. Using (4.23) in Proposition 4.5, we get

U(Y)<𝐁[n+1]ne(Y)Blf(Y),Y(0,YI].U(Y)<\mathbf{B}_{[{n+1}]}^{\mathrm{ne}}(Y)\leq B_{l}^{f}(Y),\ Y\in(0,Y_{I}].

Thus, U(Y)U(Y) cannot intersect Blf(Y)B_{l}^{f}(Y) for Y(0,YI]Y\in(0,Y_{I}]. We conclude the proof in the case of i=1i=1.

The proof of the case of i=2i=2 is similar and is omitted. MM \square

4.4. Proof of Proposition 4.1

In this section, we first construct the smooth solution V(Z)V(Z) to the ODE (2.3) near Z=0Z=0. Then we use a shooting argument to glue the curve (Z,V(Z))(Z,V(Z)) under the map (𝒴,𝒰)({\mathcal{Y}},{\mathcal{U}}) (2.11) and the smooth solution starting from QsQ_{s} and prove Proposition 4.1.

We have the following result from [56, Proposition 3.3] and its proof.

Proposition 4.7 (Proposition 3.3, [56]).

Let Z0Z_{0} be the coordinate of the sonic point in (2.7). The ODE (2.3) has a unique solution VF(κ)C([0,Z0))V_{F}^{(\kappa)}\in C^{\infty}([0,Z_{0})) with VF(κ)(0)=0V_{F}^{(\kappa)}(0)=0. Moreover, near Z=0Z=0, it has a power series expansion 999 In [56], the authors rewrote the ODE (2.3) as an ODE for Φ=V/Z\Phi=V/Z and ϰ=Z2\varkappa=Z^{2} and expand Φ\Phi as a power series of ϰ\varkappa. In particular, the smooth local solution VV can be written as V(Z)=Zg(Z2)V(Z)=Zg(Z^{2}) for some smooth functions gg.

(4.31) VF(κ)(Z)=i0ViZi,V2i=0,|V2i+1|iCi,i0,V_{F}^{(\kappa)}(Z)=\sum_{i\geq 0}V_{i}Z^{i},\quad V_{2i}=0,\quad|V_{2i+1}|\leq\mathfrak{C}_{i}C^{i},\ \forall\ i\geq 0,

where i\mathfrak{C}_{i} is the Catalan number (3.20) and CC is some absolute constant. 101010 Although, the constant CC depends on the parameters p,d,l,γp,d,l,\gamma, since we restrict p,d,l,γp,d,l,\gamma (2.10) to specific ranges, following the same estimates as those in [56] lead to an absolute constant.

We only need the local existence of VF(κ)(Z)V_{F}^{(\kappa)}(Z) for Z[0,δ1]Z\in[0,\delta_{1}] with some δ1>0\delta_{1}>0. The proof is standard and also follows from the argument in [6, Section 2] by bounding the power series coefficients. The power series of VF(κ)V_{F}^{(\kappa)} only contains the odd power Z2i+1Z^{2i+1} due to symmetry.

Using the map (𝒴,𝒰)({\mathcal{Y}},{\mathcal{U}}) (2.11) from (Z,V)(Z,V) to (Y,U)(Y,U) coordinates and Proposition 4.7, we construct

(4.32) (YF(κ),UF(κ))(Z)=(𝒴,𝒰)(Z,VF(κ)(Z)),Z[0,δ).(Y_{F}^{(\kappa)},U_{F}^{(\kappa)})(Z)=({\mathcal{Y}},{\mathcal{U}})(Z,V_{F}^{(\kappa)}(Z)),\quad Z\in[0,\delta).

where FF is short for far. See the orange curve in Figure 2 for an illustration of (YF(κ),UF(κ))(Z)(Y_{F}^{(\kappa)},U_{F}^{(\kappa)})(Z).

We have the following asymptotics of UF(κ)(Z),YF(κ)(Z)U_{F}^{(\kappa)}(Z),Y_{F}^{(\kappa)}(Z) for small ZZ.

Lemma 4.8.

There exists C1C_{1} sufficiently large and δ3>0\delta_{3}>0 sufficiently small, such that for any κ>C1\kappa>C_{1} and Z(0,δ3]Z\in(0,\delta_{3}], the functions YF(κ)(Z),UF(κ)(Z)Y_{F}^{(\kappa)}(Z),U_{F}^{(\kappa)}(Z) defined in (4.32) satisfies

(4.33a) 0<c1Z2YOYF(κ)(Z)c2Z2,YF(κ)(Z)(0,1),\displaystyle 0<c_{1}Z^{2}\leq Y_{O}-Y_{F}^{(\kappa)}(Z)\leq c_{2}Z^{2},\qquad Y_{F}^{(\kappa)}(Z)\in(0,1),
(4.33b) |UF(κ)(Z)CYF(κ)(Z)YO|1,UF(κ)(Z)>0,\displaystyle\Big{|}U_{F}^{(\kappa)}(Z)-\frac{C_{\infty}}{Y_{F}^{(\kappa)}(Z)-Y_{O}}\Big{|}\lesssim 1,\qquad U_{F}^{(\kappa)}(Z)>0,

where the implicit constants, e.g. c1,c2c_{1},c_{2}, are uniform in κ\kappa, CC_{\infty} is given by

C=(γ+1)3(V3V12+V13)0,C_{\infty}=-(\gamma+1)^{3}(V_{3}-V_{1}^{2}+V_{1}^{3})\neq 0,

and V1,V3V_{1},V_{3} are the power series coefficients in (4.31) given by

(4.34) V1=d1d(γ+1),V3=1d+2((d1)(2γ+1V12+V13+V12)+V1(2V1+(V11)2)).V_{1}=\frac{d-1}{d(\gamma+1)},\quad V_{3}=\frac{1}{d+2}\Big{(}(d-1)\Big{(}-\frac{2}{\gamma+1}V_{1}^{2}+V_{1}^{3}+V_{1}^{2}\Big{)}+V_{1}(2V_{1}+\ell(V_{1}-1)^{2})\Big{)}.

The proof follows from expanding (Y,UF(κ))(Z)(Y,U_{F}^{(\kappa)})(Z) near Z=0Z=0 and using the map (2.11), which is elementary but tedious. We defer it to Appendix A.2.

Recall the barrier functions Blf(Y),Buf(Y)B_{l}^{f}(Y),B_{u}^{f}(Y) from (4.5b), (4.5a). We have the following results.

Lemma 4.9 (Computer-assisted).

We have

limYYOBlf(Y)(YYO)=e1YO+e2YO2U0d<C.\lim_{Y\to Y_{O}}B_{l}^{f}(Y)\cdot(Y-Y_{O})=\frac{e_{1}Y_{O}+e_{2}Y_{O}^{2}-U_{0}}{d}<C_{\infty}.

We obtain the limit by definition of BlfB_{l}^{f} (4.5b). We verify the scalar inequality in Lemma 4.9 directly using Interval arithmetic.

Since YYO<0Y-Y_{O}<0 and Buf(Y)B_{u}^{f}(Y) is uniformly bounded for YY near YOY_{O}, using Lemma 4.9 and Lemma 4.8, we obtain that there exists δ4(0,δ3)\delta_{4}\in(0,\delta_{3}) with δ3\delta_{3} chosen in Lemma 4.8 such that

(4.35) Blf(YF(κ)(Z))>UF(κ)(Z)>Buf(YF(κ)(Z)).B_{l}^{f}(Y_{F}^{(\kappa)}(Z))>U_{F}^{(\kappa)}(Z)>B_{u}^{f}(Y_{F}^{(\kappa)}(Z)).

for any Z(0,δ4]Z\in(0,\delta_{4}] and any κ(n,n+1)\kappa\in(n,n+1).

4.4.1. Shooting argument

Denote by U(κ)U^{(\kappa)} the local analytic function near QsQ_{s} constructed in Proposition 3.10. We prove Proposition 4.1 using a shooting argument. Let n4n_{4} be the large parameter determined in Propositions 4.5. We fix n>n4n>n_{4} and consider κ(n,n+1)\kappa\in(n,n+1).

Recall the region ΩBf\Omega_{B}^{f} from (4.3). From (4.7c), in Proposition 4.4, for any κ(n,n+1)\kappa\in(n,n+1), we have U(κ)(Y)ΩBfU^{(\kappa)}(Y)\in\Omega_{B}^{f} for 0<Y10<Y\ll 1. Moreover, since ΔY>0\Delta_{Y}>0 in ΩBf\Omega_{B}^{f} from Proposition 4.4, the solution curve (Y,U(Y))(Y,U(Y)) either remains in ΩBf\Omega_{B}^{f} for all Y[0,YO)Y\in[0,Y_{O}) or exits the region ΩBf\Omega_{B}^{f} via one of the edges EBiE_{B}^{i} (4.4). We define the extension Uext(κ)(Y)U_{\mathrm{ext}}^{(\kappa)}(Y) of U(κ)U^{(\kappa)} according to one of two cases.

(a) If U(κ)(Y)ΩBfU^{(\kappa)}(Y)\in\Omega_{B}^{f} for Y[0,YO)Y\in[0,Y_{O}), we define

(4.36a) Uext(κ)(Y)=U(κ)(Y),Y[0,YO).U_{\mathrm{ext}}^{(\kappa)}(Y)=U^{(\kappa)}(Y),\quad Y\in[0,Y_{O}).

(b) Otherwise, suppose that (Y,U(Y))(Y,U(Y)) first intersects ΩBf\Omega_{B}^{f} at (Y,U(κ)(Y))EB,i(Y_{*},U^{(\kappa)}(Y_{*}))\in E_{B,i} with Y<YOY_{*}<Y_{O} for i{1,2}i\in\{1,2\}. We define

(4.36b) Uext(κ)(Y)={U(κ)(Y),Y[0,Y],Bαf(Y),Y[Y,YO),\displaystyle U_{\mathrm{ext}}^{(\kappa)}(Y)=\begin{cases}U^{(\kappa)}(Y),\quad&Y\in[0,Y_{*}],\\ B_{\alpha}^{f}(Y),\quad&Y\in[Y_{*},Y_{O}),\end{cases}

with Bαf(Y)=Buf(Y)B_{\alpha}^{f}(Y)=B_{u}^{f}(Y) if i=1i=1 and Bαf(Y)=BlfB_{\alpha}^{f}(Y)=B_{l}^{f} if i=2i=2. That is, we extend U(κ)(Y)U^{(\kappa)}(Y) using the barrier function BlfB_{l}^{f} or BufB_{u}^{f}.

Since (Y,Uext(κ)(Y))(Y,U_{\mathrm{ext}}^{(\kappa)}(Y)) is in the closure of ΩBf\Omega_{B}^{f}, where we have ΔY(Y,U)>0\Delta_{Y}(Y,U)>0 if Y>0Y>0, using the continuity of the ODE solution to (2.14) in κ,Y\kappa,Y, we get that Uext(κ)(Y)U_{\mathrm{ext}}^{(\kappa)}(Y) is continuous in (Y,κ)[0,YO)×(n,n+1)(Y,\kappa)\in[0,Y_{O})\times(n,n+1).

From Proposition 4.6, for i=1,2i=1,2, there exists κi(n,n+1)\kappa^{*}_{i}\in(n,n+1) and Yi(0,YO)Y_{i}\in(0,Y_{O}) such that:

  1. i)

    The solution (Y,U(κ1)(Y))(Y,U^{(\kappa^{*}_{1})}(Y)) first exit ΩBf\Omega_{B}^{f} at (Y,Blf(Y))(Y,B_{l}^{f}(Y)) with Y=Y1(0,YO)Y=Y_{1}\in(0,Y_{O}).

  2. ii)

    The solution (Y,U(κ2)(Y))(Y,U^{(\kappa^{*}_{2})}(Y)) first exit ΩBf\Omega_{B}^{f} at (Y,Buf(Y))(Y,B_{u}^{f}(Y)) with Y=Y2(0,YO)Y=Y_{2}\in(0,Y_{O}).

Since Y1,Y2<YOY_{1},Y_{2}<Y_{O}, using the estimate of YF(κ)Y_{F}^{(\kappa)} (4.33a), we can choose δY>0\delta_{Y}>0 small enough and independent of κ(n,n+1)\kappa\in(n,n+1) such that

(4.37) 0<δY<δ4,YF(κ)(δY)>max(Y1,Y2),YF(κ)(δY)<YO.0<\delta_{Y}<\delta_{4},\quad Y_{F}^{(\kappa)}(\delta_{Y})>\max(Y_{1},Y_{2}),\quad Y_{F}^{(\kappa)}(\delta_{Y})<Y_{O}.

We define

g(κ)=Uext(κ)(YF(κ)(δY))UF(κ)(δY).g(\kappa)=U_{\mathrm{ext}}^{(\kappa)}(Y_{F}^{(\kappa)}(\delta_{Y}))-U_{F}^{(\kappa)}(\delta_{Y}).

Using the continuity of Uext(κ),UF(κ)U_{\mathrm{ext}}^{(\kappa)},U_{F}^{(\kappa)}, we obtain that g(κ)g(\kappa) is continuous in κ\kappa. Using the definition of (Yi,κi)(Y_{i},\kappa^{*}_{i}), the bound (4.35), and (4.37), we get

g(κ1)=Buf(YF(κ1)(δY))UF(κ1)(δY)<0,g(κ2)=Blf(YF(κ2)(δY))UF(κ2)(δY)>0.g(\kappa_{1}^{*})=B_{u}^{f}(Y_{F}^{(\kappa_{1}^{*})}(\delta_{Y}))-U_{F}^{(\kappa_{1}^{*})}(\delta_{Y})<0,\quad g(\kappa_{2}^{*})=B_{l}^{f}(Y_{F}^{(\kappa_{2}^{*})}(\delta_{Y}))-U_{F}^{(\kappa_{2}^{*})}(\delta_{Y})>0.

Using continuity, we obtain g(κ)=0g(\kappa^{*})=0 for some κ\kappa^{*} between κ1,κ2\kappa^{*}_{1},\kappa^{*}_{2}, which implies Uext(κ)(YF(κ)(δY))=UF(κ)(δY)U_{\mathrm{ext}}^{(\kappa^{*})}(Y_{F}^{(\kappa^{*})}(\delta_{Y}))=U_{F}^{(\kappa^{*})}(\delta_{Y}). Using the bound (4.35) for UFU_{F}, we yield

Buf(YF(κ)(δY))<Uext(κ)(YF(κ)(δY))<Blf(YF(κ)(δY)).B_{u}^{f}(Y_{F}^{(\kappa^{*})}(\delta_{Y}))<U_{\mathrm{ext}}^{(\kappa^{*})}(Y_{F}^{(\kappa^{*})}(\delta_{Y}))<B_{l}^{f}(Y_{F}^{(\kappa^{*})}(\delta_{Y})).

From the definition of Uext(κ)U_{\mathrm{ext}}^{(\kappa^{*})} in (4.36) and the above bound, we obtain that Uext(κ)U_{\mathrm{ext}}^{(\kappa^{*})} is defined via (4.36a) and thus U(κ)(YF(κ)(δY))=Uext(κ)(YF(κ)(δY))=UF(κ)(δY)U^{(\kappa^{*})}(Y_{F}^{(\kappa^{*})}(\delta_{Y}))=U_{\mathrm{ext}}^{(\kappa^{*})}(Y_{F}^{(\kappa^{*})}(\delta_{Y}))=U_{F}^{(\kappa^{*})}(\delta_{Y}). Using the relation (4.32) and inverting the maps (2.13), we obtain

(4.38) (δY,VF(κ)(δY))=(𝒵,𝒱)(YFκ,UF(κ))(δY)=(𝒵,𝒱)(YFκ(δY),U(κ)(YFκ(δY)))(\delta_{Y},V_{F}^{(\kappa^{*})}(\delta_{Y}))=({\mathcal{Z}},{\mathcal{V}})(Y_{F}^{\kappa^{*}},U_{F}^{(\kappa^{*})})(\delta_{Y})=({\mathcal{Z}},{\mathcal{V}})(Y_{F}^{\kappa^{*}}(\delta_{Y}),U^{{(\kappa^{*})}}(Y_{F}^{\kappa^{*}}(\delta_{Y})))

4.4.2. Gluing the solution

We construct solution V(Z)V(Z) to the ODE (2.3) using the maps (2.12) from U(κ)(Y)U^{(\kappa^{*})}(Y) and then glue it with VF(κ)V_{F}^{(\kappa^{*})} obtained above.

We use the map (2.12) to construct the curve

(4.39) (Z(κ),V(κ))(Y)=(𝒵,𝒱)(Y,U(κ)(Y)),YJ,J=[c,Y(κ)(δY)],(Z^{(\kappa^{*})},V^{(\kappa^{*})})(Y)=({\mathcal{Z}},{\mathcal{V}})(Y,U^{(\kappa^{*})}(Y)),\quad Y\in J,\quad J=[-c,Y^{(\kappa^{*})}(\delta_{Y})],

for some 0<c10<c\ll 1. Using (4.39) with Y=Y(κ)(δY)]Y=Y^{(\kappa^{*})}(\delta_{Y})] and (4.38), we get

(4.40) Z(κ)(Y(κ)(δY))=δY,V(κ)(Y(κ)(δY)))=VF(κ)(δY).Z^{(\kappa^{*})}(Y^{(\kappa^{*})}(\delta_{Y}))=\delta_{Y},\quad V^{(\kappa^{*})}(Y^{(\kappa^{*})}(\delta_{Y})))=V_{F}^{(\kappa^{*})}(\delta_{Y}).

Using the second identity in (2.19) and the chain rule, we obtain

(4.41) dV(κ)dYdZ(κ)dY=Y𝒱+U𝒱ΔUΔYY𝒵+U𝒵ΔUΔY=m1ΔVm1ΔZ=ΔVΔZ(Z(κ)(Y),V(κ)(Y)).\frac{\frac{dV^{(\kappa^{*})}}{dY}}{\frac{dZ^{(\kappa^{*})}}{dY}}=\frac{\partial_{Y}{\mathcal{V}}+\partial_{U}{\mathcal{V}}\frac{\Delta_{U}}{\Delta_{Y}}}{\partial_{Y}{\mathcal{Z}}+\partial_{U}{\mathcal{Z}}\frac{\Delta_{U}}{\Delta_{Y}}}=\frac{m^{-1}\Delta_{V}}{m^{-1}\Delta_{Z}}=\frac{\Delta_{V}}{\Delta_{Z}}(Z^{(\kappa^{*})}(Y),V^{(\kappa^{*})}(Y)).

Next, we show that Z(κ)(Y)Z^{(\kappa^{*})}(Y) is strictly decreasing and invertible. Using (2.19), we get

(4.42) dZ(κ)dY(Y)\displaystyle\frac{dZ^{(\kappa^{*})}}{dY}(Y) =U𝒵dU(κ)dY+Y𝒵=U𝒵ΔUΔY+Y𝒵\displaystyle=\partial_{U}{\mathcal{Z}}\cdot\frac{dU^{(\kappa^{*})}}{dY}+\partial_{Y}{\mathcal{Z}}=\partial_{U}{\mathcal{Z}}\cdot\frac{\Delta_{U}}{\Delta_{Y}}+\partial_{Y}{\mathcal{Z}}
=m1(Y,U)ΔZ(Z(κ),V(κ))ΔY(Y,U)|U=U(κ)(Y).\displaystyle=m^{-1}(Y,U)\frac{\Delta_{Z}(Z^{(\kappa^{*})},V^{(\kappa^{*})})}{\Delta_{Y}(Y,U)}\Big{|}_{U=U^{(\kappa^{*})}(Y)}.

Recall, in Section 4.4.1, we showed (Y,U(κ)(Y))ΩBf(Y,U^{(\kappa^{*})}(Y))\in\Omega_{B}^{f} for Y(0,YF(κ)(δY)]Y\in(0,Y_{F}^{(\kappa^{*})}(\delta_{Y})]; hence, from (4.11) and (4.10) we obtain the inequalities ΔZ,ΔY>0\Delta_{Z},\Delta_{Y}>0. Using these sign inequalities, together with m0m\neq 0 (2.19), yields

dZ(κ)dY(Y)0,forY(0,YF(κ)(δY)].\frac{dZ^{(\kappa^{*})}}{dY}(Y)\neq 0,\quad\mathrm{for}\quad Y\in(0,Y_{F}^{(\kappa^{*})}(\delta_{Y})].

Using (4.9) and the definition of Z(κ)(Y)=𝒵(Y,U(κ)(Y))Z^{(\kappa^{*})}(Y)={\mathcal{Z}}(Y,U^{(\kappa^{*})}(Y)) (4.39), we get (Z(κ))(0)<0(Z^{(\kappa^{*})})^{\prime}(0)<0. Using continuity, we obtain

dZ(κ)dY(Y)<0,forYJ[c,Y(κ)(δY)],\frac{dZ^{(\kappa^{*})}}{dY}(Y)<0,\quad\mathrm{for}\quad Y\in J^{\prime}\triangleq[-c^{\prime},Y^{(\kappa^{*})}(\delta_{Y})],

with 0<c10<c^{\prime}\ll 1 and c<cc^{\prime}<c. Thus, Z(κ)Z^{(\kappa^{*})} is strictly decreasing, invertible, and smooth on JJ^{\prime}. We define the inverse as (Z(κ))1(Z^{(\kappa^{*})})^{-1} and construct a solution

(4.43) VODE(κ)(Z)=V(κ)((Z(κ))1(Z)),Z[δY,Z(κ)(c)].V_{\mathrm{ODE}}^{(\kappa^{*})}(Z)=V^{(\kappa^{*})}((Z^{(\kappa^{*})})^{-1}(Z)),\quad Z\in[\delta_{Y},Z^{(\kappa^{*})}(-c)].

Using (4.43), (4.41), and the chain rule, we obtain a smooth solution VODE(κ)V_{\mathrm{ODE}}^{(\kappa^{*})} to the ODE (2.3). Using (4.40) and (4.38), we get

VODE(κ)(δY)=V(κ)((Z(κ))1(δY))=V(κ)(Y(κ)(δY)))=VF(κ)(δY).V_{\mathrm{ODE}}^{(\kappa^{*})}(\delta_{Y})=V^{(\kappa^{*})}((Z^{(\kappa^{*})})^{-1}(\delta_{Y}))=V^{(\kappa^{*})}(Y^{(\kappa^{*})}(\delta_{Y})))=V_{F}^{(\kappa^{*})}(\delta_{Y}).

Since both VODE(κ)(Z),VF(κ)(Z)V_{\mathrm{ODE}}^{(\kappa^{*})}(Z),V_{F}^{(\kappa^{*})}(Z) solve the ODE (2.3) smoothly with the same data at Z=δYZ=\delta_{Y}, VF(κ)(Z)V_{F}^{(\kappa^{*})}(Z) is smooth in [0,δ1][0,\delta_{1}] covering Z=δYZ=\delta_{Y} (see Proposition 4.7 and its following discussion), using the uniqueness, we obtain VODE(κ)=VF(κ)V_{\mathrm{ODE}}^{(\kappa^{*})}=V_{F}^{(\kappa^{*})} and construct a smooth ODE solution V(Z)V(Z) to (2.3) on [0,Z(κ)(c)][0,Z^{(\kappa^{*})}(-c)] with Z(κ)(c)>Z(κ)(0)=𝒵(0,U0)=Z0Z^{(\kappa^{*})}(-c)>Z^{(\kappa^{*})}(0)={\mathcal{Z}}(0,U_{0})=Z_{0} (2.7). Applying (4.43) and (4.39) with Y=(Z(κ))1(Z)Y=(Z^{(\kappa^{*})})^{-1}(Z), we prove (4.2) for some ε1>0\varepsilon_{1}>0.

4.4.3. Proof of other properties

Since (𝒵,𝒱)({\mathcal{Z}},{\mathcal{V}}) map the sonic point (0,U0)(0,U_{0}) to (Z0,V0)(Z_{0},V_{0}) in the (Z,V)(Z,V) system, using (4.39) with Y=0Y=0 and (4.43), we get V(Z0)=V0V(Z_{0})=V_{0}. Since V(Z)=VF(κ)(Z)V(Z)=V_{F}^{(\kappa^{*})}(Z) for small ZZ is constructed by Proposition 4.7, we have V(0)=0V(0)=0 and V(Z)=Zg(Z2)V(Z)=Zg(Z^{2}) for some gC([0,Z0+ε1])g\in C^{\infty}([0,Z_{0}+\varepsilon_{1}]) with small ε1>0\varepsilon_{1}>0.

To prove (4.1), using Lemma 2.2 and the property that 𝒱(Y,U)<𝒵(Y,U){\mathcal{V}}(Y,U)<{\mathcal{Z}}(Y,U) (2.11) with (Y,U)YU(Y,U)\in{\mathcal{R}}_{YU} is equivalent to

(1Y)(11+γU+1Y)<U+(1Y)2Y>γ,(1-Y)(\frac{1}{1+\gamma}U+1-Y)<U+(1-Y)^{2}\iff Y>-\gamma,

we only need to estimate the (Y,U)(Y,U) coordinate of the solution curve:

(4.44) (𝒴,𝒰)(Z,V(Z))D{(Y,U):γ<Y<1,U>0},forZ[0,Z0+ε1],({\mathcal{Y}},{\mathcal{U}})(Z,V(Z))\in D\triangleq\{(Y,U):-\gamma<Y<1,U>0\},\quad\mathrm{for}\ Z\in[0,Z_{0}+\varepsilon_{1}],

with some ε1>0\varepsilon_{1}>0. From Lemma 4.8 and the definitions of ΩBf\Omega_{B}^{f} (4.3) and BufB_{u}^{f} (4.5a), we have

(YF(κ)(Z),UF(κ)(Z))\displaystyle(Y_{F}^{(\kappa_{*})}(Z),U_{F}^{(\kappa_{*})}(Z)) (γ,1)×[U0,)D,\displaystyle\in(-\gamma,1)\times[U_{0},\infty)\subset D,
(Y,U(κ)(Y))\displaystyle(Y,U^{(\kappa_{*})}(Y)) Ω¯Bf[0,1)×[U0,)D,\displaystyle\in\bar{\Omega}_{B}^{f}\subset[0,1)\times[U_{0},\infty)\subset D,

for Z[0,δ3]Z\in[0,\delta_{3}] and Y[0,Y(κ)(δY)]Y\in[0,Y^{(\kappa^{*})}(\delta_{Y})]. From the relation (4.32) and (4.39) with Z(κ)(0)=Z0Z^{(\kappa^{*})}(0)=Z_{0} and (4.40), we prove (4.44) for Z[0,Z0]Z\in[0,Z_{0}]. Using continuity and by choosing ε1>0\varepsilon_{1}>0 small enough, we prove (4.44) for Z[0,Z0+ε1]Z\in[0,Z_{0}+\varepsilon_{1}]. We conclude the proof of Proposition 4.1.

5. Lower part of QsQ_{s}

In this section, we consider odd nn and any κ(n,n+1)\kappa\in(n,n+1). We use a barrier argument to show that the local analytic solution (Y,U(κ)(Y))(Y,U^{(\kappa)}(Y)) constructed in Proposition 3.10 can be continued for Y<0Y<0 and cross the curve ΔY=0\Delta_{Y}=0 (red curve) below the point QsQ_{s} (see Figure 2). We justify these in Propositions 5.1, 5.2, 5.3. Since the curve ΔY=0\Delta_{Y}=0 below QsQ_{s} in the system (2.15b) is a upper barrier and U=0U=0 is another barrier, the solution curve must further cross Y=0Y=0 (2.11) (see Figure 2 for an illustration), which corresponds to the curve of ΔV(Z,V)=0\Delta_{V}(Z,V)=0 in the original system (2.3) (see the red curve between P2,PsP_{2},P_{s} in Figure 1). We justify it in Proposition 5.6. Afterward, in Lemma 6.2 in Section 6, we can extend the solution of the (Z,V)(Z,V) (2.3) to Z=Z=\infty. This give rises to a smooth solution V(Z)V(Z) to the ODE (2.3) for ZC[Z0ε1,)Z\in C^{\infty}[Z_{0}-\varepsilon_{1},\infty) for some ε11\varepsilon_{1}\ll 1.

5.1. The local upper barrier

We introduce a local barrier

(5.1) 𝐆[n]=i=0nUiYi.\mathbf{G}_{[{n}]}=\sum_{i=0}^{n}U_{i}Y^{i}.

where Ui,i0U_{i},i\geq 0 are the power series coefficients constructed in Section 3. In Proposition 5.1, we show that 𝐆[n]\mathbf{G}_{[{n}]} remains a valid local upper barrier of UU for Y[2(Cκ)1,0)Y\in[-2(C^{*}\kappa)^{-1},0), where CC_{*} is defined in (3.22d). In Propositions 5.2, 5.3 we show that in the range Y[2(Cκ)1,0)Y\in[-2(C^{*}\kappa)^{-1},0), the local upper barrier and the solution must intersect the global upper barrier UΔYU_{\Delta_{Y}}.

Proposition 5.1.

There exists CC large enough such that for any nn odd with n>Cn>C and κ(n,n+1)\kappa\in(n,n+1), we have 111111The reader should not confuse the polynomial 𝐏[n](Y)\mathbf{P}_{[{n}]}(Y) with the coefficient PnP_{n} of 𝐏[n]ne(Y)\mathbf{P}_{[{n}]}^{\mathrm{ne}}(Y) in (4.17a).

(5.2) 𝐏[n](Y)=𝐆[n](Y)ΔY(Y,𝐆[n](Y))ΔU(Y,𝐆[n](Y))>0\mathbf{P}_{[{n}]}(Y)=\mathbf{G}_{[{n}]}^{\prime}(Y)\Delta_{Y}(Y,\mathbf{G}_{[{n}]}(Y))-\Delta_{U}(Y,\mathbf{G}_{[{n}]}(Y))>0

for Y[2(Cκ)1,0)Y\in[-2(C^{*}\kappa)^{-1},0), where CC_{*} is defined in (3.22d).

The proof relies on the estimates of UiU_{i} in Lemmas 3.5, 3.12.

Proof.

Recall δ=0.05\delta=0.05 from (2.10). For qq to be chosen, we define τ,qi\tau,q_{i} according to

(5.3a) τ1τ\displaystyle\frac{\tau}{1-\tau} =1+4δ,q1=2(1+δ)q,q2=(2(1+δ))τq1τ,\displaystyle=1+4\delta,\quad q_{1}=2(1+\delta)q,\quad q_{2}=(2(1+\delta))^{\tau}q^{1-\tau},
q3\displaystyle q_{3} =1+δ1+2δ,q4=(1δ)(1+4δ)1+2δ.\displaystyle=\frac{1+\delta}{1+2\delta},\quad q_{4}=\frac{(1-\delta)(1+4\delta)}{1+2\delta}.

Since δ=0.05\delta=0.05 and 2(1+δ)1+4δ/4<12(1+\delta)^{1+4\delta}/4<1, by choosing q(41,33)q\in(4^{-1},3^{-3}) close to 414^{-1}, we can obtain τ,qi\tau,q_{i} satisfying

(5.3b) τ(12,34),q1<1,q2=((2(1+δ))1+4δq)1τ<1,q3<1,q4>1.\tau\in(\frac{1}{2},\frac{3}{4}),\quad q_{1}<1,\quad q_{2}=((2(1+\delta))^{1+4\delta}q)^{1-\tau}<1,\quad q_{3}<1,\quad q_{4}>1.

Recall CC_{*} from (3.22d). We define

(5.4) θ2=((1+2δ)Cκ)1,θ3=2(Cκ)1.\quad\theta_{2}=((1+2\delta)C_{*}\kappa)^{-1},\quad\theta_{3}=2(C_{*}\kappa)^{-1}.

We estimate 𝐏[n](Y)\mathbf{P}_{[{n}]}(Y) for Y[θ1,0),Y[θ2,θ1],Y[θ3,θ2]Y\in[-\theta_{1},0),Y\in[-\theta_{2},-\theta_{1}],Y\in[-\theta_{3},-\theta_{2}] separately.

Expansion of 𝐏[n]\mathbf{P}_{[{n}]}

Denote by ama_{m} the mm-th coefficient in the power series of a(Y)a(Y). Using the formula (𝐆[n]2(Y))=2𝐆[n]𝐆[n](\mathbf{G}_{[{n}]}^{2}(Y))^{\prime}=2\mathbf{G}_{[{n}]}^{\prime}\mathbf{G}_{[{n}]} and the definition of 𝐆[n]\mathbf{G}_{[{n}]} (5.1), we obtain

(5.5) (𝐆[n]𝐆[n])m\displaystyle(\mathbf{G}_{[{n}]}^{\prime}\mathbf{G}_{[{n}]})_{m} =m+12(𝐆[n]2)m,(𝐆[n]2)2n+1=0,(𝐆[n]2)2n=Un2,(𝐆[n]2)2n1=2Un1Un.\displaystyle=\frac{m+1}{2}(\mathbf{G}_{[{n}]}^{2})_{m},\quad(\mathbf{G}^{2}_{[{n}]})_{2n+1}=0,\quad(\mathbf{G}_{[{n}]}^{2})_{2n}=U_{n}^{2},\quad(\mathbf{G}_{[{n}]}^{2})_{2n-1}=2U_{n-1}U_{n}.

Next, we perform power series expansion for 𝐏[n]\mathbf{P}_{[{n}]} (5.2). Denote by Pn,mP_{n,m} the mthm-th coefficient of YmY^{m} in 𝐏[n]\mathbf{P}_{[{n}]}. Since 𝐆[n]\mathbf{G}_{[{n}]} agree with the local solution U(Y)U(Y) up to O(|Y|n+1)O(|Y|^{n+1}), following the derivation of Pn+1P_{n+1} in (4.17b) in the proof of Proposition 4.3, we obtain that the term Pn,iYi,inP_{n,i}Y^{i},i\leq n vanishes in 𝐏[n]\mathbf{P}_{[{n}]} and the leading order term of 𝐏[n]\mathbf{P}_{[{n}]} is given by

(5.6a) Pn,n+1Yn+1,Pn,n+1=((n+1)λλ+)(0Un+1).P_{n,n+1}Y^{n+1},\quad P_{n,n+1}=((n+1)\lambda_{-}-\lambda_{+})(0-U_{n+1}).

For the coefficient of Yi,in+2Y^{i},i\geq n+2, using the explicit formula of ΔY,ΔU\Delta_{Y},\Delta_{U} (2.14), we obtain

(5.6b) 𝐏[n](Y)\displaystyle\mathbf{P}_{[{n}]}(Y) =Yn+1((n+1)λλ+)(0Un+1)+Yn+2(nUnB2Un(B(d1)))\displaystyle=Y^{n+1}((n+1)\lambda_{-}-\lambda_{+})(0-U_{n+1})+Y^{n+2}(nU_{n}B-2U_{n}(B-(d-1)))
+n+3m2nYm(d(𝐆[n]𝐆[n])m1(𝐆[n]𝐆[n])m2(𝐆[n]2)m).\displaystyle\quad+\sum_{n+3\leq m\leq 2n}Y^{m}(d(\mathbf{G}_{[{n}]}^{\prime}\mathbf{G}_{[{n}]})_{m-1}-(\mathbf{G}_{[{n}]}^{\prime}\mathbf{G}_{[{n}]})_{m}-2(\mathbf{G}_{[{n}]}^{2})_{m}).

We note that the term U(f(Y)+(d1)Y(1Y))U(f(Y)+(d-1)Y(1-Y)) in ΔU\Delta_{U} and (Y1)f(Y)(Y-1)f(Y) in ΔY\Delta_{Y} (2.14) only contributes to the term CiYi,in+2C_{i}Y^{i},i\leq n+2 in 𝐏[n]\mathbf{P}_{[{n}]}.

Using the identity (5.5) and the expansion (5.6b), we get

(5.7) Pn,m=Pn,m,1(𝐆[n]2)mPn,m,2(𝐆[n]2)m+1,\displaystyle P_{n,m}=P_{n,m,1}(\mathbf{G}_{[{n}]}^{2})_{m}-P_{n,m,2}(\mathbf{G}_{[{n}]}^{2})_{m+1},
Pn,m,1=dm22,Pn,m,2=m+12,mn+2.\displaystyle P_{n,m,1}=\frac{dm}{2}-2,\quad P_{n,m,2}=\frac{m+1}{2},\quad m\geq n+2.

Plugging κ=λ+λ\kappa=\frac{\lambda_{+}}{\lambda_{-}} (2.30) to (5.6a), we obtain

(5.8a) Pn,n+1=(n+1κ1)λ+(0Un+1)=n+1κκλ+Un+1.P_{n,n+1}=(\frac{n+1}{\kappa}-1)\lambda_{+}(0-U_{n+1})=-\frac{n+1-\kappa}{\kappa}\lambda_{+}U_{n+1}.

For κ(n,n+1)\kappa\in(n,n+1), applying λ+>0\lambda_{+}>0 (2.28) and the estimates of UnU_{n} (3.22b), (3.61), we further obtain Un+1<0U_{n+1}<0 and

(5.8b) Pn,n+1(1δ)λ+(n+1)CUn>0.P_{n,n+1}\geq(1-\delta)\lambda_{+}(n+1)C_{*}U_{n}>0.

Thus, for nn odd and Y<0Y<0, we get Pn,n+1Yn+1>0P_{n,n+1}Y^{n+1}>0.

For the last two terms Pn,2nY2n,Pn,2n1Y2n1P_{n,2n}Y^{2n},P_{n,2n-1}Y^{2n-1} in the expansion (5.6b), using (5.5), (5.7), and then the estimates UnUn1n2U_{n}\gtrsim U_{n-1}n^{2} (3.61), (3.22b) (with κ(n,n+1)\kappa\in(n,n+1)), we get

(5.9) Pn,2n\displaystyle P_{n,2n} =Pn,2n,1(𝐆[n]2)2n=Pn,2n,1Un2>0,\displaystyle=P_{n,2n,1}(\mathbf{G}_{[{n}]}^{2})_{2n}=P_{n,2n,1}U_{n}^{2}>0,
Pn,2n1\displaystyle P_{n,2n-1} =Pn,2n1,1(𝐆[n]2)2n1Pn,2n1,2(𝐆[n]2)2n\displaystyle=P_{n,2n-1,1}(\mathbf{G}_{[{n}]}^{2})_{2n-1}-P_{n,2n-1,2}(\mathbf{G}_{[{n}]}^{2})_{2n}
=Pn,2n1,12UnUn1Pn,2n1,2Un2\displaystyle=P_{n,2n-1,1}2U_{n}U_{n-1}-P_{n,2n-1,2}U_{n}^{2}
=(1+O(n2))Pn,2n1,2Un2<0.\displaystyle=-(1+O(n^{-2}))P_{n,2n-1,2}U_{n}^{2}<0.

Hence, we obtain Y2nPn,2n,Y2n1Pn,2n1>0Y^{2n}P_{n,2n},Y^{2n-1}P_{n,2n-1}>0.

Ideas of the remaining estimates

It remains to estimate the term Pn,mYmP_{n,m}Y^{m} for 2mnn22\leq m-n\leq n-2. We use the asymptotics for UiU_{i} in Lemma 3.12 to show that P>0P>0. For |Y||Y| very small, we treat all the terms Pn,mYmP_{n,m}Y^{m} as perturbation to Pn,n+1Yn+1P_{n,n+1}Y^{n+1}. For |Y||Y| relatively large and mm close to 2n2n, we treat Pn,mYmP_{n,m}Y^{m} as perturbation to Pn,2n1Y2n1+Pn,2nY2nP_{n,2n-1}Y^{2n-1}+P_{n,2n}Y^{2n}. We choose l1l_{1} to be some large absolute constant, and perform the estimates in four cases:

mnl1,l1<mnn/8,n/8mnτn+2,τnmnn2.m-n\leq l_{1},\quad l_{1}<m-n\leq n/8,\quad n/8\leq m-n\leq\tau n+2,\quad\tau n\leq m-n\leq n-2.
Case I: 2mnl12\leq m-n\leq l_{1}

Using (3.61), we obtain

(𝐆[n]2)m=i+j=m,i,jnUiUjl1(mn)Unl1Un,|Pn,m|l1nUn.(\mathbf{G}_{[{n}]}^{2})_{m}=\sum_{i+j=m,i,j\leq n}U_{i}U_{j}\lesssim_{l_{1}}(m-n)U_{n}\lesssim_{l_{1}}U_{n},\quad|P_{n,m}|\lesssim_{l_{1}}nU_{n}.

Thus, for mnl1m-n\leq l_{1}, using the above estimate and the lower bound of Pn,n+1P_{n,n+1} (5.8b), we obtain

(5.10) n+2mn+l1|Pn,mYm|C(l1)Pn,n+1Yn+2.\sum_{n+2\leq m\leq n+l_{1}}|P_{n,m}Y^{m}|\leq C(l_{1})P_{n,n+1}Y^{n+2}.

By choosing |Y|l11|Y|\ll_{l_{1}}1, we can treat it as perturbation to Pn,n+1Yn+1P_{n,n+1}Y^{n+1}.

For mn+3m\geq n+3, using (3.62) in Lemma 3.12, we obtain

(5.11a) |(𝐆[n]2)m|=i+j=m,i,jnUiUjUnUmnl0(32)lUnUmn,|(\mathbf{G}_{[{n}]}^{2})_{m}|=\sum_{i+j=m,i,j\leq n}U_{i}U_{j}\lesssim U_{n}U_{m-n}\sum_{l\geq 0}(\frac{3}{2})^{-l}\lesssim U_{n}U_{m-n},
which along with the decomposition of Pn,mP_{n,m} in (5.7) implies
(5.11b) |Pn,m|nUnUm+1n.\quad|P_{n,m}|\lesssim nU_{n}U_{m+1-n}.
Case II: l1<mnn/8l_{1}<m-n\leq n/8

Using (3.63b) with l=5l=5 and (5.11b), for |Y|θ3|Y|\leq\theta_{3} with θ3=2(Cκ)1\theta_{3}=2(C_{*}\kappa)^{-1} (5.4), we obtain

(5.12) |YmPn,m|\displaystyle|Y^{m}P_{n,m}| |Y|mnUnUm+1n\displaystyle\lesssim|Y|^{m}nU_{n}U_{m+1-n}
|Y|n+1nUnθ3m1n(Cκ)m+1n54(mn)\displaystyle\lesssim|Y|^{n+1}nU_{n}\theta_{3}^{m-1-n}(C_{*}\kappa)^{m+1-n-5}4^{-(m-n)}
|Y|n+1nUnκ2(θ3Cκ21)m1n2(mn)\displaystyle\lesssim|Y|^{n+1}nU_{n}\kappa^{-2}(\theta_{3}C_{*}\kappa 2^{-1})^{m-1-n}2^{-(m-n)}
|Y|n+1nUnκ22(mn),\displaystyle\lesssim|Y|^{n+1}nU_{n}\kappa^{-2}2^{-(m-n)},

which is dominated by Pn,n+1Yn+1P_{n,n+1}Y^{n+1} due to the estimate of Pn,n+1P_{n,n+1} (5.8b).

Case III: n/8mnτn+2n/8\leq m-n\leq\tau n+2

Denote

(5.13) m1=mn.m_{1}=m-n.

In this case, we have m1[n/8,τn+2]m_{1}\in[n/8,\tau n+2]. Using (3.63c) with qq chosen in (5.3) and (5.11b), for |Y|θ3|Y|\leq\theta_{3} with θ3=2(Cκ)1\theta_{3}=2(C_{*}\kappa)^{-1} (5.4), we obtain

(5.14) |YmPn,m|\displaystyle|Y^{m}P_{n,m}| |Y|mnUnUmn+1\displaystyle\lesssim|Y|^{m}nU_{n}U_{m-n+1}
|Y|n+1nUnUm1+1|Y|m11\displaystyle\lesssim|Y|^{n+1}nU_{n}U_{m_{1}+1}|Y|^{m_{1}-1}
|Y|n+1nUnθ3m11((1+δ)Cκ)m1+1qmin(m1+1,nm11)\displaystyle\lesssim|Y|^{n+1}nU_{n}\theta_{3}^{m_{1}-1}((1+\delta)C_{*}\kappa)^{m_{1}+1}q^{\min(m_{1}+1,n-m_{1}-1)}
|Y|n+1nUnκ2(2(1+δ))m1qmin(m1,nm1).\displaystyle\lesssim|Y|^{n+1}nU_{n}\kappa^{2}(2(1+\delta))^{m_{1}}q^{\min(m_{1},n-m_{1})}.

Next, we further simplify the upper bound. We introduce

J=(2(1+δ))m1qmin(m1,nm1).J=(2(1+\delta))^{m_{1}}q^{\min(m_{1},n-m_{1})}.

We estimate JJ in the case of m1nm1m_{1}\leq n-m_{1} and m1>nm1m_{1}>n-m_{1} separately. Using (5.3), we get

J\displaystyle J (2(1+δ))m1qm1=q1m1q1n/8,\displaystyle\leq(2(1+\delta))^{m_{1}}q^{m_{1}}=q_{1}^{m_{1}}\leq q_{1}^{n/8}, forn/8m1n/2.\displaystyle\mathrm{for\ }n/8\leq m_{1}\leq n/2.
J\displaystyle J C(2(1+δ))m12qmin(m12,n(m12)=C(2(1+δ))m12qn(m12),\displaystyle\leq C(2(1+\delta))^{m_{1}-2}q^{\min(m_{1}-2,n-(m_{1}-2)}=C(2(1+\delta))^{m_{1}-2}q^{n-(m_{1}-2)}, form1[n/2,τn+2].\displaystyle\mathrm{for\ }m_{1}\in[n/2,\tau n+2].

Denote τ0=m12n\tau_{0}=\frac{m_{1}-2}{n}. From (5.13) and the assumption of mm, we get τ0τ\tau_{0}\leq\tau. Using q<1q<1 and q2q_{2} in (5.3), we further estimate the second case as follows

JC2(1+δ)τ0nq(1τ0)nC(2(1+δ)τq1τ)nCq2n.J\leq C2(1+\delta)^{\tau_{0}n}q^{(1-\tau_{0})n}\leq C(2(1+\delta)^{\tau}q^{1-\tau})^{n}\leq Cq_{2}^{n}.

Combining the above estimates, we establish

(5.15) |YmPn,m||Y|n+1nUnn2q5n,q5=max(q11/8,q2)<1.|Y^{m}P_{n,m}|\lesssim|Y|^{n+1}nU_{n}n^{2}q_{5}^{n},\quad q_{5}=\max(q_{1}^{1/8},q_{2})<1.
Case IV: τnmnn2\tau n\leq m-n\leq n-2

Recall θ2,θ3\theta_{2},\theta_{3} from (5.4). We consider |Y|θ2|Y|\leq\theta_{2} and |Y|[θ2,θ3]|Y|\in[\theta_{2},\theta_{3}] separately. We define m1=mnm_{1}=m-n as (5.13). For |Y|θ2|Y|\leq\theta_{2}, following (5.11) and applying (3.63a) with l=0l=0, we obtain

(5.16) |YmPn,m|\displaystyle|Y^{m}P_{n,m}| |Y|n+1nUnUm1+1|Y|m11\displaystyle\lesssim|Y|^{n+1}nU_{n}U_{m_{1}+1}|Y|^{m_{1}-1}
|Y|n+1nUnθ2m11((1+δ)Cκ)m1+1\displaystyle\lesssim|Y|^{n+1}nU_{n}\theta_{2}^{m_{1}-1}((1+\delta)C_{*}\kappa)^{m_{1}+1}
|Y|n+1nUnκ2(1+δ1+2δ)m1\displaystyle\lesssim|Y|^{n+1}nU_{n}\kappa^{2}(\frac{1+\delta}{1+2\delta})^{m_{1}}
|Y|n+1nUnn2q3n/2.\displaystyle\lesssim|Y|^{n+1}nU_{n}n^{2}q_{3}^{n/2}.

Since q3<1q_{3}<1 (5.3b), the upper bound is very small compared to |Y|n+1nUn|Y|^{n+1}nU_{n}.

Combining (5.10), (5.12), (5.15), (5.9), and (5.16), summing these estimates over m=n+2,..,2nm=n+2,..,2n, and using the lower bound of Pn,n+1P_{n,n+1} (5.8b), we prove

(5.17) 𝐏[n]Pn,n+1Yn+1(1+on(1))>0,Y[θ2,0),\mathbf{P}_{[{n}]}\geq P_{n,n+1}Y^{n+1}(1+o_{n}(1))>0,\quad Y\in[-\theta_{2},0),

where we use a=on(1)a=o_{n}(1) to denote limn|a|=0\lim_{n\to\infty}|a|=0.

Next, for Y[θ3,θ2]Y\in[-\theta_{3},-\theta_{2}] and ll with τn+n2l,ln1\tau n+n\leq 2l,l\leq n-1, we show that

Y2l+1Pn,2l+1+Y2lPn,2l>0.Y^{2l+1}P_{n,2l+1}+Y^{2l}P_{n,2l}>0.

Using (5.7) and (3.64), we obtain

Pn,2l+12l+22(1Cn1)(𝐆[n]2)2l+2,|Pn,2l|2l+12(1+Cn1)(𝐆[n]2)2l+1.P_{n,2l+1}\leq-\frac{2l+2}{2}(1-Cn^{-1})(\mathbf{G}_{[{n}]}^{2})_{2l+2},\quad|P_{n,2l}|\leq\frac{2l+1}{2}(1+Cn^{-1})(\mathbf{G}_{[{n}]}^{2})_{2l+1}.

Since 2lτn+n2l\geq\tau n+n and lnl\leq n, using (3.64), we get

|Pn,2l+1||Pn,2l|>τ(1δ)1τ(1Cn1)(Cκ).\frac{|P_{n,2l+1}|}{|P_{n,2l}|}>\frac{\tau(1-\delta)}{1-\tau}(1-Cn^{-1})(C_{*}\kappa).

Using τ1τ=1+4δ\frac{\tau}{1-\tau}=1+4\delta (5.3) and |Y|θ2=((1+2δ)Cκ)1|Y|\geq\theta_{2}=((1+2\delta)C_{*}\kappa)^{-1} (5.4), we yield

|Y2l+1Pn,2l+1||Y2l+Pn,2l|>τ(1δ)(1τ)(1+2δ)(1Cn1)=(1+4δ)(1δ)1+2δ(1Cn1)=q4(1Cn1).\frac{|Y^{2l+1}P_{n,2l+1}|}{|Y^{2l+}P_{n,2l}|}>\frac{\tau(1-\delta)}{(1-\tau)(1+2\delta)}(1-Cn^{-1})=\frac{(1+4\delta)(1-\delta)}{1+2\delta}(1-Cn^{-1})=q_{4}(1-Cn^{-1}).

Since q4>1q_{4}>1 (5.3), for nn sufficiently large and Y<θ2Y<-\theta_{2}, since Y2l+1Pn,2l+1>0Y^{2l+1}P_{n,2l+1}>0, we prove

(5.18) Y2l+1Pn,2l+1+Y2lPn,2l>0,Yθ2.Y^{2l+1}P_{n,2l+1}+Y^{2l}P_{n,2l}>0,\quad Y\leq-\theta_{2}.

Summing (5.18) over 12(τn+n)ln1\frac{1}{2}(\tau n+n)\leq l\leq n-1 and then combining it with (5.12), (5.15), and (5.9), we prove

𝐏[n]Pn,n+1Yn+1(1+on(1))>0,Y[θ3,θ2).\mathbf{P}_{[{n}]}\geq P_{n,n+1}Y^{n+1}(1+o_{n}(1))>0,\quad Y\in[-\theta_{3},-\theta_{2}).

We conclude the proof. MM \square

5.2. Intersection between the barrier functions

Next, we estimate the first intersection between the local barrier and the global barrier. Recall UΔYU_{\Delta_{Y}} defined in (2.24).

Proposition 5.2.

Let C¯\bar{C} be the parameter defined in Lemma 3.12. There exists n6>C¯n_{6}>\bar{C} large enough, such that the following statement holds true. For any n>n6n>n_{6}, there exists YIY_{I} with (1+2δ)|Cκ|1<|Un|1/n<YI<0-(1+2\delta)|C_{*}\kappa|^{-1}<-|U_{n}|^{1/n}<Y_{I}<0 such that

UΔY(Y)<𝐆[n](Y),Y(YI,0),UΔY(YI)=𝐆[n](YI).U_{\Delta_{Y}}(Y)<\mathbf{G}_{[{n}]}(Y),\quad Y\in(Y_{I},0),\quad U_{\Delta_{Y}}(Y_{I})=\mathbf{G}_{[{n}]}(Y_{I}).

As a result, we have

ΔY(Y,𝐆[n](Y))<0,Y(YI,0).\Delta_{Y}(Y,\mathbf{G}_{[{n}]}(Y))<0,\quad Y\in(Y_{I},0).
Proof.

Denote

(5.19) a1=YUΔY(0),𝐇n(Y)=𝐆[n](Y)UΔY(Y),θ=|Un|1/n.a_{1}=\partial_{Y}U_{\Delta_{Y}}(0),\quad\mathbf{H}_{n}(Y)=\mathbf{G}_{[{n}]}(Y)-U_{\Delta_{Y}}(Y),\quad\theta=|U_{n}|^{-1/n}.

Firstly, using a direct computation, we know that

𝐆[n](0)=UΔY(0), 0<Y𝐆[n](0)=U1<a1,a1U1n1.\mathbf{G}_{[{n}]}(0)=U_{\Delta_{Y}}(0),\ 0<\partial_{Y}\mathbf{G}_{[{n}]}(0)=U_{1}<a_{1},\quad a_{1}-U_{1}\lesssim n^{-1}.

Using the above estimate and the definition of UΔYU_{\Delta_{Y}} (2.24), for ε2<Y<0-\varepsilon_{2}<Y<0 and ε2=ε2(n,κ)\varepsilon_{2}=\varepsilon_{2}(n,\kappa) sufficiently small, we obtain

(5.20) 𝐇n(Y)>0.\mathbf{H}_{n}(Y)>0.

Since UΔYU_{\Delta_{Y}} is smooth near Y=0Y=0, for some absolute constant ε3>0\varepsilon_{3}>0 and a2a_{2}, we have

(5.21) UΔY(Y)U0+a1Y+a2Y2,|Y|ε3.U_{\Delta_{Y}}(Y)\geq U_{0}+a_{1}Y+a_{2}Y^{2},\quad|Y|\leq\varepsilon_{3}.

Denote

(5.22) F(Y)=in1Ui+1Yia2Ya1.F(Y)=\sum_{i\leq n-1}U_{i+1}Y^{i}-a_{2}Y-a_{1}.

We have F(Y)=U1a1+On(Y)<0F(Y)=U_{1}-a_{1}+O_{n}(Y)<0 for |Y||Y| sufficiently small. From (5.21) and (5.22), we get

(5.23) 𝐇n(Y)YF(Y),|Y|ε3.\mathbf{H}_{n}(Y)\leq YF(Y),\quad|Y|\leq\varepsilon_{3}.

Next, we show that F(θ)>0F(-\theta)>0 for θ=|Un|1/n\theta=|U_{n}|^{-1/n} (5.19). Using (3.65) and |Un|1/nn|U_{n}|^{1/n}\gtrsim n, for mn1m\leq n-1, we get

|Umθm1||Unθn1|=UmUnm/nmin(C2min(nm,m),Cnmn2/3,Cmnm),|a2θ||Unθn1|θ2n2.\frac{|U_{m}\theta^{m-1}|}{|U_{n}\theta^{n-1}|}=\frac{U_{m}}{U_{n}^{m/n}}\leq\min(C2^{-\min(n-m,m)},C_{n-m}n^{-2/3},C_{m}n^{-m}),\quad\frac{|a_{2}\theta|}{|U_{n}\theta^{n-1}|}\lesssim\theta^{2}\lesssim n^{-2}.

It follows

\displaystyle{\mathcal{R}} |a2θ|+2mn2|Umθm1||Unθn1|(Cln2/3+Clmnl2min(mn,m))\displaystyle\triangleq|a_{2}\theta|+\sum_{2\leq m\leq n-2}|U_{m}\theta^{m-1}|\leq|U_{n}\theta^{n-1}|(C_{l}n^{-2/3}+C\sum_{l\leq m\leq n-l}2^{-\min(m-n,m)})
|Unθn1|(Cln2/3+C2l).\displaystyle\leq|U_{n}\theta^{n-1}|(C_{l}n^{-2/3}+C2^{-l}).

Choosing ll large and then nn large, we further obtain

12|Unθn1|.{\mathcal{R}}\leq\frac{1}{2}|U_{n}\theta^{n-1}|.

Since nn is odd, it follows

F(θ)Unθn1a112Unθn1+(U1a1)=12|Un|1/n+(U1a1)Cn+(U1a1)>0.\quad F(-\theta)\geq U_{n}\theta^{n-1}-a_{1}-{\mathcal{R}}\geq\frac{1}{2}U_{n}\theta^{n-1}+(U_{1}-a_{1})=\frac{1}{2}|U_{n}|^{1/n}+(U_{1}-a_{1})\geq Cn+(U_{1}-a_{1})>0.

Since θ=|Un|1/nn1\theta=|U_{n}|^{-1/n}\lesssim n^{-1} and ε3\varepsilon_{3} in (5.21), (5.23) is absolute constant, by further requiring nn large enough, we yield 0<θ<ε30<\theta<\varepsilon_{3}. Thus using (5.23), we obtain

𝐇n(θ)θF(θ)<0.\mathbf{H}_{n}(-\theta)\leq-\theta F(-\theta)<0.

Since 𝐇n(Y)>0\mathbf{H}_{n}(Y)>0 for ε2<Y<0-\varepsilon_{2}<Y<0 (5.20) and 𝐇n\mathbf{H}_{n} is continuous, there exists YIY_{I} with θ=|Un|1/n<YI<0-\theta=-|U_{n}|^{1/n}<Y_{I}<0 such that 𝐇n(YI)=0\mathbf{H}_{n}(Y_{I})=0 and 𝐇n(Y)>0\mathbf{H}_{n}(Y)>0 for Y(YI,0]Y\in(Y_{I},0]. Using (3.65), since δ=0.05\delta=0.05 (2.10) and (1δ)1<1+2δ(1-\delta)^{-1}<1+2\delta, by further choosing nn large, we obtain

(5.24) |YI|<|Un|1/n<(1+2δ)(Cκ)1.|Y_{I}|<|U_{n}|^{-1/n}<(1+2\delta)(C_{*}\kappa)^{-1}.

Finally, using the definition of ΔY\Delta_{Y} (2.14), we yield

ΔY(Y,𝐆[n](Y))=(dY1)(𝐆[n]UΔY)<0,Y(YI,0).\Delta_{Y}(Y,\mathbf{G}_{[{n}]}(Y))=(dY-1)(\mathbf{G}_{[{n}]}-U_{\Delta_{Y}})<0,\quad Y\in(Y_{I},0).

We conclude the proof. MM \square

Below, we show that the solution must intersect the curve UΔYU_{\Delta_{Y}} (2.24).

Proposition 5.3.

For any nn odd large enough, we have the following results. Let YIY_{I} be defined in Proposition 5.2. There exists YI[YI,0)Y_{I}^{\prime}\in[Y_{I},0) and YI>γY_{I}^{\prime}>-\gamma such that U(YI)=UΔY(YI)U(Y_{I}^{\prime})=U_{\Delta_{Y}}(Y_{I}^{\prime}) and

(5.25) UΔY(Y)<U(Y)<𝐆[n](Y),forY(YI,0).U_{\Delta_{Y}}(Y)<U(Y)<\mathbf{G}_{[{n}]}(Y),\quad\mathrm{for}\quad Y\in(Y_{I}^{\prime},0).
Proof.

Recall the definition of 𝐆[n]\mathbf{G}_{{[{n}]}} from (5.1). Firstly, we have Yi(𝐆[n]U)(0)\partial_{Y}^{i}(\mathbf{G}_{[{n}]}-U)(0)for ini\leq n and

Yn+1(𝐆[n]U)(0)=Un+1.\partial_{Y}^{n+1}(\mathbf{G}_{[{n}]}-U)(0)=-U_{n+1}.

Since nn is odd, using κ(n,n+1)\kappa\in(n,n+1) and (3.22b), (3.61), we obtain Un+1>0,Un+1Yn+1>0-U_{n+1}>0,-U_{n+1}Y^{n+1}>0. Using the above estimates and

𝐆[n](0)=UΔY(0),Y𝐆[n](0)=U1<YUΔY(0),\mathbf{G}_{[{n}]}(0)=U_{\Delta_{Y}}(0),\quad\partial_{Y}\mathbf{G}_{[{n}]}(0)=U_{1}<\partial_{Y}U_{\Delta_{Y}}(0),

we establish

UΔY(Y)<U(Y)<𝐆[n](Y),U_{\Delta_{Y}}(Y)<U(Y)<\mathbf{G}_{[{n}]}(Y),

for Y(δ,0)Y\in(-\delta^{\prime},0) with some small parameter δ=δ(κ,n)>0\delta^{\prime}=\delta^{\prime}(\kappa,n)>0.

From Proposition 5.2 and Proposition 5.1, for some YI(2(Cκ)1,0)Y_{I}\in(-2(C_{*}\kappa)^{-1},0), we have

ddY(𝐆[n](Y)ΔU(Y,U)ΔY(Y,U)|U=𝐆[n](Y)=𝐏[n](Y)ΔY(Y,𝐆[n](Y))<0,Y(YI,0).\frac{d}{dY}(\mathbf{G}_{[{n}]}(Y)-\frac{\Delta_{U}(Y,U)}{\Delta_{Y}(Y,U)}\Big{|}_{U=\mathbf{G}_{[{n}]}(Y)}=\frac{\mathbf{P}_{[{n}]}(Y)}{\Delta_{Y}(Y,\mathbf{G}_{[{n}]}(Y))}<0,\quad Y\in(Y_{I},0).

Thus, 𝐆[n](Y)\mathbf{G}_{[{n}]}(Y) is a upper barrier for U(Y)U(Y) with Y(YI,0)Y\in(Y_{I},0).

Since 𝐆[n](Y)\mathbf{G}_{[{n}]}(Y) intersects UΔY(Y)U_{\Delta_{Y}}(Y) at YI<0Y_{I}<0, by continuity, we obtain that U(Y)U(Y) intersects UΔY(Y)U_{\Delta_{Y}}(Y) at some YI(YI,0)Y_{I}^{\prime}\in(Y_{I},0).

Since YI>(1+2δ)|Cκ|1Y_{I}>-(1+2\delta)|C_{*}\kappa|^{-1} from Proposition 5.2 and γ>1/2\gamma>\ell^{-1/2}, by choosing κ\kappa large enough, we obtain YI>YI>γY_{I}^{\prime}>Y_{I}>-\gamma. We complete the proof. MM \square

We have the following relative positions among the roots and the barrier functions.

Proposition 5.4.

Let Ug,UΔUU_{g},U_{\Delta_{U}} be the functions defined in (2.23) and (2.24). There exists C>0C>0 large enough such that for any n,κn,\kappa with nn odd, n>Cn>C, and κ(n,n+1)\kappa\in(n,n+1), we have

(5.26) Ug(Y)>G[n](Y),UΔU(Y)>G[n](Y).U_{g}(Y)>G_{[{n}]}(Y),\quad U_{\Delta_{U}}(Y)>G_{[{n}]}(Y).

for |Un|1/n<Y<0-|U_{n}|^{1/n}<Y<0, where CC_{*} is defined in (3.22d). As a result, we have

(5.27) Ug(Y)>U(Y),UΔU(Y)>U(Y).U_{g}(Y)>U(Y),\quad U_{\Delta_{U}}(Y)>U(Y).

for Y[YI,0)Y\in[Y_{I}^{\prime},0), where YIY_{I}^{\prime} is defined in Proposition 5.2.

Proof.

We consider 1/2<γ<1\ell^{-1/2}<\gamma<1. Denote J=[|Un|1/n,0)J=[-|U_{n}|^{-1/n},0). From the definitions of ε\varepsilon (2.9), Ug,UΔUU_{g},U_{\Delta_{U}} (2.24), and G[n]G_{[{n}]} (5.1), we have Ug(0)=UΔU(0)=G[n](0)=U0=εU_{g}(0)=U_{\Delta_{U}}(0)=G_{[{n}]}(0)=U_{0}=\varepsilon. Thus, we only need to show

1inUiYi<Yg(0)Y+C2Y2\sum_{1\leq i\leq n}U_{i}Y^{i}<\partial_{Y}g(0)Y+C_{2}Y^{2}

for YJY\in J and some absolute constant C2C_{2} independent of nn, where g=Ugg=U_{g} or g=UΔUg=U_{\Delta_{U}}. Since Y<0Y<0, using (4.8), we only need to show that the inequality

(5.28) C3Y+2inUiYi1+c>0,C_{3}Y+\sum_{2\leq i\leq n}U_{i}Y^{i-1}+c>0,

with some absolute constant C3C_{3} independent of nn and c>0c>0 determined in (4.8) holds for any YJY\in J. By requiring nn large, we have (5.24) and

|Y|<|Un|1/n<(1+2δ)(Cκ)1.|Y|<|U_{n}|^{-1/n}<(1+2\delta)(C_{*}\kappa)^{-1}.

Since nn is odd and κ(n,n+1)\kappa\in(n,n+1), using (3.22b), we get Un>0U_{n}>0 and UnYn1>0U_{n}Y^{n-1}>0. Below, we further bound C3Y,UiYi1,in1C_{3}Y,U_{i}Y^{i-1},i\leq n-1.

For in8i\leq\frac{n}{8}, using (3.63b) with l=3l=3 and r=1+2δ4<1r=\frac{1+2\delta}{4}<1, for YJY\in J, we get

(5.29) |C3Y|+|U2Y|n1,|UiYi1|n2+(Cκ)i3Cκ)(i1)n2,3in8.\begin{gathered}|C_{3}Y|+|U_{2}Y|\lesssim n^{-1},\\ |U_{i}Y^{i-1}|\leq n^{-2}+(C_{*}\kappa)^{i-3}C_{*}\kappa)^{-(i-1)}\lesssim n^{-2},\quad 3\leq i\leq\frac{n}{8}.\end{gathered}

For n8i<nn1/3+2\frac{n}{8}\leq i<n-n^{1/3}+2 , applying (3.65a) and Ui1/inU_{i}^{1/i}\leq n from (3.63a), we obtain

(5.30) |UiYi1|=(UiYi)(i1)/i|Ui1/i|2min(i,ni)i1in212n1/3n,n8i<nn1/3.|U_{i}Y^{i-1}|=(U_{i}Y^{i})^{(i-1)/i}|U_{i}^{1/i}|\lesssim 2^{-\min(i,n-i)\frac{i-1}{i}}n\lesssim 2^{-\frac{1}{2}n^{1/3}}n,\quad\frac{n}{8}\leq i<n-n^{1/3}.

For n1jnn1/3n-1\geq j\geq n-n^{1/3}, we estimate the cases |Y|n4/3|Y|\leq n^{-4/3} and |Y|>n4/3|Y|>n^{-4/3} separately.

For |Y|n4/3|Y|\leq n^{-4/3}, using (3.63a) with l=0l=0 and jn1j\leq n-1, we get

(5.31a) |UjYj1|n(Cnn4/3)j1n2.|U_{j}Y^{j-1}|\lesssim n(Cn\cdot n^{-4/3})^{j-1}\lesssim n^{-2}.
Combining (5.29)-(5.31a) and UnYn1>0U_{n}Y^{n-1}>0, we prove (5.28) for nn large enough with |Y|n4/3|Y|\leq n^{-4/3}.

For |Y|>n4/3|Y|>n^{-4/3}, we estimate U2jY2j1+U2j+1Y2jU_{2j}Y^{2j-1}+U_{2j+1}Y^{2j} together with nn1/3<2j+1nn-n^{1/3}<2j+1\leq n. Using (3.61) and (3.22b), for nn large enough, we get

(5.31b) U2j+1>CU2jn2j+1κ2j1>Cn5/3U2j,U2jY2j1+U2j+1Y2j=|Y2j1|(U2j+1|Y|U2j)>U2j|Y2j1|(Cn5/3n4/31)>0.\begin{gathered}U_{2j+1}>CU_{2j}n\cdot\frac{2j+1}{\kappa-2j-1}>Cn^{5/3}U_{2j},\\ U_{2j}Y^{2j-1}+U_{2j+1}Y^{2j}=|Y^{2j-1}|(U_{2j+1}|Y|-U_{2j})>U_{2j}|Y^{2j-1}|(Cn^{5/3}n^{-4/3}-1)>0.\end{gathered}

Combining (5.29),(5.30),(5.31b), we prove (5.28) with n4/3|Y||Un|1/nn^{-4/3}\leq|Y|\leq|U_{n}|^{-1/n}.

The inequalities in (5.27) follow from (5.25), (5.26) and |YI|<|YI|<Un1/n|Y_{I}^{\prime}|<|Y_{I}|<U_{n}^{1/n} proved in Propositions 5.2, 5.3. MM \square

We have the following estimate of ΔY(Y,U(Y))\Delta_{Y}(Y,U(Y)) and U(Y)U(Y) near YIY_{I}^{\prime}.

Lemma 5.5.

There exists constant CU>0C_{U}>0 such that

|ΔY(Y,U(Y))|CU|YYI|1/2|\Delta_{Y}(Y,U(Y))|\geq C_{U}|Y-Y_{I}^{\prime}|^{1/2}

for any Y[YI,YI/2]Y\in[Y_{I}^{\prime},Y_{I}^{\prime}/2]. Moreover, we have U(Y)CUU(Y)\geq C_{U} for any Y[YI,0]Y\in[Y_{I}^{\prime},0].

Proof.

Firstly, we have

ddYΔY2(Y,U(Y))=2ΔY(YΔY+UΔYdU(Y)dY)=2ΔYYΔY+2ΔUUΔY.\frac{d}{dY}\Delta_{Y}^{2}(Y,U(Y))=2\Delta_{Y}\Big{(}\partial_{Y}\Delta_{Y}+\partial_{U}\Delta_{Y}\frac{dU(Y)}{dY}\Big{)}=2\Delta_{Y}\cdot\partial_{Y}\Delta_{Y}+2\Delta_{U}\cdot\partial_{U}\Delta_{Y}.

Using UΔY=dY1\partial_{U}\Delta_{Y}=dY-1 (2.3), ΔY(YI,U(YI))=0\Delta_{Y}(Y_{I}^{\prime},U(Y_{I}^{\prime}))=0 from Proposition 5.3 and the formula of ΔY\Delta_{Y} in (2.24), ΔU(YI,U(YI))<0\Delta_{U}(Y_{I}^{\prime},U(Y_{I}^{\prime}))<0 from (5.27) and (2.24), and the continuity of U(Y)U(Y) on [YI,0][Y_{I}^{\prime},0], we get

limY(YI)+ddYΔY2(Y,U(Y))=limY(YI)+2ΔUUΔY=2ΔU(YI,U(YI))(dYI1)>0.\lim_{Y\to(Y_{I}^{\prime})^{+}}\frac{d}{dY}\Delta_{Y}^{2}(Y,U(Y))=\lim_{Y\to(Y_{I}^{\prime})^{+}}2\Delta_{U}\cdot\partial_{U}\Delta_{Y}=2\Delta_{U}(Y_{I}^{\prime},U(Y_{I}^{\prime}))(dY_{I}^{\prime}-1)>0.

Since ΔY(YI,U(YI))=0\Delta_{Y}(Y_{I}^{\prime},U(Y_{I}^{\prime}))=0 and ΔY(Y,U(Y))0\Delta_{Y}(Y,U(Y))\neq 0 for any Y(YI,0)Y\in(Y_{I}^{\prime},0), we obtain

ΔY2(Y,U(Y))CU(YYI)1/2,|(ΔY(Y,U(Y)))1|CU|YYI|1/2,\Delta_{Y}^{2}(Y,U(Y))\geq C_{U}(Y-Y_{I}^{\prime})^{1/2},\quad\Rightarrow\quad|(\Delta_{Y}(Y,U(Y)))^{-1}|\lesssim C_{U}|Y-Y_{I}^{\prime}|^{-1/2},

for any Y[YI,YI/2]Y\in[Y_{I}^{\prime},Y_{I}^{\prime}/2] and some CU>0C_{U}>0. Since (Y,U(Y))(Y,U(Y)) is continuous on Y[YI,0]Y\in[Y_{I}^{\prime},0], we have |Y,U(Y)|DU|Y,U(Y)|\lesssim D_{U} for some constant DUD_{U}. Using the ODE (2.14), we obtain

|ΔUUΔY|CU|YYI|1/2,forY(YI,YI/2],\Big{|}\frac{\Delta_{U}}{U\cdot\Delta_{Y}}\Big{|}\lesssim C_{U}|Y-Y_{I}^{\prime}|^{-1/2},\quad\mathrm{for}\ Y\in(Y_{I}^{\prime},Y_{I}^{\prime}/2],

for some constant CU>0C_{U}>0. Since |YYI|1/2|Y-Y_{I}^{\prime}|^{-1/2} is integrable, we obtain U(YI)CU,2U(YI/2)>0U(Y_{I}^{\prime})\geq C_{U,2}U(Y_{I}^{\prime}/2)>0 for some CU,2>0C_{U,2}>0. Since UΔY(Y)U_{\Delta_{Y}}(Y) is increasing in Y<0Y<0 (see Lemma 2.4), using (5.25), we get U(Y)UΔY(Y)UΔY(YI)=U(YI)>0U(Y)\geq U_{\Delta_{Y}}(Y)\geq U_{\Delta_{Y}}(Y_{I}^{\prime})=U(Y_{I}^{\prime})>0 for any Y[YI,0)Y\in[Y_{I}^{\prime},0), we conclude the proof. MM \square

5.3. Extension across Y=0Y=0

In this section, we show in Proposition 5.6 that after U(Y)U(Y) crosses UΔY(Y)U_{\Delta_{Y}}(Y), we can smoothly extend the solution curve (Y,U(Y))(Y,U(Y)) slightly beyond Y=0Y=0. See Figure 2 for an illustration. In Section 6, we will use Proposition 5.6 to prove Theorem 1.1.

We introduce the triangle region below min(UΔY(Y),Ug(Y))\min(U_{\Delta_{Y}}(Y),U_{g}(Y))

(5.32) Ωtri,1{(Y,U):γ<Y<0, 0<U<min(Ug(Y),UΔY(Y)),UΔY(Y)<U},\displaystyle\Omega_{\mathrm{tri},1}\triangleq\{(Y,U):-\gamma<Y<0,\ 0<U<\min(U_{g}(Y),U_{\Delta_{Y}}(Y)),\ U_{\Delta_{Y}}(Y)<U\},
Ωtri,2{(Y,U):γ<Y<0, 0<U<min(Ug(Y),UΔY(Y)),U<UΔY(Y)}.\displaystyle\Omega_{\mathrm{tri},2}\triangleq\{(Y,U):-\gamma<Y<0,\ 0<U<\min(U_{g}(Y),U_{\Delta_{Y}}(Y)),\ U<U_{\Delta_{Y}}(Y)\}.

From the definition of Ωtri,i\Omega_{\mathrm{tri},i} in (5.32) and (2.24), we get

(5.33) ΔU(Q)\displaystyle\Delta_{U}(Q) <0,QΩtri,1,Ωtri,2,\displaystyle<0,\ \forall Q\in\Omega_{\mathrm{tri},1},\ \Omega_{\mathrm{tri},2},
ΔY(Q)\displaystyle\Delta_{Y}(Q) <0,QΩtri,1,ΔY(Q)>0,QΩtri,2.\displaystyle<0,\ \forall Q\in\Omega_{\mathrm{tri},1},\quad\Delta_{Y}(Q)>0,\ \forall Q\in\Omega_{\mathrm{tri},2}.

Since the ODE becomes singular on (Y,U)=(Y,UΔY(Y))(Y,U)=(Y,U_{\Delta_{Y}(Y)}), we desingularize the ODE (2.14)

(5.34a) dUdsdξ=ΔU(Yds(ξ),Uds(ξ)),dYdsdξ=ΔY(Yds(ξ),Uds(ξ)),\frac{dU_{\mathrm{ds}}}{d\xi}=\Delta_{U}(Y_{\mathrm{ds}}(\xi),U_{\mathrm{ds}}(\xi)),\quad\frac{dY_{\mathrm{ds}}}{d\xi}=\Delta_{Y}(Y_{\mathrm{ds}}(\xi),U_{\mathrm{ds}}(\xi)),
where ds is short for desingularized. Let YI(γ,0)Y_{I}^{\prime}\in(-\gamma,0) be the intersection determined in Proposition 5.3. Using estimates of U(Y)U(Y) in (5.25),(5.27), we can pick the initial data as
(5.34b) (Yds,Uds)(0)=(YI/2,U(YI/2)),(Yds,Uds)(0)Ωtri,1.(Y_{\mathrm{ds}},U_{\mathrm{ds}})(0)=(Y_{I}^{\prime}/2,U(Y_{I}^{\prime}/2)),\quad(Y_{\mathrm{ds}},U_{\mathrm{ds}})(0)\in\Omega_{\mathrm{tri},1}.

Define

(5.35) Qds(ξ)=(Yds(ξ),Uds(ξ)).Q_{\mathrm{ds}}(\xi)=(Y_{\mathrm{ds}}(\xi),U_{\mathrm{ds}}(\xi)).

Since ΔY(Y,U(Y))<0\Delta_{Y}(Y,U(Y))<0 for Y(YI,0)Y\in(Y_{I}^{\prime},0), we define a map η(Y)\eta(Y)

(5.36) dη(Y)dY=1ΔY(Y,U(Y))<0,η(YI2)=0.\frac{d\eta(Y)}{dY}=\frac{1}{\Delta_{Y}(Y,U(Y))}<0,\quad\eta(\frac{Y_{I}^{\prime}}{2})=0.

We have η(Y)C(YI,0)\eta(Y)\in C^{\infty}(Y_{I}^{\prime},0) and it is a bijection. For the desingularized ODE, we show:

Proposition 5.6.

There exists ξ1,ξ2,ξ3,δ5>0\xi_{1},\xi_{2},\xi_{3},\delta_{5}>0 with 0<ξ1<ξ1+δ5<ξ2<ξ30<\xi_{1}<\xi_{1}+\delta_{5}<\xi_{2}<\xi_{3} such that:

(a) The solution (Yds,Uds)(Y_{\mathrm{ds}},U_{\mathrm{ds}}) can be obtained from (Y,U(Y))(Y,U(Y)) by a reparametrization.

(5.37) (Yds,Uds)(ξ)=(η1(ξ),U(η1(ξ))),forξ(0,ξ1],ξ1=η(YI);(Y_{\mathrm{ds}},U_{\mathrm{ds}})(\xi)=(\eta^{-1}(\xi),U(\eta^{-1}(\xi))),\quad\mathrm{for}\quad\xi\in(0,\xi_{1}],\quad\xi_{1}=\eta(Y_{I}^{\prime});

(b) For any ξ[0,ξ1]\xi\in[0,\xi_{1}], we have

0<Uds(ξ)<min(Ug(Yds(ξ)),UΔU(Yds(ξ))),Yds(ξ)>γ.0<U_{\mathrm{ds}}(\xi)<\min(U_{g}(Y_{\mathrm{ds}}(\xi)),U_{\Delta_{U}}(Y_{\mathrm{ds}}(\xi))),\quad Y_{\mathrm{ds}}(\xi)>-\gamma.

(c) We have (Yds(ξ),Uds(ξ))Ωtri,2(Y_{\mathrm{ds}}(\xi),U_{\mathrm{ds}}(\xi))\in\Omega_{\mathrm{tri},2} for any ξ(ξ1,ξ2)\xi\in(\xi_{1},\xi_{2}) and Yds(ξ2)=0Y_{\mathrm{ds}}(\xi_{2})=0;

(d) For any ξ(ξ2,ξ3]\xi\in(\xi_{2},\xi_{3}], we have 0<Yds(ξ)<10<Y_{\mathrm{ds}}(\xi)<1. For any ξ[ξ2,ξ3]\xi\in[\xi_{2},\xi_{3}] (including ξ2\xi_{2}), we have

0<Uds(ξ)<min(UΔY(),UΔU(),Ug())(Yds(ξ)).0<U_{\mathrm{ds}}(\xi)<\min(U_{\Delta_{Y}}(\cdot),U_{\Delta_{U}}(\cdot),U_{g}(\cdot))(Y_{\mathrm{ds}}(\xi)).

(e) In particular, for any ξ[0,ξ3]\xi\in[0,\xi_{3}], we have

0<Uds(ξ)<min(Ug(Yds(ξ)),UΔU(Yds(ξ))),Yds(ξ)>γ.0<U_{\mathrm{ds}}(\xi)<\min(U_{g}(Y_{\mathrm{ds}}(\xi)),U_{\Delta_{U}}(Y_{\mathrm{ds}}(\xi))),\quad Y_{\mathrm{ds}}(\xi)>-\gamma.

5.3.1. Estimates of η\eta

We define ξ1=η(YI)\xi_{1}=\eta(Y_{I}^{\prime}). Since 1ΔY(Y,U(Y))\frac{1}{\Delta_{Y}(Y,U(Y))} is integrable near Y=YIY=Y_{I}^{\prime} from Lemma 5.5, using the equation of η\eta (5.36), we obtain that η(YI)\eta(Y_{I}^{\prime}) is bounded.

Using the ODE (2.14), the definition of η\eta (5.36), and the chain rule, we obtain that the ODE system of (η1(ξ),U(η1(ξ)))(\eta^{-1}(\xi),U(\eta^{-1}(\xi))) in ξ\xi is the same as (5.34). Moreover, two ODEs have the same initial condition at ξ=0\xi=0 due to η1(0)=YI/2\eta^{-1}(0)=Y_{I}^{\prime}/2 (see (5.36)) and (5.34b). Using the uniqueness of the ODE solution and continuity, we prove (5.37).

Using the relation (5.37) and the estimate of (Y,U(Y))(Y,U(Y)) with Y(YI,0)Y\in(Y_{I}^{\prime},0) in (5.27), Yds(ξ)YI>γY_{\mathrm{ds}}(\xi)\geq Y_{I}^{\prime}>-\gamma, and Proposition 5.3, we obtain

(5.38) Qds(ξ)Ωtri,1,ξ[0,ξ1),ΔY(Yds(ξ1),Uds(ξ1))=0,ΔU(Yds(ξ1),Uds(ξ1))<0.Q_{\mathrm{ds}}(\xi)\in\Omega_{\mathrm{tri},1},\ \forall\xi\in[0,\xi_{1}),\quad\Delta_{Y}(Y_{\mathrm{ds}}(\xi_{1}),U_{\mathrm{ds}}(\xi_{1}))=0,\quad\Delta_{U}(Y_{\mathrm{ds}}(\xi_{1}),U_{\mathrm{ds}}(\xi_{1}))<0.

Using (5.27) with Y[YI,0)Y\in[Y_{I}^{\prime},0) (including YIY_{I}^{\prime}), YI>γY_{I}^{\prime}>-\gamma from Proposition 5.3, U(Y)>0U(Y)>0 for Y[YI,0]Y\in[Y_{I}^{\prime},0] from Lemma 5.5, and the relation (5.37), we prove result (b) in Proposition 5.6.

5.3.2. Solving the desingularized ODE

Next, we solve the ODE (5.34) for ξξ1\xi\geq\xi_{1} and prove item (c), (d), (e) in Proposition 5.6. We consider

F(ξ)=UΔY(Yds(ξ))Uds(ξ).F(\xi)=U_{\Delta_{Y}}(Y_{\mathrm{ds}}(\xi))-U_{\mathrm{ds}}(\xi).

Using (5.38), we get F(ξ)<0F(\xi)<0 for ξ(0,ξ1)\xi\in(0,\xi_{1}) and F(ξ1)=0F(\xi_{1})=0. Moreover, using the ODE (5.34), we compute

F(ξ1)=UΔY(Yds(ξ1))ΔY(Qds(Y(ξ1)))ΔU(Qds(Y(ξ1)))=ΔU(Qds(Y(ξ1)))>0.F^{\prime}(\xi_{1})=U^{\prime}_{\Delta_{Y}}(Y_{\mathrm{ds}}(\xi_{1}))\cdot\Delta_{Y}(Q_{\mathrm{ds}}(Y(\xi_{1})))-\Delta_{U}(Q_{\mathrm{ds}}(Y(\xi_{1})))=-\Delta_{U}(Q_{\mathrm{ds}}(Y(\xi_{1})))>0.

We obtain the last inequality using the strict inequalities in result (a) in Proposition 5.6 at ξ=ξ1\xi=\xi_{1} and (2.24). Using continuity, for ξ(ξ1,ξ1+δ5]\xi\in(\xi_{1},\xi_{1}+\delta_{5}] with small δ5>0\delta_{5}>0, we obtain

(5.39) F(ξ)>0,Qds(ξ)Ωtri,2.F(\xi)>0,\quad Q_{\mathrm{ds}}(\xi)\in\Omega_{\mathrm{tri},2}.
Intersect Y=0Y=0

Next, we show that Qds(ξ)Q_{\mathrm{ds}}(\xi) intersects the curve Y=0Y=0. Due to the sign conditions (5.33), starting at Qds(ξ1)Q_{\mathrm{ds}}(\xi_{1}), we know that if Qds(ξ)Ωtri,2Q_{\mathrm{ds}}(\xi)\in\Omega_{\mathrm{tri},2}, we have

(5.40) ddξUds(ξ)=ΔU(Qds(ξ))<0,ddξYds(ξ)=ΔY(Qds(ξ))>0.\frac{d}{d\xi}U_{\mathrm{ds}}(\xi)=\Delta_{U}(Q_{\mathrm{ds}}(\xi))<0,\quad\frac{d}{d\xi}Y_{\mathrm{ds}}(\xi)=\Delta_{Y}(Q_{\mathrm{ds}}(\xi))>0.

Due to continuity and (5.39), we get Qds(ξ)Ωtri,2Q_{\mathrm{ds}}(\xi)\in\Omega_{\mathrm{tri},2} for ξ(ξ1,ξ2)\xi\in(\xi_{1},\xi_{2}) with some ξ2>ξ1+δ5\xi_{2}>\xi_{1}+\delta_{5}. We assume that ξ2\xi_{2} is maximal value such that Qds(ξ)Ωtri,2Q_{\mathrm{ds}}(\xi)\in\Omega_{\mathrm{tri},2} for all ξ(ξ1,ξ2)\xi\in(\xi_{1},\xi_{2}) and ξ2\xi_{2} is allowed to be \infty. Below, we show that ξ2<\xi_{2}<\infty and Y(ξ2)=0Y(\xi_{2})=0.

Using the monotonicity (5.40), (5.37) with ξ=ξ1\xi=\xi_{1}, and YI>γY_{I}^{\prime}>-\gamma from Proposition 5.3, we get

(5.41) 0>Yds(ξ)>Yds(ξ1)=YI>γ,0<Uds(ξ)<Uds(ξ1),ξ(ξ1,ξ2).0>Y_{\mathrm{ds}}(\xi)>Y_{\mathrm{ds}}(\xi_{1})=Y_{I}^{\prime}>-\gamma,\quad 0<U_{\mathrm{ds}}(\xi)<U_{\mathrm{ds}}(\xi_{1}),\quad\xi\in(\xi_{1},\xi_{2}).

For ξ(ξ1+δ5,ξ2)\xi\in(\xi_{1}+\delta_{5},\xi_{2}), since Qds(ξ)Ωtri,2Q_{\mathrm{ds}}(\xi)\in\Omega_{\mathrm{tri},2} and g(Y)=UΔY(Y),UΔU(Y),Ug(Y)g(Y)=U_{\Delta_{Y}}(Y),U_{\Delta_{U}}(Y),U_{g}(Y) is increasing in YY for Y(γ,0)Y\in(-\gamma,0) from Lemma 2.4, using (5.40), we get

(5.42) Uds(ξ)g(Yds(ξ))Uds(ξ1+δ5)g(Yds(ξ1+δ5))<c<0,U_{\mathrm{ds}}(\xi)-g(Y_{\mathrm{ds}}(\xi))\leq U_{\mathrm{ds}}(\xi_{1}+\delta_{5})-g(Y_{\mathrm{ds}}(\xi_{1}+\delta_{5}))<-c<0,

for some constant c>0c>0 independent of ξ\xi, where the last inequality follows from Qds(ξ1+δ5)Ωtri,2Q_{\mathrm{ds}}(\xi_{1}+\delta_{5})\in\Omega_{\mathrm{tri},2} (5.32). Using Yds(ξ)<0<Uds(ξ)Y_{\mathrm{ds}}(\xi)<0<U_{\mathrm{ds}}(\xi) (5.41), (5.42), and the uniform boundedness of Qds(ξ)Q_{\mathrm{ds}}(\xi) (5.41), we estimate ΔU,ΔY\Delta_{U},\Delta_{Y} in (2.14) as

(5.43a) ΔU(Qds(ξ))\displaystyle\Delta_{U}(Q_{\mathrm{ds}}(\xi)) =2U(U+f(Y)+(d1)Y(1Y))CUds(ξ),\displaystyle=2U(U+f(Y)+(d-1)Y(1-Y))\geq-CU_{\mathrm{ds}}(\xi),
(5.43b) ΔY(Qds(ξ))\displaystyle\Delta_{Y}(Q_{\mathrm{ds}}(\xi)) =(dY1)(UUΔY)(Qds(ξ))>c>0,\displaystyle=(dY-1)(U-U_{\Delta_{Y}})(Q_{\mathrm{ds}}(\xi))>c>0,

for all ξ(ξ1+δ5,ξ2)\xi\in(\xi_{1}+\delta_{5},\xi_{2}) and some constant C,c>0C,c>0 independent of ξ\xi.

Due to (5.43b) and Y<0Y<0 for any (Y,U)Ωtri,2(Y,U)\in\Omega_{\mathrm{tri},2}, the curve Qds(ξ)Q_{\mathrm{ds}}(\xi) must exit Ωtri,2\Omega_{\mathrm{tri},2} with finite ξ2\xi_{2}. Using (5.43a) and the ODE of UU in (5.34), we get U(ξ2)U(ξ1+δ5)eC(ξ2ξ1)>0U(\xi_{2})\geq U(\xi_{1}+\delta_{5})e^{-C(\xi_{2}-\xi_{1})}>0. Since Yds,UdsY_{\mathrm{ds}},U_{\mathrm{ds}} are continuous in ξ\xi, taking ξξ2\xi\to\xi_{2}^{-} in (5.42), we get

(5.44) 0<Uds(ξ2)<min(UΔY(),UΔU(),Ug())(Yds(ξ2)).0<U_{\mathrm{ds}}(\xi_{2})<\min(U_{\Delta_{Y}}(\cdot),U_{\Delta_{U}}(\cdot),U_{g}(\cdot))(Y_{\mathrm{ds}}(\xi_{2})).

Using (5.44), the definition of Ωtri,2\Omega_{\mathrm{tri},2} in (5.32), and U(ξ2)>0U(\xi_{2})>0, we obtain that Qds(ξ2)Q_{\mathrm{ds}}(\xi_{2}) can only exit Ωtri,2\Omega_{\mathrm{tri},2} via Y=0Y=0. Thus, we prove Y(ξ2)=0Y(\xi_{2})=0 and the result (c) in Proposition 5.6.

Crossing the line Y=0Y=0

Recall that (5.43b) applies to any ξ(ξ1+δ5,ξ2)\xi\in(\xi_{1}+\delta_{5},\xi_{2}). Since Uds,YdsU_{\mathrm{ds}},Y_{\mathrm{ds}} are continuous, taking ξξ2\xi\to\xi_{2}, we get

Y(ξ2)=ΔY(Qds(ξ2))>0.Y^{\prime}(\xi_{2})=\Delta_{Y}(Q_{\mathrm{ds}}(\xi_{2}))>0.

Since Y(ξ2)=0Y(\xi_{2})=0, using the above estimate, (5.44), and the continuities of Yds,UdsY_{\mathrm{ds}},U_{\mathrm{ds}}, and then choosing ξ3>ξ2\xi_{3}>\xi_{2} with ξ3ξ2\xi_{3}-\xi_{2} small enough, we prove the result (d) in Proposition 5.6.

Since Qds(ξ)Ωtri,iQ_{\mathrm{ds}}(\xi)\in\Omega_{tri,i} (5.32) implies Yds(ξ)>γY_{\mathrm{ds}}(\xi)>-\gamma and 0<Uds(ξ)<Ug(Yds(ξ)),UΔU(Yds(ξ))0<U_{\mathrm{ds}}(\xi)<U_{g}(Y_{\mathrm{ds}}(\xi)),U_{\Delta_{U}}(Y_{\mathrm{ds}}(\xi)). Combining results (b)-(d) in Proposition 5.6, we prove result (e). We complete the proof.

6. Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Recall Z±(V),ZV(V)Z_{\pm}(V),Z_{V}(V) from (2.20), which relate to the roots of ΔV,ΔZ\Delta_{V},\Delta_{Z}. We introduce

(6.1) Ωfar={(Z,V):V(1,1),Z>Z+(V),Z>ZV(V),Z>V}.\Omega_{\mathrm{far}}=\{(Z,V):V\in(-1,1),\ Z>Z_{+}(V),\ Z>Z_{V}(V),Z>V\}.

The proof of Theorem 1.1 follows from the following two results.

Proposition 6.1.

There exists C>0C>0 large enough such that for any odd nn with n>Cn>C, there exists κn(n,n+1)\kappa_{n}\in(n,n+1) and ε1>0\varepsilon_{1}>0, such that the ODE (2.3) admits a solution V(Z)C([0,Z2])V(Z)\in C^{\infty}([0,Z_{2}]) with Z2>Z0Z_{2}>Z_{0}, V(0)=0,V(Z0)=V0V(0)=0,\ V(Z_{0})=V_{0},

(6.2) V(Z)(1,1),V(Z)<Z,forZ(0,Z2],V(Z)\in(-1,1),\quad V(Z)<Z,\quad\mathrm{for}\quad Z\in(0,Z_{2}],

and (Z2,V(Z2))Ωfar(Z_{2},V(Z_{2}))\in\Omega_{\mathrm{far}}, where Z0,V0Z_{0},V_{0} is defined in (2.7).

Lemma 6.2.

Given any (Z2,V2)(Z_{2},V_{2}) with Z2>0Z_{2}>0 and (Z2,V2)Ωfar(Z_{2},V_{2})\in\Omega_{\mathrm{far}}, the ODE solution to (2.3) starting at Z=Z2,V(Z2)=V2Z=Z_{2},V(Z_{2})=V_{2} admits a smooth solution (Z,V(Z))(Z,V(Z)) for any ZZ2Z\geq Z_{2} with (Z,V(Z))Ωfar(Z,V(Z))\in\Omega_{\mathrm{far}} and limZV(Z)=V\lim_{Z\to\infty}V(Z)=V_{\infty} for some V(1,1)V_{\infty}\in(-1,1).

We defer the proofs of Proposition 6.1 and Lemma 6.2 to Sections 6.1 and 6.2, respectively. See the black curve in Figure 1 for an illustration of the solution curve (Z,V)(Z,V). The region Ωfar\Omega_{\mathrm{far}} lies to the right of the red and blue curves in Figure 1.

Proof of Theorem 1.1.

Using Proposition 6.1, there exists CC large enough, such that for any n>Cn>C, nn is odd, and some κn(n,n+1)\kappa_{n}\in(n,n+1), we can construct a smooth solution V(κn)(Z)V^{(\kappa_{n})}(Z) to the ODE (2.3) in Z[0,Z2]Z\in[0,Z_{2}] with the properties in Proposition 6.1. Since (Z2,V(κn)(Z2))Ωfar(Z_{2},V^{(\kappa_{n})}(Z_{2}))\in\Omega_{\mathrm{far}} and Ωfar\Omega_{\mathrm{far}} (6.1) is open, we can choose Z2<Z2Z_{2}^{\prime}<Z_{2} with (Z2,V(κn)(Z2))Ωfar(Z_{2}^{\prime},V^{(\kappa_{n})}(Z_{2}^{\prime}))\in\Omega_{\mathrm{far}}. Applying Lemma 6.2 with (Z2,V2)(Z2,V(Z2))(Z_{2},V_{2})\rightsquigarrow(Z_{2}^{\prime},V(Z_{2}^{\prime})), and using the uniqueness of ODE, we construct a global smooth solution to the ODE (2.3) with V(κn)(0)=0V^{(\kappa_{n})}(0)=0 and the estimates (1.9).

From Proposition 4.1, we obtain V(κn)(Z)=Zg(Z2)V^{(\kappa_{n})}(Z)=Zg(Z^{2}) for some gC([0,Z0+ε1]g\in C^{\infty}([0,Z_{0}+\varepsilon_{1}] with some ε1>0\varepsilon_{1}>0. Since V(κn)C([0,))V^{(\kappa_{n})}\in C^{\infty}([0,\infty)), we can extend this property for some gC([0,))g\in C^{\infty}([0,\infty)).

Next, we estimate the profile WW for ρ\rho (1.3), which satisfies (A.10):

ZWW=JW(Z),JW(Z)=2(p1)1ZV((d1)VZ(1V2)d1γ+1ZV11V2V).\frac{\partial_{Z}W}{W}=J_{W}(Z),\quad J_{W}(Z)=\frac{2}{(p-1)\ell}\cdot\frac{1}{Z-V}\Big{(}(d-1)\frac{V}{Z(1-V^{2})}-\frac{d-1}{\gamma+1}-\frac{ZV-1}{1-V^{2}}\cdot V^{\prime}\Big{)}.

From (1.9) and Lemma 6.2, we obtain C([0,))C^{\infty}([0,\infty)), V(0)=0V(0)=0,

(6.3) |V|<1,V(Z)<ZforZ>0,limZV(Z)=V(1,1).|V|<1,\quad V(Z)<Z\ \mathrm{for}\ Z>0,\quad\lim_{Z\to\infty}V(Z)=V_{\infty}\in(-1,1).

Using the power series expansion (4.31) in Proposition 4.7 and (4.34), we have |V(Z)d1d(γ+1)|Z2|V^{\prime}(Z)-\frac{d-1}{d(\gamma+1)}|\lesssim Z^{2}. Thus, using the above estimates, we obtain that the denominators in JW(Z)J_{W}(Z) are non-zero for Z>0Z>0, the singularity ZZ is cancelled near Z=0Z=0, and JW(Z)C([0,))J_{W}(Z)\in C^{\infty}([0,\infty)).

For any Z>2Z>2 large enough, estimating VV^{\prime} using the ODE (2.3), we derive the asymptotics

|V(Z)|=|ΔVΔZ|Z2,|JW(Z)+2(d1)(p1)(γ+1)1Z|Z2.|V^{\prime}(Z)|=|\frac{\Delta_{V}}{\Delta_{Z}}|\lesssim Z^{-2},\quad\Big{|}J_{W}(Z)+\frac{2(d-1)}{(p-1)\ell(\gamma+1)}\frac{1}{Z}\Big{|}\lesssim Z^{-2}.

Choosing W(0)=1W(0)=1, we obtain

(6.4) W(Z)=exp(0ZJW(Z)𝑑Z)C([0,)),limZW(Z)Za=W0,W(Z)=\exp(\int_{0}^{Z}J_{W}(Z)dZ)\in C^{\infty}([0,\infty)),\quad\lim_{Z\to\infty}W(Z)Z^{a}=W_{\infty}\neq 0,

with a=2(d1)(p1)(γ+1)a=\frac{2(d-1)}{(p-1)\ell(\gamma+1)}. We further construct the profile Φ\Phi using (A.11) with Φ(0)=0\Phi(0)=0. Using these profiles, the self-similar ansatz (2.2), (1.3), and (1.7a), we construct the smooth profile Φ,W\Phi,W for ϕ,ρ\phi,\rho and obtain a smooth self-similar imploding solution (1.10) to the relativistic Euler equations (1.7). The asymptotics (1.11) follows from the limits of V,WV,W in (6.3), (6.4) and the formulas of u0,uiu^{0},u^{i} in (1.7a), (1.10),(2.2). We complete the proof. MM \square

6.1. Proof of Proposition 6.1

We assume that nn is odd and large enough. Using Proposition 4.1, we construct a smooth solution V(κn)C[0,Z0+ε1]V^{(\kappa_{n})}\in C^{\infty}[0,Z_{0}+\varepsilon_{1}] with some ε1>0\varepsilon_{1}>0 and

(6.5) (Z,V(κn)(Z))=(𝒵,𝒱)(Y,U(κn)(Y)),|Y|<ε1.(Z,V^{(\kappa_{n})}(Z))=({\mathcal{Z}},{\mathcal{V}})(Y,U^{(\kappa_{n})}(Y)),\quad|Y|<\varepsilon_{1}.
First gluing

In Proposition 5.3, we show that U(κn)(Y)U^{(\kappa_{n})}(Y) can be extended smoothly for Y<0Y<0 up to Y=YIY=Y_{I}^{\prime}. We define the map following (4.39)

(Za,Va)(Y)=(𝒵,𝒱)(Y,U(κn)(Y)),YJ,J=(YI,ε1),(Z_{\mathrm{a}},V_{\mathrm{a}})(Y)=({\mathcal{Z}},{\mathcal{V}})(Y,U^{(\kappa_{n})}(Y)),\quad Y\in J,\quad J=(Y_{I}^{\prime},\varepsilon_{1}),

From Proposition 5.3, (5.27), we have UΔY(Y)<U(κn)(Y)<Ug(Y)U_{\Delta_{Y}}(Y)<U^{(\kappa_{n})}(Y)<U_{g}(Y) for Y(YI,0)Y\in(Y_{I}^{\prime},0). Thus, along the solution curve (Y,U(κn)(Y))(Y,U^{(\kappa_{n})}(Y)) with Y(YI,0)Y\in(Y_{I}^{\prime},0), using (2.24), (2.22) and following the proof of (4.10), we obtain ΔY<0,ΔZ<0\Delta_{Y}<0,\ \Delta_{Z}<0. Following (4.42), we obtain

dZadY(Y)=m1(Y,U(κn)(Y))ΔZΔY0,\frac{dZ_{\mathrm{a}}}{dY}(Y)=m^{-1}(Y,U^{(\kappa_{n})}(Y))\frac{\Delta_{Z}}{\Delta_{Y}}\neq 0,

for any Y(YI,0)Y\in(Y_{I}^{\prime},0). Using Za(0)<0Z_{\mathrm{a}}^{\prime}(0)<0 and continuity, we obtain

(6.6) m(Y,U(κn)(Y))<0,Za(Y)<0,Y(YI,0),m(Y,U^{(\kappa_{n})}(Y))<0,\quad Z_{\mathrm{a}}^{\prime}(Y)<0,\quad Y\in(Y_{I}^{\prime},0),

and Za(Y)Z_{\mathrm{a}}(Y) is invertible for Y(YI,0)Y\in(Y_{I}^{\prime},0). Constructing a solution Va(Za1(Z))V_{\mathrm{a}}(Z_{\mathrm{a}}^{-1}(Z)) to the ODE (2.3), and using the gluing argument in Section 4.4.2, we extend the relation (6.5) to (YI,ε1)(Y_{I}^{\prime},\varepsilon_{1}):

(6.7) (Z,V(κn)(Z))=(𝒵,𝒱)(Y,U(κn)(Y)),YI<Y<ε1.(Z,V^{(\kappa_{n})}(Z))=({\mathcal{Z}},{\mathcal{V}})(Y,U^{(\kappa_{n})}(Y)),\quad Y_{I}^{\prime}<Y<\varepsilon_{1}.

Moreover, V(κn)(Z)V^{(\kappa_{n})}(Z) solves the ODE (2.3) smoothly for Z[0,𝒵(YI,U(κn)(YI)))Z\in[0,{\mathcal{Z}}(Y_{I}^{\prime},U^{(\kappa_{n})}(Y_{I}^{\prime}))).

Second gluing

Next, we construct another solution using the desingularized ODE (5.34)

(6.8) (Zb,Vb)(ξ)=(𝒵,𝒱)(Yds(ξ),Uds(ξ)),ξ[0,ξ3](Z_{\mathrm{b}},V_{\mathrm{b}})(\xi)=({\mathcal{Z}},{\mathcal{V}})(Y_{\mathrm{ds}}(\xi),U_{\mathrm{ds}}(\xi)),\quad\xi\in[0,\xi_{3}]

where ξi\xi_{i} is defined in Proposition 5.6. Below, we consider arbitrary ξ[0,ξ3]\xi\in[0,\xi_{3}]. We show that Zb(ξ)>0Z_{\mathrm{b}}^{\prime}(\xi)>0. Using the ODE (5.34) and the second identity in (2.19), we yield

dZbdξ(ξ)\displaystyle\frac{dZ_{\mathrm{b}}}{d\xi}(\xi) =Y𝒵Yds+U𝒵Uds=Y𝒵ΔY+U𝒵ΔU\displaystyle=\partial_{Y}{\mathcal{Z}}\cdot Y_{\mathrm{ds}}^{\prime}+\partial_{U}{\mathcal{Z}}\cdot U_{\mathrm{ds}}^{\prime}=\partial_{Y}{\mathcal{Z}}\cdot\Delta_{Y}+\partial_{U}{\mathcal{Z}}\cdot\Delta_{U}
=m1(Yds(ξ),Uds(ξ))ΔZ(Zb(ξ),Vb(ξ)),\displaystyle=m^{-1}(Y_{\mathrm{ds}}(\xi),U_{\mathrm{ds}}(\xi))\Delta_{Z}(Z_{\mathrm{b}}(\xi),V_{\mathrm{b}}(\xi)),

From result (e) in Proposition 5.6, we have Uds(ξ)<Ug(Yds(ξ))U_{\mathrm{ds}}(\xi)<U_{g}(Y_{\mathrm{ds}}(\xi)). Using (2.22), we obtain ΔZ(Zb(ξ),Vb(ξ))<0\Delta_{Z}(Z_{\mathrm{b}}(\xi),V_{\mathrm{b}}(\xi))<0. Since (Yds(ξ),Uds(ξ))Qs(Y_{\mathrm{ds}}(\xi),U_{\mathrm{ds}}(\xi))\neq Q_{s}, due to (2.19), we obtain m(Yds(ξ),Uds(ξ))0m(Y_{\mathrm{ds}}(\xi),U_{\mathrm{ds}}(\xi))\neq 0. Using (6.6) and continuity, we obtain m<0m<0 and Zb(ξ)>0Z_{\mathrm{b}}^{\prime}(\xi)>0. Thus, Zb(ξ)Z_{\mathrm{b}}(\xi) is invertible.

Following the gluing argument in Section 4.4.2, we construct a smooth solution

(6.9) VODE(κn)(Z)=Vb(Zb1(Z)),ZZb([0,ξ3]),V_{\mathrm{ODE}}^{(\kappa_{n})}(Z)=V_{\mathrm{b}}(Z_{\mathrm{b}}^{-1}(Z)),\quad Z\in Z_{\mathrm{b}}([0,\xi_{3}]),

to the ODE (2.3). Using the definition of VODE(κn)V_{\mathrm{ODE}}^{(\kappa_{n})}, (6.8), (5.34b), and (6.7) in order, we get

(Zb(0),VODE(κn)(Zb(0))\displaystyle(Z_{\mathrm{b}}(0),V_{\mathrm{ODE}}^{(\kappa_{n})}(Z_{\mathrm{b}}(0)) =(Zb(0),Vb(0)=(𝒵,𝒱)(Yds(0),Uds(0))=(𝒵,𝒱)(YI/2,U(κn)(YI/2))\displaystyle=(Z_{\mathrm{b}}(0),V_{\mathrm{b}}(0)=({\mathcal{Z}},{\mathcal{V}})(Y_{\mathrm{ds}}(0),U_{\mathrm{ds}}(0))=({\mathcal{Z}},{\mathcal{V}})(Y_{I}^{\prime}/2,U^{(\kappa_{n})}(Y_{I}^{\prime}/2))
=(Z,V(κn)(Z))|Z=𝒵(YI/2,U(κn)(YI/2)).\displaystyle=(Z,V^{(\kappa_{n})}(Z))|_{Z={\mathcal{Z}}(Y_{I}^{\prime}/2,U^{(\kappa_{n})}(Y_{I}^{\prime}/2))}.

Using the uniqueness of ODE, we obtain VODE(κn)=V(κn)V_{\mathrm{ODE}}^{(\kappa_{n})}=V^{(\kappa_{n})}. Since ZbZ_{\mathrm{b}} is increasing, gluing VODE(κn)V_{\mathrm{ODE}}^{(\kappa_{n})} and V(κn)V^{(\kappa_{n})}, we construct the smooth ODE solution to (2.3) V(κn)C([0,Zb(ξ3)])V^{(\kappa_{n})}\in C^{\infty}([0,Z_{\mathrm{b}}(\xi_{3})]) with Zb(ξ3)>Z0Z_{\mathrm{b}}(\xi_{3})>Z_{0}.

Estimates (6.2)

Recall that (Z0,V0)(Z_{0},V_{0}) is the sonic point (2.7). We define

(6.10) Z2=Zb(ξ3),V2=V(κn)(Z2).Z_{2}=Z_{\mathrm{b}}(\xi_{3}),\quad V_{2}=V^{(\kappa_{n})}(Z_{2}).

From Propositions 5.3, 5.6, and Lemma 5.5, the solution curves (Y,U(κn)(Y))(Y,U^{(\kappa_{n})}(Y)) with Y[YI,0]Y\in[Y_{I}^{\prime},0] and (Yds(ξ),Uds(ξ))(Y_{\mathrm{ds}}(\xi),U_{\mathrm{ds}}(\xi)) with ξ[0,ξ3]\xi\in[0,\xi_{3}] are in {(Y,U):1>Y>γ,U>0}\{(Y,U):1>Y>-\gamma,U>0\}. From (6.7), (6.8), under the (𝒵,𝒱)({\mathcal{Z}},{\mathcal{V}}) map (2.12), these curves are mapped to (Z,V(κn)(Z))(Z,V^{(\kappa_{n})}(Z)) with Z[Z0,Zb(ξ3)]Z\in[Z_{0},Z_{\mathrm{b}}(\xi_{3})]. Following the proof of (4.1) in Section 4.4.3, we prove the estimates (6.2) with Z[Z0,Z2]Z\in[Z_{0},Z_{2}]. Estimates (6.2) with Z(0,Z0]Z\in(0,Z_{0}] have been established in Proposition 4.1 .

Location

Finally, we prove P=(Z2,V2)ΩfarP=(Z_{2},V_{2})\in\Omega_{\mathrm{far}} for Z2,V2Z_{2},V_{2} defined in (6.10) and Ωfar\Omega_{\mathrm{far}} defined in (6.1). Using (6.9) with Z2=Zb(ξ3)Z_{2}=Z_{\mathrm{b}}(\xi_{3}) and then (6.8), we yield

(Z2,V2)=P=(Zb(ξ3),Vb(ξ3))=(𝒵,𝒱)(Yds(ξ3),Uds(ξ3)).(Z_{2},V_{2})=P=(Z_{\mathrm{b}}(\xi_{3}),V_{\mathrm{b}}(\xi_{3}))=({\mathcal{Z}},{\mathcal{V}})(Y_{\mathrm{ds}}(\xi_{3}),U_{\mathrm{ds}}(\xi_{3})).

Using result (d) in Proposition 5.6, we get 1>Yds(ξ3)>0,Uds(ξ3)<Ug(Yds(ξ3))1>Y_{\mathrm{ds}}(\xi_{3})>0,U_{\mathrm{ds}}(\xi_{3})<U_{g}(Y_{\mathrm{ds}}(\xi_{3})). Using Lemma 2.2 for the map (𝒵,𝒱)({\mathcal{Z}},{\mathcal{V}}), (2.22) for ΔZ\Delta_{Z}, (2.3) and (2.11) for ΔV\Delta_{V}, we obtain

ΔV(P)>0,ΔZ(P)<0,Z2>0,1>V2>0.\Delta_{V}(P)>0,\quad\Delta_{Z}(P)<0,\quad Z_{2}>0,\quad 1>V_{2}>0.

Using the identities (2.20) and ΔV(P)>0\Delta_{V}(P)>0, we obtain Z2>ZV(V2)Z_{2}>Z_{V}(V_{2}). From (2.20), (2.21), condition ΔZ(P)<0\Delta_{Z}(P)<0 implies Z2>Z+(V2)Z_{2}>Z_{+}(V_{2}) or Z2<Z(V2)Z_{2}<Z_{-}(V_{2}). Since 0<V2<1<0<V_{2}<1<\ell, we get

Z2>ZV(V2)=(1+γ)V21+γV22>V2>1/2V211/2V2=Z(V2).Z_{2}>Z_{V}(V_{2})=\frac{(1+\gamma)V_{2}}{1+\gamma V_{2}^{2}}>V_{2}>\frac{\ell^{1/2}V_{2}-1}{\ell^{1/2}-V_{2}}=Z_{-}(V_{2}).

It follows Z2>Z+(V2)Z_{2}>Z_{+}(V_{2}) and Z2>V2Z_{2}>V_{2}. We conclude the proof of Proposition 6.1.

6.2. Proof of Lemma 6.2

By continuity, there exists Z3>Z2Z_{3}>Z_{2} such that the C1C^{1} solution V(Z)V(Z) to the ODE (2.3) exists and (Z,V(Z))Ωfar(Z,V(Z))\in\Omega_{\mathrm{far}} for Z[Z2,Z3)Z\in[Z_{2},Z_{3}). We assume that Z3Z_{3} is the maximal value with such a property. Our goal is to show that Z3=Z_{3}=\infty. Since ΔZ,ΔV\Delta_{Z},\Delta_{V} do not vanish for (Z,V)Ωfar(Z,V)\in\Omega_{\mathrm{far}}, and ΔZ,ΔV\Delta_{Z},\Delta_{V} are polynomials in Z,VZ,V, we get V(Z)C[Z2,Z3)V(Z)\in C^{\infty}[Z_{2},Z_{3}).

For any Z[Z2,Z3)Z\in[Z_{2},Z_{3}), using sign properties in Ωfar\Omega_{\mathrm{far}} (6.1) and (2.20), we get

(6.11a) ΔZ(Z,V(Z))<0,ΔV(Z,V(Z))>0,dVdZ=ΔVΔZ|(Z,V(Z))<0.\Delta_{Z}(Z,V(Z))<0,\quad\Delta_{V}(Z,V(Z))>0,\quad\frac{dV}{dZ}=\frac{\Delta_{V}}{\Delta_{Z}}\Big{|}_{(Z,V(Z))}<0.
Thus, V(Z)V(Z) is decreasing in ZZ for Z[Z2,Z3)Z\in[Z_{2},Z_{3}).

Since g(v)=v,Z±(v),ZV(v)g(v)=v,Z_{\pm}(v),Z_{V}(v) is increasing in vv (2.21) and (Z2,V2)Ωfar(Z_{2},V_{2})\in\Omega_{\mathrm{far}}, we obtain

(6.11b) Zg(V(Z))>Z2g(V(Z2))=cg>0,g(v)=v,Z±(v),ZV(v).\displaystyle Z-g(V(Z))>Z_{2}-g(V(Z_{2}))=c_{g}>0,\quad g(v)=v,Z_{\pm}(v),Z_{V}(v).

Since V(Z)(1,1)V(Z)\in(-1,1) for all Z[Z2,Z3)Z\in[Z_{2},Z_{3}), it follows

(6.11c) ΔZ(Z,V(Z))Z2(1)c<0.\Delta_{Z}(Z,V(Z))\leq Z_{2}(1-\ell)c<0.

for some constant c>0c>0. For Z[Z2,Z3)Z\in[Z_{2},Z_{3}) with |Z|b|Z|\leq b, since |V(Z)|<1|V(Z)|<1, we estimate ΔV\Delta_{V} (2.3):

(6.11d) |ΔV|Cb(1V2)Cbmin(1V,1+V),|\Delta_{V}|\leq C_{b}(1-V^{2})\leq C_{b}\min(1-V,1+V),

for some constant Cb>0C_{b}>0. For any Z[Z2,Z3)Z\in[Z_{2},Z_{3}) with |Z|b|Z|\leq b, combining (6.11), we have

d(V+1)dZCb(V+1),d(1V)dZCb(1V),\frac{d(V+1)}{dZ}\geq-C_{b}(V+1),\quad\frac{d(1-V)}{dZ}\geq-C_{b}(1-V),

which implies

(6.12) V(Z)+1eCb(bZ2)(V2+1)>0,1V(Z)eCb(bZ2)(1V2)>0.V(Z)+1\geq e^{-C_{b}(b-Z_{2})}(V_{2}+1)>0,\quad 1-V(Z)\geq e^{-C_{b}(b-Z_{2})}(1-V_{2})>0.

If Z3Z_{3} is bounded, we choose b>Z3b>Z_{3}. For Z(Z2,Z3)Z\in(Z_{2},Z_{3}), since V(Z)V(Z) is bounded, ΔV\Delta_{V} is bounded (6.11d), and ΔZ\Delta_{Z} is bounded away from 0 (6.11c), we can solve the ODE (2.3) with CC^{\infty} solution in (Z2,Z3+δ7)(Z_{2},Z_{3}+\delta_{7}) with δ7>0\delta_{7}>0 sufficiently small. Using the uniform estimates (6.11b),(6.12) and choosing δ7\delta_{7} small enough, we obtain that (Z,V(Z))Ωfar(Z,V(Z))\in\Omega_{\mathrm{far}} (6.1) for Z(Z2,Z3+δ7)Z\in(Z_{2},Z_{3}+\delta_{7}). This contradicts the maximality of Z3Z_{3}. Thus, we have Z3=Z_{3}=\infty.

Appendix A Some derivations and estimates

In this section, we derive the ODE (2.3) in Appendix A.1 and prove Lemma 4.8 in Appendix A.2.

A.1. Equations of the profiles

The ODE (2.3) has been first derived in [56]. For completeness, we derive it below. With the ODE solution, we can further construct the profiles W,ΦW,\Phi in (1.3).

We consider radially symmetric solutions ϕ,ρ\phi,\rho to (1.2b) and (1.5). Recall the self-similar ansatz (1.3) and the notations (2.2)

(A.1) r=|x|,z=xTt,Z=|z|,ρp12tϕ=1(1V2)1/2C(Z),ρp12rϕ=V(1V2)1/2D(Z).\begin{gathered}r=|x|,\quad z=\frac{x}{T-t},\quad Z=|z|,\\ \rho^{-\frac{p-1}{2}}\partial_{t}\phi=\frac{1}{(1-V^{2})^{1/2}}\triangleq C(Z),\quad\rho^{-\frac{p-1}{2}}\partial_{r}\phi=\frac{V}{(1-V^{2})^{1/2}}\triangleq D(Z).\end{gathered}

We will only use the notations C,DC,D in this section.

Since r\partial_{r} and t\partial_{t} commute for smooth functions, we get

(A.2) t(Dρp12)=r(Cρp12)\partial_{t}(D\rho^{\frac{p-1}{2}})=\partial_{r}(C\rho^{\frac{p-1}{2}})

Using the self-similar ansatz (1.3) with c=1c=1, we get

(A.3) tρ=(Tt)1(aρ+ZZρ)=a(Tt)1ρ+Zrρ.\partial_{t}\rho=(T-t)^{-1}(a\rho+Z\partial_{Z}\rho)=a(T-t)^{-1}\rho+Z\partial_{r}\rho.

We further compute rρ/ρ\partial_{r}\rho/\rho. Dividing ρ(p1)/2\rho^{(p-1)/2} on both sides of (A.2) and using (A.3), we get

0=p12DtρCrρρ+tDrC=p12(DZC)rρρ+p12aDTt+tDrC,0=\frac{p-1}{2}\cdot\frac{D\partial_{t}\rho-C\partial_{r}\rho}{\rho}+\partial_{t}D-\partial_{r}C=\frac{p-1}{2}(DZ-C)\frac{\partial_{r}\rho}{\rho}+\frac{p-1}{2}a\frac{D}{T-t}+\partial_{t}D-\partial_{r}C,

which implies

(A.4) rρρ=1CDZ(aDTt+2p1(tDrC)).\frac{\partial_{r}\rho}{\rho}=\frac{1}{C-DZ}\Big{(}a\frac{D}{T-t}+\frac{2}{p-1}(\partial_{t}D-\partial_{r}C)\Big{)}.

Next, we use (1.2b) to derive the equation for VV. Since ϕ\phi is radially symmetric, using Δϕ=rrϕ+d1rrϕ\Delta\phi=\partial_{r}\partial_{r}\phi+\frac{d-1}{r}\partial_{r}\phi, we can rewrite (1.2b) as

t(tϕρ2)=r(rϕρ2)+d1rrϕρ2.\partial_{t}(\partial_{t}\phi\rho^{2})=\partial_{r}(\partial_{r}\phi\rho^{2})+\frac{d-1}{r}\partial_{r}\phi\rho^{2}.

Using (A.1) and ρ(p1)/2+2=ρ(p+3)/2\rho^{(p-1)/2+2}=\rho^{(p+3)/2}, we further rewrite it as

t(Cρ(p+3)/2)r(Dρ(p+3)/2)=(d1)r1Dρ(p+3)/2.\partial_{t}(C\rho^{(p+3)/2})-\partial_{r}(D\rho^{(p+3)/2})=(d-1)r^{-1}D\rho^{(p+3)/2}.

Dividing ρ(p+3)/2\rho^{(p+3)/2} on both sides and using (A.3), we obtain

(A.5a) p+32CtρDrρρ+tCrD\displaystyle\frac{p+3}{2}\cdot\frac{C\partial_{t}\rho-D\partial_{r}\rho}{\rho}+\partial_{t}C-\partial_{r}D =(d1)1rD,\displaystyle=(d-1)\frac{1}{r}D,
(A.5b) p+32((CZD)rρρ+aCTt)+tCrD\displaystyle\frac{p+3}{2}\cdot\Big{(}\frac{(CZ-D)\partial_{r}\rho}{\rho}+a\frac{C}{T-t}\Big{)}+\partial_{t}C-\partial_{r}D =(d1)1rD.\displaystyle=(d-1)\frac{1}{r}D.

Since Z=rTtZ=\frac{r}{T-t}, for F(Z)=C(Z),D(Z)F(Z)=C(Z),D(Z), we obtain

(A.6) tF(Z)=1TtZZF,rF(Z)=1TtZF,1rD=1Tt1ZD.\partial_{t}F(Z)=\frac{1}{T-t}Z\partial_{Z}F,\quad\partial_{r}F(Z)=\frac{1}{T-t}\partial_{Z}F,\quad\frac{1}{r}D=\frac{1}{T-t}\cdot\frac{1}{Z}D.

Substituting (A.4), (A.6) in (A.5b) and cancelling the factor (Tt)1(T-t)^{-1}, we obtain

(A.7) p+32(aC+CZDCDZ(aD+2p1(ZZDZC)))+ZZCZD=(d1)DZ.\frac{p+3}{2}\Big{(}aC+\frac{CZ-D}{C-DZ}(aD+\frac{2}{p-1}(Z\partial_{Z}D-\partial_{Z}C))\Big{)}+Z\partial_{Z}C-\partial_{Z}D=(d-1)\frac{D}{Z}.

Using the formulas of C,DC,D (A.1), we compute

(A.8) 1CZC=1CVV(1V2)3/2=VV1V2,1CZD=1CV(1V2)3/2=V11V2.\frac{1}{C}\partial_{Z}C=\frac{1}{C}V^{\prime}\cdot V(1-V^{2})^{-3/2}=V^{\prime}\cdot\frac{V}{1-V^{2}},\quad\frac{1}{C}\partial_{Z}D=\frac{1}{C}V^{\prime}\cdot(1-V^{2})^{-3/2}=V^{\prime}\cdot\frac{1}{1-V^{2}}.

From (A.1), p=41+1p=\frac{4}{\ell-1}+1 (2.1), we have

D=CV,p+3p1=,ap+32=(41+4)2(d1)(p1)(γ+1)=d1γ+1.D=CV,\quad\frac{p+3}{p-1}=\ell,\quad a\frac{p+3}{2}=(\frac{4}{\ell-1}+4)\frac{2(d-1)}{(p-1)\ell(\gamma+1)}=\frac{d-1}{\gamma+1}.

Thus dividing CC on both sides of (A.7) and using (A.8), we obtain

(A.9) ZV1ZVZV1V2V+ZV11V2V+d1γ+1(1+ZV1VZV)=(d1)VZ(1V2)\ell\frac{Z-V}{1-ZV}\cdot\frac{Z-V}{1-V^{2}}\cdot V^{\prime}+\frac{ZV-1}{1-V^{2}}\cdot V^{\prime}+\frac{d-1}{\gamma+1}\Big{(}1+\frac{Z-V}{1-VZ}\cdot V\Big{)}=(d-1)\frac{V}{Z(1-V^{2})}

Rewriting the above equations, we derive the ODE (2.3):

dVdZ=(d1)(1V2)(1γ+1(1V2)ZV(1VZ))Z((1ZV)2(VZ)2).\frac{dV}{dZ}=\frac{(d-1)(1-V^{2})\Big{(}\frac{1}{\gamma+1}(1-V^{2})Z-V(1-VZ)\Big{)}}{Z((1-ZV)^{2}-\ell(V-Z)^{2})}.

Once we construct the ODE solution VC([0,))V\in C^{\infty}([0,\infty)) with V(1,1)V\in(-1,1), we further construct the profile WW (1.3) for ρ\rho. Plugging (1.6), (A.6), (A.8), a=2(d1)(p1)(γ+1)a=\frac{2(d-1)}{(p-1)\ell(\gamma+1)}, D=CVD=CV in (A.4), and cancelling the power of TtT-t, we obtain

(A.10a) ZWW=11VZ(2(d1)(p1)(γ+1)V+2p1ZV1V2V(Z))JW(Z).\frac{\partial_{Z}W}{W}=\frac{1}{1-VZ}\Big{(}\frac{2(d-1)}{(p-1)\ell(\gamma+1)}V+\frac{2}{p-1}\cdot\frac{Z-V}{1-V^{2}}V^{\prime}(Z)\Big{)}\triangleq J_{W}(Z).

Using (A.9) ×2(p1)1ZV\times\frac{2}{(p-1)\ell}\cdot\frac{1}{Z-V}, we can rewrite the right hand side as

(A.10b) JW(Z)=2(p1)1ZV((d1)VZ(1V2)d1γ+1ZV11V2V).J_{W}(Z)=\frac{2}{(p-1)\ell}\cdot\frac{1}{Z-V}\Big{(}(d-1)\frac{V}{Z(1-V^{2})}-\frac{d-1}{\gamma+1}-\frac{ZV-1}{1-V^{2}}\cdot V^{\prime}\Big{)}.

Using the equation for rϕ\partial_{r}\phi in (A.1) and the ansatz (1.3), we obtain

(A.11) ZΦ(Z)=VW(p1)/2(1V2)3/2.\partial_{Z}\Phi(Z)=\frac{V\cdot W^{(p-1)/2}}{(1-V^{2})^{3/2}}.

After we construct WW, we can construct Φ\Phi from the above ODE.

A.2. Proof of Lemma 4.8

In this section, we prove Lemma 4.8. We simplify YF(κ),UF(κ)Y_{F}^{(\kappa)},U_{F}^{(\kappa)} constructed via (4.32) as Y,UY,U, and VF(κ)V_{F}^{(\kappa)} as VV.

Using Proposition 4.7, we can expand the smooth solution V(Z)V(Z) near Z=0Z=0 as follows

(A.12) V(Z)=V1Z+V3Z3+O(Z5),V(Z)=V1+3V3Z2+O(Z4),Z1.V(Z)=V_{1}Z+V_{3}Z^{3}+O(Z^{5}),\quad V^{\prime}(Z)=V_{1}+3V_{3}Z^{2}+O(Z^{4}),\quad\forall Z\ll 1.

for Z[0,δV]Z\in[0,\delta_{V}]. In the above and the following derivations, the implicit constants and δV>0\delta_{V}>0 are uniformly in γ\gamma due to Proposition 4.7.

Firstly, we compute V1=ddZVV_{1}=\frac{d}{dZ}V. Using the ODE (2.3) and evaluating at (Z,V)=0(Z,V)=0, we obtain

(A.13) V1=(d1)γ+1(d1)V1V1=d1d(γ+1).V_{1}=\frac{(d-1)}{\gamma+1}-(d-1)V_{1}\quad\Rightarrow\quad V_{1}=\frac{d-1}{d(\gamma+1)}.

Next, we compute V3V_{3}. We expand ΔZ(Z,V(Z)),ΔV(Z,V(Z))\Delta_{Z}(Z,V(Z)),\Delta_{V}(Z,V(Z)) near Z=0Z=0 up to the term Z3Z^{3}

ΔZ\displaystyle\Delta_{Z} =Z((1ZV)2(VZ)2)=Z((1V1Z2)2(V1ZZ)2)+O(Z4)\displaystyle=Z((1-ZV)^{2}-\ell(V-Z)^{2})=Z((1-V_{1}Z^{2})^{2}-\ell(V_{1}Z-Z)^{2})+O(Z^{4})
=Z(1(2V1+(V11)2)Z2)+O(Z4),\displaystyle=Z(1-(2V_{1}+\ell(V_{1}-1)^{2})Z^{2})+O(Z^{4}),
ΔV\displaystyle\Delta_{V} =(d1)(1V2)(1γ+1(1V2)ZV(1VZ))\displaystyle=(d-1)(1-V^{2})\Big{(}\frac{1}{\gamma+1}(1-V^{2})Z-V(1-VZ)\Big{)}
=(d1)(1V12Z2)(1γ+1(1V12Z2)Z(V1Z+V3Z3)(1V1Z2))+O(Z4)\displaystyle=(d-1)(1-V_{1}^{2}Z^{2})\Big{(}\frac{1}{\gamma+1}(1-V_{1}^{2}Z^{2})Z-(V_{1}Z+V_{3}Z^{3})(1-V_{1}Z^{2})\Big{)}+O(Z^{4})
=Z(d1)(1V12Z2)(1γ+1(1V12Z2)(V1+(V3V12)Z2))+O(Z4)\displaystyle=Z(d-1)(1-V_{1}^{2}Z^{2})\Big{(}\frac{1}{\gamma+1}(1-V_{1}^{2}Z^{2})-(V_{1}+(V_{3}-V_{1}^{2})Z^{2})\Big{)}+O(Z^{4})
=Z(d1)(1γ+1V1+(2γ+1V12+V13V3+V12)Z2)+O(Z4).\displaystyle=Z(d-1)\Big{(}\frac{1}{\gamma+1}-V_{1}+(-\frac{2}{\gamma+1}V_{1}^{2}+V_{1}^{3}-V_{3}+V_{1}^{2})Z^{2}\Big{)}+O(Z^{4}).

Using the ODE ΔZdVdZ=ΔV\Delta_{Z}\frac{dV}{dZ}=\Delta_{V} (2.3) and tracking the term up to O(Z4)O(Z^{4}), we get

Z(1(2V1+(V11)2)Z2)(V1+3V3Z2)=Z(d1)(1γ+1V1+(2γ+1V12+V13V3+V12)Z2)+O(Z4).Z(1-(2V_{1}+\ell(V_{1}-1)^{2})Z^{2})(V_{1}+3V_{3}Z^{2})=Z(d-1)\Big{(}\frac{1}{\gamma+1}-V_{1}+(-\frac{2}{\gamma+1}V_{1}^{2}+V_{1}^{3}-V_{3}+V_{1}^{2})Z^{2}\Big{)}+O(Z^{4}).

Matching the ZZ term yields V1V_{1}. Matching Z3Z^{3} term, we get

(3+(d1))V3V1(2V1+(V11)2)=(d1)(2γ+1V12+V13+V12).(3+(d-1))V_{3}-V_{1}(2V_{1}+\ell(V_{1}-1)^{2})=(d-1)\Big{(}-\frac{2}{\gamma+1}V_{1}^{2}+V_{1}^{3}+V_{1}^{2}\Big{)}.

Rearranging the identity, we obtain V3V_{3} in (4.34). Identity (A.12) gives the formula of V1V_{1} in (4.34).

Plugging the asymptotics (A.12) into (2.11), near Z=0Z=0, we get

(A.14) 𝒴(Z,V(Z))YO\displaystyle{\mathcal{Y}}(Z,V(Z))-Y_{O} =11d(γ+1)VZ1VZ1V2\displaystyle=1-\frac{1}{d}-(\gamma+1)\frac{V}{Z}\cdot\frac{1-VZ}{1-V^{2}}
=1d1(γ+1)(V1+V3Z2)(1VZ)(1+V2)+O(Z4)\displaystyle=1-d^{-1}-(\gamma+1)(V_{1}+V_{3}Z^{2})(1-VZ)(1+V^{2})+O(Z^{4})
=1d1(γ+1)(V1+V3Z2)(1V1Z2)(1+V12Z2)+O(Z4)\displaystyle=1-d^{-1}-(\gamma+1)(V_{1}+V_{3}Z^{2})(1-V_{1}Z^{2})(1+V_{1}^{2}Z^{2})+O(Z^{4})
=(γ+1)(V3V12+V13)Z2+O(Z4),\displaystyle=-(\gamma+1)(V_{3}-V_{1}^{2}+V_{1}^{3})Z^{2}+O(Z^{4}),
𝒰(Z,V(Z))\displaystyle{\mathcal{U}}(Z,V(Z)) =(γ+1)2Z2+O(1).\displaystyle=\frac{(\gamma+1)^{2}}{Z^{2}}+O(1).

The constant term in 𝒴YO{\mathcal{Y}}-Y_{O} is 0 since 1d1(γ+1)V1=01-d^{-1}-(\gamma+1)V_{1}=0 (A.13). Using Lemma 4.9, we obtain (γ+1)(V3V12+V13)<c<0-(\gamma+1)(V_{3}-V_{1}^{2}+V_{1}^{3})<c<0 uniformly for γ\gamma close to 1/2\ell^{-1/2} and some absolute constant cc. Choosing δ3(0,δV)\delta_{3}\in(0,\delta_{V}) small enough, for any Z[0,δ3]Z\in[0,\delta_{3}], estimate (A.14) implies (4.33a).

For Z[0,δ3]Z\in[0,\delta_{3}], using the estimates of 𝒰,𝒴{\mathcal{U}},{\mathcal{Y}} (A.14) and the definition (4.32), we prove

|U(Z)((γ+1)3(V3V12+V13))Y(Z)YO|=|U(Z)(γ+1)2Z2+O(1)|=O(1),\Big{|}U(Z)-\frac{(-(\gamma+1)^{3}(V_{3}-V_{1}^{2}+V_{1}^{3}))}{Y(Z)-Y_{O}}\Big{|}=\Big{|}U(Z)-\frac{(\gamma+1)^{2}}{Z^{2}}+O(1)\Big{|}=O(1),

and (4.33b). We conclude the proof of Lemma 4.8.

Appendix B Details of the computer-assisted part

In this section, we discuss the companion files for computer-assisted proof. We performed the rigorous computation using SageMath, and the code is attached to the paper. There are two Sage files: Wave_induction.ipynb, Wave_barrier.ipynb, which can be implemented on a personal laptop in less than 1 minute. Moreover, all the outputs are recorded in a Jupyter Notebook without implementing the codes.

For the variables/functions with different notations in this paper (left side) and in the code (right side), we provide the relation between two notations below:

ε,,γ,f(Y),δ^,λ+,λ,,U^\displaystyle\ \varepsilon,\ \ell,\ \gamma,\ f(Y),\ \hat{\delta},\ \lambda_{+},\ \lambda_{-},\ \mathfrak{C},\ \hat{U}
\displaystyle\rightsquigarrow ep,l,ga,fy,del_hat,lam_l,lam_s,C_mfr,U_hat\displaystyle\ \mathrm{ep},\ l,\ \mathrm{ga},\ \mathrm{fy},\ \mathrm{del\_hat},\ \mathrm{lam\_l},\ \mathrm{lam\_s},\ \mathrm{C\_mfr},\ \mathrm{U\_hat}
UΔY,UΔU,ΔU,ΔY,ΔU,n,ΔY,n,cU,n,cY,n\displaystyle\ U_{\Delta_{Y}},\ U_{\Delta_{U}},\ \Delta_{U},\ \Delta_{Y},\ \Delta_{U,n},\ \Delta_{Y,n},\ c_{U,n},\ c_{Y,n}
\displaystyle\rightsquigarrow U_DelY,U_DelU,del_U,del_Y,DelUn,DelYn,dU_DelUn,dU_DelYn,\displaystyle\ \mathrm{U\_DelY},\ \mathrm{U\_DelU},\ \mathrm{del\_U},\ \mathrm{del\_Y},\ \mathrm{DelUn},\ \mathrm{DelYn},\ \mathrm{dU\_DelUn},\ \mathrm{dU\_DelYn},\

The functions and parameters are defined in: ε\varepsilon (2.9), \ell (2.6), ΔU,ΔY,f(Y)\Delta_{U},\Delta_{Y},f(Y) (2.14), δ^\hat{\delta} (2.10), λ+,λ\lambda_{+},\lambda_{-} (2.27a), UΔY,UΔUU_{\Delta_{Y}},U_{\Delta_{U}} (2.24), ΔU,n,ΔY,n\Delta_{U,n},\Delta_{Y,n} (3.3), cU,n,cY,nc_{U,n},c_{Y,n} (3.5).

We need to use computer assistance to verify Lemmas 3.6, 3.9, 4.9, and Proposition 4.2.

Wave_induction.ipynb

The goal is to verify Lemmas 3.6,3.9. It consists of three steps.

(1) Derive the power series coefficients UiU_{i} at the limit case γ=1/2\gamma=\ell^{-1/2} using the recursive formula (3.17) in Lemma 3.2.

(2) Follow Section 3.5 to derive the constants CJi,CC_{J_{i}},C_{{\mathcal{E}}} in Lemma 3.9 and verify Lemma 3.9.

(3) Verify Lemma 3.6 using the value UiU_{i} at the limit case γ=1/2\gamma=\ell^{-1/2} derived in Step (1).

Wave_barrier.ipynb

The goal is to verify (4.7) and (4.8) in Proposition 4.2 and the scalar inequality in Lemma 4.9. It consists of the following steps.

(1) Derive the power series coefficients UiU_{i} at the limit case γ=1/2\gamma=\ell^{-1/2}, which is the same as those in Wave_induction.ipynb. We only need U0,U1,U2U_{0},U_{1},U_{2}.

(2) Introduce a function Poly_sign to derive upper and lower bounds of a polynomial P(t)P(t) over [a,b][a,b] with 0ab0\leq a\leq b. We can decompose P(t)=P+(t)P(t)P(t)=P_{+}(t)-P_{-}(t) with P+,PP_{+},P_{-} being polynomials with non-negative coefficients. For t0t\geq 0, P±P_{\pm} is increasing. Thus, by dividing [a,b][a,b] into a=t0<t1<..<tm=ba=t_{0}<t_{1}<..<t_{m}=b and using

P(t)P+,lP,u,P(t)P+,uP,l,P(t)\geq P_{+,l}-P_{-,u},\quad P(t)\leq P_{+,u}-P_{-,l},

for t[ti,ti+1]t\in[t_{i},t_{i+1}], where

P±,l=min(P±(ti),P±(ti+1)),P±,u=max(P±(ti),P±(ti+1)),\quad P_{\pm,l}=\min(P_{\pm}(t_{i}),P_{\pm}(t_{i+1})),\quad P_{\pm,u}=\max(P_{\pm}(t_{i}),P_{\pm}(t_{i+1})),

we estimate the upper and lower bound of PP in each interval [ti,ti+1][t_{i},t_{i+1}]. Maximize or minimize the estimates over all sub-intervals yields the bounds of PP in [a,b][a,b].

(3) Construct the barrier functions Blf,BufB_{l}^{f},B_{u}^{f} following Section 4.1. Verify (4.7) and (4.8) in the limit case γ=1/2\gamma=\ell^{-1/2} following the ideas in the proof of Proposition 4.2 and verify Lemma 4.9.

Acknowledgments

The work of T.B.  has been supported in part by the NSF grants DMS-2243205 and DMS-2244879, as well as the Simons Foundation Mathematical and Physical Sciences collaborative grant ’Wave Turbulence.’ The work of J.C. has been supported in part by the NSF grant DMS-2408098. We would like to acknowledge the insightful and fruitful discussions we had with Hans Lindblad and Jalal Shatah.

References

  • [1] Leo Abbrescia and Jared Speck. The emergence of the singular boundary from the crease in 3d3d compressible euler flow. arXiv preprint arXiv:2207.07107, 2022.
  • [2] Leonardo Abbrescia and Jared Speck. The relativistic euler equations: Esi notes on their geo-analytic structures and implications for shocks in 1d and multi-dimensions. Classical and Quantum Gravity, 40(24):243001, 2023.
  • [3] S. Alinhac. Blowup for nonlinear hyperbolic equations, volume 17 of Progr. Nonlinear Differential Equations Appl. Birkhäuser Boston, Inc., Boston, MA, 1995.
  • [4] Gianni Arioli, Filippo Gazzola, and Hans Koch. Uniqueness and bifurcation branches for planar steady navier–stokes equations under navier boundary conditions. Journal of Mathematical Fluid Mechanics, 23(3):49, 2021.
  • [5] Anxo Biasi. Self-similar solutions to the compressible euler equations and their instabilities. Communications in Nonlinear Science and Numerical Simulation, 103:106014, 2021.
  • [6] Tristan Buckmaster, Gonzalo Cao-Labora, and Javier Gómez-Serrano. Smooth imploding solutions for 3d compressible fluids. Forum of Mathematics, Pi, to appear.
  • [7] Tristan Buckmaster, Theodore D. Drivas, Steve Shkoller, and Vlad Vicol. Simultaneous development of shocks and cusps for 2D euler with azimuthal symmetry from smooth data. Annals of PDE, 8(2):1–199, 2022.
  • [8] Tristan Buckmaster, Steve Shkoller, and Vlad Vicol. Formation of shocks for 2d isentropic compressible euler. Communications on Pure and Applied Mathematics, 75(9):2069–2120, 2022.
  • [9] Tristan Buckmaster, Steve Shkoller, and Vlad Vicol. Formation of point shocks for 3d compressible euler. Comm. Pure Appl. Math., 76(9):2073–2191, 2023.
  • [10] Tristan Buckmaster, Steve Shkoller, and Vlad Vicol. Shock formation and vorticity creation for 3d euler. Comm. Pure Appl. Math., 76(9):1965–2072, 2023.
  • [11] Gonzalo Cao-Labora, Javier Gómez-Serrano, Jia Shi, and Gigliola Staffilani. Non-radial implosion for the defocusing nonlinear Schrödinger equation in 𝕋3\mathbb{T}^{3} and 3\mathbb{R}^{3}. arXiv preprint arXiv:2410.04532, 2024.
  • [12] Gonzalo Cao-Labora, Javier Gómez-Serrano, Jia Shi, and Gigliola Staffilani. Non-radial implosion for compressible Euler and Navier-Stokes in 𝕋3\mathbb{T}^{3} and 3\mathbb{R}^{3}. arXiv preprint arXiv:2310.05325, 2023.
  • [13] Angel Castro, Diego Córdoba, and Javier Gómez-Serrano. Global smooth solutions for the inviscid SQG equation. Mem. Amer. Math. Soc., 266(1292):v+89, 2020.
  • [14] G.-Q. Chen and M. Schrecker. Global entropy solutions and newtonian limit for the relativistic euler equations. Ann. PDE, 8:Paper No. 10, 53 pp., 2022.
  • [15] Jiajie Chen. Vorticity blowup in compressible Euler equations in d,d3\mathbb{R}^{d},d\geq 3. arXiv preprint arXiv:2408.04319, 2024.
  • [16] Jiajie Chen, Giorgio Cialdea, Steve Shkoller, and Vlad Vicol. Vorticity blowup in 2d compressible euler equations. arXiv preprint arXiv:2407.06455, 2024.
  • [17] Jiajie Chen and Thomas Y Hou. Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth data II: Rigorous numerics. arXiv preprint: arXiv:2305.05660.
  • [18] Jiajie Chen and Thomas Y Hou. Stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth data I: Analysis. arXiv preprint: arXiv:2210.07191v3, 2022.
  • [19] Jiajie Chen, Thomas Y Hou, and De Huang. On the finite time blowup of the De Gregorio model for the 3D Euler equations. Communications on Pure and Applied Mathematics, 74(6):1282–1350, 2021.
  • [20] Jiajie Chen, Thomas Y Hou, and De Huang. Asymptotically self-similar blowup of the Hou–Luo model for the 3D Euler equations. Annals of PDE, 8(2):24, 2022.
  • [21] Demetrios Christodoulou. The formation of shocks in 3-dimensional fluids, volume 2. European Mathematical Society, 2007.
  • [22] Demetrios Christodoulou and Shuang Miao. Compressible flow and Euler’s equations, volume 9. International Press Somerville, MA, 2014.
  • [23] Marcelo M Disconzi. Recent developments in mathematical aspects of relativistic fluids. arXiv preprint arXiv:2308.09844, 2023.
  • [24] R. Donninger. Strichartz estimates in similarity coordinates and stable blowup for the critical wave equation. Duke Math. J., 166:1627–1683, 2017.
  • [25] T. Duyckaerts, C. E. Kenig, and F. Merle. Profiles of bounded radial solutions of the focusing, energy-critical wave equation. Geom. Funct. Anal., 22:639–698, 2012.
  • [26] T. Duyckaerts, C. E. Kenig, and F. Merle. Classification of radial solutions of the focusing, energy-critical wave equation. Camb. J. Math., 1:75–144, 2013.
  • [27] T. Duyckaerts and J. Yang. Blow-up of a critical sobolev norm for energy-subcritical and energy-supercritical wave equations. Anal. PDE, 11:983–1028, 2018.
  • [28] Jean Ginibre and Giorgio Velo. The global cauchy problem for the non linear klein-gordon equation. Mathematische Zeitschrift, 189:487–505, 1985.
  • [29] Jean Ginibre and Giorgio Velo. The global cauchy problem for the non linear klein-gordon equation-ii. In Annales de l’IHP Analyse non linéaire, volume 6, pages 15–35, 1989.
  • [30] Javier Gómez-Serrano. Computer-assisted proofs in pde: a survey. SeMA Journal, 76(3):459–484, 2019.
  • [31] M. Grillakis. Regularity for the wave equation with a critical nonlinearity. Comm. Pure Appl. Math., 45:749–774, 1992.
  • [32] Manoussos G Grillakis. Regularity and asymptotic behavior of the wave equation with a critical nonlinearity. Annals of mathematics, 132(3):485–509, 1990.
  • [33] KG Guderley. Starke kugelige und zylindrische verdichtungsstosse in der nahe des kugelmitterpunktes bnw. der zylinderachse. Luftfahrtforschung, 19:302, 1942.
  • [34] Yan Guo, Mahir Hadžić, Juhi Jang, and Matthew Schrecker. Gravitational collapse for polytropic gaseous stars: self-similar solutions. Archive for Rational Mechanics and Analysis, 246(2):957–1066, 2022.
  • [35] Yan Guo and A Shadi Tahvildar-Zadeh. Formation of singularities in relativistic fluid dynamics and in spherically symmetric plasma dynamics. Contemp. Math, 238:151–161, 1999.
  • [36] Juhi Jang, Jiaqi Liu, and Matthew Schrecker. On self-similar converging shock waves. arXiv e-prints, page arXiv:2310.18483, October 2023.
  • [37] J. Jendrej. Construction of type II blow-up solutions for the energy-critical wave equation in dimension 5. J. Funct. Anal., 272:866–917, 2017.
  • [38] F. John. Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math., 28:235–268, 1979.
  • [39] Konrad Jörgens. Das anfangswertproblem in großen für eine klasse nichtlinearer wellengleichungen. Mathematische Zeitschrift, 77(1):295–308, 1961.
  • [40] C. E. Kenig. Lectures on the energy critical nonlinear wave equation, volume 122 of CBMS Reg. Conf. Ser. Math. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2015.
  • [41] C. E. Kenig and F. Merle. Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math., 201:147–212, 2008.
  • [42] J. Krieger and W. Schlag. Full range of blow up exponents for the quintic wave equation in three dimensions. J. Math. Pures Appl. (9), 101:873–900, 2014.
  • [43] J. Krieger, W. Schlag, and D. Tataru. Slow blow-up solutions for the h1(3)h^{1}(\mathbb{R}^{3}) critical focusing semilinear wave equation. Duke Math. J., 147:1–53, 2009.
  • [44] Peter D. Lax. Development of singularities of solutions of nonlinear hyperbolic partial differential equations. J. Mathematical Phys., 5:611–613, 1964.
  • [45] H. A. Levine. Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt=Au+(u)Pu_{tt}=-Au+\mathcal{F}(u). Trans. Amer. Math. Soc., 192:1–21, 1974.
  • [46] Hans Lindblad. Blow-up for solutions of u=|u|p\Box u=|u|^{p} with small initial data. Communications in partial differential equations, 15(6):757–821, 1990.
  • [47] Jonathan Luk and Jared Speck. Shock formation in solutions to the 2d compressible euler equations in the presence of non-zero vorticity. Inventiones mathematicae, 214(1):1–169, 2018.
  • [48] T. Makino and S. Ukai. Local smooth solutions of the relativistic euler equation. J. Math. Kyoto Univ., 35:105–114, 1995.
  • [49] F Merle and P Raphael. Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation. Journées équations aux dérivées partielles, pages 1–5, 2002.
  • [50] Frank Merle, Pierre Raphaël, Igor Rodnianski, and Jeremie Szeftel. On blow up for the energy super critical defocusing nonlinear Schrödinger equations. Inventiones mathematicae, 227(1):247–413, 2022.
  • [51] Frank Merle, Pierre Raphaël, Igor Rodnianski, and Jeremie Szeftel. On the implosion of a compressible fluid I: smooth self-similar inviscid profile. Ann. of Math. (2), 196(2):567–778, 2022.
  • [52] Frank Merle, Pierre Raphaël, Igor Rodnianski, and Jeremie Szeftel. On the implosion of a compressible fluid II: singularity formation. Ann. of Math. (2), 196(2):779–889, 2022.
  • [53] Ronghua Pan and Joel A Smoller. Blowup of smooth solutions for relativistic euler equations. Communications in mathematical physics, 262:729–755, 2006.
  • [54] L. Ruan and C. Zhu. Existence of global smooth solution to the relativistic euler equations. Nonlinear Anal., 60:993–1001, 2005.
  • [55] Feng Shao, Dongyi Wei, and Zhifei Zhang. On blow-up for the supercritical defocusing nonlinear wave equation. arXiv preprint arXiv:2405.19674, 2024.
  • [56] Feng Shao, Dongyi Wei, and Zhifei Zhang. Self-similar imploding solutions of the relativistic euler equations. arXiv preprint arXiv:2403.11471, 2024.
  • [57] Jalal Shatah and Michael Struwe. Regularity results for nonlinear wave equations. Annals of Mathematics, 138(3):503–518, 1993.
  • [58] Jalal Shatah and Michael Struwe. Well-posedness in the energy space for semilinear wave equations with critical growth. International Mathematics Research Notices, 1994(7):303–309, 1994.
  • [59] Steve Shkoller and Vlad Vicol. The geometry of maximal development and shock formation for the Euler equations in multiple space dimensions. Inventiones mathematicae, 237(3):871–1252, Jun 2024.
  • [60] J. Smoller and B. Temple. Global solutions of the relativistic euler equations. Comm. Math. Phys., 156:67–99, 1993.
  • [61] Christopher Donald Sogge. Lectures on non-linear wave equations, volume 2. International Press Boston, MA, 1995.
  • [62] Richard P Stanley. Catalan numbers. Cambridge University Press, 2015.
  • [63] Michael Struwe. Globally regular solutions to the u5u^{5} klein-gordon equation. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 15(3):495–513, 1988.
  • [64] T. Tao. Finite-time blowup for a supercritical defocusing nonlinear wave system. Anal. PDE, 9:1999–2030, 2016.
  • [65] Terence Tao. Nonlinear Dispersive Equations: Local and Global Analysis, volume 106. American Mathematical Society, 2006.
  • [66] Jan Bouwe van den Berg, Maxime Breden, Jean-Philippe Lessard, and Lennaert van Veen. Spontaneous periodic orbits in the navier–stokes flow. Journal of nonlinear science, 31:1–64, 2021.