This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Blow-up prevention by sub-logistic sources in 2d Keller-Segel system

Minh Le
Abstract

This paper investigates the global existence of solutions to Keller-Segel systems with sub-logistic sources using the test function method. Prior work by [14] demonstrated that sub-logistic sources f(u)=ruμu2lnp(u+e)f(u)=ru-\mu\frac{u^{2}}{\ln^{p}(u+e)} with p(0,1)p\in(0,1) can prevent blow-up solutions for the 2D minimal Keller-Segel chemotaxis model. Our study extends this result by showing that when p=1p=1, sub-logistic sources can still prevent the occurrence of finite time blow-up solutions. Additionally, we provide a concise proof for a result previously proven in [4] that the equi-integrability of {Ωun2(,t)}t(0,Tmax)\left\{\int_{\Omega}u^{\frac{n}{2}}(\cdot,t)\right\}_{t\in(0,T_{\rm max})} can avoid blow-up.

1 Introduction

In this paper, we consider the following chemotaxis model with sub-logistic sources in a smooth bounded domain Ωn\Omega\subset\mathbb{R}^{n}, where n2n\geq 2:

{ut=Δu(uv)+f(u)0=Δv+uv,\begin{cases}u_{t}=\Delta u-\nabla\cdot(u\nabla v)+f(u)\\ 0=\Delta v+u-v,\end{cases} (1.1)

where r,μr,\mu are positive parameters, and ff is a smooth function generalizing the sub-logistic and signal production source respectively,

f(u)=ruμu2lnp(u+e),with r,μ>0,and p>0.\displaystyle f(u)=ru-\mu\frac{u^{2}}{\ln^{p}(u+e)},\quad\text{with }r\in\mathbb{R},\mu>0,\text{and }p>0. (1.2)

The system (1.1) is complemented with nonnegative initial conditions in W1,(Ω)W^{1,\infty}(\Omega) not identically zero:

u(x,0)=u0(x),v(x,0)=v0(x),with x,\displaystyle u(x,0)=u_{0}(x),\qquad v(x,0)=v_{0}(x),\qquad\text{with }x\in\mathbb{R}, (1.3)

and homogeneous Neumann boundary condition are imposed as follows:

uν=vν=0,xΩ,t(0,Tmax),\frac{\partial u}{\partial\nu}=\frac{\partial v}{\partial\nu}=0,\qquad x\in\partial\Omega,\,t\in(0,T_{\rm max}), (1.4)

where ν\nu denotes the outward normal vector.
The study of chemotaxis, which is the phenomenon where cells or bacteria move towards a chemical signal, has been a topic of intense research since the 1970s. Chemotaxis plays a significant role in various fields, including predicting the formation of aggregations, navigating optimal paths in a complex network, and even in physics, such as particle interaction. Moreover, it presents an intriguing mathematical property known as the critical mass phenomenon. This phenomenon means that if the mass is strictly less than a certain number, solutions exist globally, while if the mass is strictly larger than that number, solutions blow up in finite time. When f0f\equiv 0, it was shown in [8] that the critical mass equals 4π4\pi when Ω=B(0,1)\Omega=B(0,1) and 8π8\pi when the initial data are non-negative and radial. However, in higher dimensions, this property no longer holds. Recent research, as reported in [13], has shown that a finite blow-up solution can be constructed in a smooth bounded domain, regardless of how small the mass is.
The logistic sources, f(u):=ruμu2f(u):=ru-\mu u^{2}, was introduced and studied in [11] that if μ>n2n\mu>\frac{n-2}{n} then solutions exist globally and are bounded at all time in a convex open bounded domain Ωn\Omega\subset\mathbb{R}^{n} where n2n\geq 2. In order word, if μ\mu is sufficiently large, then the quadratic term μu2-\mu u^{2} ensures no occurrence of blow-up solutions in two spacial dimensional domain. This leads to a natural question that whether the term ”μu2-\mu u^{2}” is optimal to prevent blow-up solutions. However, it has been discovered in [14] that the answer is negative. To be specific, the ”weaker” term μu2lnp(u+e)-\frac{\mu u^{2}}{\ln^{p}(u+e)} for 0<p<10<p<1 is sufficient to avoid blow-up solutions for both elliptic-parabolic and fully parabolic minimal Keller-Segel chemotaxis models in a two spacial dimensional domain. Our main work improve the previous finding by showing that p=1p=1 can prevent blow-up solutions of the system (1.1).
Our analysis relies on a test function method and Moser iteration technique. It is proved in [4] that if the family of {Ωun2(,t)}t(0,Tmax)\left\{\int_{\Omega}u^{\frac{n}{2}}(\cdot,t)\right\}_{t\in(0,T_{\rm max})} is equi-integrable, then solutions of (1.1) when f0f\equiv 0 exist globally and remain bounded at all time. In this paper, we give another shorter proof in Proposition 3.1 for that result as well as indicate that the equi-integrability is not optimal to prevent blow-up thank to de la Vallée-Poussin Theorem. Thereafter, we try to a find a suitable functional and establish a differential inequality to obtain a priori estimate for solutions of (1.1) thank to the presence of the sub-logistic quadratic degradation term ”μu2ln(u+e)-\mu\frac{u^{2}}{\ln(u+e)}”. Notice that the key milestone in this study is the choice of the following functional:

y(t)=Ωu(,t)ln(ln(u(,t)+e)).y(t)=\int_{\Omega}u(\cdot,t)\ln(\ln(u(\cdot,t)+e)). (1.5)

One can also try to examine a functional

yk(t)=Ωu(,t)lnk(u(,t)+e)y_{k}(t)=\int_{\Omega}u(\cdot,t)\ln^{k}(u(\cdot,t)+e)

to find an appropriate kk, however, there is no suitable kk satisfying the conditions that μ\mu can be arbitrary small. In order word, this method leads to the choice of kk, but it does require the largeness assumption for μ\mu. So the functional (1.5) enables us to overcome that obstacle to prove our main theorem as follows:

Theorem 1.1.

Let μ>0\mu>0, and Ω2\Omega\subset\mathbb{R}^{2} be a bounded domain with smooth boundary. The system (1.1) under the assumptions (1.2), (1.3), and (1.4) admits a global bounded solution in Ω×(0,)\Omega\times(0,\infty) .

2 Preliminaries

The local existence and uniqueness of non-negative classical solutions to the system (1.1) can be established by adapting and adjusting the fixed point argument and standard parabolic regularity theory. For further details, we refer the reader to [5, 11, 6]. For convenience, we adopt Lemma 4.1 from [12].

Lemma 2.1.

Let Ωn\Omega\subset\mathbb{R}^{n}, where n2n\geq 2 be a bounded domain with smooth boundary, and suppose rr\in\mathbb{R}, μ>0\mu>0, the conditions (1.3), and (1.4) hold. Then there exist Tmax(0,]T_{\rm max}\in(0,\infty] and functions

{uC0(Ω¯×(0,Tmax))C2,1(Ω¯×(0,Tmax)) andvq>2C0([0,Tmax);W1,q(Ω))C2,1(Ω¯×(0,Tmax))\begin{cases}u\in C^{0}\left(\bar{\Omega}\times(0,T_{\rm max})\right)\cap C^{2,1}\left(\bar{\Omega}\times(0,T_{\rm max})\right)\text{ and}\\ v\in\bigcap_{q>2}C^{0}\left([0,T_{\rm max});W^{1,q}(\Omega)\right)\cap C^{2,1}\left(\bar{\Omega}\times(0,T_{\rm max})\right)\end{cases} (2.1)

such that u>0u>0 and v>0v>0 in Ω¯×(0,)\bar{\Omega}\times(0,\infty), that (u,v)(u,v) solves (1.1) classically in Ω×(0,Tmax)\Omega\times(0,T_{\rm max}), and that

if Tmax<,then lim suptTmax{uL(Ω)+uW1,(Ω)}=.\text{if }T_{\rm max}<\infty,\quad\text{then }\limsup_{t\to T_{\rm max}}\left\{\left\|u\right\|_{L^{\infty}(\Omega)}+\left\|u\right\|_{W^{1,\infty}(\Omega)}\right\}=\infty. (2.2)

We will use several interpolation inequalities extensively in the following sections. To start, we present an extended version of the Gagliardo-Nirenberg interpolation inequality, which was established in [7].

Lemma 2.2 (Gagliardo-Nirenberg interpolation inequality ).

Let Ω\Omega be a bounded and smooth domain of n\mathbb{R}^{n} with n1n\geq 1. Let r1r\geq 1, 0<qp<0<q\leq p<\infty, s>0s>0. Then there exists a constant CGN>0C_{GN}>0 such that

fLp(Ω)pCGN(fLr(Ω)pafLq(Ω)p(1a)+fLs(Ω)p)\left\|f\right\|^{p}_{L^{p}(\Omega)}\leq C_{GN}\left(\left\|\nabla f\right\|_{L^{r}(\Omega)}^{pa}\left\|f\right\|^{p(1-a)}_{L^{q}(\Omega)}+\left\|f\right\|^{p}_{L^{s}(\Omega)}\right)

for all fLq(Ω)f\in L^{q}(\Omega) with f(Lr(Ω))n\nabla f\in(L^{r}(\Omega))^{n}, and a=1q1p1q+1n1r[0,1]a=\frac{\frac{1}{q}-\frac{1}{p}}{\frac{1}{q}+\frac{1}{n}-\frac{1}{r}}\in[0,1].

In [4], an interpolation inequality of Ehrling-type is utilized to show that the equi-integrability of the family {Ωun2(,t)}t(0,Tmax)\left\{\int_{\Omega}u^{\frac{n}{2}}(\cdot,t)\right\}_{t\in(0,T_{\rm max})} implies the uniform boundedness of solutions. In this paper, we present an interpolation inequality that is similar to [4, Lemma 2.1], and which will be employed to obtain an LqL^{q} estimate with q2q\geq 2 for the solutions of the system (1.1). To prove this inequality, we adapt the argument used in the proof of inequality (22) in [3], with some modifications. We include a complete proof of this interpolation inequality below for the reader’s convenience.

Lemma 2.3.

Let Ωn\Omega\subset\mathbb{R}^{n}, with n2n\geq 2 be a bounded domain with smooth boundary and q>n2q>\frac{n}{2}. Then one can find C>0C>0 such that for each ϵ>0\epsilon>0, there exists c(ϵ)>0c(\epsilon)>0 such that

Ω|w|q+1ϵΩ|wq2|2(ΩG(|w|n2))2n+C(Ω|w|)q+1+c(ϵ)Ω|w|\int_{\Omega}|w|^{q+1}\leq\epsilon\int_{\Omega}|\nabla w^{\frac{q}{2}}|^{2}\left(\int_{\Omega}G(|w|^{\frac{n}{2}})\right)^{\frac{2}{n}}+C\left(\int_{\Omega}|w|\right)^{q+1}+c(\epsilon)\int_{\Omega}|w| (2.3)

holds for all wq2W1,2(Ω)w^{\frac{q}{2}}\in W^{1,2}(\Omega), and ΩG(|w|n2)<\int_{\Omega}G(|w|^{\frac{n}{2}})<\infty where GG is continuous, strictly increasing and nonnegative in [0,)[0,\infty) such that limsG(s)s=\lim_{s\to\infty}\frac{G(s)}{s}=\infty.

Proof.

We call

ξ(s)={0|s|N2(|s|N)N<|s|2N|s||s|>2N.\xi(s)=\left\{\begin{matrix}0&|s|\leq N\\ 2(|s|-N)&N<|s|\leq 2N\\ |s|&|s|>2N.\\ \end{matrix}\right. (2.4)

One can verify that

Ω||w|ξ(w)|q+1(2N)qΩ|w|\displaystyle\int_{\Omega}||w|-\xi(w)|^{q+1}\leq(2N)^{q}\int_{\Omega}|w| (2.5)

and,

Ωξ(w)n2Nn2G(Nn2)ΩG(|w|n2).\displaystyle\int_{\Omega}\xi(w)^{\frac{n}{2}}\leq\frac{N^{\frac{n}{2}}}{G(N^{\frac{n}{2}})}\int_{\Omega}G(|w|^{\frac{n}{2}}). (2.6)

Notice that |(ξ(w))q2|2c|w|q2|w|2|\nabla\left(\xi(w)\right)^{\frac{q}{2}}|^{2}\leq c|w|^{q-2}|\nabla w|^{2}, for some c>0c>0, and combine with Lemma 2.2, we obtain

Ω(ξ(w))q+1\displaystyle\int_{\Omega}(\xi(w))^{q+1} cΩ|(ξ(w))q2|2(Ωξ(w)n2)2n+C(Ωξ(w))q+1\displaystyle\leq c\int_{\Omega}|\nabla(\xi(w))^{\frac{q}{2}}|^{2}\left(\int_{\Omega}\xi(w)^{\frac{n}{2}}\right)^{\frac{2}{n}}+C\left(\int_{\Omega}\xi(w)\right)^{q+1}
c(Nn2G(Nn2))2nΩ|wq2|2(ΩG(|w|n2))2n+C(Ω|w|)q+1.\displaystyle\leq c\left(\frac{N^{\frac{n}{2}}}{G(N^{\frac{n}{2}})}\right)^{\frac{2}{n}}\int_{\Omega}|\nabla w^{\frac{q}{2}}|^{2}\left(\int_{\Omega}G(|w|^{\frac{n}{2}})\right)^{\frac{2}{n}}+C\left(\int_{\Omega}|w|\right)^{q+1}. (2.7)

This leads to

Ω|w|q+1\displaystyle\int_{\Omega}|w|^{q+1} c(Ω|ξ(w)|q+1+Ω|ξ(w)|w||q+1)\displaystyle\leq c\left(\int_{\Omega}|\xi(w)|^{q+1}+\int_{\Omega}|\xi(w)-|w||^{q+1}\right)
(Nn2G(Nn2))2nΩ|wq2|2(ΩG(|w|n2))2n+C(Ω|w|)q+1+(2N)qΩ|w|.\displaystyle\leq\left(\frac{N^{\frac{n}{2}}}{G(N^{\frac{n}{2}})}\right)^{\frac{2}{n}}\int_{\Omega}|\nabla w^{\frac{q}{2}}|^{2}\left(\int_{\Omega}G(|w|^{\frac{n}{2}})\right)^{\frac{2}{n}}+C\left(\int_{\Omega}|w|\right)^{q+1}+(2N)^{q}\int_{\Omega}|w|. (2.8)

We finally complete the proof by choosing N sufficiently large such that c(Nn2G(Nn2))2nϵc\left(\frac{N^{\frac{n}{2}}}{G(N^{\frac{n}{2}})}\right)^{\frac{2}{n}}\leq\epsilon. ∎

Let us recall de la Vallée-Poussin Theorem

Lemma 2.4.

The family {Xα}αAL1(μ)\left\{X_{\alpha}\right\}_{\alpha\in A}\subset L^{1}(\mu) is uniformly integrable if and only if there exists a non-negative increasing convex function G(t)G(t) such that

limtG(t)t=and supαΩG(Xα)<.\displaystyle\lim_{t\to\infty}\frac{G(t)}{t}=\infty\qquad\text{and }\sup_{\alpha}\int_{\Omega}G(X_{\alpha})<\infty.

3 A priori estimates and proof of main theorem

In this section, (u,v)(u,v) is a classical solutions as defined in Lemma 2.1 to the system (1.1) with p=1p=1. Our aim is to establish a priori estimate for the solutions. While the method in [9] and [14] relies on the L1L^{1}-estimate of uu and the absorption of Ω|u12|2-\int_{\Omega}|\nabla u^{\frac{1}{2}}|^{2} to obtain a LlnLL\ln L uniform bound, we take advantage of the term μu2ln(u+e)-\mu\frac{u^{2}}{\ln(u+e)} to obtain a weaker LlnlnLL\ln\ln L uniform bound.

Lemma 3.1.

There exists C=C(u0,v0,|Ω|,μ)>0C=C(u_{0},v_{0},|\Omega|,\mu)>0 such that

supt(0,Tmax)Ωu(,t)ln(ln(u(,t)+e))C.\sup_{t\in(0,T_{\rm max})}\int_{\Omega}u(\cdot,t)\ln(\ln(u(\cdot,t)+e))\leq C. (3.1)
Proof.

We define y(t)=Ωuln(ln(u+e))y(t)=\int_{\Omega}u\ln(\ln(u+e)) and differentiate yy to obtain

y(t)\displaystyle y^{\prime}(t) =Ω[ln(ln(u+e))+u(u+e)ln(u+e)]ut\displaystyle=\int_{\Omega}\left[\ln(\ln(u+e))+\frac{u}{(u+e)\ln(u+e)}\right]u_{t}
=Ω[ln(ln(u+e))+u(u+e)ln(u+e)](Δu(uv)+ruμu2ln(u+e))\displaystyle=\int_{\Omega}\left[\ln(\ln(u+e))+\frac{u}{(u+e)\ln(u+e)}\right]\left(\Delta u-\nabla\cdot(u\nabla v)+ru-\mu\frac{u^{2}}{\ln(u+e)}\right)
=Ω[ln(ln(u+e))+u(u+e)ln(u+e)]u\displaystyle=-\int_{\Omega}\nabla\left[\ln(\ln(u+e))+\frac{u}{(u+e)\ln(u+e)}\right]\cdot\nabla u
+Ωu(ln(ln(u+e))+u(u+e)ln(u+e))v\displaystyle+\int_{\Omega}u\nabla\left(\ln(\ln(u+e))+\frac{u}{(u+e)\ln(u+e)}\right)\cdot\nabla v
+Ω[ln(ln(u+e))+u(u+e)ln(u+e)](ruμu2ln(u+e))\displaystyle+\int_{\Omega}\left[\ln(\ln(u+e))+\frac{u}{(u+e)\ln(u+e)}\right]\left(ru-\mu\frac{u^{2}}{\ln(u+e)}\right)
:=I+J+K\displaystyle:=I+J+K (3.2)

By integration by parts, we have

I\displaystyle I =Ω[ln(ln(u+e))+u(u+e)ln(u+e)]u\displaystyle=-\int_{\Omega}\nabla\left[\ln(\ln(u+e))+\frac{u}{(u+e)\ln(u+e)}\right]\cdot\nabla u
=Ω[1(u+e)ln(u+e)+eln(u+e)u(u+e)2ln2(u+e)]|u|2\displaystyle=-\int_{\Omega}\left[\frac{1}{(u+e)\ln(u+e)}+\frac{e\ln(u+e)-u}{(u+e)^{2}\ln^{2}(u+e)}\right]|\nabla u|^{2}
=Ωuln(u+e)+2eln(u+e)u(u+e)2ln2(u+e)|u|20.\displaystyle=-\int_{\Omega}\frac{u\ln(u+e)+2e\ln(u+e)-u}{(u+e)^{2}\ln^{2}(u+e)}|\nabla u|^{2}\leq 0. (3.3)

Similarly, we have

J\displaystyle J =Ωu(ln(ln(u+e))+u(u+e)ln(u+e))v\displaystyle=\int_{\Omega}u\nabla\left(\ln(\ln(u+e))+\frac{u}{(u+e)\ln(u+e)}\right)\cdot\nabla v
=Ωu2(ln(u+e)1)+2eln(u+e)(u+e)2ln2(u+e)uv\displaystyle=\int_{\Omega}\frac{u^{2}(\ln(u+e)-1)+2e\ln(u+e)}{(u+e)^{2}\ln^{2}(u+e)}\nabla u\cdot\nabla v
=Ωϕ(u)v=Ωϕ(u)(uv)Ωuϕ(u),\displaystyle=\int_{\Omega}\nabla\phi(u)\cdot\nabla v=\int_{\Omega}\phi(u)(u-v)\leq\int_{\Omega}u\phi(u), (3.4)

where

0ϕ(u):=0us2(ln(s+e)1)+2eln(s+e)(s+e)2ln2(s+e)𝑑s0u1ln(s+e)𝑑s.\displaystyle 0\leq\phi(u):=\int_{0}^{u}\frac{s^{2}(\ln(s+e)-1)+2e\ln(s+e)}{(s+e)^{2}\ln^{2}(s+e)}\,ds\leq\int_{0}^{u}\frac{1}{\ln(s+e)}\,ds. (3.5)

Thus, we obtain

JΩu0u1ln(s+e)𝑑s.\displaystyle J\leq\int_{\Omega}u\int_{0}^{u}\frac{1}{\ln(s+e)}\,ds. (3.6)

By L’Hospital lemma, we have

limu0u1ln(s+e)𝑑suln(ln(u+e))ln(u+e)=limuln(u+e)ln(u+e)ln(ln(u+e))+uu+euu+eln(ln(u+e))=0.\displaystyle\lim_{u\to\infty}\frac{\int_{0}^{u}\frac{1}{\ln(s+e)}\,ds}{\frac{u\ln(\ln(u+e))}{\ln(u+e)}}=\lim_{u\to\infty}\frac{\ln(u+e)}{\ln(u+e)\ln(\ln(u+e))+\frac{u}{u+e}-\frac{u}{u+e}\ln(\ln(u+e))}=0. (3.7)

Therefore, for any ϵ>0\epsilon>0, there exist NN depending on ϵ\epsilon such that for u>Nu>N, we have

0u1ln(s+e)𝑑sϵuln(ln(u+e))ln(u+e).\displaystyle\int_{0}^{u}\frac{1}{\ln(s+e)}\,ds\leq\epsilon u\frac{\ln(\ln(u+e))}{\ln(u+e)}. (3.8)

This leads to

Ωu0u1ln(s+e)𝑑s\displaystyle\int_{\Omega}u\int_{0}^{u}\frac{1}{\ln(s+e)}\,ds =uNu0u1ln(s+e)𝑑s+u>Nu0u1ln(s+e)𝑑s\displaystyle=\int_{u\leq N}u\int_{0}^{u}\frac{1}{\ln(s+e)}\,ds+\int_{u>N}u\int_{0}^{u}\frac{1}{\ln(s+e)}\,ds
ϵΩu2ln(ln(u+e))ln(u+e)+c\displaystyle\leq\epsilon\int_{\Omega}u^{2}\frac{\ln(\ln(u+e))}{\ln(u+e)}+c (3.9)

where c=N2|Ω|c=N^{2}|\Omega|. From (3.6) and (3), we imply

JϵΩu2ln(ln(u+e))ln(u+e)+c.\displaystyle J\leq\epsilon\int_{\Omega}u^{2}\frac{\ln(\ln(u+e))}{\ln(u+e)}+c. (3.10)

One can verify that for any ϵ>0\epsilon>0, there exist C(ϵ)>0C(\epsilon)>0 such that

K\displaystyle K =Ω[ln(ln(u+e))+u(u+e)ln(u+e)](ruμu2ln(u+e))\displaystyle=\int_{\Omega}\left[\ln(\ln(u+e))+\frac{u}{(u+e)\ln(u+e)}\right]\left(ru-\mu\frac{u^{2}}{\ln(u+e)}\right)
(ϵμ)Ωu2ln(ln(u+e))ln(u+e)+c\displaystyle\leq(\epsilon-\mu)\int_{\Omega}u^{2}\frac{\ln(\ln(u+e))}{\ln(u+e)}+c (3.11)

and

y(t)ϵΩu2ln(ln(u+e))ln(u+e)+c.\displaystyle y(t)\leq\epsilon\int_{\Omega}u^{2}\frac{\ln(\ln(u+e))}{\ln(u+e)}+c. (3.12)

Collect (3), (3), (3.6), (3.10),(3), and (3.12), we have

y(t)+y(t)(3ϵμ)Ωu2ln(ln(u+e))ln(u+e)+c.\displaystyle y^{\prime}(t)+y(t)\leq(3\epsilon-\mu)\int_{\Omega}u^{2}\frac{\ln(\ln(u+e))}{\ln(u+e)}+c. (3.13)

We choose ϵ\epsilon sufficiently small and apply Gronwall’s inequality to imply y(t)Cy(t)\leq C for all t>0t>0. ∎

Thank to Lemma 2.4, the equi-integrability of {Ωun2(,t)<}t(0,Tmax)\left\{\int_{\Omega}u^{\frac{n}{2}}(\cdot,t)<\infty\right\}_{t\in(0,T_{\rm max})} is equivalent to
supt(0,Tmax)ΩG(un2(,t))<\sup_{t\in(0,T_{\rm max})}\int_{\Omega}G(u^{\frac{n}{2}}(\cdot,t))<\infty for some non-negative increasing convex function such that limsG(s)s=\lim_{s\to\infty}\frac{G(s)}{s}=\infty. However, the convexity condition is not necessary, which means that the equi-integrable condition can be relaxed. Indeed, following proposition gives us the LqL^{q} bounds, where q>n2q>\frac{n}{2} for solutions without the convexity assumption.

Proposition 3.1.

Let Ωn\Omega\subset\mathbb{R}^{n}, where n2n\geq 2, be a bounded domain with smooth boundary, and fC2([0,))f\in C^{2}([0,\infty)) such that f(s)c(s2+1)f(s)\leq c(s^{2}+1) for all s0s\geq 0, where c>0c>0. Assume that (u,v)(u,v) is a classical solution as in Lemma 2.1 of (1.1) on Ω×(0,Tmax)\Omega\times(0,T_{\rm max}) with maximal existence time Tmax(0,]T_{\rm max}\in(0,\infty]. If there exists a nonnegative increasing function GG such that

limtG(s)s=and supt(0,Tmax)ΩG(un2(,t))<,\displaystyle\lim_{t\to\infty}\frac{G(s)}{s}=\infty\qquad\text{and }\sup_{t\in(0,T_{\rm max})}\int_{\Omega}G(u^{\frac{n}{2}}(\cdot,t))<\infty,

then for any q>n2q>\frac{n}{2} we have

supt(0,Tmax)Ωuq(,t)<.\displaystyle\sup_{t\in(0,T_{\rm max})}\int_{\Omega}u^{q}(\cdot,t)<\infty.
Proof.

We define

ϕ(t):=1qΩuq\phi(t):=\frac{1}{q}\int_{\Omega}u^{q}

and differentiate ϕ\phi to obtain

ϕ(t)\displaystyle\phi^{\prime}(t) =Ωuq1[Δu(uv)+f(u)]\displaystyle=\int_{\Omega}u^{q-1}[\Delta u-\nabla\cdot(u\nabla v)+f(u)]
=c1Ω|uq2|2+c2Ωuq2uq2v+cΩuq+1+uq1\displaystyle=-c_{1}\int_{\Omega}|\nabla u^{\frac{q}{2}}|^{2}+c_{2}\int_{\Omega}u^{\frac{q}{2}}\nabla u^{\frac{q}{2}}\cdot\nabla v+c\int_{\Omega}u^{q+1}+u^{q-1}
=I+J+K,\displaystyle=I+J+K, (3.14)

where c1,c2c_{1},c_{2} are positive depending only on qq. We make use of integration by parts and the second equation of (1.1) to obtain

J\displaystyle J :=c2Ωuq2uq2v=c3ΩuqΔv\displaystyle:=c_{2}\int_{\Omega}u^{\frac{q}{2}}\nabla u^{\frac{q}{2}}\cdot\nabla v=-c_{3}\int_{\Omega}u^{q}\Delta v
=c3Ωuq(vu)c3Ωuq+1,\displaystyle=-c_{3}\int_{\Omega}u^{q}(v-u)\leq c_{3}\int_{\Omega}u^{q+1}, (3.15)

where c3c_{3} is positive depending only on qq. By Young inequality, one can find c4=c4(q)>0c_{4}=c_{4}(q)>0, and c5=c5(q,|Ω|)>0c_{5}=c_{5}(q,|\Omega|)>0 such that

I+K+ϕc4Ωuq+1+c5.\displaystyle I+K+\phi\leq c_{4}\int_{\Omega}u^{q+1}+c_{5}. (3.16)

We make use of Lemma 2.3 to obtain that there exist C>0C>0 such that for any ϵ>0\epsilon>0, there exists c6=c6(ϵ)>0c_{6}=c_{6}(\epsilon)>0 such that

c5Ωuq+1ϵΩ|uq2|2(ΩG(un2))2n+C(Ωu)q+1+c6Ωu\displaystyle c_{5}\int_{\Omega}u^{q+1}\leq\epsilon\int_{\Omega}|\nabla u^{\frac{q}{2}}|^{2}\left(\int_{\Omega}G(u^{\frac{n}{2}})\right)^{\frac{2}{n}}+C\left(\int_{\Omega}u\right)^{q+1}+c_{6}\int_{\Omega}u

This, together with the uniform bounded condition of ΩG(un2(,t))\int_{\Omega}G(u^{\frac{n}{2}}(\cdot,t)) imply that

c4Ωuq+1c7ϵΩ|uq2|2+c8,\displaystyle c_{4}\int_{\Omega}u^{q+1}\leq c_{7}\epsilon\int_{\Omega}|\nabla u^{\frac{q}{2}}|^{2}+c_{8}, (3.17)

where c7c_{7} is positive independent of ϵ\epsilon and c8=c8(ϵ)>0c_{8}=c_{8}(\epsilon)>0. From (3) to (3.17), we obtain that

ϕ(t)+ϕ(t)(c7ϵc1)Ω|uq2|2+c9,\displaystyle\phi^{\prime}(t)+\phi(t)\leq(c_{7}\epsilon-c_{1})\int_{\Omega}|\nabla u^{\frac{q}{2}}|^{2}+c_{9}, (3.18)

where c9=c5+c8c_{9}=c_{5}+c_{8}. The proof is now completed by choosing ϵ<c1c7\epsilon<\frac{c_{1}}{c_{7}} and applying Gronwall’s inequality. ∎

We are now ready to prove the main result.

Proof of Theorem 1.1.

From Lemma 3.1, we obtain that there exists C1>0C_{1}>0 such that

supt(0,Tmax)ΩG(u(,t))C1,\sup_{t\in(0,T_{\rm max})}\int_{\Omega}G(u(\cdot,t))\leq C_{1},

where G(s):=sln(ln(s+e))G(s):=s\ln(\ln(s+e)), satisfying all conditions of Proposition 3.1. Therefore, we can apply Proposition 3.1 to deduce that for any q>1q>1 there exists C2=C2(q)>0C_{2}=C_{2}(q)>0 such that

supt(0,Tmax)Ωuq(,t)C2.\sup_{t\in(0,T_{\rm max})}\int_{\Omega}u^{q}(\cdot,t)\leq C_{2}.

This, together with the second equation and elliptic regularity theory imply that

supt(0,Tmax)Ω|v(,t)|2qC3,\sup_{t\in(0,T_{\rm max})}\int_{\Omega}|\nabla v(\cdot,t)|^{2q}\leq C_{3},

for some C3=C3(q)>0C_{3}=C_{3}(q)>0. By applying Moser iteration procedure as in [2], [1], and [10], we obtain that

supt(0,Tmax)uL(Ω)+vW1,(Ω)<.\displaystyle\sup_{t\in(0,T_{\rm max})}\left\|u\right\|_{L^{\infty}(\Omega)}+\left\|v\right\|_{W^{1,\infty}(\Omega)}<\infty.

This, combined with (2.2), implies that Tmax=T_{\rm max}=\infty and uniform boundedness of (u,v)(u,v). ∎

Acknowledgement

The author is indebted to Professor Michael Winkler for his kindly assistance in providing insightful comments, suggestions and valuable references. Additionally, the author extends appreciation to Professor Zhengfang Zhou for thoroughly reviewing the manuscript, engaging in fruitful discussions, and bringing to attention certain errors throughout the course of this project.

References

  • [1] N.D. Alikakos “An application of the invariance principle to reaction diffusion equations” In J. Differential Equations 33, 1979, pp. 201–225
  • [2] N.D. Alikakos “Lp bounds of solutions of reaction-diffusion equations” In Comm. Partial Differential Equations 4, 1979, pp. 827–868
  • [3] Nadzieja T. Biler P “The Debye system: existence and large time behavior of solutions” In Nonlinear Analysis, Theory, Methods, and Applications 23, 1994, pp. 1189–1209
  • [4] Xinru Cao “An interpolation inequality and its application in Keller-Segel model” In arXiv:1707.09235, 2018
  • [5] D. Horstmann and M. Winkler “Boundedness vs. blow-up in a chemotaxis system” In J. Differential Equations 215, 2005, pp. 52–107
  • [6] Johannes Lankeit “Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion,” In Journal of Differential Equations 262, 2017, pp. 4052–4048
  • [7] Y. Li and J. Lankeit “Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion” In Nonlinearity. 29(6), 2016, pp. 1564–1595
  • [8] Toshitaka Nagai, Takasi Senba and Kiyoshi Yoshida “Application of the Trudinger-Moser inequality to a Parabolic System of Chemotaxis,” In Funkcilaj Ekvacioj 40, 1997, pp. 411–433
  • [9] K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura “Exponential attractor for a chemotaxis-growth system of equations” In Nonlinear Analysis 51, 2002, pp. 119–144
  • [10] Y. Tao and M. Winkler “Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity” In Journal of Differential Equations 252, 2011
  • [11] J. Tello and M. Winkler “A chemotaxis system with logistic source,” In Comm. Partial Differential Equations 32, 2007, pp. 849–877
  • [12] M. Winkler “A result on parabolic gradient regularity in Orlicz spaces and application to absorption-induced blow-up prevention in a Keller-Segel type cross-diffusion system” In Preprint 1, 2022
  • [13] M. Winkler “Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model” In J. Differential Equations 248(12), 2010, pp. 2889–2905
  • [14] Tian Xiang “Sub-logistic source can prevent blow-up in the 2D minimal Keller-Segel chemotaxis system” In Journal of Mathematical Physics 59, 2017