This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Block Markov Chains on Trees

Abdessatar Souissi
Abstract

We introduce block Markov chains (BMCs) indexed by an infinite rooted tree. It turns out that BMCs define a new class of tree-indexed Markovian processes. We clarify the structure of BMCs in connection with Markov chains (MCs) and Markov random fields (MRFs). Mainly, show that probability measures which are BMCs for every root are indeed Markov chains (MCs) and yet they form a strict subclass of Markov random fields (MRFs) on the considered tree. Conversely, a class of MCs which are BMCs is characterized. Furthermore, we establish that in the one-dimensional case the class of BMCs coincides with MCs. However, a slight perturbation of the one-dimensional lattice leads to us to an example of BMCs which are not MCs appear.

1. Introduction

Markov random fields (MRFs) on lattice have become standard tools in several branches of science and technology including computer science, machine learning, graphical models, statistical physics. Namely, MRFs are known to provide pertinent models for interacting particles systems in statistical mechanics.
We notice that MRFs were introduced by Dobrushin in [?] for the multi-dimensional integer lattice, and developed then on trees [?], [?], [?]. QMFs consist multi-dimensional extensions of Markov chains [?] but with a deeper Markovian structure. In, fact even in the one dimensional case MRFs were shown to be distinct from MCs [?].

MRFs play a crucial role in many areas such as computer science, image recognition, graphical models, psychology and in an increasing number of biological and neurological models. The reader is referred to [?], [?], [?] and the references cited therein for further applications.
In the present paper we introduce the notion of block Markov chains indexed by the vertex-set of a rooted tree T=(V,E)T=(V,E). The definition of this notion is quite natural. Since in the one-dimensional case V=𝐍0V=\mathbf{N}_{0} with distinguished vertex (root) "o=0""o=0", a Markov chain (Zn)n𝐍(Z_{n})_{n\in\mathbf{N}} with (finite) state space Ξ\Xi is defined through the well known Markov property

𝐏[Zn+1=ξn+1Zn=ξn,,Z0=ξ0]=𝐏[Zn+1=ξn+1Zn=ξn].\mathbf{P}[Z_{n+1}=\xi_{n+1}\,\mid\,Z_{n}=\xi_{n},\cdots,Z_{0}=\xi_{0}]=\mathbf{P}[Z_{n+1}=\xi_{n+1}\,\mid\,Z_{n}=\xi_{n}].

The above property can be reformulated by means of the joined probability measure μ\mu on ΞV\Xi^{V} of the process (Zu)uV(Z_{u})_{u\in V} as follows

μ[ξ(.)onS(x)ξ(.)onVT(x))]=μ[ξ(.)onS(x)ξ(x)]\mu[\xi(.)\,\,\hbox{on}\,\,S(x)\,\mid\,\xi(.)\,\,\hbox{on}\,\,V\setminus T^{{}^{\prime}}(x))]=\mu[\xi(.)\,\,\hbox{on}\,\,S_{(}x)\,\mid\,\,\xi(x)] (1.1)

where S(x)={x+1}S(x)=\{x+1\} is the set of successors of the site xVx\in V and T(x)={x+1,x+2,}T^{\prime}(x)=\{x+1,x+2,\cdots\} it the set of successive descendants of the vertex xx w.r.t. the considered root oo. We emphasize a suitable natural generalization of the sets S(x)S(x) and T(x)T(x) for general trees. Roughly speaking, a BMC is a probability measure on Ω:=ΞV\Omega:=\Xi^{V} satisfying the Markov property (1.1) for a fixed root.
The main purpose of this paper is to clarify the structure of BMCs in connection with MCs and MRFs. Mainly, we show that a probability measure which is BMC for every root oVo\in V is a MC in the sense of [?]. The correlation functions of BMCs are different from those of MCs and MRFs. Consequently, their Markov structure are also different. Namely, it turns out that some conditional independence conditions are necessary on a MC on the considered tree to be BMC.
On the other hand we show that in the one-dimensional case, the notions of MCs and QMCs coincide. This coincidence Makes BMCs strictly a sub-class of MRFs in the one dimensional case. However, we emphasize that a slight modification of the one-dimensional lattice leads to a counter-examples that confirms the huge difference between MCs and BMCs over multi-dimensional trees.
We notice that the natural hierarchical structure of rooted trees, due to the absence of loops, plays a crucial role in the mere definition of BMCs. Therefore, the results are no longer available on general graphs. We forecast that BMCs will play a crucial role in connection with Gibbs measures on trees and their associated phenomena of phase transitions (see [?], [?] and [?]). Namely, phenomena of phase transitions were associated with interesting p-adic models such as the Potts model and the Ising–Vannimenus model [?], [?]. In fact, a work under preparation is dedicated to the clarification of a bridge between BMCs and some p-adic models.
In [?], [?] we clarified the structure of quantum Markov states on a quasi-local algebra 𝒜\mathcal{A} trees in terms of classical Markovian measure and Gibbs measures on the spectrum of a maximal abelian subalgebra. We stress that this classical Markovian measure is indeed a BMC. This will makes a new bridge between classical and quantum Markov fields.
Let us mention the outlines of the paper. Section 2. is devoted to some notions and notions on rooted trees. In section 3., we recall the basic definition of MC and MRF on graphs. Section 4. is devoted to definition of BMCs as far as its correlation functions. Section 5. is dedicated to results related to the connection of BMCs with MCs and MRFs on trees. In section 6. we deal with the one-dimensional case for which the vertex set is the classical 1D integer lattice 𝐙\mathbf{Z} occupied with its natural tree structure. In section 7. we develop a counter-example for a BMC which is not a MC.

2. Rooted trees

Recall that [?] a tree is a connected graph with no cycles, i.e. a connected graph which becomes disconnected when each one of its edges is removed.
Let be given an infinite tree T=(V,E)T=(V,E). First, we fix any vertex o=x0Vo=x_{0}\in V as a ”root”. Recall that two vertices xx and yy are said to be nearest neighborsand we denote xyx\sim y if they are joined through an edge (i.e. <x,y>E<x,y>\in E). A list of the vertices xx1xd1yx\sim x_{1}\sim\dots\sim x_{d-1}\sim y is called a path from the site xx to the site yy. The distance d(x,y)d(x,y) on the tree is the length of the shortest path from xx to yy.
For xVx\in V, its direct successors (children) is defined by

So(x):={yV:xyandd(y,o)>d(x,o)}S^{o}(x):=\left\{y\in V\,\,:\,\,x\sim y\,\,\hbox{and}\,\,d(y,o)>d(x,o)\right\} (2.2)

and its kthk^{th} successors w.r.t. the root oo is defined by induction as follows

S1o(x):=So(x);S_{1}^{o}(x):=S^{o}(x);
Sk+1o(x)=So(Sko(x)),k1.S^{o}_{k+1}(x)=S^{o}(S^{o}_{k}(x)),\,\,\forall k\geq 1.

The ”future” w.r.t. the vertex xx is defined by:

S[m,n]o(x)=k=mnSko(x);To(x)=k1Sko(x);To(x)=T(x){x}.S^{o}_{[m,n]}(x)=\bigcup_{k=m}^{n}S^{o}_{k}(x);\quad T_{o}(x)=\bigcup_{k\geq 1}S^{o}_{k}(x);\quad T_{o}^{{}^{\prime}}(x)=T(x)\setminus\{x\}. (2.3)

Note that in the homogeneous case, for which |So(x)|=k|S_{o}(x)|=k is constant, the graph TT is the semi-infinite Cayley tree Γ+k\Gamma^{k}_{+} of order kk. Namely, for k=1k=1, the graph is reduced to the one-dimensional integer lattice 𝐙\mathbf{Z}.
Consider the map rr from VV into itself characterized by

r(o)=o,r(o)=o,
r(y)=xifySo(x)r(y)=x\quad\hbox{if}\quad y\in S^{o}(x)

Let xVx\in V. If n=d(x,o)n=d(x,o) then

o=rn(x)=x0rn1(x)r(x)r0(x)=xo=r^{n}(x)=x_{0}\sim r^{n-1}(x)\sim\cdots\sim r(x)\sim r^{0}(x)=x (2.4)

is the minimal edge-path joining the root oo to the vertex xx, where rk=rrktimesr^{k}=\underbrace{r\circ\cdots\circ r}_{k\,\,times}.
The set

Ro(x):={r(x),r2(x),,rn(x)=o}R^{o}(x):=\{r(x),r^{2}(x),\cdots,r^{n}(x)=o\} (2.5)

represents the ”past” of the vertex xx for the root oo
The set of nearest-neighbors vertices of xx is given as follows:

Nx={yV:xy}N_{x}=\{y\in V\,\,:\,\,x\sim y\} (2.6)

It is clear that Nx={r(x)}So(x)N_{x}=\{r(x)\}\cup S^{o}(x).

In the sequel, the tree TT is assumed to be locally finite, i.e. |Nx|<|N_{x}|<\infty for each xVx\in V, in this case the integer dx:=|Nx|d_{x}:=|N_{x}| is called degree of xx.
The tree can be regarded as growing (upward) away from its fixed root oo. Each vertex xVx\in V then has branches leading to its ”children”, which are represented here by Sô(x)Sô(x) and To(x)T^{{}^{\prime}}_{o}(x). With the possibility of leaves, that is, vertices xx without children i.e. S(x)=ØS(x)=\mathchoice{\mbox{\normalsize\rm\O}}{\mbox{\normalsize\rm\O}}{\mbox{\rm\O}}{\mbox{\rm\O}}.

3. Some Reminders on Markov fields

Let Ξ={1,,q}\Xi=\{1,\cdots,q\}. By a stochastic process we mean a family of random variables (Zu)uV(Z_{u})_{u\in V} defined on a probability space (Ω,,𝐏)(\Omega,\mathcal{F},\mathbf{P}) and valued in a finite set Ξ:={1,2,,q}\Xi:=\{1,2,\cdots,q\}. The process (Zu)uV(Z_{u})_{u\in V} is defined through its joined probability measure μ\mu on the Borel space (ΞV,)(\Xi^{V},\mathcal{B}) where V\mathcal{B}_{V} is the cylindrical σ\sigma-algebra, which is generated by the cylinder sets of the following form

C(ax,xΛ)={ξΞV:ξ(x)=ax,xΛ}C(a_{x},\;x\in\Lambda)=\left\{\xi\in\Xi^{V}\,\,:\,\,\xi(x)=a_{x},\,\,\forall x\in\Lambda\right\} (3.7)

where ΛV\Lambda\subset V finite and (ax)xΛΞ|Λ|(a_{x})_{x\in\Lambda}\in\Xi^{|\Lambda|}. For the sake of shortness we denote Ω\Omega instead of ΩV\Omega_{V} and \mathcal{B} instead of V\mathcal{B}_{V}. For ΛV\Lambda\subset V, we denote ΩΛ=ΞΛ\Omega_{\Lambda}=\Xi^{\Lambda}. Recall that

μ[ξ(.)onΛ]=𝐏[uΛ(Zu=ξ(u))]\mu\left[\xi(.)\,\,\hbox{on}\,\,\Lambda\right]=\mathbf{P}\left[\bigcap_{u\in\Lambda}(Z_{u}=\xi(u))\right] (3.8)

where ξΩΛ\xi\in\Omega_{\Lambda}.
The conditional probability is defined as follows

μ[ξ(.)onΛξ(.)onΛ]=μ[ξ(.)onΛΛ]μ[ξ(.)onΛ]\mu\left[\xi(.)\,\,\hbox{on}\,\,\Lambda\,\,\mid\,\,\xi(.)\,\,\hbox{on}\,\,\Lambda^{{}^{\prime}}\right]=\frac{\mu\left[\xi(.)\,\,\hbox{on}\,\,\Lambda\cup\Lambda^{{}^{\prime}}\right]}{\mu\left[\xi(.)\,\,\hbox{on}\,\,\Lambda^{{}^{\prime}}\right]} (3.9)

where Λ,ΛV\Lambda,\Lambda^{{}^{\prime}}\subseteq V and ξΞV\xi\in\Xi^{V} such that

μ[ξ(.)onΛ]>0.\mu\left[\xi(.)\,\,\hbox{on}\,\,\Lambda^{{}^{\prime}}\right]>0.

Denoting

u:=σ(Zu);Λ=σ(Zu;uΛ)\mathcal{F}_{u}:=\sigma(Z_{u})\,\,;\,\,\mathcal{F}_{\Lambda}=\sigma\left(Z_{u}\,\,;\,\,u\in\Lambda\right) (3.10)

the σ\sigma-algebra generated by ZuZ_{u} and (Zv,vΛ),(Z_{v},\,v\in\Lambda), respectively.

DEFINITION 1

[?] A probability measure μ\mu on (Ω,)(\Omega,\mathcal{B}) is said to be Markov random field (MRF) if it takes strictly positive values on finite cylinder sets of the form (3.7) and such that for every ξΩ\xi\in\Omega

μ[ξ(u)ξ(.)onV{u}]=μ[ξ(u)ξ(.)onNu].\mu\left[\xi(u)\,\mid\xi(.)\;\hbox{on}\;V\setminus\{u\}\right]=\mu\left[\xi(u)\,\mid\,\xi(.)\,\hbox{on}\,N_{u}\right]. (3.11)

The set of Markov random fields over TT will be denoted by (T)\mathcal{MF}(T).

The conditional probabilities (3.11) are assumed to be invariant under graph isomorphism.

DEFINITION 2

[?]A probability measure μ\mu on (Ω,)(\Omega,\mathcal{B}) is said to be Markov chain (MC) over the tree T=(V,E)T=(V,E) if for each subtree T=(V,E)T^{\prime}=(V^{\prime},E^{\prime}) the restriction of μ\mu on the measurable space (ΩV,V)(\Omega_{V^{\prime}},\mathcal{B}_{V^{{}^{\prime}}}) defines a Markov random field. i.e.

μ[ξ(x)ξ(.)onV{x}]=μ[ξ(x)ξ(.)onNxV]\mu[\xi(x)\,\,\mid\,\,\xi(.)\,\,\hbox{on}\,\,V^{\prime}\setminus\{x\}\,]=\mu[\xi(x)\,\,\mid\,\xi(.)\,\,\hbox{on}\,N_{x}\cap V^{{}^{\prime}}\,] (3.12)

for all xVx\in V^{\prime} and all ξΩV\xi\in\Omega_{V^{{}^{\prime}}}. The set of Markov chains over TT will be denoted by 𝒞(T)\mathcal{MC}(T).

Remark 1

The class 𝒞(T)\mathcal{MC}(T) is clearly included in (T)\mathcal{MF}(T). Conversely, in [?] it was proven that if the tail σ\sigma-field is trivial then the considered Markov field is indeed a MC.

4. Structure of Block Markov chains on trees

In what follows, a root oo for the tree T=(V,E)T=(V,E) is fixed. For each n𝐍n\in\mathbf{N}, we denote Λn:=Sno(o)\Lambda_{n}:=S_{n}^{o}(o) the set of vertices whose distance to the root oo equals nn. Let Λn]=S[0,n]o(o)=k=0nΛk\Lambda_{n]}=S_{[0,n]}^{o}(o)=\bigcup_{k=0}^{n}\Lambda_{k}. For the sake of shortness, when confusion seems impossible we will use the notations S(x),T(x),TS(x),\,T(x),T^{{}^{\prime}} and r(x)r(x) instead of So(x),To(x),To(x)S_{o}(x),\,T_{o}(x),T_{o}^{{}^{\prime}}(x) and ro(x)r_{o}(x), respectively.

Let us set a random enumeration for elements of Λn\Lambda_{n} as follows

Λn:=(xΛn(1),xΛn(2),,xΛn(|Λn|))\displaystyle{\Lambda_{n}}:=\left(x^{(1)}_{\Lambda_{n}},x^{(2)}_{\Lambda_{n}},\cdots,x^{(|\Lambda_{n}|)}_{\Lambda_{n}}\right)

where |Λn||\Lambda_{n}| denotes the cardinality of Λn\Lambda_{n}.

DEFINITION 3

A measure μ\mu on (Ω,)(\Omega,\mathcal{B}) is called o-block Markov chain (o-BMC) if it satisfies

μ[ξ(.)onS(x)|ξ(.)onVT(x)]=μ[ξ(.)onS(x)|ξ(x)]\mu\left[\xi(.)\,\,\hbox{on}\;S(x)\,\,\big{|}\xi(.)\,\,\hbox{on}\;V\setminus T^{{}^{\prime}}(x)\right]=\mu\left[\xi(.)\,\,\hbox{on}\,\,S(x)\;\big{|}\xi(x)\right] (4.13)

for all xVx\in V and ξΩ\xi\in\Omega. The equation (4.13) will be referred as block Markov property. The set of oo-block Markov chains over the tree TT will be denoted o𝒞(T)o-\mathcal{BMC}(T).

In [?] a triplet of σ\sigma-algebras (1,2,3)(\mathcal{F}_{1},\,\mathcal{F}_{2},\,\mathcal{F}_{3}) such that

𝐏(A12)=𝐏(A2),A3\mathbf{P}(A\,\mid\,\mathcal{F}_{1}\vee\mathcal{F}_{2})=\mathbf{P}(A\,\mid\,\mathcal{F}_{2}),\quad\forall A\in\mathcal{F}_{3} (4.14)

was referred as Markov triple. In these notations (4.13) means that (S(x),VT(x),x)(\mathcal{F}_{S(x)},\,\mathcal{F}_{V\setminus T(x)},\,\mathcal{F}_{x}) is a Markov triple.

Remark 2

The word ”block” in Definition. 3 comes from the conditioning w.r.t. the σ\sigma-algebra VT(x)\mathcal{F}_{V\setminus T(x)} rather then the σ\sigma-algebra R(x)\mathcal{F}_{R(x)}, while this latter represents the past of the vertex xx w.r.t. the root oo.

The following elementary formula for conditional probabilities will be used frequently in the sequel.

𝐏(ABC)=𝐏(ABC)𝐏(BC).\mathbf{P}(A\cap B\mid C)=\mathbf{P}(A\mid B\cap C)\mathbf{P}(B\mid C). (4.15)

Let μ\mu is an oo-BMC. According to (4.15), we have

μ[ξ(.)onΛn]]\displaystyle\mu[\xi(.)\,\hbox{on}\,\Lambda_{n]}] =\displaystyle= μ[ξ(.)onΛnξ(.)onΛn1]]×μ[ξ(.)onΛn1]]\displaystyle\mu[\xi(.)\,\hbox{on}\,\Lambda_{n}\,\mid\,\xi(.)\,\hbox{on}\,\Lambda_{n-1]}]\times\mu[\xi(.)\,\hbox{on}\,\Lambda_{n-1]}]
=\displaystyle= μ[ξ(.)onΛ0]k=0n1μ[ξ(.)onΛk+1ξ(.)onΛk]].\displaystyle\mu[\xi(.)\,\hbox{on}\,\Lambda_{0}]\prod_{k=0}^{n-1}\mu[\xi(.)\,\hbox{on}\,\Lambda_{k+1}\,\mid\,\xi(.)\,\hbox{on}\,\Lambda_{k]}].

For k=1,,n1k=1,\cdots,n-1, the same reason as above implies that

μ[ξ(.)onΛk+1ξ(.)onΛk]]=j=1|Λk|μ[ξ(.)onS(xΛk(j))ξ(.)onΛn1]i=j+1|Λk|S(xΛk(i))].\mu[\xi(.)\,\hbox{on}\,\Lambda_{k+1}\,\mid\,\xi(.)\,\hbox{on}\,\Lambda_{k]}]=\prod_{j=1}^{|\Lambda_{k}|}\mu\bigl{[}\xi(.)\,\hbox{on}\,S(x_{\Lambda_{k}}^{(j)})\,\mid\,\xi(.)\,\hbox{on}\,\Lambda_{n-1]}\cup\bigcup_{i=j+1}^{|\Lambda_{k}|}S(x_{\Lambda_{k}}^{(i)})\bigr{]}.

Since xΛk(i)Λn1]i=j+1|Λk|S(xΛk(i))VT(xΛk(i))x_{\Lambda_{k}}^{(i)}\in\Lambda_{n-1]}\cup\bigcup_{i=j+1}^{|\Lambda_{k}|}S(x_{\Lambda_{k}}^{(i)})\subset V\setminus T^{{}^{\prime}}(x_{\Lambda_{k}}^{(i)}) then the block Markov property (4.13) leads to

μ[ξ(.)onS(xΛk(j))ξ(.)onΛn1]i=j+1|Λk|S(xΛk(i))]=μ[ξ(.)onS(xΛk(j))ξ(xΛk(j))].\mu\bigl{[}\xi(.)\,\hbox{on}\,S(x_{\Lambda_{k}}^{(j)})\,\mid\,\xi(.)\,\hbox{on}\,\Lambda_{n-1]}\cup\bigcup_{i=j+1}^{|\Lambda_{k}|}S(x_{\Lambda_{k}}^{(i)})\bigr{]}=\mu\bigl{[}\xi(.)\,\hbox{on}\,S(x_{\Lambda_{k}}^{(j)})\,\mid\,\xi(x_{\Lambda_{k}}^{(j)})\bigr{]}.

Therefore

μ[ξ(.)onΛn]]=μ[ξ(o)]k=0n1xΛkμ[ξ(.)onS(x)ξ(x)].\mu[\xi(.)\,\hbox{on}\,\Lambda_{n]}]=\mu[\xi(o)]\prod_{k=0}^{n-1}\prod_{x\in\Lambda_{k}}\mu\bigl{[}\xi(.)\,\hbox{on}\,S(x)\,\mid\,\xi(x)\bigr{]}. (4.16)
Remark 3

The BMC μ\mu is characterized by the initial distribution μo\mu_{o} on Ω{o}\Omega_{\{o\}} together with the family of transition probabilities μ[ξ(.)onS(x)ξ(x)]\mu\bigl{[}\xi(.)\,\hbox{on}\,S(x)\,\mid\,\xi(x)\bigr{]}. The d×(d|S(x)|)d\times(d^{|S(x)|}) ”stochastic” matrices Πx,S(x)=(μ[ξ(.)onS(x)ξ(x)])ξΞS(x),ξΞ{x}\Pi_{x,S(x)}=\left(\mu[\xi^{{}^{\prime}}(.)\,\hbox{on}\,S(x)\,\mid\,\xi(x)]\right)_{\xi^{{}^{\prime}}\in\Xi^{S(x)},\xi\in\Xi^{\{x\}}} are clearly inhomogeneous. This lets the measure μ\mu a multi-dimensional markovian process which is inhomogeneous both in space and time.

The following theorem extends the local Markov property (4.13) to a global one, which concerns the conditional independence of the σ\sigma-algebras T(x)\mathcal{F}_{T(x)} and VT(x)\mathcal{F}_{V\setminus T^{{}^{\prime}}(x)} given x\mathcal{F}_{x}.

THEOREM 1

Let μ\mu be a block Markov chain on (Ω,)(\Omega,\mathcal{B}). Then

μ[ξ(.)onT(x)|ξ(.)onVT(x)]=μ[ξ(.)onT(x)|ξ(x)]\mu\left[\xi(.)\,\hbox{on}\,\,T^{{}^{\prime}}(x)\,\big{|}\,\xi(.)\,\hbox{on}\,\,V\setminus T^{{}^{\prime}}(x)\right]=\mu\left[\xi(.)\,\hbox{on}\,\,T^{{}^{\prime}}(x)\,\big{|}\,\xi(x)\right] (4.17)

For all ξΩ\xi\in\Omega and all xVx\in V.

Proof. If T(x)=ØT^{{}^{\prime}}(x)=\mathchoice{\mbox{\normalsize\rm\O}}{\mbox{\normalsize\rm\O}}{\mbox{\rm\O}}{\mbox{\rm\O}} then (4.17) holds true.
We will proceed by induction on S[1,n](x):=k=1nSk(x)S_{\left[1,n\right]}(x):=\bigcup_{k=1}^{n}S_{k}(x). One has

μ[ξ(.)onS[1,n+1](x)|ξ(.)onVT(x)]\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{\left[1,n+1\right]}(x)\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\,\,V\setminus T^{{}^{\prime}}(x)\right]
=μ[ξ(.)onSn+1(x)|ξ(.)onS[1,n](x)VT(x)]=\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{n+1}(x)\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\,\,S_{\left[1,n\right]}(x)\cup V\setminus T^{{}^{\prime}}(x)\right]
×μ[ξ(.)onS[1,n](x)|ξ(.)onVT(x)].\times\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{\left[1,n\right]}(x)\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\,\,V\setminus T^{{}^{\prime}}(x)\right].

Denoting Sn(x)={x1(n),,x|Sn(x)|(n)}S_{n}(x)=\{x_{1}^{(n)},\cdots,x^{(n)}_{|S_{n}(x)|}\}, one has

μ[ξ(.)onSn+1(x)|ξ(.)onS[1,n](x)VT(x)]\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{n+1}(x)\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\,\,S_{\left[1,n\right]}(x)\cup V\setminus T^{{}^{\prime}}(x)\right]
=i=1|Sn(x)|μ[ξ(.)onS(xi(n))|ξ(.)on(k=i+1nS(xk(n)))S[1,n](x)VT(x)].=\prod_{i=1}^{|S_{n}(x)|}\mu\left[\xi(.)\,\,\hbox{on}\,\,S(x_{i}^{(n)})\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\,\,(\bigcup_{k=i+1}^{n}S(x_{k}^{(n)}))\cup S_{\left[1,n\right]}(x)\cup V\setminus T^{{}^{\prime}}(x)\right].

From (4.13), one gets

μ[ξ(.)onS(xi(n))|ξ(.)on(k=i+1nS(xk(n)))S[1,n](x)VT(x)]\mu\left[\xi(.)\,\,\hbox{on}\,\,S(x_{i}^{(n)})\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\,\,(\bigcup_{k=i+1}^{n}S(x_{k}^{(n)}))\cup S_{\left[1,n\right]}(x)\cup V\setminus T^{{}^{\prime}}(x)\right]
=μ[ξ(.)onS(xi(n))|ξ(xi(n))].=\mu\left[\xi(.)\,\,\hbox{on}\,\,S(x_{i}^{(n)})\,\,\big{|}\,\,\xi(x_{i}^{(n)})\right].

Thus

μ[ξ(.)onSn+1(x)|ξ(.)onS[1,n](x)VT(x)]\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{n+1}(x)\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\,\,S_{\left[1,n\right]}(x)\cup V\setminus T^{{}^{\prime}}(x)\right]
=i=1|S(n)(x)|μ[ξ(.)onS(xi(n))|ξ(xi(n))].=\prod_{i=1}^{|S^{(n)}(x)|}\mu\left[\xi(.)\,\,\hbox{on}\,\,S(x_{i}^{(n)})\,\,\big{|}\,\,\xi(x_{i}^{(n)})\right].

Using the same argument as above , we obtain

μ[ξ(.)onSn+1(x)|ξ(.)onS[1,n](x)]\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{n+1}(x)\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\,\,S_{\left[1,n\right]}(x)\right] (4.18)
=i=1|Sn(x)|μ[ξ(.)onS(xi(n))|ξ(xi(n))].=\prod_{i=1}^{|S_{n}(x)|}\mu\left[\xi(.)\,\,\hbox{on}\,\,S(x_{i}^{(n)})\,\,\big{|}\,\,\xi(x_{i}^{(n)})\right].

On the other hand, the induction’s hypthesis leads to

μ[ξ(.)onS[1,n](x)|ξ(.)onVT(x)]=μ[ξ(.)onS[1,n](x)|ξ(x)].\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{[1,n]}(x)\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\,\,V\setminus T^{{}^{\prime}}(x)\right]=\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{[1,n]}(x)\,\,\big{|}\,\,\xi(x)\right].

Therefore

μ[ξ(.)onS[1,n+1](x)|ξ(.)onVT(x)]\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{[1,n+1]}(x)\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\,\,V\setminus T^{{}^{\prime}}(x)\right]
=μ[ξ(.)onSn+1(x)|ξ(.)onS[1,n](x)]×μ[ξ(.)onS[1,n](x)|ξ(x)]=\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{n+1}(x)\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\,\,S_{\left[1,n\right]}(x)\right]\times\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{[1,n]}(x)\,\,\big{|}\,\,\xi(x)\right]
=μ[ξ(.)onS[1,n+1](x)|ξ(x)].=\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{[1,n+1]}(x)\,\,\big{|}\,\,\xi(x)\right].

Finally, one finds

μ[ξ(.)onT(x)|ξ(.)onVT(x)]\displaystyle\mu\left[\xi(.)\,\,\hbox{on}\,\,T^{{}^{\prime}}(x)\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\,\,V\setminus T^{{}^{\prime}}(x)\right]
=\displaystyle= limn[1,)μ[ξ(.)onS[1,n+1](x)|ξ(.)onVT(x)];\displaystyle\lim_{n\to[1,\infty)}\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{[1,n+1]}(x)\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\,\,V\setminus T^{{}^{\prime}}(x)\right];
=\displaystyle= limn[1,)μ[ξ(.)onS[1,n+1](x)|ξ(x)];\displaystyle\lim_{n\to[1,\infty)}\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{[1,n+1]}(x)\,\,\big{|}\,\,\xi(x)\right];
=\displaystyle= μ[ξ(.)onT(x)|ξ(x)].\displaystyle\mu\left[\xi(.)\,\,\hbox{on}\,\,T^{{}^{\prime}}(x)\,\,\big{|}\,\,\xi(x)\right].
COROLLARY 1

In the notations of Theorem 1, if ΛT(x)\Lambda\subseteq T^{{}^{\prime}}(x) then

μ[ξ(.)onΛ|ξ(.)onVT(x)]=μ[ξ(.)onΛ|ξ(x)]\mu\left[\xi(.)\,\hbox{on}\,\,\Lambda\,\,\big{|}\,\xi(.)\,\hbox{on}\,\,V\setminus T^{{}^{\prime}}(x)\right]=\mu\left[\xi(.)\,\hbox{on}\,\,\Lambda\,\big{|}\,\xi(x)\right] (4.19)

for all ξΩ\xi\in\Omega.

Proof. From Theorem 1, for each ξΩT(x)Λ\xi^{\prime}\in\Omega_{T^{{}^{\prime}}(x)\setminus\Lambda}

μ[ξ(.)onΛ,ξ(.)onT(x)Λ|ξ(.)onVT(x)]\mu\left[\xi(.)\,\,\hbox{on}\,\,\Lambda,\,\,\xi^{{}^{\prime}}(.)\,\,\hbox{on}\,\,T^{{}^{\prime}}(x)\setminus\Lambda\,\,\big{|}\,\,\xi(.)\,\hbox{on}\,\,V\setminus T^{{}^{\prime}}(x)\right]
=μ[ξ(.)onΛ,ξ(.)onT(x)Λ|ξ(x)].=\mu\left[\xi(.)\,\,\hbox{on}\,\,\Lambda,\,\,\xi^{{}^{\prime}}(.)\,\,\hbox{on}\,\,T^{{}^{\prime}}(x)\setminus\Lambda\,\,\big{|}\,\,\xi(x)\right].

Summing up on ξΩT(x)Λ{\xi^{\prime}\in\Omega_{T^{{}^{\prime}}(x)\setminus\Lambda}}, one finds (4.19).
The following result proposes a multi-dimensional analogue of the Chapmann-Kolmogorov equation.

THEOREM 2

Let μ\mu be a BMC on (Ω,)(\Omega,\mathcal{B}). Then for xVx\in V and m,n𝐍m,n\in\mathbf{N} one has

μ[ξ(.)onSn+m(x)|ξ(x)]\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{n+m}(x)\,\,\big{|}\,\,\xi(x)\right] (4.20)
=ξΞSn(x)μ[ξ(.)onSn+m(x)|ξ(.)onSn(x)]×μ[ξ(.)onSn(x)|ξ(x)]=\sum_{\xi^{{}^{\prime}}\in\Xi^{S_{n}(x)}}\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{n+m}(x)\,\,\big{|}\xi^{{}^{\prime}}(.)\,\,\hbox{on}\,\,S_{n}(x)\,\,\right]\times\mu\left[\xi^{{}^{\prime}}(.)\,\,\hbox{on}\,\,S_{n}(x)\,\,\big{|}\xi(x)\,\,\right]

for all ξΩ\xi\in\Omega.

Proof. For each ξΩSn(x)\xi^{{}^{\prime}}\in\Omega_{S_{n}(x)}, using the same reason as in (4.18), we get

μ[ξ(.)onSn+m(x)|ξ(.)onSn(x)]\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{n+m}(x)\,\,\big{|}\xi^{{}^{\prime}}(.)\,\,\hbox{on}\,\,S_{n}(x)\,\,\right]
=μ[ξ(.)onSn+m(x)|ξ(.)onSn(x),ξ(x)].=\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{n+m}(x)\,\,\big{|}\xi^{{}^{\prime}}(.)\,\,\hbox{on}\,\,S_{n}(x)\,,\,\xi(x)\,\right].

Then

μ[ξ(.)onSn+m(x)|ξ(.)onSn(x)]×μ[ξ(.)onSn(x)|ξ(x)]\mu\left[\xi(.)\,\,\hbox{on}\,\,S_{n+m}(x)\,\,\big{|}\xi^{{}^{\prime}}(.)\,\,\hbox{on}\,\,S_{n}(x)\,\,\right]\times\mu\left[\xi^{{}^{\prime}}(.)\,\,\hbox{on}\,\,S_{n}(x)\,\,\big{|}\,\,\xi(x)\,\,\right]
=[ξ(.)onSn+m(x),ξ(.)onSn(x)|ξ(x)].=\left[\xi(.)\,\,\hbox{on}\,\,S_{n+m}(x)\,,\,\xi^{{}^{\prime}}(.)\,\,\hbox{on}\,\,S_{n}(x)\,\,\big{|}\,\,\xi(x)\,\,\right].

Summing up, one gets (4.20).

5. Connection with MCs and MRFs

LEMMA 1

Let xVx\in V. If Λ\Lambda is a subset of S(x)S(x) then the subgraph of the tree T=(V,E)T=(V,E), whose set of vertices is Λ(VT(x))\Lambda\cup(V\setminus T^{{}^{\prime}}(x)) is itself a tree.

Proof. First, we see that if yT(x)y\in T^{{}^{\prime}}(x) then T(y)T(x)T^{{}^{\prime}}(y)\subseteq T^{{}^{\prime}}(x). This implies that for each yVT(x)y\in V\setminus T^{{}^{\prime}}(x) is connected, the set of its roots {rk(y),k=0,}\{r^{k}(y),\,k=0,\cdots\} ( defined in (2.4)) is disjoint of the set T(x)T^{{}^{\prime}}(x). Then the path yr(y)oy\sim r(y)\sim\cdots\sim o is in VT(x)V\setminus T^{{}^{\prime}}(x). Therefore, the subgraph whose vertex set VT(x)V\setminus T^{{}^{\prime}}(x) is connected. Since every element of S(x)S(x) is joined to xx, we conclude that the subgraph (Λ(VT(x)),)(\Lambda\cup(V\setminus T^{{}^{\prime}}(x)),\sim) is connected. Taking into account that the fact that every connected subgraph of a tree is a subtree, the proof is complete.

THEOREM 3

Let μ\mu be a Markov chain on Ω\Omega. Then for each xVx\in V the following property holds true.

μ[ξ(.)onS(x)|ξ(.)onVT(x)]=yS(x)μ[ξ(y)ξ(x)].\mu\left[\xi(.)\,\,\hbox{on}\;S(x)\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\;V\setminus T^{{}^{\prime}}(x)\right]=\prod_{y\in S(x)}\mu\left[\xi(y)\,\,\mid\,\,\xi(x)\right]. (5.21)

If in addition, the σ\sigma-algebras (y)yS(x)(\mathcal{F}_{y})_{y\in S(x)} are conditionally independent given x\mathcal{F}_{x} then μ\mu is an o-BMC.

Proof. First let us write S(x):={y1,y2,,y|S(x)|}S(x):=\{y_{1},y_{2},\cdots,y_{|S(x)|}\}. According to (4.15), we have

μ[ξ(.)onS(x)|ξ(.)onVT(x)]\mu\left[\xi(.)\,\,\hbox{on}\;S(x)\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\;V\setminus T^{{}^{\prime}}(x)\right]
=k=1|S(x)|μ[ξ(yk)ξ(.)on(VT(x)){yk+1,,yn}].=\prod_{k=1}^{|S(x)|}\mu\left[\xi(y_{k})\,\,\mid\,\,\xi(.)\,\,\hbox{on}\;(V\setminus T^{{}^{\prime}}(x))\cup\{y_{k+1},\cdots,y_{n}\}\right].

By Lemma 1 the subgraph of TT whose set of vertices is V:=(VT(x)){yk+1,,yn}V^{{}^{\prime}}:=(V\setminus T^{{}^{\prime}}(x))\cup\{y_{k+1},\cdots,y_{n}\} is a tree. Then

k=1|S(x)|μ[ξ(yk)ξ(.)on(VT(x)){yk+1,,yn}]\displaystyle\prod_{k=1}^{|S(x)|}\mu\left[\xi(y_{k})\,\,\mid\,\,\xi(.)\,\,\hbox{on}\;(V\setminus T^{{}^{\prime}}(x))\cup\{y_{k+1},\cdots,y_{n}\}\right]
=\displaystyle= k=1|S(x)|μ[ξ(yk)ξ(.)on(V{yk})V]\displaystyle\prod_{k=1}^{|S(x)|}\mu\left[\xi(y_{k})\,\,\mid\,\,\xi(.)\,\,\hbox{on}\;(V\setminus\{y_{k}\})\cap V^{{}^{\prime}}\right]
=\displaystyle= k=1|S(x)|μ[ξ(yk)ξ(.)onNykV].\displaystyle\prod_{k=1}^{|S(x)|}\mu\left[\xi(y_{k})\,\,\mid\,\,\xi(.)\,\,\hbox{on}\;N_{y_{k}}\cap V^{{}^{\prime}}\right].

where the last equality derives from the fact that μ\mu is a Markov chain in the sense of Definition. 2. Since NykV={x}N_{y_{k}}\cap V^{{}^{\prime}}=\{x\}, we get (5.21). For the second part of the proof, the conditional independence of y:=σ(Zy),yS(x)\mathcal{F}_{y}:=\sigma(Z_{y}),y\in S(x) leads to

k=1|S(x)|μ[ξ(y)ξ(x)]=μ[ξ(.)onS(x)ξ(x)].\prod_{k=1}^{|S(x)|}\mu\left[\xi(y)\,\,\mid\,\,\xi(x)\right]=\mu\left[\xi(.)\,\,\hbox{on}\;S(x)\,\mid\,\,\xi(x)\right].

Hence, (5.21) leads to (4.17). Therefore μ\mu is a o-block Markov chain, for any root oVo\in V. This achieves the proof.

LEMMA 2

If μ\mu is an oo-BMC on (Ω,)(\Omega,\mathcal{B}) and xVx\in V then

μ[ξ(x)ξonΛ]=μ[ξ(x)ξ(.)on{r(x)}(T(x)Λ)]\mu[\xi(x)\,\,\mid\,\,\xi\,\,\hbox{on}\,\Lambda]=\mu[\xi(x)\,\,\mid\,\xi(.)\,on\,\{r(x)\}\cup(T^{{}^{\prime}}(x)\cap\Lambda)] (5.22)

for all ΛV{x}\Lambda\subseteq V\setminus\{x\} containing r(x)r(x).

Proof. Since xΛx\notin\Lambda, then according to (4.17) one gets

μ[ξ(x)|ξ(.)onΛ]\displaystyle\mu\left[\xi(x)\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\,\,\Lambda\right] =\displaystyle= μ[ξ(x);ξ(.)onΛT(x);ξ(.)onΛT(x)]μ[ξ(.)onΛT(x);ξ(.)onΛT(x)],\displaystyle\frac{\mu\left[\xi(x)\,;\,\,\xi(.)\,\,\hbox{on}\,\,\Lambda\cap T^{{}^{\prime}}(x)\,;\;\xi(.)\,\,\hbox{on}\,\,\Lambda\setminus T^{{}^{\prime}}(x)\right]}{\mu\left[\xi(.)\,\,\hbox{on}\,\,\Lambda\cap T^{{}^{\prime}}(x)\,;\,\,\xi(.)\,\,\hbox{on}\,\,\Lambda\setminus T^{{}^{\prime}}(x)\right]},
=\displaystyle= μ[ξ(.)onΛT(x)|ξ(x)]μ[ξ(x)|ξ(.)ΛT(x)]μ[ξ(.)onΛT(x)|ξ(.)onΛT(x)]\displaystyle\frac{\mu\left[\xi(.)\,\,\hbox{on}\,\,\Lambda\cap T^{{}^{\prime}}(x)\,\,\big{|}\,\,\xi(x)\right]\mu\left[\xi(x)\,\,\big{|}\,\,\xi(.)\,\,\Lambda\setminus T^{{}^{\prime}}(x)\right]}{\mu\left[\xi(.)\,\,\hbox{on}\,\,\Lambda\cap T^{{}^{\prime}}(x)\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\,\,\Lambda\setminus T^{{}^{\prime}}(x)\right]}
=\displaystyle= μ[ξ(.)onΛT(x)|ξ(x)]μ[ξ(x)|ξ(r(x))]μ[ξ(.)onΛT(x)|ξ(r(x))].\displaystyle\frac{\mu\left[\xi(.)\,\,\hbox{on}\,\,\Lambda\cap T^{{}^{\prime}}(x)\,\,\big{|}\,\,\xi(x)\right]\mu\left[\xi(x)\,\,\big{|}\,\,\xi(r(x))\right]}{\mu\left[\xi(.)\,\,\hbox{on}\,\,\Lambda\cap T^{{}^{\prime}}(x)\,\,\big{|}\,\,\xi(r(x))\right]}.

Again from (4.17), we have

μ[ξ(.)onΛT(x)|ξ(x)]=μ[ξ(.)onΛT(x)|ξ(x);ξ(r(x))].\mu\left[\xi(.)\,\,\hbox{on}\,\,\Lambda\cap T^{{}^{\prime}}(x)\,\,\big{|}\,\,\xi(x)\right]=\mu\left[\xi(.)\,\,\hbox{on}\,\,\Lambda\cap T^{{}^{\prime}}(x)\,\,\big{|}\,\,\xi(x)\,\,;\,\,\xi(r(x))\right].

This leads to

μ[ξ(x)|ξ(.)onΛ]\displaystyle\mu\left[\xi(x)\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\,\,\Lambda\right] =\displaystyle= μ[ξ(x);ξ(.)onΛT(x),ξ(r(x))]μ[ξ(.)onΛT(x);ξ(r(x))]\displaystyle\frac{\mu\left[\xi(x)\,\,;\,\,\xi(.)\,\,\hbox{on}\,\,\Lambda\cap T^{{}^{\prime}}(x)\,\,,\,\,\xi(r(x))\right]}{\mu\left[\xi(.)\,\,\hbox{on}\,\,\Lambda\cap T^{{}^{\prime}}(x)\,\,;\,\,\xi(r(x))\right]}
=\displaystyle= μ[ξ(x)|ξ(.)on{r(x)}ΛT(x)].\displaystyle\mu\left[\xi(x)\,\,\big{|}\,\,\xi(.)\,\,\hbox{on}\,\,\{r(x)\}\cup\Lambda\cap T^{{}^{\prime}}(x)\right].

This completes the proof.

Remark 4

Notice that Definition.2 extends the notion of Markov chain introduced in [?] and [?] into inhomogeneous trees and for inhomogeneous transition probabilities. It was shown [?] that the class of homogenous Markov chain is strictly included in the class of Markov random fields. In the inhomogeneous we have the following

THEOREM 4

Let μ\mu be a probability measure on (Ω,)(\Omega,\mathcal{B}). If μ\mu is an oo-BMC for each oVo\in V then it is a MC.

Proof. Consider a subtree T=(V,E)T^{{}^{\prime}}=(V^{{}^{\prime}},E^{{}^{\prime}}) of TT. Let xVx\in V^{{}^{\prime}}. If VNx=ØV^{{}^{\prime}}\cap N_{x}=\mathchoice{\mbox{\normalsize\rm\O}}{\mbox{\normalsize\rm\O}}{\mbox{\rm\O}}{\mbox{\rm\O}} then V={x}V^{{}^{\prime}}=\{x\} and (3.12) is trivial. Otherwise, let us denote NxV={y1,y2,,yd}N_{x}\cap V^{\prime}=\{y_{1},y_{2},\cdots,y_{d}\} with d=|NxV|d=|N_{x}\cap V^{{}^{\prime}}|. Remark that if o=yNxVo=y\in N_{x}\cap V^{{}^{\prime}} then ro(x)=yr_{o}(x)=y and NxV{y}S(x)VTo(x)VN_{x}\cap V^{{}^{\prime}}\setminus\{y\}\subseteq S(x)\cap V^{{}^{\prime}}\subseteq T^{{}^{\prime}}_{o}(x)\cap V^{{}^{\prime}}. As μ\mu is an y1y_{1}-BMC, by Lemma 2 we have

μ[ξ(x)ξ(.)onV{x}]=μ[ξ(x)ξ(.)on{y1}(Ty1(x)V)].\mu[\xi(x)\,\,\mid\,\,\xi(.)\,\hbox{on}\,\,V^{{}^{\prime}}\setminus\{x\}]=\mu[\xi(x)\,\,\mid\,\,\xi(.)\,\hbox{on}\,\,\{y_{1}\}\cup(T_{y_{1}}^{{}^{\prime}}(x)\cap V^{{}^{\prime}})].

Since μ\mu is an y2y_{2}-BMC by Lemma 2 , we have

μ[ξ(x)ξ(.)on{y1}(Ty1(x)V)]\displaystyle\mu[\xi(x)\,\,\mid\,\,\xi(.)\,\hbox{on}\,\,\{y_{1}\}\cup(T_{y_{1}}^{{}^{\prime}}(x)\cap V^{{}^{\prime}})]
=\displaystyle= μ[ξ(x)ξ(.)on{y2}({y1}Tx1(x)Ty2(x)V)]\displaystyle\mu[\xi(x)\,\,\mid\,\,\xi(.)\,\hbox{on}\,\,\{y_{2}\}\cup\bigl{(}\{y_{1}\}\cup T_{x_{1}}^{{}^{\prime}}(x)\cap T_{y_{2}}^{{}^{\prime}}(x)\cap V^{{}^{\prime}}\bigr{)}]
=\displaystyle= μ[ξ(x)ξ(.)on{y1,y2}(Ty1(x)Ty2(x)V)].\displaystyle\mu[\xi(x)\,\,\mid\,\,\xi(.)\,\hbox{on}\,\,\{y_{1},y_{2}\}\cup\bigl{(}T_{y_{1}}^{{}^{\prime}}(x)\cap T_{y_{2}}^{{}^{\prime}}(x)\cap V^{{}^{\prime}}\bigr{)}].

Iterating this procedure, we get

μ[ξ(x)ξ(.)onV{x}]\displaystyle\mu[\xi(x)\,\,\mid\,\,\xi(.)\,\hbox{on}\,\,V^{{}^{\prime}}\setminus\{x\}] =\displaystyle= μ[ξ(x)ξ(.)on{y1,y2,,yd}(i=1dTyi(x)V)]\displaystyle\mu[\xi(x)\,\,\mid\,\,\xi(.)\,\hbox{on}\,\,\{y_{1},y_{2},\cdots,y_{d}\}\cup\bigl{(}\bigcap_{i=1}^{d}T_{y_{i}}^{{}^{\prime}}(x)\cap V^{{}^{\prime}}\bigr{)}]
=\displaystyle= μ[ξ(x)ξ(.)onNxV]\displaystyle\mu[\xi(x)\,\,\mid\,\,\xi(.)\,\hbox{on}\,\,N_{x}\cap V^{{}^{\prime}}]

because

i=1dTyi(x)V=yNxTy(x)V=Ø.\bigcap_{i=1}^{d}T_{y_{i}}^{{}^{\prime}}(x)\cap V^{{}^{\prime}}=\bigcap_{y\in N_{x}}T_{y}^{{}^{\prime}}(x)\cap V^{{}^{\prime}}=\mathchoice{\mbox{\normalsize\rm\O}}{\mbox{\normalsize\rm\O}}{\mbox{\rm\O}}{\mbox{\rm\O}}. (5.23)

Therefore, the measure μ\mu satisfies (3.12). This finishes the proof, the verification of (5.23) being left to the reader.

COROLLARY 2
oVo𝒞(T)𝒞(T)(T).\bigcap_{o\in V}o-\mathcal{BMC}(T)\subseteq\mathcal{MC}(T)\subseteq\mathcal{MF}(T).

6. One-dimensional BMC

In this section we consider the one-dimensional lattice V=𝐙V=\mathbf{Z} occupied with its natural structure of tree, where the edge set is E={<k,k+1>,k𝐙}E=\{<k,k+1>,\quad k\in\mathbf{Z}\}. Here Ω=Ξ𝐙\Omega=\Xi^{\mathbf{Z}}.

PROPOSITION 1

Let μ\mu be a probability measure on (Ω,)(\Omega,\mathcal{B}). The following assertions are equivalent:

(i) μ\mu is a o-BMC for each oVo\in V;

(ii) μ\mu is an o’-BMC, for some root o𝐙o^{\prime}\in\mathbf{Z};

(iii) μ\mu is a MC.

In particular, a probability measure on (Ω,)(\Omega,\mathcal{B}) is markovian for the backward direction if and only if it is for the forward direction.

Proof.
(i)(ii)(i)\Rightarrow(ii) straightforward.
(ii)(i)(ii)\Rightarrow(i) Let o𝐙o^{\prime}\in\mathbf{Z}, without loss of generality we can assume that o<oo<o^{\prime}. Observe that if xmax(o,o)x\geq max(o,o^{\prime}) or xmin(o,o)x\leq min(o,o^{\prime}) then T0(x)=To(x)T_{0}^{{}^{\prime}}(x)=T_{o^{\prime}}^{{}^{\prime}}(x). Then (4.13) is also true if we replace oo by oo^{\prime}.
Let us now examine the case o<x<oo<x<o^{\prime} then So(x)={x1}S^{o^{\prime}}(x)=\{x-1\} and To(x)=(,x1]T_{o^{\prime}}^{{}^{\prime}}(x)=(-\infty,x-1]. Let m𝐍m\in\mathbf{N} and ξΩ\xi\in\Omega.
Applying (4.13) to yxy\geq x, we get

μ[ξ(y)ξ(y1),,ξ(x)]=μ[ξ(y)ξ(y1)]\mu[\xi(y)\,\,\mid\,\,\xi(y-1),\cdots,\xi(x)]=\mu[\xi(y)\,\,\mid\,\,\xi(y-1)]

because {x,,y1}(,y1]=𝐙To(y)\{x,\dots,y-1\}\subseteq(-\infty,y-1]=\mathbf{Z}\setminus T_{o}^{{}^{\prime}}(y).
According to (4.15), it follows that

μ[ξ(x1)ξ(.)on[x,x+m]]\displaystyle\mu\left[\xi(x-1)\,\,\mid\,\,\xi(.)\,\,\hbox{on}\,\,[x,x+m]\right] =\displaystyle= μ[ξ(.)on[x1,x+m]]μ[ξ(.)on[x,x+m]]\displaystyle\frac{\mu[\xi(.)\,\,\hbox{on}\,\,[x-1,x+m]]}{\mu[\xi(.)\,\,\hbox{on}\,\,[x,x+m]]}
=\displaystyle= μ[ξ(x1)]k=xx+mμ[ξ(k)ξ(k1)]μ[ξ(x)]k=x+1x+mμ[ξ(k)ξ(k1)]\displaystyle\frac{\mu[\xi(x-1)]\prod_{k=x}^{x+m}\mu[\xi(k)\,\,\mid\,\,\xi(k-1)]}{\mu[\xi(x)]\prod_{k=x+1}^{x+m}\mu[\xi(k)\,\,\mid\,\,\xi(k-1)]}
=\displaystyle= μ[ξ(x)ξ(x1)]×μ[ξ(x1)]μ[ξ(x)]\displaystyle\frac{\mu[\xi(x)\,\,\mid\,\,\xi(x-1)]\times\mu[\xi(x-1)]}{\mu[\xi(x)]}
=\displaystyle= μ[ξ(x1)ξ(x)].\displaystyle\mu[\xi(x-1)\,\,\mid\,\,\xi(x)].

Thus

μ[ξ(x)ξ(.)on𝐙To(x)]=μ[ξ(x1)ξ(x)]\mu[\xi(x)\,\,\mid\,\xi(.)\,\,\hbox{on}\,\,\mathbf{Z}\setminus T_{o^{\prime}}^{{}^{\prime}}(x)]=\mu[\xi(x-1)\,\,\mid\,\,\xi(x)]

for all x𝐙x\in\mathbf{Z}. Hence μ\mu is a oBMCo^{{}^{\prime}}-BMC. (ii)(iii)(ii)\Rightarrow(iii) Let x𝐙x\in\mathbf{Z} and m𝐍m\in\mathbf{N}. Since μ\mu is BMCBMC then it is a oBMCo-BMC for o=x1o=x-1 and T(x)=[x+1,)T^{{}^{\prime}}(x)=[x+1,\infty). By (4.13), it follows that

μ[ξ(x)ξ(x1),,ξ(xm)]=μ[ξ(x)ξ(x1)].\mu[\,\xi(x)\,\,\mid\,\,\xi(x-1),\cdots,\xi(x-m)]=\mu[\xi(x)\,\,\mid\,\,\xi(x-1)\,].

Therefore, μ\mu is a Markov chain.
(iii)(i)(iii)\Rightarrow(i) If μ\mu is a Markov chain then

μ[ξ(x)ξ(.)on(,x1)].\mu[\xi(x)\,\,\mid\,\,\xi(.)\,\,\hbox{on}\,\,(-\infty,x-1)].

By taking x>0x>0, this implies that μ\mu is 0-block Markov chain, which completes the proof.

Remark 5

Proposition 1 may be summarized by saying that for each x𝐙x\in\mathbf{Z} the triple ([x+1,),x,(,x1])(\mathcal{F}_{[x+1,\infty)},\mathcal{F}_{x},\mathcal{F}_{(-\infty,x-1]}) is a Markov triple in the sense of (4.14). Namely, this result is still true by taking 𝐍\mathbf{N} instead of 𝐙\mathbf{Z}. However, a slight modification on the one dimensional lattice can provide a counter-example in the multi-dimensional case, in fact we have the following section.

7. Counter-example

Consider the sets V=𝐍×{0}{(0,1),(0,1)}𝐙2V=\mathbf{N}\times\{0\}\cup\{(0,1),(0,-1)\}\subset\mathbf{Z}^{2} and E={{x,y}V;|xy|=1}E=\{\{x,y\}\in V\,;\,|x-y|=1\} where |(a,b)|=|a|+|b||(a,b)|=|a|+|b|. We get then The tree T=(V,E)T=(V,E) (see Fig.LABEL:0RTgraph).

[Uncaptioned image]

Consider a {0,1}\{0,1\}-valued Markov chain (Xn)n0(X_{n})_{n\geq 0} with initial measure μ0=12(δ0+δ1)\mu_{0}=\frac{1}{2}(\delta_{0}+\delta_{1}) and transition matrix P=[1/21/210]P=\left[\begin{array}[]{cc}1/2&1/2\\ 1&0\\ \end{array}\right].

Define the {0,1}\{0,1\}-valued stochastic process (Zu)uV(Z_{u})_{u\in V} by

Zu={X0,ifu=(0,1);X1,if u=(0,0);X2,ifu=(0,1);Xn+2,ifu=(n,0),n1.Z_{u}=\left\{\begin{array}[]{lll}X_{0},&\hbox{if}&u=(0,-1);\\ X_{1},&\hbox{if }&u=(0,0);\\ X_{2},&\hbox{if}&u=(0,1);\\ X_{n+2},&\hbox{if}&u=(n,0),\,n\geq 1.\end{array}\right.

Let Ξ={0,1}\Xi=\{0,1\} and μ\mu be the probability measure on ΞV\Xi^{V} associated with (Zu)uV(Z_{u})_{u\in V}. Let o=(0,1)o=(0,-1) and o=(0,1)o^{\prime}=(0,1), it easy to check that μ\mu is an oo-BMC. However, μ\mu is not a oo^{\prime}-BMC. In fact, if x=(0,0)x=(0,0) we have So(w)={(0,1),(1,0)},r(x)=(0,1)S_{o^{\prime}}(w)=\{(0,-1),(1,0)\},\,r(x)=(0,1) and To(x)=V{x,r(x)}T_{o^{\prime}}^{{}^{\prime}}(x)=V\setminus\{x,r(x)\} . Let ξ0Ω\xi\equiv 0\in\Omega

μ[ξ(.)onSo(x)ξ(.)onVTo(x)]\mu[\xi(.)\,\,\hbox{on}\,S_{o^{\prime}}(x)\,\mid\,\xi(.)\,\,\hbox{on}\,V\setminus T^{{}^{\prime}}_{o^{\prime}}(x)]
=𝐏[Z(0,1)=0,Z(1,0)=0Z(0,0)=0,Z(0,1)=0]=16.=\mathbf{P}[Z_{(0,-1)}=0,\,Z_{(1,0)}=0\,\mid\,Z_{(0,0)}=0,\,Z_{(0,1)}=0]=\frac{1}{6}.

On the other hand

μ[ξ(.)onSo(x)ξ(x)]=𝐏[Z(0,1)=0,Z(1,0)=0Z(0,0)=0]=14.\mu[\xi(.)\,\,\hbox{on}\,\,S_{o^{\prime}}(x)\,\,\mid\,\,\xi(x)]=\mathbf{P}[Z_{(0,-1)}=0,Z_{(1,0)}=0\,\,\mid\,\,Z_{(0,0)}=0]=\frac{1}{4}.

This leads to

μ[ξ(.)onSo(x)ξ(.)onVTo(x)]μ[ξ(.)onSo(x)ξ(x)].\mu[\xi(.)\,\,\hbox{on}\,S_{o^{\prime}}(x)\,\mid\,\xi(.)\,\,\hbox{on}\,V-T^{{}^{\prime}}_{o^{\prime}}(x)]\neq\mu[\xi(.)\,\,\hbox{on}S_{o^{\prime}}(x)\,\,\mid\,\,\xi(x)].

Hence μ\mu is not an oo^{\prime}-BMC.
Furthermore, the probability measure μ\mu is not a MC. In fact, by considering the subtree with vertex set V0={(0,1),(0,0),(1,0)}V_{0}=\{(0,1),(0,0),(1,0)\}. We get

μ[ξ((1,0))ξ((0,0)),ξ((0,1))]=1234=μ[ξ((1,o))ξ((0,0))].\mu[\xi((1,0))\,\mid\,\xi((0,0)),\xi((0,1))]=\frac{1}{2}\neq\frac{3}{4}=\mu[\xi((1,o))\,\mid\,\xi((0,0))].

Bibliography

  • [1] Mukhamedov F., Souissi A., Quantum Markov States on Cayley trees, J. Math. Anal. Appl.473 (2019) 313-333.
  • [2] Mukhamedov F., Souissi A., Diagonalizability of quantum Markov States on trees, to appear J. stat. phys. (2020).
  • [3] H. Huilin, Y. Weiguo, S. Zhiyan The Shannon–McMillan theorem for Markov chains in Markovian environments indexed by homogeneous trees, Communications in Statistics - Theory and Methods 47:21, 5286-5297,(2018)
  • [4] R.L. Dobrushin, The Description of a Random Field by Means of Conditional Probabilities and Conditions of Its Regularity. Probab. Theory Appl. 13, 201-22 (1968).
  • [5] A. Spataru, Construction of a Markov Field on an infinite tree, Adv. Math. 81, 105-116 (1990).
  • [6] F. Spitzer, Markov random fields on an infinite tree , Ann. Probab.3, 387-398 (1987) .
  • [7] S. Zachary, Countable state space Markov random fields and Markov chains on trees, Ann. Probab. 4, 894-903 (1983).
  • [8] Georgi H.-O. Gibbs measures and phase transitions, de Gruyter Studies in Mathematics vol. 9, Walter de Gruyter, Berlin, 1988.
  • [9] N.Chandgotia, G. Han, B. Marcus, T. Meyerovitch, R. Pavlov One-dimensional Markov random fields, Markov chains and topological Markov fields, Am. Math. S 142, 1, 227-242 (2014).
  • [10] S.L. Lauritzen, Graphical Models, Oxford university press (1996)
  • [11] R. Lyons, Y. Peres, Probability on Trees and Networks, Combridge university press (2016).
  • [12] R. A. Minlos, E. A. Pecherskii, S. A. Pirogov, Gibbs Random Fields on a Lattice: Definitions, Existence, Uniqueness, and Phase Transitions, J. Comm. Tech. and Elec., 59, 6, 576-594 (2014).
  • [13] U. A. Rozikov, Gibbs Mesures on Cayley trees, World scientific (2013)
  • [14] Mukhamedov, F., Akın, H., Phase transitions for p-adic Potts model on the Cayley tree of order three. Journal of Statistical Mechanics: Theory and Experiment, 2013(07), 30
  • [15] Mukhamedov, F., Saburov, M., Khakimov, O., On p-adic Ising–Vannimenus model on an arbitrary order Cayley tree. Journal of Statistical Mechanics: Theory and Experiment, 2015(5), 26
  • [16] J. Cao, K. J. Worsley Applications of Random Fields in Human Brain Mapping, Spatial Statistics: Methodological Aspects and Applications. Lecture Notes in Statistics, vol 159. Springer, New York, NY (2001).
  • [17] C. Glymour, The Mind’s Arrows: Bayes Nets and Graphical Causal Models in Psychology, The MIT Press (2001).
  • [18] J. R. Norris, Markov chains, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 2, Cambridge University Press, Cambridge, 1998. Reprint of 1997 original. MR1600720 (99c:60144).